Title: PROCESSES FOR PRODUCING INDANE DERIVATIVES

Abstract

A process for producing cis-1-amino-2-indanol which comprises converting (+)-indane-1,2-diol and/or its 2-formate derivative into optically active 2-hydroxy-1-indanone by the action of a specific microorganism, converting the optically active 2-hydroxy-1-indanone into an oxime, and then reacting the oxime with hydrogen or a hydrogen donor in the presence of a heterogeneous hydrogenation catalyst; a process for producing optically active 2-hydroxy-1-indanone and/or optically active indane-1,2-diol which comprises converting (+)-indane-1,2-diol and/or its 2-formate derivative into the target compound(s) by the action of a specific microorganism; and a process for producing cis-1-amino-2-indanol which comprises reacting an oxime of 2-hydroxy-1-indanone with hydrogen or a hydrogen donor in the presence of a heterogeneous hydrogenation catalyst.
（５７）要約

本願発明は、（±）インドン-1,2-ジオール及び/又はその2-ホルメート誘導体に特定の微生物を作用させて光活性2-ヒドロキシ-1-インドノンを製造し、得られた光活性2-ヒドロキシ-1-インドノンをオキシム化した後、不均一系水素添加触媒の存在下に水素又は水素供与体と反応させてシス-1-アミノ-2-インドノールを製造する方法、又は、（±）インドン-1,2-ジオール及び/又はその2-ホルメート誘導体に特定の微生物を作用させて光活性2-ヒドロキシ-1-インドノン及び/又は光学活性インドン-1,2-ジオールを製造する方法、若しくは、2-オキシ-1-インドノンのオキシムを不均一系水素添加触媒の存在下に水素又は水素供与体と反応させてシス-1-アミノ-2-インドノールを製造する方法からなる、インドン誘導体の製造方法である。
明細書
インダノ誘導体の製造方法
技術分野

本発明は、医薬等の合成中心体として有用なインダノ誘導体の製造方法に関する。特に、微生物を用いて（±）インダノ－1,2-ジオール又はその2-ホルメート誘導体から光学活性2-ヒドロキシ－1-インダノンを製造する方法及び2-ヒドロキシ－1-インダノン誘導体からシス－1-アミノ－2-インダノール等のインダノ誘導体を製造する方法に関する。

背景技術
2-ヒドロキシ－1-インダノンの製造方法としては、相当するアセテートを加水分解する方法等の数種の方法が知られているが、光学活性体の製造方法は極めて少なく、次の2つの方法が報告されているのみである。すなわち、第1の方法は、アルキル置換シロキシンデンを光学活性マンガン錯体触媒の存在下に酸化剤と反応させ、次いで脱シリル化を行う方法である（特開平7－228586号公報）が、この方法においては、複雑な分子構造を持つ光学活性マンガン錯体触媒を合成する必要がある。また、第2の方法は、1-インダノンあるいは2-インダノンを特殊な酵素で酸化する方法である。この方法では1-インダノンをナフタレンデオキシゲナーゼで処理することにより（R）2-ヒドロキシ－1-インダノンが得られるが、その光学純度は22％と低い。また、2-インダノンをナフタレンデオキシゲナーゼで処理すると（S）
2-ヒドロキシ-1-インドノンが得られ、（R）体は得られ
れない。この方法は、酵素が特殊であり、また、光学純
度の高い（R）体が目的の場合には使用できない（Resk
(1994)）。
そこで、これら光学活性2-ヒドロキシ-1-インドノン
を高い光学純度で簡便に製造する方法の開発が望ま
れてている。
また、シス-1-アミノ-2-インドノールの製造には、
次的方法が知られている。すなわち、インデンにイソシ
アン酸ヨウ素 (INCO) を付加させた後、メタノール
で処理し、生じたβ-ヨードカーバメートを加熱処理し
てオキサゾリドンを作り、これを加水分解する方法（J.
Org. Chem., 1967, 32, 540）、インデンから2段階で
トランス-1-アミノ-2-インドノールを作り、これに塩
化ベンゾイルを作用させ、ついで塩化チオニルで処理し
て、オキサゾリンとし、これを加水分解する方法（J.
1992, 35, 1685）、1-メトキシカルボニル-2-インドノ
ンから3段階でβ-ヒドロキシルカーバメートを作り、
これをオキサゾリドンに導いた後、加水分解する方法（
Tetrahedron, 1991, 47, 4941）、インデンをインデン
オキシド、インデン-1, 2-ジオールあるいは2-プロモ
-1-インドノールに誘導し、これを硫酸存在下、アセト
ニトリルと反応させてオキサゾリンを作り、更に加水分

しかしながら、これら何れの方法も、アミノ基と水酸基をシス配置にするため、反応工程が多くなり、また、高価な反応剤を使ったりしており、工業的量産プロセスへの適用には問題が多い。

そして、例えばシス-1-アミノ-2-インドノールやその誘導体等のインダ茚誘導体を医薬品の合成中間体として使用するような場合、これらのインダ茚誘導体についてはそれが光学活性体でなければならないことがあるが、かかる場合には、光学分割の際にその目的物の収率が約1/2に低減するので、目的とするインダ茚誘導体を製造する際に、できるだけ早い段階で光学分割を行うのが有利である。

従って、本発明の目的は、先ず微生物を用いて光学活性な2-ヒドロキシ-1-インドノールを製造し、次いでこの光学活性2-ヒドロキシ-1-インドノールを用いて工業的量産プロセスへの適用が容易な光学活性シス-1-アミノ-2-インドノールを製造する方法を提供することにある。

また、本発明の他の目的は、微生物を用いて光学活性な2-ヒドロキシ-1-インドノールを製造する方法を提供することにある。

更に、本発明の他の目的は、工業的量産プロセスへの適用が容易な2-インドノール誘導体、特にシス-1-アミノ-2-インドノールの製造方法を提供することにある。
発 明 の 開 示

すなわち、本発明は、（±）イジダーゲン−1,2-ジオール又はその2-ホルメート誘導体に、（±）イジダーゲン−1,2-ジオール又はその2-ホルメート誘導体を光学活性な2-ヒドロキシ−1-インドノンに変換し得る能力を有する微生物を作用させて光学活性2-ヒドロキシ−1-インドノンを得、次いでこの光学活性2-ヒドロキシ−1-インドノンに下記一般式（4）

\[H = N - X - R \] （4）

（但し、式中、Xは酸素原子又はイミノ基を示し、Rは水素原子、アルキル基又はアリール基を示す）で表される化合物を反応させて下記一般式（1）

![化合物1](image1)

（但し、式中、X及びRは前記と同じであり、Yは水素原子を示す）で表される化合物とし、この化合物を不均一系水素添加触媒の存在下に水素又は水素供与体と反応させ、下記一般式（2）

![化合物2](image2)
（但し、式中、Y は水素原子である）で表されるシス-1-アミノ-2-インドノールを製造することを特徴とするインドン誘導体の製造方法である。

また、本発明は、下記の反応式（1）で示されるように、

(1)

（但し、式中、Z は水素原子又はホルミル基であり、*は光学活性点の原子の位置を表す）で表される（±）インドン-1,2-ジオール又はその2-ホルメート誘導体（a）に、（±）インドン-1,2-ジオール又はその2-ホルメート誘導体を光学活性な2-ヒドロキシ-1-インドノンに変換し得る能力を有する微生物を作用させて光学活性2-ヒドロキシ-1-インドノン（b）及び／又は光学活性インドン-1,2-ジオール（c）を得ることを特徴とするインドン誘導体の製造方法である。

そして、この製造方法で用いられる微生物としては、バチルス属、アースロバクター属、コリネバクテリウム属又はシュードモナス属に属する微生物が挙げられる。

ここで、（±）インドン-1,2-ジオール又はその2-ホルメート誘導体（a）は、シス体及びトランス体の何れであってもよい。そして、得られる光学活性な2-ヒドロ
キシンフ-1-インダノン (b) は、微生物を選択することにより、(R)体及び(S)体の何れとすることも可能である。

これを反応式で表せば、次の反応式 (2) 〜 (5) の通りである。

![反応式](image)

【但し、これら反応式 (2) 〜 (5) 中の記号は反応式 (1) の場合と同じである。】

ここで、反応式 (2) は、原料化合物 (a) がシス体であって化合物 (b) が (R) 体である例を示すものであり、この反応に適する微生物としては、バチルス属、
コリネパクテリウム属、アースロバクター属又はシュードモナス属に属する微生物を挙げることができる。

また、反応式（3）は、原料化合物（a）がシス体であって化合物（b）が（S）体である例を示すものであり、この反応に適する微生物としては、アースロバクター属又はシュードモナス属に属する微生物を挙げることができる。

更に、反応式（4）は、原料化合物（a）がトランス体であって化合物（b）が（R）体である例を示すものであり、この反応に適する微生物としては、コリネパクテリウム属、アースロバクター属又はシュードモナス属に属する微生物を挙げることができる。

そして、反応式（5）は、原料化合物（a）がトランス体であって化合物（b）が（S）体である例を示すものであり、この反応に適する微生物としては、アースロバクター属又はパチルス属に属する微生物を挙げることができる。

