PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION g
International Bureau > _

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/39674
GOGF 9/44 Al . I

(43) International Publication Date: 6 July 2000 (06.07.00)

(21) International Application Number: PCT/US99/31135 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,

(22) International Filing Date: 29 December 1999 (29.12.99)

(30) Priority Data:

09/224,487 31 December 1998 (31.12.98) US

(71) Applicant: COMPUTER ASSOCIATES THINK, INC.
[US/US]; 1 Computer Associates Plaza, Islandia, NY
11788-7000 (US). ‘

(72) Inventors: POHLMANN, William, N.; 8 Denford Drive,
Newtown Square, PA 19073 (US). MATSON, Kenneth,
D.; 15610 S.E. 24th Street, Bellevue, WA 98008 (US).
CANTRELL, Paul; 230 Old Sudbury Road, Sudbury, MA
01776 (US).

(74) Agents: DEVITO, Victor et al.; Baker & McKenzie, 805 Third
Avenue, New York, NY 10022 (US).

BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SYSTEM AND METHOD FOR DYNAMIC CORRELATION OF EVENTS

(57) Abstract

An event management
system including an event

manager (310), an alarm
rule store (340), an event
correlator (330), and a
response engine (350).
The event manager (310)
provides and receives events.
The event correlator (330)
correlates at least one of
the events provided by the
event manager (310) based
on the alarm rules stored in
the alarm rule store (340).
The response engine (350)
executes a response policy
based on the correlation of

330
A\

EVENT
CORRELATOR

L

320
N

EVENT
ARCHIVE

30
A\

EVENT
MANAGER

1t

events by the event correlator

(330). 40~

ALARM 350

RULE
STORE

RESPONSE
ENGINE

]

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ

BY
CA
CF
CG
CH
CI
CcM
CN
CU

DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing internationat applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

FI

FR
GA
GB
GE
GH
GN

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
UG
Us
UZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

WO 00/39674 PCT/US99/31135

SYSTEM AND METHOD FOR DYNAMIC CORRELATION OF EVENTS

Field Of The Invention

The present invention relates to the field of event management systems, in
particular to dynamic correlation of events.

Background Information

Information technology (IT) has evolved from mainframe-only computing to
complex, highly distributed computer systems spanning across desktops and
departments through networks. These distributed computing environments provide
benefits, including the flexibility to select any number of platforms, domains, tools, and
network configurations. The distributed environments, however, may be complex.
Further, there may exist a lack of compatibility and integration between software tools
and platforms. For example, conventional point products (e.g., the Platinum DBVision
product manufactured by Platinum technology, inc. of Oakbrook Terrace, Illinois) are
generally directed to a specific function or area of expertise such as a solution for
database monitoring and management, job scheduling, or managing database
reorganizations. Each point product provides a specific capability and each also
includes a distinct interface. On the other hand, utilizing framework technology
provides an integrated solution, although tool functionality is significantly sacrificed.
Further, maintaining the current enterprise environment utilizing either conventional
point products or framework technology involves a large amount of resources and

money from IT organizations.

10

15

20

WO 00/39674 PCT/US99/31135

Accordingly, a need exists for an integrated system for providing tools that
utilize a compatible interface without significantly sacrificing tool functionality.
Summary Of The Invention

An object of the present invention is providing an integrated system for
monitoring events occurring in point products through a common event management
system.

Another object of the present invention is the dynamic correlation of events
across nodes of an enterprise.

It is still another object of the present invention to dynamically execute a
changed rule and/or a newly added rule for event correlation.

An aspect of the present invention provides an event management system
including an event manager, an alarm rule store, an event correlator, and a response
engine. The event manager receives and distributes event information. The event
correlator correlates event information provided by an event manager based on alarm
rules which are stored in an alarm rule store. The response engine executes a response
policy based on the correlation of events by the event correlator.

Another aspect of the present invention provides a method for dynamically
executing a modified rule or a new rule for event correlation. The method further
includes comparing a first rule set to a second rule set to identify modifications,
additions, or deletions of rules and dynamically executing all of the respective rules that
have been modified or added.

Brief Description Of The Drawings

FIG. 1 shows an exemplary embodiment of an enterprise of the present invention

including a plurality of nodes.

10

15

20

WO 00/39674 PCT/US99/31135

FIG. 2 shows an exemplary embodiment of a suite of integrated point products of the
present invention.

FIG. 3 shows an exemplary embodiment of a block diagram of an event management
system of the present invention.

FIG. 4 shows an exemplary embodiment of event information communicated between a
plurality of nodes of the event management system of the present invention.

FIG. 5 shows an exemplary embodiment of a flow diagram of dynamic execution of a
newly added or changed rule for event correlation according to the present invention.

Detailed Description

The event management system of the present invention manages an enterprise
(e.g., a computer network such as a local area network (LAN) or wide area network
(WAN)), correlates event information occurring in the enterprise, and takes corrective
actions based on predetermined response policies. The event management system
receives, for example, event messages from compatible point products within the
enterprise. As shown in FIG. 1, the enterprise 100 may include a plurality of nodes
110, 120, 130 which may, for example, be connected by a network (not shown). A
node is, for example, a physical box such as a personal computer, server, etc. that runs
an operating system. In an exemplary embodiment of the present invention, a node
may be a personal computer having a compatible point product installed on it. In an
exemplary embodiment of the present invention, the event management system 140
manages events on the nodes 110, 120, 130 where the events are generated, minimizing
the movement of data on the network and keeping actions such as evaluation, reporting

and automated correction of data close to the source.

