8883 A2 0 00 O R

—

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f d”Ij

) IO T O 0 OO O

International Bureau

(43) International Publication Date
17 January 2008 (17.01.2008)

(10) International Publication Number

WO 2008/008883 A2

(51) International Patent Classification:
GOG6F 15/173 (2006.01)

(21) International Application Number:
PCT/US2007/0733438

(22) International Filing Date: 12 July 2007 (12.07.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/487,130 14 July 2006 (14.07.2006) US
(71) Applicant (for all designated States except US): DATA-
SYNAPSE, INC. [US/US]; 632 Broadway, 5th Floor, New

York, NY 10012 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US ornly): BERNARDIN,
James [US/US]; 49 West 96th Street, Apt. 4a, New
York, NY 10025 (US). ISKOLD, Alexander [US/US]; 24
Stoneham Drive, Livingston, NJ 07039 (US).

(74) Agents: BEAN, Thomas, J. et al.; Darby & Darby P.C.,
P.O.Box 770, Church Street Station, New York, NY 10008-
0770 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title:
SERVER-BASED DEPLOYMENTS

METHOD FOR ALLOCATING SHARED COMPUTING INFRASTRUCTURE FOR APPLICATION

(57) Abstract: A shared computing infrastructure includes a plurality of computing engines, applications servers, and computing

& domains. A broker component executes a method for dynamically allocating the computing engines among the computing domains.

% The allocation method begins with the step of determining an expected number of computing engines to be allocated Io each of the

& computing domains as a function of a predetermined service policy and a predicted demand for the domain While fewer than the

& expected number of computing engines has been allocated to each domain, the computing domains are sequentially selecting as a
function of predetermined domain priorities. Unallocated computing engines are identified, and the unallocated computing engines
are allocated to each selected computing domain according to predetermined selection rules for the domain. During an allocation

a improvement step, allocations among the computing domains are further adjusted to maximize a fitness statistic computed for the
allocations.

10

15

20

25

WO 2008/008883 PCT/US2007/073348

METHOD FOR ALLOCATING SHARED COMPUTING INFRASTRUCTURE FOR
APPLICATION SERVER-BASED DEPLOYMENTS

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Patent Application Serial No.
11/487,130, filed July 14, 2006, the contents of which are incorporated by reference in its entirety.

FIELD OF THE INVENTION

The present invention is directed to a method for dynamically allocating shared
computing resources in a distributed computing environment. More specifically, the present
invention is directed to a method for dynamically allocating shared computing resources among a
plurality of computing domains that host a plurality of software applications running in a plurality

of run-time environments by means of a rules-based allocation policy.
BACKGROUND OF THE INVENTION

The global marketplace is forcing companies to respond quickly to dynamic market
conditions while reducing costs. Businesses increasingly must have the ability to meet, or beat,
competitors by introducing new and innovative products and services. These new offerings are often
customer-facing and transaction-oriented, and introduce additional complexity and higher levels of
volatility for the enterprise computing resources called upon to provision these products and
services. Higher transaction volumes and demands for improved response times create an ever-

increasing need for computing resources.

In a conventional enterprise computing environment, computing resources are usually
manually assigned and provisioned to support various applications. This approach creates several
problems. As the assigned resources are generally fixed at a point in time to meet a current demand
level, the conventional enterprise computing environment is ill-equipped to adapt over time to meet
increasing demand levels for some applications and decreasing demand levels for others. In order to
meet minimum service requirements, computing resources are often assigned and provisioned
according to peak-level demands. As a result, during periods of less than peak-level demands,

computing resources are underutilized.

10

15

20

25

30

WO 2008/008883 PCT/US2007/073348

With the advent of grid computing, conventional enterprise computing environments
have been adapted to “virtualize” applications so that computing resources may be dynamically
provisioned to applications in response to current demand levels. For example, the GRIDSERVER
Virtual Enterprise Edition adaptive grid infrastructure software available from DataSynapse, New
York, New York provides a computing operating environment that virtualizes application and data
services, independent of specific system resources. Client applications submit service requests to the
grid environment, and GRIDSERVER dynamically provisiohs services on specific system resources
in the grid to meet the service requests. For example, requests from multiple client applications
cause GRIDSERVER to create multiple service instances to handle the requests in parallel on
different computing resource nodes in the computing resources grid. As a result, underutilization of

resources can be substantially reduced, and service levels can be commensurately improved.

GRIDSERVER has been particularly effective at providing a virtualized computing
environment that adapts to meet resource demands for computing-intensive processes. U.S. Patent
Application No. 11/395,586, upon which the present application is based and which is incorporated
by reference herein in its entirety, discloses a virtualized computing environment that effectively
adapts to meet resource démands for high throughput, low latency transactional applications such as

distributed web applications and other services-based application. The present application is

‘directed to an inventive method by which computing resources in this virtualized computing

environment may be dynamically and adaptively provisioned to optimally serve the web and other

services-based applications.
SUMMARY OF THE INVENTION

The present invention is directed to a method for adaptively provisioning a shared
computing infrastructure to support a plurality of software applications and a plurality of types of
applications servers each providing a run-time environment for one or more of the software
applications. The shared computing infrastructure includes computing engines assigned to execute
instances of the plurality of software applications, clients accessing the computing engines to
request and receive services from the software applications, and a broker that dynamically allocates

and provisions computing engines to the clients for executing the software applications.

The broker includes an optimization module that periodically determines an optimal

allocation of the computing engines to the software applications and applications servers. To

10

15

20

25

WO 2008/008883 PCT/US2007/073348

provision resources based on an optimal allocation, the broker device also includes a configuration
manager for reconfiguring a computing engine by halting a current instance of a software
application of a first type, and for loading and starting an instance of a software application of a

second type.

According to the present invention, a method is performed by the optimization module of the
broker for allocating the plurality of computing engines among the plurality of computing domains.
The method begins with the step of determining an expected number of computing engines to be
allocated to each of the plurality of computing domains, where the expected number is determined
as a function of a predetermined service policy and a predicted demand for the computing domain.
Then, while one or more of the plurality of computing engines is unallocated and one or more of the
plurality of computing domains has been allocated fewer than its expected number of computing
resources, the method continues by sequentially selecting a next computing domain as a function of
predetermined allocation priorities for the computing domains, selecting an unallocated computing
engine according to engine selection rules for the selected computing domain, and allocating the

selected computing engine to the selected computing domain.

After the computing engines have been initially assigned to the computing domains, the
method enters an allocation improvement stage. First, a fitness value is calculated for the current
allocation of computing engines to computing domains. A first computing domain is identified
having fewer than its expected number of allocated computing engines, and a computing engine is
identified for re-allocation to the first computing domain. The identified computing engine may be
an unallocated computing engine, or may be a computing engine allocated to a second computing
domain to which the expected number of computing engines has been fully allocated. After re-
allocation, the fitness value for the allocation of computing engines to computing domains is re-
calculated. If the re-calculated fitness value exceeds the previously-calculated fitness value, the re-
allocation is maintained. Otherwise, the re-allocation is discarded, and the computing engine is
returned to its previous allocation state. The re-allocation process repeats either for a predetermined
number of iterations, or until no computing domain has fewer than its expected number of allocated

computing engines.

The entire allocation method is repeatedly applied at predetermined intervals.

10

15

20

WO 2008/008883 PCT/US2007/073348

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features of the present invention will be more readily apparent
from the following detailed description and drawings of illustrative embodiments of the invention

wherein like reference numbers refer to similar elements throughout the several views and in which:

Figure 1A provides a schematic diagram illustrating an architecture for the present

invention,

Figure 1B provides a schematic diagram illustrating an alternate view of architecture for

the present invention;

Figure 1C provides a schematic diagram illustrating a third view of the architecture for

the present invention;

Figures 2, 3A and 3B illustrate exemplary web pages produced by an administrative tool

used in conjunction with the present invention;

Figure 4A provides a schematic diagram illustrating domain types supported by the

present invention;

Figure 4B illustrates a virtnal gateway for balancing traffic for web applications and

services;

Figure 4C illustrates an exemplary web page of a domain wizard of the administrative

interface that identifies container types;

Figure 4D illustrates an exemplary web page of the domain wizard for creating or

editing a web application domain

Figure SA illustrates an exemplary policy editor page of the administrative tool of

Figure 2 for setting minimum and maximum values for engine allocations to domains and groups;

Figure 5B provides an example of time-of-day dependent grid allocations as controlled

by a policy of the present invention;

10

15

20

WO 2008/008883 PCT/US2007/073348

Figure 5C illustrates an exemplary policy wizard web page that may be used to set

performance-based resource allocation constraints;
Figure 5D provides an example distribution of engines allocated to operating domains.

Figure 6A provides a schematic diagram illustrating elements of an engine component

of the present invention;
Figure 6B provides flowcharts illustrating the steps for executing an engine lifecycle;

Figure 7A provides a schematic diagram illustrating elements implementing a client

component of the present invention

Figure 7B provides a schematic diagram illustrating the creation of threads on an engine

as managed by the client of Figure 7A;

Figure 8A provides a schematic diagram illustrating broker-initiated provisioning of

engines dedicated to clients;

Figures 8B and 8C provide schematic diagrams illustrating broker-initiated provisioning

of engines shared by clients;

Figure 8D provides a schematic diagram illustrating client-initiated provisioning of

engines;

Figure 9A provides a schematic diagram illustrating how performance statistics are

compiled by the broker;

Figure 9B provides a schematic diagram illustrating how performance statistics are

collected by a client or engine;

Figures 9C and 9D provide a sample lists of the statistics compiled by the broker in
Figure 9A;

Figure 9E illustrates an exemplary “dashboard” web page of the administrative tool;

10

15

20

25

WO 2008/008883 PCT/US2007/073348

Figure 9F illustrates an exemplary web page reporting a measured statistic for an

engine;

Figure 10 presents a flow diagram illustrating an adaptive provisioning process

according to the present invention;

Figure 11A presents a flow diagram illustrating additional steps in the provisioning step

of the adaptive provisioning process of Figure 10.

