

US 20070122422A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2007/0122422 A1

Endou et al.

(10) Pub. No.: US 2007/0122422 A1 (43) Pub. Date: May 31, 2007

(54) SODIUM-INDEPENDENT SMALL NEUTRAL AMINO ACID TRANSPORTER TRANSPORTING L- AND D- AMINO ACIDS

(75) Inventors: Hitoshi Endou, Kanagawa (JP); Yoshikatsu Kanai, Tokyo (JP)

> Correspondence Address: EDWARDS ANGELL PALMER & DODGE LLP P.O. BOX 55874 BOSTON, MA 02205 (US)

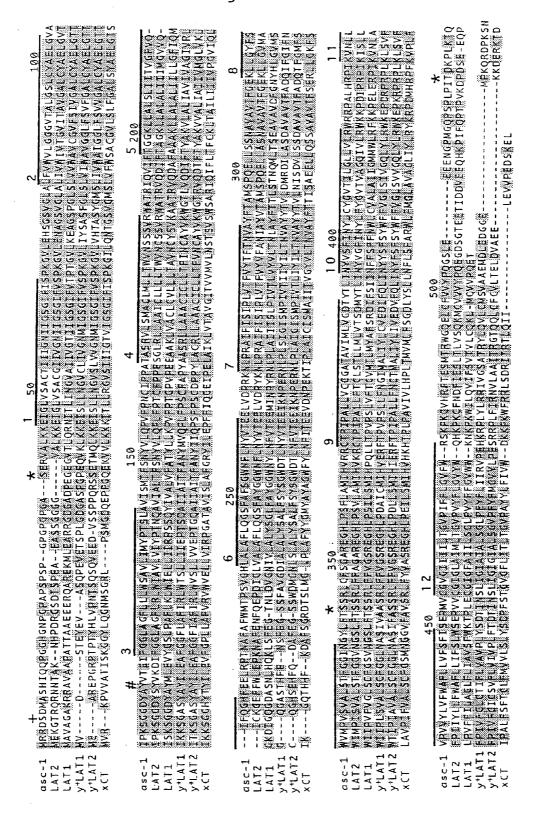
- (73) Assignee: Japan Science and Technology Corporation, Kawaguchi-shi (JP)
- (21) Appl. No.: 11/595,651
- (22) Filed: Nov. 9, 2006

Related U.S. Application Data

(60) Division of application No. 10/214,867, filed on Aug. 7, 2002, now Pat. No. 7,138,494, which is a continuation of application No. PCT/JP01/00031, filed on Jan. 9, 2001.

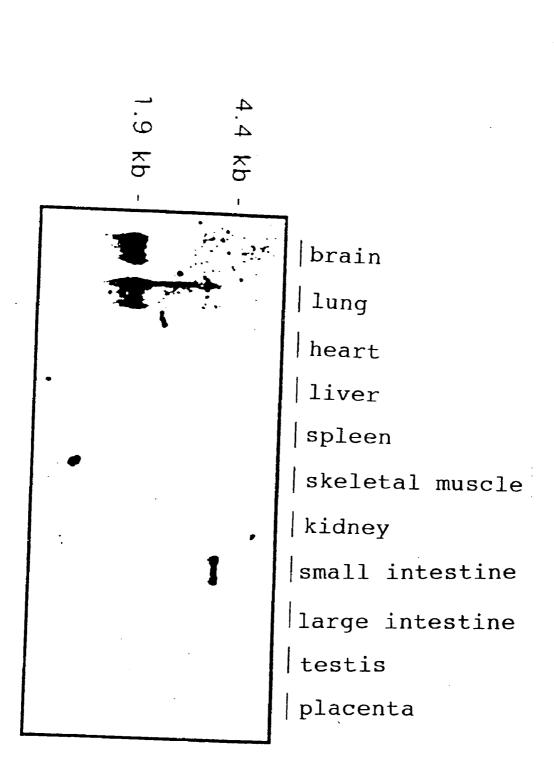
(30) Foreign Application Priority Data

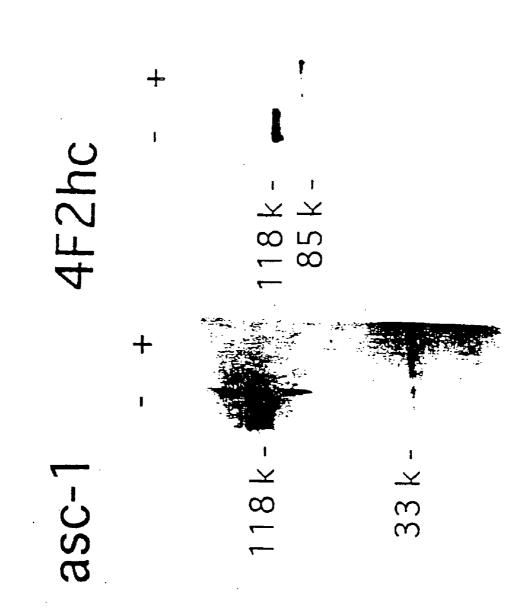
Feb. 7, 2000 (JP)..... 2000-028822


Publication Classification

(51)	Int. Cl.		
	C12Q 1	1/68	(2006.01)
	C07H 2	21/04	(2006.01)
	C12P 2	1/06	(2006.01)
	A61K 3	9/00	(2006.01)
	C07K 1	6/28	(2006.01)
	C07K 1	4/705	(2006.01)
(52)	U.S. Cl.		
			435/320.1; 435/325; 530/350;
			536/23.5; 424/144.1; 530/388.22

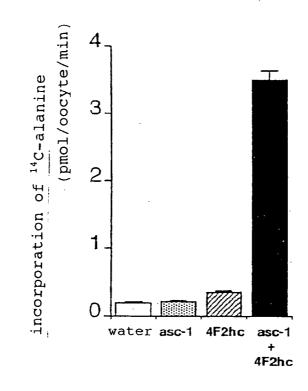
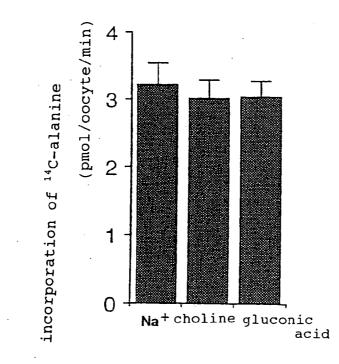
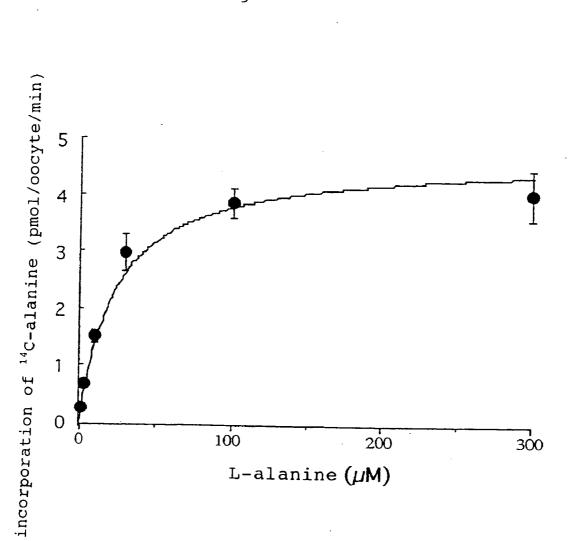
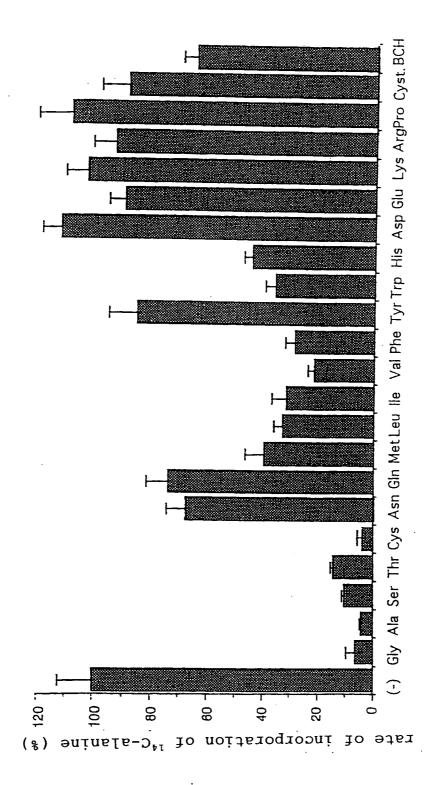
(57) ABSTRACT

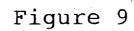

Novel sodium-independent small neutral amino acid transporters which transport L- and D-amino acids. A protein comprising the amino acid sequence represented by SEQ ID NO:1 or 4 or an amino acid derived therefrom by deletion, substitution or addition of one or more amino acids and being capable of sodium-independently transporting L- and D-small neutral amino acids and analogs thereof; a gene encoding the above protein; a method of screening substances inhibiting or promoting the function of the above protein; an antibody against the above protein; and a method of regulating cell function by using the above antibody, function inhibitors, function promoters, etc.

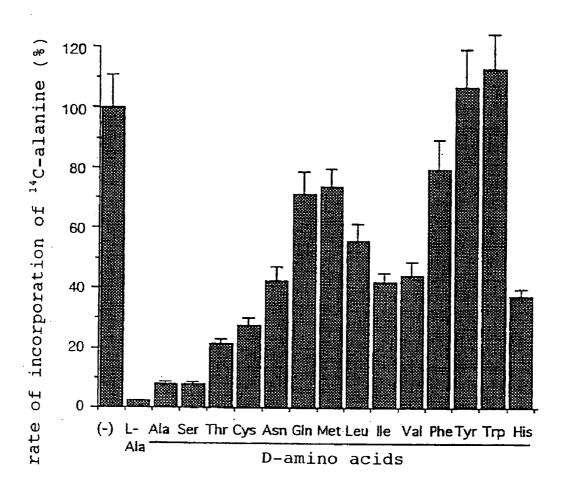

ACC-1 HR H-C-REPORT OF A STATE AND A STATE	GADPEGEGVTLORNITLINGVATIVGTIIGS GADPEGEGVTLORNITLINGVATIVGTIIGS GASEGPEQVKLKKEISLINGVCLIVGNMIGSC PPDRSSETMOLKKEISLINGVCLIVGNMIGSC	I FVSPKGVLENAGSVGLALIVNIVTGVI I FVTPTGVLKEAGSPGLSUVNAVCGVF I FVSPKGVLIVSASFGLSUVNAVGQLF	TAVGALCYAELGVT Siygalcyaelgtt Svfgalcyaelgtt
# <u>3</u>	150 4	5 200	
asc-1 IPKSGGDYAYVTEIFGGLAGFULLWSAVIIMYPTBLA LAT2 TPKSGGDYSYVKDIFGGLAGFULLWSAVIIMYPTBLA LAT1 TSKSGGDYAYULEVGSUPPFUKLMIELITRPSGY y'LAT1 IKKSGGYAYILEAFGGFUAFIRUWSLLIVEPTGQA y'LAT2 ITKSGGYAYILEAFGGFUAFIRUWSLLVVEPTGQA xCT IKKSGGHYTYILEVFGPLUAFVRVWVELUVTRPGATA	NUALIRSNYL OPLERICEPPESGLRIMAI IVALVFATVLUKPVFPTCPVPEEAAKLVACI IIAITFANYNVOPLEPSCRAPYAASRLLAAA IIAITFANYTOPSEPSCDPPylacellaaa	ELLLITWYNCSSYRWATRYDDIFTAGKL Cyllifayncysyrafryddafaaakll Cielltfincayrwygtlyddifyaryl	ALALITIMGVVQ- ALALIILLGFIQM ALIAVIVAGIVRL
	250 7	300	8
asc-1 IFOGH FELRPTNAFAFWMTPSVGHUALAFLQGS LATZ TCKGEFW EPKHAFAFWPGEPDTCLVALAFLQGS LATI GKDEGOGDASNLHQKLSFEG-TNLDVGHIVLALYSGL y'LATI G QGASTHFENSFEG-SSAGDTALALYSAL y'LATZ CQGHSENFQDAFEG-SSWDMCNESLALYSAL xCT IKGQTHHFKDAFSGRDTSLMG-WPLAFYYGH	FATGURNELNY FELVORYKN PRAIFISI FAYGUNYLNEVTEEMIN BYRN PLAIITCL FSYSGHOTLNYVTEEIKNPERN PLSIGISM FSYSGHOTIN SVITEIKNPERN PLSIGISM	2LVTFVYTFTNVÄYFTÄMSPOELLSSNAV 2LVTFVYVFAIJAVYTÄMSPOELLÄSIAV 7LVTEVYVITALAXETTLSTNOMLTSEAV 2LVTLVYVITALAXETTLSTNOMLTSEAV 2LVTLYTLTNVAVYTVIDMEDILASDAV	ÁVTFGEKLLÖVMA AVCFGNYHLGVMS AVTFADQIFQIÉN
* 350	9	10 400	11
asc-1 AVMPVSVALSTI GGINGYLETSSRIGFSÄAREGHLPS LAT2 MIMPISVALSTI GGVNGSLETSSRLEFAGAREGHLPS LAT1 MIIPVFVGLSCHGSVNGSLETSSRLEFVGSREGHLPS y'LAT1 MIIPVSVSLGGGLAASIFASSRLEFVGSREGHLPD y'LAT2 MIIPISVALSCHGGLAASIFASSRLEFVGSREGHLPD X(T LAVPIFVALSCHGSMNGGVFAVSRLEFVGSREGHLPE	VLANIHVKRCTPIPALLFTCLSTLLMUVTSD ILSNIHPOLLTPVPSLVFTCVHTUMVARSRD AICHIHVERFTPVPSLLFNGIHALIYLCVED ULSNHHTERFTPIPALLENGTHAITVUTVEN	MYTLINYVGFINYLEYGVTVAGGIVLRWK IFSINFFSFNWLCVALAIICMMWLRFV IFGLINYVSFSYWFFVGLSIVGQLVLRWK VFDLIVYFSFSYWFFVGLSIVGOLVLRWK	KPDIPRPIKISLL KPELERPIKVNLA EPCRPRPLKLSVP
450 12		500	.L.
asc-1 VPVVYLVFWAFLUVFSFTSERMVCGVGIIIITGVPI LAT2 FPITYUFWAFLUFSLWSEPVVCGTGLAFMITGVP LAT1 LPVFFTGAGLFIXVSPWKTPLECGTGFAIISGLP y*LAT1 FFUXFCUTIFLVAVPIYSDTISLGGTALSGUP y*LAT2 FPIVFGTSVFLVIVPIYSTTSLGGTALSGVP xCT IPALESFTGUFWVVLSIYSDFSTGVGFLITTGVPA	MYFLSVYN OHREKSFNDFIEGLTLVSOKMO MYFFGVWN KNKEKWILOVIFSVTVLORL- YFLIIRVPEHKRPLYLRRIVGATFYLDVLC VEMGVXLPESRRPLFIRNVLAAITRGTOOL	FWYPQGSLEEEENGPMGQ VYYYPQEGDSGTEETIDDVEEQHKDIFQ MCWVPQET NSMALENDEEDGGE	A SPLPIT DK PLKIQ PTPVKOPOSI-EQP MEKQRDPKSN KKOERKID

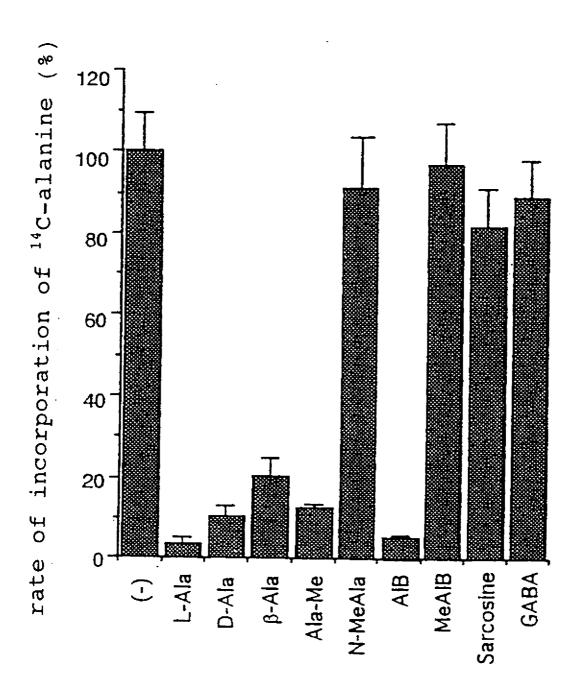
~

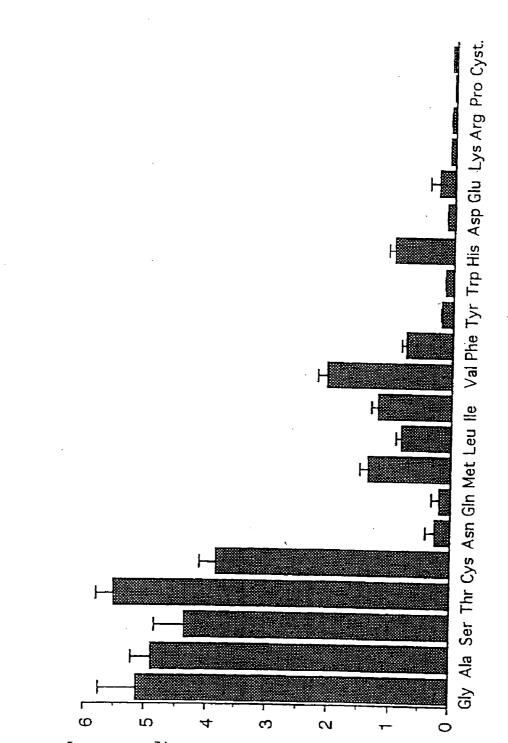
mouse	1 MRRDSDMASHIQQPGGHGNPGPAPSPSPGPGPGPGASERVALKKEIGLVS	50
human	-5MAGHTQQPSGRGNPRPAPSPSPVPGTVPGASERVALKEIGLLS	44
	51 ACTIIIGNIIGSGIFISPKGVLEESGSVGLALFVWVLGGGVTALGSLCYA	100
	45 ACTIIIGNIIGSGIFISPKGVLEESGSVGLALFVWVLGGGVTALGSLCYA	94
	101 ELGVAIPKSGGDYAYVTEIFGGLAGFLLLWSAVLIMYPTSLAVISMTFSN 	150
	95 ELGVAIPKSGGDYAYVTEIFGGLAGFLILWSAVLIMYPTSLAVISMTFSN	144
	151 YVLQPVFPNCIPPATASRVLSMACLMLLTWVNSSSVRWATRIQVIFTGGK	200
	145 YVLQPVFPNCIPPTTASRVLSMACLMLLTWVNSSSVRWATRIQDMFTGGK	194
	201 LLALSLIITVGFVQIFQGHFEELRPTNAFAFWMTPSVGHLALAFLQGSFA	250
	195 LLALSLIIGVGLLQIFQGHFEELRPSNAFAFWMTPSVGHLALAFLQGSFA	244
	251 FSGWNFLNYVTEELVDPRKNLPRAIFISIPLVTFVYTFTNVAYFTAMSPQ	300
	245 FSGWNFLNYVTEEMVDARKNLPRAIFISIPLVTFVYTFTNIAYFTAMSPQ	294
	301 ELLSSNAVAVTFGEKLLGYFSWVMPVSVALSTFGGINGYLFTSSRLCFSG	350
	295 ELLSSNAVAVTFGEKLLGYFSWVMPVSVALSTFGGINGYLFTYSRLCFSG 351 AREGHLPSFLAMIHVRRCTPIPALLVCCGATAVIMLVGDTYTLINYVSFI	344
	345 AREGHLPSLLAMIHVRRCTPIPALLVCCGATAVIMLVGDTYTLINYVSFI	400 394
. · ·	401 NYLCYGVTILGLLVLRWRRPALHRPIKVNLLVPVVYLVFWAFLLVFSFIS	450
	395 NYLCYGVTILGLLLLRWRRPALHRPIKVNLLIPVAYLVFWAFLLVFSFIS	444
	451 EPMVCGVGIIIILTGVPIFFLGVFWRSKPKCVHRFTESMTRWGQELCFVV	500
	445 EPMVCGVGVIIILTGVPIFFLGVFWRSKPKCVHRLTESMTHWGQELCFVV	494
	501 YPQGSLEEEENGPMGQPSPLPITDKPLKTQ*	550
	 495 YPQDAPEEEENGPCP-PSLLPATDKPSKPQ*	544


Figure 6

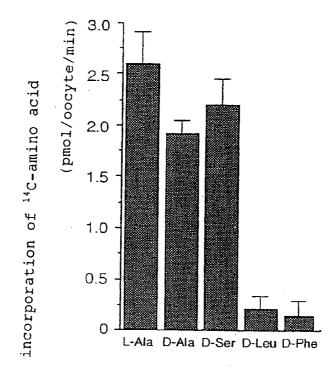
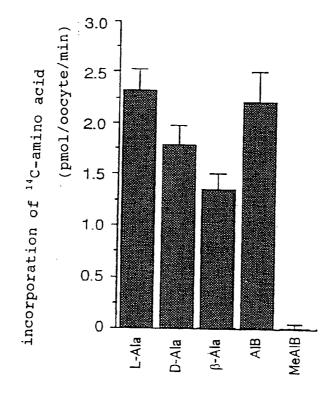
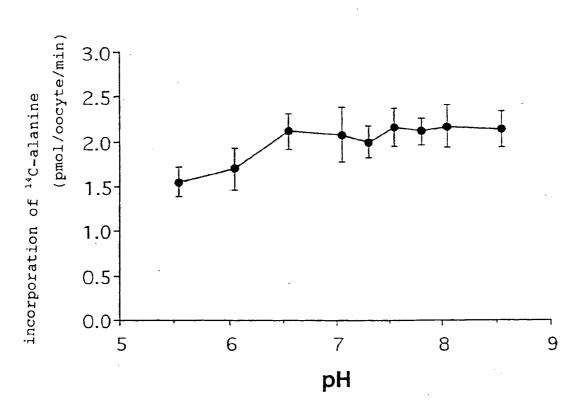
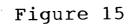
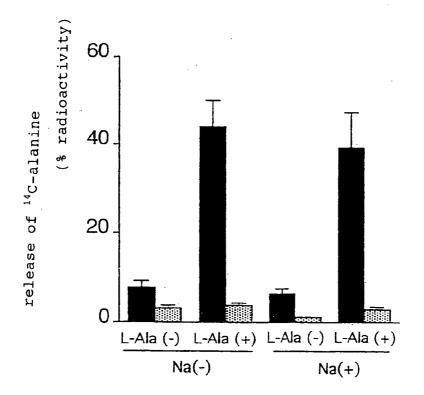