更に、本発明は、下記一般式（1）

(1)

（但し、式中、Xは酸素原子又はイミノ基を示し、Rは水素原子、アルキル基又はアリール基であり、Yは水素原子、アシル基又はベンジル基を示す）で表される化合物
物を、不均一系水素添加触媒の存在下に、水素又は水素
供与体と反応させ、下記一般式（2）

(2)

(但し、式中、Yは水素原子、アシル基又はベンジル基
を示す）で表されるシス-1-アミノ-2-インダノール又
はその誘導体を製造することを特徴とするインダン誘導
体の製造方法である。

(±) インダン-1,2-ジオール又はその2-ホルメート
誘導体を光学活性な2-ヒドロキシ-1-インダノール及び/
又は光学活性なインダン-1,2-ジオールに変換し得る能
力を有する微生物としては、具体的には、バチルス・セ
レウス（Bacillus cereus）2 HB、シュードモナス・ア
エルギノーサ（Pseudomonas aeruginosa）IN、コリネ
バックテリウム（Corynebacterium）s p. 2 HI 又は
アースロバックター（Arthrobacter）s p. 1 HE 又は
アースロバックター（Arthrobacter）s p. 1 HB が挙
げられる。

そして、前記一般式（1）において、Rは水素原子、
メチル基、エチル基等のようなアルキル基や、フェニル
基、ベンジル基等のようなアリール基であるが、Xが酸
素原子であってRが水素原子であることが好ましい。ま
た、一般式（1）の化合物を水素添加するための不均一-
系水素添加触媒としてはニッケル系、パラジウム系又は
白金系の触媒が好ましい。

ここで、上記一般式（2）において、下記置換基

\[\text{NH}_2 \text{ 及び } \text{OY} \]

の表記は、結合が共に紙面の表側方向に、あるいは、共
に紙面の裏側方向に向いている構造を示す。また、上記
反応式（2）～（5）においても、同様の表記法を用い
ており、

\[\text{OH} \text{ 及び } \text{OZ} \]

は一般式（2）の場合と同様の構造、すなわち「シス」
を示し、また、

\[\text{OH} \text{ 及び } \text{OZ} \]

はどちらか一方の結合が紙面の表側方向に、また、他方
が紙面の裏側方向に向いている構造、すなわち「トラン
ス」を表している。

以下、本発明方法を詳細に説明する。

本発明において、原料化合物（a）として用いられる
（土）シス－インデン－1,2－ジオール又はその2－ホルメ
ート誘導体は、Taylor（Taylor J.E., Synthesis 1142(1985)）の方法により、インデンをヒ酸溶媒中で過酸化水

9
素水で処理して合成される。また、(±)トランス-イ
に記載の方法により合成される。
本発明で用いられる微生物としては、発明者らが天然
界から分離した菌株である 2HB、1N、2HI、1HE又は 1HB等が挙げられる。
そして、これらの菌株の菌学的性質は表 1 の通りであ
る。
<table>
<thead>
<tr>
<th>觀察項目</th>
<th>1 HB</th>
<th>1 HE</th>
<th>2 HB</th>
<th>2 HI</th>
<th>1N</th>
</tr>
</thead>
</table>

a）形態

1. 細胞の形
 - 三角形
 - 長円形
 - 短円形

2. 多形性の有無
 - 有
 - 有
 - 有
 - 有

3. 運動性の有無
 - 有
 - 有
 - 有
 - 有

4. 核子の有無
 - 有
 - 有
 - 有
 - 有

5. グリハ染色
 - 階段
 - 陽性
 - 陽性
 - 陽性
 - 陰性

6. 對酸性
 - 有
 - 有
 - 有
 - 有
 - 有

b）各培地中における生育状態

1. 肉汁寒天平面培養（30℃、7日間）
 - 1H: 直径 (mm)
 - 1.5
 - 1HB: 形
 - 円
 - 1HE: 形
 - 円
 - 2HB: 形
 - 円
 - 2HI: 形
 - 円

2. 肉汁寒天斜面培養（30℃、7日間）
 - 1H: 生育の良否
 - 良
 - 2H: 生育の良否
 - 良
 - 2HB: 生育の良否
 - 良
 - 2HI: 生育の良否
 - 良
 - 1N: 生育の良否
 - 良

3. 肉汁液体培養
 - 表明に生育
 - 表明に生育
 - 表明に生育
 - 表明に生育
 - 表明に生育

4. 肉汁落葉（液化）
 - (20℃、30日間)
 - -
 - +
 - -
 - -

5. 肉汁落葉
 - (30℃、7日間)
 - 無変化
 - 酸凝固
 - 無変化
 - 溶解

6. 生理学的性質

1. 硝酸塩の還元
 - +
 - +
 - +
 - +

2. 至硝酸塩の還元
 - +
 - +
 - +
 - +

3. 脱窒反応
 - -
 - +
 - +
 - -

4. ジオプロフェリン
 - -
 - -
 - -
 - -

5. Voges-Proskauer 反応
 - -
 - +
 - -
 - -

6. インフレ生成
 - -
 - -
 - -
 - -

7. 硝化水素の生成
 - -
 - -
 - -
 - -

8. タンパク質の加水分解
 - +
 - +
 - -
 - -

9. クエン酸の利用
 - -
 - -
 - -
 - -

10. Christensen 培地
 - -
 - +
 - -

11. Shimmon's 培地
 - -
 - -
 - -

12. Koser's 培地
 - -
 - -
 - -
 - -

				11:	ウレアーゼ			12:	オキシダーゼ			13:	カタラーゼ			14: 生育の範囲		
15: 酸素に対する挙動	好気性	好気性	好気性	好気性	好気性													
16: pH	6〜9	6〜9	5〜9	5〜9	5〜9													
17: 膽汁酸分解酵素																		
18: ゲンリタニン加水分解																		
19: エキシクリン加水分解																		
20: ゲンリタニン加水分解																		
21: フタム酸の変化																		
22: β-ナフタリンデヒドロゲナーゼ																		
23: D N A	s e																	
24: ゴルゴン酸の変化																		
25: エキシクリン加水分解																		
26: フタム酸の変化																		
27: フタム酸の変化																		
28: エキシクリン加水分解																		
29: フタム酸の変化																		
30: フタム酸の変化																		
31: pH 5.7での生育																		
32: Egg Yolk反応																		
33: フタム酸の変化																		
34: フタム酸の変化																		
35: VP培地でのpH	5.2																	
36: 糖の変化																		
40: フタム酸	+																	
41: フタム酸	+																	
42: フタム酸	+																	
43: フタム酸	+																	
44: フタム酸	+																	
a) アラビ酸						+												
b) アビニ酸						+												
c) アビニ酸						+												
d) ササニ亜酸						+												
e) エニル亜酸						-												
37: 糖類から糖の生成																		
1) グルコース	+	+	+	+	-													
2) ラクトース	-	-	-	-	-													
3) ガラクトース	-	+	-	-	-													
4) D-マンノトール	-	-	-	-	-													
5) グルコース	-	-	-	-	-													
6) D-グリセロール	-	-	-	-	-													
7) イソグルコース	-	-	-	-	-													
8) D-ドテーコール	-	-	-	-	-													
9) D-マニトール	-	-	-	-	-													
10) グリセロール	-	-	-	-	-													
11) D-リトロース	-	-	-	-	-													
12) D-リゴラース	-	-	-	-	-													
13) ドラクトース	-	-	-	-	-													
14) サラクトース	-	-	-	-	-													
d) その他の性質	-	-	-	-	-													
1) ビタミン要求性	-	-	-	-	-													
2) 耐塩性 5%	+	+	+	+	+													
3) 耐塩性 7%	-	-	-	-	-													
4) 耐塩性 10%	-	-	-	-	-													
5) 耐塩性 15%	-	-	-	-	-													
e) 細胞壁分析	-	-	-	-	-													
1) ミノ酸の存在	-	-	-	-	-													
2) ヘキサ密酸の種類	ラジン	ラジン	meso-DAP															
3) 脂肪酸の種類	イソイソテン	イソイソテン	ヘキサツテル酸															
	イソイソ酸	イソイソ酸	イソイソ酸															
	イソイソ酸	イソイソ酸	イソイソ酸															
	イソイソ酸	イソイソ酸	イソイソ酸															
13																		
上記の菌学的性質から、各菌株は次の通り同定した。
2 HB はグラム陽性の胞子を有する長桿菌で、VP 反応及び卵黄反応が陽性である等の理由により、バチルス・セレウス (Bacillus cereus) と同定したが、この菌株は（±）インデン-1, 2-ジオールを光学活性な 2-ヒドロキシ-1-インダノンに変換し得る能力を有することからバチルス・セレウスの新菌株であるとして、バチルス・セレウス (Bacillus cereus) 2 HB と同定した。