10

15

20

WO 00/39674 PCT/US99/31135

In an exemplary embodiment of the present invention as shown in FIG. 2, the
event management system 270 may be included in a suite 200 of integrated tools
including compatible point products used to, for example, manage applications,
databases, desktops, networks, and systems. The tools 230, 240, 250, 260 may use a set
of common services 210 to share data relating to events. A director 220 is, for
example, a shared, common graphical user interface (GUI) running in a conventional
server computer for compatible point products 230, 240, 250, 260. In an exemplary
embodiment of the present invention, the director 220 runs under Windows NT and
Windows 95, and operates as a single console that allows users to view and interact
with all resources including compatible point products 230, 240, 250, 260 in the
enterprise.

The primary manageable unit of information utilized by the event management
system of the present invention is a structured message called an event. An event
represents information about some significant occurrence by or to a resource in the
enterprise. Events are sent and received by compatible point products and event
managers in the event management system. Events are, for example, the basic building
blocks of real-time information processing used to manage the enterprise. Events
define the fundamental element of publishable, sharable information and the format in
which the events should be maintained and transmitted. The structure of an event
includes, for example, predefined fields for the fundamental information necessary for
any event record. The predetermined fields fall into two categories: identifying fields
and non-identifying fields. Identifying fields are fields that taken together form a
unique key for the event, distinguishing it from another event. Non-identifying fields

are fields that add additional information about an event but do not participate in the
-4-

10

15

20

25

30

35

WO 00/39674

PCT/US99/31135

key of the event. The event management system of the present invention allows the

event structure to be extended by a user by dynamically adding key value pairs and

thus, uniquely defining the respective event structure. Accordingly, the addition of key

value pairs to an event structure enables a point product to publish the uniquely-defined

event that otherwise would not have been published because it would not have been

uniquely defined by the predetermined fields of the event.

An exemplary embodiment of an event structure according to an embodiment of

the present invention is defined below, for example, in the C language.

typedef struct PT_EVENT

{
int
PT CHAR T
PT CHAR T
PT CHAR T
PT CHAR' T
PT CHAR' T
PT CHAR T

*/
PT CHAR T

*/

PT CHAR.T

PT EVENT_TYPE
PT_RESP_TYPE
PT CHAR T

PT CHAR T

PT CHAR T

PT CHAR T

double

int

PT CHAR.T

int

PT CHAR T
PT CHAR T
BOOL

PT CHAR T

Version, /* Event structure version */
Node; / Node of event */
Class; / Event class */
Instance; / Originating product instance */
Name; / Event name */
Time; / Event time (yyyymmdd hh24miss) */

CondTime; / Condition time (yyyymmdd hh24miss)

AgentNode; / Node where detecting agent is running

*EvmgrNode;

Type;
Response;
*RespPolicy;
*Descr;
*Descrld;
*Descrlields;

Value;

Level;
*IntKeys;

NumKey;
**Keys;
**Values;
Archived;
*Id:

/* Node where responsible event mgr runs */

/* Event type (EV_DISCRETE...) *
/* Response type (EVRE _SILENCE...) */

/* Response Policy */
/* Description */
/* Message string key for MsgPut */
/* Field list for substitution in message */
/* Value (for condition/alarm events) */

/* Alarm level (for type= EV_ALARM_SET) */

/* Application specific internal keys */
/* Number of key/value pairs following */
/* Array of other key (attribute) names */
/* Array of other key(attribute) values */
/* Boolean flag, TRUE if event archived */
/* Unique event id */

-5-

10

15

20

25

30

WO 00/39674 PCT/US99/31135

PT CHAR T *Condld; /* Condition id */

int RepeatCount; /* Count of duplicate events of this type
used for storm suppression */

int HopCount; /* Here comes Peter Cotton Tail... */

PT CHAR T *GMTOffset; /* GMT Offset */

int ActionTaken; /* Boolean flag, Response action in progress*/

BOOL Silenced; /* Boolean flag, Alarm silenced */

PT CHAR T *ProductName; /* Product name of submitting product */

PT _CHAR_T *Instancelype; /* Type of instance in Instance *

void *localParam, /* Hook to allow local associated data
with event */

PT CHAR_ T *AuthString, /* Placeholder for authorization string, some
form of event content signature */

PT CHAR_ T *TTId; /* Trouble ticket id */

PT CHAR T *TTStatus; /* Trouble ticket status */
} _PT-EVENT;

The identifying fields of the exemplary event are node, name, product, instance,
type, condition_time if the type is not discrete, event time if the type is discrete, all key
value pairs including the contents of the keys field array and values field array (with the
field, for example NumKeys, including a number indicating the number of key value
pairs in their respective field arrays). All of the other predefined fields are non-
identifying fields.

The events may be categorized into a plurality of types including, for example,
discrete events, conditions and alarms. Discrete events are events which indicate that
something occurred at a particular time and are completely self-contained. The
occurrence for a discrete event has no state and does not get updated. A failed logon
attempt, for example, may invoke the generation of a discrete event. Conditions are
events that indicate the state of something that is persistent over a period of time and

may have attributes that are updated. The events declared by a product are owned by

-6-

10

15

20

WO 00/39674 PCT/US99/31135

that product. Generally, only the respective point product can update or clear the
condition events generated at the point product. The contents of discrete and condition
events represent real information about the enterprise that cannot be changed without
changing the occurrence that causes the event. An alarm is, for example, an
interpretation of other events based on a user configurable policy. Accordingly, the
user could clear an alarm at anytime without resolving the condition that caused it.
Similarly, the alarm can persist beyond the clearing of an event upon which the alarm is
based.

As shown in FIG. 3, an exemplary embodiment of an event management system
300 of the present invention includes an event manager 310, event archive 320, event
correlator 330, alarm rule store 340, and a response engine 350. In an exemplary
embodiment of the present invention, an event manager 310, event archive 320, event
correlator 330, and a response engine 350 are included on all nodes of the enterprise
and the alarm rule store 340 is included on a central node allowing events to be stored
and managed locally.

