
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International B ureau IIIIIlI IIIIIIIIII I III IIIIIIIIIIIII 1 1III lIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIII

(43) International Publication Date (10) International Publication Number
5 August 2004 (05.08.2004) PCT W O 2004/066098 A3

(51) International Patent Classification 7 : G06F 9/46, 9/44 CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HIR, HU, ID, IL, IN, IS, JP, KE,

(21) International Application Number: KG, KP, KR, KZ, LC, LK, LR, LS, IT, LU, LV, MA, MD,
PCT/US2004/001854 MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,

(22) International Filing Date: 23 January 2004 (23.01.2004) TN. T, T, TZ, UA, UG. US, UZ, VC, VN, YU, ZA. ZM,

Zw.

(25) Filing Language: English (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

(26) Publication Language: English GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro

pean (At, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
(30) Priority Data: GB, GR, HIU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,

10/350,164 23 January 2003 (23.01.2003) US TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
10/407,812 4 April 2003 (04.04.2003) US ML, MR, NE, SN,TD, TG).

(71) Applicant (for all designated States except US): ELEC- Declarations under Rule 4.17:

TRONIC DATA SYSTEMS CORPORATION [US/US]; - as to applicants entitlement to apply for and be granted

5400 Legacy Drive, H3-3A-05, Plano, TX 75024 (US). a patent (Rule 4.17(ii))for the following designations AE,
-AG, AL, AM, AT AU, AZ, BA, BB, BG, BR, BW BY BZ,

CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
S(72) Inventor: SADIQ, Waqar; 3733 Stoneway Drive, Plano, , , , , , , , , , D, , ,

X 7EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JTX 75025 (US). KE, KG, KE KR, KZ, LC, LK, LR, LS, LT LU, LV MA,

MD, MG, MK, MN, MW MX, MZ, NA, N1, NO, NZ, OM,
(74) Agent: LINEBERRY, Allen, Scott; EDS, 5400 Legacy PG, PH. PL, PT RO, RU, SC, SD, SE, SG, SK, SL, SY TJ,

Drive, H3-3A-05, Plano, TX 75024 (US). TM, TN, TR, TT TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM,

ZW ARIPO patent (BW GH, GM, KE, LS, MW MZ, SD,
(81) Designated States (unless otherwise indicated, for every SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY

kind of national protection available): AE, AG, AL, AM, KG, KZ, MD, RU, TJ, TM), European patent (AL BE, BG,
- AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CH, CY CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT

[Continued on next page]

S(54) Title: SYSTEM AND METHOD FOR CUSTOMIZING INFRASTRUCTURE SERVICES FOR USE IN NETWORK SER
VICES

Receive Invoke Fill Property
Infrastructure

Instruction nr rSheets
810 Plug 820 810815 820

Store oReceive User Property

"C Customization Sheets

825 Sheets
830

(57) Abstract: A system and method for system services customization using configured infrastructure properties through a system
of property sheets. When a virtual container is configured with an infrastructure service, the preferred embodiment loads the plug
of the infrastructure service and invokes the plug, providing it the empty collection of property sheets. The plug responds by popu

Z lating this collection with corresponding property sheets. A user can then provide unique values for those properties, which are then
saved with the other metadata. Each collection contains one or more property sheets and each property sheet contains one or more
properties.

W O 2004/066098 A 3 l111111llllllH1101I H II 11i IIII111 II Illlllllll| IIIIII111111111 1III IIIIIIll

LU, MC, NL, PT RO, SE, SI SK, TR), OAPl patent (BF BJ, IE, IT LU, MC, NL, PTL RO, SE, SI, SK, TR), OAPI patent

CF CG, Cl, CM, GA, GN, GQ, GW ML, MR, NE, SN, TD, (BE BJ CF CG, CI, CM, GA, GN, GQ, GW ML, MR, NE,

TG) SN, TD, TG)

- as to the applicant's entitlement to claim the priority of the

earlier application (Rule 4.17(iii))for the following desig- Published:

nations AE, AG, AL, AM, Al;, AU, AZ, BA, BB, BG, BR, BW, - with international search report

BY BZ CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, - before the expiration of the time limit for amending the

EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, claims and to be republished in the event of receipt of

IL, IN, IS, JP KE, KG, KP, KR, KZ, LC, LK, LR, LS, LI; LU, amendments

LV MA, MD, MG, MA, MN, MW, MX, MZ, NA, NI, NO, NZ,

OM, PG, PH, PL, PL RO, RU, SC, SD, SE SG, SK, SL, SY (88) Date of publication of the international search report:

TJ, TM, TN, TR, TT TZ, UA, UG, UZ, VC, VN, YU, Z4, 3 March 2005

ZM, ZW ARIPO patent (BWV GH, GM, KE, LS, MW MZ,

SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, For two-letter codes and other abbreviations, refer to the "Guid

BY, KG, KZ, MD, RU, TJ. TM), European patent (AT BE, ance Notes on Codes and4Abbreviations" appearing at the begin

BG, CH, Cy CZ, DE, DK, EE ES, Fl, FR, GB, GR, HU, ning of each regular issue of the PCT Gazette.

WO 2004/066098 PCT/US2004/001854

SYSTEM AND METHOD FOR CUSTOMIZING INFRASTRUCTURE SERVICES

FOR USE IN NETWORK SERVICES

CROSS REFERENCE TO RELATED APPLICATIONS

5 [0001] The present is a continuation-in-part of U.S.

Patent Application 10/350,164 filed January 23, 2003 for

"System And Method For Composing, Configuring, Deploying,

And Managing Services Using A Graphical User Interface,"

which is hereby incorporated by reference, and claims the

10 benefit of the filing date thereof.

[0002] This application also shares at least some common

text and figures with, but is otherwise unrelated to,

commonly assigned U.S. Patent Applications 10/407,896 for

"System And Method For Providing A Plug-And-Play

15 Architecture For Integrating Infrastructure Services With

Business Service Implementations," 10/407,812 for "System

And Method To Manage The Distribution Of Services Software

In A Distributed Network," and 10/407,849 for "System And

Method For Automated Code Generation Using Language Neutral

20 Software Code," all filed concurrently herewith, and which

are hereby incorporated by reference.

TECHNICAL FIELD OF THE INVENTION

[0003] The present invention is directed, in general, to

data processing system services configuration and

25 management.

- --

WO 2004/066098 PCT/US2004/001854

BACKGROUND OF THE INVENTION

[0004] In the area of conventional business service

development, there are, in general, three major roles, each

role having specific tools to address its needs.

5 [0005] Application architects are primarily concerned

with defining the contracts of the business services to

meet the business requirements. An application contract

consists of one or more interface definitions, reflecting

the right level of interface granularity and service

10 behavior such as operations exposed and their inputs and

outputs.

[0006] An important aspect of the architect's task here

is to ensure that existing interface types are reused so

that multiple interface types and messages are not

15 reinvented to fulfill similar requirements.

[0007) Once the correct interfaces have been defined,

the application developers are ready to implement those

interfaces. This often involves writing code that

implements business logic. The developers also have to be

20 able to unit test the code that they have just written.

[0008] Finally, once the code has been developed, it can

be given to the system administrators for configuration,

deployment and management. They can then configure the

runtime execution environment for the newly developed

25 service and deploy the application. Once deployed, the

application can then be managed through the means available

in the environment.

- 2 -

WO 2004/066098 PCT/US2004/001854

[0009] In the conventional development model, the

applications are developed from scratch. This allows the

users to perform top-down design and leverage the full

capabilities of the available technologies since no baggage

5 needs to be carried from the past.

[0010] Currently, there are 5 major phases of the

lifecycle of the business services. In the model phase,

the application architects design the interfaces for the

business services to be developed. Once the interfaces

10 have been designed, the business logic is developed by the

developers of the system. The system architects then

configure the runtime for the business service and the

administrators then deploy and manage the business

services.

15 [0011] In many cases, the business services already

exist but are not manageable. These services may be either

3rd party off-the-shelf (COTS) applications or custom

applications developed in-house or by system integrators.

[0012] This style of development is bottom-up

20 development where the interfaces are actually constructed

based on existing applications. The architects first use

introspection to reverse engineer metadata from the

existing applications. These applications may exist in one

of many supported technologies such as Java classes, CORBA,

25 EJB's, existing web services or COTS packages such as SAP

or Siebel. Introspection would result in one-to-one

interface generation. However, in real world, these

interfaces may need to be refactored. Refactoring involves

either suppressing some of the operation in an interface,

30 creating brand new ones, combining two or more interfaces

- 3 -

WO 2004/066098 PCT/US2004/001854

(contract aggregation) or splitting a contract into two or

more contracts (contract dissemination).

[0013] It should be noted that the existing applications

could also be web services. The process should however be

5 no different than that for 3rd party COTS or custom

applications supporting a particular technology.

[0014] Business logic generally does not change in

nature. However, the underlying technologies are changing

very rapidly. For example, there are a number of new

10 standards that are being developed to address various

aspects of distributed business services. Many standards

do not have any sort of industry consensus and many areas

have competing standards. However, the applications have

to be developed today. Typically, the business services

15 are written to provide all the other necessary

functionality, such as security and others (application

infrastructure services) that do not actually contribute to

the business behavior itself. As the standards and

technologies for these other services (application

20 infrastructure services) evolve, the business services have

to be modified and enhanced in order to take advantage of

them. Furthermore, in the current state of the art, the

configuration and deployment of these services is specific

to a particular underlying environment and the underlying

25 products.

[0015] In particular, it is often difficult and time

consuming for a system administrator to properly configure

business and infrastructure services when they are being

integrated, deployed, and managed. Commonly, this sort of

30 configuration must be performed manually before any code is

- 4 -

WO 2004/066098 PCT/US2004/001854

generated, and often must be performed for each service

without any property integration between services.

[0016] There is, therefore, a need in the art for an

improved system, method, and computer program product for

5 configuring services in a distributed network.

-5-

WO 2004/066098 PCT/US2004/001854

SUMMARY OF THE INVENTION

[0017] To address the above-discussed deficiencies of

the prior art, and to provide generally improved systems

and methods, it is a primary object of the present

5 invention to provide an improved system and method for

services configuration and management in a data processing

system and data processing system network.