IN は蛻光色素を産生し、運動性を有するグラム陰性の短桿菌であり、45℃での生育等の理由によりシュードモナス・アエルギノーサ (Pseudomonas aeruginosa) と同定したが、本菌株は（±）インデン-1, 2-ジオールを光学活性な 2-ヒドロキシ-1-インダノンに変換し得る能力を有するものであることからシュードモナス・アエルギノーサの新菌株であるとし、シュードモナス・アエルギノーサ (Pseudomonas aeruginosa) IN と同定した。

2 HI はグラム陽性のコリネ型菌であり、脂肪酸としてミコール酸を有し主成分がヘキサデカン酸及びオクタデカン酸であり細胞壁のペプチドゲルカン部のアミノ酸がメソジアミノペタミン酸である等の理由によりコリネバクテリウム (Corynebacterium) s p. 2 HI と同定した。

1 HE はグラム陽性のコリネ型菌であり、脂肪酸としてはイソ／アンテイソ分岐酸でミコール酸を有さず、細胞壁のペプチドゲルカン部のアミノ酸がリジンである等の理由によりアースロバクター (Arthrobacter) s p.
1. H E と同定した。

1 H B は、1 H E と同様の理由によりアースロバックター
(Arthrobacter) ｓｐ．1 H B と同定した。

これらの微生物は、何れも工業技術院生命工学工業技
術研究所に平成7 (1995) 年10月27日に寄託し
ている。そして、その寄託番号はパチルス・セレウス2
H B は F E R M P - 1 5 2 5 9 、シューダミナス・ア
エルギノーサINはFERM P-15260、コリネ
バックテリウム・ｓｐ．2HI F E R M P - 1 5 2 5 8 、アースロバックター・ｓｐ．1HE F E R M P -
1 5 2 5 7 、アースロバックター・ｓｐ．1HB F E R M
P - 1 5 2 5 6 である。

また、ブダペスト条約に基づく国際寄託の寄託番号は
アースロバックター・ｓｐ．1HE F E R M B P - 5
7 8 2 であり、また、シュードミナス・アエルギノーサ
INがFERM BP-5783である。

本発明の微生物の培養に用いられる培地としては、液
状でも固状でもよいが、大量を処理するときは液体培地
を用いるのが適当である。培地には同化しうる炭素源、
窒素源、無機物質、微量栄養素が適宜配合される。炭素
源としては、ブドウ糖、乳糖、ショ糖、麦芽糖、デキスト
リン、でん粉、グリセリン、マンニトール、油脂類等
が、窒素源としては、肉エキス、酵母エキス、コーン・
スチーブ・リカー、ペプトン、尿素等が用いられる。無
機物質としては、ナトリウム、カリウム、カルシウム、
マグネシウム等を含む塩類、鉄、マンガン、亜鉛、コパ

15
ルト、ニッケル等の金属塩類等が用いられる。その他、アミノ酸、ペプチド、ビタミン類、核酸類等も必要により用いられる。培養は、pH 6.0 ～ 7.0、温度 27 ～ 30℃で行う。

原料化合物（a）の（±）インデン－1,2-ジオールやその2-ホルメート誘導体に上記微生物を作用させるに当たっては、前記原料化合物（a）に前記微生物又はその培養物を加え、pH 8.0、温度 30℃で12 ～ 72 時間反応させめる。次いで、反応生成物を有機溶媒による抽出、シリカゲルカラムクロマトグラフィー等で処理して、光学純度の高い光学活性インデン誘導体を得る。

このように微生物を作用させることにより、（±）インデン－1,2-ジオールやその2-ホルメート誘導体から光学活性な2-ヒドロキシ－1-インダノン及び／又は光学活性なインデン－1,2-ジオールを得ることができるがその原理は次のように解される。すなわち、本発明の方法においては、上記の微生物が（±）インデン－1,2-ジオールやその2-ホルメート誘導体の2種の対称体、すなわち、（＋）体及び（－）体のうち、ベンジル位の水酸基の一方の立体配置をもつものののみを、シス体、トランス体の何れを問わず選択的に認識して酸化し、更に2-ホルミルオキシ基が存在する場合はこれを加水分解して、光学活性な2-ヒドロキシ－1-インダノンを作ると考えられる。従って、該酸化に関与しない逆の立体配置をもつ光学活性なインデン－1,2-ジオールが濃縮されることになる。実際後記する実施例の殆どは、上述のような立体配置
のものが得られるが、一部に例外がある。例えば、（R）2-ヒドロキシ-1-インドノンが得られる場合は、これと共に2位（ベンジル基の隣り）の立体配置が逆すなわち（S）（2Sとも表す）の光学活性なインドン-1,2-ジオールが得られる場合が殆どであるが、まれに同じ（R）の立体配置をもつものが得られる場合がある。この例外がでる理由は種々考えられる。一例を挙げれば、上記酸化によって早い生成速度ですなわち優先的に生じた光学活性な2-ヒドロキシ-1-インドノンが、生成速度の遅い逆の立体配置を持つ光学活性2-ヒドロキシ-1-インドノンと比べて、微生物により極めて速やかに分解されて消失するため、結果として同じ立体配置をもつ光学活性なインドン-1,2-ジオール及び2-ヒドロキシ-1-インドノンが得られることが考えられる。

このようなケース等では、光学活性な2-ヒドロキシ-1-インドノンのみを得ることが可能であり、これも本発明の実施態様に含まれる。

何れにしても、本願発明の方法において、光学活性な2-ヒドロキシ-1-インドノン及び/又は光学活性なインドン-1,2-ジオールが得られることは、（±）インドン-1,2-ジオールやその2-ホルメート誘導体の2種の対象体に対する、上記微生物の反応速度が大きく異なる点に起因すると言える。

（±）インドン-1,2-ジオールの種類や微生物の種類を選択することにより、光学活性2-ヒドロキシ-1-インドノン及び/又は光学活性インドン-1,2-ジオールを得
ることができる。これらを定法により分離し又は精製して製品又は次工程の原料とする。

最終目的物がシス-1-アミノ-2-インドノールの場合には、光学純度は50% e.e.以上、好ましくは95% e.e.以上の2-ヒドロキシ-1-インドノンを使用するのがよい。光学純度のよいものを使用することにより、最終目的物の収率が高くなるだけでなく、精製も容易になる。特に、最終目的物が医薬中間体として重要な（1S, 2R）シス-1-アミノ-2-インドノールの場合には、光学純度は50% e.e.以上、好ましくは95% e.e.以上の（R）2-ヒドロキシ-1-インドノンを使用することが望ましい。

上記一般式（1）の化合物は、以下的方法で容易に製造することができる。すなわち、下記一般式（3）

(但し、式中、Yは水素原子、アシル基又はベンジル基である)で表される2-ヒドロキシ-1-インドノン又はその誘導体と、下記一般式（4）

\[\text{H}_2\text{N-} \times \text{-R} \] \hspace{1cm} (4)

(但し、式中、X及びRは前記に同じ)で表されるヒドロキシルアミン類又はヒドラジン類若しくはこれらの塩酸塩及び硫酸塩等の鉱酸塩とを、ビリジンや水酸化ナト

ここで、一般式（3）で表される2-ヒドロキシ-1-インダノン又はその誘導体は、公知の方法を含む各種の方法で容易に製造することができる。

例えば、①1-インダノンに臭素を反応させて2-プロモ1-インダノンを作り、次いで酢酸塩、ギ酸塩、又は安息香酸塩のような有機カルボン酸塩や、ベンジルアルコールのアルコキシドを作用させ、更に所望ならば加水分解又はベンジル基を外す方法、②1-インダノン又は2-インダノンを酵素で酸化する方法、③インドン-1、2-ジオールを微生物で酸化する方法、④インデンオキシドを酸性条件下でジメチルスルホキシドで酸化する方法、⑤1-インダノンの2位への直接ヒドロキシル化による方法、⑥3-フェニル2-ヒドロキシルプロピオン酸若しくはその誘導体を環化する方法が挙げられる。これらのうち、酵素酸化法や前記の微生物酸化法によれば、2-ヒドロキシ-1-インダノンの光学活性体を得ることが可能であり、この光学活性体が最終目的物となる医薬品中間体原料の製造のために好適に使用することができる。

また、一般式（4）で表されるヒドロキシルアミン類又はヒドラジン類において、ヒドロキシルアミン類としては、ヒドロキシルアミン、o-ベンジルヒドロキシルアミン、o-メチルヒドロキシルアミン等が例示され、通常
塩酸塩又は硫酸塩として用いられる。更に、ヒドロキシルアミン - 0-スルホン酸のような、前述の脱水総合反応においてヒドロキシルアミンと同じ役割を果たす誘導体も同様に用いることができる。これらの中、ヒドロキシルアミンが、工業的量産品として安価に入手できるので好ましい。また、ヒドライジン類としては、ヒドライジン、メチルヒドライジン、フェニルヒドライジン、ベンジルヒドライジン等が例示される。

そして、本発明の一般式（1）の化合物には、＝N－X－Rの部位に関して2種の幾何異性体、すなわちE体及びZ体が存在するが、何れを用いても差し支えない。また、2位の炭素原子が不斉中心となるため、光学活性体が存在するが、これも好適に使用できる。