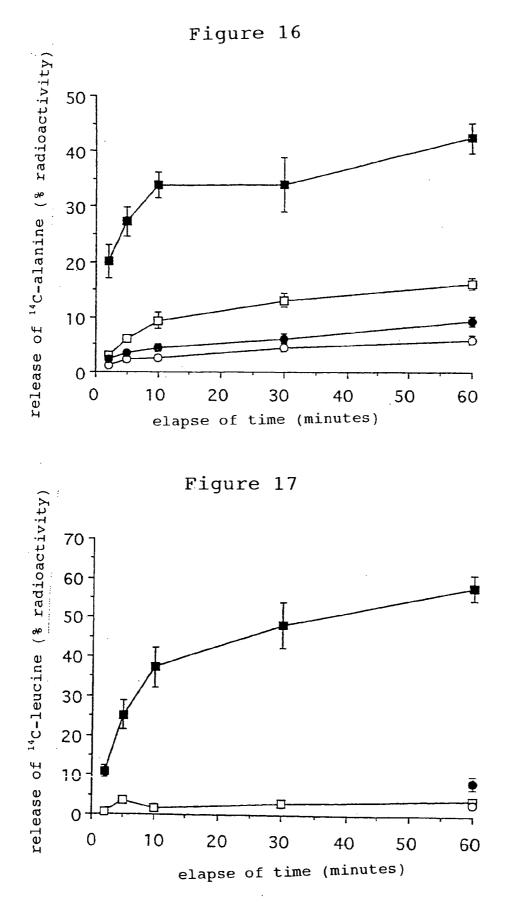


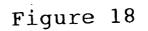


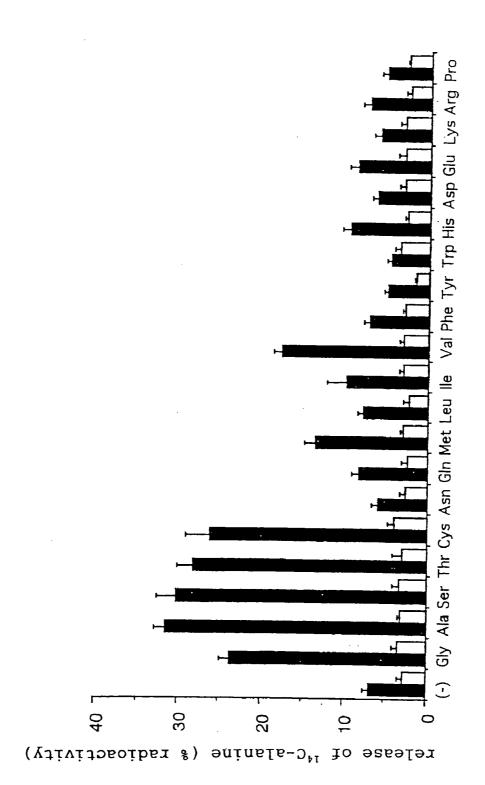
•

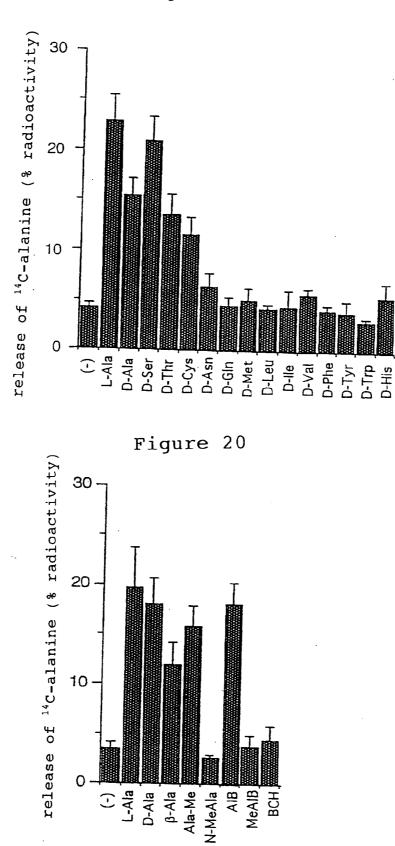
incorporation of ¹⁴C-amino acid (pmol/oocyte/min)

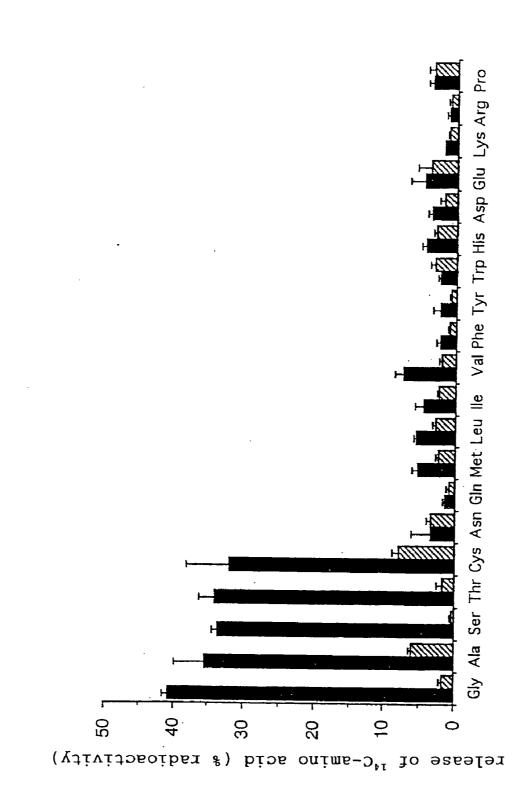







Figure 13









SODIUM-INDEPENDENT SMALL NEUTRAL AMINO ACID TRANSPORTER TRANSPORTING L-AND D- AMINO ACIDS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional of co-pending U.S. application Ser. No. 10/214,867, filed Aug. 7, 2002, now allowed, which is a continuation of PCT Application No. PCT/JP01/00031, filed Jan. 9, 2001, which claims the benefit of Japanese Application No. 2000-028822 filed Feb. 7, 2000. The contents of all of these applications are hereby incorporated by reference in their entirety.

TECHNICAL FIELD

[0002] The present invention relates to a gene concerning a sodium-independent transport of a small neutral amino acid and analogs thereof, to protein encoding the genes and to an antibody against the protein. The present invention further relates to a method for screening the substance to be tested using the said protein.

BACKGROUND ART

[0003] Cells are required that amino acids are to be always incorporated thereinto as nutrition and such a function is carried by an amino acid transporter which is a membrane protein existing in cell membrane. The amino acid transporter is aligned in a specific site in each tissue in multicellular living things and plays an important role in expression of specific functions in each tissue.

[0004] A transport system asc is an amino acid transport system which transports small neutral amino acids mostly alanine, serine and cysteine and, originally, it was found in erythrocyte membrane and mentioned in many literatures. After that, its existence was confirmed in cultured cells as well (Christensen, *Physiol. Rev.*, volume 70, page 43, 1990). The transport system asc is a transporter which is sodium-independent or, in other words, it does not need sodium ion for its function. Its transport substrate selectivity and transport characteristic have been known to have some differences depending upon cells and animal species.

[0005] The transport system asc shows a high affinity to a transport substrate such as alanine, serine or cysteine and, as a transport system similar thereto, there is a transport system C where small neutral amino acid such as alanine, serine or cysteine is a transport substrate as well but affinity to a transport substrate is low (Young et al., *Biochem. J.*, volume 154, page 43, 1976; Young et al., *Biochem. J.*, volume 154, page 33, 1977). The transport system C is believed to be a subsystem for the transport system asc. Sheep where the transport system C is genetically deficient was found, reduction in glutathione content in its erythrocytes was shown and the importance of incorporation of cysteine mediated by cell membrane in the production of glutathione was proved (Young, et al., *Nature*, volume 254, page 156, 1975).

[0006] However, in the conventional methods, it is difficult to analyze the details of transport of amino acid and analogs thereof mediated by the amino acid transport system asc and the functional role in vivo and there has been a demand to isolate gene of neutral amino acid transporter carrying a function of the amino acid transport system asc so as to make the detailed function analysis possible. **[0007]** As to a small neutral amino acid transporter, there were cloned ASCT1 and ASCT2 (Kanai, *Curr. Opin. Cell Biol.*, volume 9, page 565, 1997). However, they are sodium-dependent transporters and are entirely different from a sodium-independent amino acid transport system asc. In the meanwhile, glycine transporter and proline transporter were cloned (Amara and Kuhar, *Annu. Rev. Neurosci.*, volume 16, page 73, 1993) but both of them transport only glycine and proline in a sodium-dependent manner and are different from the transport system asc.

[0008] cDNA of rBAT and 4F2hc which are type II membrane glycoproteins having only one transmembrane structure which is considered to be an activating factor of an amino acid transporter were cloned although they are not transporters per se and it was known that, when they were expressed in oocytes of Xenopus, incorporation of basic amino acid together with neutral amino acid was activated (Palacin, *J. Exp. Biol.*, volume 196, page 123, 1994).

[0009] With regard to a transporter which selectively transports neutral amino acid, there were cloned neutral amino acid transporter LAT1 (Kanai et al., J. Biol. Chem., volume 273, pages 23629-23632, 1998) and LAT 2 (Segawa et al., J. Biol. Chem., volume 274, pages 19745-19751, 1999) corresponding to a transport system L. It was further shown that LAT1 and LAT2 functioned only when they coexist together with a cofactor 4F2hc. Both are not dependent on Na⁺ but LAT1 shows an exchange transport activity for transporting the large neutral amino acids such as leucine, isoleucine, valine, phenylalanine, tyrosine, tryptophane, methionine and histidine and LAT2 has a wide substrate selectivity transporting the small neutral amino acids such as glycine, alanine, serine, cysteine and threonine in addition to large neutral amino acids. However, even they are different from the amino acid transport system asc in terms of substrate selectivity.

[0010] With regard to proteins analogous to the neutral amino acid transporters LAT1 and LAT2, there were cloned the above-mentioned y⁺LAT1 and y⁺LAT2 having a function of a transport system y⁺L transporting the neutral amino acids and basic amino acids (Torrents et al., *J. Biol. Chem.*, volume 273, pages 32437-32445, 1998). It was also shown that both y⁺LAT1 and y⁺LAT2 functioned only when coexisted together with the cofactor 4F2hc. y⁺LAT1 and y⁺LAT2 mainly transport glutamine, leucine and isoleucine as neutral amino acids and are different from the amino acid transport system asc in terms of the substrate selectivity.

[0011] With regard to a transporter demanding the cofactor 4F2hc for the expression of the function, there was cloned xCT which is a protein analogous to the neutral amino acid transporters LAT1 and LAT2 (Sato et al., *J. Biol. Chem.*, 274: 11455-11458, 1999). The xCT transports cystine and glutamic acid and is different from the amino acid transport system asc in terms of the substrate selectivity.

[0012] With regard to a transporter demanding other cofactor rBAT having a structure analogous to 4F2hc for expressing the function, there was cloned BAT1 which is a protein analogous to the neutral amino acid transporters LAT1 and LAT2 (Chairoungdua et al., *J. Biol. Chem.*, 274: 28845-28848, 1999). BAT1 transports cystine, neutral amino acids and basic amino acids and is different from the amino acid transport system asc in terms of substrate selectivity.

[0013] As such, molecular substances of the transporters which function upon linking to 4F2hc and rBAT were made clear and it was clarified that there was a group of transporters which achieve a transporting function when a molecular complex is formed with the type II glycoprotein.

DISCLOSURE OF THE INVENTION

[0014] An object of the present invention is to provide a gene of a transporter which transports small neutral amino acid in a sodium-independent manner and shows a function of transport system asc and to provide a sodium-independent small neutral amino acid transporter which is a polypeptide encoded by the gene. Other objects will be apparent from the following description.

[0015] The present inventors have checked the EST (expressed sequence tag) database using the base sequence of translated region of cDNA of LAT1 and identified a base sequence analogous to LAT1. They have prepared a probe corresponding to that, screened a cDNA library and cloned a gene coding for a novel protein. They have further expressed this genetic product in oocytes of Xenopus and made clear that 4F2hc is essential when the genetic product achieves the function and that, although the expressed function corresponds to the neutral amino acid transport system asc, it makes not only L-amino acids but also D-amino acids into high-affinity transport substrates unlike the conventionally mentioned property of the transport system asc whereupon the present invention has been achieved.

[0016] Thus, the present invention relates to a protein comprising an amino acid sequence represented by SEQ ID NO: 1 or 4 or an amino acid sequence where one or more amino acid(s) therein is/are deleted, substituted or added and being capable of transporting the small neutral amino acid and analogs thereof in a Na⁺-independent manner. The protein of the present invention is a protein having an ability of transporting the small neutral amino acid sequence with a protein having an amino acid sequence represented by SEQ ID NO: [[3]] 7 or [[6]] 8 or a protein comprising an amino acid sequence where one or more amino acid(s) is/are deleted, substituted or added.

[0017] The present invention further relates to a gene coding for the above-mentioned protein of the present invention. To be more specific, the present invention relates to a gene coding for a protein having an ability of transporting the small neutral amino acid and analogs thereof in a sodium-independent manner comprising a base sequence represented by SEQ ID NO: 2 or 5 or a base sequence being able to hybridize with DNA comprising the said base sequence under a stringent condition.

[0018] The novel protein of the present invention being capable of transporting small neutral amino acids and analogs thereof in a sodium-independent manner or an asc-type amino acid transporter 1 has an ability of transporting (incorporating) the small neutral amino acid such as glycine, L-alanine, L-serine, L-cysteine and L-threonine in a highly affinitive manner when co-existed together with an amino acid transport activating factor 4F2hc. It further transports L-valine, L-methionine, L-isoleucine, L-leucine, L-histidine and L-phenylalanine in a lowly affinitive manner. The asc-1 further transports D-alanine, D-serine, D-cysteine and D-threonine and particularly D-serine in a highly affinitive

manner. In addition, the asc-1 transports the substances analogous to amino acid such as a-aminoisobutyric acid, β -alanine and alanine methyl ester.

[0019] Further, the sodium-independent small neutral amino acid transporter asc-1 of the present invention which transports L- and D-amino acids is mostly expressed in brain, lung, small intestine and placenta in vivo. Particularly, asc-1 transports D-serine which is believed to be an endogenous function-modifying substance for an NMDA-type glutamic acid receptor and, therefore, there is a possibility that it participates in the kinetics of D-serine in brain and affects the functioning state of the NMDA receptor. Furthermore, since asc-1 transports cysteine, it is believed to be a factor regulating the production amount of glutathione produced from cysteine as a material.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. **1** is a drawing which shows a comparison of amino acid sequence of mouse asc-1 (SEQ ID NO: 1) with those of rat LAT2 (SEQ ID NO: 9), rat LAT1 (SEQ ID NO: 10), human y⁺LAT1(SEQ ID NO: 11), human y⁺LAT2 (SEQ ID NO: 12) and mouse xCT (SEQ ID NO: 13). The presumed transmembrane sites are shown by the lines added.

[0021] FIG. **2** is a drawing which shows a comparison of amino acid sequences of mouse asc-1 (SEQ ID NO: 1) and human asc-1 (SEQ ID NO: 4).

[0022] FIG. **3** is a picture which is a substitute for a drawing which shows the result of analysis of expression of asc-1 gene mRNA in various organ tissues of mouse by a northern blotting.

[0023] FIG. 4 is a picture which is a substitute for a drawing which shows the result of by a western blotting analysis using mouse brain membrane sample conducted under a non-reductive condition (-) and a reductive condition (+) using anti-asc-1 antibody (left) and anti-4F2hc antibody (right).

[0024] FIG. **5** is a drawing which shows the result of an experiment for incorporation of alanine by oocytes into which cRNA of mouse asc-1 gene and/or mouse 4F2hc gene are/is injected.

[0025] FIG. **6** is a drawing which shows the result of checking the influence of salt added in an experiment of incorporation of alanine by oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected.

[0026] FIG. **7** is a drawing which shows the result of checking the influence of concentration of alanine substrate in an experiment of incorporation of alanine by oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected.

[0027] FIG. **8** is a drawing which shows the result of checking the influence of addition of various L-amino acids or analogous compounds thereof to the system in an experiment of incorporation of alanine by oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected.

[0028] FIG. **9** is a drawing which shows the result of checking the influence of addition of various D-amino acids

[0029] FIG. **10** is a drawing which shows the result of checking the influence of addition of alanine or analogous compounds thereof to the system in an experiment of incorporation of alanine by oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected.

[0030] FIG. **11** is a drawing which shows the result of checking the incorporation of radiolabeled L-amino acid by oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected.

[0031] FIG. **12** is a drawing which shows the result of checking the incorporation of radiolabeled D-amino acid by oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected.

[0032] FIG. **13** is a drawing which shows the result of checking the incorporation of radiolabeled L-alanine or analogous compounds thereof by oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected.

[0033] FIG. **14** is a drawing which shows the result of checking the influence of pH in an experiment of incorporation of alanine by oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected.

[0034] FIG. 15 is a drawing which shows the result of checking the release of 14 C-alanine by oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected. The ordinate shows the rate (%) of the released radioactivity to the radioactivity injected into the oocytes.

[0035] FIG. 16 is a drawing which shows the result of checking the progress of release of ¹⁴C-alanine with a lapse of time by oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected. In the drawing, \bigcirc is the case where, in the release of ¹⁴C-alanine in the oocytes into which water is injected as a control instead of cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse, a Na⁺-free uptake solution to which no alanine is added is used; \bullet is the case where, in the release of ¹⁴C-alanine in the oocytes into which water is injected as a control instead of cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse, a Na⁺-free uptake solution to which alanine is added is used; \Box is the case where, in the release of ¹⁴C-alanine in the oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected, a Na⁺-free uptake solution to which no alanine is added is used; and \Box is the case where, in the release of ¹⁴C-alanine in the oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected, a Na+-free uptake solution to which alanine is added is used. The ordinate shows the rate (%) of the released radioactivity to the radioactivity injected into the oocytes.

[0036] FIG. 17 is a drawing which shows the result of checking the progress of release of 14 C-leucine with a lapse of time by oocytes into which cRNA of LAT1 gene of rat and cRNA of 4F2hc gene of rat are injected. In the drawing, 0 is the case where, in the release of 14 C-leucine in the oocytes into which water is injected as a control instead of cRNA of

LAT1 gene of rat and cRNA of 4F2hc gene of rat, a Na⁺-free uptake solution to which no leucine is added is used; \bullet is the case where, in the release of ¹⁴C-leucine in the oocytes into which water is injected as a control instead of cRNA of LAT1 gene of rat and cRNA of 4F2hc gene of rat, a Na⁺-free uptake solution to which leucine is added is used; \Box is the case where, in the release of ¹⁴C-leucine in the oocytes into which cRNA of LAT1 gene of rat and cRNA of 4F2hc gene of rat are injected, a Na+-free uptake solution to which no leucine is added is used; and \blacksquare is the case where, in the release of ¹⁴C-leucine in the oocytes into which cRNA of LAT1 gene of rat and cRNA of 4F2hc gene of rat are injected, a Na⁺-free uptake solution to which leucine is added is used. The ordinate shows the rate (%) of the released radioactivity to the radioactivity injected into the oocytes.

[0037] FIG. 18 is a drawing which shows the result of checking the release of ¹⁴C-alanine when various L-amino acids are added to a Na⁺-free uptake solution containing no sodium ion by oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected (black bars) or by oocytes into which water is injected instead of cRNA as a control (white bars). (–) shows the release of ¹⁴C-alanine mediated by asc-1 of mouse when no amino acid is added to a Na⁺-free uptake solution. The ordinate shows the rate (%) of the released radioactivity to the radioactivity injected into the oocytes.

[0038] FIG. 19 is a drawing which shows the result of checking the release of ¹⁴C-alanine mediated by mouse asc-1 when various kinds of D-amino acids are added to a Na⁺-free uptake solution. (–) shows the release of ¹⁴C-alanine mediated by asc-1 of mouse when no amino acid is added to a Na⁺-free uptake solution. The ordinate shows the rate (%) of the released radioactivity to the radioactivity injected into the oocytes.

[0039] FIG. 20 is a drawing which shows the result of checking the release of ¹⁴C-alanine mediated by asc-1 of mouse when various kinds of alanine-analogous compounds are added to a Na⁺-free uptake solution. (–) shows the release of ¹⁴C-alanine mediated by asc-1 of mouse when no amino acid is added to a Na⁺-free uptake solution. The ordinate shows the rate (%) of the released radioactivity to the radioactivity injected into the oocytes.

[0040] FIG. **21** is a drawing which shows the result of checking the release of the injected ¹⁴C-amino acid from oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse are injected. Black bars show the case where alanine is added to a Na⁺-free uptake solution while bars with oblique lines show the case where alanine is not added to a Na⁺-free uptake solution.

BEST MODE FOR CARRYING OUT THE INVENTION

[0041] SEQ ID NO: 2 and NO: 1 in the Sequence Listing which will be mentioned later stand for a full-length cDNA base sequence (about 1.6 kbp) of gene of sodium-independent small neutral amino acid transporter (asc-1 of mouse) transporting L- and D-amino acid derived from brain of mouse and an amino acid sequence (530 amino acids) of protein encoded in its translated region.

[0042] SEQ ID NO: 5 and NO: 4 in the Sequence Listing which will be mentioned later stand for a full-length cDNA

base sequence (about 1.9 kbp) of gene of sodium-independent small neutral amino acid transporter (human asc-1) transporting L- and D-amino acid derived from human brain and an amino acid sequence (523 amino acids) of protein encoded in its translated region.

[0043] When the base sequence or the amino acid sequence represented by the above SEQ ID NO: 1 or 2 or SEQ ID NO: 4 or 5 was subjected to a homology check for all sequences contained in the known DNA databases (Gen-BankTM and EMBL) and protein databases (NBRF and SWISS-PROT), there was nothing which was identical whereby all those sequences are believed to be novel.

[0044] With regard to the protein of the present invention, that which has an amino acid sequence represented by SEQ ID NO: 1 or 4 and, in addition, protein having an amino acid sequence where one or more amino acid(s) is/are deficient, substituted or added in the amino acid sequence represented by SEQ ID NO: 1 or 4 for example may be listed. Defect, substitution or addition of amino acid may be within such an extent that the neutral amino acid transport activity is not lost and that is usually from 1 to about 106 or, preferably, from 1 to about 53. Like the amino acid sequence represented by SEQ ID NO: 1 or 4, such a protein has usually 80% or, preferably, 90% homology of amino acid.

[0045] With regard to the gene of the present invention, that which contains DNA being hybridizable under a stringent condition with DNA comprising a base sequence represented by SEQ ID NO: 2 or 5 may be exemplified in addition to that having a base sequence represented by SEQ ID NO: 2 or 5. The DNA which is hybridizable as such may be in such an extent that the protein encoded by the DNA is capable of transporting the neutral amino acid. Such a DNA has usually not less than 70% or, preferably, not less than 80% of homology of a base sequence to the base sequence represented by SEQ ID NO: 2 or 5. Such a DNA includes mutant gene found in nature, artificially modified mutant and homologous gene derived from living things of difference species.

[0046] Hybridization under a stringent condition according to the present invention is usually carried out in such a manner that hybridization is carried out in a hybridization solution of $5\times$ SSC or the equivalent salt concentration at the temperature condition of $37-42^{\circ}$ C. for about 12 hours, a preliminary washing is carried out upon necessity by a solution of $5\times$ SSC or the equivalent salt concentration and a washing is carried out in a solution of $1\times$ SSC or the equivalent salt concentration.

[0047] The sodium-independent small neutral amino acid transporter gene of the present invention which transports Land D-amino acids can be isolated and obtained by carrying out a screening using appropriate mammalian tissues or cells as a gene source. With regard to mammals, human being may be listed in addition to non-human animals such as dog, cow, horse, goat, sheep, monkey, pig, rabbit, rat and mouse.

[0048] Screening and isolation of gene may be appropriately carried out by a homology cloning, etc.

[0049] For example, brain of mouse or human being is used as a gene source and mRNA ($poly(A)^+$ RNA) is prepared therefrom. A cDNA library is constructed therefrom and a screening is carried out for the cDNA library using a probe corresponding to LAT1-homologous sequence

(such as GenBankTM/EBI/DDBJ accession No. N32639) obtained by checking an EST (expressed sequence tag) database whereupon clone containing cDNA of asc-1 gene is obtained.

[0050] With regard to the obtained cDNA, its base sequence is determined by a conventional method, the translated region is analyzed and an amino acid sequence of the protein encoded thereby, i.e. asc-1, can be determined.

[0051] The fact that the resulting cDNA is a cDNA of a sodium-independent small neutral amino acid transporter gene which transports L- and D-amino acids or, in other words, it is a genetic product encoded by cDNA is a sodium-independent small neutral amino acid transporter which transports L- and D-amino acids is, for example, able to be tested as follows. Thus, RNA (cRNA) (a capped one) complementary thereto prepared from the resulting cDNA of asc-1 gene is expressed by introducing into oocytes together with cRNA having a base sequence of 4F2hc represented by SEQ ID NO: 3 or 6 and an ability of transporting (incorporating) a neutral amino acid into cells can be confirmed by measuring the incorporation of a substrate into the cells by means of a conventional incorporation test (Kanai and Hediger, Nature, volume 360, pages 467-471, 1992) where an appropriate neutral amino acid is a substrate.

