HUMAN PROMONOCYTE ASSOCIATED PROTEIN: PRMNC

The invention provides a human promonocyte associated protein (PRMNC) and polynucleotides which identify and encode PRMNC. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating or preventing disorders associated with expression of PRMNC.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
</tr>
<tr>
<td>ES</td>
<td>Spain</td>
</tr>
<tr>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>LI</td>
<td>Lichtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>LT</td>
<td>Lithuania</td>
</tr>
<tr>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>LV</td>
<td>Latvia</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Republic of Moldova</td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolia</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
</tr>
<tr>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
HUMAN PROMONOCYTE ASSOCIATED PROTEIN: PRMNC

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of a promonocyte associated protein and to the use of these sequences in the diagnosis, treatment, and prevention of immune, cell proliferative and reproductive disorders, and infections.

BACKGROUND OF THE INVENTION

Blood cells are comprised of diverse and distinctive cell types derived from a common progenitor stem cell in the bone marrow. Blood cells are classified as either red or white. Red blood cells, or erythrocytes, transport oxygen through the bloodstream. White blood cells, or leukocytes, are involved in various aspects of the immune response, including inflammation and defense against infection. Leukocytes are further classified into three major cell types: lymphocytes, granulocytes, and monocytes. Lymphocytes include T- and B-cells, which specifically recognize and respond to foreign pathogens. T-cells are important for fighting viral infections and activating other leukocytes, while B-cells secrete antibodies that neutralize bacteria and other microbes. Granulocytes and monocytes are primarily migratory, phagocytic cells that exit the bloodstream to fight infection in tissues. Monocytes, which are derived from immature promonocytes, further differentiate into macrophages that engulf and digest microorganisms and damaged or dead cells. Granulocytes, which include neutrophils, basophils, eosinophils, and mast cells, are also important in phagocytosis and in the allergic response. Dendritic cells are a rare type of leukocyte which resides in lymphoid organs, such as the thymus, and in specialized cells of the skin called Langerhans cells. Dendritic cells are characterized by unusual pseudopodial and elongated processes extending from the cell surface. Dendritic cells are antigen-presenting cells that play a key role in T-cell activation.

Monocytes and macrophages modulate the immune response by secreting signaling molecules such as growth factors and cytokines. Tumor necrosis factor-α (TNF-α), for example, is a macrophage-secreted protein with anti-tumor and anti-viral activity. In cultured monocytes, TNF-α expression is stimulated by phorbol ester, a class of
compounds which artificially trigger signal transduction. A messenger RNA (mRNA) transcript related to a monocyte mRNA transcript involved in phorbol ester-induced expression of TNF-α has been isolated from estrogen-treated rat uterus. This transcript, estrogen enhanced transcript-1 (EET-1: GI 1279978; SEQ ID NO:3), contains an open reading frame that encodes a 161 amino acid protein (EET-1 ORF). EET-1 ORF contains several potential phosphorylation sites and a C-terminal cysteine rich region, suggesting that this protein is involved in gene regulation and signal transduction. (Everett, L. M. et al. (1997) Endocrinology 138:3836-3841.)

In addition, monocytes and macrophages are recruited to sites of infection and inflammation by signaling proteins secreted by other leukocytes. For example, numerous related low molecular weight cytokines, called chemokines, have been identified as leukocytic secretory products with chemoattractant activity. Chemokines play a key role in inflammatory and infectious diseases such as acquired immunodeficiency syndrome (AIDS). Chemokines are classified as C, CC, CXC, and CX3C, based on the number and position of critical cysteine residues. (Bazan, J. F. et al. (1997) Nature 385:640-644; Wells, T. N. and Peitsch, M. C. (1997) J. Leukoc. Biol. 61:545-550.)

The differentiation of the monocyte blood cell lineage can be studied in vitro using cultured cell lines. For example, THP-1 is a human promonocyte cell line that can be activated by treatment with both phorbol ester, such as phorbol myristate acetate (PMA), and lipopolysaccharide (LPS). These reagents mimic the signals that trigger promonocyte and monocyte differentiation in vivo. In addition, treatment with nucleotide analogs, such as 5-aza-2'-deoxycytidine (5AZA), promotes cell differentiation by activating gene transcription.

The discovery of a new promonocyte associated protein and the polynucleotides encoding it satisfies a need in the art by providing new compositions which are useful in the diagnosis, treatment, and prevention of immune, cell proliferative and reproductive disorders, and infections.

SUMMARY OF THE INVENTION

The invention is based on the discovery of a new human promonocyte associated protein (PRMNC), the polynucleotides encoding PRMNC, and the use of these compositions for the diagnosis, treatment, or prevention of immune, cell proliferative and
reproductive disorders, and infections.

The invention features a substantially purified polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1.

The invention further provides a substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1. The invention also provides an isolated and purified polynucleotide encoding the polypeptide comprising the sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1.

The invention further provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1, as well as an isolated and purified polynucleotide which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1.

The invention also provides an isolated and purified polynucleotide comprising the polynucleotide sequence of SEQ ID NO:2 or a fragment of SEQ ID NO:2, and an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide comprising the polynucleotide sequence of SEQ ID NO:2 or a fragment of SEQ ID NO:2. The invention also provides an isolated and purified polynucleotide having a sequence complementary to the polynucleotide comprising the polynucleotide sequence of SEQ ID NO:2 or a fragment of SEQ ID NO:2.

The invention further provides an expression vector comprising at least a fragment of the polynucleotide encoding the polypeptide comprising the sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1. In another aspect, the expression vector is contained within a host cell.

The invention also provides a method for producing a polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1, the method comprising the steps of: (a) culturing the host cell comprising an expression vector containing at least a fragment of a polynucleotide encoding the polypeptide comprising the
amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1 under conditions suitable for the expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1 in conjunction with a suitable pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide comprising the sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1, as well as a purified agonist and a purified antagonist of the polypeptide.

The invention also provides a method for treating or preventing an immune disorder, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising substantially purified polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1.

The invention also provides a method for treating or preventing a cell proliferative disorder, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising the polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1.

The invention also provides a method for treating or preventing a reproductive disorder, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising substantially purified polypeptide having the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1.

The invention also provides a method for detecting a polynucleotide encoding a polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1 in a biological sample containing nucleic acids, the method comprising the steps of: (a) hybridizing the complement of the polynucleotide encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1 to at
least one of the nucleic acids of the biological sample, thereby forming a hybridization complex; and (b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide encoding the polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1 in the biological sample. In one aspect, the nucleic acids of the biological sample are amplified by the polymerase chain reaction prior to the hybridizing step.

BRIEF DESCRIPTION OF THE FIGURES

Figures 1A, 1B, 1C, and 1D show the amino acid sequence (SEQ ID NO:1) and nucleic acid sequence (SEQ ID NO:2) of PRMNC. The alignment was produced using MacDNASIS PRO™ software (Hitachi Software Engineering Co. Ltd., San Bruno, CA).

Figure 2 shows the amino acid sequence alignments between PRMNC (011050; SEQ ID NO:1) and rat EET-1 ORF (SEQ ID NO:4), produced using the multisequence alignment program of LASERGENETM software (DNASTAR Inc, Madison WI).

Figure 3 shows electronic northern analysis of SEQ ID NO:2 using the LifeSeq™ sequence database (Incyte Pharmaceuticals, Inc., Palo Alto, CA).

Figure 4 shows membrane-based northern analysis of SEQ ID NO:2 in control (lanes 1 and 2) and activated (lanes 3-5) THP-1 cells.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular methodology, protocols, cell lines, vectors, and reagents described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a host cell” includes a plurality of such host cells, and a reference to “an antibody” is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the
same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, vectors, and methodologies which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"PRMNC," as used herein, refers to the amino acid sequences of substantially purified PRMNC obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist," as used herein, refers to a molecule which, when bound to PRMNC, increases or prolongs the duration of the effect of PRMNC. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of PRMNC.

An "allelic variant," as this term is used herein, is an alternative form of the gene encoding PRMNC. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding PRMNC, as described herein, include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as PRMNC or a polypeptide with at least one functional characteristic of PRMNC. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding PRMNC, and improper or unexpected hybridization to allelic
variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding PRMNC. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent PRMNC. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of PRMNC is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.

The terms "amino acid" or "amino acid sequence," as used herein, refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of PRMNC which are preferably about 5 to about 15 amino acids in length, most preferably 14 amino acids, and which retain some biological activity or immunological activity of PRMNC. Where "amino acid sequence" is recited herein to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification," as used herein, relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art. (See, e.g., Dieffenbach, C.W. and G.S. Dveksler (1995) PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, NY, pp.1-5.)

The term "antagonist," as it is used herein, refers to a molecule which, when bound to PRMNC, decreases the amount or the duration of the effect of the biological or immunological activity of PRMNC. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of PRMNC.

As used herein, the term "antibody" refers to intact molecules as well as to fragments thereof, such as Fab, F(ab')2, and Fv fragments, which are capable of binding
the epitopic determinant. Antibodies that bind PRMNC polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term “antigenic determinant,” as used herein, refers to that fragment of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term “antisense,” as used herein, refers to any composition containing a nucleic acid sequence which is complementary to the “sense” strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural sequences produced by the cell to form duplexes and to block either transcription or translation. The designation “negative” can refer to the antisense strand, and the designation “positive” can refer to the sense strand.

As used herein, the term “biologically active,” refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, “immunologically active” refers to the capability of the natural, recombinant, or synthetic PRMNC, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms “complementary” or “complementarity,” as used herein, refer to the natural binding of polynucleotides by base pairing. For example, the sequence “A-G-T” binds to the complementary sequence “T-C-A.” Complementarity between two single-stranded molecules may be “partial,” such that only some of the nucleic acids bind, or it may be “complete,” such that total complementarity exists between the single stranded
molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence," as these terms are used herein, refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation, an aqueous solution, or a sterile composition. Compositions comprising polynucleotide sequences encoding PRMNC or fragments of PRMNC may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts, e.g., NaCl, detergents, e.g., sodium dodecyl sulfate (SDS), and other components, e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.

"Consensus sequence," as used herein, refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR™ (Perkin Elmer, Norwalk, CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GELVIEW™ Fragment Assembly system (GCG, Madison, WI). Some sequences have been both extended and assembled to produce the consensus sequence.