一般式（1）の化合物を不均一系水素添加触媒の存在下に水素又は水素供与体と反応させることにより、シス－1-アミノ－2-イソプロピノールを得ることができる。ここで、水素供与体とは、テトラリンやデカリンあるいはギ酸のように、反応条件下で水素を発生する化合物をいう。この水素供与体を単独で用いる場合、その使用量は、一般式（1）の化合物に対して過剰となる量であるのが好ましい。また、水素を用いる場合における水素の圧力は、触媒の使用量や反応温度によっても異なるが、通常、常圧～100atmであり、常圧～30atmで反応が進行する場合が多い。

ここで用いる不均一系水素添加触媒としては、通常の触媒的水素添加で用いられているもの、すなわち、後述
するニッケル系、パラジウム系、白金系等の触媒や、ラネーコバルト、還元コバルト、塩原コバルトのようなコバルト系、銅クロメート系、酸化ルテニウムやルテニウム炭素のようなルテニウム系、ロジウムアルミナやロジウム炭素のようなロジウム系等の触媒も利用できる。

そして、この不均一系水素添加触媒は、本発明の反応において次の通り作用する。すなわち、先ず、表面に水素原子が吸着した不均一系水素添加触媒が、一般式（1）の化合物のC = N二重結合を攻撃し、2個の水素原子をシス付加させる。そして、この際に、隣接するオキシ基（−OY）が塞がれて障害となるため、不均一系水素添加触媒は、オキシ基とは反対側からC = N二重結合を攻撃することになる。この結果、アミノ基（−NH₂）とオキシ基（−OY）とが互いにシスに位置することになり、一般式（2）で表される化合物が選択的に得られる。このような作用が特に顕著な不均一系水素添加触媒として、ニッケル系、パラジウム系、又は白金系の触媒、好ましくはパラジウム系触媒を挙げることができる。

ここで、ニッケル系触媒としては、ラネーニッケル、スポンジニッケル、塩原ニッケル、還元ニッケル、ニッケルソーセイソウソ土等を挙げることができ、その使用量は、通常、一般式（1）の化合物の重量に対して、0.01～10倍量、好ましくは0.1～5倍量である。このニッケル系触媒の使用量が0.01倍量より少ないと、反応が遅くて副反応が優先するようになり、また、10倍量より多く用いても、反応成績は大幅には改善されず
経済的でない。このニッケル系触媒は、通常、エタノールやメタノール等のプロトン性溶媒に懸濁して用いられ、そしてその際に、好ましくは、アンモニア、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、ナトリウムメトキシド等の塩基性化合物を、一般式（1）の化合物に対して、等モル～1.0倍モル量の範囲で添加するのがよい。

また、パラジウム系触媒としては、金属パラジウムの微粒子（いわゆるパラジウムブラック）や、金属パラジウムの微粒子を活性炭、アルミナ、あるいは硫酸パラジウム等の担持体に担持させたもの（例えば、パラジウム炭素、パラジウムアルミナ、Pd/BaSO₄）や、酸化パラジウム等を例示することができる。このパラジウム系触媒の使用量は、パラジウムの含有量により異なるが、5％Pd-Cの場合、通常、一般式（1）の化合物の重量に対して、0.01～5倍量、好ましくは0.05～2倍量である。これらのパラジウム系触媒は、広範な有機溶剤を反応溶媒として用いることができるが、特に、メタノール、エタノール、酢酸、酢酸エチル等の中性又は酸性溶媒を好適に用いることができる。そしてこの際に、塩化水素、臭化水素、硫酸等のような酸性化合物を、一般式（1）の化合物に対して、等モル～1.0倍モル量程度添加することも好ましい。

更に、白金系触媒としては、酸化白金や、白金微粒子（いわゆるプラチナブラック）や、この白金微粒子を活性炭等の担持体に担持させたもの（いわゆるプラチナ炭
素）等が例示され、その使用量や用いる反応溶媒は、パラジウム系触媒の場合と同様である。

不均一系水素添加触媒の存在下における一般式（1）の化合物と水素又は水素供与体との反応は、反応温度 -10 〜 200 ℃、好ましくは 0 〜 150 ℃、より好ましくは 10 〜 100 ℃の範囲で行われる。

このようにして、一般式（2）で表されるシス - 1-アミノ - 2-インダノール又はその誘導体を製造することができるが、この一般式（2）において、Y がアシル基又はベンジル基である誘導体の場合には、加水分解によりアシル基を外す、あるいは、ベンジル基を水素化分解により外すことにより、容易に目的とするシス - 1-アミノ - 2-インダノールに導くことができる。これは、相当する塩酸塩として単離することも可能である。

なお、上述の水素化分解は、一般式（1）の化合物を用いて本発明の方法を実施する際に同時に行うことも可能であり、一工程でシス - 1-アミノ - 2-インダノールに導くことができる。

本発明の方法によれば、医薬の合成中間体として有用な高い光学純度を有する光学活性シス - 1-アミノ - 2-インダノールを工業的量産プロセスへで安価に製造することができる。

また、本発明の他の方法によれば、高い光学純度を有する光学活性な 2-ヒドロキシ - 1-インダノン又はインダノン - 1,2-ジオールを得ることができ、この化合物を用いて特に医薬の用途に有用な光学活性合成中間体を安価に
製造することができる。

更に、本発明の他の方法によれば、工業的量産プロセスで容易に2-インドノール誘導体、特にシス-1-アミノ-2-インドノール又はその誘導体を製造することができると。

発明を実施するための最良の形態

以下、実施例に基づいて、本発明の方法を具体的に説明する。

以下の実施例において、特に記載がない場合には、光学純度は、反応生成物を有機溶媒にて抽出した後、光学分割カラムを用いた高速液体クロマトグラフィー（カラム：ダイセル化学工業製、キラルセルOB又はOJ（4.6 mm I D × 250 mm）、移動層：ヘキサン／2-プロパノール = 9 / 1、検出：254 mm、流速0.5 ml /分）にて測定した。

(保持時間：(R) 2-ヒドロキシ-1-インドノン: 17分（カラムO B）、(S) 2-ヒドロキシ-1-インドノン: 23分（カラムO B）、(1 R, 2 S) シス-インドン-1, 2-ジオール: 14.6分（カラムO J）、(1 S, 2 R) シス-インドン-1, 2-ジオール: 18.4分（カラムO J）、(1 R, 2 R) ヨンズー-インドン-1, 2-ジオール: 14.2分（カラムO J）(1 S, 2 S) ヨンズー-インドン-1, 2-ジオール: 12.8分（カラムO J）)

また、収率は逆相系カラムを用いた高速液体クロマトグラフィー（カラム：東ソー社製、ODS-80T s (
4. 6 mm ID × 150 mm、移動層；水／アセトニトリル = 7 / 3、検出：254 mm、流速 0.5 ml / 分）にて測定した。

[保持時間：2-ヒドロキシ－1-インドン：9分、シス－インドン－1,2-ジオール：6.5分、トランス－インドン－1,2-ジオール：5.8分]

[実施例1～5]

1-ヒドロキシインドン（0.1％）を含むTPU−1培地（500 ml）を500 ml容イボ付三角プラスコに入れ、減菌後、表1に示す菌株をそれぞれ1白金耳植菌し、96時間、230（rpm）にて回転振とう培養を行った。培養終了後、遠心分離により菌体を分離、生理食塩水で1回洗浄し、生菌体を得た。K₂HPO₄（1.7 g/l）、MgSO₄・7H₂O（1.5 g/l）、FeS・7H₂O（0.05 g/l）をpH8.0にて含む反応液（1ml）に懸濁した生菌体を15×180 mmのフラスコ試験管に入れ、（±）シス－インドン－1,2-ジオール（20 mg）とヘキサデカン（1 ml）を添加し、30℃で各時間振とうし反応させた。反応終了後、2 mlのn-オクタンを加えてヘキサデカンを抽出、除去し、反応生成物を2 mlの酢酸エチルで2回抽出した。酢酸エチル層を無水硫酸ナトリウムで乾燥し、濃縮した後、高速液体クロマトグラフィーを用いて生成した2-ヒドロキシ－1-インドンと、残存しているシス－インドン－1,2-ジオールの定量と光学純度の測定を行った。
なお、TPU−1培地は、K₂HPO₄（2 g/l）
、N a C l (1 g / ℓ) 、 M g S O ₄ · 7 H₂O (0 . 2 g / ℓ) 、 酵母エキス (0 . 5 g / ℓ) 、 硫酸アンモニウム (2 g / ℓ) 、 微量元素溶液 (10 ml / ℓ) 、 ビタミン混合物 (10 ml / ℓ) を pH 7 . 0 で含む。微量元素溶液は、Titriplex IV (0 . 5 g / ℓ) 、 F e S O₄ · 7 H₂O (0 . 2 g / ℓ) 、 Z n S O₄ · 7 H₂O (0 . 1 g / ℓ) 、 M n C l₂ · 4 H₂O (0 . 0 3 g / ℓ) 、 H₃BO₃ (0 . 0 3 g / ℓ) 、 CoCl₂ · 6 H₂O (0 . 2 g / ℓ) 、 CuCl₂ · 2 H₂O (0 . 0 1 g / ℓ) 、 NiCl₂ · 6 H₂O (0 . 0 2 g / ℓ) 、 Na₂MoO₄ · 2 H₂O (0 . 0 3 g / ℓ) を含む。また、ビタミン混合物はビオチン (20 μg / ℓ) 、 バントテン酸カルシウム (4 mg / ℓ) 、 チアミン塩酸塩 (4 mg / ℓ) 、 イノシトール (20 mg / ℓ) 、 ビリドキシン塩酸塩 (4 mg / ℓ) 、 ニコチン酸 (4 mg / ℓ) 、 p-アミノ安息香酸 (2 mg / ℓ) 、 リポフラビン (2 mg / ℓ) 、 葉酸 (100 μg / ℓ) を含む。