Figure 11B presents a flow diagram illustrating additional steps in the step for

determining expected allocations in the provisioning process of Figure 11A;

Figures 11C - 11E list pseudocode for a preferred method for implementing the step for

determining expected allocations of Figure 11A,;

Figure 11F presents a flow diagram illustrating additional steps in the step for making

resource assignments in the provisioning process of Figure 11A;

Figure 11G illustrates a sequence of resource assignments made according to

predetermined priorities for the domains;

Figure 11H lists pseudocode for a preferred method for implementing the step for

making resource assignments of Figure 11A;

Figure 111 presents a flow diagram illustrating additional steps in the step for improving

resource assignments in the provisioning process of Figure 11A; and

Figure 117 lists pseudocode for a preferred method for improving resource assignments

in the provisioning process of Figure 11A.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to an application virtualization and provisioning (AVP)
platform that creates a highly adaptive shared computing infrastructure. Within this infrastructure,

application servers and other service-oriented components are hosted and virtualized on shared

10

15

20

25

WO 2008/008883 PCT/US2007/073348

computing resources, and are adaptively provisioned and activated in response to demand. The
shared computing resources may be geographically localized, or may be distributed over a wide
geographic area and managed as a computing grid. See Mark Baker et al., Grids and Grid
technologies for wide-are distributed computing,” Softw. Pract. Exper., John Wiley & Sons, Ltd.,
2002, which is hereby incorporated by reference.

Application virtualization enables the removal of static, host-specific configuration
dependence from the application environment by using the AVP platform to automatically and
adaptively allocate, configure, start, deploy, monitor and manage software applications and services.
Explicit usage policies are defined that guide provisioning and dynamic allocation of the shared
computing resources The configuration of software applications and services is in particular
enabled by a broker component of the AVP platform that stores applications servers, configurations
and software applications in a central repository for deployment to the shared computing resources
as required according to the resource allocation, and manages the allocation of the shared computing
resources based on the usage policies. This component also includes a facility for deploying new
application code to the shared computing resources while existing applications are running in the

currently-allocated configurations.

The AVP platform is directed to managing “domains,” which may comprise an
enterprise business application, utility service or data source that is allowed a certain percentage of
available resources at a specified time, based on the usage policy. Domains consist of the artifacts
that make up the application, service or data source (e.g., web archive (WAR) files making up a web
application), and may be classified among three domain types: service domains, data domains and

web domains.

Service domains are used to virtualize Java programming objects, including plain old
Java objects (POJOs), Spring Beans and Enterprise Java Beans (EJBs), by turning them into

services. These virtualized services may then be accessed by Java clients via dynamic proxies.

Data domains provide data services such as databases or scalable caching services. Data
domains may preferably be implemented, for example, as JBOSS cache and TANGOSOL’s
COHERENCE cache.

10

15

20

25

30

WO 2008/008883 PCT/US2007/073348

Web domains provide web applications and services such as web servers, messaging
brokers, message-driven services and other services that typically require multiple running instances
at any given point in time. Web domains include collections of application services that are

accessible over the Internet via communications based on the hypertext transfer protocol (http).

Domains can be launched or hosted on one or more application servers (or
“containers”). Containers are effectively “sandboxes” for hosting the domains. Each container type
is capable of hosting one or more domain type, and a given domain can be launched by any
container that supports its type. For example, a JBOSS container can host web application, web
service and EJB service domains. Other container types may include but are not necessarily limited
to APACHE TOMCAT containers, CAUCHO RESIN containers, IBM WEBLOGIC containers,
and other generic containers supported by the AVP platform.

A service-level policy, or consistent set of rules, is applied to dictate the operation and
division of computing resources. The service-level policy may be defined for example by software
application and/or by user group, and may be conditioned on certain performance requirements
including but not necessarily limited to response time, throughput and minimum/maximum
allocation of computing resources (“percentage of grid”). In accordance with the defined service-
level policy, the AVP platform operates to provision and activate services according to demand for

improved performance and utilization of resources.

A system-level architecture for the AVP platform 100 is illustrated in Figure 1A. The
architecture includes four fundamental elements: clients 10, engines 20 associated with domains 40,
and a broker 30. Clients 10a and 10b are software applications that access and utilize the domains
40. Engines 20 are processes that provision and run software applications in the domains 40. The
broker 30 is a software application that carries out policy-driven resource allocation (e.g., allocation
of engines 20 to domains 40 and clients 10a) and performance monitoring. Each of the clients 10a,
engines 20 and broker 30 may be implemented on conventional INTEL and/or SUN/SPARC
hardware platforms running, for example, WINDOWS, WINDOWS SERVER, SOLARIS, RED
HAT Linux or RED HAT Enterprise Linux operating systems

As illustrated in Figure 1A, clients 10a and engines 30 both interact with the broker 30.
The broker 30 assigns engines 20 to domains 40, and provides information for example to JAVA

clients 10a that instructs the clients how to access to the engines 20. Thereafter, JAVA clients 10a

10

15

20

25

WO 2008/008883 PCT/US2007/073348

are able to submit service requests directly to the connected engines 20. Hitp clients 10b submit
service requests via a router (“Vgateway 31”), which acts as a virtual gateway and load balancer for

directing the service requests to engines 20 running web service or web application domains.

Figure 1B illustrates an alternate view of the architecture for the AVP platform 100.
AVP platform 100 dynamically assigns and provisions computing resources 21 among software
applications 41 supported by application servers 41a by configuring domains 42, 43 and 44. AVP
platform 100 optimizes the assignment of resources 21 among the applications 41 subject to
constraints 60 which may include, for example, service-level policies associated with the domains
42, 43, 44, and/or with user groups secking access to the domains, service level agreements
(“SLLAs”) associated with the domains 42, 43, 44 and or user groups, performance statistics
periodically collected from engines, clients and other components of the AVP platform 100, and

service demands predicted from the usage statistics.

Figure 1C illustrates a third view of the architecture for the AVP platform 100.
Computing resources are represented by grid nodes 25, which may each include one or more host
computers. Broker 30 allocates and configures one or more engines 20 to run on each of the grid
nodes 25. Each engine 20 manages a container 26 that serves as an environment for running an
application, service or data source, and preferably collects and reports performance statistics for the
application, service or data source (for example, by Java Management Extension (JMX) proxy for
Java 2 Platform, Enterprise Edition (J2EE) applications), and preferably binds with a container
software development kit (SDK) within an administrative interface (not shown) that may be used to

configure the containers 26.

Broker 30 also configures a daemon 22 that runs on each host computer in each grid
node 26 that monitors the host, manages the engines 22 that are running on the host, and deploys
binary code provided by the broker 30 for running a container (or applications server) 26 and/or an
application, service or data source to be run by the container 26. In addition, broker 30 collects
performance statistics provided by the engines 20 (and/or by clients 10a and Vgateway 31) for
storage in a database 39, for reporting and/or as inputs to the allocation optimization. Broker 30 may
also provide failover services for reallocating an application, service or data source from a failed

host computer to an operating host computer.

10

15

20

25

WO 2008/008883 PCT/US2007/073348

AVP platform 100 of Figures 1A, 1B and 1C further includes an administrative interface
(not shown) of the broker 30 that enables a platform administrator to define, register and deploy
domains, to manage workloads and to configure the AVP platform environment. By way of
example, Figure 2 illustrates a broker web page of the administrative interface that provides access
to a variety of wizards available for creating data, web and service domains, and for establishing

policy.

In addition, the administrative interface allows the platform administrator to monitor
and manage various performance metrics, including but not necessarily limited to throughput,
latency, resource usage, and exceptions. For example, Figure 3A illustrates a “dashboard” page of
the administrative interface that provides a pie chart indicating a current allocation of resources
among domains, and Figure 3B illustrates a “broker monitor” page of the administrative interface

that graphs the allocation of resources among domains over time.

Domains

As illustrated in Figure 4A, the AVP platform 100 is directed to manage three types of

domains: service domains 45, web domains 46 and data domains 47.

Web Domains .

Web domains 45 provide web applications and services, for example, including web
servers, messaging brokers, message-driven services and other services that typically require
multiple running instances. Web domains represent any collection of application services that are
accessible via http, and can effectively represent any object or process that can be started, stopped
and interrogated for its current load. Types of web domains include web applications accessible via

a browser, and web services made available via simple object access protocol (SOAP) over http.

Web domains are preferably targeted for J2EE application servers. For example, an
existing J2EE application may be represented as a web service, with an application cluster size
varying between 2 and 5 nodes, base on policy. The physical locations of the web domain instances
are decided by the AVP platform 100 at runtime, and the resources are provisioned dynamically.

The AVP platform 100 then instantiates each domain on one or more grid nodes .The policy that

10

10

15

20

25

WO 2008/008883 PCT/US2007/073348

dictates how many instances are created, and at what time they are created, are dictated by a service-

level policy that is maintained by the broker 30.