As used herein, the term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding PRMNC, by Northern analysis is indicative of the presence of nucleic acids encoding PRMNC in a sample, and thereby correlates with expression of the transcript from the polynucleotide encoding PRMNC.

A "deletion," as the term is used herein, refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative," as used herein, refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a
polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

The term “similarity,” as used herein, refers to a degree of complementarity. There may be partial similarity or complete similarity. The word “identity” may substitute for the word “similarity.” A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as “substantially similar.” The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or Northern blot, solution hybridization, and the like) under conditions of reduced stringency. A substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases “percent identity” or “% identity” refer to the percentage of sequence similarity found in a comparison of two or more amino acid or nucleic acid sequences.

Percent identity can be determined electronically, e.g., by using the MegAlign™ program (DNASTAR, Inc., Madison WI). The MegAlign™ program can create alignments between two or more sequences according to different methods, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp (1988) Gene 73:237-244.) The clustal algorithm groups sequences into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap
residues in sequence B, into the sum of the residue matches between sequence A and sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) Methods Enzymol. 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

"Human artificial chromosomes" (HACs), as described herein, are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355.)

The term "humanized antibody," as used herein, refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization," as the term is used herein, refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

As used herein, the term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_a or R_a analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" or "addition," as used herein, refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

The term "microarray," as used herein, refers to an arrangement of distinct
polynucleotides arrayed on a substrate, e.g., paper, nylon or any other type of membrane,
filter, chip, glass slide, or any other suitable solid support.

The terms "element" or "array element" as used herein in a microarray context,
refer to hybridizable polynucleotides arranged on the surface of a substrate.

The term "modulate," as it appears herein, refers to a change in the activity of
PRMNC. For example, modulation may cause an increase or a decrease in protein
activity, binding characteristics, or any other biological, functional, or immunological
properties of PRMNC.

The phrases "nucleic acid" or "nucleic acid sequence," as used herein, refer to a
nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also
refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or
double-stranded and may represent the sense or the antisense strand, to peptide nucleic
acid (PNA), or to any DNA-like or RNA-like material. In this context, "fragments" refers
to those nucleic acid sequences which, when translated, would produce polypeptides
retaining some functional characteristic, e.g., antigenicity, or structural domain
characteristic, e.g., ATP-binding site, of the full-length polypeptide.

The terms "operably associated" or "operably linked," as used herein, refer to
functionally related nucleic acid sequences. A promoter is operably associated or operably
linked with a coding sequence if the promoter controls the translation of the encoded
polypeptide. While operably associated or operably linked nucleic acid sequences can be
contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes,
are not continguously linked to the sequence encoding the polypeptide but still bind to
operator sequences that control expression of the polypeptide.

The term "oligonucleotide," as used herein, refers to a nucleic acid sequence of at
least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and
most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in
a hybridization assay or microarray. As used herein, the term "oligonucleotide" is
substantially equivalent to the terms "amplimer," "primer," "oligomer," and "probe," as
these terms are commonly defined in the art.

"Peptide nucleic acid" (PNA), as used herein, refers to an antisense molecule or
anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in
length linked to a peptide backbone of amino acid residues ending in lysine. The terminal
lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell. (See, e.g., Nielsen, P.E. et al. (1993) Anticancer Drug Des. 8:53-63.)

The term “sample,” as used herein, is used in its broadest sense. A biological sample suspected of containing nucleic acids encoding PRMNC, or fragments thereof, or PRMNC itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a solid support; a tissue; a tissue print; etc.

As used herein, the terms “specific binding” or “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope “A,” the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

As used herein, the term “stringent conditions” refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be defined by salt concentration, the concentration of organic solvent (e.g., formamide), temperature, and other conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well
known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 μg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, and 200 μg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

The term "substantially purified," as used herein, refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution," as used herein, refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

"Transformation," as defined herein, describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or
eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A “variant” of PRMNC, as used herein, refers to an amino acid sequence that is altered by one or more amino acids. The variant may have “conservative” changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have “nonconservative” changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENETM software.

THE INVENTION

The invention is based on the discovery of a new human promonocyte associated protein (PRMNC), the polynucleotides encoding PRMNC, and the use of these compositions for the diagnosis, treatment, or prevention of immune, cell proliferative and reproductive disorders, and infections.

Nucleic acids encoding the PRMNC of the present invention were first identified in Incyte Clone 011050 from the promonocyte cell cDNA library (THP1PLB01) using a computer search, e.g., BLAST, for amino acid sequence alignments. A consensus sequence, SEQ ID NO:2, was derived from the following overlapping and/or extended nucleic acid sequences: Incyte Clones 011050 (THP1PLB01), 2794785 (NPOLNOT01), 1856172 (PROSNOT18), 2324848 (OVARNOT02), 1260633 (SYNORAT05), and 1932479 (COLNNOT16).

In one embodiment, the invention encompasses a polypeptide comprising the amino acid sequence of SEQ ID NO:1, as shown in Figures 1A, 1B, 1C, and 1D. PRMNC is 228 amino acids in length and has four potential casein kinase II phosphorylation sites at
S22, T49, T86, and T167 and one potential protein kinase C phosphorylation site at T167. The occurrence of six cysteine residues at C95, C96, C99, C119, C123, and C140 is consistent with both CC and CXXXC chemokine motifs. As shown in Figure 2, PRMNC has chemical and structural similarity with EET-1 ORF (SEQ ID NO:4). In particular, PRMNC and EET-1 ORF share 68% identity. In addition, all six cysteine residues and the potential phosphorylation sites at S22, T49, and T86 in PRMNC are conserved in EET-1 ORF. A region of unique sequence in PRMNC from about amino acid 127 to about amino acid 139 is encoded by a fragment of SEQ ID NO:2 from about nucleotide 433 to about nucleotide 471.

Electronic northern analysis shows that SEQ ID NO:2 is expressed in 291 cDNA libraries in the Incyte LifeSeq™ database. The upper panel of Figure 3 shows the top ten libraries in which SEQ ID NO:2 is most abundantly expressed. Abundance refers to the number of times SEQ ID NO:2 appears in each of the libraries listed, and Percent Abundance refers to the Abundance divided by the total number of usable sequences in a given library. Of particular note is that the Percent Abundance of SEQ ID NO:2 is highest in the promonocyte cell library, THP1PLB01. This library is derived from THP-1 cells activated with both PMA and LPS. The Percent Abundance, 0.95, indicates that SEQ ID NO:2 is highly expressed in THP-1 cells activated by these reagents. SEQ ID NO:2 is also present at high levels in libraries derived from activated granulocyte, lymphocyte, and dendritic cell lines. The center panel of Figure 3 shows that SEQ ID NO:2 is present at modest levels, from about 0.04 to 0.05 Percent Abundance, in libraries derived from THP-1 cells activated by 5AZA. The lower panel of Figure 3 shows that SEQ ID NO:2 is not detectable in libraries derived from untreated THP-1 cells or cells treated with only PMA. Analysis of all libraries expressing SEQ ID NO:2 indicates that 57% of these libraries are derived from cancerous or proliferating tissue, and 44% of these libraries are derived from tissues associated with inflammation and the immune response. In particular, 29% of the libraries expressing SEQ ID NO:2 are derived from reproductive tissue, and 24% are derived from hematopoietic or immunological tissue.

As shown in Figure 4, membrane-based northern analysis confirms that SEQ ID NO:2 is highly transcribed in PMA- and LPS-activated THP-1 cells. Probes were derived from the sequence of SEQ ID NO:2, and northern analysis and autoradiography were performed using methods well known in the art. RNA was isolated from control or
activated THP-1 cells cultured under the following conditions: lane 1: untreated cells; lane 2: cells treated with 100 ng/ml PMA for 48 hours; lane 3: as in lane 2, followed by treatment with 1 µg/ml LPS for 30 minutes; lane 4: as in lane 2, followed by treatment with 1 µg/ml LPS for 120 minutes; lane 5: as in lane 2, followed by treatment with 1 µg/ml LPS for 240 minutes. As seen in lanes 3-5, prolonged treatment with both PMA and LPS induces the highest levels of SEQ ID NO:2 transcription.

The invention also encompasses PRMNC variants. A preferred PRMNC variant is one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the PRMNC amino acid sequence, and which contains at least one functional or structural characteristic of PRMNC.

The invention also encompasses polynucleotides which encode PRMNC. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising the sequence of SEQ ID NO:2, which encodes an PRMNC.

The invention also encompasses a variant of a polynucleotide sequence encoding PRMNC. In particular, such a variant polynucleotide sequence will have at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding PRMNC. A particular aspect of the invention encompasses a variant of SEQ ID NO:2 which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to SEQ ID NO:2. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of PRMNC.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding PRMNC, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring PRMNC, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode PRMNC and its variants are
preferably capable of hybridizing to the nucleotide sequence of the naturally occurring PRMNC under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding PRMNC or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding PRMNC and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode PRMNC and PRMNC derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding PRMNC or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:2, or a fragment of SEQ ID NO:2, under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.)

Methods for DNA sequencing are well known and generally available in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, Sequenase® (US Biochemical Corp., Cleveland, OH), Taq polymerase (Perkin Elmer), thermostable T7 polymerase (Amersham, Chicago, IL), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE™ Amplification System (GIBCO BRL, Gaithersburg, MD). Preferably, the process is automated with machines such as the Hamilton Micro Lab 2200 (Hamilton, Reno, NV), Peltier Thermal Cycler (PTC200; MJ Research, Watertown, MA) and the ABI Catalyst and 373 and 377 DNA Sequencers (Perkin Elmer).
The nucleic acid sequences encoding PRMNC may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Appl. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Appl. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306). Additionally, one may use PCR, nested primers, and PromoterFinder™ libraries to walk genomic DNA (Clontech, Palo Alto, CA). This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO™ 4.06 Primer Analysis software (National Biosciences Inc., Plymouth, MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a
charge coupled device camera for detection of the emitted wavelengths. Output/light
intensity may be converted to electrical signal using appropriate software (e.g.,
Genotyper™ and Sequence Navigator™, Perkin Elmer), and the entire process from
loading of samples to computer analysis and electronic data display may be computer
controlled. Capillary electrophoresis is especially preferable for sequencing small DNA
fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments
thereof which encode PRMNC may be cloned in recombinant DNA molecules that direct
expression of PRMNC, or fragments or functional equivalents thereof, in appropriate host
cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which
encode substantially the same or a functionally equivalent amino acid sequence may be
produced and used to express PRMNC.