In an exemplary embodiment of the present invention, an event management
system may, for example, receive event messages from point products, for example,
throughout an enterprise. Events are managed on a node of the enterprise where the
events are received by an event manager 310 located on the respective node. The event
manager 310 may, for example, receive all events, maintain the states of previously
sent events, maintain a list of subscriptions, and route events to the appropriate
subscribers. In an exemplary embodiment of the present invention, the events and their

state and the list of subscriptions may be stored locally.

10

15

20

WO 00/39674 PCT/US99/31135

As shown in Fig. 4, the event manager 402 of node a 401 and the event manager
411 of node b 410 also receive event information from the event correlator 413 of node
b 410. The event manager 411 of node b 410 also provides events to the event
correlator 413 on node b. The event manager 411 also receives event information from
point product 415, where events are actually occurring. Event manager 402, 411
maintains, for example, the events and their associated state and a list of subscriptions.
Each event manager may have a local memory data store, e.g., a blackboard, where
statefull events are stored. The blackboard may be kept persistent in a file based
storage for recovery of the information across generations (process invocation of the
event manager). The clients subscribing to events are responsible for reestablishing the
respective subscriptions across new invocations of the event manager. Accordingly,
the subscriptions may be maintained in memory. The local event archive is maintained
for all the events received by the event manager. The event management system of the
present invention also may correlate events from multiple nodes. In an exemplary
embodiment of the present invention, the event management system provides views of
events consolidated to single management stations or in views/categories that cross
node boundaries.

The event management system of the present invention is structured to query or
express outstanding interest in groups of events by criteria other than node through, for
example, event subscription. Event subscription allows the specification of criteria on
the contents of the fields of the event. Determining the events of interest to a particular
process can be analogized, for example, to writing a database query that requests
records matching criteria on various fields of the record. The request of the present

invention differs from a normal database query in that it is not solely a request for data
-8-

10

15

20

WO 00/39674 PCT/US99/31135

already in existence, but an ongoing request for a collection of events that have yet to
occur or exist.

When a subscription is made for an event such as, for example, an event
occurring at a point product 415, a subscription request is sent to event manager 411 on
node b 410. The event manager 411 receives the request and adds this request to its list
of outstanding requests which may be stored, for example, in memory. The event
manager 411 checks outstanding events previously stored, for example, in a
blackboard, to see if it matches the request criteria. Each matching event is forwarded,
e.g., published, to the requestor, e.g., the subscriber of the event. Any new events
which are received and match the subscription criteria are also forwarded. This may
continue until the subscription is canceled.

In an exemplary embodiment of the present invention, a subscription is assigned
a unique ID when it is formed. The unique ID and a datagroup from which this request
came, uniquely defines the subscription. A subscription is canceled by calling an API
with a returned request handle from the original subscription. This results in sending a
cancel message to the event manager with the respective request ID. The event
manager can then match the cancel request to the original subscription and remove it
from a processing queue of the event manager.

All events published on a node are received by the event manager of the node.
The event manager also receives and maintains all requests sent by processes from its
node and other nodes. Upon receipt of an event, the event manager also assigns an
event ID. The event manager determines if the event is a condition and if so, the event
manager checks, for example, a blackboard to determine if the event matches an

existing condition. If so, the condition event is assigned a condition ID of the existing
-9.

10

15

20

WO 00/39674 PCT/US99/31135

condition and applied as an update to the existing condition. Further, if archiving is
enabled, the event is archived. In an exemplary embodiment of the present invention,
for example, the archiving may include storing the event in a database such as a flat file
archive. A separate file may be used for each calendar day. Events may be written to
the archive for the day of the time stamp in the event as newline delimited records in
the order in which they are received. The event manager also checks all outstanding
subscription requests. For any event other than a condition update, if the received event
matches the request, the event manager forwards the event to the requestor. In the case
of an update to a condition, it is the event as updated that is matched against the
request. Accordingly, it is the updated event that the event manager forwards to the
requestor.

Event filters describe identifying criteria for the events of interest and allow
specification of various forms of comparison that can be specified for each of the fields
of an event including key value pairs of the extended event structure. An event filter is,
for example, a Boolean expression made up of subexpressions that compare a field of
an event with a user specified value. Event filters are, for example, similar to the
“WHERE?” clause in Structured Query Language (SQL). The fundamental
subexpression of an event filter is, for example, a phrase comparing a field of an event
with a value, e.g., node=ptisun20. The subexpression node=ptisun20 means that the
node field of the event must exactly match the string “ptisun20”. Any of the fields of
the event structure can be used as the node field is used in the example, with the
exception of the keys field array and values field array which require a special syntax.
For example, if one of the key value pairs added was:

key value

10

15

20

WO 00/39674 PCT/US99/31135

FileSystem /usr,
an exact match filter for this key value pair would be

keyfield.FileSystem = “/usr”. Further, testing for the existence of a key with any value
could be done by testing that it not match a null value, e.g., keyfield. FileSystem != “{l.
The event filters may be stored any place a text string could be stored, for example, in a
configuration file such as a flat text file, in a database, in memory, as C source code
(e.g., hard coded in a program), etc.