As illustrated in Figures 1A and 4B, web clients 10b may preferably access web
domains 40 via a virtual gateway router (Vgateway 31). VGateway 31 is preferably implemented as
part of the broker 30, and functions essentially as a smart load balancer, routing web service
requests and responses from external clients to resource virtualized engines. Unlike conventional
static load balancers, Vgateway 31 is informed when the configuration of host computers 23 and/or

domains 40 changes, and adjusts its load balancing scheme accordingly.

Service Domains

Service domains 46 include a collection of interfaces that can be virtualized across
distributed computing resources (“grid resources”). By grouping these resources within a service
domain, specific policies can be set to determine how many resources each service domain will be
allowed to consume. JAV A-based service domains 45 may be defined, for example, using J2EE,

plain old JAV A objects (“POJOs”) or the Spring framework

Service domains 45 may be used, for example, to define any standard JAV A class or
Enterprise Java Bean (EJB). No proprietary application programming interface (API) or class
format is required to virtualize the associated Java service. For example, POJOs can be defined with
application context, or the complete and necessary environment for making the associated Java
object instance work correctly. For example, a JAVA class that represents a business service would
be defined with access to database connections and messaging services in order to perform the
required processing. Preferably, a simple Extensible Markup Language (XML) format is provided

for declaring the proper context for each object.

Among supported service domain types, the POJO domain type is the simplest to
construct. Any JAVA class can be included in a POJO service domain. In addition, a Spring service
domain type may preferably be supported. See Rod Johnson, Introduction to the Spring Framework,
May 2005, available at www.theserverside.com/articles/article.tss71=SpringFramework, which is
hereby incorporated by reference. The Spring framework simplifies J2EE development by using
POJOs instead of EJBs, and allowing for the abstraction and encapsulation of implementation

dependent components (for example, Hibernate and JDBC mapping tools). In addition, this

11

10

15

20

25

WO 2008/008883 PCT/US2007/073348

framework allows for dynamic proxy-based aspect oriented programming (AOP). AOP is a
programming facility that allows developers the ability to inject logging, transaction, security and
transaction capabilities across modules and components. The Spring framework also uses AOP to
provided declarative transaction management for POJOs. For legacy components that are packaged

as EJBs, an EJB service domain allows for virtualized access to EJB functionality.

Data Domains

Data domains 47 of Figure 4A provide data services such as databases or scalable
caching services. These services are essentially clientless, as no gateway or proxy to the services in
provided via the broker. Instead, the AVP platform may provide a centralized lookup, for example,
such as a Java Naming and Directory Interface (JNDI) that allows clients to discover and connect to

these domains.

Creating Domains

According to the principles of the present invention, domains are launched or hosted on
one or more applications servers, or containers. Each container type is capable of hosting one or
more domain types, and a given domain can be launched by any container that supports its type.
Figure 4C provides an exemplary listing of container types supported by a domain wizard of the
administrative interface. For example, a JBOSS container can support web application, web service
and EJB service domains. Other container types include but are not limited to APACHE TOMCAT
containers, CAUCHO RESIN containers, IBM WEBLOGIC containers, and other generic
containers supported by the AVP platform. Tﬁe administrative interface preferably includes a
container software development kit (SDK) enabling the addition of additional container types as

required.

Domains may be created for example by means of a domain wizard within the
administrative interface. Figure 4D illustrates an exemplary web page of the domain wizard for
creating or editing a web application domain that deploys a specified web application. As illustrated
in Figure 4D, the web application domain may be newly created or modified by selecting and
specifying an appropriate container, and by specifying domain settings, associated archive files (for

example, JAVA archive (JAR), Enterprise archive (EAR) or web archive (WAR) files), servlets and

12

10

15

20

25

WO 2008/008883 PCT/US2007/073348

Enterprise JAVABEANS (EJBs). In addition, tracked statistics for associated service-level policies
may be specified. For web applications and web services, URL patterns to be used by the Vgateway

31 of Figure 1A may also be specified.

Policy and Resource Allocation

The broker 30 of Figure 1A is configured with a service-level policy that provides a
consistent set of rules for the assignment and allocation of computing resources from the resource
grid. This policy enables the broker 30 to select a resource allocation among the domains. In the
absence of this policy, the broker may operate to assign an equal percentage of grid resources to

each of the domains.

The service-level policy defines a hierarchical, constraint-based division of computing
resources in the grid. For example, a first level of partitioning may be by domain, followed by a
second level of partitioning by user group. Additional and/or alternate partitioning criteria may be
arbitrarily selected (for example, partitioning by work project), all of which are fully contemplated

within the scope of the present invention.

The service-level policy will generally define a minimum number and a maximum
engines that should be allocated for each domain, either in terms of a number of engines or a
percentage of available engines. A “minimum allocation percent” specifies a least amount of
resource always held by an associated domain. If no clients are running in a domain, the rule may be
excepted in order to make resources available to other grid clients (i.e., the “minimum allocation
percent” is set to zero, so that no resources are assigned unless no other clients are running in other
domains). However, these resources are relinquished as soon as a non-running client starts up in the
affected domain. If the minimum allocation percents for grid clients do not sum to 100 %, and all
types of grid clients are active, the broker may continuously redistribute resources to optimize

service-level agreements (SLAs) for the grid clients or domain.

A “maximum allocation percent” specifies a cap on the amount of resources to be given
to an associated domain. This maximum is preferably enforced even if idle resources are available.
As illustrated in Figure 5A, the administrative interface preferably provides an editor for editing the

minimum and maximum engine allocations for domains. In addition, as shown in Figure 5A, the

13

10

15

20

25

30

WO 2008/008883 PCT/US2007/073348

editor provides a means for specifying a priority ranking for each domain that is used by the broker

30 for deciding a sequence in which unallocated resources are allocated among the domains.

Additional rules may further limit or change the engine allocations performed by the
broker. For example, rules nay be administered through the administrative interface of the broker
30 to limit which engines may be assigned to individual domains. The engines may be limited, for
example, according to engine identifier, engine configuration, engine memory characteristics (e.g.,
amount of free memory), number of central processing units (CPUs) supported by the engine, and

engine operating system (OS).

Allocation of engines may also be influenced by service level agreements (SLAS). SLA
targets may be set through the administrative interface to provide a means for changing engine
allocation based on the performance of domain. For example, if a domain requires a particular level
of network throughput, an associated SLA target can be attached to the domain and monitored. If
throughput falls below the target level, allocation of engines to the domain can change according to
associated rules. These additional rules may also include assigned priorities, which will essentially

dictate the order in which the rules are processed.

When an engine fails to meet a target threshold for a rule, the broker 30 may perform an
additional statistical analysis to determine whether a reallocation is warranted. For example, the
broker may calculate a normalized variance of the performance of all engines in an associated
domain (for example, a normalized geometric variance of a performance statistic calculated as the
ratio of the geometric mean to the arithmetic mean). In the case of the normalized geometric
variance, a value close to 1.0 indicates little variance in performance among the engines in the
domain, providing strong evidence of the need for additional computing resources. Conversely, a
value near 0.0 indicates a wide variance (and lack of balance) in performance among the engines.
In this case, instead of immediately reassigning resources, the broker waits to see if balance is
achieved, and thereby if underutilized resources enable thresholds to be met without further

allocation of resources.

The broker may in addition apply a policy schedule that indicates how policies are to be
change over the course of a day. As illustrated for example in Figure 5B, the grid resources assigned
to a domain 48 for an application varies with time. Domain 48a at 8:15 AM is allocated four

computing engines 20 from the grid. At 8:30 AM, the number of allocated engines in domain 48b is

14

10

15

20

25

WO 2008/008883 PCT/US2007/073348

reduced to three engines 20. At 8:45 AM, the number of engines allocated to domain 48c is

increased to five engines 20.

Once the minimum and maximum number of engines is established, the broker 30
proceeds to provision resources to a minimum level. The broker 30 may choose to allocate more
than the minimum number of engines to a domain if there is a statistical rule that can be used to
understand the performance of the application. For example, if queue size can be measured as an
indication of current load on the application, a rule can be established for adding an additional
engine when the average queue size for all engines in the domain over a specified time interval
exceeds a specified level. In addition, a rule for relinquishing an engine can be established based on
the average queue size falling below a specified level over the specified time period. Figure 5C
illustrates a policy wizard web page of the administrative interface that may be used for setting

statistical rule-based constraints.

The broker 30 allocates engines (or application server instances) to domains based on a
current active policy and current application performance statistics. The broker reevaluates and
reapplies this policy periodically (for example, every 5 minutes), and then decides to take one of
three courses of action: a) to make no change in the current allocation, b) to assign available engines
to some domains, or ¢) to re-assign some engines from some domains to other domains. Figure 5D

illustrates an allocation of engines across domains.

Engines
As illustrated in Figures 1C and 6A, each engine in the AVP platform 100 manages a

container 30 to host and run a domain. Further, as illustrated for example in Figure 6A, an engine

service instance 21 is managed by an engine daemon 22, both installed on a host computer 23.

Engines create service instances on demand, based on scheduling decisions made by the
broker. A service is created with the first client request for an operation having the created service
type. After creating and running the requested operation, the engine stores the newly-created service
in a cache. A scheduler is made aware of the contents of the cache, such that it will route other

requests for that service to the engine.

15

10

15

20

25

WO 2008/008883 PCT/US2007/073348

By default, engines operate as single-threaded processes (“engine instances”)
performing only one service operation at a given time. As a result, more than one engine instance 21
is generally running at one time on the host computer 23. Processes running on multiple engine

instances are started and managed by an agent that also runs on the host (engine daemon 22).