得られた結果を表 2 に示す。

[実施例 6 ～ 10]

実施例 1 と同様にして培養して得られた生菌体を用い、同様の反応組成にて基質として (±) トランス-インデン-1, 2-ジオール (20 mg) を用い、 30 ℃ で各時間振とうし反応させた。反応終了後、同様にして抽出し、高速液体クロマトグラフィーを用いて生成した 2-ヒドロキシ-1-インダノンと、残存しているトランス-インダ
シ＝1,2-ジオールの定量と光学純度の測定を行った。
得られた結果を表3に示す。

[実施例11]

K₂HPO₄を0.2重量％、NaClを0.1重量％、MgSO₄・7H₂Oを0.02重量％、グルコン酸ナトリウムを1.5重量％、酵母エキスを0.7重量％、1-ヒドロキシインデンを0.05重量％の割合で含む培地（pH7.0）1.0mlにアースロバクター・sp.1HB株を植菌し、30℃にて48時間振盪培養した。遠心分離にて集菌後、1.0mMのK₂HPO₄、6mMのMgSO₄・7H₂O、0.16mMのFeSO₄・7H₂Oからなる反応液（pH8.0）1mlに懸濁し、基質として（±）シス＝インデン－1,2-ジオール37.5mg（終濃度250mM）を加えて、30℃にて2時間振盪反応を行った。反応終了後、酢酸エチルで抽出した抽出液を高速液体クロマトグラフィーで分析したところ、43.6％の収率で60％e.e.の（R）2-ヒドロキシ－1-インダノンの生成、及び25.6％の収率で13.8％e.e.の（1R,2S）シス＝インデン－1,2-ジオールの回収が確認された。

[実施例12]

実施例11と同様にして調製したアースロバクター・sp.1HB株の菌体懸濁液1mlに（±）トランス＝インデン－1,2-ジオール37.5mg（終濃度250mM）を加えて同様に反応を行ったところ、13.4％の収率で52％e.e.の（S）2-ヒドロキシ－1-インダノンの生

27
成、及び 5.8% の収率で 21.6% e.e. の (1R,
2R) トランス−インデン−1,2−ジオールの回収が確認
された。

（実施例 13）

K2HPO4 を 0.2 重量％、NaCl を 0.1 重量
％、MgSO4·7H2O を 0.02 重量％、コーナス
ティープリカーを 0.25 重量％、1−ヒドロキシインダ
ンを 0.05 重量％の割合で含む培地 (pH 7.0) 1
0 ml にアースロパクター・ス・p・1HE 株を植菌し、3
0℃にて 48 時間振盪培養した。実施例 11 と同様
にして菌体懸濁液を調製し、(±) シス−インデン−1,2−ジ
オール 15 mg（終濃度 100 mM）を加えて同様に反応
を行ったところ、30.0% の収率で 99.9% e.e. 以
上の (R) 2−ヒドロキシ−1−インドノンの生成、及び 1
0.3% の収率で 65.2% e.e. の (1R, 2S) シス−インデン−1,2−ジオールの回収が確認された。

（実施例 14）

実施例 13 と同様にして調製したアースロパクター・
ス・p・1HE 株菌体懸濁液 1 ml に (±) トランス−イン
ダネン−1,2−ジオール 15 mg（終濃度 100 mM）を加え
て同様に反応を行ったところ、3.5% の収率で 39.5%
e.e. の (S) 2−ヒドロキシ−1−インドノンの生成、及
び 70.1% の収率で 65.2% e.e. の (1R, 2R)
トランス−インデン−1,2−ジオールの回収が確認され
た。

（実施例 15）
K₂HPO₄を0.2重量%、NaClを0.1重量%、MgSO₄・7H₂Oを0.02重量%、酵母エキスを0.6重量%、1-ヒドロキシインダノンを0.05重量%の割合で含む培地（pH7.0）10mlにシュードモナス・アエルギノーサIN株を植菌し、30℃にて48時間振盪培養した。実施例11と同様にして菌体懸濁液を調製し、（±）シスーインデン－1,2-ジオール15mg（終濃度1000mM）を加えて同様に反応を行ったところ、13.2%の収率で99.9%e.e.以上の（R）2-ヒドロキシ－1-インダノンの生成、及び57.3%の収率で5.8%e.e.の（1R, 2S）シスーインデン－1,2-ジオールの回収が確認された。

【実施例16】
実施例15同様にして調製したシュードモナス・アエルギノーサIN株の菌体懸濁液1mlに（±）トランスーインデン－1,2-ジオール15mg（終濃度1000mM）を加えて同様に反応を行ったところ、34.3%の収率で97.5%e.e.の（R）2-ヒドロキシ－1-インダノンの生成、及び30.5%の収率で50.2%e.e.の（1S, 2S）トランスーインデン－1,2-ジオールの回収が確認された。

以上の実施例11～16の結果を表4に示す。

【実施例17】
実施例11と同様にして調製したアースロバクター・s.p.1HB株の菌体懸濁液1mlに（±）シスーインデン－1,2-ジオール－2-ホルメート8.9mg（終濃度50

29
m M) を加えて 7 時間反応を行ったところ、13.4％の収率で 79.4％e.e.の (R) 2-ヒドロキシ-1-インダノンが生成していた。

(実施例 18)

実施例 13 と同様にして調製したアースロバクター・s p. 1HE株の菌体懸濁液 1 ml に (±) シス－インダノン－1,2-ジオール－2-ホルメート 8.9 mg（終濃度 50 mM）を加えて 7 時間反応を行ったところ、13.3％の収率で 78.2％e.e.の (R) 2-ヒドロキシ－1-インダノンが生成していた。

(実施例 19)

実施例 15 と同様にして調製したシュードモナス・アエルギノーサ 1N株菌体懸濁液 1 ml に (±) シス－インダノン－1,2-ジオール－2-ホルメート 8.9 mg（終濃度 50 mM）を加えて 7 時間反応を行ったところ、3.5％の収率で 46.0％e.e.の (R) 2-ヒドロキシ－1-インダノンが生成していた。

以上の実施例 17 ～ 19 の結果を表 5 に示す。
表２

<table>
<thead>
<tr>
<th>実施例No.</th>
<th>菌株</th>
<th>反応時間（hr）</th>
<th>2-ヒドロキシ-1-イソシアノ</th>
<th>シス-イソシアノ-1,2-ジオール</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>収率（%）</td>
<td>立体配置</td>
</tr>
<tr>
<td>1</td>
<td>アースロバクター・sp. 1HB</td>
<td>72</td>
<td>19.8 (S)</td>
<td>11.8</td>
</tr>
<tr>
<td>2</td>
<td>アースロバクター・sp. 1HE</td>
<td>72</td>
<td>6.10 (R)</td>
<td>45.0</td>
</tr>
<tr>
<td>3</td>
<td>バチルス・セレウス 2HB</td>
<td>12</td>
<td>9.85 (R)</td>
<td>87.4</td>
</tr>
<tr>
<td>4</td>
<td>コリネバクテリウム・sp. 2H1</td>
<td>12</td>
<td>12.2 (R)</td>
<td>85.8</td>
</tr>
<tr>
<td>5</td>
<td>シュードモナス・アエルギノサ 1N</td>
<td>24</td>
<td>0.97 (S)</td>
<td>60.6</td>
</tr>
</tbody>
</table>

表３

<table>
<thead>
<tr>
<th>実施例No.</th>
<th>菌株</th>
<th>反応時間（hr）</th>
<th>2-ヒドロキシ-1-イソシアノ</th>
<th>ドラシス-イソシアノ-1,2-ジオール</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>収率（%）</td>
<td>立体配置</td>
</tr>
<tr>
<td>6</td>
<td>アースロバクター・sp. 1HB</td>
<td>72</td>
<td>10.0 (R)</td>
<td>36.8</td>
</tr>
<tr>
<td>7</td>
<td>アースロバクター・sp. 1HE</td>
<td>72</td>
<td>1.82 (R)</td>
<td>5.2</td>
</tr>
<tr>
<td>8</td>
<td>バチルス・セレウス 2HB</td>
<td>72</td>
<td>1.20 (S)</td>
<td>90.4</td>
</tr>
<tr>
<td>9</td>
<td>コリネバクテリウム・sp 2H1</td>
<td>72</td>
<td>2.90 (R)</td>
<td>5.6</td>
</tr>
<tr>
<td>10</td>
<td>シュードモナス・アエルギノサ 1N</td>
<td>24</td>
<td>2.60 (R)</td>
<td>>99.9</td>
</tr>
</tbody>
</table>
表 4