Filtering is also available on the values of key value pairs of the event. As in
the earlier example, there may be a key “FileSystem” with an associated value that is
the name of a specific file system. The desired events may only be those for a certain
file system, for instance /usr. The filter mechanism for corresponding values of a key
specifies the key and tests the associated value. A special syntax is used to distinguish
keys from other fields of the event that allows a different name space for the keys from
the predefined fields of the event. The syntax is “keyfield.[name]”. An example
testing for the value /usr of a key value pair would be, for example, keyfield.FileSystem
= /usr. In an exemplary embodiment of the present invention, the event filter
may include comparison operators such as = and full regular expression match
specified with the operator “like”. A filter, for example, could be node=ptisun05. A
filter matching all node values that follow a pattern of ptisun[#] would be
node like “ptisun[0-9]+”. The following is an exemplary list of event filter comparison
operators: >= (greater than or equal), <= (less than or equal), > (greater than), < (less
than), = (equal), like (matches a regular expression), likeci (case insensitive string

match), and != (not equal).

11-

10

15

20

25

30

WO 00/39674 PCT/US99/31135

In an exemplary embodiment of the present invention, the following tokens,
production rules, and event filter definition implemented using yet another compiler
compiler (yacc) may be used.

%token NO_MORE_TOKENS
%token FILTER

%token <symp> NAME

%token <symp> FUNC PART
%token <keywp> BOOLEAN
%token <keywp> COMPOP
%token <keywp> SEPARATOR
%token <keywp> LEFTPAREN
%token <keywp> RIGHTPAREN
/* get rid of expression grammar shift/reduce conflict */
%left BOOLEAN

Y%type <evalp> filter

Y%type <evalp> statement

%%

statement: FILTER filter NO_MORE_TOKENS

filter: NAME COMPOP NAME
| FUNC_PART SEPARATOR NAME COMPOP NAME
| NAME COMPOP FUNC_PART SEPARATOR NAME
| filter BOOLEAN filter
| LEFTPAREN filter RIGHTPAREN

In an exemplary embodiment of the present invention, the event manager 411
may be implemented as a daemon (e.g., an agent program that continuously operates on
a UNIX server and provides resources to client systems on the network). Upon
receiving an event, the event manager 411 determines the disposition of the event,
including whether it has already received the event and whether the event state has
changed. The event manager 411 also writes the event to a local event archive 412 and
routes the event to all clients that subscribe to the event content. For example, the
event manager 411 may provide event information to the event correlator 413 and the

event manager on a node 402. The event archive 412 may include an event archive

-12-

10

15

20

WO 00/39674 PCT/US99/31135

service processor. The event archive 412 service processor reads events from the event
archive. Subscribers may include any event correlator 413 instance that has an alarm
rule subscribing to the event and, for example, a director containing a resource object or
a product subséribing to update events about the contents in a central storage such as a
data exchange service (DEX).

The event correlator 413 may include, for example, an event correlator service
processor. The event correlator 413 implements a user-policy specified in a correlation
rule. An alarm is a type of event that provides notification to subscribers of a
significant condition or occurrence. The determination of an alarm may include the
presence of a single event, the presence of a certain existing state(s) when another event
occurs, or the recurrence of a particular event within a fixed time window. Further, an
alarm may be a combination of the recurrence of a particular event within a fixed time
window when certain state or states are present.

The events that determine if an alarm occurs may be due to events on the same
node as the event correlator 413 or may come from one or more other nodes 401, 410.
An alarm may also be associated with an automated response policy on declaration
allowing a response engine 414 to handle any automated notification or correction of
the alarm. The event correlator 413 can create, for example, an alarm, a modified
version of a received event, or an entirely new event that can be correlated by another
alarm rule.

Events may be correlated through an alarm rule. The basis of an alarm rule is
the determination of the events that should be analyzed. Alarm rules can be created to
define which single event or set of events represent a significant occurrence to which to

respond. The alarm rule may include a description and logic describing the events that
13-

10

15

20

WO 00/39674 PCT/US99/31135

represent an occurrence and a definition of the response of the event management
system to the occurrence. The result of correlation is the creation of one or more
events. An alarm rule may be defined, for example, through the director 404.

An alarm rule includes, for example, a unique name which allows the rule to be
referenced in other expressions by name. An alarm rule may also include a list of
nodes (e.g., a distribution list) where the rule is to be run. The distribution list for a rule.
may be specified, for example, by a list.of the nodes that should run the rule or a query
that specifies the nodes that should run the rule. The query may be, for example, “all”,
which equates to every node running an event correlator. Further, a query may run
against a central storage such as the DEX 405 to determine certain criteria of the nodes
in the enterprise, such as events available. An alarm rule also includes a definition of
correlation filters.

Correlation filters are similar to the event filters used in event subscription as
described in copending patent applications: attorney docket number 22074661/25529,
filed on December 31, 1998 and entitled METHOD AND APPARATUS FOR A USER
EXTENSIBLE EVENT STRUCTURE and attorney docket number 22074661/25546,
filed on December 31, 1998 and entitled METHOD AND APPARATUS FOR THE
DYNAMIC FILTERING AND ROUTING OF EVENTS; and Platinum Provision
Common Services Reference Guide, version 1.08 (October 1998 Platinum technology,
inc.) which are herein incorporated by reference in their entirety. The correlation
filters, however, may be assigned a name and include qualifiers. The Qualiﬁers, for
example, may be used to correlate multiple events in a single rule. The qualifiers may
also indicate that the filter is not applicable to the current input event. The alarm rule

may also include logic testing filters and updating/sending events based on the results
-14-

10

15

20

25

WO 00/39674 PCT/US99/31135

of the test, for example if/then/else logic that allows testing Boolean combinations of
the filters and performing actions that result in events being generated.