Engine daemon 22 is capable of starting and stopping engines based on a pre-defined
engine policy. Engine policies may for example be based on one or more of CPU utilization of the
host, user activity (in the case that the host is a user’s desktop) or time of day. In most cases, the
engine daemon 22 starts and monitors engine instances 21, and restarts the engine instances 21 in

response to failures or reconfigurations.

One engine daemon 22 runs per host. In addition to starting engine instances 21, the
engine daemon 22 preferably controls the configuration of engine instances 21. For example, when
changes to an engine configuration are made by a platform administrator (for example, to configure
a new application server), the changes may be automatically propagated to an engine instance 21 via
the engine daemon 22. Engine daemons 22 may log into the broker 30 for administration and

configuration.

Engine instances 21 are the processes that perform tasks for executing application
software in the domain. On multi-CPU hosts, an engine daemon 22 will be able to run multiple

engine instances 21. In addition, more than one engine instance 21 may be run on a single CPU,

Engines 20 report to the broker 30 when they are available to perform work. After
logging in and synchronizing resources, the engines accept work assignments, perform tasks for
executing the applications software, and notify the broker 30 when results are ready. Because the
engine daemon 22 controls the state of configuration for each engine instance 21, and engine
configuration can be controlled centrally via the administrative interface of the broker, it is easy to

control and configure engine instances across the computing resource grid.

Engines can be configured to run in a variety of modes, depending upon the type of host
machines 23 on which they will be installed. Dedicated machines are configure to run continuously,
and are best suited for computing resources devoted to full-time processing on the grid. A non-

dedicated mode may be enabled for host machines that are only used on a part-time basis on the

16

10

15

20

25

WO 2008/008883 PCT/US2007/073348

grid, and otherwise used for other purposes (for example, user PCs sometimes made unavailable to

the grid for user process use).

Engines configured in the non-dedicated mode determine when to run based on two
different modes. In the user interface (UI) idle mode, a non-dedicated engine will start running after
user inactivity on the host machine. Alternatively, in CPU idle mode, the engine will start to run
when CPU utilization is sufficiently low. Engines are installed only once on a host machine. As
engines are centrally managed by an engine daemon 22, they can be easily upgraded when later
versions to the AVP platform 100 are available by using the administrative interface. In addition, to
gain additional efficiencies, configuration profiles may be created by the administrative interface

which may be used by multiple host machines to synchronize configurations.

Figure 6B provides a flow diagram illustrating steps in the lifecycle of and engine. At
step 601, the engine daemon 22 determines that an engine instance should be running on the host 23
based on a state of the host 23 and an engine mode of the host (for example, if the engine is non-
dedicated, an engine instance may be created only if no other user processes are currently running
on the host 23). At step 602, the engine instance 21 established a connection to the broker 30 to
identify to the broker 30 that the instance 21 is ready for work. At step 603, the broker 30 provisions

the engine instance 21 to a domain.

At step 604, a client, having received information relating to the engine instance 21 and
its associated domain from the broker 30, connects to the engine instance to run a service. At step
605, when the service has completed, the engine instance establishes another connection to the

broker 30 to indicate that it has completed the service and to request another assignment.

At step 607, if the engine instance 21 is interrupted or otherwise fails gracefully, it
connects to the broker 30 to send a message indicating that it has logged out. Otherwise, if the
engine instance 21 fails unexpectedly, an engine monitor of the broker will log the engine instance
off. In either case, if available, the broker will provision anther engine instance to the associated

domain to replace the failed instance.

Clients

17

10

15

20

25

WO 2008/008883 PCT/US2007/073348

As illustrated in Figure 1A, requests for access to service domains 40 may be forwarded
to the broker 30 by Java clients 10a. The clients 10a for example may make a request to invoke a
method for processing in a service domain using simple application programming interface (API)
access. In the case of web domains, a web client 10b (for example, a web browser or other http
client) may access a web application or web service via Vgateway 31. In this case, the client simply
opens a uniform resource locator (URL) that is directed to Vgateway 31, and configured to run the

selected application, virtualized on a web domain.

As illustrated for example in Figure 7A, a client 10 synchronously invokes a method for
processing in a service domain by sending an invocation message including service/method call
information and a wait lock to a corresponding service domain 11. The service domain 11 adds the
message to an invocation queue 12. A thread running on the engine 20 is then blocked by the
service domain 11 using the wait lock. The process for asynchronous invocation is similar, except a
result listener message is sent in the invocation message, indicating that a listening process will be

created by the client and wait until the engine 20 indicates that the task has been completed.

Communications between the engine 20 and the client 10 are managed by an engine
proxy 13. As illustrated in Figure 7B, the engine proxy 13 creates a new thread 14 for each thread
24 that has been started on the engine 20. With these threads, the proxy 13 continuously asks for a
next invocation process. The threads 14 will block if the queue 12 is empty. If the proxy 13 fails to
process an invocation, it notifies the queue manager 16, which places the unprocessed invocation

back in the queue 12.

Each client 10 has a performance monitor (not shown) for monitoring call requests and
keeping statistics on recent history. Request statistics monitored by the client 10 preferably include
but are not necessarily limited to total response time, time in the queue 12, time in transport and
time in user code (i.e., direct application or service processing time). The client monitor calculates
average statistics for each of the measured statistics, as well as average throughput. The average

statistics are periodically sent by the client 10 to the broker 30, as further described herein.

Broker

The broker 30 provides policy-driven resource allocation and monitoring for the AVP

platform 100. Specific broker tasks include message routing and client authentication, engine

18

10

15

20

25

WO 2008/008883 PCT/US2007/073348

allocation, engine provisioning and resource management, performance monitoring, and application
and application server code distribution. Engines and clients are able to log in to the broker 30 in

support of these tasks.

Figure 8A schematically illustrates a broker-driven process by which engines are
allocated to domains. Client 10 periodically sends average statistics to broker 30, which are received
by statistics manager 33 and placed in client and engine statistics queues 34. Engine allocator 32
scans client and engine statistics queues at regular intervals, applies policy-based optimization
algorithm 37, and decides either to make no changes to the current allocation of engines to clients
10, to assign currently available engines from engine pool 35 to some of the clients 10, and/or to re-
assign some engines previously assigned to clients 10 to other clients. Clients 10 are provided
access to engines in engine pool 35 with the delivery of associated engine proxies 36 from the

broker 30 to the clients 10.

The broker 30 provisions engines according to the service policy based on the
operational mode of the broker, allocation policies and client activity. Schemas include “broker-
initiated” provisioning and “client-initiated” provisioning. Broker-based provisioning is useful for

controlling engine allocation across domains, and is required to enable engine sharing.

As illustrated in Figure 8B, broker-based provisioning begins with a service domain-
specific request transmitted by a client 10 to the broker 30. In response, the broker provides the
client with an engine proxy that is already assigned to a specific service domain. With broker-based

provisioning, a client may not directly ask the engine to change the assigned domain.

Two kinds of engine allocation are supported by broker-based provisioning. With
exclusive allocation, as illustrated in Figure 8B, engines are assigned with the delivery of associated
engine proxies 36 to clients 10 such that each engine 20 provisioned in a domain 40 is assigned to
perform work for exactly one client 10. With shared allocation, as illustrated in Figure 8C, two or
more clients 10a, 102’ may respectively use shared engine proxies 36a, 36b to send requests to the

same engine 20 in domain 40.

As illustrated in Figure 8D, under the client-initiated provisioning schema, clients 10
receive “blank slate” engine proxies 36¢, and are able to provision them with service domains of

their choice. A service domain-independent request is first transmitted by the client 10 to the broker

19

10

15

20

25

WO 2008/008883 PCT/US2007/073348

30. In response, the broker 30 provides the client with unassigned proxy 36¢, allowing the client to
activate a service domain of its choice via engine 20. Under this schema, no sharing of engines is

possible.

The broker performs a number of additional functions on behalf of the AVP platform
100. For example, the broker configures and stores a variety of operational settings and parameters,
including but not necessarily limited to user identification, passwords, client information, routing
properties and engine configuration. Using this stored data, for example, associated tasks may be

carried out by platform administrators via the administrative interface of the broker 30.

An internal database of the broker stores reporting data, including for example user,
engine, client and broker information, and an external reporting database is used to log events and
performance statistics. Associated database configurations may be managed by platform

administrators via the administrative interface.

Domain resources are staged on the broker 30, for deployment to engines. For example,
files may be uploaded to deploy service, web and data domains using the domain wizard component
of the administrative interface as illustrated in Figure 2. Domains can be deployed at the time of

uploading, or can be deployed or undeployed at a later time.

Monitoring and Statistics Tracking

The broker 30 carries out a performance monitoring function with the assistance of the

clients 10 and engines 20. Figure 9A schematically illustrates how the this function is performed.

At regular intervals, the broker 30 asks at least one of each client 10 and engine 20
associated with service and web domains (preferably, at least each engine 20) to collect and forward
averaged performance statistics. The information is collected and forwarded by at least one of a
statistics collector 10c of the client 10 and a statistics collector 20c of the engine 20 to the statistics
manager 33 of the broker 30. This process may for example be facilitated by means of a JMX proxy

for clients and engines running J2EE applications.

20

10

15

20

25

WO 2008/008883 PCT/US2007/073348

Figure 9B further illustrates schematically how statistics are collected by the client 10
and engine 20. The statistics collectors 10c, 20c of the client 10 and engine 20 hold a collection of
statistics providers 60. At regular intervals, the statistics collector 10c, 20c asks each provider 60 to
format its latest average statistics into a common statistics record 61, and forwards the common
statistics records 61 to the statistics manager 33 of the broker 30 as illustrated in Figure 9A. The
forwarded information includes an invoking group, domain, service and method “signature,” as well

as the average values of collected statistics.