[0052] An asc-1 protein is synthesized by means of an in vitro translation method (Hediger, et al., *Biochim. Biophys. Acta*, volume 1064, page 360, 1991) using RNA (cRNA) which is complementary thereto prepared from the resulting cDNA of asc-1 whereupon it is possible to check the size of protein, addition or non-addition of sugar, etc. by means of electrophoresis.

[0053] Since the cDNA of gene of 4F2hc was reported already (Broer, et al., *Biochem. J., volume* 312, page 863, 1995), it is possible to prepare a gene of 4F2hc easily by means of PCR or the like. cRNA (a capped one) can be synthesized from the resulting cDNA of 4F2hc.

[0054] The same incorporation experiment is applied to expression cells whereupon it is possible to check the characteristics of the asc-1 such as a characteristic that asc-1 conducts transport of an exchange type of amino acid as well as substrate selectivity of asc-1 and pH-dependency.

[0055] When an appropriate genomic DNA library or cDNA library prepared from different gene source is screened using the resulting cDNA of asc-1 gene, it is possible to isolate homologous gene or chromosomal gene derived from different living things.

[0056] When a synthetic primer designed on the basis of information of the disclosed base sequence of gene of the present invention (a base sequence represented by SEQ ID NO: 2 or 5 or a part thereof) is used and a conventional PCR (polymerase chain reaction) is carried out, it is possible to isolate a gene from a cDNA library or a genomic DNA library.

[0057] DNA libraries such as a cDNA library and a genomic DNA library can be prepared by a method mentioned in, for example, "Molecular Cloning" (by Sambrook, J., Fritsh, E. F and Manitis, T.; published by Cold Spring Harbor Press). Alternatively, when a commercially available library is available, that may be used.

[0058] The sodium-independent small neutral amino acid transporter (asc-1) transporting D- and L-amino acids according to the present invention may be produced by, for example, a gene recombination technique using the cDNA coding therefor. For example, DNA (such as cDNA) coding for asc-1 is incorporated into an appropriate expression vector and the resulting recombinant DNA can be introduced into an appropriate host cell. Examples of the expression system (host-vector system) for the production of polypeptide are expression systems of bacteria, yeasts, insect cells and mammalian cells. Among them, the use of insect cells and mammalian cells is preferred for the preparation of functional protein.

[0059] For example, in the case of expression of polypeptide in mammalian cells, DNA coding for a sodium-independent small neutral amino acid transporter asc-1 which transports the L- and D-amino acids is inserted into the downstream of an appropriate promoter (such as cytomegalovirus promoter, SV 40 promoter, LTR promoter or elongation 1a promoter) in an appropriate expression vector (such as vector of adenovirus type, vector of retrovirus type, papilloma virus vector, vaccinia virus vector or vector of SV 40 type) whereupon an expression vector is constructed. After that, an appropriate animal cell is transformed by the resulting expression vector and the transformant is incubated in an appropriate medium whereupon an aimed polypeptide is produced. Examples of the mammalian cell used as a host are cell strains such as simian COS-7 cell, CHO cell of Chinese hamster and human HeLa cell.

[0060] With regard to the DNA coding for a sodiumindependent small amino acid transporter asc-1 which transports the L- and D-amino acids, the cDNA having a base sequence represented by SEQ ID NO: 2 or 5 may be used for example and, in addition, it is not limited to the abovementioned DNA sequence but DNA corresponding to amino acid may be designed and used as a DNA coding for the polypeptide. In that case, as to the codon for coding for one amino acid, from 1 to 6 kinds of codon(s) is/are known for each and, although the codon used may be selected freely, it is possible to design a sequence having higher expression efficiency by taking the frequency of use of codon of the host utilized for the expression into consideration. DNA having a designed base sequence can be prepared by chemical synthesis of DNA, by fragmentation of the above-mentioned cDNA and combination thereof, by a partial modification of a base sequence, etc. Artificial modification of a base sequence and introduction of variation can be carried out by means of a site-specific mutagenesis (Mars, D. F., et al., Proceedings of National Academy of Sciences, volume 81, page 5662, 1984), etc. utilizing a primer comprising a synthetic oligonucleotide coding for the desired modification.

[0061] The present invention further relates to nucleotide containing a partial sequence of continuous 14 or more bases, preferably 20 or more bases or, more preferably, 30 or more bases in the base sequence represented by SEQ ID NO: 2 or 5 of the Sequence Listing or a complementary sequence thereof. The nucleotide of the present invention may be used as a probe for the detection of gene coding for a protein being capable of transporting a sodium-independent small neutral amino acid and analogs thereof.

[0062] When the sodium-independent small neutral amino acid transporter of the present invention transporting the Land D-amino acids or a polypeptide having the immunological homology thereto is used, an antibody against that can be prepared. The antibody can be utilized for the detection or the purification of the sodium-independent small neutral amino acid transporter which transports the Land D-amino acids. The antibody can be manufactured using the sodium-independent small neutral amino acid transporter of the present invention transporting the L- and D-amino acids, a fragment thereof, a synthetic peptide having a partial sequence thereof or the like as an antigen. A polyclonal antibody can be manufactured by a conventional method where antigen is inoculated to a host animal (such as rat or rabbit) and the immunized serum is recovered therefrom while a monoclonal antibody can be manufactured by a conventional technique such as a hybridoma method.

[0063] The sodium-independent small neutral amino acid transporter asc-1 of the present invention transporting the L-and D-amino acids, gene thereof and expression cell thereof can be used in an in vitro test for permeation efficiency at the cell membrane where asc-1 is present or at the site where asc-1 is presumed to be present.

[0064] Further, the sodium-independent small neutral amino acid transporter asc-1 of the present invention transporting the L- and D-amino acids, gene thereof and expression cell thereof can be used in the development of compounds which efficiently permeate the cell membrane where asc-1 is present or at the site where asc-1 is presumed to be present. Furthermore, the sodium-independent small neutral amino acid transporter asc-1 of the present invention transporting the L- and D-amino acids, gene thereof and expression cell thereof can be used in an in vitro test for a drug interaction at the cell membrane where asc-1 is present or at the site where asc-1 is present.

[0065] When the sodium-independent small neutral amino acid transporter asc-1 of the present invention which transports the L- and D-amino acids is inhibited, it is possible to limit the permeation of specific compounds at the cell membrane where asc-1 is expressed or at the site where asc-1 is presumed to be present. Further, the sodium-independent small neutral amino acid transporter asc-1 of the present invention which transports the L- and D-amino acids, gene thereof and expression cell thereof can be used in the development of drugs (such as specific inhibitor for asc-1) which limit the passing of the cell membrane or the permeation at the site where asc-1 is presumed to be present of a compound transported by asc-1.

[0066] Accordingly, the present invention provides a method for detection, identification or quantification of action as a substrate of a substance to be tested to the ability of the present invention for transporting a small neutral amino acid and analogs thereof in a sodium-independent manner using the protein of the present protein. In accordance with the method of the present invention, it is possible to screen a substance which promotes the function of the protein of the present invention of the protein of the present invention or a substance which inhibits

that. When an uptake solution containing an amino acid which is labeled by radioactivity or by fluorescence such as ¹⁴C-alanine is used and the amount of the said incorporated or released amino acid is measured in the presence of the substance to be tested, it is now possible to test the action of the said substance to be tested to the protein of the present invention.

[0067] The present invention further provides a method for controlling the resistance of cells to oxidative stress where the protein of the present invention, a specific antibody thereof, a substance for promoting the function thereof or a substance for inhibiting the function thereof is used to modulate an ability of transporting a small neutral amino acid of the said protein or analogs thereof.

[0068] The present invention furthermore provides a method for controlling the activity of a glutamic acid receptor of an NMDA type in a nervous system where the protein of the present invention, a specific antibody thereof, a substance for promoting the function thereof is used to modulate an ability of transporting a small neutral amino acid of the said protein or analogs thereof; a method for controlling the plasticity of synaptic transmission in which a glutamic acid receptor of an NMDA type is participated by means of the above-mentioned method; and a method for controlling the neuronal death in which a glutamic acid receptor of an NMDA type is participated by means of the above-mentioned method.

[0069] The present invention provides a method for controlling such as inhibition or promotion of growth of cells where the protein of the present invention, a specific antibody thereof, a substance for promoting the function thereof or a substance for inhibiting the function thereof is used to modulate an ability of transporting a small neutral amino acid of the said protein or analogs thereof.

[0070] The present invention provides a method for changing the fate of a drug transported by the protein in vivo where the protein of the present invention, a specific antibody thereof, a substance for promoting the function thereof or a substance for inhibiting the function thereof is used to modulate an ability of transporting a neutral amino acid of the said protein or analogs thereof.

[0071] The present invention provides a method for changing the fate of a toxin or an exogenous substance transported by the protein in vivo where the protein of the present invention, a specific antibody thereof, a substance for promoting the function thereof or a substance for inhibiting the function thereof is used to modulate an ability of transporting a neutral amino acid of the said protein or analogs thereof.

[0072] The present invention will now be further illustrated by way of the Examples although the present invention is not limited thereto.

[0073] In the following Examples, each of the operation was carried out, unless otherwise clearly mentioned, by a method descried in "Molecular Cloning" (by Sambrook, J., Fritsh, E. F. and Manitis, T.; published by Cold Spring Harbor Press in 1989) or, when a commercially available reagent or kit is used, it was carried out according to the direction for use of the said commercially available product.

EXAMPLES

Example 1

Mouse and Human cDNA Cloning of Sodium-Independent Small Neutral Amino Acid Transporter which Transports L- and D-Amino Acids

[0074] (1) Isolation of cDNA of 4F2hc of Mouse and Human Being and Preparation of cRNA

[0075] A cDNA library was prepared from poly(A)⁺ RNA purified from brain of mouse or from poly(A)⁺ RNA derived from human placenta (purchased from Clontec) using a kit for the synthesis of cDNA (trade name: Superscript Choice System; manufactured by Gibco) and was integrated into a site cleaved by a restriction enzyme EcoRI of phage vector λ ZipLox (manufactured by Gibco). A segment which corresponds to the bases of from 135th to 580th bases of 4F2hc gene of rat (Broer, et al., Biochem. J., volume 312, page 863, 1995) was amplified and labeled with ³²P-dCTP and the resulting one was used as a probe whereby a cDNA library of brain of mouse and a cDNA library of human placenta were screened. Hybridization was carried out for one night in a solution for hybridization and a filter membrane was washed at 37° C. with 0.1×SSC/0.1% SDS. As to the solution for hybridization, there was used a buffer of pH 6.5 containing 5×SSC, 3× Denhard's solution, 0.2% SDS, 10% dextran sulfate, 50% formamide, 0.01% Abtiform B (trade name; Sigma) (antifoaming agent), 0.2 mg/ml salmon sperm modified DNA, 2.5 mM sodium pyrophosphate and 25 mM-MES. A cDNA moiety of λ ZipLox phage into which cDNA was integrated was integrated into a plasmid pZL1. In cDNA of human 4F2hc, a cDNA moiety of λZipLox phage into which cDNA was integrated was recombined to a plasmid pZL1.

[0076] The resulting clone or the clone containing cDNA of 4F2hc of mouse and human being was subjected to a base sequence determination of cDNA by a diterminator cycle sequencing method (Applied Biosystems) using a synthetic primer for determination of base sequence. As a result, the cloned cDNA was confirmed to be that of gene of 4F2hc of mouse or human being. The base sequences of the resulting 4F2hc are represented by SEQ ID NO: 3 and 6 of the Sequence Listing which will be mentioned later.

[0077] From the plasmid containing cDNA of 4F2hc of mouse and human being prepared as above, cRNA (RNA complementary to cDNA) was prepared using a T7RNA polymerase.

[0078] (2) Isolation of cDNA of Mouse of Sodium-Independent Small Neutral Amino Acid Transporter Asc-1 which Transports L- and D-Amino Acids and Preparation of cRNA

[0079] A sense primer (5'-CTCTTCACATGCATCTC-CAC-3') (SEQ ID NO: 14) corresponding to 35-54 bp of LAT1-analogous sequence GenBankTM/EBI/DDBI accession No. N32639 obtained by retrieval of EST (expressed sequence tag) database using a base sequence of translated region of LAT1, an antisense primer (5'-GGTACACGAC-CACACACTC-3') (SEQ ID NO: 15) corresponding to 397-416 bp thereof and an IMAGE (Integrated and Molecular Analysis of Genomes and their Expression) cDNA clone No. 267666 were used as templates whereby DNA fragment

was amplified by PCR. The resulting DNA fragment was labeled with ³²P-dCTP and was used as a probe to screen a cDNA library of brain of mouse.

[0080] The cDNA library was prepared from poly(A)+ RNA derived from brain of mouse using a kit for the synthesis of cDNA (trade name: Superscript Choice System; manufactured by Gibco) and was integrated into a site of phage vector $\lambda ZipLox$ (Gibco) cleaved by a restriction enzyme EcoRI. Hybridization by a probe labeled with ³²P_dCTP was carried out for one night in a solution of hybridization at 37° C. and a filter membrane was washed at 37° C. with 0.1×SSC/0.1% SDS. As to the solution for hybridization, there was used a buffer of pH 6.5 containing 5×SSC, 3× Denhard's solution, 0.2% SDS, 10% dextran sulfate, 50% formamide, 0.01% Abtiform B (trade name; Sigma) (antifoaming agent), 0.2 mg/ml salmon sperm modified DNA, 2.5 mM sodium pyrophosphate and 25 mM-MES. A cDNA moiety of % ZipLox phage into which cDNA was integrated was integrated into a plasmid pZL1 and was further subcloned to a plasmid pBluescript II SK⁻ (manufactured by Stratagene).

[0081] The resulting clone or the clone containing cDNA of asc-1 of mouse was subjected to a base sequence determination of cDNA by a diterminator cycle sequencing method (Applied Biosystems) using a synthetic primer for determination of base sequence.

[0082] As a result, a base sequence of asc-1 gene of mouse was obtained. Further, a base sequence of cDNA was analyzed by a conventional method to determine a translated region of cDNA and an amino acid sequence of asc-1 encoded there.

[0083] Those sequences are represented by SEQ ID NO: 1 (amino acid sequence) and 2 (base sequence) in the Sequence Listing which will be mentioned later.

[0084] The asc-1 had a homology of 45% in terms of amino acid sequence to a rat transporter LAT1 corresponding to a neutral amino acid transport system ^{-}L and the homology of 65% to LAT2. Further, the asc-1 had a homology of 45% to a human transporter y⁺LAT1 corresponding to a neutral and basic amino acid transport system y⁻L and the homology of 45% to y+LAT2. Furthermore, the asc-1 had a homology of 45% to a transporter xCT of mouse corresponding to cystine and an acidic amino acid transport system x⁻c and a homology of 44% in terms of amino acid sequence to a transporter BAT1 of rat corresponding to cystine and a neutral and basic amino acid transport system b^{0.+}.

[0085] Comparison of asc-1 with LAT2 of rat, LAT1 of rat, human y⁺LAT1, human y⁺LAT2 and xCT of mouse in terms of amino acid sequence is shown in FIG. 1.

[0086] As a result of analysis of an amino acid sequence of asc-1 by an SOSUI algorithm (Hirokawa, T. et al., *Bioinformatics*, volume 14, page 378 (1998)), 12 membrane-spanning domains were expected as shown by the lines in FIG. **1**. There were also the sites which were believed to be tyrosine phosphorylated site in the second hydrophilic loop, protein kinase C-dependent phosphorylated site in N-terminal intracellular region, the eighth hydrophilic loop and C-terminal intracellular region and cAMP-dependent phosphorylated site in N-terminal intracellular region.

[0087] (3) Isolation of Human cDNA of Sodium-Independent Small Neutral Amino Acid Transporter Asc-1 which Transports L- and D-Amino Acids and Preparation of cRNA.

[0088] Fragment cleaved by NcoI of asc-1 cDNA of mouse (corresponding to 523-1366 bp of asc-1 cDNA of mouse) was labeled with ³²P-dCTP and this was used as a probe for screening a human brain cDNA library.

[0089] The cDNA library was prepared from $poly(A)^+$ RNA (purchased from Clontech) derived from human brain using a kit for the synthesis of cDNA (trade name: Superscript Choice System; manufactured by Gibco) and integrated into a site of phage vector $\lambda ZipLox$ (manufactured by Gibco) cleaved by a restriction enzyme EcoRI. Hybridization by a probe labeled with ³²P-dCTP was carried out at 37° C. in a solution for hybridization for one night and a filter membrane was washed at 37° C. with 0.1×SSC/0.1% SDS. As to the solution for hybridization, there was used a buffer of pH 6.5 containing 5×SSC, 3× Denhard's solution, 0.2% SDS, 10% dextran sulfate, 50% formamide, 0.01% Abtiform B (trade name; Sigma) (antifoaming agent), 0.2 mg/ml salmon sperm modified DNA, 2.5 mM sodium pyrophosphate and 25 mM-MES. A cDNA moiety of λ ZipLox phage into which cDNA was integrated was integrated into a plasmid pZL1.

[0090] The resulting clone or the clone containing cDNA of human asc-1 was subjected to a base sequence determination of cDNA by a diterminator cycle sequencing method (Applied Biosystems) using a synthetic primer for determination of base sequence.

[0091] As a result, a base sequence of human asc-1 gene was obtained. Further, a base sequence of cDNA was analyzed by a conventional method to determine a translated region of cDNA and an amino acid sequence of asc-1 encoded there.

[0092] Those sequences are represented by SEQ ID NO: 4 (amino acid sequence) and 5 (base sequence) in the Sequence Listing which will be mentioned later.

[0093] Comparison of the expected amino acid sequence of human asc-1 and asc-1 of rat is shown in FIG. **2**.

[0094] (4) Expression of Asc-1 Gene in Various Tissues of Mouse (Analysis by a Northern Blotting)

[0095] cDNA fragment corresponding to 1-512 bases of asc-1 gene was excised by restriction enzymes EcoRI and XhoI and labeled with ^{32}P -dCTP and the resulting one is used as a probe for conducting a northern blotting as follows to RNA extracted from various tissues of mouse. Thus, 3 µg of poly(A)⁺ RNA were subjected to electrophoresis with 1% agarose/formaldehyde gel and transferred to a nitrocellulose filter. This filter was subjected to hybridization for one night using a hybridization solution containing asc-1 cDNA fragment labeled with $^{32}P_{-}dCTP$. The filter was washed at 65° C. with 0.1×SSC containing 0.1% SDS.

[0096] Result of the northern blotting is shown in FIG. **3** by a picture which is a substitute for a drawing. As a result, a band was detected near 1.9 kb in brain, lung and placenta. In addition, a band was detected at about 4.4 kb in small intestine.

[0097] (5) Expression of asc-1 and 4F2hc Protein in Brain of Mouse

[0098] Specific antibody to a synthetic oligopeptide [PSPLPITDKPLKTQC] (SEQ ID NO: 16) corresponding to 517-530 amino acid residues of asc-1 of mouse and to a synthetic oligopeptide [CEGLLLQFPFVA] (SEQ ID NO: 17) (cysteine residue of C-terminal or N-terminal was introduced for a conjugation with KLH (keyhole limpet hemocyanine)) corresponding to 516-526 amino acid residue of 4F2hc of mouse was prepared according to a method of Altman, et al. (Altman, et al., *Proc. Natl. Acad. Sci. USA*, volume 81, pages 2176-2180, 1984).

[0099] Fraction of cerebral membrane of mouse was prepared according to a method of Thorens, et al. (Thorens, et al., *Cell*, volume 55, pages 281-290, 1988). A protein sample was treated at 100° C. for 5 minutes in the presence (under reducing condition) or absence (under non-reducing condition) of 5% 2-mercaptoethanol, subjected to electrophoresis by SDS-polyacrylamide gel, subjected to blotting to a Hybond-P PVDV transfer membrane and treated with an anti-asc-1 antiserum (1:10,000) or an anti-4F2hc antiserum (1:10,000).

[0100] The result is shown in a picture of FIG. 4 as a substitute for a drawing. Left side of FIG. 4 is for the anti-asc-1 antibody while right side thereof is for the anti-4F2hc antibody. They were carried out under non-reducing condition (-) and reducing condition (+), respectively.

[0101] As shown in FIG. **4**, in the anti-asc-1 antiserum, a band of 118 kDa observed under a non-reducing condition disappeared under a reducing condition and transferred to a band of 33 kDa. In the anti-4F2hc antiserum, a band of 118 kDa observed under a non-reducing condition disappeared under a reducing condition and a band of 85 kDa appeared. Those results suggest that asc-1 and 4F2hc were connected by a disulfide bond to form a heterodimer.

Example 2

Characterization of Sodium-Independent Small Neutral Amino Acid Transporter Asc-1 which Transports L- and D-Amino Acids

[0102] (1) Role of 4F2hc in Transport Activity of asc-1

[0103] Incorporation of alanine when asc-1 gene cRNA of mouse was solely expressed in oocytes of Xenopus and when asc-1 gene cRNA of mouse and 4F2hc gene cRNA of mouse were expressed in oocytes of Xenopus together was compared.

[0104] Into oocytes were injected 12 ng of asc-1 gene cRNA of mouse, 13 ng of 4F2hc gene cRNA of mouse or 12 ng asc-1 gene cRNA of mouse/13 ng of 4F2hc gene cRNA of mouse to express followed by incubating for 3 days. With regard to the oocytes in which asc-1 gene cRNA, 4F2hc gene cRNA or asc-1 gene cRNA/4F2hc gene cRNA was injected, there was carried out an experiment for incorporation of the substrate according to a method by Kanai, et al. (Kanai and Hediger, *Nature, volume* 360, pages 467-471, 1992) using alanine as a substrate as follows. Thus, the oocytes were allowed to stand for 30 minutes in a Na⁺-free uptake solution [100 mM choline chloride, 2 mM potassium chloride, 1.8 mM calcium chloride, 1 mM magnesium chloride, 5 mM HEPES; pH 7.4] containing ¹⁴C-alanine

 $(100 \ \mu M)$ as a substrate and the rate of the substrate incorporated into the cells was measured by way of counting the radioactivity incorporated thereinto.

[0105] The result is shown in FIG. **5**. In the oocytes where only asc-1 was expressed, incorporation of alanine was in the same level as in the case of the oocytes into which water was injected as a control while, in the oocytes where both asc-1 and 4F2hc were expressed together, a big incorporation of alanine was shown whereby it is believed that 4F2hc is necessary for asc-1 to achieve its function.

[0106] (2) Dependency of Transport Activity Asc-1 on Salt

[0107] In an experiment of incorporation of alanine by oocytes into which both asc-1 gene cRNA and 4F2hc gene cRNA of mouse were injected together, influence of the salt added to the medium was investigated.

[0108] The experiment of incorporation of alanine was carried out in accordance with the method mentioned in the above Example 2(1) using oocytes into which both asc-1 gene cRNA and 4F2hc gene cRNA of mouse were injected together. When the influence of sodium ion was checked however, a standard uptake solution (where 100 mM choline chloride was substituted with 100 mM sodium chloride) was used in place of the Na⁺-free uptake solution as the uptake solution. When the influence of chlorine ion was checked, a gluconic acid uptake solution (where 100 mM sodium chloride was substituted with 100 mM sodium gluconate) was used in place of the standard uptake solution.

[0109] The result is shown in FIG. **6**. Even when choline outside the cells was changed to sodium or even when chlorine ion outside the cells was changed to gluconic acid ion, that does no affect the incorporation of alanine at all. From those, it is shown that asc-1 is a transporter which acts independently of sodium ion and chlorine ion.

[0110] (3) A Michaelis-Menten Kinetic Test for Asc-1

[0111] A Michaelis-Menten kinetic test was carried out for a sodium-independent small neutral amino acid transporter asc-1 which transports L- and D-amino acids. By checking the changes in the rate of incorporation of alanine due to the difference in concentration of the alanine substrate, the Michaelis-Menten kinetic test of asc-1 was carried out.