<table>
<thead>
<tr>
<th>実施例 No.</th>
<th>菌株</th>
<th>反応時間 (hr)</th>
<th>基質濃度 (mM)</th>
<th>2-ヒドロキシ-1-インドノン</th>
<th>シス-インドノン-1,2-ジオール</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>収率 (%)</td>
<td>立体配置</td>
</tr>
<tr>
<td>11</td>
<td>アースロバクター sp. 1HB</td>
<td>2</td>
<td>250</td>
<td>43.6 (R)</td>
<td>60.0</td>
</tr>
<tr>
<td>13</td>
<td>アースロバクター sp. 1HE</td>
<td>2</td>
<td>100</td>
<td>30.0 (R)</td>
<td>>99.9</td>
</tr>
<tr>
<td>15</td>
<td>シュードモナス・アルギノーサ IN</td>
<td>2</td>
<td>100</td>
<td>13.2 (R)</td>
<td>>99.9</td>
</tr>
</tbody>
</table>

表 5

<table>
<thead>
<tr>
<th>実施例 No.</th>
<th>菌株</th>
<th>反応時間 (hr)</th>
<th>基質濃度 (mM)</th>
<th>2-ヒドロキシ-1-インドノン</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>収率 (%)</td>
</tr>
<tr>
<td>17</td>
<td>アルスロバクター sp. 1HB</td>
<td>7</td>
<td>50</td>
<td>13.4 (R)</td>
</tr>
<tr>
<td>18</td>
<td>アルスロバクター sp. 1HE</td>
<td>7</td>
<td>50</td>
<td>13.3 (R)</td>
</tr>
<tr>
<td>19</td>
<td>シュードモナス・アルギノーサ IN</td>
<td>7</td>
<td>50</td>
<td>3.5 (R)</td>
</tr>
</tbody>
</table>
実施例20
実施例13と同様の組成の培地25ℓにて培養したアースロバクター・s p．1HE株の洗浄菌体を、同様の反応液1.25ℓに懸濁し、基質として(±)シスイントン－1,2-ジオール13.5g（終濃度72mM）を加えて、30℃にて24時間振盪反応を行った。反応終了後、生成物を酢酸エチルで抽出し、シリカゲルカラムクロマトグラフィー（溶媒：ヘキサン／酢酸エチル＝3／2）にて精製すると、99.9%e.e.以上の(R)2-ヒドロキシ－1-インダノンを無色板状結晶として1.31g（収率12.3%）を得た。
NMRによる分析結果は次の通りであった。

\[\text{H-}\text{NMR (CDCl}_3\text{)} \quad \text{d ppm: 7.762 (d, 1H, J=7.8 Hz), 7.637 (t, 1H, J=7.5 Hz), 7.459 (dd, 1H, J=0.8, 7.5 Hz), 7.401 (t, 1H, J=7.6 Hz), 4.569 (t, 1H, J=5.8 Hz), 3.583 (dd, 1H, J=8.0, 16.5 Hz), 3.450 (br, 1H), 3.026 (dd, 1H, J=5.1, 16.5 Hz) } \]

\[\text{C-}\text{NMR (CDCl}_3\text{)} \quad \text{d ppm: 206.64, 150.97, 135.89, 134.08, 128.03, 126.81, 124.46, 74.28, 35.17 } \]

[参考例1] 2-ヒドロキシ－1-インダノンオキシムの合成
2-ヒドロキシ－1-インダノン（2.56g、17.3mmol）を、ビリジン（30ml）に溶解して0℃に冷却し
塩化ヒドロキシルアンモニウム（1.92 g, 28.5 mmol）を加えた。更に0℃で3時間攪拌した後、ピリジンを減圧下に留去し、残渣を塩化メチレンに溶解させ、10%クエン水溶液と飽和食塩水の1:1混合溶液、及び飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸ナトリウムで乾燥し、ロータリーエバポレーターで濃縮して固形物を得た。

このようにして得られた固形物をシリカゲルカラムクロマトグラフィーで精製し、2-ヒドロキシ-1-インドノンオキシムの2種の幾何異性体A（1.08 g, 収率38%）及びB（7.07 mg, 収率25%）をそれぞれ白色結晶として得た。

得られた2-ヒドロキシ-1-インドノンオキシムの幾何異性体Aについて、¹H−NMR、MS及びIRの分析を行った。結果は以下の通りであった。

¹H−NMR（200 MHz, CDCl₃）: δ 3.02 (dd, J=7.9, 17.4 Hz, 1H), 3.46 (dd, J=7.1, 17.4 Hz, 1H), 3.61 (s, br, 1H), 5.44 (dd, J=3.5, 7.9 Hz, 1H), 7.33 (m, 3H), 7.61 (d, J=7.5 Hz, 1H), 8.63 (s, br, 1H)

MS (ESI, neg.) m/z = 162.1 (found), 162.2 (calcd for M−1)

IR (KBr): 3511, 3248, 3104, 2909, 1489, 1461, 1318, 1090, 1032, 934, 754, 718 cm⁻¹

同様に、得られた2-ヒドロキシ-1-インドノンオキシ
ムの幾何異性体Bについて、1H－NMR、MS及びIRの分析を行った。結果は以下の通りであった。

1H－NMR (200 MHz, CDCl3) : δ 3.02 (dd, J=7.1, 16.8Hz, 1H), 3.43 (dd, J=7.1, 16.8Hz, 1H), 5.01 (dd, J=3.8, 7.5Hz, 1H), 7.35 (m, 3H), 8.32 (d, J=7.3Hz, 1H)

MS (ESI, neg.) m/z = 162.1 (found) , 162.1 (calcld for M^-1)

IR (HBr): 3209, 3070, 2932, 1657, 1483, 1462, 1416, 1310, 1046, 1013, 974, 743 cm^-1

[参考例2] (R) 2-ヒドロキシ-1-インドノンオキシムの合成

実施例20と同様の方法で得られた光学純度99.9\%e.e.以上の(R) 2-ヒドロキシ-1-インドノン (2.00g, 13.5mmol) を、ビリジン (23ml) に溶解し、-15℃に冷却し、塩化ヒドロキシルアンモニウム (1.30g, 20.3mmol) を加えた。-15℃で1時間、0℃で2時間、室温で12時間攪拌した後、ビリジンを減圧下に留去し、残渣を酢酸メチルに溶解させ、10％クエン酸水溶液と飽和食塩水の1:1混合溶液、飽和食塩水でそれぞれ洗浄し、有機層を無水硫酸ナトリウムで乾燥し、ロータリーベーパレーターで濃縮して固形物を得た。得られた固形物をヘキサンと酢酸メチルの混合溶媒から再結晶し、(R) 2-ヒドロキシ-1-インドノンオキシムの2種の幾何異性体A及びBの混合物を白
色結晶（1.67 g、収率75.6％）を得た。この幾何異性体の混合物についてMSの分析を行った。結果は以下の通りであった。
MS（ESI, neg.）m/z = 162.2（found）、163.1（calcld for M⁻-1）

高速液体クロマトグラフィー（ダイセル化学工業（株）CHIRACEL AD、ヘキサン／2-プロパノール（0.4/0.1）及び同O B、ヘキサン／2-プロパノール（0.6/0.1））により、（R）2-ヒドロキシ-1-インドノンオキシムの2種の幾何異性体A及びBの異性体比は35：65、光学純度（e.e.）はA、Bの何れも99％以上であることが判明した。
（実施例21）
参考例1で得られた2-ヒドロキシ-1-インドノンオキシムの幾何異性体B（930 mg、5.70 mmol）、パラジウムブラック（210 mg）を200 mlのナス型プラスコに仕込み、容器を水素ガスで3回置換した。メタノール（80 ml）と1.78規定の塩化水素のメタノール溶液（9.28 ml）とを加え、常圧の水素雰囲気下、攪拌下に室温で26時間反応させた。
反応終了後、不溶物を濾別して熱メタノール（300 ml）で洗浄した。濾液と洗液を合わせて減圧濃縮し、得られた固体を酢酸エチル（200 ml）に溶かし、炭酸カリウム及び食塩を飽和させた水溶液（50 ml）で2回、次いで飽和食塩水（50 ml）で1回洗浄した。
これを無水硫酸ナトリウムで乾燥した後、減圧濃縮し
て白色固体の1-アミノー2-インダノール（531 mg、収率 62%）を得た。

高速液体クロマトグラフィー（ODS、アセトニトリル/0.1% TFA水溶液（1/9））により、シス及びトランス体の混合物であり、その比率は95:5:4.5であることが判明した（溶出速度：1 ml/分、保持時間：6.67分（トランス体）、7.45分（シス体））。