[0018] The preferred embodiment provides a system and

method for system services customization using configured

10 infrastructure properties through a system of property

sheets. When a virtual container is configured with an

infrastructure service, the preferred embodiment loads the

plug of the infrastructure service and invokes the plug,

providing it the empty collection of property sheets. The

15 plug responds by populating this collection with

corresponding property sheets. A user can then provide

unique values for those properties, which are then saved

with the other metadata. Each collection contains one or

more property sheets and each property sheet contains one

20 or more properties.

[0019] The foregoing has outlined rather broadly the

features and technical advantages of the present invention

so that those skilled in the art may better understand the

detailed description of the invention that follows.

25 Additional features and advantages of the invention will be

described hereinafter that form the subject of the claims

of the invention. Those skilled in the art will appreciate

that they may readily use the conception and the specific

embodiment disclosed as a basis for modifying or designing

30 other structures for carrying out the same purposes of the

- 6 -

WO 2004/066098 PCT/US2004/001854

present invention. Those skilled in the art will also

realize that such equivalent constructions do not depart

from the spirit and scope of the invention in its broadest

form.

5 [0020] Before undertaking the DETAILED DESCRIPTION OF

THE INVENTION below, it may be advantageous to set forth

definitions of certain words or phrases used throughout

this patent document: the terms "include" and "comprise,"

as well as derivatives thereof, mean inclusion without

10 limitation; the term "or" is inclusive, meaning and/or; the

phrases "associated with" and "associated therewith," as

well as derivatives thereof, may mean to include, be

included within, interconnect with, contain, be contained

within, connect to or with, couple to or with, be

15 communicable with, cooperate with, interleave, juxtapose,

be proximate to, be bound to or with, have, have a property

of, or the like; and the term "controller" means any

device, system or part thereof that controls at least one

operation, whether such a device is implemented in

20 hardware, firmware, software or some combination of at

least two of the same. It should be noted that the

functionality associated with any particular controller may

be centralized or distributed, whether locally or remotely.

Definitions for certain words and phrases are provided

25 throughout this patent document, and those of ordinary

skill in the art will understand that such definitions

apply in many, if not most, instances to prior as well as

future uses of such defined words and phrases.

- 7 -

WO 2004/066098 PCT/US2004/001854

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] For a more complete understanding of the present

invention, and the advantages thereof, reference is now

made to the following descriptions taken in conjunction

5 with the accompanying drawings, wherein like numbers

designate like objects, and in which:

[0022] FIGURE 1 depicts a block diagram of the

relationships between service layers in accordance with a

preferred embodiment of the present invention;

10 [0023] FIGURE 2 depicts a block diagram relating a

development and deployment lifecycle with data objects and

service objects in accordance with a preferred embodiment

of the present invention;

[00241 FIGURE 3 depicts a block diagram of a runtime

15 environment in accordance with a preferred embodiment of

the present invention;

[0025] FIGURE 4 illustrates a federated metadata storage

and access system in accordance with a preferred embodiment

of the present invention;

20 [0026] FIGURE 5 depicts a virtual composition

environment in accordance with a preferred embodiment of

the present invention;

[0027] FIGURE 6 depicts a block diagram of a virtual

container accordance with a preferred embodiment of the

25 present invention;

- 8 -

WO 2004/066098 PCT/US2004/001854

[0028] FIGURE 7 depicts a flowchart of a process in

accordance with a preferred embodiment of the present

invention;

[0029] FIGURE 8 depicts a flowchart of a process in

5 accordance with a preferred embodiment of the present

invention; and

[0030] FIGURE 9 depicts a flowchart of a process in

accordance with a preferred embodiment of the present

invention.

-9-

WO 2004/066098 PCT/US2004/001854

DETAILED DESCRIPTION OF THE INVENTION

[0031] FIGURES 1 through 8, discussed below, and the

various embodiments used to describe the principles of the

present invention in this patent document are by way of

5 illustration only and should not be construed in any way to

limit the scope of the invention. Those skilled in the art

will understand that the principles of the present

invention may be implemented in any suitably arranged

device. The numerous innovative teachings of the present

10 application will be described with particular reference to

the presently preferred embodiment.

[0032] Definitions: Following are short definitions of

the usual meanings of some of the technical terms which are

used in the present application. (However, those of

15 ordinary skill will recognize whether the context requires

a different meaning.) Additional definitions can be found

in the standard technical dictionaries and journals.

[0033] Business Service Contract - A business service

contract describes the business service

20 exposed. This normally contains information

such as operations provided by the service,

their inputs and outputs.

[0031] Business Service Implementation - A business

service implementation is the software code

25 required strictly to implement the above

mentioned business behavior. This does not

include other capabilities such as providing

security or managing transactions.

- 10 -

WO 2004/066098 PCT/US2004/001854

[0035] Application Infrastructure Services - Application

Infrastructure Services are all those services

that themselves do not contribute to the

business behavior, however they are necessary

5 for the correct operation of the business

service. These services can be added, removed

or replaced without changing the business

behavior of the business service.

[0036] Virtual Container - A virtual container couples a

10 business service implementation with one or

more application infrastructure services and

provides the definition for a complete business

service. This definition exists in metadata

and contains all the metadata that customizes

15 the specific usage of application

infrastructure services inside the said virtual

container.

[0037] Physical Business Service - A physical business

service is the platform specific programming

20 code that can be generated according to the

previously discussed definition of the virtual

container. This code can then be compiled and

deployed in the underlying platform specific

manner.

25 [0038] Web Services will soon be providing complex and

mission critical services to business partners and internal

customers by providing a viable alternative to most

application integration scenarios.

- 11 -

WO 2004/066098 PCT/US2004/001854

[0039] The preferred embodiment provides a system and

method for system services customization using configured

infrastructure properties through a system of property

sheets. When a virtual container is configured with an

5 infrastructure service, the preferred embodiment loads the

plug of the infrastructure service and invokes the plug,

providing it the empty collection of property sheets. The

plug responds by populating this collection with

corresponding property sheets. A user can then provide

10 unique values for those properties, which are then saved

with the other metadata. Each collection contains one or

more property sheets and each property sheet contains one

or more properties.

[0040] The metadata is managed by a federated metamodel

15 system. A visual composition environment allows

composition of a virtual container that couples the

business service implementation in question with the

application level infrastructure services that it needs.

The code generators can then generate platform specific

20 code for the virtual container. All this can be packaged

for easy shipment. The packaged business services can then

be easily deployed on any of the machines available to the

system.

[0041] The disclosed embodiments include a method and

25 system for describing the underlying application services

infrastructure, a virtual execution environment for

business services implementations and a system to integrate

the two in a loosely coupled way through metadata so that

the two can evolve independently and still stay compatible.

- 12 -

WO 2004/066098 PCT/US2004/001854

[0042] In the preferred embodiment, a deployment domain

is created, and a graphical user interface allows a user to

compose, configure, deploy, and manage services within the

deployment domain and associated hosts using a drag-and

5 drop interface.

[0043] Furthermore, once the metadata has been defined,

it becomes very easy to provide user interface based tools

that allow construction of a business service by visually

composing an execution environment for the already-built

10 business service implementation. The implementation itself

does not know about the kind of the environment in which it

will be deployed. Because of this, the implementation can

be deployed in execution environments that provide vastly

different quality of service.

15 [0044] One disclosed embodiment includes the following

features:

[0045] The ability to build business service

implementations without any knowledge of the underlying

infrastructure environment.

20 [0046] The ability to describe a deployment environment

without any knowledge of what kind of business services

will be deployed in it.

[0047] The ability to enhance an infrastructure

environment by providing custom application infrastructure

25 services. These services, by implementing abstract

interfaces, can be plugged into any supported

infrastructure environment. These application

infrastructure services provide discrete non-business

- 13 -

WO 2004/066098 PCT/US2004/001854

related services and do not make any assumptions about who

is going to use them and how will they be used.

[0048] The ability to construct a virtual container,

once the business service implementations have been

5 developed, that integrates them with preexisting

infrastructure services and allows for better management.

[0049] The ability to describe various components and

provide plug-and-play development and deployment using a

metadata foundation.

10 [0050] Figure 1 illustrates these objectives further. A

management framework 120 hides the underlying application

server environment 140 from the business service

implementation 110 and augments the underlying environment

by providing the ability to add and integrate application

15 infrastructure services. Further, an implementation

framework 130 can be provided that even provides

implementation services 150 such as a database management

system.

[0051] One disclosed embodiment provides a platform that

20 provides a level of abstraction, much higher than the one

that is provided by application servers and other web

services platforms currently available. This platform

brings the development, configuration, deployment and

management capabilities to the business services.

25 [0052] The lifecycle shown in Figure 2 relates to either

doing new development or introspecting existing application

for the purpose of converting them into managed business

services. As described above, the lifecycle includes the

model or introspection phase 205, in which the application

- 14 -

WO 2004/066098 PCT/US2004/001854

architects design the interfaces for the business services

to be developed or introspect an existing service. In the

case of new development, once the interfaces have been

designed, the skeleton of business service implementation

5 can be generated and then developed by the developers. In

case of existing service, once the existing service has

been introspected, a gateway implementation can be

automatically generated 210. The system architects then

configure 215 the runtime for the business service.

10 Finally, the administrators then deploy 220 and manage 225

the business services.

[0053] One disclosed feature of the preferred embodiment

is a federated meta-model 230 that stores and provides

access to the metadata describing the business services

15 themselves and their infrastructure. This metadata

describes the interface of the business service itself, the

metadata about those infrastructure services, and the

metadata about the virtual container that couples a

business service implementation with one or more

20 infrastructure services along with their uniquely

customized properties.

[0054] The preferred embodiment is designed to expose a

level of abstraction higher than those provided by industry

standards 240. The standards and technologies in the web

25 services area are changing very rapidly. As a result, the

business services that leverage those standards run the

risk of becoming outdated very quickly. The preferred

embodiment exposes a higher level interface that can be

generated by the metadata itself. This results in more

30 stable and longer-lasting applications.

- 15 -

WO 2004/066098 PCT/US2004/001854

[0055] The preferred embodiment provides the horizontal

platform that can be used to build the vertical solutions

that are more specific to industries in the form of

industry specific templates 250. These solutions do not

5 have to be complete themselves. In fact, most likely these

solutions will be partial solutions designed to be extended

for particular business problems.