[0112] An experiment for the incorporation of alanine was carried out according to the method mentioned in the above Example 2(1) using the oocytes into which both asc-1 gene cRNA of mouse and 4F2hc gene cRNA of mouse were injected. The result is shown in FIG. **7**. The result was that the Km value was $23.0\pm5.1 \mu$ M (mean value±standard error; n=4).

[0113] With regard to amino acids other than alanine which were used as substrates, a Michaelis-Menten kinetic was carried out as well in the same manner whereupon Km values and Vmax values were calculated. The result is shown in the following Table 1. Each Vmax value in Table 1 was shown in terms of the ratio when the Vmax value of alanine was defined as 1.00.

TABLE 1

Amino Acid	Km μM	Vmax ^a
	•	
L-Alanine	23.0	(1.00)
Glycine	7.8	0.89
L-Serine	11.3	1.02
L-Threonine	19.3	0.86
L-Cysteine	23.7	0.82
L-Valine	112	1.17
L-Methionine	139	1.15
L-Isoleucine	160	1.33
L-Leucine	245	0.58
L-Histidine	368	0.79
L-Phenylalanine	464	1.09
AIB	22.7	0.81
D-Alanine	100	0.86
D-Serine	52.0	1.22
β-Alanine	281	0.92

^aThe Vmax value for each amino acid was shown in terms of the ratio to the Vmax value for alanine

[0114] (4) Substrate Selectivity of Asc-1 (Experiment for Inhibition by Addition of Amino Acid and Analogs Thereof)

[0115] In an experiment of incorporation of alanine by oocytes into which both asc-1 gene cRNA of mouse and 4F2hc gene cRNA of mouse were injected, influence of addition of various amino acid and analogs thereof was investigated.

[0116] In an experiment of incorporation of alanine, a method according to that mentioned in the above Example 2(1) was carried out using oocytes into which both asc-1 gene cRNA of mouse and 4F2hc gene cRNA of mouse were injected. Here, a Na⁺-free uptake solution was used and incorporation of ¹⁴C-alanine (50 μ M) was measured in the presence and absence of 5 mM of various compounds (non-labeled).

[0117] The result in the presence and absence (-) of various L-amino acids or analogous compounds thereof is shown in FIG. 8. The result in the presence and absence (-) of various D-amino acids is shown in FIG. 9. The result in the presence and absence (-) of alanine or analogous compounds thereof is shown in FIG. 10.

[0118] In various neutral L-amino acids, a cis-inhibiting effect was observed. Glycine, alanine, serine, threonine and cysteine particularly strongly inhibited the incorporation of ¹⁴C-alanine mediated by asc-1 (refer to FIG. **8**).

[0119] Among the D-amino acids, D-alanine and D-serine strongly inhibited the incorporation of ¹⁴C-alanine mediated by asc-1. D-Threonine and D-cysteine mediumly inhibited the incorporation of ¹⁴C-alanine mediated by asc-1 (refer to FIG. **9**).

[0120] Even in the case of the substances other than standard amino acids, β -alanine, alanine methyl ester and α -aminoisobutyric acid (α -methylalanine) also inhibited the incorporation of ¹⁴C-alanine mediated by asc-1 (refer to FIG. **10**). Acidic amino acids, basic amino acids, transport system L-specific inhibitor 2-amino-2-norbornane-carboxy-lic acid (BCH), γ -aminoisobutyric acid and N-methylamino acids (N-methylalanine, α -aminomethylisobutyric acid and

sarcosine) did not affect the incorporation of 14 C-alanine mediated by asc-1 (refer to FIG. 8 and FIG. 10).

[0121] (5) Substrate Selectivity of Asc-1 (Test for Incorporation Using Various Amino Acids and Analogs as Substrate)

[0122] Incorporation by asc-1 was investigated using various amino acids and analogs thereof as substrates. Experiment for incorporation of various amino acids and analogs thereof was carried out according to the method mentioned in the above Example 2(1) using oocytes into which asc-1 gene cRNA of mouse and 4F2hc gene cRNA of mouse were injected together. With regard to the substrates however, various compounds labeled with radioactivity were used in place of ¹⁴C-alanine.

[0123] Result of incorporation of the radiolabeled L-amino acids is shown in FIG. **11**. Result of incorporation of the radiolabeled D-amino acids is shown in FIG. **12**. Result of incorporation of the radiolabeled L-alanine or analogous compound thereof is shown in FIG. **13**.

[0124] As a result, a big incorporation into the oocytes was noted when glycine (a ¹⁴C compound), L-alanine (a ¹⁴C compound), L-sthreonine (a ¹⁴C compound), L-threonine (a ¹⁴C compound), L-cysteine (a ¹⁴C compound) (for those, refer to FIG. **11**), D-alanine (a ¹⁴C compound), D-serine (a ¹⁴C compound) (for those, refer to FIG. **12**), β -alanine (a ¹⁴C compound) (for those, refer to FIG. **13**) were used as substrates.

[0125] (6) pH-Dependency of Transport Activity of Asc-1

[0126] Influence of pH was checked in an experiment for incorporation of alanine by oocytes into which both asc-1 gene cRNA and 4F2hc gene cRNA of mouse were injected together. With regard to an experiment for incorporation of alanine, the method according to that mentioned in the above Example 2 (1) was carried out using oocytes into which both asc-1 gene cRNA of mouse and 4F2hc gene cRNA of mouse were injected together.

[0127] Result where the influence of pH in the experiment for incorporation of alanine was checked is shown in FIG. **14**. As a result thereof, there was no significant dependency on pH in the incorporation of alanine (refer to FIG. **14**).

[0128] (7) Test of Release of Amino Acid Mediated by Asc-1

[0129] Release of a preloaded ¹⁴C-alanine mediated by asc-1 was checked in the oocytes into which both asc-1 gene cRNA and 4F2hc gene cRNA of mouse were injected together. ¹⁴C-Alanine (-3nCi) of 100 μ M in an amount of 100 nl was injected into the oocytes into which both asc-1 gene cRNA and 4F2hc gene cRNA of mouse were injected together, washed with an ice-cooled Na⁺-free uptake solution containing no alanine and transferred to a Na⁺-free uptake solution to which alanine (100 μ M) was added or not added at room temperature (18° C.-22° C.) and the amount of ¹⁴C-alanine released outside the cells was measured.

[0130] Further, ¹⁴C-leucine was similarly injected into oocytes into which LAT1 gene cRNA and 4F2hc gene cRNA of rat were injected together (Kanai et al., *J. Biol. Chem.*, volume 273, page 23629, 1988), washed with an ice-cooled Na⁺-free uptake solution containing no leucine and transferred to a Na⁺-free uptake solution to which leucine (100

 μ M) was added or not added at room temperature (18° C.-22° C.) whereupon the amount of ¹⁴C-leucine released outside the cells was measured.

[0131] Those results are shown in FIG. 15, FIG. 16 and FIG. 17.

[0132] FIG. **15** shows the result of checking the release of ¹⁴C-alanine from the oocytes into which cRNA of asc-1 gene of mouse and cRNA of 4F2hc gene of mouse were injected and the ordinate in the drawing shows a rate (%) of the released radioactivity to the radioactivity injected into the oocytes. Left side of FIG. **15** shows the case in the absence of Na (–) while right side thereof shows that in the presence of Na (+) and, in each graph, L-Ala(–) shows the case where L-alanine was not added while L-Ala(+) shows the case where L-alanine was added.

[0133] FIG. 16 shows the result of checking the progress of release of ¹⁴C-alanine with a lapse of time by oocytes into which cRNA of mouse asc-1 gene and cRNA of mouse 4F2hc gene are injected. In the drawing, \bigcirc is the case where, in the release of ¹⁴C-alanine in the oocytes into which water is injected as a control instead of cRNA of mouse asc-1 gene and cRNA of mouse 4F2hc gene, a Na⁺-free uptake solution to which no alanine is added is used; \bullet is the case where, in the release of ¹⁴C-alanine in the oocytes into which water is injected as a control instead of cRNA of mouse asc-1 gene and cRNA of mouse 4F2hc gene, a Na⁺-free uptake solution to which alanine is added is used; \Box is the case where, in the release of ¹⁴C-alanine in the oocytes into which cRNA of mouse asc-1 gene and cRNA of mouse 4F2hc gene are injected, a Na⁺-free uptake solution to which no alanine is added is used; and \blacksquare is the case where, in the release of ¹⁴C-alanine in the oocytes into which cRNA of mouse asc-1 gene and cRNA of mouse 4F2hc gene are injected, a Na⁺-free uptake solution to which alanine is added is used. The ordinate in the drawing shows the rate (%) of the released radioactivity to the radioactivity injected into the oocytes.

[0134] FIG. 17 shows the result of checking the progress of release of ¹⁴C-leucine with a lapse of time by oocytes into which cRNA of rat LAT1 gene and cRNA of rat 4F2hc gene are injected. In the drawing, 0 is the case where, in the release of ¹⁴C-leucine in the oocytes into which water is injected as a control instead of cRNA of rat LAT1 gene and cRNA of rat 4F2hc gene, a Na+-free uptake solution to which no leucine is added is used; \bullet is the case where, in the release of ¹⁴C-leucine in the oocytes into which water is injected as a control instead of cRNA of rat LAT1 gene and cRNA of rat 4F2hc gene, a Na+-free uptake solution to which leucine is added is used; \bullet is the case where, in the release of 14C-leucine in the oocytes into which cRNA of rat LAT1 gene and cRNA of rat 4F2hc gene are injected, a Na⁺-free uptake solution to which no leucine is added is used; and \blacksquare is the case where, in the release of ¹⁴C-leucine in the oocytes into which cRNA of rat LAT1 gene and cRNA of rat 4F2hc gene are injected, a Na+-free uptake solution to which leucine is added is used. The ordinate in the drawing shows the rate (%) of the released radioactivity to the radioactivity injected into the oocytes.

[0135] As a result, even when alanine was not added to the outside of the cells, a significant release of ¹⁴C-alanine was observed in the case of asc-1 and such a release significantly increased by addition of alanine to the outside of the cells

(refer to FIG. **15** and FIG. **16**). On the other hand, in the case of LAT1 which is a complete exchange transport mediating the forced exchange, release of leucine was observed only when leucine was added to the outside of the cells (refer to FIG. **17**). Accordingly, although asc-1 is mostly in an exchange transport mode, it was found to be a transporter where a transport mode of a promotion diffusion type is mixed as well.

[0136] (8) Investigation of Substrate Selectivity of Asc-1 Utilizing the Release Test of Amino Acids

[0137] In oocytes into which cRNA of asc-1 gene and cRNA of 4F2hc gene of mouse were injected together, release of preloaded ¹⁴C-alanine mediated by asc-1 was investigated whereupon it was checked whether the compound which inhibited the incorporation of ¹⁴C-alanine mediated by asc-1 was a substrate of asc-1.

[0138] ¹⁴C-Alanine (-3nCi) of 100 μ M in an amount of 100 nl was injected into the oocytes into which both asc-1 gene cRNA and 4F2hc gene cRNA of mouse were injected together, washed with an ice-cooled Na⁺-free uptake solution containing no alanine and transferred to a Na⁺-free uptake solution to which amino acid or amino acid analog (100 μ M) was added or not added at room temperature (18° C.-22° C.) and the amount of ¹⁴C-alanine released outside the cells was measured.

[0139] The result is shown in FIG. **18**. Black bars in FIG. **18** are the case where there were used oocytes into which cRNA of mouse asc-1 gene and cRNA of mouse 4F2hc gene were injected while white bars are the case where there were used oocytes into which water was injected instead of cRNA as a control. (–) shows the case where no amino acid was added to a Na⁺-free uptake solution. The ordinate in FIG. **18** shows the rate (%) of the released radioactivity to the radioactivity injected into the oocytes.

[0140] As a result, a high increase in the release of 14 C-alanine was observed in glycine, alanine, serine and threonine and a medium increase therein was observed in methionine and valine (refer to FIG. **18**). Such a result coincides with the result of the test for incorporation of amino acids (refer to FIG. **11**) and the test for release of amino acids was shown to be able to be used for determination of substrate selectivity of asc-1.

[0141] The result where further investigation was conducted for D-amino acids and amino acid analogs using the said method is shown in FIG. 19 and FIG. 20. With regard to D-amino acids, D-alanine, D-serine, D-threonine and D-cysteine resulted in a significant increase in the release of ¹⁴C-alanine (refer to FIG. 19). With regard to amino acid analogs, β -alanine, alanine methyl ester and α -aminoisobutyric acid (AIB) resulted in a significant increase in the release of ¹⁴C-alanine (refer to FIG. 20). It was therefore found that D-threonine, D-cysteine and alanine methyl ester which have been unable to be subjected to an incorporation experiment using radiolabeled ones because of unavailability of radiolabeled compounds are now able to be substrates for asc-1. As such, when an amino acid releasing test is used, it is now possible to screen whether a compound can be a substrate for asc-1 or, in other words, whether it can be transported by asc-1 even in the case of the compound where no radiolabeled one is available for the investigation.

[0142] (9) Investigation of Substrate Selectivity of Intracellular Substrate-Binding Site of Asc-1 Utilizing the Release Test of Amino Acids

[0143] In oocytes into which cRNA of asc-1 gene and cRNA of 4F2hc gene of mouse were injected together, release of preloaded ¹⁴C-amino acid mediated by asc-1 was checked whereby the substrate selectivity of intracellular substrate-binding site of asc-1 was checked.

[0144] ¹⁴C-Amino acid (~3nCi) of 100 μ M in an amount of 100 nl was injected into the oocytes into which both asc-1 gene cRNA and 4F2hc gene cRNA of mouse were injected together, washed with an ice-cooled Na⁺-free uptake solution containing no alanine and transferred to a Na⁺-free uptake solution to which alanine (100 μ M) was added or not added at room temperature (18° C.-22° C.) and the amount of ¹⁴C-amino acid released outside the cells was measured.

[0145] The result is shown in FIG. **21**. Black bars in FIG. **21** show the case where alanine was added to a Na⁺-free uptake solution while bars with oblique lines show the case where alanine was not added to a Na⁺-free uptake solution. The ordinate of FIG. **21** shows the rate (%) of the release radioactivity to the radioactivity injected into oocytes.

[0146] As a result, an increase in release of ¹⁴C-labeled glycine, alanine, serine, threonine and cysteine injected into the cells by extracellular alanine was observed. Therefore, it was shown that the intracellular substrate-binding site shows a substrate selectivity for receiving small neutral amino acid such as glycine, alanine, serine, threonine and cysteine as same as in the extracellular case.

[0147] (10) Confirmation of Human Asc-1

[0148] From a plasmid containing cDNA of human asc-1 obtained in Example 1(3), cRNA (RNA complementary to cDNA) was prepared using a T7 RNA polymerase. Comparison was made between incorporation of ¹⁴C-alanine in the case where human asc-1 gene cRNA was solely expressed in oocytes with that in the case where both human asc-1 gene cRNA and human 4F2hc gene cRNA were expressed in oocytes.

[0149] Expression was carried out by injection of 12.5 ng of human asc-1 gene cRNA, 12.5 ng of human 4F2hc gene

cRNA or 12.5 ng of human asc-1 gene cRNA/12.5 ng of human 4F2hc gene cRNA into oocytes and incubation was conducted for three days. With regard to the oocytes into which human asc-1 gene cRNA, 4F2hc gene cRNA or human asc-1 gene cRNA/4F2hc gene cRNA was injected, an experiment for incorporation of substrate was carried out according to Example 2(1) using alanine as a substrate.

[0150] The result is as follows. Like in the case of asc-1 of mouse, the oocytes where only asc-1 was expressed showed incorporation of alanine in the same level as in the case of oocytes into which water was injected as a control while, in the oocytes where both asc-1 and 4F2hc were expressed together, a big incorporation of alanine was observed. Accordingly, like asc-1 of mouse, human asc-1 was also shown to achieve the function only when it was present together with 4F2hc. It is also noted that the human asc-1 shows the same property as the above-mentioned asc-1 of mouse.

INDUSTRIAL APPLICABILITY

[0151] The sodium-independent small neutral amino acid transporter according to the present invention which transports L- and D-amino acids and gene thereof makes it possible to conduct an in vitro investigation of transport of small neutral amino acids of L- and D-forms and amino acid analogous compounds including exogenous matters at the expressed part of the said transporter and also to conduct an in vitro presumption of fate of those compounds in vivo on the basis of the above. Further, that is useful for the development of medicaments which efficiently permeate the expressed part of the said transporter and the present invention provides novel amino acid transporters. Furthermore, as a result of modulation of an ability of the said transporter for transporting the small neutral L- and D-amino acids and analogs thereof, it is useful as a method for controlling the resistance of cells to oxidative stress, a method for controlling the activity of glutamic acid receptor of an NMDA type in nervous system, a method for controlling the cell growth and a method for screening the medicament having such activities.

```
SEQUENCE LISTING
```

```
<160> NUMBER OF SEQ ID NOS: 29

<210> SEQ ID NO 1

<211> LENGTH: 530

<212> TYPE: PRT

<213> ORGANISM: Mus sp.

<400> SEQUENCE: 1

Met Arg Arg Asp Ser Asp Met Ala Ser His Ile Gln Gln Pro Gly Gly Is

10 15

His Gly Asn Pro Gly Pro Ala Pro Ser Pro Ser Pro Gly Pro Gly Pro 20 30

Gly Pro Gly Ala Ser Glu Arg Val Ala Leu Lys Lys Glu Ile Gly Leu 35 40 45
```

-continued

											-	con	tin	ued		
Val	Ser 50	Ala	Cys	Thr	Ile	Ile 55	Ile	Gly	Asn	Ile	Ile 60	Gly	Ser	Gly	Ile	
Phe 65	Ile	Ser	Pro	Lys	Gly 70	Val	Leu	Glu	His	Ser 75	Gly	Ser	Val	Gly	Leu 80	
Ala	Leu	Phe	Val	Trp 85	Val	Leu	Gly	Gly	Gly 90	Val	Thr	Ala	Leu	Gly 95	Ser	
Leu	Сув	Tyr	Ala 100	Glu	Leu	Gly	Val	Ala 105	Ile	Pro	Lys	Ser	Gly 110	Gly	Asp	
Tyr	Ala	Ty r 115	Val	Thr	Glu	Ile	Phe 120	Gly	Gly	Leu	Ala	Gly 125	Phe	Leu	Leu	
Leu	Trp 130		Ala	Val	Leu	Ile 135	Met	Tyr	Pro	Thr	Ser 140	Leu	Ala	Val	Ile	
Ser 145	Met	Thr	Phe	Ser	Asn 150	Tyr	Val	Leu	Gln	Pro 155	Val	Phe	Pro	Asn	Сув 160	
Ile	Pro	Pro	Ala	Thr 165	Ala	Ser	Arg	Val	Leu 170	Ser	Met	Ala	Cys	Leu 175	Met	
Leu	Leu	Thr	T rp 180	Val	Asn	Ser	Ser	Ser 185	Val	Arg	Trp	Ala	Thr 190	Arg	Ile	
Gln	Val	Ile 195	Phe	Thr	Gly	Gly	L y s 200		Leu	Ala	Leu	Ser 205	Leu	Ile	Ile	
Thr	Val 210		Phe	Val	Gln	Ile 215	Phe	Gln	Gly	His	Phe 220		Glu	Leu	Arg	
Pro 225	Thr	Asn	Ala	Phe	Ala 230	Phe	Trp	Met	Thr	Pro 235	Ser	Val	Gly	His	Leu 240	
Ala	Leu	Ala	Phe	Leu 245	Gln	Gly	Ser	Phe	Ala 250	Phe	Ser	Gly	Trp	Asn 255	Phe	
Leu	Asn	Tyr	Val 260	Thr	Glu	Glu	Leu	Val 265	Asp	Pro	Arg	Lys	Asn 270	Leu	Pro	
Arg	Ala	Ile 275	Phe	Ile	Ser	Ile	Pro 280	Leu	Val	Thr	Phe	Val 285	Tyr	Thr	Phe	
Thr	Asn 290	Val	Ala	Tyr	Phe	Thr 295	Ala	Met	Ser	Pro	Gln 300	Glu	Leu	Leu	Ser	
Ser 305	Asn	Ala	Val	Ala	Val 310	Thr	Phe	Gly	Glu	L y s 315		Leu	Gly	Tyr	Phe 320	
Ser	Trp	Val	Met	Pro 325	Val	Ser	Val	Ala	Leu 330	Ser	Thr	Phe	Gly	Gly 335	Ile	
Asn	Gly	Tyr	Leu 340		Thr	Ser	Ser	Arg 345		Суз	Phe	Ser	Gly 350		Arg	
Glu	Gly	His 355		Pro	Ser	Phe	Leu 360	Ala	Met	Ile	His	Val 365		Arg	Cys	
Thr	Pro 370	Ile	Pro	Ala	Leu	Leu 375			Cys	Gly	Ala 380	Thr	Ala	Val	Ile	
Met 385		Val	Gly	Asp	Thr 390	Tyr	Thr	Leu	Ile	Asn 395	Tyr	Val	Ser	Phe	Ile 400	
Asn	Tyr	Leu	Cys	Ty r 405	Gly	Val	Thr	Ile	Leu 410	Gly	Leu	Leu	Val	Leu 415	Arg	
Trp	Arg	Arg	Pro 420	Ala	Leu	His	Arg	Pro 425	Ile	Lys	Val	Asn	Leu 430	Leu	Val	
Pro	Val	Val 435		Leu	Val	Phe	Trp 440		Phe	Leu	Leu	Val 445		Ser	Phe	
Ile	Ser		Pro	Met	Val	Суз		Val	Gly	Ile	Ile		Ile	Leu	Thr	

-continued	
450 455 460	
Gly Val Pro Ile Phe Phe Leu Gly Val Phe Trp Arg Ser Lys Pro L 465 470 475 4	.ys 180
Cys Val His Arg Phe Thr Glu Ser Met Thr Arg Trp Gly Gln Glu L	
485 490 495	
Cys Phe Val Val Tyr Pro Gln Gly Ser Leu Glu Glu Glu Glu Asn G 500 505 510	зly
Pro Met Gly Gln Pro Ser Pro Leu Pro Ile Thr Asp Lys Pro Leu I	.ys
515 520 525	-
Thr Gln 530	
<210> SEQ ID NO 2 <211> LENGTH: 1716	
<212> TYPE: DNA <213> ORGANISM: Mus sp.	
<400> SEQUENCE: 2	
agggaactgg gatgaggcgg gacagcgaca tggcaagcca catacaacag ccaggc	29990 60
acgggaaccc cggccctgcg ccctcgcctt ccccgggccc tggtcccggc ccggg	egeet 120
cggagcgggt ggcactcaag aaagagatcg ggctggtgag cgcttgcacc atcatc	satcg 180
ggaacatcat tggctcaggc atcttcatct cacccaaggg tgtcctggaa cactcg	ggget 240
ccgtgggttt ggccctcttc gtctgggtcc tgggtggg	etctc 300
tctgctatgc agagctgggt gtcgccatcc ccaagtctgg tggggactac gcctat	gtca 360
ctgagatett egggggeetg getggattee taetgetetg gagtgetgte eteate	catgt 420
accccaccag cctggctgtc atctccatga ccttctccaa ctatgtgctt cagcct	egtet 480
tteecaaetg tateeceeca gecaeageet etegagtaet eteeatggee tgeetg	gatge 540
teetgaegtg ggtgaacage teeagegtae getgggeeae gegeateeag gttate	ettca 600
ctggtgggaa gctgctggcg ctgtctctca tcatcactgt tggctttgtc cagato	ettee 660
aaggacactt tgaagagctg agacccacca atgccttcgc cttctggatg acaccg	gtctg 720
tgggtcacct ggccctggct ttcctccaag gttcttttgc cttcagtggc tggaac	ettec 780
tcaactatgt cacggaggag ctggttgacc cacgcaagaa cctacctcgt gccatc	ottca 840
tttccatccc actggtcacc tttgtgtaca cattcaccaa tgtcgcctac ttcact	-goca 900
tgtcccccca ggagttgctg tcctccaacg ccgtggcggt gaccttcggc gagaag	getge 960
tgggctactt ttcgtgggtc atgcccgtct ctgtggccct ctctactttt ggaggg	yatca 1020
atggctacct gttcacctca tccaggctat gcttctctgg agcccgagag ggacac	2ttac 1080
ccagetteet ggeeatgatt catgteagae getgeaceee aateeetgee eteett	lgtct 1140
gttgcggggc cacagcggtc atcatgctcg tgggtgacac atacacactc atcaac	statg 1200
tgtcetteat caactaeete tgetaeggag teactateet gggeetgett gtgetg	geget 1260
ggagacggcc ggcactccac aggcccatta aggtgaacct cctcgttcct gttgtg	gtact 1320
tggtgttetg ggcatteeta etggtettea getteatete ggageeeatg gtetgt	zgggg 1380
tcggcatcat cattateete actggggtte ceatettett eetgggagtg ttetgg	jagaa 1440
gcaaaccaaa gtgtgtacac agattcacag agtccatgac acgctggggc caggag	getgt 1500
gtttcgtggt ttacccccag ggctccctag aggaggagga aaatggcccc atgggc	cagc 1560