シス及びトランス体は、それぞれ高速液体クロマトグラフィー（条件は上に同じ）で分取し、単離した。シス及びトランス体の決定は、トリホスゲンと反応させてオキサゾリドンを生成する化合物をシスー1-アミノー2-インダノールとする定法に従って決定した。

得られたシスー1-アミノー2-インダノールについて、

\[^1\text{H-NMR}, ^{13}\text{C-NMR},\text{MS及びIRの分析を行った。結果は以下の通りであった。} \]

\[^1\text{H-NMR (200 MHz, CD}_{3}\text{OD): }\delta 2.87 (dd, J=3.2, 16.1Hz, 1H), 3.05 (dd, J=5.3, 16.1Hz, 1H), 4.13 (d, J=5.1Hz, 1H), 4.39 (m, 1H), 7.17 (m, 3H), 7.38 (m, 1H) \]

\[^{13}\text{C-NMR (50.3 MHz, CD}_{3}\text{OD) : }\delta 40.0, 60.4, 75.2, 125.3, 126.0, 127.8, 128.6, 141.8, 145.1 \]

\[\text{MS (ESI, pos.) } m/z = 149.8 (found), 149.1 (calcd for MH}^+ \]

\[\text{IR (KBr): 3345, 3274, 3080, 2953} \]
7, 2920, 1723, 1708, 1678, 1
476, 1454, 1377, 1337, 1264
, 1049, 997, 908 cm

また、得られたトランス-1-アミノ-2-インドノール
について、1H-NMR、13C-NMR及びMSの分析
を行った。結果は以下の通りであった。

1H-NMR (200 MHz, CD$_3$OD) : δ 2.76 〜 2.8
8 (m, 1H), 3.23 〜 3.34 (m, 1H), 4.2
5 〜 4.33 (m, 2H), 7.23 〜 7.30 (m, 3H)
, 7.37 〜 7.42 (m, 1H)

13C-NMR (50.3 MHz, CD$_3$OD) : δ 39.9, 64
. 0, 80.0, 125.0, 126.2, 128
. 3, 129.8, 140.9, 141.4

MS (ESI, pos.) m/z = 149, 8 (found), 15
0, 1 (calcd for MH$^+$)

更に、シス-1-アミノ-2-インドノールから相当する
オキサゾリドンへの誘導は、次のようにして行った。

すなわち、前述の高速液体クロマトグラフィーで保持
時間7.45分の1-アミノ-2-インドノール 5 mg (0.
358 mmol) を酢酸エチル (40 ml) に溶解し、トリエチルアミン 53.67 μl (0.377 mmol)、トリホスゲン 37.3 mg (0.123 mmol) を加え、室温で6
時間攪拌した。析出した結晶を濾過し、濾液を炭酸ナト
トリウム及び食塩を飽和させた水溶液で2回、飽和食塩水
で1回洗浄し、無水硫酸ナトリウムで乾燥後、減圧
濃縮した。
このようにして得られた固形物を塩化メチレンに溶解し、ヘキサンを加え、析出した結晶を濾過し、ヘキサンで洗浄し、白色のオキサゾリドンの結晶48.2mg（収率77%）を得た。

得られたオキサゾリドンについて、\(^1\)H-NMR、\(^13\)C-NMR、MS及びIRの分析を行った。結果は以下の通りであった。

\(^1\)H-NMR (200 MHz, CDCl\(_3\)) : δ 3.37 (m, 2H)、5.16 (dd, J=0.66, 8.0Hz, 1H)、5.41 (m, 1H)、6.09 (s, br, 1H)、7.30 (m, 4H)

\(^13\)C-NMR (50.3 MHz, CD\(_2\)OD) : δ 38.9、61.1、80.6、124.6、125.7、127.9、129.5、139.8、140.2、159.9

MS (ESI, pos.) m/z = 229.9 (found)、230.1 (calcd for M+Na\(^+\)+MeOH)

IR (KBr) : 3260、1754、1709、1485、1458、1395、1331、1233、1204、1183、1107、963、752 cm\(^{-1}\)

【実施例22及び23】

触媒として、パラジウムブラックに代えて5%パラジウム炭素223mg（実施例22）、及び5%パラジウムアルミナ233mg（実施例23）をそれぞれ使用した以外は、上記実施例21と同様にして1-アミノ-2-インダノールを合成した。

結果は、5%パラジウム炭素223mgを用いた実施例
22の場合、収率95%でシス対トランス比（シス／トランス）84/16であった。
また、5％パラジウムアルミナ233mgを用いた実施例23の場合、収率96%でシス対トランス比（シス／トランス）92/8であった。

実施例24
参考例2で得られた（R）2-ヒドロキシ－1-インドノンオキシシムの幾何異性体AとBの35：65の混合物（1.000g、6.13mmol）、パラジウムブラック（50mg）を300mlのナス型フラスコにいれ、容器を水素ガスで3回置換した。メタノール（250ml）、臭化水素酸（47.5%水溶液、3.13g）を加え、常圧の水素雰囲気下、撹拌下に室温で20時間反応させた。反応終了後、不溶物を濾別して熱メタノール（300ml）で洗浄した。濾液と洗液とを減圧濃縮し、得られた固体を酢酸エチル（200ml）に溶かし、炭酸ナトリウムおよび食塩を飽和させた水溶液（50ml）で2回、次いで飽和食塩水（50ml）で1回洗浄した。これを無水硫酸ナトリウムで乾燥した後、減圧濃縮して、白色固体（821mg）を得た。生成物は高速液体クロマトグラフィー（ODS、メタノール：0.2％リン酸水溶液＝1：9）により分析を行った。また光学純度（e.e.）はオキサゾリドンに誘導化した後、高速液体クロマトグラフィーにより分析して決定した。その結果本反応では1-アミノ－2-インドノールが収率90%、シス：トランスが95：6：4：4の比率であった。またシス－1-アミノ－1-
インダノールから合成されたオキサゾリドンは（1S, 2R）の絶対配置を持つものが100%であり、対掌体である（1R, 2S）の配置を持つものは観測されなかった。

高速液体クロマトグラフィーによる分析：（1）ODSカラム、移動相＝メタノール：0.2%リン酸水溶液＝1:9）、1ml/分、保持時間4.77分（トランス）、5.34（シス）、（2）ダイセル化学工業（株）CHIRACEL OB、移動相＝ヘキサン：エタノール＝4:1）、0.5ml/分、保持時間23.7分（1R, 2S体）

[実施例25～29]

触媒として、パラジウムプラックの代わりに、酸化パラジウム、水酸化パラジウム、パラジウム/アスベスト、酸化白金（IV）、ロジウム/アルミナをそれぞれ233mg使用し、実施例21と同量の2-ヒドロキシ－1-インダノンオキシム、溶媒、同様の手順で反応を行った。

以下の表6に触媒の種類と、収率、シス：トランス比を示す。

【表6】

<table>
<thead>
<tr>
<th>実施例No.</th>
<th>触媒の種類</th>
<th>収率（%）</th>
<th>シス：トランス比</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>酸化パラジウム</td>
<td>93</td>
<td>88:12</td>
</tr>
<tr>
<td>26</td>
<td>水酸化パラジウム</td>
<td>98</td>
<td>85:15</td>
</tr>
<tr>
<td>27</td>
<td>10%パラジウム/アスベスト</td>
<td>88</td>
<td>88:12</td>
</tr>
<tr>
<td>28</td>
<td>酸化白金（IV）</td>
<td>86</td>
<td>88:12</td>
</tr>
<tr>
<td>29</td>
<td>5%ロジウム/アルミナ</td>
<td>5</td>
<td>64:37</td>
</tr>
</tbody>
</table>
請求の範囲

(1) (±) インダーン-1,2-ジオール及び / 又はその2-ホルメート誘導体に、これら (±) インダーン-1,2-ジオール及び / 又はその2-ホルメート誘導体を光学活性な2-ヒドロキシ-1-インドノンに変換し得る能力を有する微生物を作用させて光学活性2-ヒドロキシ-1-インドノンを得、次いでこの光学活性2-ヒドロキシ-1-インドノンに下記一般式 (4)

\[\text{H} : \text{N} - \text{X} - \text{R} \]

(4)

(但し、式中、X は酸素原子又はイミノ基を示し、R は水素原子、アルキル基又はアリール基を示す) で表される化合物を反応させて下記一般式 (1)

(1)

(但し、式中、X 及び R は前記と同じであり、Y は水素原子を示す) で表される化合物とし、この一般式 (1) の化合物を不均一系水素添加触媒の存在下に水素又は水素供与体と反応させ、下記一般式 (2)

(2)
（但し、式中、Y は水素原子である）で表されるシス－1-アミノ－2-イソメールを製造することを特徴とするインデン誘導体の製造方法。

（2）（±）インデン－1,2-ジオール及び／又はその2-ホルメート誘導体に、これら（±）インデン－1,2-ジオール及び／又はその2-ホルメート誘導体を光学活性な2-ヒドロキシ－1-インドノンに変換し得る能力を有する微生物を作用させて光学活性2-ヒドロキシ－1-インドノン及び／又は光学活性インド－1,2-ジオールを得ることを特徴とするインデン誘導体の製造方法。