The statistics manager 33 places the forwarded information in client and engine
statistics queues 34 of Figure 9A. Periodically (for example, hourly), statistics persister 38
consolidates the collected data by averaging the accumulated data for each client 10 and engine 20,
calculating statistics for the entire computing resource grid, and storing the calculated statistics in
grid usage statistics database 39. Additional averaging and archiving is preferably performed
periodically on the database 39 to further consolidate the data. The accumulated data in the database

39 may be displayed on a reporting screen 50 via the AVP platform administrative interface.

A sample list of statistics tracked is provided in Figures 9C and 9D. Statistics used will
vary according to application. For example, load on a JAVA application serve may be assessed by

statistics such as queue depth, service throughput or thread count rather than user response time.

With frequent collection of statistics from each client 10 and engine 20, large amounts
of statistical data accumulate. Accordingly, at frequent intervals, the broker operates to average the
data collected for each client and engine, to calculate statistics for the entire grid, and to save the
resulting records in the broker databases. Archiving may be performed after successive intervals,

using similar averaging methods.

The collected statistics may be viewed in a variety of ways via tracking tools in the
administrative interface of the broker 30. As illustrated in Figure 9E, for example, the administrative
interface may include a dashboard for displaying a variety of statistical data in summary form. The
dashboard may provide, for example, pie charts indicating domain and group allocations of engines,
measured statistics for the clients and engines, and platform alerts generated according to a
comparison of the measured statistics to service level agreements (SLAs) defined in the service-

level policies. In addition, the dashboard may provide links for viewing domains, wizards for

21

10

15

20

25

WO 2008/008883 PCT/US2007/073348

configuring various components of the platform, and links to other frequently used pages of the

administrative interface.

For example, as illustrated in Figure 9F, a web page of the administrative interface

illustrates a thread count over time for a selected engine.

Adaptive Provisioning

Figure 10 summarizes the adaptive provisioning process according to the present
invention. As described above, and as illustrated at step 1010 of Figure 10, a service-level policy is
defined and stored in a database 39 accessible to the broker 30. The policy includes minimum and
maximum resource levels to be allocated, for example, to a domain or user group, by time of day.
The policy may also define priorities to be applied in the event of resource contentton, and service-

level policies relating to measured statistics for the system.

At step 1020, the resources are provisioned according to the policy. Engines are
assigned to domains by the broker 30, and configured by downloading and installing associated
application server and application software in the engines. Once configured, engine instances are

also started in response to the receipt of service requests, and stopped upon task completion.

At step 1030, the broker 30 periodically collects averaged performance statistics from
one or more of the clients and the engines, and compares the averaged statistics with SLAs 1035
defined in service-level policies. The statistics may provide, for example, measures of throughput,
response time, CPU occupancy, memory occupancy and other attributes that may preferably be
defined as JMX attributes. The policy is then again re-applied at step 1010 and the resources are re-
allocated at step 1020. In addition, at step 1040, alerts indicating violation of the SLAs may
preferably be reported to administrators via a “dashboard” of the administrative interface of the
broker 30.

The reallocation step 1020 is further described in an exemplary manner with reference
to Figures 11A - 11J. In Figure 11A, reallocation process 1100 begins at step 1110 with the
creation of an empty resource allocation map. The resource allocation map is a data structure which
is used, for example, by the broker 30 for recording assignments of resources (e.g., computing

engines 20) to resource users (e.g., domains 40) during the reallocation process 1100. At step 1130,

22

10

15

20

25

30

WO 2008/008883 PCT/US2007/073348

the broker 30 determines a number of expected or desired resource for each domain 20 based on a
predetermined policy for the domain, SLAs for the domain, and current performance statistics
reported to the broker 30 by one or more of engines 20 and clients 10 assigned to the domain 40.
The predetermined policy for the domain, for example, may specify a minimum and maximum
number of engines 20 to be assigned to the domain 40, a priority for the domain 20, and other
associated rules. The other rules may constrain the types of engines that may be assigned to the
domain 40 (for example, according to type of operating system), and further specify rules pertaining

to the SLAsS.

Once the expected number of resources for each domain is determined at step 1130 and
recorded in the allocation map, the reallocation process 1100 proceeds at step 1150 to prepare a set
of resource assignments assigning specific computing engines 20 to domains 40. Assignments of
computing engines 20 to domains 40 are made in an order reflective of the priorities specified for

the domains 40, and are then recorded in the allocation map.

At step 1170, a current fitness value is calculated for each assignment of computing
engines 20 to a domain 40, and by means of one or more conventional constraint programming
methods, the assignments made at step 1150 are adjusted, fitness values are recalculated for the
adjusted assignments, and the adjusted assignments are maintained and recorded in the allocation
map when the fitness values for the adjusted assignments improve over the fitness values for the

assignments made at step 1150.

At step 1190, based on the assignment information currently in the allocation map, the
broker 30 proceeds to release and re-acquire computing engines 20 that are to be reassigned to
among the domains 40 in order to provision the computing engines 20 to the domains 40. At step
1191, after a predetermined time period (for example, in the range of three to five seconds), the
reallocation process 1100 resumes at step 1110 by preparing an empty allocation map to be used in

the subsequent reallocation steps.

Figure 11B further depicts the process at step 1130 for determining an expected
allocation of computing engines 20 among domains 40. At step 1132, an allocation entry is created
in the allocation map for each of the domains 40, and a minimum number of engines for the domain
(established according to the domain policy) is initially set to be the expected allocation for the

domain and recorded in the allocation map. At step 1134, the minimum number of engines for each

23

10

15

20

25

WO 2008/008883 PCT/US2007/073348

domain is compared to an expected number of engines that was calculated in a prior allocation cycle
according to the process at step 1130. If a prior expected number of engines for a domain exceeds
the minimum number of engines, the expected number of engines is set to be the prior expected

number of engines, and re-recorded in the allocation map.

At step 1136, a current demand is computed for each domain, for example, as a function
of SLAs defined in the policy for the domain and performance statistics collected for the domain
(see “Policy and Resource Allocation,” supra). If there is a positive demand (i.e., the statistics
indicate that performance falls below the thresholds established by the SLLAs), and the demand
exhibits stability (i.e., as may be indicated according to a normalized variance in demand among
engines 20 currently assigned to the domain 40), the expected number of engines is increased. For
example, where a stable, positive demand is indicated, the expected number of engines may be
increased by a fixed number (i.e., by one engine). At step 1138, the expected number of engines is
finally set to be the lesser of a) the expected number of engines (as may have been increased due to
demand) and b) the maximum number of engines (which has been set according to the domain
policy). This final expected number of engines is recorded in the allocation map at step 1140. A
pseudocode representation of the process at step 1132 is illustrated in Figure 11C, and a pseudocode

fepresentation of the process at steps 1134 - 1138 is illustrated in Figure 11D.

Figure 11E presents a pseudocode representation for a preferred method of generating
the normalized variance indicative of a stability of demand for a domain 40. As indicated in Figure
11E, anormalized geometric variance (GV) is calculated as a function of a value of a performance
statistic for each of n engines 20 assigned to a domain D. Specifically, the normalized geometric
variance is determined as the ratio of the geometric mean for values of the performance statistic
divided by the arithmetic mean of the performance statistic values. The computed normalized
geometric variance is then compared to a predetermined threshold value for determining whether
the demand as viewed by all engines 20 in the domain D is sufficiently balanced and stable to
warrant an increase in the expected number of resources. For example, values of GV that are close
to 1.0 indicate a well-balanced behavior, and values of GV that are close to 0.0 indicate a lack of
balance. Applicants have determined that a threshold of approximately 0.85 is particularly suitable

for use in the present invention.

24

10

15

20

25

30

WO 2008/008883 PCT/US2007/073348

Figure 11F further depicts the process at step 1150 for making the initial assignment of
computing engines 20 to domains 40. Each of the domains 40 is assigned a priority value according
to the domain policies. At step 1151, a maximum priority value (for example, from 1 to 9) is
determined among domains 40 seeking resource assignments. As a result of steps 1152 and 1153,
the assignment process begins for a priority value i equal to N. At step 1156, each domain 40
having a priority value equal to or greater than i and having fewer than its expected number of

resources assigned is identified.

At step 1157, for each identified domain 40, a selection rule is determined. For example,
the selection rule may only allow selecting the engine 20 that is currently assigned to a particular
allocation map entry for the domain 40 (“same entry selection™). Alternatively, the selection rule
may allow the selection of an engine 20 that is already assigned to the domain (“same domain
selection”), may allow the selection of an engine so along as it is not required by another domain
(“rule selection”), or may allow the selection of any available engine (“always selection”). Based’
on the policy for the identified domain, a single selection rule may be identified for the domain, or

more than one selection rule may be selected in a predefined sequence.

At step 1158, it is determined whether an unassigned engine is available for the
identified domain 40 that meets the current selection rule. If so, the available engine 20 is assigned
to the identified domain 40 at step 1159. If no eligible engine is available, the process proceeds to
step 1160 to determine whether the selection round has been completed. If not completed, the
process returns t step 1156 to identify a next domain 40 in the selection sequence that is looking for
an available unassigned computing engine 20. Once the current selection round is completed, the
process returns to step 1153 to decrement the priority i. At step 1154, if it is determined that i is

zero, the process terminates at step 1161. Otherwise, the process begins a next selection round.