14

cctccccatt	gccca	tcace	g gao	caag	ccct	t tga	aagad	caca	atga	agac	ctt	gtaga	agactg	1620
gaacagccga	ttctg	tttad	c atq	gttg	ttta	a tto	gagaa	aggg	ggt	tgtg	ttt ·	tgtt	ttgttt	1680
tcaaaaattt	tttt	ctgca	a aaa	aaaa	aaaa	a aaa	aaaa							1716
<210> SEQ <211> LENG <212> TYPE <213> ORGA <220> FEAT <221> NAME <222> LOCA	TH: 18 : DNA NISM: 1 URE: /KEY: (52 Mus e CDS	-	1683)									
<400> SEQU	ENCE :	3												
gctagcctca	cggcc	acggo	g aco	gcct	ctct	t gaa	acggo	ggat	cca	ggca	gga ·	ttaga	agctgc	60
ctcactgact	acagg	ccgto	g tco	gtgt	caco	c gti	tcto	gcag	gca				ag gac ln Asp	117
acc gaa gt Thr Glu Va 5														165
aag cag cc Lys Gln Pr														213
ggt ctg gt Gl y Leu Va														261
aag ttc ac Lys Phe Th 5	r Gly													309
cct ggc tg Pro Gl y Tr 70														357
ggt tgg ct Gly Trp Le 85														405
ccg cgc tg Pro Arg Cy	s Arg		-								-		-	453
ctc tac cg Leu Tyr Ar														501
ggc ata gc Gly Ile Al 13	a Gly			Ser										549
gtg aag gg Val Lys Gl 150			Leu (597
atc aat ga Ile Asn Gl 165		Asp I	-		-					-			-	645
gaa gat tt Glu Asp Ph	e Lys .	-				-	-	-		-	-			693
atc att tt Ile Ile Le							-		-					741

-continued

Leu	cct Pro					att	qta	acc	200						a 4	789	
agt		215	GTII	Ala	Asp	Ile										109	
Ser	tct Ser 230															837	
	aag Lys															885	
	aag Lys															933	
	gac Asp															981	
	ttg Leu															1029	
	gaa Glu 310															1077	
-	agc Ser						-				-	-				1125	
	cat His															1173	
	cct Pro	-		-			-					-		-		1221	
	gga Gl y															1269	
	ttt Phe 390															1317	
	aat Asn															1365	
	ctt Leu															1413	
	tct Ser															1461	
	gag Glu															1509	
-	agg Arg 470			-					-			-			-	1557	
-	gct Ala			-		-		-	-	-			-	-		1605	
	gac Asp															1653	

-continued	
ggc ttg ctg tta cag ttc ccc ttt gtg gcc tgatccttcc tatgcagaac Gly Leu Leu Gln Phe Pro Phe Val Ala 520 525	1703
ctaccaccct cctttgttct ccccaggcct tttggattct agtcttcctc tccttgtttt	1763
taaacttttg cagattacat acgaattett ataetgggtg tttttgtett caaataaaaa	1823
catcacccct gcctcaaaaa aaaaaaaaa	1852
<210> SEQ ID NO 4 <211> LENGTH: 523 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 4	
Met Ala Gly His Thr Gln Gln Pro Ser Gly Arg Gly Asn Pro Arg Pro 1 5 10 15	
Ala Pro Ser Pro Ser Pro Val Pro Gly Thr Val Pro Gly Ala Ser Glu 20 25 30	
Arg Val Ala Leu Lys Lys Glu Ile Gly Leu Leu Ser Ala Cys Thr Ile 35 40 45	
Ile Ile Gly Asn Ile Ile Gly Ser Gly Ile Phe Ile Ser Pro Lys Gly 50 55 60	
Val Leu Glu His Ser Gly Ser Val Gly Leu Ala Leu Phe Val Trp Val 65 70 75 80	
Leu Gly Gly Gly Val Thr Ala Leu Gly Ser Leu Cys Tyr Ala Glu Leu 85 90 95	
Gly Val Ala Ile Pro Lys Ser Gly Gly Asp Tyr Ala Tyr Val Thr Glu 100 105 110	
Ile Phe Gly Gly Leu Ala Gly Phe Leu Leu Trp Ser Ala Val Leu 115 120 125	
Ile Met Tyr Pro Thr Ser Leu Ala Val Ile Ser Met Thr Phe Ser Asn 130 135 140	
Tyr Val Leu Gln Pro Val Phe Pro Asn Cys Ile Pro Pro Thr Thr Ala 145 150 155 160	
Ser Arg Val Leu Ser Met Ala Cys Leu Met Leu Leu Thr Trp Val Asn 165 170 175	
Ser Ser Ser Val Arg Trp Ala Thr Arg Ile Gln Asp Met Phe Thr Gly 180 185 190	
Gly Lys Leu Leu Ala Leu Ser Leu Ile Ile Gly Val Gly Leu Leu Gln	
195 200 205 Ile Phe Gln Gly His Phe Glu Glu Leu Arg Pro Ser Asn Ala Phe Ala	
210 215 220 Phe Trp Met Thr Pro Ser Val Gly His Leu Ala Leu Ala Phe Leu Gln	
225 230 235 240 Gly Ser Phe Ala Phe Ser Gly Trp Asn Phe Leu Asn Tyr Val Thr Glu	
245 250 255 Glu Met Val Asp Ala Arg Lys Asn Leu Pro Arg Ala Ile Phe Ile Ser 225	
260 265 270 Ile Pro Leu Val Thr Phe Val Tyr Thr Phe Thr Asn Ile Ala Tyr Phe	
275 280 285 Thr Ala Met Ser Pro Gln Glu Leu Leu Ser Ser Asn Ala Val Ala Val	
290295300Thr Phe Gly Glu Lys Leu Gly Tyr Phe Ser Trp Val Met Pro Val	
,// -/	

-continued

											-	con	tin	ued							
305					310					315					320						
Ser	Val	Ala	Leu	Ser 325	Thr	Phe	Gly	Gly	Ile 330	Asn	Gly	Tyr	Leu	Phe 335	Thr						
Гуr	Ser	Arg	Leu 340	Cys	Phe	Ser	Gly	Ala 345	Arg	Glu	Gly	His	Leu 350	Pro	Ser						
Leu	Leu	Ala 355	Met	Ile	His	Val	Arg 360	His	Cys	Thr	Pro	Ile 365	Pro	Ala	Leu						
Leu	Val 370	Cys	Cys	Gly	Ala	Thr 375	Ala	Val	Ile	Met	Leu 380	Val	Gly	Asp	Thr						
Fy r 385		Leu	Ile	Asn	Ty r 390		Ser	Phe	Ile	Asn 395		Leu	Cys	Tyr	Gly 400						
	Thr	Ile	Leu	Gly 405	Leu	Leu	Leu	Leu	Arg 410		Arg	Arg	Pro								
His	Arg	Pro			Val	Asn	Leu			Pro	Val	Ala	_	415 Leu	Val						
Phe	Trp		420 Phe	Leu	Leu	Val		425 Ser	Phe	Ile	Ser		430 Pro	Met	Val						
Сув	Gly	435 Val	Gly	Val	Ile	Ile	440 Ile	Leu	Thr	Gly	Val	445 Pro	Ile	Phe	Phe						
Leu	450 Gly	Val	Phe	Trp	Arg	455 Ser	Lys	Pro	Lys	Cys	460 Val	His	Ara	Leu	Thr						
465	-			-	470 Trp		-		-	475			-		480						
				485	-	-			490	-				495							
3111	Авр	AId	500	GIU	Glu	GIU	GIU	505	GLÀ	PIO	сув	PIO	510	Ser	Leu						
Leu	Pro	Ala 515	Thr	Asp	Lys	Pro	Ser 520	Lys	Pro	Gln											
<21 <21	0> SI 1> LH 2> TY 3> OH	ENGTH	H: 19 DNA	918	o sag	piens	5														
<40	0> SI	EQUEI	NCE :	5																	
cgg	ctgc	gag o	ggcc	gtga	gc to	cacg	gacco	g aco	ggaco	cgac	gggo	cggc	cgg (ccgga	acagad	:	60				
															agcag		20				
ccg	agcg	ggc (gcgg	gaac	cc ca	aggeo	ctgco	g cco	etego	cct	ccc	cagto	ccc (aggga	accgto		80				
ccc	ggcgo	cct d	cgga	gegg	gt ge	gegei	tcaa	g aaq	ggaga	atcg	ggci	tgct	gag (cdcc	gcaco		40				
															tggag		00				
cac [.]	tcage	gct d	ccgt	gggt	ct g	gece	tgtto	c gto	tggg	gtcc	tgg	gtgg	aaa (cgtga	acggct		60				
ctg	ggcto	ccc +	tctg	ctat	gc a	gage	tggga	a gto	cgcca	atcc	ccaa	agtc	tgg (cdddd	jactad		20				
gcc.	tacg	tca d	caga	gatc [.]	tt c	9999	gccto	g gci	ggct	ttc	tgci	tgct	ctg (gageo	geegto		80				
ctc	atcat	tgt a	accc	cacce	ag co	cttgo	ctgto	c ato	ctcca	atga	cct	tctc	caa (ctaco	gtgcto		40				
cag	cccg	tgt †	tccc	caac	tg ca	atcco	2222	c aco	cacag	gcct	ccc	gggt	gct (gtcca	atggco		00				
tgc	ctga	tgc +	tcct	gaca [.]	tg g	gtgaa	acago	e teo	agto	gtgc	gcto	gggc	cac (gcgca	atccag	í 6	60				
gac	atgt	tca d	cagg	cddd	aa go	ctgc	tggco	e tte	gtcco	ctca	tcat	tagg	cgt (gggco	ttctc		20				
cag	atct	tcc a	aaggi	acac	tt c	gagga	agcto	g ago	JCCC	agca	atgo	cctt	tgc ·	tttc	ggato	í 7	80				
acg	ccct	ccg H	tggg	acaco	ct g	gecet	tggco	tto	cctco	agg	gcto	cctt	cgc (cttca	agtggo	: 8	40				

tggaacttcc tcaactatgt caccgaggag atggttgacg cccgaaagaa cctacctcgc	
	900
gccatcttca tctccatccc actggtgacc ttcgtgtaca cgttcaccaa cattgcctac	960
ttcacggcca tgtcccccca ggagctgctc tcctccaatg cggtggctgt gaccttcggg	1020
gagaagetge tgggetaett ttettgggte atgeetgtet eegtggetet gteaacette	1080
ggagggatca atggttacct gttcacctac tccaggctgt gcttctctgg agcccgcgag	1140
gggcacctgc ccagcctgct ggccatgatc cacgtcagac actgcacccc catccccgcc	1200
ctcctcgtct gttgcggggc cacagccgtc atcatgctcg tgggcgacac gtacacgctc	1260
atcaactatg tgtccttcat caactacctc tgctacggcg tcaccatcct gggcctgctg	1320
ctgctgcgct ggaggcggcc tgcactccac aggcccatca aggtgaacct tctcatcccc	1380
gtggcgtact tggtcttctg ggccttcctg ctggtcttca gcttcatctc agagcctatg	1440
gtctgtgggg tcggcgtcat catcatcctt acggggggtgc ccattttctt tctgggagtg	1500
ttctggagaa gcaaaccaaa gtgtgtgcac agactcacag agtccatgac acactggggc	1560
caggagctgt gtttcgtggt ctacccccag gacgcccccg aagaggagga gaatggcccc	1620
tgcccaccct ccctgctgcc tgccacagac aagccctcga agccacaatg agatttttgt	1680
agagactgaa gcagttgttt ctgtttacat gttgtttatt gaggaggtgt tttggcaaaa	1740
aagttttgtt ttgttttttt ctggaaaaaa aagaaaaaag atacgactct cagaagcctg	1800
ttttaaggaa gccctaaaat gtggactggg tttcctgtct tagcactgcc ctgctagctc	1860
ttcctgaaaa ggcctataaa taaacagggc tggctgttaa aaaaaaaaaa	1918
<210> SEQ ID NO 6 <211> LENGTH: 1897	
<pre><212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (112)(1698)</pre>	
<213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS	
<213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (112)(1698)	60
<213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (112)(1698) <400> SEQUENCE: 6	60 117
<213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (112)(1698) <400> SEQUENCE: 6 ctgcgcggag gcacagaggc cgggggagagc gttctgggtc cgagggtcca ggtaggggtt gagccaccat ctgaccgcaa gctgcgtcgt gtcgccggtt ctgcaggcac c atg agc Met Ser	
<pre><213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (112)(1698) <400> SEQUENCE: 6 ctgcgcggag gcacagaggc cgggggagagc gttctgggtc cgagggtcca ggtaggggtt gagccaccat ctgaccgcaa gctgcgtcgt gtcgccggtt ctgcaggcac c atg agc Met Ser 1 cag gac acc gag gtg gat atg aag gag gtg gag ctg aat gag tta gag Gln Asp Thr Glu Val Asp Met Lys Glu Val Glu Leu Asn Glu Leu Glu</pre>	117
<pre><213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (112)(1698) <400> SEQUENCE: 6 ctgcgcggag gcacagaggc cggggagagc gttctgggtc cgagggtcca ggtaggggtt gagccaccat ctgaccgcaa gctgcgtcgt gtcgccggtt ctgcaggcac c atg agc Met Ser 1 cag gac acc gag gtg gat atg aag gag gtg gag ctg aat gag tta gag Gln Asp Thr Glu Val Asp Met Lys Glu Val Glu Leu Asn Glu Leu Glu 5 10 15 ccc gag aag cag ccg atg aac gcg gcg tct ggg gcg gcc atg tcc ctg Pro Glu Lys Gln Pro Met Asn Ala Ala Ser Gly Ala Ala Met Ser Leu</pre>	117 165
<pre><213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (112)(1698) <400> SEQUENCE: 6 ctgcgcggag gcacagaggc cggggagagc gttctgggtc cgagggtcca ggtaggggtt gagccaccat ctgaccgcaa gctgcgtcgt gtcgccggtt ctgcaggcac c atg agc Met Ser 1 cag gac acc gag gtg gat atg aag gag gtg gag ctg aat gag tta gag Gln Asp Thr Glu Val Asp Met Lys Glu Val Glu Leu Asn Glu Leu Glu 5 10 15 ccc gag aag cag ccg atg aac gcg gcg tct ggg gcg gcc atg tcc ctg Pro Glu Lys Gln Pro Met Asn Ala Ala Ser Gly Ala Ala Met Ser Leu 20 25 30 gcg gga gcc gag aag aat ggt ctg gtg aag atc aag gtg gcg gaa gac Ala Gly Ala Glu Lys Asn Gly Leu Val Lys Ile Lys Val Ala Glu Asp</pre>	117 165 213
<pre><213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (112)(1698) <400> SEQUENCE: 6 ctgcgcggag gcacagaggc cggggagagc gttctgggtc cgagggtcca ggtaggggtt gagccaccat ctgaccgcaa gctgcgtcgt gtcgccggtt ctgcaggcac c atg agc Met Ser 1 cag gac acc gag gtg gat atg aag gag gtg gag ctg aat gag tta gag Gln Asp Thr Glu Val Asp Met Lys Glu Val Glu Leu Asn Glu Leu Glu 5 10 15 ccc gag aag cag ccg atg aac gcg gcg tct ggg gcg gcc atg tcc ctg Pro Glu Lys Gln Pro Met Asn Ala Ala Ser Gly Ala Ala Met Ser Leu 20 25 30 gcg gga gcc gag aag aat ggt ctg gtg aag atc aag gtg gcg gaa gac Ala Gly Ala Glu Lys Asn Gly Leu Val Lys Ile Lys Val Ala Glu Asp 35 40 45 50 gag gcg gag gcg gca gcc gcg gct aag ttc acg ggc ctg tcc aag gag Glu Ala Glu Ala Ala Ala Ala Ala Lys Phe Thr Gly Leu Ser Lys Glu</pre>	117 165 213 261

