Abstract: A compact drive unit is predominantly intended for traction vehicles, especially for rail vehicles. This invention allows significant reduction of volume and weight of drive units. The drive unit comprises high-speed electrical motor (1) with passive cooling, which is supplied by power electronics converter (2), whose rotor is supported by bearings (3) along with pinion gear (4) of the input spur/helical gear (5). The output shaft (6) of the gear (5) is a part of the next following gear (7). Output shaft of the gear (7) can be connected either directly or by using the coupling (12) to the axle (8) of the traction vehicle, or to the wheel (9). Alternatively, in case the higher transmission ratio is required, it can be connected to another gears (10), where the output shaft of the gears (10) is connected to the wheel (9), or to the axle (8) of the traction vehicle directly or by using the coupling (12). The drive unit can be equipped with brake (13).

Published:
— with international search report (Art. 21(3))
— with amended claims and statement (Art. 19(1))
Compact drive unit for traction vehicles

Technical field

This invention concerns a device which is a compact drive unit connected to either a wheel or axle/wheelset of a bogie of a traction vehicle. It is intended especially for drives of rail vehicles such as trams, light rail vehicles, metros, electric units (EMUs) and train sets. The device combines high-speed electric drive with appropriate gearbox and it allows design of drive units with significantly reduced volume and weight.

Background and summary of the invention

This invention introduces a compact traction drive unit intended mainly for rail vehicles, which often demand a full low-floor arrangement of the vehicle. Existing solutions of drive units for traction vehicles can be divided into wheel drives and axle/wheelset drives.

Wheel drives are aimed particularly to low-floor design for urban passenger transport. These drives are used with or without a gearbox, i.e. with a low-speed electric motor directly connected to the wheel. Gearless wheel drives typically employ multi-pole electrical motors connected to the wheel directly or by means of a mechanical coupling element which allows mechanical disconnection of the motor shaft from the wheel (specifically under fault conditions). The electric motor usually uses permanent magnets in order to achieve both maximum power density and efficiency. The above mentioned solutions are known e.g. from EP 1 867 543, EP 0 918 676 and they were reported in many non-patent literature publications, e.g. F. Demmelmayr, M. Troyer and M. Schroedl, "Advantages of PM-machines compared to induction machines in terms of efficiency and sensorless control in traction applications," IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society, Melbourne, VIC, 2011, pp. 2762-2768. doi: 10.1109/IECON.2011.6119749 or Z. Huang, X. Huang, J. Zhang, Y. Fang and Q. Lu, "Design of an interior permanent magnet synchronous traction motor for high speed railway applications," Power Electronics, Machines and Drives (PEMD 2012), 6th IET International Conference on, Bristol, 2012, pp. 1-6. doi: 10.1049/cp.2012.0253.

The gearless wheel drives (such as EP 1 867 543) are competitive in the drives approximately up to 50 kW. In higher power applications, where this invention is intended for, their weights
and volumes make impossible direct mounting to the wheel. Their maximum output power is generally limited by wheel diameter and vehicle speed. The same constraint applies to gearless axle drives (such as EP 0918676, WO 2006051046 or J. Germishuizen, A. Jockel, T. Hoffmann, M. Teichmann, L. Lowenstein and F. v. Wangelin, "SyntegraTM - next generation traction drive system, total integration of traction, bogie and braking technology," \textit{International Symposium on Power Electronics, Electrical Drives, Automation and Motion}, 2006. \textit{SPEEDAM 2006.}, Taormina, 2006, pp. 1073-1077), where the limit is given by the wheel gauge. One of the biggest disadvantages of mentioned solutions is a direct coupling between the motor and the wheel or axle resulting in large unsprung masses.

Wheelset drives are dominant in applications where higher power transmission to the axle is required, especially for locomotives, EMUs and metro trainsets. These drive units can be designed directly within bogie or vehicle concepts. In W09629224, the drive unit for a low-floor vehicle is proposed. It drives two wheels by means of a single longitudinally mounted motor outside the bogie. The gearboxes are connected to both output shafts of the motor. The brake is integrated in the drivetrain between the motor and the wheels. Similar solution of one-sided drive for two single wheels is described in DE 19945464. In both cases, the motor is proposed as a low-speed one and therefore its weight and dimensions are treated as disadvantages.

The US 511 9736 describes a bogie concept which is characterized by the longitudinally placed motor of each wheel which is connected to the associated wheel by interposition of a homokinetic flexible coupling shaft and comprises a reduction gear unit. The motor and reduction units do not create a compact closed unit and the presence of the homokinetik coupling shaft signifies that the motor belongs among low-speed ones and therefore its dimensions are large to achieve the rated power of the proposed drive unit.