Figure 11G depicts a sequence of nine selection rounds for domains A - E, the domains
A - E having priority values ranging from 9 to 1. Figure 11H presents a pseudocode representation

for a preferred method for carrying out the sequence of selecting computing engines 20 to domains

40.

Figure 111 further depicts the process at step 1170 for improving the selected
assignments of computing engines 20 to domains 40. At step 1171, a fitness value is computed for

the allocation map. The fitness value may be determined using one of a variety of conventional

25

10

15

20

25

30

WO 2008/008883 PCT/US2007/073348

objective functions having the property of providing either an increased or a reduced value when the
number of engines 20 assigned to an allocation table entry for a domain is improved in relation to
the expected number of engines 20 for the allocation table entry. For example, the objective
function may assign a value of 3 to an allocation table entry having the expected number of engines
20, a value of 2 to an entry that has more than the minimum number of engines 20 but less that the
expected number of engines 20, and a value of 1 to an entry that has less than the minimum number
of engines 20. The objection function may alternatively or in addition provide an indication of
improvement when a match of preferred engine types assigned to an allocation table entry is

improved.

At step 1172, a number of iterations N is selected for carrying out the improvement
process of step 1170. Alternatively, the process may continue until a performance objective is

reached (for example, reaching no more than M unsatisfied entries in the allocation map).

At step 1174, a domain having an unsatisfied allocation table entry is identified. This
may be accomplished by selecting entries in the table in a pre-established order, by random
selection, or by some other scheme (for example, as a function of fitness for the entry, time since the
entry was last selected, and the like). Once the unsatisfied allocation table entry is identified, an
engine 20 that is not currently assigned to the identified allocation table entry is identified and
selected at step 1175, and is assigned to the allocation table entry at step 1176. The engine 20
assigned to the allocation table entry may preferably be selected from a set of unassigned engines
20, or alternatively, be selected to be reassigned from another allocation table entry, for example,
having an allocation of engines 20 that currently satisfies its expected number of allocations. In the
latter case, a conventional constraint programming-based method may preferably be employed to

efficiently identify engines for re-allocation.

At step 1177, the fitness value for the allocation table is recomputed in view of the
reassigned engine 20. At step 1178, it is determined whether or not the recomputed fitness value is
greater than the current fitness value. If the recomputed value is greater, at step 1179, the
reassignment of engine 20 is maintained, the fitness value is set equal to the recomputed fitness
value, N is decremented by 1 and the process returns to step 1173 to determine whether N is greater
than 0. If the recomputed fitness value is less than or equal to the current fitness value, at step 1180,

the reassignment of engine 20 is discarded (i.e., the current assignment of engine 20 is maintained),

26

10

15

WO 2008/008883 PCT/US2007/073348

N is decremented by 1 and the process returns to step 1173 to determine whether N is greater than 0.
At step 1173, if N is equal to zero, the process terminates at step 1181. Figure 11J presents a

pseudocode representation for a preferred method for the process at step 1170.

Thus, while there have been shown, described, and pointed out fundamental novel
features of the invention as applied to a preferred embodiment thereof, it will be understood that
various omissions, substitutions, and changes in the form and details of the devices illustrated, and
in their operation, may be made by those skilled in the art without departing from the spirit and
scope of the invention. For example, it is expressly intended that all combinations of those elements
and/or steps which perform substantially the same function, in substantially the same way, to
achieve the same results are within the scope of the invention. Substitutions of elements from one
described embodiment to another are also fully intended and contemplated. It is also to be
understood that the drawings are not necessarily drawn to scale, but that they are merely conceptual
in nature. It is the intention, therefore, to be limited only as indicated by the scope of the claims

appended hereto.

All references, publications, pending and issued patents are herein each incorporated by

reference in their entirety.

27

10

15

20

25

30

WO 2008/008883 PCT/US2007/073348

CLAIMS

What is claimed as new and desired to be protected by Letters Patent of the United

States is:

1. In a system for provisioning a shared computing infrastructure including a plurality of
computing engines, a plurality of applications servers, a plurality of computing domains and a
broker, the shared computing infrastructure supporting a plurality of software applications and the
plurality of applications servers including a plurality of applications server types, each application
server type capable of providing a run-time environment for executing at least one of the plurality of
software applications; each computing domain being hosted by an application server of a given
type, and the broker being operative to dynamically allocate the plurality of computing engines
among the plurality of computing domains based on allocation policies provided to the broker, a
method for specifying the allocation policy for one of the plurality of domains via an administrative
interface to the broker, the method comprising the steps of:

specifying a desired minimum number of computing engines to be allocated to the one
domain in any broker allocation;

specifying a desired maximum number of computing engines to be allocated to the one
domain in any broker allocation; and

specifying a priority of allocation for the one domain.

2. The method of claim 1, further comprising the step of: .
specifying a service level agreement (SLA) target, wherein performance of the one domain
against the SLA target may be judged by the broker in determining whether to allocate one or more

additional computing engines to the one domain.
3. The method of claim 1, further comprising the step of:
specifying one or more of the plurality of computing engines which may be allocated to the

one domain.

4. The method of claim 3, wherein the one or more computing engines are each specified by

an engine identification number or engine configuration information, the engine configuration

28

10

15

20

25

30

WO 2008/008883 PCT/US2007/073348

information including one or more of a free memory size, the number of central processing units

(CPUs) or the engine operating system.

5. The method of claim 1, further comprising the step of:
specifying a daily time interval for the broker to apply the policy to the allocation of

computing engines to the one domain.

6. In a system for provisioning a shared computing infrastructure including a plurality of
computing engines, a plurality of applications servers, a plurality of computing domains and a
broker, the shared computing infrastructure supporting a plurality of software applications and the
plurality of applications servers including a plurality of applications server types, each application
server type capable of providing a run-time environment for executing at least one of the plurality of
software applications; each computing domain being hosted by an application server of a given
type, a method performed by the broker for allocating the plurality of computing engines among the
plurality of computing domains based on an allocation policy, the method comprising the steps of:

determining an expected number of computing engines to be allocated to each of thé
plurality of computing domains, wherein the expected number for each computing domain is
determined as a function of a predetermined service policy of the computing domain and a predicted
deménd for the computing domain; and

while one or more of the computing engines is unallocated and one or more of the plurality
of computing domains has been allocated fewer than its expected number of computing resources,
sequentially selecting a next computing domain as a function of predetermined priorities for the
computing domains, selecting an unallocated computing engine, and allocating the selected

computing engine to the selected computing domain.

7. The method of claim 6, further comprising the steps of:

calculating a fitness value representative of the current allocation of computing engines to
computing domains;

identifying a first computing domain for which fewer than the expected number of
computing engines has been allocated;

selecting one of an unallocated computing engine or a computing engine allocated to a

second computing domain for which the expected number of computing engines has been allocated;

29

10

15

20

25

30

WO 2008/008883 PCT/US2007/073348

re-allocating the selected computing engine to the first computing domain;

re-calculating a fitness value representative of allocation of computing engines to computing
domains after re-allocation; and

discarding the re-allocation of the selected computing engine to the first computing domain

if the fitness value for the current allocation exceeds the fitness value for the re-allocation.

8. The method according to claim 7, wherein the selecting, re-allocating, re-calculating and

discarding steps are repeated for a predetermined number of iterations.

9. The method of claim 7, wherein the selection of an unallocated computing engine or a

computing engine allocated to a second computing domain is made randomly.

10. The method of claim 7, wherein the selection of an unallocated computing engine or a
computing engine allocated to a second computing domain is made by application of a constraint

programming search algorithm.

11. The method of claim 6, wherein the predetermined service policy for each computing
domain specifies a minimum number of computing engines to be allocated to the computing
domain, a maximum number of computing engines to be allocated to the computing domain, and an

allocation priority for allocating computing engines to the computing domain.

12. The method of claim 11, wherein the predetermined service policy further specifies a

service level agreement (SLA) target for judging the performance of the computing domain.

13. The method of claim 12, wherein the step of determining an expected number of
computing engines for each domain further includes the steps of:

setting the expected number of computing engines equal to the minimum number of
computing engines for the computing domain;

initially adjusting the expected number of computing engines to equal to a current number of
computing engines allocated to the computing domain when the current number of allocated
computing engines exceeds the minimum number of computing engines;

determining whether the computing domain has a current unmet demand;

30

10

15

20

25

30

WO 2008/008883 PCT/US2007/073348

further adjusting the expected number of computing engines when there is a current unmet
demand; and

finally adjusting the expected number of computing engines to equal a lesser of the
maximum number of computing engines to be allocated to the computing domain and the further

adjusted expected number of computing engines.

14, The method of claim 13, wherein the current unmet demand is determined as a function

of a statistical performance measure for the domain and an associated service level agreement

(SLA).

15. The method of claim 14, wherein the current unmet demand is validated as a function of

a variability of the statistical performance measure among computing engines in the domain.

16. The method of claim 15, wherein the variability is determined as a normalized geometric
variance computed as a geometric mean value of the statistical performance measure among
computing engines in the domain divided by an arithmetic mean of the statistical performance

measure among computing engines in the domain..

17. The method of claim 16, wherein the current unmet demand is validated when the
statistical performance measure falls below a first threshold based on the SLLA, and the normalized

geometric variance exceeds a second threshold.

18. The method of claim 17, wherein the second threshold is 0.85.

19. The method of claim 11, wherein the predetermined priorities provide an ordinal ranking
of computing domains, and the sequence of selected computing domains progresses from one or
more computing domains having a highest priority ranking among the computing domains to one or

more computing domains having a lowest priority ranking among the computing domains.