In an exemplary embodiment of the present invention, the alarm rule uses the
following format:
if (correlation filter expression)

{ <correlation event expression />;
<correlation event expression 2>;
.<.c.orrelation event expression n>; }

In the above-mentioned exemplary format, the correlation filter expression
follows the “If” statement and is enclosed in parentheses. This is a logical expression
containing one or more correlation filter names connected by Boolean operators such as
AND and OR. Further, additional parentheses can be included to control the order of
evaluation. In the above-mentioned exemplary format, the correlation event expression
is enclosed in a single set of curly braces. The beginning and ending curly brace may
be on separate lines or each event definition may be on a separate line ending with a
semicolon. The correlation filter expression defines what filters must be satisfied in
order for the correlation to be performed. How a filter is satisfied (e.g., evaluated as
true) depends on the qualification placed on the filter. For a standard filter, the current
input event must match. For a count filter, the current event must complete a set of
events received in a time window for the filter to be satisfied. Further, a
conditionExists filter is satisfied if a given event was received in the past that indicates
that a particular condition still exists. The correlation filter expression can specify
criteria on a past and current event by any combination via a Boolean operator of these
individual filters including the negation of it (e.g., the condition is not currently present,

the count has not been completed, or the current event does not match).

15

10

15

20

25

WO 00/39674 PCT/US99/31135

For example, if f1 is a standard, unqualified filter that applies to the current
event, the expression “if (f1)”, indicates that the current event must match that filter for
the correlation to be performed. Then if there was a second standard filter, £2, both
filters could be tested for with the expression “if (f1 or £2)”. In this expression, if the
input event matched either f1 or {2, the correlation would be performed. The
correlation filter expression may also include nested conditions such as a logical

“if/else if” expression in a format similar to the following:

If (F1)

{ <correlation event 1>; }
Else If (F2)

{ <correlation event 2>, }

An alarm rule of the present invention can be used with or without logic. In the
absence of any controlling logic, an action statement in the rule will be executed
whenever an event is received. An event will be received whenever there is an event
that matches any of the declared filters. The rule may be segmented into various
groups of actions based on testing whether one or more of the declared filters in the rule
is true, for example, by forming a Boolean expression using the names of the filters and
testing its truth at any given time. For example, if there were three filters named A, B,
and C, a test could be performed for (A and (B or C)). This would mean that the
expression is true if filter A is true and filter B or C is true. This rule, for example, may
be expressed as follows.

If (A and (B or C))
SendModifedAlarm(-1 10);

else

SendModifiedAlarm(-1 0);
In this example, different alarm levels are being set based on testing which filters are

true.

16

10

15

20

WO 00/39674 PCT/US99/31135

In an exemplary embodiment of the present invention, there are four action
statements, SendEvent, SendModifiedInputEvent, SendModifiedAlarm, and
SendModifiedCondition supported in the event correlation rule syntax which send
events. The action statement SendEvent starts with a newly created event and must
have each mandatory field for the event supplied as an argument, with the exception of
fields that can be assigned default values like time, node and agent node. Any event
type can be submitted with this action. ‘The action statement SendModifiedInputEvent
uses the input event as a template for the output event, replacing only fields specified as
arguments to SendModifiedInputEvent. The event time is updated to the current time,
and if this causes a problem for a condition or alarm (conditions and alarms required
that the event time > condition time), the time is set to, for example, the time of the
input event (which already had to be greater than the condtion_time) plus one second.
The action statement SendModifiedAlarm is built on top of SendModifiedInputEvent.
Its only difference is that it only sends an alarm, e.g., it forces a set of the event type to
alarm_set. It also handles creating an alarm from a discrete event which does not have
a condition time, setting the condition time to the current time. The action statement
SendModifiedCondition is the same as SendModifiedAlarm except the type is forced to
be condition_set.

The qualifiers for a correlation filter may include, for example, ConditionExists,
Count and CountDiscrete. The qualifier ConditionExists indicates that the filter should
be applied to events already received by the time the current event was received. If a
prior statefull event exists that matches the specified filter, the filter expression will be
true. Otherwise it will be false. The qualifier Count is used to track the number of

times a matching event happened within a specified time period. Its specification is
17

10

15

20

WO 00/39674 PCT/US99/31135

count(number of times, time interval, filter). Upon firing the set is purged, so upon
receipt of the next matching event the count will be zero. The time window may be
scrolling in which the oldest matching events are dropped off the pending list as they
differ from the most recently added event by the time interval specified. The qualifier
CountDiscrete counts discrete events. It is the equivalent of Count with its filter
modiﬁed to be, for example, filter_filter AND type=discrete.

Events can be retrieved from any node to where the alarm rule is running. In an
exemplary embodiment of the present invention, the determination of where to run a
rule may be dependent on the nature of the rule. If the rule specifies events only
occurring on a local node, for example, then the rule needs to run on all nodes where
such a correlation is desired. For example, if the rule was to perform some form of
correlation for an event about the CPU usage of a machine and the filter did not specify
a node, then the event correlator running the rule only receives events about CPU usage
on the node where the subscription takes place. Accordingly, the filter and rule can be
generic and applicable on each machine. Therefore the distribution list for the rule
should include every node on which the respective correlation takes place.

A generic rule also allows a single definition to be applicable to the same type
of problem on every host in the enterprise, thereby reducing the number of rules to
maintain and configure. A generic rule allows the analysis and correction of the
problem to be localized to where it occurs, e.g., on each node.

The alarm rule store 406 may include an alarm rule service processor that
manages alarm rules and response policies stored in a central storage location such as
the DEX 405. In an exemplary embodiment of the present invention, the DEX 405 is a

central storage location for reusable information, including data configuration, product
-18-

10

15

20

WO 00/39674 PCT/US99/31135

information, event information, security information, and rules. The DEX 405 may be
a distributed, multi-platform, multi-data format, shared data store including a plurality
of data stores, relational data, data locations, and files.