[0056] Once the business services have been created,

they can be orchestrated 260 using business service

10 orchestration tools. These orchestrations themselves can

be manifested as web services, thus forming a recursive

relationship.

[0057] Figure 3 describes the runtime environment for

which the business services are configured and in which

15 they are deployed. This architecture is described here at

the logical level and can have one or more physical

manifestations, in accordance with the disclosed or claimed

embodiments.

[0058] A deployment domain 300 is a mechanism for

20 partitioning a large IT environment into smaller logical

clusters of machines and applications so that these

different clusters can be configured differently from each

other. In this case, these deployment domains serve to

logically separate environments with different requirements

25 domain. For example, there may be a deployment domain

called internal applications. This domain may be

configured with a specific security service. Another

domain may be for business partners and may be configured

with a different kind of security service. Additionally,

30 this domain may also be configured with a management

- 16 -

WO 2004/066098 PCT/US2004/001854

service, e.g., to bill the users for usage of the business

service. The deployment domain serves to define the scope

of the infrastructure services that it is composed of and

the business services that are deployed in it.

5 [0059] The deployment domain defines the logical

boundaries and scope of the infrastructure and business

services within it. It is a logical partition of a large

computing environment which consists of many physical

machines. The metadata data related to the deployment

10 domain defines that logical partition.

[0060] One or more physical machines can be configured

for a deployment domain and one or more application

infrastructure services can be made part of the fabric that

is a deployment domain. Each server machine, called a

15 host, that is configured to participate in one or more

deployment domains will contain a core software service.

[0061] The metadata that describes a host can include

such items as host name, host's IP address, the core

directory path on the host for the application, etc.

20 [0062] Since there is a many-to-many relationship

between the hosts and deployment domains, a list of hosts

can exist independently of the deployment domains. When a

host is configured for a deployment domain, it has to be

able to run all of the business services deployed in that

25 domain. The application infrastructure services do not

have to run on the host because they can themselves be

remote.

[0063] An application infrastructure service is defined

as a service that provides a discrete non-business level

- 17 -

WO 2004/066098 PCT/US2004/001854

service. Some examples of infrastructure services are

security services, transaction services, service

monitoring, load balancing, fault tolerance, and messaging

service. An infrastructure may also provide some other

5 services such as reliable delivery or asynchronous

messaging. These services can also be much higher level;

services such as accounting & billing services, service

level agreement management services and user profile

management services.

10 [0064] The best way to characterize an application

infrastructure service or differentiate it from a business

service is that business service in itself performs a

business function, such as procurement or a human resource

system. In contrast, an infrastructure service provides

15 secondary functionality that is not part of the business

functions itself.

[0065] The metadata of an infrastructure service

consists of property sheets with each property sheet

containing one or more related properties. For example, a

20 security service may contain five sheets for general

properties, authentication, authorization, message

integrity, and message confidentiality. Each sheet

contains properties that allow customization of the

underlying infrastructure service for this specific use.

25 Since these properties are specific to the underlying

service, their interpretation is left completely up to the

service itself and its plugin. Furthermore, since the

property values are specific to the specific usage of this

service, these properties need only be defined once a

30 virtual service container is configured with this service.

- 18 -

WO 2004/066098 PCT/US2004/001854

[0066] Once an infrastructure service has been written

or purchased, it has to be made part of one or more

deployment domains so that it can be used. This is

accomplished by defining an abstract plugin interface.

5 This interface allows the deployment management tools and

runtime software to plugin an infrastructure service into

the deployment domain and allows the service to be used at

runtime. The tools that allow the user to visually

configure the virtual service container may allow

10 mechanisms to "drag" the infrastructure service and "drop"

it on the virtual service container on a canvass. The

tools can at this time present the required set of

properties to be defined for the service for this

particular container. This is accomplished by requesting

15 the plugin to provide its customizable property sheets so

that they can be filled.

[0067] At runtime, the virtual container receives the

requests sent to the business service and invokes plugs for

all the application infrastructure services configured for

20 this container. The plugin can then retrieve the metadata

and use it to perform the work. If the actual

infrastructure service is implemented as a set of

libraries, then the plugin can invoke those libraries or if

it represents a remote service then it can communicate with

25 that remote service in a manner that is specific to that

infrastructure service. In any case, the runtime is not

aware of the details of the operation - it simply invokes

the plugin and passes it the runtime invocation-related

data.

- 19 -

WO 2004/066098 PCT/US2004/001854

[0068] Each infrastructure service is therefore required

to implement the plugin interface as a precondition to it

becoming part of an infrastructure. An infrastructure

service may provide different plugins for different

5 deployment domains. The location and other necessary

information required to load the plugin is part of the

metadata of the infrastructure service.

[0069] A business service implementation is an

implementation of the business behavior that a service is

10 expected to provide. This behavior should be implementable

in a manner independent of how it is accessed. For

example, it should be possible to implement the business

logic for a procurement service without being specific to

Jave Platform 2 Enterprise Edition (J2EE)-based access or

15 Microsoft .NET based access. However, once the service has

been constructed, it may be deployed in a virtual container

320 that is specific to the underlying platform. This

virtual container then decouples the service implementation

from the infrastructure in which it is deployed.

20 [0070] This virtual service container 320 is

conceptually similar to a J2EE container to the extent in

that it provides the several needed services such as

transaction and database management. However, unlike J2EE

like containers, these services are not fixed but can be

25 added, removed and updated. The virtual container 320 of

the preferred embodiment, is a higher level concept. It

views an environment as a collection of discrete higher

level services and recognizes the need for business

services to be integrated with those higher level services.

30 It limits its scope to the infrastructure level services

- 20 -

WO 2004/066098 PCT/US2004/001854

and does not provide those services that are needed for

implementing the business logic, such as database

management.

[0071] The container is called

5 "virtual" because it itself is a platform independent

definition rather than a physical implementation. It is

described in terms of metadata. The metadata for the

container describes the business service implementation

that is it hosting. This service was built using the

10 development tools and its definition is part of the

development metadata. In an integrated system of tools,

the deployment tool may retrieve this definition from the

development metadata repository.

[0072] The metadata for the container also describes one

15 or more application infrastructure services required by the

virtual container. When a virtual container is created, it

is created for a particular deployment domain. This

deployment domain is already preconfigured with one or more

infrastructure-level services. The deployment engineer can

20 select from those infrastructure services and integrate

them into the container using visual mechanisms such as

dragging and dropping them on the container. At this time,

the tools may invoke the plugin and bring up the set of

properties necessary to correctly use the infrastructure

25 level service.

[00733 Once the virtual container has been defined,

there is enough metadata to generate a physical

implementation of the virtual container, build it, package

it and transfer the required binaries to the host. Once

30 this is done, the business service is ready to be deployed

- 21 -

WO 2004/066098 PCT/US2004/001854

and used. When the code is generated, it is generated

according to some pre-defined mappings of the metadata to

the underlying platform. So for example, the physical

implementation for .NET platform may be quite different

5 from the physical implementation for J2EE. These mappings

define what elements of the metadata generate what kind of

code for the underlying platform.

[0074] Many underlying platforms either need to add

software code that is specific to them or require certain

10 information in various configuration files for the

applications to function properly. For example, an

application infrastructure service using Microsoft's

implementation of WS-Security specification requires

certain information to be placed into the .NET specific

15 configuration files. Also, some application infrastructure

services may need to insert specific programming code in

the generated code. For example, a load balancing service

may need to insert specific programming code in the

generated container code as well as the generated client

20 proxy to properly exploit its capabilities. For this

reason, the code generators involve the application

infrastructure service plugs in the code generation

process. When code generator starts, it also loads the

plugs for the infrastructure services being used by the

25 container. All code to be generated, whether it is

language code or configuration code is represented in XML.

The code generator first creates XML documents for all the

code that it wants to generate. It then invokes the

infrastructure service plugs and provides them an

30 opportunity to add code specific to them by passing the XML

documents representing the code to be generated. Once all

- 22 -

WO 2004/066098 PCT/US2004/001854

the plugs have added their code, the code generator

converts the XML documents back into either language

specific code or configuration code, as necessary. This

way, the code generation process can be kept completely

5 independent of a particular infrastructure service while

still allowing them to customize the generated code.

[0075] The separation between the business service

implementation and the underlying environment provides two

benefits. First, it allows the underlying application

10 infrastructure and the business service implementation

itself to evolve independent of each other. Secondly, this

allows the physical manifestation of the hosted service to

leverage fully the capabilities offered by various

infrastructures. This is explained in more detailed below,

15 but simply put it means that the virtual container 320,

through metadata 330 and visual tools, can be visually

composed to integrate one or more services offered by the

underlying infrastructure. Since this integration is

performed through the virtual container and at

20 configuration time, it does not become part of the service

implementation itself. The same procurement service can

then be configured and deployed in two different deployment

domains providing different levels of service.

[0076] Once the container has been configured and its

25 software code has been generated and built, a package can

be created that includes all the necessary platform

specific binary assemblies required for this service.This

package is then placed in a master vault. At this point, a

visual deployment tool can provide some mechanism such as

30 drag-and-drop to deploy this business service on any

- 23 -

WO 2004/066098 PCT/US2004/001854

machine that is part of the deployment domain. If a host

is then dragged and dropped on the virtual container, its

package is collected from the master vault and brought over

to the machine being dragged and dropped. This package is

5 then opened up and its contents are extracted. These

contents are then configured in a manner that is specific

to the underlying platform.

[0077] The actual addressable and accessible service is

then provided by the physical form of the virtual container

10 320 which can be specific to the underlying environment.

[0078] The traditional definition of management services

tools 310 are network managers. The management services

and tools described here have more application level

context than the system level context. Some examples of

15 management tools are business service monitoring tools,

service level agreement (SLA) management tools, fault

tolerance tools, application event handling, billing and

accounting services or user profile management.

[0079] Various application infrastructure services may

20 provide their own management tools that will use the data

collected by their plugins.

[0080] The most fundamental and core capability of this

architecture is the metadata 330. The metadata described

here is logical metadata. Logically, each deployment

25 domain 300 has its own instance of metadata 330. This

metadata describes the deployment domain itself in terms of

the infrastructure services that it is able to offer and

the virtual service containers 320 that are deployed in it.

-24 -

WO 2004/066098 PCT/US2004/001854

[0081] As a general rule, the exact form that the

metadata is stored in is not important. The platform can

choose an XML format, a relational database or some binary

form.