-continued

get to Can get Can get Get get get get get Get and Get get Cat and Get Get ArmSolutionSolutionget tac Cet get Cat Cet get get Get and Get													con	tin	ued			
Ala val Yel Arg Ala Pro Ala 110 100 Yel Arg Ala Pro Ala 110 100 Yel Ala Cup atc Gup atc			85					90					95					
<pre>hit ty w trip trip the hit for Alls file Lew tyr Arg I he Gly Arep Lew Gln 125 135 135 135 135 135 135 135 135 135 13</pre>		Val					Arg					Arg					453	
Ala Phe Gln Gly Mike Gly Ala Gly Aan Le' Ala Gly Leë Lyé Gly Arg 133 the gat tac cly age tet ct cly aag gtg aag gge et tg tg tg gg ge ca Leë Aap Tyr Leë Ser Ser Leë Lye Val Lye Gly Leë Val Leë Gly Pro 155 the Aap Tyr Leë Ser Ser Leë Lye Val Lye Gly Leë Val Leë Gly Pro 155 the Aap Tyr Leë Ser Ser Leë Lye Val Lye Gly Leë Val Leë Gly Pro 155 the Aap Tyr Leë Ser Ser Leë Lye Val Lye Gly Leë Val Leë Gly Pro 160 the App Tyr An Gln Lye Aap Aap Val Ala Gln Thr Arp Leë Leë U Gln 175 the age cos aat the gge tee ag gaa gat the gas agt et te Leë Gln 186 the App Tyr An Phe Gly Ser Lys Glu Aap Phe Aap Ser Leë Leë U Gln 180 the get aas aas aag ag at c cg tg et at te gas ct ta ct cos aac 520 the gg gt Sag aac teg tg gt te tee ar cag gtt gao at tg gg co 220 the Arg Val Lye Arg Val Lee Gly Phe Sap Ser Lee Leë Gln 195 the get aas aas aag ag at te cg tg tt te ca cag gtt gao at tg gg co 210 the App Tyr Arg Gly Glu Aan Ser Trp Phe Ser Thr Cln Nel App Thr Val Ala 225 the cog gtt cg ga ca te gg gat tt tg ct ge aa gt gg cg tg gat 225 the cog gtt cgg gas at at gag dat tf ga gg gt de ca tee too too too too 235 the day get gag aat te de Glu Phe Trp Leë Gln Ani Gly Val Aap 225 the day get gas at at ac ac ag gt the agt ga ag ag ct gg ct 235 the get gag tg ge ca at at eac acag get the agt ga ag agg ct gas 235 the get gag tg ge ca at at eac acag get te cat ca co too too too 236 the get gag tg ge ca at te dee Gae the agt ga ag agg ct gas 236 the get gag tg ge ca at the dee Gae dee ta gag cag cag co 230 the all a Glu Trp Cln Aan IL Thr Lye Gly Phe Ser Glu Aap Arg Leë 230 the get tet at gg gg ag cat aca tea aas tee ct ag tet age ca tao ct te to the ter Ser Aap 340 the all the Ala Gly Thr Asn Ser Ser App Leë Gae Cat ac teg tet tee Ser Aap 340 the all the Ala Glu Trp ChA An IL Thr Lye Ser The Ser Thr Ser U Au Thr Ser Ser App 30 the ser An ILye App Ala Leë Leë U Au Thr Ser Ser App 30 the ser An ILye App Ala Leë Leë U Au Thr Ser Ser App 30 the ser An ILye App Ala Leë Leë U Au Thr Ser Ser App 30 the tet te te co ctt ge cat gas						Thr					Arg					Gln	501	
Let a sep Typ: Let e ser ser Let Ity is val Lys city Let Val Let icity Pro 155 att cao ang aco cag ang gat gat gt ty co gtt cag act gat tg ctg ctg cag 645 att cao ang aco cag ang gat gat gt ty co gtt cag act gat tg ctg ctg cag 645 att gat cao ang aco cag ang gat gat gt tg gtt co gtt cag act gat gat tt tg cao at gat co tg gat co and tt tg gat gat gtt co gtt can and the pro and the pro and provide the p					His					Leu					Gly		549	
<pre>He His tyg Aen Chi tyg Ap Ap Ai Aia Chi The Aep Leu Leu Chi 155</pre> tate gas cos aat tht ggs tos aag gas gat tht ggs ag st the de chi 177 180 tate gas cos aat the ggs tos aag gas gat the gas gat cto the cos acc 180 Aen Phe Chy See The Arg Val 11e Leu Aep Leu The Pro Aen 190 tate gas cos aat the ggs tos cog gt gts at ctg gg cot act gts gas at the de chi 180 195 A gys arg chy Can Aen Phe Chy See The Arg Val 11e Leu Aep Leu The Pro Aen 195 A gys arg chy Can Aen Phe Chy See The Arg Val 11e Leu Aep Leu The Pro Aen 205 Ala Aep The Val Ala 205 Ala Aep The Val Ala 206 Ala Aep The Val Ala 206 Ala Aep The Val Ala 207 Ala Aep The Val Ala 208 Ala Aep The Val Ala 209 the can gth cog gas at ag gas at ctg ag gt gas cot to ta the 200 Ala Aep The Val Ala 200 Ala Aep The Chi Val Aep The Val Ala 200 Ala Aep The Val Ala 200 Ala Aep The Val Ala 200 Ala Aep The Chi Val Aep The See Chi Aep The See Chi Aep The See Chi Aep The Chi Aep The Val Ala 200 Aep The Chi Val Arg Aep The Chi Aen Leu Lys Aep Ala See See Phe 200 Aep Aep Leu 200 Ala Aep The Leu Aep Aep Leu 200 Aep Aep Leu Leu Aep Aep Aep Leu Chi Chi The Aep Aep Aep 200 Aep Aep Leu Aep Aep Aep Leu Aep Aep Aep Leu Aep				Leu					Val					Leu			597	
Ile Asp Pro Asn Phe Giy Ser Lys Glu Asp Phe Asp Ser Leu Leu Gln 190 tog get aaa aaa aag agg tot cgt gt cat ct gt gac ctt act coc aac Fall Lys Lys Lys Ser Ile Arg Val Ile Leu Asp Leu Thr Pro Asn 200 Tyr Arg Gly Glu Asn Ser Trp Phe Ser Thr Cln Val Asp Thr Val Ala 215 acc agg gtg aag gat gct ctg gag tt tgg ctg caa gct gg gtg gat 220 197 Pyr Arg Gly Glu Asn Ser Trp Phe Ser Thr Cln Val Asp Thr Val Alap 220 199 197 230 230 230 230 230 230 230 230			Lys		-	-	-	Asp	-	-	-		Asp	-	-	-	645	
Ser Åla Lys Lys Ser 11e Årg Val II e Leu Åsp Leu Thr Pro Aan 200200789195200205205789195200101 Åsn Ser Trp Phe Ser Thr Gin Val Asp Thr Val Ala 220789197Arg Gly Glu Åsn Ser Trp Phe Ser Thr Gin Val Asp Thr Val Ala 230837209215215 Ser Trp Phe Ser Thr Gin Val Asp Thr Val Ala 220837209230230 Ser Ser Phe 250240209230 Trp Glu Arg Asp 11e Glu Aan Leu Lys Asp Ala Ser Ser Phe 245885219Phe Glu Trp Glu Asm 11e Thr Lys Val Lys Asp Ala Ser Glu Asp Arg Leu 260933210260Trp Glu Asm Ser Ser Asp Leu Gln II le Leu Ser Glu Ser Leu 285981210210 Trp Glu Asm Ser Ser Asp Leu Gln II le Leu Ser Leu 285291211Ala Gly Thr Asm Ser Ser Asp Leu Gln II le Leu Ser Leu 2852912122802852852142802852852152502852852161121122601121122602802852702852802711281292711281292722802852752802852752802852752802852752802852752802852752802852752802852852852852752802852		Asp					Ser	-	-	-		Asp	-		-		693	
FyrArgGiGiGiAsnSerTrpPheSerThrGiValAspThrZ25accaaggadgdcctgdggdtgdggtdgdg <t< td=""><td></td><td>-</td><td></td><td></td><td></td><td>Ser</td><td></td><td>-</td><td>-</td><td></td><td>Leu</td><td>-</td><td></td><td></td><td></td><td>Asn</td><td>741</td><td></td></t<>		-				Ser		-	-		Leu	-				Asn	741	
Thr Lys val Lys Asp Ala Leu Glu Phe Trp Leu Gln Ala Gly val Asp 230 ggg the cag gtt egg gae ata gag aat etg aag gat gea tee tea tee 245 245 val Arg Asp Ile Glu Asn Leu Lys Asp Ala Ser Ser Phe 245 255 ttg get gag tgg caa aat ate ace cag ggg tte agt gaa gae agg etc 260 val Phe Gln Asn Ile Thr Lys Gly Phe Ser Glu Asp Arg Leu 260 val 260 val 270 275 ttg gat ggg act aac tee tee gae etc ag cag ate etg gae gae agg etc 280 val 280 val Asp Asp Leu Leu Ser Leu 280 val 280 val 280 val 290 285 val 290 tee gaa tee aac aaa gae teg etg teg act aae etc etg age eta teg 285 val 290 290 tee gaa tee aac aaa gae teg etg teg at age tea tae etg etg teg at teg 290 val 280 val 285 val 290 val 280 val 280 val 285 val 290 val 280 val 2					Asn					Thr					Val		789	
Siy PheCln Val Arg AspIleGlu AsnLeuLysAspAla Ser Ser Phe24525025025025593325025027027093326026527027027026026527027099127528028027027027528028027027027528028028029027528028028510292752802802852902752802802852902762802852902852752802802852902762802852902852772802852902852782802852902852792802852902952702802852902952712802852902052722802852902052732802958571077280295857Leu Leu Thr Ser Ser Tyr Leu Ser Asp 3101029281261261265279285294262295295285295287295287286295295295295295287296295295295287297295				Lys	-	-	-		Phe		-		-	Gly		-	837	
Leu Âla Glu Trp Gln Asn Ile Thr Lys Gly Phe Ser Glu Asp Arg Leu 260 ttg att gcg ggg act aac tcc tcc gac ctt cag cag atc ctg agc cta 275 full Ala Gly Thr Asn Ser Ser Asp Leu Gln Gln Ile Leu Ser Leu 275 ctc gaa tcc aac aaa gac ttg ctg ttg act agc tca tac ctg tct gat Glu Ser Asn Lys Asp Leu Leu Leu Thr Ser Ser Tyr Leu Ser Asp 295 tct ggt tct act ggg gag cat aca aaa tcc cta gtc aca cag tat ttg 300 ser Gly Ser Thr Gly Glu His Thr Lys Ser Leu Val Thr Gln Tyr Leu 310 310 at gcc act ggc aat cgc tgg tgc agc tgg agt ttg tct cag gca agg 1125 ctc tg act tcc ttc ttg ccg gt ca act tcc cga cct tac cag ctg agg 330 ser Trp Ser Jy Ser Thr Ser Ser Tyr Gln Ala Arg 330 at gcc act ggc aat cgc ggt cc aa ctt ctc cga ctc tac cag ctg 340 tct tc act ctc tc tg ccg get caa ctt ctc cga ctc tac cag ctg 340 at gcc tct acc ctg cca ggg acc cct gtt ttc agc tac ggg gat gag 340 at gcc ttc acc ctg cca ggg acc cct gtt ttc agc tac ggg gat gag 340 atg ctc ttc acc ctg cca ggg acc cct gtt ttc agc tac ggg gat gag 355 att ggc ctg gat gca gct gcc ctt cct gga cct atg gag gct cca 340 atg gcc tg gat gca gct gcc ctt cct gga cct atg gag gct cca 340 atg gcc tg gat gca gct gcc ctt cct gga cct atg gag gct cca 340 atg gcc tg gat gca gct gcc ctt cct gga cct atg gag gct cca 340 atg gcc tg gat gca gct gcc ctt cct gga cct atg gag gct cca 340 atg gcc tg gat gca gct gcc ctt cct gga cct atg gag gct cca 340 atg gcc tg gat gca gct gcc ctt cct gga cct atg gag gct cca 340 atg gcc tg gat gca gct gcc ctt cct gga cct atg gag gct cca 340 atg gcc tg gat gca gct gcc ctt cct gga cct atg gag gct cca 340 atg gcc tg gat gca gct gcc dtt cct gga cct atg gag gct cca 340 340 345 345 345 345 345 345 345 345			Gln					Glu					Āla				885	
Leu Ile Ala GIY Thr Asn Ser Ser Asp Leu GIN GIN Ile Leu Ser Leu 275 Ile Ala GIY Thr Asn Ser Ser Asp Leu GIN GIN Ile Leu Ser Leu 275 Ile Ala GIY Thr Asn Ser Ser Asp Leu Control and the ser Ser Tyr Leu Ser Asp 295 Ser GIY Ser Thr GIY GIU His Thr Lys Ser Leu Val Thr GIN Tyr Leu 300 Ser GIY Ser Thr GIY GIU His Thr Lys Ser Leu Val Thr GIN Tyr Leu 310 Ser GIY Asn Arg Trp Cys Ser Trp Ser Leu Ser GIN Ala Arg 325 Ser GIY Asn Arg Trp Cys Ser Trp Ser Leu Ser GIN Ala Arg 326 Ser GIY Ser Thr GIY GIY Control and the ser GIN Ala Arg 327 Ser GIY Asn Arg Trp Cys Ser Trp Ser Leu Ser GIN Ala Arg 328 Ser Trp Ser Leu Ser GIN Ala Arg 329 Ser Trp Ser Leu Ser GIN Ala Arg 320 Ser Trp Ser Leu Ser GIN Ala Arg 330 Ser Trp Ser Leu Ser GIN Ala Arg 340 Ser Ser Ser Trp Ser Leu Ser GIN Ala Arg 340 Ser Ser Ser Trp Ser Leu Ser GIN Ala Arg 340 Ser Ser Ser Trp Ser Leu Ser GIN Ala Arg 350 Ser Trp Ser Leu Ser GIN Ala Arg 350 Ser Trp Ser Leu Ser GIN Ala Arg 350 Ser Ser Ser Trp Ser Leu Ser GIN Ala Arg 350 Ser Ser Ser Trp Ser Leu Ser GIN Ala Arg 350 Ser Ser Ser Trp Ser Leu Ser GIN Ala Arg 350 Ser Ser Ser Trp Ser Leu Ser GIN Ala Arg 350 Ser Ser Ser Ser Trp Ser Leu Ser GIN Ala Arg 350 Ser Ser Ser Ser Ser Tyr GIN Asp GIU 360 Ser		Āla					Ile					Ser					933	
Leu Glu Ser Asn Lys Asp Leu Leu Leu Thr Ser Ser Tyr Leu Ser Asp 300 Ser Ser Tyr Leu Ser Asp 305 1077 107 Ser Gly Ser Thr Gly Glu His Thr Lys Ser Leu Val Thr Gln Tyr Leu 310 at gcc act ggc aat cgc tgg tgc agc tgg agt ttg tct cag gca agg Asn Ala Thr Gly Asn Arg Trp Cys Ser Trp Ser Leu Ser Gln Ala Arg 325 Ser tcc ttc ttg ccg gct caa ctt ctc cga ctc tac cag ctg 1173 Leu Thr Ser Phe Leu Pro Ala Gln Leu Leu Arg Leu Tyr Gln Leu 340 at gcc ctg gat gca gct gcg acc ct gtt ttc agc tac ggg gat gag 1221 1173 1124 1173 1173 1125 1173 1125 1173 1125 1173 1173 1126 1173 1173 1173 1127 1173 1173 1173 1128 1173 1173 1173 1173 1173 1173 1173 117	-					Asn			-		Gln	-		-	-	Leu	981	
Ser GIY Ser Thr GIY GIU His Thr Lys Ser Leu Val Thr Gln Tyr Leu 310 310 315 315 315 320 320 1125 aat gcc act ggc aat cgc tgg tgc agc tgg agt ttg tct cag gca agg 1125 Asn Ala Thr Gly Asn Arg Trp Cys Ser Trp Ser Leu Ser Gln Ala Arg 325 330 310 310 1125 ctc ctg act tcc ttc ttg ccg gct caa ctt ctc cga ctc tac cag ctg 1173 Leu Leu Thr Ser Phe Leu Pro Ala Gln Leu Leu Arg Leu Tyr Gln Leu 340 350 1125 atg ctc ttc acc ctg cca ggg acc cct gtt ttc agc tac ggg gat gag 1221 atg gcc ctg gat gca gct gcc ctt cct gga cag cct atg gag gct cca 1269 The Gly Leu Asp Ala Ala Ala Leu Pro Gly Gln Pro Met Glu Ala Pro 375 380 385 11317					Lys					Thr					Ser		1029	
Asn Ala Thr Gly Asn Arg Trp Cys Ser Trp Ser Leu Ser Gln Ala Arg 3251173ctc ctg act tcc ttc ttg ccg gct caa ctt ctc cga ctc tac cag ctg 3401173Leu Leu Thr Ser Phe Leu Pro Ala Gln Leu Leu Arg Leu Tyr Gln Leu 3401173atg ctc ttc acc ctg cca ggg acc cct gtt ttc agc tac ggg gat gag 3601221Met Leu Phe Thr Leu Pro Gly Thr Pro Val Phe Ser Tyr Gly Asp Glu 3651221att ggc ctg gat gca gct gcc ctt cct gga cag cct atg gag gct cca 3601269att ggc ctg gat gca gct gcc ctt cct gga cag cct atg gag gct gca 3751269gtc atg ctg tgg gat gag tcc agc ttc cct gac atc cca ggg gct gta1317				Thr					Lys					Gln			1077	
Leu Leu Thr Ser Phe Leu Pro Ala Gln Leu Leu Arg Leu Tyr Gln Leu 340 345 350 350 1221 1221 1221 1221 1221 1221 1221 12			Thr					Cys					Ser				1125	
Met Leu Phe Thr Leu Pro Gly Thr Pro Val Phe Ser Tyr Gly Asp Glu 355 360 365 370 att ggc ctg gat gca gct gcc ctt cct gga cag cct atg gag gct cca 1269 Ile Gly Leu Asp Ala Ala Ala Leu Pro Gly Gln Pro Met Glu Ala Pro 375 380 385 gtc atg ctg tgg gat gag tcc agc ttc cct gac atc cca ggg gct gta 1317		Leu					Pro					Arg					1173	
Ile Gly Leu Asp Ala Ala Ala Leu Pro Gly Gln Pro Met Glu Ala Pro 375 380 385 gtc atg ctg tgg gat gag tcc agc ttc cct gac atc cca ggg gct gta 1317						Pro					Phe					Glu	1221	
					Ala					Gly					Ala		1269	
																	1317	

-continued

390 395 400	
agt gcc aac atg act gtg aag ggc cag agt gaa gac cct ggc tcc ctc Ser Ala Asn Met Thr Val Lys Gly Gln Ser Glu Asp Pro Gly Ser Leu 405 410 415	1365
2014 tee ttg tte egg egg etg agt gae eag egg agt aag gag ege tee Leu Ser Leu Phe Arg Arg Leu Ser Asp Gln Arg Ser Lys Glu Arg Ser 420 425 430	1413
cta ctg cat ggg gac ttc cac gcg ttc tcc gct ggg cct gga ctc ttc Leu Leu His Gly Asp Phe His Ala Phe Ser Ala Gly Pro Gly Leu Phe 435 440 445 450	1461
tcc tat atc cgc cac tgg gac cag aat gag cgt ttt ctg gta gtg ctt Ser Tyr Ile Arg His Trp Asp Gln Asn Glu Arg Phe Leu Val Val Leu 455 460 465	1509
aac ttt ggg gat gtg ggc ctc tcg gct gga ctg cag gcc tcc gac ctg Asn Phe Gly Asp Val Gly Leu Ser Ala Gly Leu Gln Ala Ser Asp Leu 470 475 480	1557
cct gcc agc gcc agc ctg cca gcc aag gct gac ctc ctg ctc agc acc Pro Ala Ser Ala Ser Leu Pro Ala Lys Ala Asp Leu Leu Leu Ser Thr 485 490 495	1605
cag cca ggc cgt gag gag ggc tcc cct ctt gag ctg gaa cgc ctg aaa Sln Pro Gly Arg Glu Glu Gly Ser Pro Leu Glu Leu Glu Arg Leu Lys 500 505 510	1653
stg gag oot oac gaa ggg otg otg otg ogc to ogc to occ tac gog goo Leu Glu Pro His Glu Gly Leu Leu Arg Phe Pro Tyr Ala Ala 515 520 525	1698
tgacttcagc ctgacatgga cccactaccc ttctcctttc cttcccaggc cctttggctt	1758
ctgatttttc tcttttttaa aaacaaacaa acaaactgtt gcagattatg agtgaacccc	1818
caaatagggt gttttctgcc ttcaaataaa agtcacccct gcatggtgaa gtcttccctc	1878
taaaaaaaa aaaaaaaa	1897
<210> SEQ ID NO 7 <211> LENGTH: 526 <212> TYPE: PRT <213> ORGANISM: Mus sp.	
<400> SEQUENCE: 7	
Met Ser Gln Asp Thr Glu Val Asp Met Lys Asp Val Glu Leu Asn Glu 1 5 10 15	
1 5 10 15 Leu Glu Pro Glu Lys Gln Pro Met Asn Ala Ala Asp Gly Ala Ala Ala	
1 5 10 15 Leu Glu Pro Glu Lys Gln Pro Met Asn Ala Ala Asp Gly Ala Ala Ala 20 25 30 Gly Glu Lys Asn Gly Leu Val Lys Ile Lys Val Ala Glu Asp Glu Thr	
1 5 10 15 Leu Glu Pro Glu Lys Gln Pro Met Asn Ala Ala Ala Asp Gly Ala Ala Ala 20 25 30 Gly Glu Lys Asn Gly Leu Val Lys Ile Lys Val Ala Glu Asp Glu Thr 35 40 45 Glu Ala Gly Val Lys Phe Thr Gly Leu Ser Lys Glu Glu Leu Leu Lys 5 5	
1 5 10 15 Leu Glu Pro Glu Lys Gln Pro Met Asn Ala Ala Ala Asp Gly Ala Ala Ala Ala 20 25 30 Gly Glu Lys Asn Gly Leu Val Lys Ile Lys Val Ala Glu Asp Glu Thr 35 35 60 Glu Ala Gly Val Lys Phe Thr Gly Leu Ser Lys Glu Glu Leu Leu Lys 50 60 Val Ala Gly Ser Pro Gly Trp Val Arg Thr Arg Trp Ala Leu Leu Leu 10	
1 5 10 15 Leu Glu Pro Glu Lys Gln Pro Met Asn Ala Ala Asp Gly Ala Ala Ala Ala 20 10 15 Gly Glu Lys Asn Gly Leu Val Lys Ile Lys Val Ala Glu Asp Gly Ala Ala Ala 30 10 10 Gly Glu Lys Asn Gly Leu Val Lys Ile Lys Val Ala Glu Asp Glu Thr 40 10 10 11 Glu Ala Gly Val Lys Phe Thr Gly Leu Ser Lys Glu Glu Leu Leu Lys 50 60 60 10 Val Ala Gly Ser Pro Gly Trp Val Arg Thr Arg Trp Ala Leu Leu Leu 65 80 80 Leu Phe Trp Leu Gly Trp Leu Gly Met Leu Ala Gly Ala Val Val Ile 10 10	
1 5 10 15 Leu Glu Pro Glu Lys Gln Pro Met Asn Ala Ala Asp Gly Ala Ala Ala Ala 20 10 15 Gly Glu Lys Asn Gly Leu Val Lys Ile Lys Val Ala Glu Asp Gly Ala Ala Ala 30 10 10 Gly Glu Lys Asn Gly Leu Val Lys Ile Lys Val Ala Glu Asp Glu Thr 45 10 11 Glu Ala Gly Val Lys Phe Thr Gly Leu Ser Lys Glu Glu Leu Leu Lys 50 10 11 Val Ala Gly Ser Pro Gly Trp Val Arg Thr Arg Trp Ala Leu Leu 80 10 10 Leu Phe Trp Leu Gly Trp Leu Gly Met Leu Ala Gly Ala Val Val 11 11 90 10 11 11 90 10 10 11 10 11 11 11 11 11 11 11 12 11 11 11 12 11 11 11 12 11 11 11 12 11 11 11 12 11 11 11 12 11 11 11 12 11 11 11 12 11 11 11 12 11	

Ser 145	Thr	Leu	Lys	Val	L y s 150	Gly	Leu	Val	Leu	Gly 155	Pro	Ile	His	Lys	Asn 160
Gln	Lys	Asp	Glu	Ile 165	Asn	Glu	Thr	Asp	Leu 170	Lys	Gln	Ile	Asn	Pro 175	Thr
Leu	Gly	Ser	Gln 180	Glu	Asp	Phe	Lys	Asp 185	Leu	Leu	Gln	Ser	Ala 190	Lys	Lys
Lys	Ser	Ile 195	His	Ile	Ile	Leu	Asp 200	Leu	Thr	Pro	Asn	Ty r 205	Gln	Gly	Gln
Asn	Ala 210	Trp	Phe	Leu	Pro	Ala 215	Gln	Ala	Asp	Ile	Val 220	Ala	Thr	Lys	Met
L y s 225	Glu	Ala	Leu	Ser	Ser 230	Trp	Leu	Gln	Asp	Gl y 235	Val	Asp	Gly	Phe	Gln 240
Phe	Arg	Asp	Val	Gly 245	Lys	Leu	Met	Asn	Ala 250	Pro	Leu	Tyr	Leu	Ala 255	Glu
Trp	Gln	Asn	Ile 260	Thr	Lys	Asn	Leu	Ser 265	Glu	Asp	Arg	Leu	Leu 270	Ile	Ala
Gly	Thr	Glu 275	Ser	Ser	Asp	Leu	Gln 280	Gln	Ile	Val	Asn	Ile 285	Leu	Glu	Ser
Thr	Ser 290	Asp	Leu	Leu	Leu	Thr 295	Ser	Ser	Tyr	Leu	Ser 300	Asn	Ser	Thr	Phe
Thr 305	Gly	Glu	Arg	Thr	Glu 310	Ser	Leu	Val	Thr	Arg 315	Phe	Leu	Asn	Ala	Thr 320
Gly	Ser	Gln	Trp	C y s 325	Ser	Trp	Ser	Val	Ser 330	Gln	Ala	Gly	Leu	Leu 335	Ala
Asp	Phe	Ile	Pro 340	Asp	His	Leu	Leu	Arg 345	Leu	Tyr	Gln	Leu	Leu 350	Leu	Phe
Thr	Leu	Pro 355	Gly	Thr	Pro	Val	Phe 360	Ser	Tyr	Gly	Asp	Glu 365	Leu	Gly	Leu
Gln	Gly 370	Ala	Leu	Pro	Gly	Gln 375	Pro	Ala	Lys	Ala	Pro 380	Leu	Met	Pro	Trp
Asn 385	Glu	Ser	Ser	Ile	Phe 390	His	Ile	Pro	Arg	Pro 395	Val	Ser	Leu	Asn	Met 400
Thr	Val	Lys	Gly	Gln 405	Asn	Glu	Asp	Pro	Gly 410	Ser	Leu	Leu	Thr	Gln 415	Phe
Arg	Arg	Leu	Ser 420	Asp	Leu	Arg	Gly	Lys 425	Glu	Arg	Ser	Leu	Leu 430	His	Gly
-	Phe					Ser			Asp		Phe		_	Ile	Arg
His	T rp 450	Asp	Gln	Asn	Glu	Arg 455	Tyr	Leu	Val	Val	Leu 460	Asn	Phe	Arg	Asp
Ser 465	Gly	Arg	Ser	Ala	Arg 470	Leu	Gly	Ala	Ser	Asn 475	Leu	Pro	Ala	Gly	Ile 480
Ser	Leu	Pro	Ala	Ser 485	Ala	Lys	Leu	Leu	Leu 490	Ser	Thr	Asp	Ser	Ala 495	Arg
Gln	Ser	Arg	Glu 500	Glu	Asp	Thr	Ser	Leu 505	Lys	Leu	Glu	Asn	Leu 510	Ser	Leu
Asn	Pro	Ty r 515	Glu	Gly	Leu	Leu	Leu 520	Gln	Phe	Pro	Phe	Val 525	Ala		

<210> SEQ ID NO 8 <211> LENGTH: 529

-cont	inu	əd
-------	-----	----

-															
		PE: GANI		Homo	o sap	piens	3								
<400)> SE	QUEN	ICE :	8											
Met 1	Ser	Gln	Asp	Thr 5	Glu	Val	Asp	Met	Lys 10	Glu	Val	Glu	Leu	Asn 15	Glu
Leu	Glu	Pro	Glu 20	Lys	Gln	Pro	Met	Asn 25	Ala	Ala	Ser	Gly	Ala 30	Ala	Met
Ser	Leu	Ala 35	Gly	Ala	Glu	Lys	Asn 40	Gly	Leu	Val	Lys	Ile 45	Lys	Val	Ala
Glu	Asp 50	Glu	Ala	Glu	Ala	Ala 55	Ala	Ala	Ala	Lys	Phe 60	Thr	Gly	Leu	Ser
L y s 65	Glu	Glu	Leu	Leu	Lys 70	Val	Ala	Gly	Ser	Pro 75	Gly	Trp	Val	Arg	Thr 80
Arg	Trp	Ala	Leu	Leu 85	Leu	Leu	Phe	Trp	Leu 90	Gly	Trp	Leu	Gly	Met 95	Leu
Ala	Gly	Ala	Val 100	Val	Ile	Ile	Val	Arg 105	Ala	Pro	Arg	Cys	Arg 110	Glu	Leu
Pro	Ala	Gln 115	Lys	Trp	Trp	His	Thr 120	Gly	Ala	Leu	Tyr	Arg 125	Ile	Gly	Asp
Leu	Gln 130	Ala	Phe	Gln	Gly	His 135	Gly	Ala	Gly	Asn	Leu 140	Ala	Gly	Leu	Lys
Gl y 145	Arg	Leu	Asp	Tyr	Leu 150	Ser	Ser	Leu	Lys	Val 155	Lys	Gly	Leu	Val	Leu 160
Gly	Pro	Ile	His	L y s 165	Asn	Gln	Lys	Asp	Asp 170	Val	Ala	Gln	Thr	Asp 175	Leu
Leu	Gln	Ile	Asp 180	Pro	Asn	Phe	Gly	Ser 185	Lys	Glu	Asp	Phe	Asp 190	Ser	Leu
Leu	Gln	Ser 195	Ala	Lys	Lys	Lys	Ser 200	Ile	Arg	Val	Ile	Leu 205	Asp	Leu	Thr
Pro	Asn 210	Tyr	Arg	Gly	Glu	Asn 215	Ser	Trp	Phe	Ser	Thr 220	Gln	Val	Asp	Thr
Val 225	Ala	Thr	Lys	Val	L y s 230	Asp	Ala	Leu	Glu	Phe 235	Trp	Leu	Gln	Ala	Gl y 240
Val	Asp	Gly	Phe	Gln 245	Val	Arg	Asp	Ile	Glu 250	Asn	Leu	Lys	Asp	Ala 255	Ser
Ser	Phe	Leu	Ala 260	Glu	Trp	Gln	Asn	Ile 265	Thr	Lys	Gly	Phe	Ser 270	Glu	Asp
Arg	Leu	Leu 275	Ile	Ala	Gly	Thr	Asn 280	Ser	Ser	Asp	Leu	Gln 285	Gln	Ile	Leu
Ser	Leu 290	Leu	Glu	Ser	Asn	L y s 295	Asp	Leu	Leu	Leu	Thr 300	Ser	Ser	Tyr	Leu
Ser 305	Asp	Ser	Gly	Ser	Thr 310	Gly	Glu	His	Thr	L y s 315	Ser	Leu	Val	Thr	Gln 320
Tyr	Leu	Asn	Ala	Thr 325	Gly	Asn	Arg	Trp	Cys 330	Ser	Trp	Ser	Leu	Ser 335	Gln
Ala	Arg	Leu	Leu 340	Thr	Ser	Phe	Leu	Pro 345	Ala	Gln	Leu	Leu	Arg 350	Leu	Tyr
Gln	Leu	Met 355	Leu	Phe	Thr	Leu	Pro 360	Gly	Thr	Pro	Val	Phe 365	Ser	Tyr	Gly
Asp	Glu 370	Ile	Gly	Leu	Asp	Ala 375	Ala	Ala	Leu	Pro	Gly 380	Gln	Pro	Met	Glu