The nucleotide sequences of the present invention can be engineered using
methods generally known in the art in order to alter PRMNC-encoding sequences for a
variety of purposes including, but not limited to, modification of the cloning, processing,
and/or expression of the gene product. DNA shuffling by random fragmentation and PCR
reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the
nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis
may be used to introduce mutations that create new restriction sites, alter glycosylation
patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding PRMNC may be synthesized, in
whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers,
Acids Res. Symp. Ser. 225-232.) Alternatively, PRMNC itself or a fragment thereof may
be synthesized using chemical methods. For example, peptide synthesis can be performed
using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science
269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide
Synthesizer (Perkin Elmer). Additionally, the amino acid sequence of PRMNC, or any
part thereof, may be altered during direct synthesis and/or combined with sequences from
other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid

In order to express a biologically active PRMNC, the nucleotide sequences encoding PRMNC or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding PRMNC. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding PRMNC. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding PRMNC and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding PRMNC and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, NY, ch. 4, 8, and 16-17; and Ausubel, F.M. et al. (1995, and periodic supplements) Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding PRMNC. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA.
expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus (CaMV) or tobacco mosaic virus (TMV)) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding PRMNC. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding PRMNC can be achieved using a multifunctional E. coli vector such as Bluescript® (Stratagene) or pSport™ plasmid (GIBCO BRL). Ligation of sequences encoding PRMNC into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of PRMNC are needed, e.g. for the production of antibodies, vectors which direct high level expression of PRMNC may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of PRMNC. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, supra; and Grant et al. (1987) Methods Enzymol. 153:516-54; Scorcer, C. A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of PRMNC. Transcription of sequences encoding PRMNC may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV. (Takamatsu, N. (1987) EMBO J. 6:307-311.) Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science

-22-

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding PRMNC may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses PRMNC in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes.

For long term production of recombinant proteins in mammalian systems, stable expression of PRMNC in cell lines is preferred. For example, sequences encoding PRMNC can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk or apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; and Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for
selection. For example, \textit{dhfr} confers resistance to methotrexate; \textit{neo} confers resistance to the aminoglycosides neomycin and G-418; and \textit{als} or \textit{pat} confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-3570; Colbere-Garapin, F. et al (1981) J. Mol. Biol. 150:1-14; and Murry, supra.) Additional selectable genes have been described, e.g., \textit{trpB} and \textit{hisD}, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP) (Clontech, Palo Alto, CA), \textbeta glucuronidase and its substrate \textbeta-D-glucuronoside, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. et al. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding PRMNC is inserted within a marker gene sequence, transformed cells containing sequences encoding PRMNC can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding PRMNC under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding PRMNC and that express PRMNC may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of PRMNC using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on PRMNC is preferred, but a competitive binding assay may be

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding PRMNC include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding PRMNC, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Pharmacia & Upjohn (Kalamazoo, MI), Promega (Madison, WI), and U.S. Biochemical Corp. (Cleveland, OH). Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding PRMNC may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode PRMNC may be designed to contain signal sequences which direct secretion of PRMNC through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a “prepro” form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and
characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Bethesda, MD) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding PRMNC may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric PRMNC protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of PRMNC activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the PRMNC encoding sequence and the heterologous protein sequence, so that PRMNC may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel, F. M. et al. (1995 and periodic supplements) Current Protocols in Molecular Biology, John Wiley & Sons, New York, NY, ch 10. A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled PRMNC may be achieved in vitro using the TNT™ rabbit reticulocyte lysate or wheat germ extract systems (Promega, Madison, WI). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably 35S-methionine.
Fragments of PRMNC may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, supra pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Various fragments of PRMNC may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

Chemical and structural similarity exists between PRMNC and EET-1 ORF from rat (SEQ ID NO:4). PRMNC is expressed in hematopoietic cells, particularly promonocytes, granulocytes, dendritic cells, and lymphocytes. In addition, PRMNC is expressed in tissues associated with cancer, inflammation, and the reproductive system. Therefore, PRMNC appears to play a role in immune, cell proliferative and reproductive disorders, and infections.

Therefore, in one embodiment, PRMNC or a fragment or derivative thereof may be administered to a subject to treat or prevent an immune disorder. Such disorders can include, but are not limited to, acquired immunodeficiency syndrome (AIDS), X-linked agammaglobulinemia of Bruton, common variable immunodeficiency (CVI), DiGeorge’s syndrome (thymic hypoplasia), thymic dysplasia, isolated IgA deficiency, severe combined immunodeficiency disease (SCID), immunodeficiency with thrombocytopenia and eczema (Wiskott-Aldrich syndrome), Chediak-Higashi syndrome, chronic granulomatous diseases, hereditary angioneurotic edema, immunodeficiency associated with Cushing’s disease, Addison’s disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn’s disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture’s syndrome, gout, Graves’ disease, Hashimoto’s thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter’s syndrome, rheumatoid arthritis, scleroderma, Sjögren’s syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic
sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome,
complications of cancer, hemodialysis, and extracorporeal circulation, leukemias such as
multiple myeloma, and lymphomas such as Hodgkin’s disease.

In another embodiment, a vector capable of expressing PRMNC or a fragment or
 derivative thereof may be administered to a subject to treat or prevent an immune disorder
including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially
purified PRMNC in conjunction with a suitable pharmaceutical carrier may be
administered to a subject to treat or prevent an immune disorder including, but not limited
to, those provided above.

In still another embodiment, an agonist which modulates the activity of PRMNC
may be administered to a subject to treat or prevent an immune disorder including, but not
limited to, those listed above.

In another embodiment, PRMNC or a fragment or derivative thereof may be
administered to a subject to treat or prevent a cell proliferative disorder. Such disorders
may include, but are not limited to, arteriosclerosis, atherosclerosis, bursitis, cirrhosis,
hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal
hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers
including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma,
teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone
marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney,
liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin,
spleen, testis, thymus, thyroid, and uterus.

In another embodiment, a vector capable of expressing PRMNC or a fragment or
derivative thereof may be administered to a subject to treat or prevent a cell proliferative
disorder including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially
purified PRMNC in conjunction with a suitable pharmaceutical carrier may be
administered to a subject to treat or prevent a cell proliferative disorder including, but not
limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of PRMNC
may be administered to a subject to treat or prevent a cell proliferative disorder including,
but not limited to, those listed above.

In another embodiment, PRMNC or a fragment or derivative thereof may be administered to a subject to treat or prevent a reproductive disorder. Such disorders can include, but are not limited to, abnormal prolactin production, infertility, tubal disease, ovulatory defects, endometriosis, perturbations of the estrous and menstrual cycles, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, autoimmune disorders, ectopic pregnancy, teratogenesis, breast cancer, fibrocystic breast disease, galactorrhea, abnormal spermatogenesis, abnormal sperm physiology, testicular cancer, prostate cancer, benign prostatic hyperplasia, prostatitis, and gynecomastia.

In another embodiment, a vector capable of expressing PRMNC or a fragment or derivative thereof may be administered to a subject to treat or prevent a reproductive disorder including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified PRMNC in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a reproductive disorder including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of PRMNC may be administered to a subject to treat or prevent a reproductive disorder including, but not limited to, those listed above.

In another embodiment, PRMNC or a fragment or derivative thereof may be administered to a subject to treat or prevent an infection. Such infections can include, but are not limited to, infections by viral agents classified as adenovirus, arenavirus, bunyavirus, calicivirus, coronavirus, filovirus, hepadnavirus, herpesvirus, flavivirus, orthomyxovirus, parovirus, papovavirus, paramyxovirus, picornavirus, poxvirus, reovirus, retrovirus, rhabdovirus, and togavirus; infections by bacterial agents classified as pneumococcus, staphylococcus, streptococcus, bacillus, corynebacterium, clostridium, meningococcus, gonococcus, listeria, moraxella, kingella, haemophilus, legionella, bordetella, gram-negative enterobacterium including shigella, salmonella, and campylobacter, pseudomonas, vibrio, brucella, francisella, yersinia, bartonella, norcardium, actinomyces, mycobacterium, spirochaetale, rickettsia, chlamydia, and mycoplasm; infections by fungal agents classified as aspergillus, blastomyces,
dermatophytes, cryptococcus, coccidioides, malassezia, histoplasma, and other fungal
agents causing various mycoses; and infections by parasites classified as plasmodium or
malaria-causing, parasitic entamoeba, leishmania, trypanosoma, toxoplasma,
pneumocystis carinii, intestinal protozoa such as giardia, trichomonas, tissue nematodes
such as trichinella, intestinal nematodes such as ascaris, lymphatic filarial nematodes,
trematodes such as schistosoma, and cestodes such as tapeworm.

In another embodiment, a vector capable of expressing PRMNC or a fragment or
derivative thereof may be administered to a subject to treat or prevent an infection
including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially
purified PRMNC in conjunction with a suitable pharmaceutical carrier may be
administered to a subject to treat or prevent an infection including, but not limited to, those
provided above.

In still another embodiment, an agonist which modulates the activity of PRMNC
may be administered to a subject to treat or prevent an infection including, but not limited
to, those listed above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists,
complementary sequences, or vectors of the invention may be administered in combination
with other appropriate therapeutic agents. Selection of the appropriate agents for use in
combination therapy may be made by one of ordinary skill in the art, according to
conventional pharmaceutical principles. The combination of therapeutic agents may act
synergistically to effect the treatment or prevention of the various disorders described
above. Using this approach, one may be able to achieve therapeutic efficacy with lower
dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of PRMNC may be produced using methods which are generally
known in the art. In particular, purified PRMNC may be used to produce antibodies or to
screen libraries of pharmaceutical agents to identify those which specifically bind
PRMNC. Antibodies to PRMNC may also be generated using methods that are well
known in the art. Such antibodies may include, but are not limited to, polyclonal,
monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments
produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit
dimer formation) are especially preferred for therapeutic use.
For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with PRMNC or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to PRMNC have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of PRMNC amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce PRMNC-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries.
Antibodies may also be produced by inducing \textit{in vivo} production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. 86: 3833-3837; and Winter, G. et al. (1991) Nature 349: 293-299.) Antibody fragments which contain specific binding sites for PRMNC may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246: 1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between PRMNC and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering PRMNC epitopes is preferred, but a competitive binding assay may also be employed. (Maddox, \textit{ supra}.)