5 [0082] Figure 4 illustrates a federated metadata storage

and access system with various possible clients of the

metadata. The development tools will require metadata that

describes the team development environment and will allow

sharing of development artifacts. - One exemplary

10 implementation of the metadata architecture is illustrated

below.

[0083] The metadata has been described above as a part

of other elements. It is useful to note that the two kinds

of metadata that are relevant here are

15 configuration/deployment metadata and operational metadata.

[0084] The configuration/deployment metadata is used by

the configuration and deployment tools as well as by the

runtime system. This data will not change often but will

rather be accessed concurrently by large number of users.

20 A configuration metadata server should preferably offer

extensive caching features where the data is handed out

with a time-to-live parameter indicating how long the

client can use the data before being required to refresh

it.

25 [0085] Operational metadata is used by one or more

infrastructure services such as a monitoring services load

balancing service, and fault-tolerance service. This data

tends to change very frequently and the tools that present

- 25 -

WO 2004/066098 PCT/US2004/001854

this data, for viewing and analysis, may be required to

refresh based on user preferences.

[0086] The following is an exemplary case use in

accordance with one disclosed embodiment. Here, we look at

5 a typical use case scenario of a large bank that serves

consumer loan market. The bank has a large internal IT

organization, responsible for delivering the business

services to its users. The IT organization has to overcome

the challenges of building applications that will survive

10 the changing technology. Furthermore, the enterprise

considers the conformance of industry standards as its

strategic goal.

[0087] The two initial applications that have been

identified have different needs. The first application is

15 an Online Loan Approval System. Although the logic for

credit-approval already exists in the form of many small

systems, the bank wants to build a new system that uses

that logic but re-implements it in a more consolidated and

scalable manner. Previously, the bank employed a large

20 loan approval department that received the loan requests

either through fax or telephone and used these multiple

systems to score the applicant's credit history and make

the loan decisions. However, the bank wants to make this

system available online so that the applicant's could

25 themselves apply for the loan. In addition to its

potential clients, the bank may also decide later on to

make this system available to its smaller business partners

to get credit history of clients and to provide services

such as credit risk scoring. For those services, the bank

- 26 -

WO 2004/066098 PCT/US2004/001854

may charge those business partners on a per-transaction

basis.

[0088] The second system is an application, called

Customer Service Online system, that will allow bank's

5 consumer loan clients to get the status of their accounts,

directly without going through customer service. This

information already exists in a legacy J2EE system that is

deployed in the internal secure network. The bank wants to

build a front-end web service to this system.

10 [0089] In order to meet its strategic technical

objectives, the bank has standardized on toolkit in

accordance with one disclosed embodiment. The bank also

has a well-structured group that runs its data centers.

The data center has system architects and system

15 administrators who collectively run the managed environment

for all the bank's applications.

[0090] As is with any system, the normal steps of

requirements gathering and requirements analysis are

performed. These steps are no different than any other

20 application development project. However, once the

requirements have been analyzed, the application architect

will transform the requirement for the Online Loan Approval

System into a business interface. This business interface

becomes the contract that has to be implemented. The logic

25 that implements this business interface is termed as the

business logic that has to be developed.

[0091] The application architects use a off-the-shelf

modeling tool to model the service contract. This contract

identifies the operations (business functions) that the

- 27 -

WO 2004/066098 PCT/US2004/001854

service exposes, defines a type system that defines the

data required as inputs or is returned as outputs by those

operations. This business interface is critical data

because it defines the Contract between this business

5 service and its users. Once the application architects

have stabilized the business contract, they extract

contract information from the modeling tools and generate

metadata in a metadata repository, in accordance with one

disclosed embodiment.

10 [0092] The development team then takes this business

contract and conducts a detailed design and develops the

business logic. The development team decides to use C# as

the development language and the implementation is

developed as C# assembly.

15 [0093] The development team only focuses on implementing

the business logic as required by the business contract.

They do not address other key issues such as security,

billing or scalability. Their efforts are strictly focused

on building one or more assemblies that implement the

20 business logic.

[0094] Once the implementation has been built and tested

in stand-alone mode, an implementation package is created

that contains the necessary metadata and DLLs and is handed

over to the data center that is responsible for deploying

25 and managing bank's applications.

[0095] The customer service system presents a different

scenario than the first one. The bank really does not want

to change the exiting system. The system works well and

already has all the necessary functions required to fulfill

- 28 -

WO 2004/066098 PCT/US2004/001854

the task. However, this system was purchased by the bank

from a 3rd party and provides no way for bank to expose it

to external users and is not manageable.

[0096] The application architects have decided to use a

5 system in accordance with one disclosed embodiment to build

a front-end gateway service that will expose the

functionality of this system to.the external users and will

conform to the strategic goals of the bank in being

standards compliant and be manageable.

10 [0097] This process is very simple. The introspection

capabilities of one disclosed embodiment are used to

analyze the J2EE interfaces exposed by the existing

applications. From these, then one or more functions are

selected and system then automatically generates the

15 required metadata, populates the metadata repository and

then generates a gateway implementation that can delegate

requests to the existing system. As in the previous case,

this gateway implementation is then packaged in JAR files ,

and an implementation package is created. This

20 implementation package is then handed over to the data

center that is responsible for configuring, deploying and

managing bank's applications.

[0098] Once the data center receives an implementation

package, it is ready to configure the service. It is

25 assumed that by this time the minimal metadata that

describes the service interface has been defined in the

metadata repository.

[00991 The data center already has several different

deployment domains configured. The data center also uses

- 29 -

WO 2004/066098 PCT/US2004/001854

several infrastructure services such as Security. For some

of its infrastructure services, the vendors provided

toolkit-compatible plug-ins and for others the data center

wrote its own. In either case, those infrastructure

5 services are properly configured for the preferred

embodiment and fit in its plug-and-play architecture.

[0100] Configuring a business service involves several

different steps that allow a business service

implementation to be transformed into a managed and hosted

10 web service.

[0101] The business service implementation provided to

the data center is an implementation package that contains

one or more DLLs or JAR files that implement the business

behavior. These implementations lack the appropriate

15 environment required to make the business service

addressable and hostable and they also lack the necessary

infrastructure capabilities such as security.

[0102] The first step that the system architects do is

to define a virtual container. This virtual container

20 extends the metadata describing the service contract with

metadata relating to the desired infrastructure services.

This metadata will be used later on to create a physical

web service that will provide a proper execution

environment for the business logic implemented by the

25 developers and will provide the flexible management

environment required by the data center to perform its

functions.

[0103] During this process, the system architects also

decide what infrastructure level capabilities (security,

- 30 -

WO 2004/066098 PCT/US2004/001854

transactions, etc.) are required for this business service.

They then use the drag-and-drop facilities available in the

visual composition environment of the preferred embodiment

to create this container. . As new infrastructure services

5 are dragged onto the virtual container, these

infrastructure services plugs are invoked by the graphical

environment and at this time, these plugs populate the

metadata with a set of properties that they would like to

be customized. The graphical environment then presents

10 those properties in a property editor and lets the system

architect provide unique values of those properties. They

can also customize the container itself by setting its

logging levels as well as choose the correct QoS

parameters such as various delivery modes.

15 [0104] Once the virtual container has been configured,

the system architects can select the target platform for

this web service. For example, if the business

implementation is written in Java, then the potential

target platforms can be any of the J2EE environments

20 supported by the installation. Alternatively, if the

implementation was provided in DLLs, then the target

platform can be Microsoft's .NET environment.

[0105] Once the target platform has been selected, the

composer tool can generate the code necessary for a web

25 service that can be physically deployed and managed and

then build that code along with the provided implementation

into an executable. The composer then creates a deployment

package that contains all the necessary DLLs or the JAR

files required for deployment.

- 31 -

WO 2004/066098 PCT/US2004/001854

[0106] This package is then automatically placed in a

master vault that is managed by the system of the preferred

embodiment. All machines that are configured in the data

center have an agent service running on them. These agents

5 cooperate with each other to transfer packages in and out

of the master vault and configure particular underlying

target platforms for business services.

[0107] Once a deployable package has been created for a

web service, the composer tool can be used to drag

10 different hosts on a business service. This drag-and-drop

operation triggers the actual deployment process.

[0108] When a host is dragged on a business service, the

SOA Agent running on that host retrieves the deployment

package from the master vault, unpackages it on that

15 machine, performs the steps necessary to configure the

underlying environment and makes the web service

addressable.

[0109] A web service can be undeployed from a host by

selecting that host in composer tool and simply deleting it

20 from there. This results in all traces of that package

being removed from the machine.

[0110] One a service has been deployed, it can be easily

managed. Whenever, a request is sent to that service, the

physical container provided by the runtime environment

25 receives it. The runtime environment then executes all the

necessary infrastructure services configured for this

container and then invokes the business implementation

provided by the user. When it gets the response from the

business service implementation, it re-invokes any

- 32 -

WO 2004/066098 PCT/US2004/001854

necessary infrastructure services and sends the response

back to the caller.

[0111] As the technology changes, the infrastructure

services can change. The system architects can use the

5 composer tool to slowly transition the deployed business

services from an old or obsolete module to a new module by

simply removing the old plug from the business service and

using drag-and-drop to configure the business service with

new plug. The preferred embodiment automatically removes

10 older DLLs or JARs from the physically deployed services

and copies the new ones for the new plug. The business

services adjust to the new infra-structure service without

the typical need for interruption and modification.

[0112] To continue the bank example, after the Online

15 Loan Approval service has been deployed, the bank decides

to make that service available to its business partners for

a price. An internal infrastructure level billing service

is developed (along with its toolkit compatible plug) and

configured. The system architects simple drag this

20 infrastructure service on the Online Loan Approval service,

without modifying the business implementation or bringing

the service down. The preferred embodiment automatically

modifies the metadata, reconfigures the deployed services

and the runtime environment starts using this new

25 infrastructure service when requests are sent to the

business service.

[0113] One specific feature of the preferred embodiment

is a visual composition environment. The preferred

embodiment uses visual tools to generate metadata. These

- 33 -

WO 2004/066098 PCT/US2004/001854

tools can present the core metadata in a tree structure as

shown in Figure 5.