（3）微生物がパチルス属、アースロバクター属、コリネバクテリウム属又はシュードモナス属に属する微生物である請求項1又は2に記載のインデン誘導体の製造方法。

（4）（±）シス－インド－1,2-ジオール及び／又はその2-ホルメート誘導体に、これら（±）シス－インド－1,2-ジオール及び／又はその2-ホルメート誘導体を光学活性な（R）2-ヒドロキシ－1-インドノンに変換し得る能力を有するパチルス属、コリネバクテリウム属、アースロバクター属又はシュードモナス属に属する微生物を作用させて（R）2-ヒドロキシ－1-インドノン及び／又は光学活性インド－1,2-ジオールを得ることを特徴とするインデン誘導体の製造方法。

（5）（±）シス－インド－1,2-ジオール及び／又はその2-ホルメート誘導体に、これら（±）シス－インド－1,2-ジオール及び／又はその2-ホルメート誘導体を
光学活性な（S）2-ヒドロキシ-1-インダノンに変換し得る能力を有するシュードモナス属又はアースロバクター属に属する微生物を作用させて（S）2-ヒドロキシ-1-インダノン及び／又は光学活性インデン-1,2-ジオールを得ることを特徴とするインデン誘導体の製造方法。

(6) （±）トランス-インデン-1,2-ジオールに、（±）トランス-インデン-1,2-ジオールを光学活性な（R）2-ヒドロキシ-1-インダノンに変換し得る能力を有するコリネバクテリウム属、ジェードモナス属又はアースロバクター属に属する微生物を作用させて（R）2-ヒドロキシ-1-インダノン及び／又は光学活性インデン-1,2-ジオールを得ることを特徴とするインデン誘導体の製造方法。

(7) （±）トランス-インデン-1,2-ジオールに、（±）トランス-インデン-1,2-ジオールを光学活性な（S）2-ヒドロキシ-1-インダノンに変換し得る能力を有するパチルス属又はアースロバクター属に属する微生物を作用させて（S）2-ヒドロキシ-1-インダノン及び／又は光学活性インデン-1,2-ジオールを得ることを特徴とするインデン誘導体の製造方法。

(8) 2-ヒドロキシ-1-インダノンに下記一般式（4）

$$\text{H} \rightarrow \text{N} - \text{X} - \text{R}$$

（4）

（但し、式中、Xは酸素原子又はイミノ基を示し、Rは水素原子、アルキル基又はアリール基を示す）で表される化合物を反応させて下記一般式（1）
（但し、式中、Xは酸素原子又はイミノ基を示し、Rは水素原子、アルキル基又はアリール基であり、Yは水素原子、アシル基又はベンジル基を示す）で表される化合物とし、この一般式（1）の化合物を、不均一系水素添加触媒の存在下に、水素又は水素供与体と反応させ、下記一般式（2）

（但し、式中、Yは水素原子、アシル基又はベンジル基を示す）で表されるシス-1-アミノ-2-インドノール又はその誘導体を製造することを特徴とするインドン誘導体の製造方法。

(9) 一般式（1）において、Xが酸素原子であり、Rが水素原子である請求項8に記載のインドン誘導体の製造方法。

(10) 不均一系水素添加触媒として、ニッケル系、パラジウム系又は白金系の触媒を用いる請求項8に記載のインドン誘導体の製造方法。
BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page.

姓名 (名称) 新日本製繊株式会社

代表取締役社長 今井 敦

殿

寄託者 あて名 〒100

東京都千代田区大手町二丁目6番3号

<table>
<thead>
<tr>
<th>1. 微生物の表示</th>
</tr>
</thead>
<tbody>
<tr>
<td>(寄託者が付した識別のための表示)</td>
</tr>
<tr>
<td>Arthrobacter sp. 1HE</td>
</tr>
<tr>
<td>(受託番号)</td>
</tr>
<tr>
<td>FERM BP-5782</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. 科学的性質及び分類学上の位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 種の微生物には、次の事項を記載した文書が添付されていた。</td>
</tr>
<tr>
<td>■ 科学的性質</td>
</tr>
<tr>
<td>■ 分類学上の位置</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. 受領及び受託</th>
</tr>
</thead>
<tbody>
<tr>
<td>本国際寄託当局は、 平成 7年 10月 27日 (原寄託日) に受領した1種の微生物を受託する。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. 移管請求の受領</th>
</tr>
</thead>
<tbody>
<tr>
<td>本国際寄託当局は、 平成 7年 10月 27日 (原寄託日) に1種の微生物を受領した。</td>
</tr>
<tr>
<td>そして、 平成 9年 1月 8日 に原寄託よりブダペスト条約に基づく寄託への移管請求を受領した。</td>
</tr>
<tr>
<td>(平成 7年 10月 27日 に寄託された発明発明寄器P－15257 号より移管)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. 国際寄託当局</th>
</tr>
</thead>
<tbody>
<tr>
<td>通商産業省工業技術院生命工学工業技術研究所</td>
</tr>
<tr>
<td>名称：National Institute of Bioscience and Human-Technology</td>
</tr>
<tr>
<td>所長：石井, Michio, DIRECTOR GENERAL.</td>
</tr>
<tr>
<td>あて名：日本国産業省工業技術院生命工学工業技術研究所</td>
</tr>
<tr>
<td>東京都目黒区目黒1丁目1番3号 (郵便番号305)</td>
</tr>
<tr>
<td>3-1, Higashi-ichome, Tsukuba-shi, Ibaraki-ken 305, JAPAN</td>
</tr>
<tr>
<td>平成9年(1997) 1月 8日</td>
</tr>
</tbody>
</table>
国立大学

BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITORY AUTHORITY identified at the bottom of this page.

氏名（名称）
新日本製薬株式会社
代表取締役社長 今井 敬

寄託者

あて名 〒100
東京都千代田区大手町二丁目6番3号

1. 微生物の表示

（寄託者が行った識別のための表示）
Pseudomonas aeruginosa IN

（寄託書号）
FERM BP-5783

2. 学術的性質及び分類学上の位置

1株の微生物には、次の事項を記載した文書が添付されていました。

■ 学術的性質
■ 分類学上の位置

3. 受託及び受託

本国際寄託当局は、平成7年10月27日（寄託日）に受領した1株の微生物を受託する。

4. 識別及び受託

本国際寄託当局は、平成7年10月27日（寄託日）に1株の微生物を受託した。
そして、平成9年1月8日に受託した物を、国際寄託局に保管され、寄託者に返還される
（平成7年10月27日に寄託された微生物1株を第1号寄託者として移管）

5. 国際寄託当局

通商産業省工業技術院生命工学工業技術研究所

National Institute of Biotechnology and Human- Technology
Agency for Nosological Science and Technology

名称：

Meiji B. D. D. D.

あて名：日本製薬株式会社

〒100
東京都千代田区大手町二丁目6番3号（郵便番号305）
1-33. Higashi 1-chome Tsukuba-shi Ibaraki-ken
305. JAPAN

平成9年（1997）1月8日
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tetrastubstituted Arylketones: Production and Asymmetric Tautomerization of Arnylenols"</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP, 60-142919, A (Otsuka Pharmaceutical Co., Ltd.), April 10, 1986 (10. 04. 86)</td>
<td>1 - 8</td>
</tr>
<tr>
<td></td>
<td>& DE, 3407842, Al & US, 4792628, A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP, 61-60610, A (Otsuka Pharmaceutical Co., Ltd.), March 28, 1986 (28. 03. 86)</td>
<td>1 - 8</td>
</tr>
</tbody>
</table>

International Search Report

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/00040

A. CLASSIFICATION OF SUBJECT MATTER

Int. C16 C12P41/00, C07C215/44, C07C213/02 // (C12P41/00, C12R1:085), (C12R41/00, C12R1:15), (C12P41/00, C12R1:385), (C12P41/00, C12R1:06)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. C16 C12P41/00, C07C215/44, C07C213/02

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAS ONLINE, BIOSIS PREVIEWS, WPI, WPI/L

C. DOCUMENTS CONSIDERED TO BE RELEVANT

- **Category**: A
- **Citation of document, with indication, where appropriate, of the relevant passages**:

Date of the actual completion of the international search

April 7, 1997 (07. 04. 97)

Date of mailing of the international search report

April 15, 1997 (15. 04. 97)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Telephone No.
A. 発明の属する分野の分類（国際特許分類（IPC））
Int Cl* C12P41/00, C07C215/44, C07C213/02 // (C12P41/00, C12B1:085), (C12B41/00, C12B1:15),
(C12P41/00, C12B1:385), (C12P41/00, C12B1:06)

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int Cl* C12P41/00, C07C215/44, C07C213/02

最小限資料以外の資料で調査を行った分野に含まれるもの

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名及及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>J.P. 61-1 606 10, A（大塚製薬株式会社）28.3月.1986(28.03,86)</td>
<td>1-8</td>
</tr>
</tbody>
</table>

C欄の続きにも文献が列挙されている。

パタントファミリーに関する別紙を作成。