In another embodiment of the invention, the polynucleotides encoding PRMNC, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, the complement of the polynucleotide encoding PRMNC may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding PRMNC. Thus, complementary molecules or fragments may be used to modulate PRMNC activity, or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding PRMNC.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. Methods which are well known...
to those skilled in the art can be used to construct vectors to express nucleic acid
sequences complementary to the polynucleotides encoding PRMNC. (See, e.g.,
Sambrook, supra; and Ausubel, supra.)

Genes encoding PRMNC can be turned off by transforming a cell or tissue with
expression vectors which express high levels of a polynucleotide, or fragment thereof,
encoding PRMNC. Such constructs may be used to introduce untranslatable sense or
antisense sequences into a cell. Even in the absence of integration into the DNA, such
vectors may continue to transcribe RNA molecules until they are disabled by endogenous
nucleases. Transient expression may last for a month or more with a non-replicating
vector, and may last even longer if appropriate replication elements are part of the vector
system.

As mentioned above, modifications of gene expression can be obtained by
designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the
control, 5', or regulatory regions of the gene encoding PRMNC. Oligonucleotides derived
from the transcription initiation site, e.g., between about positions -10 and +10 from the
start site, are preferred. Similarly, inhibition can be achieved using triple helix
base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the
ability of the double helix to open sufficiently for the binding of polymerases,
transcription factors, or regulatory molecules. Recent therapeutic advances using triplex
DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber,
Kisco, NY, pp. 163-177.) A complementary sequence or antisense molecule may also be
designed to block translation of mRNA by preventing the transcript from binding to
ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific
cleavage of RNA. The mechanism of ribozyme action involves sequence-specific
hybridization of the ribozyme molecule to complementary target RNA, followed by
endonucleaseolytic cleavage. For example, engineered hammerhead motif ribozyme
molecules may specifically and efficiently catalyze endonucleaseolytic cleavage of sequences
encoding PRMNC.

Specific ribozyme cleavage sites within any potential RNA target are initially
identified by scanning the target molecule for ribozyme cleavage sites, including the
following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of
between 15 and 20 ribonucleotides, corresponding to the region of the target gene
containing the cleavage site, may be evaluated for secondary structural features which may
render the oligonucleotide inoperable. The suitability of candidate targets may also be
evaluated by testing accessibility to hybridization with complementary oligonucleotides
using ribonuclease protection assays.
Complementary ribonucleic acid molecules and ribozymes of the invention may be
prepared by any method known in the art for the synthesis of nucleic acid molecules.
These include techniques for chemically synthesizing oligonucleotides such as solid phase
phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by
in vitro and in vivo transcription of DNA sequences encoding PRMNC. Such DNA
sequences may be incorporated into a wide variety of vectors with suitable RNA
polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that
synthesize complementary RNA, constitutively or inducibly, can be introduced into cell
lines, cells, or tissues.
RNA molecules may be modified to increase intracellular stability and half-life.
Possible modifications include, but are not limited to, the addition of flanking sequences at
the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather
than phosphodiesterase linkages within the backbone of the molecule. This concept is
inherent in the production of PNAs and can be extended in all of these molecules by the
inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as
acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine,
thymine, and uridine which are not as easily recognized by endogenous endonucleases.
Many methods for introducing vectors into cells or tissues are available and
equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be
introduced into stem cells taken from the patient and clonally propagated for autologous
transplant back into that same patient. Delivery by transfection, by liposome injections, or
by polycationic amino polymers may be achieved using methods which are well known in
the art. (See, e.g., Goldman, C.K. et al. (1997) Nature Biotechnology 15:462-466.)
Any of the therapeutic methods described above may be applied to any subject in
need of such therapy, including, for example, mammals such as dogs, cats, cows, horses,
rabbits, monkeys, and most preferably, humans.
An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of PRMNC, antibodies to PRMNC, and mimetics, agonists, antagonists, or inhibitors of PRMNC. The compositions may be administered alone or in combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, PA).

Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating
or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or
lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of PRMNC, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example PRMNC or fragments thereof, antibodies of PRMNC, and agonists, antagonists or inhibitors of PRMNC, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED_{50} (the dose therapeutically effective in 50% of the population) or LD_{50} (the dose lethal to 50% of the population) statistics. The dose ratio of therapeutic to toxic effects is the therapeutic index, and it can be expressed as the ED_{50}/LD_{50} ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations.
that includes the ED$_{50}$ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μg to 100,000 μg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

20 **DIAGNOSTICS**

In another embodiment, antibodies which specifically bind PRMNC may be used for the diagnosis of disorders characterized by expression of PRMNC, or in assays to monitor patients being treated with PRMNC or agonists, antagonists, or inhibitors of PRMNC. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for PRMNC include methods which utilize the antibody and a label to detect PRMNC in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring PRMNC, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels
of PRMNC expression. Normal or standard values for PRMNC expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to PRMNC under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of PRMNC expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding PRMNC may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of PRMNC may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of PRMNC, and to monitor regulation of PRMNC levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding PRMNC or closely related molecules may be used to identify nucleic acid sequences which encode PRMNC. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding PRMNC, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and should preferably have at least 50% sequence identity to any of the PRMNC encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:2 or from genomic sequences including promoters, enhancers, and introns of the PRMNC gene.

Means for producing specific hybridization probes for DNAs encoding PRMNC include the cloning of polynucleotide sequences encoding PRMNC or PRMNC derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of
the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding PRMNC may be used for the diagnosis of a disorder associated with expression of PRMNC. Examples of such a disorder include, but are not limited to, an immune disorder such as acquired immunodeficiency syndrome (AIDS), X-linked agammaglobulinemia of Bruton, common variable immunodeficiency (CVI), DiGeorge’s syndrome (thymic hypoplasia), thymic dysplasia, isolated IgA deficiency, severe combined immunodeficiency disease (SCID), immunodeficiency with thrombocytopenia and eczema (Wiskott-Aldrich syndrome), Chediak-Higashi syndrome, chronic granulomatous diseases, hereditary angioneurotic edema, immunodeficiency associated with Cushing’s disease, Addison’s disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, bronchitis, cholecystitis, contact dermatitis, Crohn’s disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture’s syndrome, gout, Graves’ disease, Hashimoto’s thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter’s syndrome, rheumatoid arthritis, scleroderma, Sjögren’s syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, leukemias such as multiple myeloma, and lymphomas such as Hodgkin’s disease; a cell proliferative disorder such as arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocytopenia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin,
spleen, testis, thymus, thyroid, and uterus; a reproductive disorder such as abnormal prolactin production, infertility, tubal disease, ovulatory defects, endometriosis, perturbations of the estrous and menstrual cycles, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, autoimmune disorders, ectopic pregnancy, teratogenesis, breast cancer, fibrocystic breast disease, galactorrhea, abnormal spermatogenesis, abnormal sperm physiology, testicular cancer, prostate cancer, benign prostatic hyperplasia, prostatitis, and gynecomastia; and an infection such as infections by viral agents classified as adenovirus, arenavirus, bunyavirus, calicivirus, coronavirus, filovirus, hepadnavirus, herpesvirus, flavivirus, orthomyxovirus, parovirus, papovavirus, paramyxovirus, picornavirus, poxvirus, reovirus, retrovirus, rhabdovirus, and togavirus; infections by bacterial agents classified as pneumococcus, staphylococcus, streptococcus, bacillus, corynebacterium, clostridium, meningococcus, gonococcus, listeria, moraxella, kingella, haemophilus, legionella, bordetella, gram-negative enterobacterium including shigella, salmonella, and campylobacter, pseudomonas, vibrio, brucella, francisella, yersinia, bartonella, norcardium, actinomyces, mycobacterium, spirochaetale, rickettsia, chlamydia, and mycoplasma; infections by fungal agents classified as aspergillus, blastomyces, dermatophytes, cryptococcus, coccidioides, malassezia, histoplasma, and other fungal agents causing various mycoses; and infections by parasites classified as plasmodium or malaria-causing, parasitic entamoeba, leishmania, trypanosoma, toxoplasma, pneumocystis carinii, intestinal protozoa such as giardia, trichomonas, tissue nematodes such as trichinella, intestinal nematodes such as ascaris, lymphatic filarial nematodes, trematodes such as schistosoma, and cestodes such as tapeworm. The polynucleotide sequences encoding PRMNC may be used in Southern or Northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and ELISA assays; and in microarrays utilizing fluids or tissues from patients to detect altered PRMNC expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding PRMNC may be useful in assays that detect the presence of associated disorders, particularly those mentioned above.

The nucleotide sequences encoding PRMNC may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and
the signal is quantitated and compared with a standard value. If the amount of signal in
the patient sample is significantly altered in comparison to a control sample then the
presence of altered levels of nucleotide sequences encoding PRMNC in the sample
indicates the presence of the associated disorder. Such assays may also be used to
evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in
clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with
expression of PRMNC, a normal or standard profile for expression is established. This
may be accomplished by combining body fluids or cell extracts taken from normal
subjects, either animal or human, with a sequence, or a fragment thereof, encoding
PRMNC, under conditions suitable for hybridization or amplification. Standard
hybridization may be quantified by comparing the values obtained from normal subjects
with values from an experiment in which a known amount of a substantially purified
polynucleotide is used. Standard values obtained in this manner may be compared with
values obtained from samples from patients who are symptomatic for a disorder.
Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated,
hybridization assays may be repeated on a regular basis to determine if the level of
expression in the patient begins to approximate that which is observed in the normal
subject. The results obtained from successive assays may be used to show the efficacy of
treatment over a period ranging from several days to months.

With respect to cancer, the presence of a relatively high amount of transcript in
biopsied tissue from an individual may indicate a predisposition for the development of
the disease, or may provide a means for detecting the disease prior to the appearance of
actual clinical symptoms. A more definitive diagnosis of this type may allow health
professionals to employ preventative measures or aggressive treatment earlier thereby
preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences
encoding PRMNC may involve the use of PCR. These oligomers may be chemically
synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably
contain a fragment of a polynucleotide encoding PRMNC, or a fragment of a
polynucleotide complementary to the polynucleotide encoding PRMNC, and will be
employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantitation of closely related DNA or RNA sequences.