[0114] Figure 5 shows an exemplary user interface 500

for a visual composition environment in accordance with the

5 preferred embodiment. GUI interface 500 is divided into

multiple areas, including available objects area 510,

active object identifier 540, related objects area 520, and

properties area 530.

[0115] Available objects area 510 shows all objects that

10 are available to be configured or deployed, including

hosts, infrastructure services, service implementations,

and deployment domains. The folder named "hosts" contains

the list of all available hosts in the entire managed

space. The information that is visible for each host in

15 this list can be such as the name of the server and its

machine address.

[0116] The folder named "infrastructure services"

contains a list of all available infrastructure services.

This information preferably does not contain anything more

20 than the name of the service and its description and

purpose. These are all the infrastructure services

available to be deployed.

[0117) The folder named "implementation services"

contains all the implementation packages that have been

25 made available. Each of these contain the related metadata

describing the service contract as well as the binaries

that contain the actual implementation of that service

contract behavior. It is also possible to further group

the service implementations.

- 34 -

WO 2004/066098 PCT/US2004/001854

[0118] The folder named "deployment domains" contains

the deployment domains underneath it. Each deployment

domain can have a folder of its own. Each deployment

domain furthermore has one folder for each virtual

5 container in it. The folder for the virtual container all

the infrastructure services that it is configured with and

all the hosts that it is deployed on.

[0119] Active object identifier 540 shows which object

is currently active. Here, "Domain 1" is the active

10 object; this label will change to correspond to whichever

object the user is acting upon. This area is actually

sensitive to whether a deployment domain is selected or a

virtual container is selected.

[0120) Related objects area 520 shows all objects,

15 grouped according to type, which are currently associated

with the active object. In this example, because

deployment domain "Domain 1" is the active objects, the

related objects area 520 shows all hosts, infrastructure

services, and virtual containers for business services that

20 are currently deployed in Domain 1. In this example, both

Host 1 and Host 2 are associated with Domain 1, and the

Security and Package Tracking services are deployed in

Domain 1.

[0121] Note that if, for example, "Host 1" were the

25 active object 540, then the related objects area 520 would

display all deployment domains, infrastructure services,

and virtual containers related to Host 1. Whatever type of

object is showing as the active object 540, the other types

of objects will be show in the related objects area 540.

- 35 -

WO 2004/066098 PCT/US2004/001854

[0122] Finally, properties area 530 is used to define

and modify the properties for any object. When an object

is selected anywhere in the user interface 500, any

customizable properties related to that object will be

5 shown in properties area 530. The user may then edit these

properties as appropriate.

[0123] Using interface 500, the user can select an

active object 540, then drag and drop objects between the

available objects 510 and the related objects area 520.

10 When an object is dragged from the available objects area

510 into the related objects area 520, the system will then

perform all necessary file generation and configuration, as

defined by the appropriate properties, to actually form the

logical relationship between the dropped object and the

15 active object. This process is described in more detail

elsewhere in this disclosure, and the implementation is

within the abilities of one of skill in the art.

[0124] For example, if the "Online Catalog" service

implementation were dragged into the related objects area

20 520 when the active object 540 is "Domain 1," then the

system will automatically generate all necessary binaries,

and transfer and install them as appropriate, to deploy the

Online Catalog service in the Domain 1 deployment domain.

[0125] In the same manner, if an object is dragged out

25 of the related objects area 520, then the system will

remove its logical relationship with the active object.

[0126] Up to this level, the elements are those that

exist in global space. These are elements or pieces of

metadata that are not specific to a deployment domain.

- 36 -

WO 2004/066098 PCT/US2004/001854

Further into the deployment domain, the metadata becomes

more specific.

[0127] One or more hosts can be prepared to host a

deployment domain. Similarly, a single deployment domain

5 can span multiple hosts. All the hosts configured for a

specific deployment domain appear in the folder belonging

to that deployment domain. These nodes may contain data

such as the working area to store different deployment

packages containing different binaries and configuration

10 files belonging to the infrastructure as well as business

services in that deployment domain.

[0128] An infrastructure service can be configured in

multiple deployment domains and a single deployment domain

will have multiple infrastructure services. This

15 relationship is similar to the many-to-many relationship

that the hosts have to a deployment domain. When an

infrastructure service is configured for a deployment

domain, its related software, such as its plugins, is

physically transferred to all the hosts that are configured

20 for the domain.

[0129] When a new virtual service container is created,

it is ready to be deployed to any of the physical machines.

Each container has a folder of its own underneath the

deployment domain folder. The list of hosts that appear

25 here are the hosts where this container is physically

deployed and the list of infrastructure services are the

ones that his container is configured to use.

- 37 -

WO 2004/066098 PCT/US2004/001854

[0130] By organizing the information like this, a visual

tool of the preferred embodiment can use drag-and-drop

capabilities to compose the virtual service container.

[0131] Figure 6 shows an exemplary virtual container

5 represented on a canvas. In this figure, the larger

outside cylinder is the virtual service container 600. The

smaller cylinders inside the larger one represent the

plugins 610 for the infrastructure services. At the end of

the chain is the business service implementation 620 that

10 the virtual service container is hosting. Using this

representation, the user can drag and drop infrastructure

services, configured for that domain, from either the tree

structure or a graphical palette. Similarly, the container

can be dragged onto a host in that domain, thus triggering

15 the physical deployment.

[0132] Another feature is the unique customization of

the use of the configured infrastructure properties through

a system of property sheets. When a virtual container is

configured with an infrastructure service, at that time the

20 preferred embodiment loads the plug of the infrastructure

service and invokes the plug, providing it the empty

collection of property sheets. The plug responds by

populating this collection with property sheets that

contain properties that it is interested in. The runtime

25 system and the composition tools do not know anything about

these properties. One the plug has populated the property

collections with properties specific to it, the composition

tools presents those properties in a property editor that

allows the user to provide unique values for those

30 properties. These properties are then saved with the other

- 38 -

WO 2004/066098 PCT/US2004/001854

metadata and can be changed later on. Each collection

contains one or more property sheets and each property

sheet contains one or more properties. This organization

of properties allows for a more readable and understandable

5 organization of the properties.

[0133] Another feature of the preferred embodiment is

the code-generation capability. Once a container has been

configured, its definition is complete. However, it is not

yet ready to be physically deployed because it is only a

10 definition at this point. However, since now the

definition is complete, the user can select a target

environment such as .NET or an EJB server. Once the target

environment has been selected a code generation scheme can

be selected to generate software code that maps the

15 definition of the virtual container to the computer

facilities offered by the underlying target platform. This

code can then be compiled and linked with the runtime

environment required by the platform and a package is

created.

20 [0134] Various color coding schemes can be used to

describe the state that the container is in. The possible

stages identified include configured, packaged, and

deployed.

[0135] The code generation software can additionally

25 generate smart proxies that perform the equivalent of the

virtual service container for the client. These smart

proxies integrate the infrastructure services as defined by

the business service for the client. For example, a

business service may require the client application to

30 authenticate itself against the security infrastructure

- 39 -

WO 2004/066098 PCT/US2004/001854

service and send only the authentication token to the

business service. A smart proxy will retrieve the metadata

for the client and invoke the infrastructures configured

for the virtual container that are relevant for the client

5 environment. These plugs can then prompt the client for

any data that they might require and use the runtime

environment to send that data to the virtual container

along with the rest of the request data.

[0136] Just as the virtual service container can be

10 packaged into a distributable unit, the smart proxies can

also be packaged into a distributable unit. These units

can then be separately provided to those who are interested

in building client applications to those business services.

[0137] Another feature of the preferred embodiment is

15 software configuration capability. Once the code for the

virtual service container has been generated, compiled, and

packaged, the container can be placed into a packaged

state. At this point, a host can be dragged on the

container. This will cause the software configuration

20 facility to perform separate steps:

[0138] - It can transfer the deployment package that

contains all the related files to the target host machine;

[0139] - These files can then be unpackaged on that

machine by this facility automatically and placed into the

25 specific directories structure required by the underlying

platform;

[0140] - In the case of web services, the web server can

be configured to know about the web service. Similarly in

- 40 -

WO 2004/066098 PCT/US2004/001854

case of an J2EE, the EJB server can be configured to know

about the service; and

[0141] - The configuration files can be placed into the

proper areas.

5 [0142] Once these steps have been performed, the virtual

service container has been transformed into a physical

service that can be invoked.

[0143] At a later time, when updates are made available

for either the business service implementation or the

10 infrastructure services plugs, the corresponding packages

can be updated and these updates can be propagated to all

the machines where the physicial business services are

deployed.

[0144] Figure 7 shows a flowchart of an exemplary

15 process in accordance with the preferred embodiment. In

this process, the user accesses a user interface and

selects a deployment domain (step 705). The user then

drags an icon representing a host system into the

deployment domain area depicted on the user interface (step

20 710). In response, the host is associated with that

deployment domain and any other objects in the deployment

domain (labeled DD in figure, step 715).

[0145] The user drags an icon representing an

infrastructure service (labeled IS in figure) into the

25 deployment domain area depicted on the user interface (step

720). In response, the infrastructure service is

associated with the deployment domain and any other objects

within the deployment domain (step 725).

- 41 -

WO 2004/066098 PCT/US2004/001854

[0146] The user drags an icon representing a service

implementation (labeled SI in figure) into the deployment

domain area depicted on the user interface (step 730), thus

starting the definition of a virtual container, and

5 optionally specifies properties for the virtual container

(step 735) In response, the service implementation is

associated with the deployment domain and any other objects

within the deployment domain (step 740).

[0147] The user then drags one or more infrastructure

10 services from within this domain onto the virtual container

(labeled VC in figure, step 745), and optionally specifies

the properties for the infrastructure services (step 750).

In response, the system associates this infrastructure

service with the virtual container (step 755).

15 [0148] The system then evaluates any new or changed

associations (step 760). The system generates any code

necessary to implement the associations (step 765), and

transmits and installs the generated code as necessary

(step 770). In this way, the user is able to fully manage

20 the deployment domain, and to deploy and manage the hosts

and services within it, all using a simple and intuitive

user interface.

[0149] It should be noted that in the exemplary process

described above, and other processes described herein, not

25 all steps must be performed at any given time.

Furthermore, many of the process steps described above may

be performed in any order, or repeated, without changing

the nature of the process or the advantages it provides.