The response engine 414 executes a response policy. The response engine 414
includes a plurality of processes. The response policy is, for example, a logical
expression containing a list of actions connected by logic statements that is invoked by
a triggering alarm generated by the event correlator 413. Multiple actions can be
defined and be performed in the response policy. In an exemplary embodiment of the
present invention, the multiple actions may be in a listed sequence, or added with logic
to make each action contingent upon the receipt of a return code of another action or a
specified field sent in the alarm. The response policy may be created by defining a set
of actions and composing an expression that references one or more of these actions in
a logical sequence. The actions may be global and called by multiple response policies.
In an exemplary embodiment of the present invention, the response engine 414 also
adds information about the success of each action to the triggering alarm at the
completion of each step. This may be accomplished, for example, by sending an
update alarm event that updates the event with the sequential number of the step just
completed, the type of the step (e.g. email/page), and in the event archive the name of
the action step. This information may be accessed through a director.

In an exemplary embodiment of the present invention, the response engine 414
may include, for example, a first process, a second process, and a third process. The
first process subscribes to events sent by an event correlator 413 running on the same
node 410 as the response engine 414. Upon receipt of an alarm that has an associated

response policy, the first process invokes the second process to perform the policy. The
19

10

15

20

25

30

35

WO 00/39674 PCT/US99/31135

first process can invoke multiple instances of the second process depending upon the
settings in configuration files associated with the respective processes. The second
process performs an action requiring the sending of events and calls the third process to
perform any other actions. The third process of the response engine 414 may also
perform a response policy action requiring a call to the operating system, such as
sending an email message, invoking a script, sending a page, writing a message to a
file, or forwarding the event as a simple network management protocol (SNMP) trap.
In an exemplary embodiment of the present invention, the following tokens,
production rules, and correlation language implemented using yacc may be used.

Younion {
struct FilterEvalNode *evalp;
struct FilterSymTab *symp;
struct keyword_table *keywp;
struct ARG_LIST *argp; }

%nonassoc LOWER_THAN_ELSE
%nonassoc <symp> ELSE

%token NO_MORE _TOKENS

%%token <symp> DECLARED FILTER
%%token <symp> ACTION_FUNC
%token ALARM

%token <symp> NAME

%token <keywp> IF

%token <keywp> CONDITION
%token <keywp> CONDITIONEXISTS
%token <keywp> BOOLEAN

%token <keywp> UNARYOP

%otoken <keywp> LEFTPAREN
%token <keywp> RIGHTPAREN
%token <keywp> LEFTCURLYBRACE
%token <keywp> RIGHTCURLYBRACE
%otoken <keywp> ENDSTATEMENT
Yotoken <keywp> ASSIGN

%otoken <keywp> COUNTDISCRETE
%token <keywp> COUNT

%token <keywp> SECONDS

Y%token <keywp> MINUTES

%token <keywp> HOURS

10

15

20

25

30

35

40

45

WO 00/39674

PCT/US99/31135

%%otoken <keywp> DAYS
Yotoken <keywp> COMMA

%left BOOLEAN
%left UNARYOP

%otype <evalp> Actions
%type <evalp> Action
%otype <argp> ArgList

%etype <argp> Arg

Yotype <evalp> AlarmPrograms
%otype <evalp> AlarmProgram

%otype <evalp> filter

%otype <evalp> statement

%otype <evalp> declaredFilterExpr
Y%type <symp> timelnterval
Yotype <symp> namedsinteger
%etype <evalp> countType

%otype <keywp> maybeNOT

Statement.

AlarmPrograms:

AlarmProgram :

filter

COMMA

Actions:
Action:

ENDSTATEMENT

ELSE

ArglList:

Arg:
countType:

timelnterval:

ALARM AlarmPrograms NO_MORE _TOKENS
AlarmPrograms AlarmProgram

AlarmProgram

UNARYOP AlarmProgram
NAME ASSIGN filter

NAME ASSIGN maybeNOT CONDITION filter

NAME ASSIGN maybeNOT CONDITIONEXISTS LEFTPAREN

NAME ASSIGN maybeNOT countType LEFTPAREN NAME

timelnterval COMMA filter RIGHTPAREN
Action
Actions Action
ACTION FUNC LEFTPAREN ArgList RIGHTPAREN

IF LEFTPAREN declaredFilterExpr RIGHTPAREN Action
Y%prec LOWER_THAN ELSE
IF LEFTPAREN declaredFilterExpr RIGHTPAREN Action

Action
LEFTCURLYBRACE Actions RIGHTCURLYBRACE
ENDSTATEMENT
ArgList Arg
ArgList COMMA Arg
Arg
NAME
COUNT
COUNTDISCRETE
nameAsinteger

21-

10

15

20

25

WO 00/39674 PCT/US99/31135

| nameAsinteger SECONDS
| nameAsinteger MINUTES
| nameAsinteger HOURS
| nameAsinteger DAYS
nameAsInteger: NAME
declaredFilterExpr: DECLARED _FILTER
| declaredFilterExpr BOOLEAN declaredFilter Expr
| LEFTPAREN declaredFilterExpr RIGHTPAREN
| UNARYOP declaredFilterExpr
maybeNOT: /* empty */
| UNARYOP

The event management system of the present invention provides hierarchical
consolidation on a subscription basis. For example, a director 403 has a consolidated
view of events in the enterprise based on subscribing to the various nodes providing
event information. The event information may be presented as a single, unified view,
but can be based on multiple subscriptions to different event sources. The
configuration of correlation rules allows a set of correlation rules to implement a
hierarchy of correlation or consolidation by using the same subscription mechanism
within the rules that the director 403 may use to consolidate events from multiple
sources. For example, if an application running on node A relies on databases on node
B and node C, a single rule monitoring this application can consolidate events about the
application on node A, the ability to maintain connectivity to nodes B and C, and the
status of the databases on nodes B and C. This mdy be accomplished by configuring
the filters in the rule to specify these sources.