Methods which may also be used to quantitate the expression of PRMNC include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; and Duplaa, C. et al. (1993) Anal. Biochem. 229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic agents.

In another embodiment of the invention, nucleic acid sequences encoding PRMNC may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

Fluorescent in situ hybridization (FISH) may be correlated with other physical
chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, R.A. (ed.) Molecular Biology and Biotechnology, VCH Publishers New York, NY, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding PRMNC on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, PRMNC, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between PRMNC and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The test compounds are reacted with PRMNC, or fragments thereof, and
washed. Bound PRMNC is then detected by methods well known in the art. Purified PRMNC can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding PRMNC specifically compete with a test compound for binding PRMNC. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PRMNC.

In additional embodiments, the nucleotide sequences which encode PRMNC may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

The examples below are provided to illustrate the subject invention and are not included for the purpose of limiting the invention.

EXAMPLES

I. cDNA Library Construction

THP1PLB01 library was custom constructed by Stratagene (La Jolla, CA) using activated THP-1 cells. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old male with acute monocytic leukemia. THP-1 cells were activated by treatment with 100 ng/ml phorbol ester (PMA) for 48 hours followed by treatment with 1 µg/ml lipopolysaccharide (LPS) for four hours. Poly (A+) RNA was isolated from activated THP-1 cells, and cDNA synthesis was initiated using oligo(dT) and random primers. Double-stranded cDNA was cloned using the Lambda UniZAP vector system (Stratagene).

II. Isolation and Sequencing of cDNA Clones

Recombinant pBluescript® phagemid vectors containing cloned cDNAs were recovered by in vivo excision as described by Stratagene. Phagemid DNA was purified from bacterial host cells using the QIAwell-8 plasmid purification system (QIAGEN, Chatsworth, CA) or the Magic Minipreps™ DNA purification system (Catalog #A7100,
Promega, Madison, WI).

cDNAs were sequenced by the method of Sanger et al. (1975, J. Mol. Biol. 94:441f). Chain termination products were electrophoresed on urea-polyacrylamide gels and detected by autoradiography. Alternatively, high-throughput methods for sample preparation utilized the Catalyst 800 or the Hamilton Micro Lab 2200 (Hamilton, Reno, NV) in combination with Peltier Thermal Cyclers (PTC200 from MJ Research, Watertown, MA). cDNAs were sequenced using the Applied Biosystems 373 or 377 DNA sequencing systems in conjunction with fluorescence detection methods; and the reading frame was determined.

III. Similarity Searching of cDNA Clones and Their Deduced Proteins

Each cDNA was compared to sequences in GenBank using a search algorithm developed by Applied Biosystems and incorporated into the INHERIT™ 670 Sequence Analysis System. In this algorithm, Pattern Specification Language (TRW Inc, Los Angeles CA) was used to determine regions of homology. The three parameters that determine how the sequence comparisons run were window size, window offset, and error tolerance. Using a combination of these three parameters, the DNA database was searched for sequences containing regions of homology to the query sequence, and the appropriate sequences were scored with an initial value. Subsequently, these homologous regions were examined using dot matrix homology plots to distinguish regions of homology from chance matches. Smith-Waterman alignments were used to display the results of the homology search.

Peptide and protein sequence homologies were ascertained using the INHERIT-670 Sequence Analysis System in a way similar to that used in DNA sequence homologies. Pattern Specification Language and parameter windows were used to search protein databases for sequences containing regions of homology which were scored with an initial value. Dot-matrix homology plots were examined to distinguish regions of significant homology from chance matches.

Additionally, sequences identified from cDNA libraries may be analyzed to identify those gene sequences encoding conserved protein motifs using an appropriate analysis program, e.g., BLOCKS. BLOCKS is a weighted matrix analysis algorithm based on short amino acid segments, or blocks, compiled from the PROSITE database.
(Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.) The BLOCKS algorithm is useful for classifying genes with unknown functions. (Henikoff S. And Henikoff G.J., Nucleic Acids Research (1991) 19:6565-6572.) Blocks, which are 3-60 amino acids in length, correspond to the most highly conserved regions of proteins. The BLOCKS algorithm compares a query sequence with a weighted scoring matrix of blocks in the BLOCKS database. Blocks in the BLOCKS database are calibrated against protein sequences with known functions from the SWISS-PROT database to determine the stochastic distribution of matches. Similar databases such as PRINTS, a protein fingerprint database, are also searchable using the BLOCKS algorithm. (Attwood, T. K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.) PRINTS is based on non-redundant sequences obtained from sources such as SWISS-PROT, GenBank, PIR, and NRL-3D.

The BLOCKS algorithm searches for matches between a query sequence and the BLOCKS or PRINTS database and evaluates the statistical significance of any matches found. Matches from a BLOCKS or PRINTS search can be evaluated on two levels, local similarity and global similarity. The degree of local similarity is measured by scores, and the extent of global similarity is measured by score ranking and probability values. A score of 1000 or greater for a BLOCKS match of highest ranking indicates that the match falls within the 0.5 percentile level of false positives when the matched block is calibrated against SWISS-PROT. Likewise, a probability value of less than 1.0 x 10^{-3} indicates that the match would occur by chance no more than one time in every 1000 searches. Only those matches with a cutoff score of 1000 or greater and a cutoff probability value of 1.0 x 10^{-3} or less are considered in the functional analyses of the protein sequences in the Sequence Listing.

Nucleic and amino acid sequences of the Sequence Listing may also be analyzed using PFAM. PFAM is a Hidden Markov Model (HMM) based protocol useful in protein family searching. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Cur. Opin. Str. Biol. 6:361-365.)

The PFAM database contains protein sequences of 527 protein families gathered from publicly available sources, e.g., SWISS-PROT and PROSITE. PFAM searches for well characterized protein domain families using two high-quality alignment routines, seed alignment and full alignment. (See, e.g., Sonnhammer, E.L.L. et al. (1997) Proteins 28:405-420.) The seed alignment utilizes the hmmr program, a program that searches for
local matches, and a non-redundant set of the PFAM database. The full alignment utilizes
the hmmfs program, a program that searches for multiple fragments in long sequences,
e.g., repeats and motifs, and all sequences in the PFAM database. A result or score of 100
"bits" can signify that it is 2^{100}-fold more likely that the sequence is a true match to the
model or comparison sequence. Cutoff scores which range from 10 to 50 bits are
generally used for individual protein families using the SWISS-PROT sequences as model
or comparison sequences.

Two other algorithms, SIGPEPT and TM, both based on the HMM algorithm
described above (see, e.g., Eddy, supra; and Sonnhammer, supra), identify potential signal
sequences and transmembrane domains, respectively. SIGPEPT was created using protein
sequences having signal sequence annotations derived from SWISS-PROT. It contains
about 1413 non-redundant signal sequences ranging in length from 14 to 36 amino acid
residues. TM was created similarly using transmembrane domain annotations. It contains
about 453 non-redundant transmembrane sequences encompassing 1579 transmembrane
domain segments. Suitable HMM models were constructed using the above sequences
and were refined with known SWISS-PROT signal peptide sequences or transmembrane
domain sequences until a high correlation coefficient, a measurement of the correctness of
the analysis, was obtained. Using the protein sequences from the SWISS-PROT database
as a test set, a cutoff score of 11 bits, as determined above, correlated with 91-94% true-
positives and about 4.1% false-positives, yielding a correlation coefficient of about 0.87-0.90 for SIGPEPT. A score of 11 bits for TM will typically give the following results:
75% true positives; 1.72% false positives; and a correlation coefficient of 0.76. Each
search evaluates the statistical significance of any matches found and reports only those
matches that score at least 11 bits.

IV. Northern Analysis

Membrane-based northern analysis is a laboratory technique used to detect the
presence of a transcript of a gene in a heterogeneous population of RNA. This technique
involves the hybridization of a labeled nucleotide sequence to a membrane on which
RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra,
ch. 7; and Ausubel, supra, ch. 4 and 16.)

The expression of SEQ ID NO:2 in activated THP-1 cells was examined by
membrane-based northern analysis. THP-1, a promonocyte cell line, was activated by
treatment with 100 ng/ml PMA for 48 hours followed by a time course of treatments with
1 μg/ml LPS. Untreated cells and cells treated with only PMA served as controls. RNA
was isolated from cells and analyzed by northern blot using methods well known in the art.

A 32P-radiolabeled antisense DNA probe was prepared from the entire sequence of clone
011050. Hybridization and washing were performed as described by Sambrook, supra.
Autoradiography was used to detect the presence of membrane-bound hybridization
complexes. The intensity of the autoradiographic signals were proportional to the amount
of SEQ ID NO:2 transcript in each RNA sample. The results of the northern analysis
indicated that SEQ ID NO:2 is highly expressed in THP-1 cells after prolonged activation
with both LPS and PMA, but not in control cells. These results were consistent with the
results of electronic northern analysis, as described below.

Electronic northern analysis is a computer-based technique used to simulate
membrane-based northern analysis. Computer search algorithms applying BLAST are
used to identify matches between a query sequence and sequences in a nucleotide database
such as GenBank or LifeSeq™ database (Incyte Pharmaceuticals). This analysis is much
faster than multiple membrane-based hybridizations. In addition, the sensitivity of the
computer search can be modified to determine whether a particular match is categorized as
exact or similar. The sensitivity of the computer search is analogous to the stringency of a
membrane-based northern blot, which is determined by varying the temperature and
conditions of hybridization.

The basis of the computer search is the product score, which is defined as:

\[
\% \text{ sequence identity} \times \% \text{ maximum BLAST score} \times 100
\]

The product score takes into account both the degree of similarity between two sequences
and the length of the sequence match. For example, with a product score of 40, the match
will be exact within a 1% to 2% error, and, with a product score of 70, the match will be
exact. Similar molecules are usually identified by selecting those which show product
scores between 15 and 40, although lower scores may identify related molecules.

The results of electronic northern analysis using the LifeSeq™ database are
reported as a list of libraries in which a particular transcript occurs. Abundance and
percent abundance are also reported. Abundance directly reflects the number of times a
particular transcript is represented in a cDNA library, and percent abundance is abundance divided by the total number of sequences examined in a cDNA library.