20. The method of claim 19, wherein the computing domain selection sequence comprises

one or more selection rounds, and wherein each selection round is associated with a priority ranking

31

10

WO 2008/008883 PCT/US2007/073348

value, such that each of the plurality of computing domains having a priority ranking that is greater

than or equal to the rank value is selected during the selection round.

21. The method of claim 20, wherein the step of selecting an unallocated computing engine
for a selected computing domain in a current selection round is made according to a selection rule
selected from the group consisting of:

selecting a computing engine currently assigned to the selected computing domain,;

selecting a computing engine previously assigned to the selected computing domain;

selecting a computing engine among unallocated computing engines that is not identified as
being needed by another one of the plurality of computing domains; and

selecting a computing engine among unallocated computing engines.

32

WO 2008/008883 PCT/US2007/073348
1/24
I T T T Tharain
Domain
10b ~ 317 | I
~N Engine |
HTTP <> VGatervay /r)l S~ |
Client ‘ | 20 |
| Engine :
10a | \
\\ J:?\va -—————— | 40
Client | Domainﬂ
|
| Engine 120 :
I |
30 L ' l
: A
. 7 ,
e Broker -
60 21 41
, / /
Constraints Resources Applications
Policy
— ‘ Weblogic :’
SLA N
- [Oracle AppServer}/lH a
Statistics (__________a//
JBoss
Demand
--------------------------------------- ‘l‘ 1/00
AVP Platform /
Y § 43 N A2
% \4 L Y ;
Oracle App Server Weblogic JBoss

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

2/24

FIG.1C

Key

Daemon 22
D . 100
O Engine 20 —
(O Java App Contrainer 26 o

3 RDBMS
e 0 ;
7~ Y Reporting 39
Fabric Server Broker | Sercurity
1 Events IDAP
Active
Directories
25
/
7
Grid Nodes
FIG.2
(O Datasynapse \/
RPN rﬁ\ \ /
\ I I I I
[Wizard Manager]

Data Domain Wizard
Coherence Cache A wizard to create and edit tache Data Domains.

PolicyWizards

Scheldule A wizard to Manage Policy Scheldules Intervals.
Policy A wizard to create and edit Policy.

Web Domain Wizards

Web App A wizard to create and edit Web App Domains.
Web Service A wizard to create and edit Web Services.

Service Domain Wizards
FJB Service A wizard to create and edit J2EE Domains.
POJO Service A wizard to create and edit POJO Domains.
Spring Service A wizard to create and edit Spring Domains.

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883

PCT/US2007/073348

3/24

FIG.3A

() Datasynapse \/
A —
\ | I | |
| Quick L inks |1 Alerts I[Broker Info]
Alerts h"i'gh Undepolyed domain [Web app Example] is referenced inthe Current PoIicy Example policy
i allocation policy. ;
A”oca.tlon Map med Throughput in [Quate Service Example] is at 1.86 minimum is Total Eng!nes 0
Domain Test setat2.0 Busy Engines 0
Engine Admin low Your FabicServer licsense expires in 17 days Total Clients 5
Engine Doemon Admin - - Total Domains 6
: | Domain Allocation | total Groups 3
l Domains l
Data l Schedule |

Coherence Cache Example

Services

EJB Service Example (1 service(s)
POJO Service Example (1 service(s)
Spring Service Example (1 service(s)

Web
Web app Example

[OCoherence Cache Example
B Spring Service Example

9:00 AM - 5:00 PM Example policy

NEJB Service Example | Policies |
EIPOJO Service Example Example policy (default) (current)
NwebService Example

Oweb App Example | Wizards]

Data Domain
Coherence Cache

| Containers |

Default Container
JBoss Container
Resin Container
Tomcat Container
Weblogic Container

| Groups]
Development Group:enabled, 4 user(s)
Research Group: enabled, 3 user(s)
Fabric Internal: enabled, 1 user(s)

Policy
Schedule
Policy

Service Domain
EJB Service
POJO Service
Spring Service

NuUnallocated Web Domain
ODevelopment Group Web App
EResearch Group Web Service

FIG.3B

Domain Allocation

100

95
90

85
80

OEngine OSystem EDomain

751

701

651

601

5546, === 27
S0 ==L -7,
45-

40-
35
30

25

20
15
10

5

Allocated Engine Percentage

0

1:30 2:00 2:30 3:00
Time Scale (last 5 min)

0:00

0:30 1:00

B Unallocated(33%) EASpring Service Domain (18%)

O Weblogic Clustered Domain (6%)

SUBSTITUTE SHEET (RULE 26)

B P0JO Service Domain (31%) IPOJO 10 Service Domain (12%)

WO 2008/008883 PCT/US2007/073348
4/24

45 46 47

/ / /

7 T 7

) ervice ata
Web Domain Domain Domain
Wel POJO Cache

Service
Web Apps Spring Data Base
106

7]

l Domain 1 I !

Domain 2 I

40

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

5/24

FIG.4C

(U Patasynapse

[Containers] Page Help
Name Version Description Support$d Dormain Modified Actions
ypes
Weblogic2 8.1SPS Weblogic2 Container Web App, Web Service no | Actions ||
Container
Default 1.0 Basic container provided by DataSynapse POJO Service, Spring no
Container Service
Tomcat 40 Tomcat Container is the Fabric wrapper around Web App no [Actions [%]
Container Tomcat Application Server
Weblogic 8.15P4 weblogic Container Webb App, Web Service no
Container
Resin Container n/a Resin Container Web App ho
JBoss Container 4.0.2 JBoss Container is the Fabric wrapper around JBJSIE Service, Web App, no
Application Server. Web Service

FIG.4D

U Patasynapse

[Domain Wizard]

Web App

I would like to:

. Add/edit Domain settings

. Add/edit remove archive files

. View servlet list

. View EJB list

. Add/edit tracked statistics

. Add/edit advanced settings

. Add/edit URL patterns

. Add/edit container-specific config files

. Add/edit container-specific runtime context variables

[Close|[Previous|| Next || Finish|

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

6/24

FIG.5A

[Policy Wizard]

| Policy |
Add or edit Domain allacations
[Add I Edit [[Removel]

{ Domain Min Max Priority
GenericWebService Domain 2 8 1
ClusteredRubisDomain 2 4 1
ClusteredGeneric Domain 1 3 1
ClusteredlODomain 2 3 1

["Cancel | [Previous}| Next]| Finish |

FIG.5B

App 3 { App 4)

8:15 AM [@%Cﬂ%m (- 55l

(App1 Y[App2 ([App3 (App4)

- (G506 51@@@

(_Are1 (}b ijpp4‘

SOOI)))
100% 1 App4

Grid T App 3
Allocations App 2
—TApp 1

Time

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

7/24

FIG.5C

Enter rule definition

| ClusteredGenricDomain |

Domain

Rule
Statistics |Web|ogic Queue Size |

Sampling Window | 120000 |
Voilation Behavior |Add engine if > max/ Rmove engine if < min

Min [40 I
Max (10 |
[oK][Cancel]
Domain Allocation
POJO Exceptio...
GenericWebse...
POJOThreadCo...
SpringGeneri...
MultiCluster...
1 1] 1 1 I 1 1 I 1
0 2 4 6 8 10 12 14 16 18 20
Number of Allocated Engines

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

8/24
FIG.6A FIG.6B
601
30 \\ The Engine Daemon
FabricService | — which has been running
Broker 7 on the computer, determines
that an Engine instance should

be running, based on the
Engine Mode and computer's
state,

602 ¢

The Engine Instance establishes
a connection with a Broker,

¥

603 The Broker provisions the
T Engine Instance to a
Domain.

Engine | —— 22
Deamon ;
] 604 J(

Resource Computer !

N The Client, having received
information on Domains and
Engines from the Broker,
connects to the Engine
{nstance to run a
Service

605 ¢

The Engine Instance
runs the Service

606 \ +

nJhen Engine Instance sends a
message to the Broker again
to indicate that it has
finished the Service and
request another

607\ ¢

N Ifthe Engine is interrupted or
fails gracefully, it sends a message
to the Broker logging out.

If an Engine fails unexpectedly, the
Engine Monitor on the Broker will
log off the Engine. In either case,

the Broker reprovisions other Engine
instances to the Domains, if possible.

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

9/24

FIG.7A

10
/
Client
12 —— 11 Queue
13 20
Client N /
Code S f
> EPngme <—>»| Engine
rox
— 1N
Virtual
Proxy Service Domain
l - Queue
Service Domain > Engine | Engine
Manager \ Proxy
'\> .
1 E
/ ;gme <—> Engine
roxy
15
Engine ;
<& > E
Proxy ngine
Service Domain
N Queue
Engine Enai
E Proxy >| thaine
Engine)
Proxy [T Engine
Service Domain

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

10/24
i 14
/ _
24
f > Thread <éocket >| Thread | 4—
Queue
15 / S
(l / —){ Thread |« >| Thread
Quete P
Manager | ‘)1 Thread §< >| Thread
—)[Thread 2(>»| Thread
Client 20
-)1 Thread € > Thread /
e
// Engine Engine
13 Proxy
/10
Client 7] 36 \N~Epngine
rox
A 34— Queue Y
Engine
Proxy
33
Engine
\ Proxy
\Statistics Engine
) Manager 35\ Proxy
32 Engine
/[Pool
Engine/
Allocator
y
37, ' \./ .
Optimization
> Algorithm
(Policy-based)
Broker

/

30

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883

Engine
Pr%xv

Engine
Pr(g>xv

Client

Engine 1.4~
Proxy

Engine |-
Pr%xv

Engine
Pr%xv

Client -

Service
domain-specific
requests

11/24

FIG. 8

-

.....................