- 42 -

WO 2004/066098 PCT/US2004/001854

[0150] It should also be noted, as discussed above, that

a similar method can be used when a host or service is

first selected, then other services, hosts, or a deployment

domain is then associated with that host or service using

5 the drag-and-drop technique above. Similarly, the

implementing code will then be generated and installed by

the system.

Configuration Architecture

[0151] The preferred embodiment provides extensive

10 capabilities to package software modules into packages,

store packages in a master location, transfer packages in

and out of that master location and configuring any

supported underlying platform for a web service.

[0152] Most conventional software configuration

15 mechanisms deal with software distribution on a desktop

client. The preferred embodiment manages software

distribution of web services, including the software for

business service as well as the infrastructure services.

It also configures the diverse underlying application

20 server platforms such as Microsoft .NET or BEA WebLogic.

Using the disclosed system and methods, the users can

manage the automatic distribution of web services in a

distributed network, distribute software updates remotely

and transparently deploy that software on the underlying

25 platforms.

[0153] The presently preferred system uses commonly

available zip and compression algorithms to package

software modules and other related files. All packages,

which may include programming language specific code and

- 43 -

WO 2004/066098 PCT/US2004/001854

binaries or platform specific assemblies are stored in the

same format.

Core Package

[0154] One component of the preferred system is the

5 runtime framework. Any infrastructure service plugs or

business service implementation, or business service

containers require the binaries from the framework in order

to build successfully.

[0155] This package contains the core binaries of the

10 framework. There is one such package for each supported

language or compilation system. Initially, there may be

multiple such packages, e.g., one for building things in

Microsoft's .NET environment, another for Java, and others

for other virtual environments.

15 Infrastructure Service Package

[01561 The infrastructure services are integrated by

writing plugs that represent them in the system

environment. These plugs are then distributed to the

machines from which these infrastructure services are being

20 used-. However, in addition to these plugs, the binaries

associated with the infrastructure service itself also need

to be distributed. This package, one for each

infrastructure service and for each compilation

environment, includes the binary code for the software plug

25 itself, as well as the compilation environment specific

binaries for the infrastructure service.

- 44 -

WO 2004/066098 PCT/US2004/001854

Business Implementation Package

[0157] A service implementation package contains all the

binaries required for the implementation of business logic.

In case of .NET, this may be a dynamic linking library

5 (DLL) that contains the code for the business service

implementation and one or more DLLs required for correct

linking and execution of the business logic implementation.

Similarly for Java based platforms, the package may contain

either one or more class files or JAR files. A manifest

10 file describes each of these binaries.

Deployment Package

[0158] A deployment package contains the code necessary

for the physical implementation of the virtual container.

It does not include the code for the system framework

15 itself or the infrastructure services or the business

service implementations. Those packages are not included

because they already exist in the vault separately and are

copied only when necessary.

Master Vault

20 [0159] Master vault is a machine in the entire network

that serves as the designated repository to store various

packages during the entire lifecycle of the services. In a

sense it is the file-server for the disclosed platform.

The work area for master vault is represented by a top

25 level directory.

[0160] Underneath the root of the work area, there is a

sub-directory for all the available Hosts. There is a file

for each of the hosts that describes that host.

- 45 -

WO 2004/066098 PCT/US2004/001854

[0161] There is also a sub-directory for Service

Implementations. In this sub-directory, each service

implementation has a folder. In this folder, the raw

metadata for the service, its contract definition and the

5 implementation packages are kept as files.

[0162] There is a directory for deployment domains here

also. This directory contains separate directory for each

deployment domain. In this deployment domain, all the

software packages for the configured business services are

10 kept.

[0163] The metadata describing each deployment domain

and everything underneath resides in high performance

servers that have a caching and federation architecture for

high performance and scalability.

15 Agents

[0164] An agent is a software service that runs on each

machine. On windows based systems, this service can run as

a Windows service and on non-windows machines, it can run

as a background process.

20 [0165] This service provides all the logic necessary for

managing the vault and software configuration of the

supported underlying platform. One machine can be

designated as the Master Vault. The agent that runs on

that machine assumes the role of the master agent. This

25 dual personality of the agents allows any machine to be

designated as the master vault. The master agent receives

the requests for transfer of software packages into and out

of the master vault. The master agent also maintains a

directory structure on the master vault for organizing

- 46 -

WO 2004/066098 PCT/US2004/001854

various software packages. Depending upon the task to be

performed, an agent may either perform the request itself

or it may delegate the request to the agent running on the

master vault.

5 Configuration Process

[0166] The agents are responsible for correct

configuration of the underlying application services

platform, with the least amount of input from the user.

[0167] As new infrastructure services are available,

10 various tools are used to create or update their packages.

As mentioned before, these packages are distributed

throughout the network, wherever the business services that

use these infrastructures are deployed. That means that

the system has to be able to propagate the updates

15 throughout the network when needed. This propagation

process is coordinated by the tools provided by -the

environment.

[0168] Packages for business service implementations are

created and propagated in similar manner.

20 [0169] Creation of deployment package in the system

involves multiple steps. First, an administrator uses

system tools to configure a virtual container for the

business service. This container exists only in metadata

and is platform-neutral. The administrator then provides

25 unique property values for fine-tuning. Nezt, the

administrator selects a specific underlying platform and

generates code for the physical container (the web

service). The code generators generate code for that

specific container according to the pre-defined mappings of

- 47 -

WO 2004/066098 PCT/US2004/001854

the virtual container to the physical container. This code

is then built and packaged into platform-specific packages.

As described, this package does not need to include the

package for the business service implementation as well as

5 the infrastructure services, since this information is

already available in the metadata.

[0170] When the administrator attempts to deploy the

service to a specific host, the agents first determine the

supported platforms on that machine. If multiple platforms

10 are supported on that machine, then the user is prompted

for the choice. Once the platform has been determined, the

agent on the local machine collaborates with the master

agent to retrieve the correct deployment package, as well

the package for business service implementation and

15 packages for all the configured infrastructure services

from the mater vault. The contents of these packages are

then extracted and copied to a file structure that is

specific to the underlying platform. After that, the

underlying platform itself is configured, e.g., Microsoft's

20 IIS requires creation of a virtual directory while the J2EE

platforms require modification of server configuration

files.

[0171] Once this configuration is complete, the web

service is ready to receive request.

25 Self Configuration n Self Healing

[0172] The preferred embodiment operates on the

principal of minimum configuration and self-healing. The

system is able to detect its own errors and attempt to take

necessary actions to correct itself.

- 48 -

WO 2004/066098 PCT/US2004/001854

Infrastructure Service Integration

[0173] One particular feature of the preferred

embodiment is the ability to integrate one or more

infrastructure services with a business service to provide

5 the desired level of support required for the correct

operation of the business service.

[0174] This support is provided in such a way so that

the infrastructure is very flexible. This infrastructure

can be continually enhanced by adding more infrastructure

10 services, removing the outdated or deprecated services or

by updating the existing services with new versions.

[0175] This kind of flexibility first of all allows a

managed environment to take full advantage of the changing

technologies and evolving standards and new products coming

15 onto the marketplace. The strength of the architecture is

in providing a framework for making 3rd party products play

in the disclosed environment rather than having to custom

write infrastructure services to do what commercially

available products already might do.

20 [0176] The infrastructure service integration capability

also allows the services to be updated. So for example, if

the new version of a service becomes available and the plug

for that service has to be updated, the architecture should

allow that kind of update as well.

25 [0177] The metadata that describes an infrastructure

service consists of information required to load a service

plug, properties that it is interested in and information

necessary to determine whether the plug has relevance to

client-side, server-side or both.

- 49 -

WO 2004/066098 PCT/US2004/001854

[0178] The information necessary for loading the plug

dynamically is somewhat specific to the platform

environment. For example, .NET environment would require

the assembly that the plug is in and the name of the class

5 that implements the plug interface.

[0179] The most important metadata for an infrastructure

service, according to the presently preferred embodiment,

is in the form of a property sheet collection. A property

sheet collection contains one or more named property

10 sheets. Each property sheet contains a set of related

properties that the plug needs to tune its behavior for a

specific usage. Each plug by default has a property sheet

named "General" that contains some basic properties. These

properties indicate whether the plug processes incoming

15 messages or outgoing messages or both and whether it

participates in the code generation process. Default

values are assigned to these properties.

[0180] Later, when a business service virtual container

is configured to use this infrastructure service, the plug

20 for this infrastructure service is invoked and it adds

specific properties to the property sheet collection.

[0181] The following table is an exemplary property

sheet for a possible security service:

25

General Process Incoming Messages true
Process Outgoing Messages true
Generate Code false

Authentication Authentication Required true

- 50 -

WO 2004/066098 PCT/US2004/001854

Authentication Type Service Based
Authentication

Authentication Domain domain.com
Authorization Authorization Required true

Authorization Resource http://someresource.com
Role Based Permission true
Role Namespace corporate
Role Property roles
Operation Domain DemoOps

Encryption Encrypt Messages false
Properties

Encryption Type Symmetric Encryption
Encryption Method

Signature Properties Signature Required False
Signature Method

[0182] This collection has 5 sheets that provide sets of

properties related to each other. This allows the plug to

have multiple properties with the same name but in

5 different sheets. Various parts of the plugs runtime can

retrieve these properties and use them as needed.

[0183] The metadata also describes whether a particular

infrastructure service acts only on the server side or the

client side or both. It further indicates whether the

10 infrastructure service need to participate in the code

generation process to provide code that is specific to it.

[0184] Figure 8 shows a process of customizing

infrastructure services, in accordance with a preferred

embodiment. Here, the infrastructure services properties

15 are first added at the point where the system receives an

instruction to add an infrastructure service to a virtual

container (step 810). Next, the plug for that

infrastructure service is loaded and invoked (step 815).

It is passed an empty set of property sheets, which it

20 populates with any properties that are relevant to that

infrastructure service (step 820). Optionally, the user

- 51 -

WO 2004/066098 PCT/US2004/001854

may enter custom values for these properties (step 825)

The filled property sheets are then stored in the metadata

for that infrastructure service (step 830).