Electronic northern analysis was used to survey the expression of SEQ ID NO:2 in cDNA libraries in the Incyte LifeSeq™ database. Clone 011050 was used as the query sequence, and the stringency of the search was ≥50. The results of the search indicated that SEQ ID NO:2 is present in 291 cDNA libraries in the LifeSeq™ database. SEQ ID NO:2 showed highest expression in an activated THP-1 promonocyte cell library. SEQ ID NO:2 was also highly expressed in granulocytes, dendritic cells, and lymphocytes. In addition, SEQ ID NO:2 was not detected in libraries derived from unactivated THP-1 cells.

V. Extension of PRMNC Encoding Polynucleotides

The nucleic acid sequence of Incyte Clone 011050 was used to design oligonucleotide primers for extending a partial nucleotide sequence to full length. One primer was synthesized to initiate extension of an antisense polynucleotide, and the other was synthesized to initiate extension of a sense polynucleotide. Primers were used to facilitate the extension of the known sequence “outward” generating amplicons containing new unknown nucleotide sequence for the region of interest. The initial primers were designed from the cDNA using OLIGOTM 4.06 (National Biosciences, Plymouth, MN), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries (GIBCO BRL) were used to extend the sequence. If more than one extension is necessary or desired, additional sets of primers are designed to further extend the known region.

High fidelity amplification was obtained by following the instructions for the XL-PCR™ kit (Perkin Elmer) and thoroughly mixing the enzyme and reaction mix. PCR was performed using the Peltier Thermal Cycler (PTC200; M.J. Research, Watertown, MA), beginning with 40 pmol of each primer and the recommended concentrations of all other components of the kit, with the following parameters:

Step 1 94° C for 1 min (initial denaturation)
Step 2 65°C for 1 min
Step 3 68°C for 6 min
Step 4 94°C for 15 sec
Step 5 65°C for 1 min
Step 6 68°C for 7 min
Step 7 Repeat steps 4 through 6 for an additional 15 cycles
Step 8 94°C for 15 sec
Step 9 65°C for 1 min
Step 10 68°C for 7:15 min
Step 11 Repeat steps 8 through 10 for an additional 12 cycles
Step 12 72°C for 8 min
Step 13 4°C (and holding)

A 5 µl to 10 µl aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration (about 0.6% to 0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Bands thought to contain the largest products were excised from the gel, purified using QIAQUICK™ (QIAGEN Inc.), and trimmed of overhangs using Klenow enzyme to facilitate religation and cloning.

After ethanol precipitation, the products were redissolved in 13 µl of ligation buffer, 1 µl T4-DNA ligase (15 units) and 1 µl T4 polynucleotide kinase were added, and the mixture was incubated at room temperature for 2 to 3 hours, or overnight at 16°C. Competent E. coli cells (in 40 µl of appropriate media) were transformed with 3 µl of ligation mixture and cultured in 80 µl of SOC medium. (See, e.g., Sambrook, supra, Appendix A, p. 2.) After incubation for one hour at 37°C, the E. coli mixture was plated on Luria Bertani (LB) agar (See, e.g., Sambrook, supra, Appendix A, p. 1) containing carbenicillin (2x carb). The following day, several colonies were randomly picked from each plate and cultured in 150 µl of liquid LB/2x carb medium placed in an individual well of an appropriate commercially-available sterile 96-well microtiter plate. The following day, 5 µl of each overnight culture was transferred into a non-sterile 96-well plate and, after dilution 1:10 with water, 5 µl from each sample was transferred into a PCR array.

For PCR amplification, 18 µl of concentrated PCR reaction mix (3.3x) containing 4 units of rTth DNA polymerase, a vector primer, and one or both of the gene specific primers used for the extension reaction were added to each well. Amplification was performed using the following conditions:

Step 1 94°C for 60 sec
Step 2 94° C for 20 sec
Step 3 55° C for 30 sec
Step 4 72° C for 90 sec
Step 5 Repeat steps 2 through 4 for an additional 29 cycles
Step 6 72° C for 180 sec
Step 7 4° C (and holding)

Aliquots of the PCR reactions were run on agarose gels together with molecular weight markers. The sizes of the PCR products were compared to the original partial cDNAs, and appropriate clones were selected, ligated into plasmid, and sequenced.

In like manner, the nucleotide sequence of SEQ ID NO:2 is used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for 5' extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:2 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO™ 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-32P] adenosine triphosphate (Amersham, Chicago, IL), and T4 polynucleotide kinase (DuPont NEN®, Boston, MA). The labeled oligonucleotides are substantially purified using a Sephadex™ G-25 superfine size exclusion dextran bead column (Pharmacia & Upjohn, Kalamazoo, MI). An aliquot containing 10⁷ counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba1, or Pvu II (DuPont NEN, Boston, MA).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham, NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT AR™ film (Kodak, Rochester, NY) is exposed to the blots to film for several hours, hybridization patterns are compared visually.
VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, supra.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE™. Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; and Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

VIII. Complementary Polynucleotides

Sequences complementary to the PRMNC-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring PRMNC. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO™ 4.06 software and the coding sequence of PRMNC. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to
prevent ribosomal binding to the PRMNC-encoding transcript.

IX. Expression of PRMNC

Expression and purification of PRMNC is achieved using bacterial or virus-based expression systems. For expression of PRMNC in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express PRMNC upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of PRMNC in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding PRMNC by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, PRMNC is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Pharmacia, Piscataway, NJ). Following purification, the GST moiety can be proteolytically cleaved from PRMNC at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak, Rochester, NY). 6-His, a stretch of six consecutive histidine residues, enables
purification on metal-chelate resins (QIAGEN Inc, Chatsworth, CA). Methods for protein
expression and purification are discussed in Ausubel, F. M. et al. (1995 and periodic
supplements) Current Protocols in Molecular Biology, John Wiley & Sons, New York,
NY, ch 10, 16. Purified PRMNC obtained by these methods can be used directly in the
following activity assay.

X. Demonstration of PRMNC Activity

An assay for PRMNC activity measures its ability to induce promonocyte
proliferation and differentiation. cDNA encoding PRMNC is subcloned into an
appropriate mammalian expression vector containing a strong promoter that drives high
levels of cDNA expression. This construct is transfected into promonocyte cells using
methods known in the art. The rate of DNA replication in transfected cells is a measure of
cell proliferation. Incorporation of $[^{3}H]$thymidine into acid-precipitable DNA is measured
over an appropriate time interval, and the amount incorporated over time is directly
proportional to the rate of DNA replication. Differentiation of transfected cells is
indicated by increased phagocytic and microbicidal activity, changes in cell surface
properties, and decreased peroxidase activity associated with the rough endoplasmic
Pathology (Volume I), Lea & Febiger, Philadelphia, PA, pages 323-325.)

PRMNC function may also be assessed by expressing the sequences encoding
PRMNC at physiologically elevated levels in mammalian cell culture systems. cDNA is
subcloned into a mammalian expression vector containing a strong promoter that drives
high levels of cDNA expression. Vectors of choice include pCMV SPORT™ (Life
Technologies, Gaithersburg, MD) and pCR™ 3.1 (Invitrogen, Carlsbad, CA, both of
which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are
transiently transfected into a human cell line, preferably of endothelial or hematopoietic
origin, using either liposome formulations or electroporation. 1-2 μg of an additional
plasmid containing sequences encoding a marker protein are co-transfected. Expression of
a marker protein provides a means to distinguish transfected cells from nontransfected
cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker
proteins of choice include, e.g., Green Fluorescent Protein (GFP) (Clontech, Palo Alto,
CA), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser
optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP, and to evaluate properties, for example, their apoptotic state. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York, NY.

The influence of PRMNC on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding PRMNC and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success, NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding PRMNC and other genes of interest can be analyzed by Northern analysis or microarray techniques.

XI. Production of PRMNC Specific Antibodies

PRMNC substantially purified using polyacrylamide gel electrophoresis (PAGE)(see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the PRMNC amino acid sequence is analyzed using LASERGENE™ software (DNASTAR Inc.) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel supra, ch. 11.)
Typically, oligopeptides 15 residues in length are synthesized using an Applied Biosystems Peptide Synthesizer Model 431A using fmoc-chemistry and coupled to KLH (Sigma, St. Louis, MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XII. Purification of Naturally Occurring PRMNC Using Specific Antibodies

Naturally occurring or recombinant PRMNC is substantially purified by immunoaffinity chromatography using antibodies specific for PRMNC. An immunoaffinity column is constructed by covalently coupling anti-PRMNC antibody to an activated chromatographic resin, such as CNBr-activated Sepharose (Pharmacia & Upjohn). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing PRMNC are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of PRMNC (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/PRMNC binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and PRMNC is collected.

XIII. Identification of Molecules Which Interact with PRMNC

PRMNC, or biologically active fragments thereof, are labeled with 125I Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled PRMNC, washed, and any wells with labeled PRMNC complex are assayed. Data obtained using different concentrations of PRMNC are used to calculate values for the number, affinity, and association of PRMNC with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with
specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.
What is claimed is:

1. A substantially purified polypeptide comprising the amino acid sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1.

2. A substantially purified variant having at least 90% amino acid sequence identity to the sequence of claim 1.

3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.

4. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 3.

5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.

6. An isolated and purified polynucleotide which is complementary to the polynucleotide of claim 3.

7. An isolated and purified polynucleotide comprising the polynucleotide sequence of SEQ ID NO:2 or a fragment of SEQ ID NO:2.

8. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 7.

9. An isolated and purified polynucleotide having a sequence complementary to the polynucleotide of claim 7.

10. An expression vector comprising at least a fragment of the polynucleotide of claim 3.
11. A host cell comprising the expression vector of claim 10.

12. A method for producing a polypeptide comprising a sequence of SEQ ID NO:1 or a fragment of SEQ ID NO:1, the method comprising the steps of:
 (a) culturing the host cell of claim 11 under conditions suitable for the expression of the polypeptide; and
 (b) recovering the polypeptide from the host cell culture.

13. A pharmaceutical composition comprising the polypeptide of claim 1 in conjunction with a suitable pharmaceutical carrier.

14. A purified antibody which specifically binds to the polypeptide of claim 1.

15. A purified agonist of the polypeptide of claim 1.

16. A purified antagonist of the polypeptide of claim 1.

17. A method for treating or preventing an immune disorder, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 13.

18. A method for treating or preventing a cell proliferative disorder, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 13.

19. A method for treating or preventing a reproductive disorder, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 13.