Ala Pro Val Met Leu Trp Asp Glu Ser Ser Phe Pro Asp Ile Pro Gly Ala Val Ser Ala Asn Met Thr Val Lys Gly Gln Ser Glu Asp Pro Gly Ser Leu Leu Ser Leu Phe Arg Arg Leu Ser Asp Gln Arg Ser Lys Glu Arg Ser Leu Leu His Gly Asp Phe His Ala Phe Ser Ala Gly Pro Gly Leu Phe Ser Tyr Ile Arg His Trp Asp Gln Asn Glu Arg Phe Leu Val Val Leu Asn Phe Gly Asp Val Gly Leu Ser Ala Gly Leu Gln Ala Ser Asp Leu Pro Ala Ser Ala Ser Leu Pro Ala Lys Ala Asp Leu Leu Leu Ser Thr Gln Pro Gly Arg Glu Glu Gly Ser Pro Leu Glu Leu Glu Arg Leu Lys Leu Glu Pro His Glu Gly Leu Leu Leu Arg Phe Pro Tyr Ala Ala <210> SEQ ID NO 9 <211> LENGTH: 533 <212> TYPE: PRT <213> ORGANISM: Rattus sp. <400> SEQUENCE: 9 Met Glu Lys Gly Thr Arg Gln Arg Asn Asn Thr Ala Lys Asn His Pro151015 Asp Arg Gly Ser Asp Thr Ser Pro Glu Ala Glu Ala Ser Ser Gly Gly Gly Gly Val Ala Leu Lys Lys Glu Ile Gly Leu Val Ser Ala Cys Gly 35 40 45 Ile Ile Val Gly Asn Ile Ile Gly Ser Gly Ile Phe Val Ser Pro Lys Gly Val Leu Glu Asn Ala Gly Ser Val Gly Leu Ala Leu Ile Val Trp Ile Val Thr Gly Val Ile Thr Ala Val Gly Ala Leu Cys Tyr Ala Glu Leu Gly Val Thr Ile Pro Lys Ser Gly Gly Asp Tyr Ser Tyr Val Lys Asp Ile Phe Gly Gly Leu Ala Gly Phe Leu Arg Leu Trp Ile Ala Val Leu Val Ile Tyr Pro Thr Asn Gln Ala Val Ile Ala Leu Thr Phe Ser Asn Tyr Val Leu Gln Phe Leu Phe Pro Thr Cys Phe Pro Pro Glu Ser Gly Leu Arg Leu Leu Ala Ala Ile Cys Leu Leu Leu Leu Thr Trp Val Asn Cys Ser Ser Val Arg Trp Ala Thr Arg Val Gln Asp Ile Phe Thr Ala Gly Lys Leu Leu Ala Leu Ala Leu Ile Ile Met Gly Val Val 195 200 205

G1 110 Cys Lys G1y G1y Pro Lys Ala Phe Ala Leu Ala Leu Ala Phe Leu G1u G1y Ser Phe Ala Ty Gly Gly Gly Ser Phe Ala Ty Gly Gly Gly Ala Ty Gly Gly Gly Ala Ty Gly Gly Ala Ala Ty Gly Ala Ala Ty Gly Gly <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>																
225 230 235 240 Gin Gly Ser Phe Ala Tyr Gly Gly Trp Asn Phe Leu Asn Tyr Val Thr 250 Thr 250 Thr 250 Giu Glu Leu Val Asp Pro Tyr Lys Asn Phe Leu Pro Arg Ala IIe Phe IIe 260 Tyr Val Phe Ala Asp Tro Tyr Val Phe Ala Asn TIe Ala Tyr 275 Thr 220 Ser IIe Pro Leu Val Thr Phe Val Tyr Val Phe Ala Asn Tie Ala Tyr 275 Thr 280 Tyr Val Phe Ala Asn Tie Ala Tyr 280 Val Thr Ala Met Ser Pro Gln Glu Leu Leu Ala Ser Asn Ala Val Ala 290 Thr 280 Thr 280 Val Thr Ala Met Ser Pro Gln Glu Leu Leu Ala Ser Asn Ala Val Ala 300 The Gly Glu Lys Leu Leu Gly Val Met Ala Trp IIe Met Pro 320 Tie Ser Val Ala Leu Ser Thr Phe Gly Gly Val Asn Gly Ser Leu Phe 335 Thr Ser Ser Arg Leu Phe Phe Ala Gly Ala Arg Glu Gly His Leu Pro 376 Ser Val Leu Ala Met IIe His Val Lys Arg Cys Thr Pro 31e Pro Ala 355 Thr Ser Ser Arg Leu Phe Phe Ala Gly Phe Bie Asn 797 Thr Ser Asp 370 Mat Thr Val Ala Gly Gln IIe Val Leu And Ser Trp Lys Lys Pro Asp 405 Thr 410 Thr 445 Glu Val Thr Val Ala Gly Gln IIe Val Leu Arg Trp Lys Lys Pro Asp 405 Thr 445 Val Cys Gly IIe Gly Leu Ala IIe Net Leu The Gly Gly Val Pro Val 445 Thr 445 Val Cys Gly IIe Gly Leu Ala IIe Net Leu The Gly Cys Pro Asp 405 Thr 445 Val Cys Gly IIe Gly Leu Ala Ser Gln Tyr Cys Met Cys Val Val Asp 445 Thr 445 Val Cys Gly IIe Gly Leu Ala Ser Gln Ty	Gln		Сув	Lys	Gly	Glu		Phe	Trp	Leu	Glu		Lys	Asn	Ala	Phe
245 250 Arg Ala Alap Pro Tyr Vy Ala Ken Leu Pro Arg Ala Ala Pro Tyr 260 Arg Ala Ala Tyr 275 Val Ar Pro 265 Ser Ile 275 275 Val Ar Pro 265 Val Val Val Val Arg Val Pro Arg Ala Arg Ila Arg 112 Arg Ala Arg Val Val Val Val Val Val Arg 300 Arg Ala Arg Val Val Arg Val Arg 300 Arg Ala Arg Val		Asn	Phe	Gln	Glu		Asp	Ile	Gly	Leu		Ala	Leu	Ala	Phe	
260265270SerIleProLeuValThrPheValTyrValPheAlaAsnIleAlaTyrValThAlaMetSerProGlnGluLeuAlaAsnAlaValAlaYalValThrAlaMetSerProGlnGluLeuGlyValMetAlaTrpIleMetPro300305ThrPheGlyGlyValMetAlaTrpIleMetPro32011eSerValAlaLeuSerTrrPheGlyGlyValAsnGlySerLeuPhe305ThrSerValLeuSerTrrPheAlaGlyValAsnGlySerLeuPhePhe315SerValLeuAlaMetIleHePheAlaGlyAlaArgGluGlyHisLeuPhoAla350350350350350SerValLeuAlaMetIleHisValYalKarGlyKarGlyKarAla360350	Gln	Gly	Ser	Phe		Tyr	Gly	Gly	Trp		Phe	Leu	Asn	Tyr		Thr
275 280 285 Val Thr Ala Met Ser Pro Gln Glu Leu Ala Ser Asn Ala Val Ala Met Asn Ala Val Met Ala Ser Pro Gln Glu Leu Glu Met Ala Trp Ile Met Pro Jano	Glu	Glu	Leu		Asp	Pro	Tyr	Lys		Leu	Pro	Arg	Ala		Phe	Ile
290 295 300 Val In Pro Gly Gly Gly Gly Gly Gly Gly Set Ala Trop Jaco Jaco Jaco Gly Gly Gly Val Ala Trop Jaco <	Ser	Ile		Leu	Val	Thr	Phe		Tyr	Val	Phe	Ala		Ile	Ala	Tyr
305 310 315 320 Ile Ser Val Ala Leu Ser Thr Phe Gly Gly Val Asn Gly Ser Leu Phe 325 330 Asn Gly Ser Leu Phe 335 Ser Val Leu Ala Leu Ser Thr Phe Ala Gly Ala Arg Glu Gly His Leu Pro 345 Ser Val Leu Ala Met Ile His Val Vys Arg Cys Thr Pro 11e Pro Ala 355 Ser Val Leu Ala Met Ile His Val Vys Arg Cys Thr Pro 355 The Pro Ala 350 Leu Leu Phe Thr Cys Leu Ser Thr Leu Leu Met Leu Val Thr Ser Asp 370 Ser Val Cys Phe Thr Cys Leu Ser Thr Leu Leu Met Leu Val Thr Ser Asp 380 Thr Val Phe Thr Cys Leu Ser Thr Leu Leu Met The Val Val Thr Ser Asp 380 Gly Val Thr Val Ala Gly Gln Ile Val Leu Arg Trp Lys Lys Pro Asp 405 Ser Leu Leu Phe Pro Ile Ile Tyr Leu 410 Ser Glu Pro Val 410 Leu Phe Trp Ala Phe Leu Leu Ile Phe Ser Leu Thr Ser Glu Pro Val 420 Ser Gly Val Tyr Trp Gln His Lys Pro Lys Cys Phe Asn Asp 465 Ser Gly Val Tyr Trp Gln His Lys Pro Lys Cys Val Val Val Tyr 485 Phe Leu Gly Val Tyr Trp Gln His Lys Pro Lys Met Cys Val Val Val Tyr 485 Ser Gln Lys Met Cys Val Val Val Tyr 495 Ser Glu Glu Glu Asp Ser Gly Thr Glu Glu Thr Ile Asp Asp Pro Asp 520 Ser Glu Glu Gln Pro 530 Set Glu Glu Gln Pro 520 Set Set Set Thr Set	Val		Ala	Met	Ser	Pro		Glu	Leu	Leu	Ala		Asn	Ala	Val	Ala
325 330 335 Thr Ser Ser Arg Leu Phe Phe Ala Gly Ala Arg Glu Gly His Leu Pro 340 Ale Phe Phe Ala Gly Ala Arg Gus Thr Pro Ile Pro Ala 355 Ser Val Leu Ala Met Ile His Val Lys Arg Cys Thr Pro Ile Pro Ala 360 Thr Ser Asp 380 Thr Ser Asp 400 Gly Val Thr Leu Ile Asn Tyr Val Gly Phe Ile Asn Tyr Leu Val Ala Gly Gln Ile Val Leu Arg Trp Lys Lys Pro Asp 410 The Asp 410 Thr Ser Gly Pro Asp 415 Thr Ser Gly Pro Asp 415 Thr Ser Gly Pro Val Asp 410 Thr Ser Gly Pro Val Asp 410 Thr Ser Gly Pro Val Asp 415 Leu Phe Trp Ala Phe Leu Leu Ile File Net Leu Thr Gly Val Pro Val Asp 420 Thr Asp Asp 440 Thr 445 Thr 445 Thr 445 Val Cys Gly Ile Gly Val Tyr Trp Gln His Lys Pro Lys Met Cys Val Val Val Yal Tyr 480 Thr 485 Thr 490 Thr 490		Thr	Phe	Gly	Glu		Leu	Leu	Gly	Val		Ala	Trp	Ile	Met	
340 345 350 Ser Val Leu Ala Met Ile His Val Xal Lys Arg Cys Thr Pro Ile Pro Ala 355 110 Pro Ala 355 110 Pro Ala 360 Leu Leu Phe Thr Cys Leu Ser Thr Leu Leu Met Leu Val Thr Ser Asp 370 110 Pro Ala 100 110 Pro Ala 100 Met Tyr Thr Leu Ile Asn Tyr Val Gly Phe Ile Asn Tyr Leu Phe Tyr 395 110 Pro Arg Pro 110 110 Pro Arg Arg Cys Pro Asp 410 Leu Phe Trp Ala Phe Leu Leu Ile Atd Trp Atd Arg Pro Pro Arg 420 110 Pro Arg Pro 110 110 Pro Arg Pro Val Atd Arg	Ile	Ser	Val	Ala		Ser	Thr	Phe	Gly		Val	Asn	Gly	Ser		Phe
355 360 365 Leu Phe Thr Cys Leu Ser Thr Leu Met Leu Val Thr Ser Asp 380 Tyr Thr Leu Met Leu Net Leu Net Leu Val Thr Ser Asp 385 Tyr Thr Leu Ile Asn Tyr Val Gly Phe Ile Asn Tyr Leu Phe Tyr Asp 400 Gly Val Thr Val Ala Gly Gln Ile Val Leu Phe The Leu Phe Tyr Lys Pro Asp 410 Thr Val Ala Phe Leu Leu Phe Leu Phe Phe Ile Tyr Leu Asp 410 Phe Phe 445 Pho Val Yan Y	Thr	Ser	Ser		Leu	Phe	Phe	Ala		Ala	Arg	Glu	Gly		Leu	Pro
370375380MetTyrThrLeuIleAsnTyrValGlyPheIleAsnTyrLeuPheTyr400GlyValThrValAlaGlyGlnIleValLeuArgTrpLysLysProAsp405MatThrValAlaGlyGlnIleValLeuArgTrpLysLysProAsp411ProArgProIleLysIleSerLeuLeuPheProIleIleTyrLeu1ProArgProIleLysIleSerLeuLeuPheProIleIleTyrLeu1ProArgProIleLysIleSerLeuLeuPheProIleIleTyrLeu1ProArgProIleLysIleSerLeuHeTrrArg </td <td>Ser</td> <td>Val</td> <td></td> <td>Ala</td> <td>Met</td> <td>Ile</td> <td>His</td> <td></td> <td>Lys</td> <td>Arg</td> <td>Суз</td> <td>Thr</td> <td></td> <td>Ile</td> <td>Pro</td> <td>Ala</td>	Ser	Val		Ala	Met	Ile	His		Lys	Arg	Суз	Thr		Ile	Pro	Ala
385390395400Gly Val Thr Val Ala Gly Gln Ile Val Leu Arg Trp Lys Lys Pro Asp 405AloArg Trp Lys Lys Pro Asp 410Ile Pro Arg Pro Ile Lys Ile Ser Leu Leu Phe Pro Ile Ile Tyr Leu 420AloAloLeu Phe Trp Ala Phe Leu Leu Ile Phe Ser Leu Trp Ser Glu Pro Val 435Yal Cys Gly Ile Gly Leu Ala Ile Met Leu Thr Gly Val Pro Val Tyr 450Val Cys Gly Ile Gly Leu Ala Ile Met Leu Thr Gly Val Pro Val Tyr 450AfoPhe Leu Gly Val Tyr Trp Gln His Lys Pro Lys Cys Phe Asn Asp Phe 465Ile Glu Ser Leu Thr Leu Val Ser Gln Lys Met Cys Val Val Val Tyr 485Pro Gln Glu Gly Asp Ser Gly Thr Glu Glu Thr Ile Asp Asp Val Glu 500Glu Gln His Lys Pro Ile Phe Gln Pro Thr Pro Val Lys Asp Pro Asp 520Ser Glu Glu Gln Pro 530<210> SEQ ID NO 10 <211> LENGTH: 512 <212> TYPE: PRT <213> ORGANISM: Rattus sp.<400> SEQUENCE: 10Met Ala Val Ala Gly Ala Lys Arg Arg Ala Val Ala Ala Pro Ala Thr 111		370					375					380				
405410415Ile Pro Arg Pro Ile Lys Ile Ser Leu Leu Phe Pro Ile Ile Tyr Leu 420Ile Lys Ile Ser Leu Leu Phe Pro Ile Ile Tyr Leu 430Leu Phe Trp Ala Phe Leu Leu Ile Phe Ser Leu Trp Ser Glu Pro Val 435Val Cys Gly Ile Gly Leu Ala Ile Met Leu Thr Gly Val Pro Val Tyr 450Phe Leu Gly Val Tyr Trp Gln His Lys Pro Lys Cys Phe Asn Asp Phe 465465Glu Ser Leu Thr Leu Val Ser Gln Lys Met Cys Val Val Val Tyr 485Pro Gln Glu Gly Asp Ser Gly Thr Glu Glu Thr Ile Asp Asp Val Glu 500Glu Gln His Lys Pro Ile Phe Gln Pro Thr Pro Val Lys Asp Pro Asp 515Ser Glu Glu Gln Pro 530<210> SEQ ID NO 10 <211> LENGTH: 512 <212> TYPE: PRT <213> ORGANISM: Rattus sp.<400> SEQUENCE: 10 Met Ala Val Ala Gly Ala Lys Arg Arg Ala Val Ala Ala Pro Ala Thr 10	385	-				390	-				395					400
420425430Leu PheTrpAlaPheLeu LeuIlePheSerLeuTrpSerGluProValValCysGlyIleGlyLeuAlaIleMetLeuThrGlyValTyrTyr450GlyValTyrTrpGlnHisLysProLysCysPheAsnAspPhe465GluSerLeuTyrTyrGlnHisLysProLysCysPheAsnAspPhe465GluSerLeuTyrTyrGlnHisLysProLysCysValValValTyrPheLeuGluSerGluSerGluLysMetCysValValValTyrProGlnGluGlyAspSerGlyThrGluGluThrIleAspAspValQuProGlnGluGlyAspSerGlyThrGluGluThrIleAspAspValQuQuProGlnGluGlyAspSerGlyThrGluGluThrIleAspAspValAspGluGluGluGlnProSerSerFrValYaYaYaYaYaYaYaYaYaYaYaYa<	-				405	_				410	-	_		-	415	-
435440445Val Cys Gly Ile Gly Leu Ala 450Ile Met Leu Thr Gly Val Pro Val Tyr 460Pro Val Tyr 460Phe Leu Gly Val Tyr Trp Gln His 470Lys Pro Lys Cys Phe Asn Asp Phe 475Ile Glu Ser Leu Thr Leu Val Ser Gln Lys Met Cys Val Val Val Tyr 485Val Ser Glu Lys Met Cys Val Val Val Tyr 490Pro Gln Glu Gly Asp Ser Gly Thr Glu Glu Thr Ile Asp Asp Val Glu 500Ser Glu Thr Pro Val Lys Asp Pro Asp 520Glu Gln His 515Lys Pro Ile Phe Gln Pro Thr Pro Val Lys Asp Pro Asp 520Ser Glu Glu Gln Pro 530<210> SEQ ID NO 10 <211> LENGTH: 512 <212> TYPE: PRT <213> ORGANISM: Rattus sp.<400> SEQUENCE: 10Met Ala Val Ala Gly Ala Lys Arg Arg Ala Val Ala Ala Pro Ala Thr 10	Ile	Pro	Arg		Ile	Lys	Ile	Ser		Leu	Phe	Pro	Ile		Tyr	Leu
450455460Phe Leu Gly Val Tyr 465Trp Gln His Lys 470Pro Lys Lys CysCys Phe Asn Asp Phe 475Phe 480Ile Glu Ser Leu Thr 485Leu Val Ser 485Gln Lys MetCysVal Val Val Tyr 495Pro Gln Glu Gly Asp 500Ser Gly Thr 500Glu Glu Glu Thr 505Ile Asp Asp 515Asp Val GluGlu Gln His 			435					440				_	445			
465470475480Ile Glu Ser Leu Thr 485Leu Val Ser Gln Lys Met Cys Val Val Val 495Tyr 490Pro Gln Glu Gly Asp Ser Gly Thr 500Glu Glu Thr Ile Asp Asp Sap Val Glu 505Glu Thr Ile Asp Asp Sap Val Glu 510Glu Glu Asp Sap Val Glu 510Glu Gln His 515Lys Pro Ile Phe Gln Pro 520Fro Thr Pro Val Lys Asp Pro Asp 525Fro AspSer Glu Glu Gln Pro 530Sequence:Sequence:Sequence:<210> SEQ ID NO 10 <211> LENGTH: 512 <212> TYPE: PRT <213> ORGANISM: Rattus sp.Sequence:Sequence:<400> SEQUENCE:101010Met Ala Val Ala Gly Ala Lys Arg Arg Ala Val Ala Ala Pro Ala Thr 1015		450					455					460				-
485 490 495 Pro Gln Glu Gly Asp Ser Gly Thr Glu Glu Thr Ile Asp Asp Val Glu 500 Sec Glu Glu Pro The Pro Val Lys Asp Pro Asp 515 Sec Glu Glu Gln Pro 520 Sec ID NO 10 <211> LENGTH: 512 <212> TYPE: PRT <213> ORGANISM: Rattus sp. <400> SEQUENCE: 10 Met Ala Val Ala Gly Ala Lys Arg Arg Ala Val Ala Ala Pro Ala Thr 1 5 10 15	465					470					475					480
500 505 510 Glu Gln His Lys Pro Ile Phe Gln Pro Thr Pro Val Lys Asp Pro Asp 515 520 525 Ser Glu Glu Gln Pro 530 <210> SEQ ID NO 10 <211> LENGTH: 512 <212> TYPE: PRT <213> ORGANISM: Rattus sp. <400> SEQUENCE: 10 Met Ala Val Ala Gly Ala Lys Arg Arg Ala Val Ala Ala Pro Ala Thr 1 5 10 15					485					490		-			495	-
515 520 525 Ser Glu Glu Gln Pro 530 <210> SEQ ID NO 10 <211> LENGTH: 512 <212> TYPE: PRT <213> ORGANISM: Rattus sp. <400> SEQUENCE: 10 Met Ala Val Ala Gly Ala Lys Arg Arg Ala Val Ala Ala Pro Ala Thr 1 5 10 15				500	-		-		505				-	510		
530 <210> SEQ ID NO 10 <211> LENGTH: 512 <212> TYPE: PRT <213> ORGANISM: Rattus sp. <400> SEQUENCE: 10 Met Ala Val Ala Gly Ala Lys Arg Arg Ala Val Ala Ala Pro Ala Thr 1 5 10 15			515	-		цТе	Рne		Pro	Thr	Pro	Va⊥		Asp	Pro	Asp
<pre><211> LENGTH: 512 <212> TYPE: PRT <213> ORGANISM: Rattus sp. <400> SEQUENCE: 10 Met Ala Val Ala Gly Ala Lys Arg Arg Ala Val Ala Ala Pro Ala Thr 1 5 10 15</pre>	əer		σıŭ	GTU	rro											
Met Ala Val Ala Gly Ala Lys Arg Arg Ala Val Ala Ala Pro Ala Thr 1 5 10 15	<211 <212	1> LH 2> TY	NGTH	I: 51 PRT	12	us s	sp.									
1 5 10 15	<400)> SE	QUEN	ICE :	10											
Thr Ala Ala Glu Glu Glu Arg Gln Ala Arg Glu Lys Met Leu Glu Ala		Ala	Val	Ala		Ala	Lys	Arg	Arg		Val	Ala	Ala	Pro		Thr
	Thr	Ala	Ala	Glu	Glu	Glu	Arg	Gln	Ala	Arg	Glu	Lys	Met	Leu	Glu	Ala