[0185] Figure 9 depicts a flowchart of the portion of

5 the process which uses these infrastructure properties, as

part of other processes described herein. When the system

receives a request for a business service (step 910), the

request is processed, by' any relevant infrastructure

services/plugs. The infrastructure service plug is invokes

10 (step 915), and its property sheets are loaded from the

metadata (step 920). The request is then passed to the

plug with the property sheets, and is processed by the

infrastructure service using the property information (step

925).

15 Plug-and-play Integration

[0186] Each infrastructure service is represented in the

system environment through a system plug interface. This

plug represents an infrastructure service in the

environment. The. preferred embodiment itself does not

20 differentiate between a specific kind of infrastructure

service (e.g. it does not differentiate a security service

from the transaction service). To this system, all

infrastructure services appear the same and it invokes them

at the right points during the message processing. A

25 message processing model, for example, makes it possible to

write service implementations and client programs that have

absolutely zero knowledge of what infrastructure services

are executing, what inputs do they require and what kind of

extra information needs to be inserted in the messages or

30 extracted from them for the correct operation. The service

- 52 -

WO 2004/066098 PCT/US2004/001854

plugs therefore perform all that logic themselves in a

completely encapsulated manner.

[0187] If an infrastructure service is a simple service

and is implemented in terms of a library, the plug would

5 wrap that service and the service would be invoked inline.

However, most sophisticated infrastructure services are

standalone third-party services. For example, a security

service may have a separate service process that may

perform authentication and authorization. For those kinds

10 of services, the plug actually acts on behalf of the remote

service inside the tool-time or runtime environment.

[0188] The system runtime defines an abstract interface

known as ServiceHandler interface. A plug for an

infrastructure service first has to implement this

15 interface.

Initializing for Use

[0189] In this environment, an infrastructure service

has no significance or identity until it is selected to be

integrated inside a business service virtual container, and

20 the metadata for an infrastructure service is mostly

undefined until this point. However, when a user uses the

composer tool to drag and drop an infrastructure service on

a business service virtual container, the plug for the

service is loaded in at that time and this method is

25 invoked on the plug and the empty metadata container is

passed to it.

[0190] In response, the plug populates the metadata with

a set of properties. The properties are represented

generically and related properties are organized into

- 53 -

WO 2004/066098 PCT/US2004/001854

sheets for easy organization, traverse-ability and

presentation. The plugs then populate the metadata with

only those properties that are required by it to provide

the proper behavior at runtime when it is invoked.

5 [0191] There are a few general properties that all plugs

have and the system provides some default values for those

properties. For example, by default, a property is added

to the property sheet marked "General" that indicates that

this plug does not participate in the code generation

10 process. A plug may also override such properties at this

time.

[0192] In addition to manipulating this property sheets

collection, the plugs may also modify other pieces of

metadata. For example, by default all plugs are marked as

15 service-side as well as client-side plugs. This means that

these plugs will be loaded and invoked by the runtime,

regardless of whether it is in the client-side or server

side. However, for some plugs, it does not make sense to

do that on the client-side. For example, for collection of

20 service metrics, the plug of the monitoring service only

needs to be invoked on the service-side. Hence this plug

does not need to be distributed, loaded and invoked on the

client-side. The plug can again override these values at

this time too.

25 [0193] Once this method has successfully modified the

metadata, this metadata can then be saved in the metadata

server.

- 54 -

WO 2004/066098 PCT/US2004/001854

Initialize For Runtime

[0194] This method is invoked by the runtime when it

loads the plug into the runtime for business service

virtual container. At this time the plug can initialize

5 its internal data structures, allocate any resources that

it needs to, and cache the needed metadata.

[0195] For example, if the plug represents a remote

service then it would need to establish a connection with

that service in order to communicate with it. Instead of

10 opening that connection every time, the plug may need to

open the connection in this method upfront and use it

whenever needed.

Invoke

[0196] When the business service virtual container

15 receives a service request, it invokes all the loaded plugs

by calling this method on them. Two of the arguments to

this method are the parameters that were provided with the

requests, or in case of a response the response values, and

the direction of the request. The direction of the request

20 indicates whether this request is incoming or outgoing.

The third parameter is the context of the request and has

many pieces of information.

[0197] Since the plug interface does not differentiate

methods required for client-side vs. server side and

25 incoming vs. outgoing, the direction parameter allows

determination of the direction and the context can be type

casted to either a ServiceContext or ClientContext to

determine whether the plug is being invoked on the server

side or client-side.

- 55 -

WO 2004/066098 PCT/US2004/001854

Generate Configuration Code

[0198] Code generation process is described explained in

detail below and elsewhere in this application, to the

extent necessary to enable one of skill in the art to

5 replicate the claimed inventions. Simply put, there is a

strong need to provide the plugs with the opportunity of

getting involved in the code generation process. If a plug

has indicated that it does want that participation then

this method is invoked to let the plug modify the

10 configuration code to be generated by possibly adding its

own specific code.

Generate Server Code

[0199] This method allows the plug to insert the code

that might be essential for its operation on the service

15 side. The programming code itself is represented in XML

and the plug adds to that XML. Later, the code generator

converts that XML back to the programming language specific

code.

Generate Client Proxy Code

20 [02001 This is similar to the above method except that

it augments the code that makes up the client proxy. This

is invoked only for those plugs that are client-side plugs.

Searice Packaqing

[0201] An infrastructure plug has executable code

25 associated with it. In addition to the actual

implementation of the plug interface for this

infrastructure service, the binaries associated with the

- 56 -

WO 2004/066098 PCT/US2004/001854

remote service might also be required. All of these need

to be in the appropriate directories' on the machines where

the business service is executing.

[0202] System administration tools allow creation of

5 packages for these infrastructure services. These packages

are then placed in the master vault so that they can be

copied to any machine for correct deployment.

Business Service Virtual Container

[0203] One significant feature of the disclosed system

10 environment is its ability to provide a very configurable

and dynamic runtime execution environment that a) provides

a host for the business service implementation and b)

integrates it with one or more infrastructure level

services that are needed for its correct operation.

15 [0204] The construct for accomplishing that is the

Business Service Virtual Container. This container is

called virtual because it exists only in metadata

definition. Furthermore, this definition is independent of

any underlying platform.

20 [0205] The system then defines mappings of this virtual

container to the physical containers for all supported

underlying platform environment. Once these mappings have

been defined, code can be automatically generated to

produce the physical container from the virtual container.

25 [0206] The code for the physical container produced by

the code generators is then compiled and linked with all

the related binaries for the business service

implementation as well as all the binaries for required

- 57 -

WO 2004/066098 PCT/US2004/001854

infrastructure services. This is the code that can

actually be deployed to an underlying platform environment

and has a physical address and receive requests.

[0207] Just like the physical container generated from

5 this metadata provides the execution environment for the

service itself, physical code can also be generated for the

client side proxies that are smart enough to interpret the

metadata properly and can load and execute service plugs

for correct usage of the infrastructure services. These

10 are explained in more detail below.

Runtime Framework

[0208] The runtime framework is a lightweight framework

that provides the mechanisms hosting a business service

implementation and allowing that hosted service to also

15 leverage capabilities offered by one or more existing

infrastructure services.

[0209] On the client-side, the framework processes the

request through the plugs configured for the target

service. In doing this, only those plugs are processed

20 that have relevance to the client environment. Once this

processing finishes, the request is then dispatched to the

actual target service via its proxy. The response is again

processed through the service plugs before it is returned

back to the client implementation.

25 [0210] On the server-side, this framework transparently

intercepts all incoming requests and processes those

requests through the configured plugs for this virtual

container. Once all those plugs have been processed, the

service request is dispatched to the actual service

- 58 -

WO 2004/066098 PCT/US2004/001854

implementation. Once that request finishes, the response

is processed through all the necessary plugs and eventually

forwarded back to the invoking client.

[0211] In addition to managing the invocation of the

5 related service plugs, the framework also provides

extensive logging capabilities. The properties related to

logging levels can be modified on-the-fly without any need

to stop and restart applications.

[0212] The client-side and the server-side components of

10 the framework separate the client implementation and the

service implementation from the infrastructure capabilities

completely. This actually allows the framework to provide

various levels of quality of service such as reliable

delivery and asynchronous reliable delivery. These

15 capabilities can be customized for each virtual container.

Deployment Domains

[0213] The preferred embodiment provides mechanisms to

partition a large IT environment into smaller logical

partitions so that they can be configured with a set of

20 infrastructure capabilities. Business services are

deployed in a deployment domain. Generally, a set of

related applications would be deployed in the same

deployment domain. This deployment domain would be

configured with a set of infrastructure services necessary

25 for the quality of service desired.

[0214] A deployment domain consists of one or more

hosts. These hosts collectively define the logical

boundary of the deployment domain. Any business services

- 59 -

WO 2004/066098 PCT/US2004/001854

that are part of this domain can be deployed on any of the

hosts in that are part of that domain.

[0215] A deployment domain also consists of one or more

infrastructure services that in turn come from the list of

5 globally available infrastructure services. The

significance of this subset of infrastructures services is

to control visibility of the infrastructure services

further and provide easy configuration of the business

service containers.

10 [0216] Lastly, a deployment domain consists of one or

more business service containers created in that domain.

These container can then be configured with one or more

infrastructure services, those infrastructure services can

be customized, code for physical container be generated and

15 the services can be deployed.

Service Contexts

[0217] A service context carries with it the necessary

information that is required to process a request as well

as general information that is common the environment.

20 Service context in initialized once and then cached. If

the service receives notification of changed metadata, then

the service context can be re-initialized.

Client Content

[0218] This context is initialized for the client's

25 runtime. It initializes the metadata for the client,

creates the pipeline for the required plugs for the client

and also initializes the logging mechanism for the client.

- 60 -

WO 2004/066098 PCT/US2004/001854

Service Context

[0219] This context accomplishes the same for the

server-side runtime environment. One of uses of these

contexts are also to determine whether a particular piece

5 of code is executing in the client environment or the

server environment. While they both derive from the class

Context they can be typecasted to either one of the derived

class instances in order to decide.

Loading Service Plugs

10 [0220] When a service starts, its metadata is retrieved

and processed. An important part of this processing is to

load the plugs for all the infrastructure services that the

business service is configured with. Once these plugs have

been loaded dynamically, they are organized into a linear

15 pipeline and all the incoming messages are processed

through that pipeline. The order of the plugs in the

pipeline is the same as the order in which they appear in

the composition environment. This order is important

because the messages need to be processed like that. For

20 example, if a security service needs to decrypt an incoming

message, it is important that this service is the first one

in the pipeline because otherwise the parameters might not

make any sense to other services. Similarly, if metrics

may need to collected about this service, it is important

25 that those are taken last in the pipeline so that

processing time for the other service plugs is not

accounted for in the metrics for the actual business

processing of the request.