20. A method for treating or preventing an infection, the method comprising administering to a subject in need of such treatment an effective amount of the pharmaceutical composition of claim 13.
21. A method for detecting a polynucleotide encoding a polypeptide comprising the amino acid sequence of SEQ ID NO:1 in a biological sample containing nucleic acids, the method comprising the steps of:

(a) hybridizing the polynucleotide of claim 6 to at least one of the nucleic acids of the biological sample, thereby forming a hybridization complex; and

(b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide encoding the polypeptide in the biological sample.

22. The method of claim 21 wherein the nucleic acids of the biological sample are amplified by the polymerase chain reaction prior to the hybridizing step.
FIGURE 1A
<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TAT</td>
<td>AAC</td>
<td>GCC</td>
<td>GGT</td>
<td>GCT</td>
<td>CTG</td>
<td>ACC</td>
<td>TGG</td>
<td>CTG</td>
<td>TCC</td>
<td>TGC</td>
<td>GGG</td>
<td>AGC</td>
<td>CTG</td>
<td>TGC</td>
<td>CTA</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>A</td>
<td>G</td>
<td>A</td>
<td>L</td>
<td>T</td>
<td>W</td>
<td>L</td>
<td>S</td>
<td>C</td>
<td>G</td>
<td>S</td>
<td>L</td>
<td>C</td>
<td>L</td>
</tr>
<tr>
<td>GTG</td>
<td>CAT</td>
<td>AGC</td>
<td>GGG</td>
<td>CTG</td>
<td>CTG</td>
<td>CTT</td>
<td>CAT</td>
<td>CCC</td>
<td>CTT</td>
<td>CTG</td>
<td>CGT</td>
<td>GGA</td>
<td>TGC</td>
<td>CCT</td>
<td>GCA</td>
</tr>
<tr>
<td>V</td>
<td>H</td>
<td>S</td>
<td>G</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>P</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>G</td>
<td>C</td>
<td>P</td>
<td>A</td>
<td>G</td>
</tr>
<tr>
<td>GGA</td>
<td>CCA</td>
<td>TTA</td>
<td>CTG</td>
<td>TCC</td>
<td>CAA</td>
<td>CTG</td>
<td>CAG</td>
<td>AGC</td>
<td>TCT</td>
<td>CCT</td>
<td>GGG</td>
<td>CAC</td>
<td>CTA</td>
<td>CAA</td>
<td>GCG</td>
</tr>
<tr>
<td>G</td>
<td>P</td>
<td>L</td>
<td>L</td>
<td>S</td>
<td>Q</td>
<td>L</td>
<td>Q</td>
<td>S</td>
<td>S</td>
<td>P</td>
<td>G</td>
<td>H</td>
<td>L</td>
<td>Q</td>
<td>A</td>
</tr>
<tr>
<td>GGA</td>
<td>CTC</td>
<td>AGC</td>
<td>CAG</td>
<td>ACG</td>
<td>TGG</td>
<td>AGG</td>
<td>GAG</td>
<td>CCG</td>
<td>GGT</td>
<td>GCC</td>
<td>GCA</td>
<td>GGA</td>
<td>AGT</td>
<td>CCT</td>
<td>TTC</td>
</tr>
<tr>
<td>G</td>
<td>L</td>
<td>S</td>
<td>Q</td>
<td>T</td>
<td>W</td>
<td>R</td>
<td>E</td>
<td>P</td>
<td>G</td>
<td>A</td>
<td>A</td>
<td>G</td>
<td>S</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>TCA</td>
<td>TCC</td>
<td>AGC</td>
<td>TTC</td>
<td>ACG</td>
<td>CCT</td>
<td>GGT</td>
<td>GGA</td>
<td>GGT</td>
<td>TCT</td>
<td>GCC</td>
<td>CTG</td>
<td>GTG</td>
<td>GTC</td>
<td>TCA</td>
<td>CCT</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>S</td>
<td>F</td>
<td>T</td>
<td>P</td>
<td>G</td>
<td>G</td>
<td>G</td>
<td>S</td>
<td>A</td>
<td>L</td>
<td>V</td>
<td>V</td>
<td>S</td>
<td>P</td>
</tr>
<tr>
<td>GGG</td>
<td>GCC</td>
<td>CAC</td>
<td>CTT</td>
<td>CAT</td>
<td>GTC</td>
<td>TTC</td>
<td>TTT</td>
<td>TGG</td>
<td>GGG</td>
<td>GAA</td>
<td>TAC</td>
<td>GTC</td>
<td>GCA</td>
<td>AAA</td>
<td>CTA</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
<td>H</td>
<td>L</td>
<td>H</td>
<td>V</td>
<td>F</td>
<td>F</td>
<td>W</td>
<td>G</td>
<td>E</td>
<td>Y</td>
<td>V</td>
<td>A</td>
<td>K</td>
<td>L</td>
</tr>
</tbody>
</table>

FIGURE 1B
FIGURE 1C
FIGURE 1D
<table>
<thead>
<tr>
<th>Library</th>
<th>Library Description</th>
<th>Percent Abundance</th>
<th>Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>THP1PLB01</td>
<td>periph blood, promonocyte line, THP-1, AML, t/PMA, LPS</td>
<td>21</td>
<td>0.9498</td>
</tr>
<tr>
<td>NEUTGMO1</td>
<td>periph blood, granulocytes, M/F, t/GM-CSF</td>
<td>27</td>
<td>0.4224</td>
</tr>
<tr>
<td>NEUTLPT01</td>
<td>periph blood, granulocytes, M/F, t/LPS</td>
<td>23</td>
<td>0.4019</td>
</tr>
<tr>
<td>NEUTFMT01</td>
<td>periph blood, granulocytes, M/F, t/fMLP</td>
<td>18</td>
<td>0.3152</td>
</tr>
<tr>
<td>DENDTNT01</td>
<td>periph blood, dendritic cells, t/TNF</td>
<td>12</td>
<td>0.2932</td>
</tr>
<tr>
<td>COCHFEM01</td>
<td>ear, cochlea, fetal, 16-22w, pool, WM</td>
<td>2</td>
<td>0.2312</td>
</tr>
<tr>
<td>TLYMTXP02</td>
<td>T-lymphocytes, activated, TIGR</td>
<td>2</td>
<td>0.2203</td>
</tr>
<tr>
<td>HNT2NOM02</td>
<td>teratoCA line, hNT2, untreated, WM</td>
<td>5</td>
<td>0.1953</td>
</tr>
<tr>
<td>UTRSNOP01</td>
<td>uterus, F, TIGR</td>
<td>1</td>
<td>0.1678</td>
</tr>
<tr>
<td>TLYMNONT02</td>
<td>periph blood, lymphocytes, non-adher PBMC, M/F</td>
<td>6</td>
<td>0.1527</td>
</tr>
<tr>
<td>THP1AZS08</td>
<td>periph blood, promonocyte line, THP-1, AML, t/5AZA, SUB</td>
<td>4</td>
<td>0.0537</td>
</tr>
<tr>
<td>THP1AZT01</td>
<td>periph blood, promonocyte line, THP-1, AML, t/5AZA</td>
<td>2</td>
<td>0.0369</td>
</tr>
<tr>
<td>THP1NOT01</td>
<td>periph blood, promonocyte line, THP-1, AML, untreated</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>THP1PEB01</td>
<td>periph blood, promonocyte line, THP-1, AML, t/PMA</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>THP1T7T01</td>
<td>periph blood, promonocyte line, THP-1, AML, untreated</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

FIGURE 3
SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC.
 TANG, Y. Tom
 MCKELLIGON, Brian
 AU-YOUNG, Janice
 CORLEY, Neil C.
 GUEGLER, Karl J.
 PATTerson, Chandra

<120> PROMONOCYTE ASSOCIATED PROTEIN

<130> PF-0522 PCT

<140> To Be Assigned
<141> Herewith

<150> 09/079,981
<151> 1998-05-14

<160> 4

<170> Perl Program

<210> 1
<211> 228
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 011050

<400> 1
Met Ser Val Pro Gly Pro Tyr Gln Ala Ala Thr Gly Pro Ser Ser
 1 5 10 15
Ala Pro Ser Ala Pro Ser Tyr Glu Glu Thr Val Ala Val Asn
 20 25 30
Ser Tyr Tyr Thr Pro Pro Ala Pro Met Pro Gly Pro Thr Thr
 35 40 45
Gly Leu Val Thr Gly Pro Asp Gly Lys Gly Met Asn Pro Pro Ser
 50 55 60
Tyr Tyr Thr Gln Pro Ala Pro Ile Pro Asn Asn Asn Pro Ile Thr
 65 70 75
Val Gln Thr Val Tyr Val Gln His Pro Ile Thr Phe Leu Asp Arg
 80 85 90
Pro Ile Gln Met Cys Cys Pro Ser Cys Asn Asn Met Ile Val Ser
 95 100 105
Gln Leu Ser Tyr Asn Ala Gly Ala Leu Thr Trp Ser Leu Cys Gly
 110 115 120
Ser Leu Cys Leu Leu Gly Val His Ser Gly Leu Leu Leu His Pro
 125 130 135
Leu Leu Arg Gly Cys Pro Ala Gly Arg Gly Pro Leu Leu Ser Gln
 140 145 150
Leu Gln Ser Ser Pro Gly His Leu Gln Ala Phe Val Gly Leu Ser
 155 160 165

1/4
Gln Thr Trp Arg Gly Pro Gly Ala Ala Gly Ser Pro Phe His Leu
170 175 180
Ser Ser Ser Phe Thr Pro Gly Gly Gly Ser Ala Leu Val Val Ser
185 190 195
Pro Leu Gln Gly Ala His Leu His Val Phe Phe Trp Gly Glu Tyr
200 205 210
Val Ala Lys Leu Thr Asn Leu Gln Thr Pro Glu Ile Ala Ala Trp
215 220 225
Ser Arg Ala

<210> 2
<211> 1468
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte clone 011050