-continued

												con	tin	ued	
			20					25					30		
Arg	Arg	Gly 35	Asp	Gly	Ala	Asp	Pro 40	Glu	Gly	Glu	Gly	Val 45	Thr	Leu	Gln
Arg	Asn 50	Ile	Thr	Leu	Ile	Asn 55	Gly	Val	Ala	Ile	Ile 60	Val	Gly	Thr	Ile
Ile 65	Gly	Ser	Gly	Ile	Phe 70	Val	Thr	Pro	Thr	Gly 75	Val	Leu	Lys	Glu	Ala 80
Gly	Ser	Pro	Gly	Leu 85	Ser	Leu	Val	Val	Trp 90	Ala	Val	Суз	Gly	Val 95	Phe
Ser	Ile	Val	Gly 100	Ala	Leu	Сув	Tyr	Ala 105	Glu	Leu	Gly	Thr	T hr 110	Ile	Ser
Lys	Ser	Gly 115	Gly	Asp	Tyr	Ala	Ty r 120	Met	Leu	Glu	Val	Ty r 125	Gly	Ser	Leu
Pro	Ala 130	Phe	Leu	Lys	Leu	T rp 135	Ile	Glu	Leu	Leu	Ile 140	Ile	Arg	Pro	Ser
Ser 145	Gln	Tyr	Ile	Val	Ala 150	Leu	Val	Phe	Ala	Thr 155	Tyr	Leu	Leu	Lys	Pro 160
Val	Phe	Pro	Thr	C ys 165	Pro	Val	Pro	Glu	Glu 170	Ala	Ala	Lys	Leu	Val 175	Ala
Cys	Leu	Cys	Val 180	Leu	Leu	Leu	Thr	Ala 185	Val	Asn	Cys	Tyr	Ser 190	Val	Lys
Ala	Ala	Thr 195	Arg	Val	Gln	Asp	Ala 200	Phe	Ala	Ala	Ala	L y s 205	Leu	Leu	Ala
Leu	Ala 210	Leu	Ile	Ile	Leu	Leu 215	Gly	Phe	Ile	Gln	Met 220	Gly	Lys	Asp	Ile
Gly 225	Gln	Gly	Asp	Ala	Ser 230	Asn	Leu	His	Gln	L y s 235	Leu	Ser	Phe	Glu	Gl y 240
Thr	Asn	Leu	Asp	Val 245	Gly	Asn	Ile	Val	Leu 250	Ala	Leu	Tyr	Ser	Gly 255	Leu
Phe	Ala	Tyr	Gly 260	Gly	Trp	Asn	Tyr	Leu 265	Asn	Phe	Val	Thr	Glu 270	Glu	Met
Ile	Asn	Pro 275	Tyr	Arg	Asn	Leu	Pro 280	Leu	Ala	Ile	Ile	Ile 285	Ser	Leu	Pro
Ile	Val 290	Thr	Leu	Val	Tyr	Val 295	Leu	Thr	Asn	Leu	Ala 300	Tyr	Phe	Thr	Thr
Leu 305	Ser	Thr	Asn	Gln	Met 310	Leu	Thr	Ser	Glu	Ala 315	Val	Ala	Val	Asp	Phe 320
Gly	Asn	Tyr	His	Leu 325	Gly	Val	Met	Ser	Trp 330	Ile	Ile	Pro	Val	Phe 335	Val
Gly	Leu	Ser	Cys 340	Phe	Gly	Ser	Val	Asn 345	Gly	Ser	Leu	Phe	Thr 350	Ser	Ser
Arg	Leu	Phe 355	Phe	Val	Gly	Ser	Arg 360	Glu	Gly	His	Leu	Pro 365	Ser	Ile	Leu
Ser	Met 370	Ile	His	Pro	Gln	Leu 375	Leu	Thr	Pro	Val	Pro 380	Ser	Leu	Val	Phe
Thr 385	Суз	Val	Met	Thr	Leu 390	Met	Tyr	Ala	Phe	Ser 395	Arg	Asp	Ile	Phe	Ser 400
Ile	Ile	Asn	Phe	Phe 405	Ser	Phe	Phe	Asn	Trp 410	Leu	Cys	Val	Ala	Leu 415	Ala
Ile	Ile	Gly	Met 420	Met	Trp	Leu	Arg	Phe 425	Lys	Lys	Pro	Glu	Leu 430	Glu	Arg

Pro Ile Lys Val Asn Leu Ala Leu Pro Val Phe Phe Ile Leu Ala Cys Leu Phe Leu Ile Ala Val Ser Phe Trp Lys Thr Pro Leu Glu Cys Gly Ile Gly Phe Ala Ile Ile Leu Ser Gly Leu Pro Val Tyr Phe Phe Gly Val Trp Trp Lys Asn Lys Pro Lys Trp Ile Leu Gln Val Ile Phe Ser Val Thr Val Leu Cys Gln Lys Leu Met Cys Val Val Pro Gln Glu Thr <210> SEQ ID NO 11 <211> LENGTH: 511 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 11 Met Val Asp Ser Thr Glu Tyr Glu Val Ala Ser Gln Pro Glu Val Glu Thr Ser Pro Leu Gly Asp Gly Ala Ser Pro Gly Pro Glu Gln Val Lys Leu Lys Lys Glu Ile Ser Leu Leu Asn Gly Val Cys Leu Ile Val Gly Asn Met Ile Gly Ser Gly Ile Phe Val Ser Pro Lys Gly Val Leu Ile 50 55 60 Tyr Ser Ala Ser Phe Gly Leu Ser Leu Val Ile Trp Ala Val Gly Gly 65 70 75 80 Leu Phe Ser Val Phe Gly Ala Leu Cys Tyr Ala Glu Leu Gly Thr Thr Ile Lys Lys Ser Gly Ala Ser Tyr Ala Tyr Ile Leu Glu Ala Phe Gly 100 105 110 Gly Phe Leu Ala Phe Ile Arg Leu Trp Thr Ser Leu Leu Ile Ile Glu Pro Thr Ser Gln Ala Ile Ile Ala Ile Thr Phe Ala Asn Tyr Met Val Gln Phe Leu Phe Pro Ser Cys Phe Ala Pro Tyr Ala Ala Ser Arg Leu Leu Ala Ala Ala Cys Ile Cys Leu Leu Thr Phe Ile Asn Cys Ala Tyr Val Lys Trp Gly Thr Leu Val Gln Asp Ile Phe Thr Tyr Ala Lys Val Leu Ala Leu Ile Ala Val Ile Val Ala Gly Ile Val Arg Leu Gly Gln Gly Ala Ser Thr His Phe Glu Asn Ser Phe Glu Gly Ser Ser Phe Ala Val Gly Asp Ile Ala Leu Ala Leu Tyr Ser Ala Leu Phe Ser Tyr Ser Gly Trp Asp Thr Leu Asn Tyr Val Thr Glu Glu Ile Lys Asn Pro Glu Arg Asn Leu Pro Leu Ser Ile Gly Ile Ser Met Pro Ile Val Thr Ile Ile Tyr Ile Leu Thr Asn Val Ala Tyr Tyr Thr Val Leu Asp Met Arg

-continued

											_	con	tin	ued	
		275					280					285			
Asp	Ile 290	Leu	Ala	Ser	Asp	Ala 295	Val	Ala	Val	Thr	Phe 300	Ala	Asp	Gln	Ile
Phe 305		Ile	Phe	Asn	Trp 310	Ile	Ile	Pro	Leu	Ser 315	Val	Ala	Leu	Ser	C y s 320
Phe	Gly	Gly	Leu	Asn 325	Ala	Ser	Ile	Val	Ala 330	Ala	Ser	Arg	Leu	Phe 335	Phe
Val	Gly	Ser	Arg 340	Glu	Gly	His	Leu	Pro 345	Asp	Ala	Ile	Cys	Met 350	Ile	His
Val	Glu	Arg 355	Phe	Thr	Pro	Val	Pro 360	Ser	Leu	Leu	Phe	Asn 365	Gly	Ile	Met
Ala	Leu 370		Tyr	Leu	Cys	Val 375		Asp	Ile	Phe	Gln 380		Ile	Asn	Tyr
		Phe	Ser	Tyr	Trp		Phe	Val	Gly			Ile	Val	Gly	
385 Leu	Tyr	Leu	Arg		390 Lys	Glu	Pro	Сув		395 Pro	Arg	Pro	Leu		400 Leu
Ser	Val	Phe	Phe	405 Pro	Ile	Val	Phe		410 Leu	Суз	Thr	Ile	Phe	415 Leu	Val
Ala	Val	Pro	420 Leu	Tyr	Ser	Asp	Thr	425 Ile	Asn	Ser	Leu	Ile	430 Gly	Ile	Ala
		435			Leu		440					445			
	450					455					460				
465					Leu 470					475					480
Arg	Tyr	Leu	Gln	Val 485	Leu	Суз	Met	Ser	Val 490	Ala	Ala	Glu	Met	Asp 495	Leu
Glu	Asp	Gly	Gly 500	Glu	Met	Pro	Lys	Gln 505	Arg	Asp	Pro	Lys	Ser 510	Asn	
)> SE L> LE														
<212	2> TY	PE:	\mathbf{PRT}		o sap	oiens	5								
)> SE				1										
					Pro	Gly	Arg	Pro	Thr 10	Pro	Thr	Tyr	His	Leu 15	Val
Pro	Asn	Thr	Ser 20	Gln	Ser	Gln	Val	Glu 25	Glu	Asp	Val	Ser	Ser 30	Pro	Pro
Gln	Arg	Ser 35		Glu	Thr	Met	Gln 40		Lys	Lys	Glu	Ile 45		Leu	Leu
Asn	Gly 50		Ser	Leu	Val	Val 55		Asn	Met	Ile	Gly 60		Gly	Ile	Phe
Val 65		Pro	Lys	Gly	Val 70		Val	His	Thr	Ala 75		Tyr	Gly	Met	Ser 80
	Ile	Val	Trp	Ala 85	Ile	Gly	Gly	Leu	Phe 90		Val	Val	Gly	Ala 95	
Cys	Tyr	Ala	Glu 100		Gly	Thr	Thr	Ile 105		Lys	Ser	Gly	Ala 110		Tyr
Ala	Tyr			Glu	Ala	Phe			Phe	Ile	Ala			Arg	Leu
		115					120					125			

											-	con	tin	ued				
Trp	Val 130	Ser	Leu	Leu	Val	Val 135	Glu	Pro	Thr	Gly	Gln 140	Ala	Ile	Ile	Ala		 	
Ile 145	Thr	Phe	Ala	Asn	Ty r 150	Ile	Ile	Gln	Pro	Ser 155	Phe	Pro	Ser	Сув	Asp 160			
Pro	Pro	Tyr	Leu	Ala 165	Суз	Arg	Leu	Leu	Ala 170	Ala	Ala	Суз	Ile	С у в 175	Leu			
Leu	Thr	Phe	Val 180	Asn	Cys	Ala	Tyr	Val 185	Lys	Trp	Gly	Thr	Arg 190	Val	Gln			
Asp	Thr	Phe 195	Thr	Tyr	Ala	Lys	Val 200	Val	Ala	Leu	Ile	Ala 205	Ile	Ile	Val			
Met	Gly 210	Leu	Val	Lys	Leu	Сув 215	Gln	Gly	His	Ser	Glu 220	His	Phe	Gln	Asp			
Ala 225	Phe	Glu	Gly	Ser	Ser 230	Trp	Asp	Met	Gly	Asn 235	Leu	Ser	Leu	Ala	Leu 240			
Tyr	Ser	Ala	Leu	Phe 245	Ser	Tyr	Ser	Gly	Trp 250	Asp	Thr	Leu	Asn	Phe 255	Val			
Thr	Glu	Glu	Ile 260	Lys	Asn	Pro	Glu	Arg 265	Asn	Leu	Pro	Leu	Ala 270	Ile	Gly			
Ile	Ser	Met 275	Pro	Ile	Val	Thr	Leu 280	Ile	Tyr	Ile	Leu	Thr 285	Asn	Val	Ala			
Tyr	Ty r 290	Thr	Val	Leu	Asn	Ile 295	Ser	Asp	Val	Leu	Ser 300	Ser	Asp	Ala	Val			
Ala 305	Val	Thr	Phe	Ala	Asp 310	Gln	Thr	Phe	Gly	Met 315	Phe	Ser	Trp	Thr	Ile 320			
Pro	Ile	Ala	Val	Ala 325	Leu	Ser	Сув	Phe	Gly 330	Gly	Leu	Asn	Ala	Ser 335	Ile			
Phe	Ala	Ser	Ser 340	Arg	Leu	Phe	Phe	Val 345	Gly	Ser	Arg	Glu	Gly 350	His	Leu			
Pro	Asp	Leu 355	Leu	Ser	Met	Ile	His 360	Ile	Glu	Arg	Phe	Thr 365	Pro	Ile	Pro			
Ala	Leu 370	Leu	Phe	Asn	Cys	Thr 375	Met	Ala	Leu	Ile	Ty r 380	Leu	Ile	Val	Glu			
Asp 385	Val	Phe	Gln	Leu	Ile 390	Asn	Tyr	Phe	Ser	Phe 395	Ser	Tyr	Trp	Phe	Phe 400			
Val	Gly	Leu	Ser	Val 405	Val	Gly	Gln	Leu	Ty r 410	Leu	Arg	Trp	Lys	Glu 415	Pro			
Lys	Arg	Pro	Arg 420	Pro	Leu	Lys	Leu	Ser 425	Val	Phe	Phe	Pro	Ile 430	Val	Phe			
Cys	Ile	Cys 435	Ser	Val	Phe	Leu	Val 440	Ile	Val	Pro	Leu	Phe 445	Thr	Asp	Thr			
Ile	Asn 450	Ser	Leu	Ile	Gly	Ile 455	Gly	Ile	Ala	Leu	Ser 460	Gly	Val	Pro	Phe			
Ty r 465	Phe	Met	Gly	Val	Ty r 470	Leu	Pro	Glu	Ser	Arg 475	Arg	Pro	Leu	Phe	Ile 480			
Arg	Asn	Val	Leu	Ala 485	Ala	Ile	Thr	Arg	Gly 490	Thr	Gln	Gln	Leu	Cys 495	Phe			
Сув	Val	Leu	Thr 500	Glu	Leu	Asp	Val	Ala 505	Glu	Glu	Lys	Lys	Asp 510	Glu	Arg			
Lys	Thr	Asp 515																

-continued	ł
------------	---

<213 <212	l> LE 2> TY	Q II NGTH PE: RGANJ	H: 50 PRT		sp.										
		QUEN			1										
Met 1	Val	Arg	Lys	Pro 5	Val	Val	Ala	Thr	Ile 10	Ser	Lys	Gly	Gly	Tyr 15	Leu
Gln	Gly	Asn	Met 20	Ser	Gly	Arg	Leu	Pro 25	Ser	Met	Gly	Asp	Gln 30	Glu	Pro
Pro	Gly	Gln 35	Glu	Lys	Val	Val	Leu 40	Lys	Lys	Lys	Ile	Thr 45	Leu	Leu	Arg
Gly	Val 50	Ser	Ile	Ile	Ile	Gly 55	Thr	Val	Ile	Gly	Ser 60	Gly	Ile	Phe	Ile
Ser 65	Pro	Lys	Gly	Ile	Leu 70	Gln	Asn	Thr	Gly	Ser 75	Val	Gly	Met	Ser	Leu 80
Val	Phe	Trp	Ser	Ala 85	Суз	Gly	Val	Leu	Ser 90	Leu	Phe	Gly	Ala	Leu 95	Ser
Tyr	Ala	Glu	Leu 100	Gly	Thr	Ser	Ile	L y s 105	Lys	Ser	Gly	Gly	His 110	Tyr	Thr
Tyr	Ile	Leu 115	Glu	Val	Phe	Gly	Pro 120	Leu	Leu	Ala	Phe	Val 125	Arg	Val	Trp
Val	Glu 130	Leu	Leu	Val	Ile	Arg 135	Pro	Gly	Ala	Thr	Ala 140	Val	Ile	Ser	Leu
Ala 145	Phe	Gly	Arg	Tyr	Ile 150	Leu	Glu	Pro	Phe	Phe 155	Ile	Gln	Сув	Glu	Ile 160
Pro	Glu	Leu	Ala	Ile 165	Lys	Leu	Val	Thr	Ala 170	Val	Gly	Ile	Thr	Val 175	Val
Met	Val	Leu	Asn 180	Ser	Thr	Ser	Val	Ser 185	Trp	Ser	Ala	Arg	Ile 190	Gln	Ile
Phe	Leu	Thr 195	Phe	Cys	Lys	Leu	Thr 200	Ala	Ile	Leu	Ile	Ile 205	Ile	Val	Pro
Gly	Val 210	Ile	Gln	Leu	Ile	L y s 215	Gly	Gln	Thr	His	His 220	Phe	Lys	Asp	Ala
225					230			Met		235					240
				245				Trp	250					255	
Glu	Glu	Val	Asp 260	Asn	Pro	Glu	Lys	Thr 265	Ile	Pro	Leu	Ala	Ile 270	Cys	Ile
Ser	Met	Ala 275	Ile	Ile	Thr	Val	Gl y 280	Tyr	Val	Leu	Thr	Asn 285	Val	Ala	Tyr
	290					295		Leu			300				
305					310			Gly	-	315					320
				325				Gly	330					335	
Ala	Val	Ser	Arg 340	Leu	Phe	Tyr	Val	Ala 345	Ser	Arg	Glu	Gly	His 350	Leu	Pro
Glu	Ile	Leu 355	Ser	Met	Ile	His	Val 360	His	Lys	His	Thr	Pro 365	Leu	Pro	Ala

-continued

			-continued	
Val Ile Val 370	Leu His Pro Leu 375		Leu Phe Ser Gly Asp 380	
Leu Tyr Ser 385	Leu Leu Asn Phe 390	Leu Ser Phe Ala 395	Arg Trp Leu Phe Met 400	
Sly Leu Ala	Val Ala Gly Leu 405	. Ile Tyr Leu Arg 410	Tyr Lys Arg Pro Asp 415	
let His Arg	Pro Phe L y s Val 420	Pro Leu Phe Ile 425	Pro Ala Leu Phe Ser 430	
he Thr Cys? 435		Val Leu Ser Leu 440	Tyr Ser Cys Pro Phe 445	
Ser Thr Gly 450	Val Gly Phe Leu 455		Gly Val Pro Ala Tyr 460	
fyr Leu Phe 165	Ile Val Trp Asp 470	Lys Lys Pro Lys 475	Trp Phe Arg Arg Leu 480	
Ser Asp Arg	Ile Thr Arg Thr 485	Leu Gln Ile Ile 490	Leu Glu Val Val Pro 495	
Glu Asp Ser	L y s Glu Leu 500			
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic primer <400> SEQUENCE: 14 </pre>				
tcttcacat	gcatctccac			20
<210> SEQ ID NO 15 <211> LENGTH: 20 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: synthetic primer				
400> SEQUE	NCE: 15			
Igtacacgac	cacacatc			20
<pre><210> SEQ ID NO 16 <211> LENGTH: 15 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> OTHER INFORMATION: Description of Artificial Sequence: Synthetic oligopeptide</pre>				
<400> SEQUE	NCE: 16			
Pro Ser Pro 1	Leu Pro Ile Thr 5	Asp Lys Pro Leu 10	Lys Thr Gln Cys 15	
<220> FEATU <223> OTHER	H: 12 PRT ISM: Artificial Se RE:		ficial Sequence: Synthetic	

<400> SEQUENCE: 17 Cys Glu Gly Leu Leu Gln Phe Pro Phe Val Ala 1 5 10 <210> SEQ ID NO 18 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 18 Glu Ile Gly Leu Leu Ser Ala Cys Thr Ile Ile Ile Gly Asn Ile Ile 1 5 10 15 Gly Ser Gly Ile Phe Ile Ser 20 <210> SEQ ID NO 19 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 19 Leu Phe Val Trp Val Leu Gly Gly Gly Val Thr Ala Leu Gly Ser Leu 5 10 1 15 Cys Tyr Ala Glu Leu Gly Val 20 <210> SEQ ID NO 20 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 20 Phe Gly Gly Leu Ala Gly Phe Leu Leu Leu Trp Ser Ala Val Leu Ile 5 10 15 1 Met Tyr Pro Thr Ser Leu Ala 20 <210> SEQ ID NO 21 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 21 Thr Ala Ser Arg Val Leu Ser Met Ala Cys Leu Met Leu Leu Thr Trp 1 5 10 15 Val Asn Ser Ser Ser Val Arg 20 <210> SEQ ID NO 22 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 22 Thr Gly Gly Lys Leu Leu Ala Leu Ser Leu Ile Ile Gly Val Gly Leu 1 5 10 15 5 Leu Gln Ile Phe Gln Gly His 20

```
-continued
```

<210> SEQ ID NO 23 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 23 Leu Ala Leu Ala Phe Leu Gln Gly Ser Phe Ala Phe Ser Gly Trp Asn 5 10 1 15 Phe Leu Asn Tyr Val Thr Glu 20 <210> SEQ ID NO 24 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 24 Asn Leu Pro Arg Ala Ile Phe Ile Ser Ile Pro Leu Val Thr Phe Val 1 5 10 15 Tyr Thr Phe Thr Asn Ile Ala 20 <210> SEQ ID NO 25 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 25 Lys Leu Gly Tyr Phe Ser Trp Val Met Pro Val Ser Val Ala Leu 1 5 10 15 10 15 Ser Thr Phe Gly Gly Ile Asn 20 <210> SEQ ID NO 26 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 26 Cys Thr Pro Ile Pro Ala Leu Leu Val Cys Cys Gly Ala Thr Ala Val 10 1 5 15 Ile Met Leu Val Gly Asp Thr 20 <210> SEQ ID NO 27 <211> LENGTH: 22 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 27 Asn Tyr Val Ser Phe Ile Asn Tyr Leu Cys Tyr Gly Val Thr Ile Leu 5 10 15 1 Gly Leu Leu Leu Arg 20 <210> SEQ ID NO 28 <211> LENGTH: 23 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 28

Lys Val Asn Leu Leu Ile Pro Val Ala Tyr Leu Val Phe Trp Ala Phe 1 5 10 15 Leu Leu Val Phe Ser Phe Ile 20 <210> SEQ ID NO 29 <211> LENGTH: 22 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 29 Cys Gly Val Gly Val Ile Ile Ile Leu Thr Gly Val Pro Ile Phe Phe 1 5 10 15

1.-14. (canceled)

15. A method for detection, identification or quantification of action as a substrate of a substance to be tested to the ability of transporting a small neutral amino acid and analogs thereof in a sodium-independent manner using a protein which comprises an amino acid sequence represented by SEQ ID NO: 1 or 4 or an amino acid sequence where one or more amino acid(s) is/are deleted, substituted or added in the said amino acid sequence and which is capable of transporting a small neutral amino acid or analog thereof in a sodium-independent manner.

16.-22. (canceled)

23. The method of claim 15, wherein the protein is derived from human being or from mouse.

24. The method of claim 15, wherein the protein is derived from orphan, tissue or cultured cell.

25. A method for determining whether a test substance is a substrate for a protein which comprises an amino acid sequence represented by SEQ ID NO: 1 or 4 or an amino acid sequence where one or more amino acid(s) is/are deleted, substituted or added in the said amino acid sequence and which is capable of transporting a small neutral amino acid or analog thereof in a sodium-independent manner, the method comprising the step of contacting the protein with the test substance, and determining whether the test substance is a substrate for the protein.

* * * * *