The US 8978563 introduces a bogie drive concept allowing partly low-floor design of the rail vehicle. Longitudinally placed electric motor inside the bogie has output shafts on both motor ends. The shafts are connected by means of a gearbox to axles suspended in the bogie. The concept allows two possible motor designs as well. However, the full low-floor concept is not possible here and the dimensions of the electric motor are larger due to its low-speed concept. The drive does not include the brake directly but it is placed outside the bogie separately.

The concept of a drive driving two axles of the bogie is presented in US 4 130 065, where the electric motor is placed longitudinally outside the bogie between the two drive axles.
The advantage of this design is that the two ends of the rotor shaft stubs are equipped with the drive pinions. To save the weight, the stator of the electric traction motor is made without housing. For this reason, the stator lamination stack clamped between pressure plates is provided at its back with clamping elements which compress the stator lamination stack. Even if the weight is particularly saved, it is not sufficient in comparison to the solution proposed in presented invention, where the high-speed electric motor concept allows significant reduction of the weight of the whole drive unit by using high speeds to transmit desired power.

Among investigated solutions, patents related directly to drive units exist. These patents deal with various connections of the motor to the driven wheel/axle but in general each of presented solutions incorporates a part or design aspect, which makes the usage of a high-speed motor impossible, therefore they lead to physically larger and significantly heavier solutions than presented invention. This fact applies especially to patents DE 100 50 757, EP 1 386 815 and EP 0 698 540.

In case of DE 10050757, the power transmission from the motor to the axle is ensured through cardan-like element and the alignment imperfections between the gearbox and the axle is performed through inclinable tooth coupling. Such a solution is not suitable for higher speeds because of its dimensions and therefore it makes usage of a high-speed electrical motor impossible. The main advantage of presented invention (which is reduction of weight and volume) cannot be achieved through the solution described in DE 100 50 757.

A very similar disadvantage applies to patent EP 0 698 540. In this case, the power transmission from the gearbox to the axle is performed through hollow cardan coupling, which forms a very heavy and large part. In comparison to presented invention, the EP 0 698 540 forms heavier and larger alternative.

The EP 1 386 815 presumes relatively low output power of the electric motor (approximately 40 kW) and utilizes one stage gearbox. The device is applicable to the wheel drive only, whilst our solution is predominantly intended for the axle drive and allows design of higher power drive. The one stage gearbox in EP 1 386 815 does not allow utilization of high-speed electrical motor. The important benefit of our solution is passive cooling system which uses the whole drive unit housing and all integrated components for motor heat dissipation.

Generally, the bearing and gearing lubrication in the traction drive gearboxes, especially of rail vehicles, is performed by means of gear wading in the oil pool and throwing of oil from the wading gears to bearings by auxiliary collecting and distribution channels. Based on
available technical data, the maximum speed of the input shaft of the gearbox is nowadays approximately 5 200 rpm. Protective seal of the inner space of the gearbox against dust, water and oil leakage is performed by labyrinth sealing, or by shaft sealing rings.

Cooling of lubricant is performed by means of passive cooling via the housing of the gearbox.

In modern traction drives, the manufacturers use ac electrical motors, most popular are induction and permanent magnet motors which are generally known and they were reported in many non-patent literature publications as described above.

These electrical motors have maximum speeds up to 5 200 rpm (extremely up to 6 000 rpm). They are usually cooled by an independent fan or by a fan placed on the shaft of the motor. The liquid cooling is often used as well.

Existing solutions of traction drive units are designed for lower speeds of electrical motors (approx. up to 5 200 rpm). To assure the transmission of the power from such motor to the axle or wheel, the corresponding design leads from transmitted torque point of view to relatively robust solutions characterized by large volumes of drive units and their considerable weight. The idea of high-speed drive (i.e. with the electrical motor speed over 6 000 rpm), which could enable essential reduction of dimensions and weight of the drive unit, is generally known in the theory. It comes from the equation for mechanical power $P_m = T \omega$, where P_m is a mechanical power at the rotor output, T is a torque and ω is a mechanical rotor speed. Therefore, if the rotor speed is significantly increased and the output power is kept constant, then the output torque substantially decreases. Thus, all mechanical components result smaller in volume and weight. However, there is no existing reliable design solution available for traction applications up to now. This invention describes a robust design solution of the compact drive unit, which allows significant reduction of the volume and the weight of the traction unit due to significant increase of the traction motor speed (typically over 9 000 rpm) while keeping the same traction vehicle characteristics. Although, higher speeds of traction motor require usage of high-speed stages of the gearbox to reduce the speed to rated output speeds of the axle/wheel, the torques transmitted by high-speed stages of the gearbox are significantly lower, which principally decreases demands on gear train dimensions. Moreover, the proposed compact unit, due to significant reduction of dimensions of particular parts of the drive, enables the integration of the drive into a single compact housing. This integration into the one housing together with unique construction design of high-speed electrical motor makes possible to improve the heat transfer from particular
components and to use passive cooling of the electrical motor, which is a significant advantage compared to the existing solutions. As explained above, the proposed invention significantly overcomes currently known designs and arrangements of drives for traction vehicles. It allows significant reduction of weight and volume of the drive unit and, based on that, integration of the drive unit into the single compact housing, which further enables the use of passively cooled electrical motor and significantly simplifies and reduces the cost of drive assembling.