<400> 2
gggctgacgct atcctgccac gtcggctcca cagagtcgctg ggattcaggg taaaatgctg 60
gtccagagcc cttacccggt ggcacagcag cctctccgag caccattccg acctcccata 120
tatacagag gcgtctgctg caggcagttg tcaatacgtt taccacacac ctcgatgcttg 180
caccacccag cggctcgtgc ctgtagcttg tcaaatcttt ccaattccga ctaatcttct 240
tcgccgacgc tgtgcttctg tctcttttctc cacagactct acagacgttgctg ctggcagctc 300
tccacagccc cgggtccttc ggcacagagc agactttaac ggtgcttgag cctctttgag 360
tgtcggggga cttccagcga acagatcagc cgggtcgggg gcggctggcg cgggcttcctc 420
gctcgtgctt tctcttttctc gccgattctcg ctgtttctga tgtggaactgtg ccagctcttc 480
gacacgagcc cggcagagct gcgtgctgctt cggctcctcg tctcttctga cggctttggc 540
gcggctcggc gctcttttctc cggctcctcg cggcttccct cggcttcgag cggcttcttc 600
gctcttttctc cggctttccg cggcttttcc cggcttccct cggcttttcc cggctttttc 660
catctctttt ctgtctttttt tgtggtgtgtg tgtggtgtgtg tgtggtgtgtg tgtggtgtgtg 720
ggcgattctcg gcggcttttt ttttcggcag cggctttttt cggctttttt cggctttttt 780
gagctcagcc ggcgattaat gaccagttta cgtggtgtgtg cgtggtgtgtg cgtggtgtgtg 840
gctcttcttt ctgtcttttt ttttcttttt ctgtcttttt ctgtcttttt ctgtcttttt 900
gcggcttttt gccgattctcg ctgtcttttt ctgtcttttt ctgtcttttt ctgtcttttt 960
ggcgattctcg cggctttttt cggctttttt cggctttttt cggctttttt cggctttttt 1020
gacagctcag cggctttttt cggctttttt cggctttttt cggctttttt cggctttttt 1080
ggggattctcg cggctttttt cggctttttt cggctttttt cggctttttt cggctttttt 1140
ggcgattctcg cggctttttt cggctttttt cggctttttt cggctttttt cggctttttt 1200
ggcgattctcg cggctttttt cggctttttt cggctttttt cggctttttt cggctttttt 1260
ggcgattctcg cggctttttt cggctttttt cggctttttt cggctttttt cggctttttt 1320
ggcgattctcg cggctttttt cggctttttt cggctttttt cggctttttt cggctttttt 1380
ggcgattctcg cggctttttt cggctttttt cggctttttt cggctttttt cggctttttt 1440
 gcggctttttt cggctttttt cggctttttt cggctttttt cggctttttt cggctttttt 1468

<210> 3
<211> 2006
<212> DNA
<213> Rattus norvegicus

<300>
<308> g1279978
<400> 3
gccgcgcggc gcccacgcac cttcccgctc caactggcgc gccggcgccg gtaaagttgct 60
ggccgcggag ccctacgagct cccctctgtg caagttactgt caacccccac 120
cataaagag acagttcgggt tcacacgatt cctacaccag ccccagcac 180
acacoaccac gggcctcata gccagagggg tggaagaggt atgaactcac 240
caccacccgg ctgcctgtcc caaagctccaa gcagctgtcga tggctagcagtg 300
gagcccctact cccctctctag acgcccccac ccagttgctgc tgcctccttc gcaacaagat 360
gatctgtgacc cagttgtctct caaatgctgag agcctccaccc tggctctctct tggctgtgatg 420
gtctgctgtg gatcggctcgt ctgccttctct tccctttctcc aagctccctcc aaggtctgcag 480
gggagagggag cattactgtc ccacagctcag ccgctccctct ggcacactca aacgggtgta 540
ggactctcgc agcagacagg gaggtagaca agtctccgca gaaactcacc aaccccttgcc 600
cagccgcagcc agagacagcat cctccctctga tctctctctag aatcgttcttg ctgctctttgct 660
aggaggtgag gaaagctcga aagatcataa aacaaccaaca ccagaaatctg ctgctcttgat 720
tgctccctcgc acatcgaacc aagggatggt tgggttcttc tttaaggtgt taccgcctgta 780
tctcttaccc cacattactg tgcattgcac ttccattgagc tctgtctgtg tgaattggcca 840
tctgctgctgcccc cctctctctctt aagaagagcc ctgcctcttgct ccagctctca aacccgagac 900
tacagtttctgc cttattttttt acgcgttggt cttgctctgt caatcctctcc cagccctaat 960
gacagacagcc ttgcttttca aagcgtggtct ccctgttattag gcagacactct ccaagctacca 1020
gaatttacctt caatttcactt gacggttcttc ttcccacacca cccctcgctc aocaacccgca 1080
agaagggctcg cagccacacc cggacactcata cagagaagtt cacaagtctc aataaaggag 1140
tccacccgccc accttgtgtcc atgggggtgt ctgcacatca cagctttctc aacagcagtt 1200
ctgtggcttc ctttgtgtcc taacacagat gaaatcattc ggcagaggga cttaccttga 1260
aatatatttttt tggagtacagt acacccctca ttcctggttt gctggtgttt tttaatggtg 1320
atttttttttt cttttttctca tcaactctag tcgctgtgcca gctttggacgc cggaggagat 1380
cctctctctct caatcctctctt aacaggagg ccagcagctt gcggctctgc ctggctcttgcc 1440
atctctctctct atctctctctct atctctctctct cctctctctct atctctctctct 1500
tagttggtttg gatgtttttgaa aacactgatcc tccatggggcc cttttggggag atgcaggggg 1560
cccctctcagc acgcctctctgt tcaatgcgca gaggaggctct tgggaacacc cctagaagcatg 1620
gattctctgt ttttggagttt gatgctgtgt gtaagctttct ctgctgctgtg aacactacca 1680
gacaaagctag acagctctcgc aacgagacaa tgaatggctag gcctctttctct gggctaccac 1740
tctgtctctgt tgaactctga cagcctctgc cccctcctctc caggttctct cggctccctcc 1800
taacaatgtag tagwctcctgc tggcatagtaa cggtaaagtt gctaaccgtaa cttggcagacta 1860
aagtggcttat atgtgctgtaa atacagctca tggattctcga tacaagcagtc cagaatcact 1920
agatcctttgc attttgctcga attatgggta caatactcag ctttgatgtat atctgctttttt 1980
aaacacatataa aatatggtagt cactca

<210> 4
<211> 161
<212> PRT
<213> Rattus norvegicus

<300>
<301> Everett, L.M. et al.
<302> A Novel Estrogen-Enhanced Transcript Identified in the Rat Uterus by Differential Display
<303> Endocrinology
<304> 138
<305> 9
<306> 3836-3841
<307> 1997-09-01

<400> 4
Met Ser Ala Pro Gly Pro Tyr Gln Ala Ala Ala Gly Pro Ser Val
 1 5 10 15

3/4
1 5 10 15
Met Pro Thr Ala Pro Pro Thr Tyr Glu Thr Val Gly Val Asn
20 25 30
Ser Tyr Tyr Pro Thr Pro Pro Ala Pro Gln Pro Gly Pro Ala Thr
35 40 45
Gly Leu Ile Thr Gly Pro Asp Gly Lys Gly Met Asn Pro Pro Ser
50 55 60
Tyr Tyr Thr Gln Pro Val Pro Val Pro Asn Ala Asn Ala Ile Ala
65 70 75
Val Gln Thr Val Tyr Val Gln Gln Pro Ile Ser Phe Tyr Asp Arg
80 85 90
Pro Ile Gln Met Cys Cys Pro Ser Cys Asn Lys Met Ile Val Thr
95 100 105
Gln Leu Ser Tyr Asn Ala Gly Ala Leu Thr Trp Leu Ser Cys Gly
110 115 120
Ser Leu Cys Leu Leu Gly Cys Val Ala Gly Cys Phe Ile Pro
125 130 135
Phe Cys Val Asp Ala Leu Gln Asp Val Asp His Tyr Cys Pro Asn
140 145 150
Cys Lys Ala Leu Leu Gly Thr Tyr Lys Arg Leu
155 160
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC 6 | C12N15/12 | C07K14/47 | C1201/68 | C07K16/18 | A61K38/17 |

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC 6 | C12N | C07K |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of box C.

| X | Patent family members are listed in annex. |

Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document relating to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "A" document member of the same patent family

Data of the actual completion of the international search

10 August 1999

Name and mailing address of the ISA

European Patent Office, P B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Le Cornec, N
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>L.M. EVERETT ET AL: "a novel estrogen-enhanced transcript identified in the rat uterus by differential display" ENDOCRINOLOGY, vol. 138, no. 9, September 1997 (1997-09), pages 3836-3841, XP002111760 cited in the application page 3839; figure 2 page 3838, right-hand column, line 3 - line 11</td>
<td>1,7,21</td>
</tr>
<tr>
<td>X</td>
<td>S. AMAR ET AL: "Homo sapiens LPS-induced TNF-alpha factor (LITAF) mRNA, complete cds" EMBL DATABASE ENTRY U77396, ACCESSION NUMBER U77396, 26 January 1996 (1996-01-26), XP002111761 abstract</td>
<td>1-12</td>
</tr>
<tr>
<td>P,A</td>
<td>WO 99 14356 A (KINZLER KENNETH W ;POLYAK KORNELIA (US); VOGELSTEIN BERT (US); UNI) 25 March 1999 (1999-03-25) see sequence ID no. 84 page 20 and sequence ID no. 74 page 13 page 4, line 26 - line 28 claims page 5, line 16 - line 19</td>
<td>13,18</td>
</tr>
<tr>
<td>P,X</td>
<td>WO 99 14356 A (KINZLER KENNETH W ;POLYAK KORNELIA (US); VOGELSTEIN BERT (US); UNI) 25 March 1999 (1999-03-25) see sequence ID no. 84 page 20 and sequence ID no. 74 page 13 page 4, line 26 - line 28 claims page 5, line 16 - line 19</td>
<td>1-12</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
 Remark: Although claims 17-20 are directed to a method of treatment of the human/animal body (rule 39.1 IV PCT.), the search has been carried out and based on the alleged effects of the compound/composition.

2. X Claims Nos.: 15-16 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210

3.☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☐ As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
☐ The additional search fees were accompanied by the applicant's protest.
☐ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)
Continuation of Box I.2

Claims Nos.: 15-16

Claims 15 and 16 have not been searched because neither an agonist nor an antagonist of the polypeptide PRMNC has been characterized.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 9914356 A</td>
<td>25-03-1999</td>
<td>AU 9317398 A</td>
<td>05-04-1999</td>
</tr>
</tbody>
</table>