..............

-

.-

ProvEngine|]
Proxy

ProvEngine]
Proxy

ProvEngine
Proxy

ProvEngine]
Proxy

ProvEngine

Proxy

——

Broker

PCT/US

2007/073348

Engine

(>

Engine d

Engine

€ - -~ -

Service
Domain

Engine

- - - -

v

Engine

< - - - - -

Service
Domain

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348
12/24
FIG.8C
, 40

/10a /
E};}gine 1 [Ak debe et bt D> Engine <= - - - - |
roxXy |
Engine 1.]. Engine |€ - - - -+
Proxy N |7 e : !
™~ 36b e Engine g oo
Service 20 !
Client 36a IR Domain ;
P §
,,,,,, i
Engine 4.4 Engine |« = = - ~ 4
Pr%xv "" d :
Engine Lodec-mmemm T e Engine @ -~ ~ -~
Proxy 1 LT \
EPngine ------- |
roxXy . I

. 10 Service
Client — ° . Domain !
I
ProvEnginel| _ _ _ _ _ _ _ _ _ _ _ _____ !
Proxy ':
T i
Provenginel{ — _ _ _ _ _ _ _ _ _ ______ 3
Proxy .
{
ProvEngine}l _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ !
Proxy 1
. §
service ProvEnginell _ _ _ _ _ _ _ _ _ _ _ ;
domain-specific Proxy i
requeasts - l
q Provingine _ !
Proxy -~~~ ~~~~~~=77=777°7~7
Broker ~T——_3p

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883

Engine
Pr%xv

Engine
Pr%xv

Client 36

Engine
Pr%xy

Engine
Pr%xv

Engine .4
Pr%xv [

Client -

Service
domain-specific
requests

-

PR

13/24

FIG. 8

.
PR

FLae

PCT/US2007/073348

D

20
Engine /(- - -
.»| Engine € - - - - -:
"-----:---) Engine |€ - - - - -:
_____ »| Engine |€ - - - - “i
e ..»| Engine |€ - =~ -+

PR

ProvEnginel]
Proxy

ProvEngine||
Proxy

ProvEngine
Proxy

ProvEngine}]
Proxy

ProvEngine

Proxy

—

Broker

b e e et v e mm tme m ae e e e e e e e

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883

10

/ Client

Statistics
Collector 7}

L —10c¢

v

Statistics _|
Manager

Broker

PCT/US2007/073348
14/24
20 B
\ ' 50 rowser
Engine \\[-
P 20c 4
Statistics 4]
Collector é
A
38
// 39
7
Statistics Grd Usage
34 Persister Statistics

7

Queue /

Database

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883

15/24

FIG.9B

PCT/US2007/073348

Statistics
Collector

Statistic Record

Domain Service
Method Info

Avg Stats

Domain

Statistics {Domain

Provider

61

/

Statistic Record

Domain Service
Method Info

Avg Stats

Domain

Statistics |Domain

Provider

Statistic Record

Domain Service | Ayg Stats
Method Info
Domain
Statistics {Domain
Client/Engine Provider
10,20
Client Engine Client Grid Engine Grid
Response time Business method Response time Business method time
Throughput time Throughput Throughput
Time on the queue| Throughput Time on the queue | CPU Utilization
Queuessize Memory Queue size Number of engines
CPU Utilization CPU Utilization CPU Utilization
Disk size Disk size Number of clients

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883

16/24

FIG.9D

PCT/US2007/073348

VGateway/VProxy

Domains

Response time
Throughput
Time on the queue

Queue size

JMX-
attributes

Number
of threads
Free
Memory
CPU
Utilization

Free Disk
space

FIG.3E

() Patasynapse

"N~ r—\\

\\// [A

Allocation

Alerts

Domain

Bl Coherence Cache Example [EIBond Service Example
E1J2EE Service Example EIQuote Service Example
EXSpring Service ExamplelRisk Service Example
EIwebservice Servlet Example E1J2EE Generic Example
EIPOJO Service Example BFabric Generic Example

Group

[}
30%

40%

D Fixed Income Groupfl Commaodities Group
BResearch Group [ElFabric Intered
B Equities Group

high Undepoloyed domain [Web App Example] is reference in the allocation policy.
med Throughput in [Quote Service Example] is at 1.86, minimum is set at 2.0.
low Your FabricServer Iicgnse is set to expire in 17 dgys.

pomains

Groups

Data

.Coherence Cache Example
Generic

J2EE Generic Example

Source

Bond Service Example

J2EE Service Example

POJO Service Example
Quote Service Example

Risk Service Example

Spring Service Example
Trade Service Example
WebService Servlet Example

Fixed Income Group

enable, 11 user(s)
Research Group

enable, 0 user(s)
Equities Group

enable, 0 user(s)
Commodities Group

enable, 0 user(s)
Fabric Internal

disable, Tuser(s)

User Info

SUBSTITUTE SHEET (RULE 26)

Current Policy

Generic Domains

Coherence Cache

Total Engines 0

Busy Engines 0

Total Clients 0

Total Domains 10

To_tal Groups 5

Wizards Policies

Groups All domains
J2EE Service Generic domains (current)
POJO Service Service doma_ins (default)
Spring Service
Web Service

(Generic Platrorm Alerts
Apache Website domains
J2EE Generic groups

Data engines

WO 2008/008883 PCT/US2007/073348

17/24

FIG.9F

[Engine Charts]

Choose Database Choose Engine
Database:{In Memory| | Engine: [PayHead-5640537194383352260 | |
Plot x-Axsis Plot y-Axsis
Statistic:| Time il Statistic:[Thread Count] |

30 Time vs. Thread Count
28

26+
24
22
20
18-
16
144
124
101

44
23

FIG.10 w

10390

\1 035

@ 1040

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

18/24

FIG.11A

1100

!

Create Empty

1110 Resource

T Allocation
Map

!

Determine Expected
~~ Allocations

l 11/91

/

1130 ~—

Repeat
After
N Seconds

l A
1170 — Improve Resource
[Assignments

!

Release, Aquire
| Assigned
Resources

Make Resource

150 —_ Assignments

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

19/24

FIG.11B

1130

1132 —_——D-;etermine Minimum

Engine Allocations

1134 l

N Adjust Minimum
Allocations

According to

Prior Expected
Allocations

!

1136 | Compute Demand,
Statistical Variation

for Domains
1140
1138 ~_ l /

I
~) Record in
Determine Expected > Allocation

Allocations Map

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

20/24

FIG.11C

for each domain {
create allocation entry for this domain
add interested clients to this entry

set expected engines[domain | = min engines[domain]

FIG.11D

for each allocation entry {
if (current expected engines[domain | > expected engines[domain |) {

set expected engines[domain] = expected engines[domain]

}

demand[domain] = compute demand (set of statistics[domain])

adjust demand[domain] based on statistical variations between engines
if (demand[domain]>0){

set expected engines[domain] = min(max engines[domain],

expected engines[domain] + demand[domain])

FIG.11E

Let E4,..,En denote engines currently working on domain D
Let V.., Vni be the sequence of values for a statistic on the ith engine
Andlet Ai=Avg(Ei)=3 Vi/n,with1<j<n

(i.e. average value of per engine)

Then use normalized geometric variance as follows:

GV = power(IM A.1/n) /(3 Ai/n) ,with 1 <i<n
(i.e. geometric mean divided by arithmetic mean)

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

21/24

FIG.11F

SetN=]
1150 Maximum Priority
Value

Y
i=N+17

Y

» i=i-1-

| —1152

1153

1154 1161

GG

No 1156
/

/

For Each Domain,

—> Priority > i

Engines Allocated < Expected Engine

i 1157

/

Determine
Selection Rule

1159
Assign No
Engine to
Domain
1160
No
Done
?
Yes

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

22/24

FIG.11G

Priority 9 Priority 6 Priority 3 Priority 3 Priority 1

Selection round 1

Selection round 2

Selection round 7

DomainA Domain B Domain € DomainD DomainE

FIG.11H

partition/sort allocation entries into buckets by domain priority
set max priority = max(priority[all domains])
while (!done) {
for each priority from max priority down to 0 {
for each allocation entry with domain priority >= current priority {
filter the list of available engines based on current entry rules
pick engine for current entry from filtered list using Selection Algorithms
}
}

if (there are no more engines || could not pick an engine) {
set done = true

}
}

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883

—_
—_
~I

23/24

FIG. 11l

PCT/US2007/073348

Compute Fitness

Value for

Allocation Map

!

SelectN —

1173

Keep Assign.
Fit. Value =
Recomp. Fit.
Value
N=N-1

1172

1181

G

—t— 1174

Select Unsatisfied
Domain

Y

Select Engine
Unassigned
to Domain

r

1175

— 1176

Allocate Selected
Engine to
Domain

Y

Recompute
Fitness Value
for Allocation

1177

Map

Recomp
Fit Value >
Fit Value

1178

1180

/

7

Discard
Assignment
N=N-1

SUBSTITUTE SHEET (RULE 26)

WO 2008/008883 PCT/US2007/073348

24/24

FIG.11)

set current fithess = fithess (Allocation Map)
repeat for N iterations or until there are unsatisfied entries {
select unsatisfied Allocation Entry
select a random engine from either {
set of free engine or
satisfied entry
}
assign the engine to unsatisfied entry
if (fitness(Allocation Map) > current fithess) {
keep the assignment
current fithess = fitness (Allocation Map)
} else {
discard the assignment

SUBSTITUTE SHEET (RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