Further, consolidating all of the errors from one node to another node can be
similarly implemented with suitable configured correlation rules. For example,
utilizing a rule, node A can consolidate problems from nodes B and C. The output of
the event correlator with respect to locally generated events may be, for example, a

consolidation of the events of the node into alarms. According to an embodiment of the

22-

10

15

20

WO 00/39674 PCT/US99/31135

present invention, the event correlator on node A can subscribe to the alarms that are
generated on nodes B and C. This effectively brings all the declared problems to node
A. The declared problems then may be re-declared as alarms on node A, based on the
contents of the rule, or could be used in the rule to determine certain types of
correlation across the problems reported on nodes B, C, and A. Re-declaring problems
would allow a redundant local copy or a subscri;;tion that only specifies a respective
node to allow one to view the problems.spanning all three nodes.

Accordingly, the hierarchical consolidation provided by the event management
system of the present invention does not require any additional configuration outside of
the rule itself. No need exists to maintain the relationships outside of the relationships
between rules. The hierarchy can effectively vary on a rule basis. One node can be the
consolidation point for certain problems while another node can be the consolidation
node for a different set with both of these nodes contributing to each other’s
consolidation.

The event management system of the present invention can dynamically, e.g.,
while the event correlator is running, determine whether a rule was changed, added or
deleted. The user-defined alarm rules are maintained, for example, in an alarm rule
store (ARS) 406 in a central store in the DEX 405. The editing or addition of rules may
be performed via a director 403. FIG. 5 illustrates an exemplary flowchart for
dynamic execution of added or modified rules. As shown in FIG. 5, in step 510 the
director 403 queries the ARS 406 for rules and writes any changes back to the ARS
406. The ARS 406 publishes an event whenever it updates the rules in the ARS 406.
The event correlator 413 on each of the nodes subscribes for this event. Upon receiving

this event, each of the event correlators 413 knows to contact the ARS 406 to determine
23

10

15

20

WO 00/39674 PCT/US99/31135

if the rules they run have been updated. For example, the event published by the ARS
406 may indicate that the rule store has changed.

In step 530, the respective event correlator 413 contacts the ARS 406,
requesting its rule set. In step 540, the event correlator 413 then compares its current
set of rules that it is running to the rules received form the ARS 406. In step 550, any
rules that are unchanged need no action, any new rules need to be added to the rule set
of the respective event correlator, and any rules that have been deleted from the ARS
406 need to be removéd from the rule set of the respective event correlator. In step
560, any changed or added rules to the rule set of the respective event correlator will be
executed. Further, the rule set may be distributed across multiple correlators.
Accordingly, correlation done by any particular node éan be rerouted to another node
by changing the rules distribution list.

A rule can be added to the event management system according to an
embodiment of the present invention dynamically by adding a rule to a running event
correlator since each rule maintains its own event stream. Adding or removing a
subscription of a rule does not impact any other rule. A new rule may result in the
event correlator receiving events it previously did not receive. These events will not
change how any other rule is evaluated as those rules will not see the new events.
Similarly, deleting a rule will result in the event correlator receiving fewer events than
it did before. Not receiving these events, however, will not change the evaluation of
any other rule being run by the event correlator. As each rule specifies an independent
set of events to receive its own event stream, changes to a rule are isolated and will not

impact any other rule.

24

10

15

20

WO 00/39674 PCT/US99/31135

The rule would need to be parsed and the appropriate subscriptions formed so
that the rule receives appropriate events. A rule also can be deleted from the event
management system dynamically by canceling the outstanding subscriptions for the
rule, removing the memory structures utilized in tracking the state of the rule and its
evaluation tree, and removing alarms that the rule generated. A list of user-defined
alarm .rules is maintained by the event management system in an alarm rule store. A
list of alarms by rule including the name of the event is maintained by the event
management system, for example, in a blackboard.

The event management system of the present invention allows the determination
of an input event and alarm rule that resulted in the respective alarm. In an exemplary
embodiment of the present invention, the event management system keeps track of the
respective alarms that are associated with the respective rules. The relationship of an
alarm to what causes it can be determined from an analysis of the rule. For example, an
n-to-1 mapping needs to be made between input events and the alarm, where n is the
number of input events. In the simplest case, a single input event (n=1), maps to the
creation of one alarm. Accordingly, the input event that caused the alarm is readily
determined since only one input event is associated with the alarm.

When condition filters or count filters are in use, however, the mapping
becomes n-to-1. The mapping can be represented, for example, as a tuple of
information relating a plurality of input event IDs to the output alarm ID. The
determination of what events were considered may include, for example, the current
input event at the time of generating the rule. The determination of what events were
considered may also include events stored by any of the statefull events (e.g.,

ConditionExists or Count based filters which may specify one or more events that have
25

10

15

20

WO 00/39674 PCT/US99/31135

already occurred) that were also in the controlling “if” block that resulted in the rule
action to generate an alarm. In an exemplary embodiment of the present invention, all
of these events have a single unique ID except the generated alarm. The alarm,
however, may not have a unique ID until the event has been processed by an event
manager. Thus, in the absence of a unique identifier for the output alarm, a full multi-
part key of the alarm may be used to allow the n-to-1 relationship record to be written
out. Accordingly, the input event and alarm rule that resulted in the respective alarm
may be determined.

Alternatively, in the absence of a unique identifier for the output alarm,
postponing the output of the n-to-1 relationship record until the alarm event is received
back by the rule may allow its corresponding unique ID to be known. The n-to-1
relationship record may then be written out as a result of being provided with the
corresponding unique ID. Accordingly, the input event and alarm rule that resulted in
the respective alarm may be determined.