- 61 -

WO 2004/066098 PCT/US2004/001854

[0221] These plugs are loaded in such a way so that they

can be unloaded and reloaded without bring-ing the

application down. So for example, in .NET these plugs are

loaded in separate application domains. This is important

5 because the preferred system allows dynamic configuration

and reconfiguration and software updates. This is evident

from the following exemplary scenarios:

[0222] 1. A business service is configured with a new

infrastructure service. The Composer tool modifies

10 the metadata, copies the package contents for the new

infrastructure service into the appropriate

directories of the hosts that the business service is

deployed on and then informs the business service

container for the change. Business service container

15 can then load the plug for the newly configured

service and insert it in the appropriate place in the

pipeline.

[0223] 2. An infrastructure service is removed from

the configuration of a business service. The Composer

20 tool removes the plug from the metadata and removes

the binaries from the appropriate directories from the

deployed hosts. The business service is then informed

which then unloads the plug and removes it from the

pipeline.

25 [0224] 3. A new version of the infrastructure service

is made available. The Composer tool copies the new

package to the appropriate hosts, the binaries are

copied to the appropriate directories and the business

service is informed, which then reloads the package

30 for that service.

- 62 -

WO 2004/066098 PCT/US2004/001854

[0225] When a request now comes in, it is received by

the business service container. This container invokes the

plug for each infrastructure in the same order as they

appear in the pipeline. The next plug is invoked if the

5 previous plug is successful. The processing stops whenever

a plug is unable to invoke successfully.

[0226] This kind of plug architecture allows the

business service implementations to be completely devoid of

any logic that relates to the infrastructure services thus

10 making it possible to completely replace the infrastructure

services and underlying products without effecting the

service implementations or flow of business requests at

all.

Managed Container Interface

15 [0227] The system container generates the shell skeleton

of a business service implementation. These derive from

the class ManagedContainer from the runtime framework.

This managed container provides the implementation of many

of the methods that are necessary entry points into the

20 runtime framework.

[0228] When a service starts up, an instance of this

class is created. This container initializes the

appropriate context. Once the metadata has been

initialized, the container caches it. Some of the

25 important methods are discussed below.

Metadata refresh

[0229] When a business service receives a request to re

initialize its metadata because it has changed, this method

- 63 -

WO 2004/066098 PCT/US2004/001854

clears the metadata cache, unloads all the loaded plugs and

then re-initializes the metadata, thus rebuilding the plug

processing pipeline. By providing this method through the

managed container, services can be reconfigured without the

5 need to stop and restart them.

Logging levels

[0230] Through these tools, the logging levels of the

logging mechanism can be changed. This method changes the

logging level on-the-fly.

10 Get and Set Application Data

[0231] Most underlying web services platforms allow the

applications to execute in a multi-threaded environment,

processing multiple calls at the same time in separate

threads. ManagedContainer allows applications to store

15 named sets of data in a thread-safe manner instead of

saving the state information in local variables in un-safe

manner.

Smart Proxies

[0232] Smart proxies provide an environment for the

20 client-side code that performs the same kind of processing

as performed by the runtime on the server-side in the

virtual container. The smart proxies sit above the proxies

that might be generated by tools such as Microsoft .NET

platform, and uses those proxies. When a client

25 application instantiates a smart proxy, the proxy retrieves

the metadata for the target web service and for performance

caches it. It then constructs a pipeline of plugs that the

target service is configured with in the same manner that

- 64 -

WO 2004/066098 PCT/US2004/001854

the server runtime does. However, only those handlers are

configured that are relevant to the client.

[0233] Once this pipeline has been constructed, all

requests are processed through this pipeline. This kind of

5 processing completely separates the implementation of the

actual client from the processing of the infrastructure

service code. So for example, the plug for a security

service may prompt the client for the necessary user

credentials and package them appropriately for transmission

10 to the server side. They may also encrypt messages or sign

them as necessary. A replacement of this security with a

different one would mean that their plugs are replaced and

the new plug may prompt the user for different kind of

information. Again, the client implementation would not

15 rally care and know about all that.

[0234] Smart proxies may also be specialized by the

intelligent code generation process. The plugs for a load

balancing service might insert code for making load

balancing decision in the smart proxy itself during the

20 request processing.

[0235] Those skilled in the art will recognize that, for

simplicity and clarity, the full structure and operation of

all data processing systems suitable for use with the

25 present invention is not being depicted or described

herein. Instead, only so much of a data processing system

as is unique to the present invention or necessary for an

understanding of the present invention is depicted and

described. The remainder of the construction and operation

- 65 -

WO 2004/066098 PCT/US2004/001854

of data processing system may conform to any of the various

current implementations and practices known in the .art, and

unless otherwise noted herein, those of skill in the art

will recognize that any claimed features of a data

5 processing system can be implemented using conventional

data processing system and data processing system network

hardware, configured and programmed to operate as claimed

and described. In particular, any steps of described

processes can be implemented using known data processing

10 system means.

[0236] It is important to note that while the present

invention has been described in the context of a fully

functional system, those skilled in the art will appreciate

that at least portions of the mechanism of the present

15 invention are capable of being distributed in the form of

instructions contained within a machine usable medium in

any of a variety of forms, and that the present invention

applies equally regardless of the particular type of

instruction or signal bearing medium utilized to actually

20 carry out the distribution. Examples of machine usable

mediums include: nonvolatile, hard-coded type mediums such

as read only memories (ROMs) or erasable, electrically

programmable read only memories (EEPROMs), user-recordable

type mediums such as floppy disks, hard disk drives and

25 compact disk read only memories (CD-ROMs) or digital

versatile disks (DVDs), and transmission type mediums such

as digital and analog communication links.

[0237] Although an exemplary embodiment of the present

invention has been described in detail, those skilled in

30 the art will understand that various changes,

- 66 -

WO 2004/066098 PCT/US2004/001854

substitutions, variations, and improvements of the

invention disclosed herein may be made without departing

from the spirit and scope of the invention in its broadest

form.

5 [0238] None of the description in the present

application should be read as implying that any particular

element, step, or function is an essential element which

must be included in the claim scope: THE SCOPE OF PATENTED

SUBJECT MATTER IS DEFINED ONLY BY THE ALLOWED CLAIMS.

10 Moreover, none of these claims are intended to invoke

paragraph six of 35 USC §112 unless the exact words "means

for" are followed by a participle.

- 67 -

WO 2004/066098 PCT/US2004/001854

WHAT IS CLAIMED IS:

1. A method for managing services, comprising:

receiving an instruction to add a service to a virtual

5 container;

invoking a plug corresponding to the service;

adding property information corresponding to the plug

to a set of property sheets; and

storing the property sheets in a metadata

10 corresponding to the service,

wherein the property information defines property

settings of the service.

2. The method of claim 1, further comprising receiving

user configuration of the property information.

15 3. The method of claim 1, wherein the service is an

infrastructure service.

4. The method of claim 1, wherein the property sheets are

empty before the property information is added.

5. The method of claim 1, further comprising sending the

20 property information to the service when a service

request is received.

- 68 -

WO 2004/066098 PCT/US2004/001854

6. The method of claim 1, further comprising processing

the service using the property information.

7. A method using data processing system services,

comprising:

5 receiving a request for a business service;

invoking a plug corresponding to an infrastructure

service;

loading property information corresponding to the

plug; and

10 processing the request by the infrastructure service

using the property information,

wherein the property information defines property

settings of the infrastructure service.

- 69 -

WO 2004/066098 PCT/US2004/001854

8. A data processing system having at least a processing

and an accessible memory, comprising:

means for receiving an instruction to add a service to

a virtual container;

5 means for invoking a plug corresponding to the

service;

means for adding property information corresponding to

the plug to a set of property sheets; and

means for storing the property sheets in a metadata

10 corresponding to the service,

wherein the property information defines property

settings of the service.

9. The data processing system of claim 8, further

comprising means for receiving user configuration of

15 the property information.

10. The data processing system of claim 8, wherein the

service is an infrastructure service.

11. The data processing system of claim 8, wherein the

property sheets are empty before the property

20 information is added.

- 70 -

WO 2004/066098 PCT/US2004/001854

12. The data processing system of claim 8, further

comprising means for sending the property information

to the service when a service request is received.

13. The data processing system of claim 8, further

5 comprising processing the service using the property

information.

14. A data processing system having at least a processing

and an accessible memory, comprising:

means for receiving a request for a business service;

10 means for invoking a plug corresponding to an

infrastructure service;

means for loading property information corresponding

to the plug; and

means for processing the request by the infrastructure

15 service using the property information,

wherein the property information defines property

settings of the infrastructure service.

- 71 -

WO 2004/066098 PCT/US2004/001854

15. A computer program product tangibly embodied in a

computer-readable medium, comprising:

instructions for identifying at least one remote

system;

5 instructions for sending a request to the remote

system to pause processing of at least one system

service;

instructions for sending an updated software package

to the remote system; and

10 instructions for sending, to the remote system, a

request to install the updated software package,

wherein the remote system thereafter resumes the

processing of the system service, using the updated

software package.

15 16. The computer program product of claim 15, further

comprising instructions for receiving user

configuration of the property information.

17. The computer program product of claim 15, wherein the

service is an infrastructure service.

20 18. The computer program product of claim 15, wherein the

property sheets are empty before the property

information is added.

- 72 -

WO 2004/066098 PCT/US2004/001854

19. The computer program product of claim 15, further

comprising sending the property information to the

service when a service request is received.

20. The computer program product of claim 15, further

5 comprising processing the service using the property

information.

21. A computer program product tangibly embodied in a

computer-readable medium, comprising:

instructions for receiving a request for a business

10 service;

instructions for invoking a plug corresponding to an

infrastructure service;

instructions for loading property information

corresponding to the plug; and

15 instructions for processing the request by the

infrastructure service using the property

information,

wherein the property information defines property

settings of the infrastructure service.

- 73 -

	Abstract
	Description
	Claims
	Drawings