The proposed solution requires preheating of the lubricant of high-speed stage of the gearbox during extremely low ambient temperatures, which can typically go down to -40 °C. This is, as described in detail below, solved by design arrangement of the drive and by the usage of thermal sources available in the integrated body of the drive unit, i.e. without any further external equipment. In comparison with existing designs of traction drives employing low-speed gearboxes having no extreme demands on gearing and bearing lubrication or pre-heating of lubricant, the required preheating in this invention is not any significant disadvantage.

Brief description of drawings

The invention is further explained by means of the drawings. Fig. 1 describes basic configuration and cooperation of particular components of invented compact traction drive unit. Fig. 2 describes the functionality of optional additional gearbox stages and alternative position of the brake.

Description of the preferred embodiments

Fig. 1 describes invented compact traction drive unit. The device is composed of a high-speed electrical motor \(I \) with passive cooling. The motor \(I \) has typically rated rotor speed over 9 000 rpm. The high-speed electrical motor \(I \) can be designed as an induction motor, a synchronous motor, a reluctance motor, an electronically commutated (brush-less dc) motor or a direct-current motor. Considering requirements for extremely small volume, high efficiency and reliability, the permanent magnet motor is going to be the most suitable solution.
The electrical motor \(I \) is supplied by a power electronics converter \(2 \). Typically, it is a voltage-source inverter. The power electronics converter \(2 \) can also be a current-source inverter.

From the Fig. 1 it is apparent that a gearbox connected at the drive-end of the motor shaft is divided into two stages: high-speed \(\mu_1 \) and low-speed. The rotor of the electrical motor \(I \) is supported by three rolling-element bearings \(3 \) along with pinion gear \(4 \) of the input spur/helical gear \(5 \) and all together create rotor assembly \(14 \). The location of the middle rolling-element bearing \(3 \) at the motor shaft improves the dynamic stability of the rotor. It also simplifies drive unit assembly. The shaft \(6 \) of the gear is a part of the next following gear \(7 \) and simultaneously it can be connected to the brake \(13 \). The coupling of the brake \(13 \) to the shaft \(6 \) of the high-speed gearbox stage \(11 \) allows important reduction of the dimensions of the brake \(13 \). Alternatively (as shown in Fig. 2), the brake \(13 \) can be connected to the rotor assembly \(14 \) which will further reduce the brake dimensions.

Output shaft of the gear \(7 \) can be connected either directly or by using the coupling \(12 \) to the axle \(8 \) of the traction vehicle, or to the wheel \(9 \). In case the higher transmission ratio is required, the output shaft of the gear \(7 \) can be connected to another gears \(10 \) (as shown in Fig. 2), where the output shaft of these gears \(10 \) is connected to the wheel \(9 \), or to the axle \(8 \) of the traction vehicle directly or by using the coupling \(12 \). The gear mechanism \(7 \) can be implemented by bevel gear, spur/helical gear, or epicyclic gear set (e.g. planetary gear set). The brake \(13 \) can also be connected to the output of the low-speed gearbox stage. However, this position leads to the larger dimensions and weight of the invented compact traction drive unit.

Due to significant reduction of both dimensions and weight of particular components of invented drive unit, all the drive unit components can be embedded into one compact housing. This solution significantly decreases the assembly cost and time. However, it is important that at least electrical motor \(I \) and high-speed gearbox stage \(11 \) are embedded into common compact housing. The integration of the drive unit components into the single housing together with unique construction design of the high-speed motor \(I \) result in better heat dissipation from all components and it allows a passive cooling of the electrical motor \(I \) and the whole drive unit. This is very important advantage of the presented invention in comparison to existing traction drive technologies.

The proposed two-stage solution of the gearbox requires preheating of the lubricant of the high-speed gearbox stage \(11 \) under extremely low ambient temperatures (typically down
to -40 °C) before running the gearbox. Due to integration of the drive unit components into one housing, the proposed invention uses preheating of the lubricant of the gearbox by means of the losses of the electrical motor. Thus, the power electronics converter feeds the current into the stator winding of the motor which causes production of the heat due to existing losses in the motor (the resistive losses play the major role in this phenomenon). The produced losses, respectively resulting heat is distributed inside the drive unit using the conduction via both drive components and the housing and it preheats in this way the lubricant of the gearbox before its running. Thus, the invented concept does not require any additional device (external thermal source, etc.) and it is very robust and reliable.