Alternatively, a unique submitter assigned ID may be used at the time of the
creation of an event such as an alarm. The submitter assigned ID may be used instead
of an event manager assigned unique ID, to allow the n-to-1 relationship record to be
written out. Accordingly, the input event and alarm rule the resulted in the respective
alarm may be determined.

In any event, the output, e.g., n-to-1 relationship record, may be stored as a table
and maintained as part of the event archive. Accordingly, the event archive service
processor could be augmented to provide a query for related events that would use the

event archive to obtain information provided by the n-to-1 relationship record.

WO 00/39674 PCT/US99/31135

The embodiments described above are illustrative examples of the present
invention and it should not be construed that the present invention is limited to these
particular embodiments. Various changes and modifications may be effected by one
skilled in the art without departing from the spirit or scope of the invention as defined

in the appended claims.

27

WO 00/39674 PCT/US99/31135

What is claimed is:
1. An event management system comprising:

an event manager, the event manager receiving and providing
event data;

an alarm rule store, the alarm rule store storing alarm rules;

an event correlator coupled to the event manager and to the
alarm rule store, the event correlator correlating the event data provided by the event
manager based on the alarm rules; and

a response engine coupled to the event manager, the response
engine executing a response policy based on the correlation of events by the event

correlator.

2. The event management system according to claim 1, wherein the event manager
includes a plurality of event managers, wherein each of the plurality of event managers
is on a respective node of a network.

3. The event management system according to claim 2, wherein the event
correlator correlates at least two events respectively provided by each of at least two of
the plurality of event managers.

4. The event management system according to claim 1, further comprising an
event archive coupled to the event manager, the event archive including an event
archive file and an event archive service processor, wherein the event manager stores
event data in the event archive file and the event archive service processor processes

the event data in the event archive file.

WO 00/39674 PCT/US99/31135

5. A method for dynamically executing at least one of a modified rule and a new
rule, the method comprising the following steps:

publishing a rule event in response to receiving at least one of the modified rule
and the new rule;

requesting a first rule set from a storage device in response to receiving the
published rule event;

changing any of the respective rules from a second rule set that have been
changed in the first rule set, adding a rule to the second rule set that has been added to
the first rule set, and removing a rule to the second rule set that has been removed from
the first rule set; and

executing the rules of the second rule set that have been one of changed and

added.

WO 00/39674

1/5

FIG. 1

PCT/US99/31135

110

NODE A

EVENT
MANAGEMENT
SYSTEM

A 140

[}

120~

NODE B
Y

EVENT
MANAGEMENT
SYSTEM

A 140

)

130~

NODE C

'

EVENT
MANAGEMENT
SYSTEM

| L 140

SUBSTITUTE SHEET (RULE 26)

WO 00/39674 PCT/US99/31135
2/5

FIG. 2

220~

SUBSTITUTE SHEET (RULE 26)

PCT/US99/31135

WO 00/39674 /s
3
FIG. 3
300
\
B 1
| 130 310 120 |
: \ \ N |
EVENT EVENT | EVENT -
: CORRELATOR [MANAGER [ARCHIVE |
30~ ALARM 350
RESPONSE
T —
e ENGINE

SUBSTITUTE SHEET (RULE 26)

PCT/US99/31135

WO 00/39674

475

vy "9Id

R - | .I. | -
INTHOY
A INIAT
Jnmmmn_ Egzg g mwmﬁz
S| o N 207"
1%; # _|H|:M_
! —
i ; ‘ HOLJ IO
N
HO1¥ 734409 | INTON3] @_MV
S B - I % < T o] B | %, 0
g 300N v 300N
N ——— — - — e - o) ..L
N \
0¥ 100

144

SUBSTITUTE SHEET (RULE 26)

WO 00/39674 s /s PCT/US99/31135

FIG. 5

DIRECTOR PROVIDES ANY ONE |~ 310
OF A CHANGED RULE, NEW RULE,
OR REMOVAL OF RULE TO ARS

/l

ARS PUBLISHES EVENT THAT L ~320
ANY ONE OF ANEW RULE,
CHANGED RULE, OR DELETED
RULE HAS OCCURED

l

EVENT CORRELATOR REQUESTS |~930
RULE SET MAINTAINED BY ARS

l

EVENT CORRELATOR COMPARES |40
ITS RULE SET WITH RULE
SET MAINTAINED BY ARS

l

EVENT CORRELATOR UPDATES ~ |~950
ITS RULE SET
MAINTAINED BY ARS

l

EVENT CORRELATOR EXECUTES |~ 360
ANY RULE UPDATED
IN ITS RULE SET

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US99/31135

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GO6F 9/44
US CL :709/318

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 709/318

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,528,516 A (YEMINI et al) 18 June 1996, columns 5, 11 & 13. | 1-5
Y THRAMPOULIDIS et al. Object interaction diagram: a new| 1-5

technique in object-oriented analysis and design, Journal of Object-
Oriented Programming, Vol. 8, No. 3, June 1995, pages 25-32.

I::] Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: T* later document published after the international filing date or priority
. L . date and not in conflict with the application but cited to understand
A" document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
rze : : : . . X" document of particular relevance; the claimed invention cannot be
E carlier document published on or after the international filing date considered novel or cannot be considered to involve an inventuve step
o document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to blish the publication date of her cuation or other . . X
special reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an invenuve step when the document s
"o document referring to an oral disclosure, use, exhibition or other combined with one or more other such d ts, such combinati
means being obvious to a person skilled in the art
‘p* document published prior to the international filing date but later than ~ + g« document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
15 MARCH 2000 26 APR 2000
Name and mailing address of the ISA/US Authorized officer -
Commissioner of Patents and Trademarks O
Box PCT
Washington, D.C. 20231 MAIJID A BANANKHAH
Pacsimile No. (703) 305-3230 Telephone No. (703) 305-96!

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