This invention allows significant reduction of drive units volume and weight while demanded traction power/tractive effort is kept. If the electrical motor has the rated speed around 9 000 rpm and the rated power close to 100 kW (typical application for light traction vehicles), our conservative calculation shows that the drive unit volume and weight will decrease at least by 25% while keeping the same traction vehicle characteristics. This invention allows manufacturing of the traction drive unit in a single compact housing. It results in better heat dissipation from the drive components, it is not necessary to use a fan for the drive cooling (passive cooling of the whole drive forms the important advantage in comparison to competitive solutions) and the single drive housing also cuts the assembly cost and time.
CL A I M S

1. A compact drive unit for traction vehicles comprising an electrical motor (1) supplied by a power electronics converter (2), a gearbox and a mechanical coupling to a wheelset or a wheel characterized by that the electrical motor (1) is a high-speed electrical motor, its rotor is supported by bearings (3) along with pinion gear (4) of the input spur/helical gear (5) of the high-speed gearbox stage (11) and all together create rotor assembly (14), the output shaft (6) of the gear (5) is a part of the next following gear (7), output shaft of the gear (7) is connected either directly or by using the coupling (12) to the axle (8) of the traction vehicle, or to the wheel (9), wherein at least the electrical motor (1) and the high-speed gearbox stage (11) are embedded in a single compact housing.

2. A compact drive unit for traction vehicles comprising an electrical motor (1) supplied by a power electronics converter (2), a gearbox and a mechanical coupling to a wheelset or a wheel characterized by that the electrical motor (1) is a high-speed electrical motor, its rotor is supported by bearings (3) along with pinion gear (4) of the input spur/helical gear (5) of the high-speed gearbox stage (11) and all together create rotor assembly (14), the output shaft (6) of the gear (5) is a part of the next following gear (7), output shaft of the gear (7) is connected to another gears (10) which is either directly or by using the coupling (12) connected to the axle (8) of the traction vehicle, or to the wheel (9), wherein at least the electrical motor (1) and the high-speed gearbox stage (11) are embedded in a single compact housing.

3. The compact drive unit for traction vehicles according to any preceding claim characterized by that the electrical motor (1) is with passive cooling.

4. The compact drive unit for traction vehicles according to any preceding claim characterized by that the rotor assembly (14) is supported by at least three bearings (3).

5. The compact drive unit for traction vehicles according to any preceding claim characterized by that a brake (13) is connected to the shaft (6).
6. The compact drive unit for traction vehicles according to claims 1 to 4 characterized by that a brake (13) is connected to the rotor assembly (14).

7. The compact drive unit for traction vehicles according to claims 1 to 4 characterized by that a brake (13) is connected to the output of the low-speed gearbox stage.

8. The compact drive unit for traction vehicles according to any preceding claim characterized by that the electrical motor (1) is a thermal source for preheating of the lubricant of the high-speed gearbox stage (11) before running the gearbox under extremely low ambient temperatures.

9. The compact drive unit for traction vehicles according to any preceding claim characterized by that the gear (7) is designed as a bevel gear, a spur/helical gear, or an epicyclic gear set.

10. The compact drive unit for traction vehicles according to any preceding claim characterized by that the gear (10) is designed as a bevel gear, a spur/helical gear, or an epicyclic gear set.
AMENDED CLAIMS
received by the International Bureau on 21 November 2017 (21.1.2017)

Claims

[Claim 1] A compact drive unit for traction vehicles consisting of an electrical motor (1) supplied by a power electronics converter (2), a gearbox and a mechanical coupling to a wheelset or a wheel wherein the electrical motor (1) is a high-speed electrical motor with speed over 9000 rpm, its rotor is supported by bearings (3) along with pinion gear (4) of the input spur/helical gear (5) of the high-speed gearbox stage (11) and all together create rotor assembly (14) whose axis of rotation has different direction than axis of rotation of the wheel (9), the output shaft (6) of the gear (5) is a part of the next following gear (7), output shaft of the gear (7), is connected either directly or by using the coupling (12) to the axle (8) of the traction vehicle, or to the wheel (9), wherein at least the electrical motor (1) and the high-speed gearbox stage (11) are embedded in a single compact housing.

[Claim 2] A compact drive unit for traction vehicles consisting of an electrical motor (1) supplied by a power electronics converter (2), a gearbox and a mechanical coupling to a wheelset or a wheel wherein the electrical motor (1) is a high-speed electrical motor with speed over 9000 rpm, its rotor is supported by bearings (3) along with pinion gear (4) of the input spur/helical gear (5) of the high-speed gearbox stage (11) and all together create rotor assembly (14), whose axis of rotation has different direction than axis of rotation of the wheel (9), the output shaft (6) of the gear (5) is a part of the next following gear (7), output shaft of the gear (7), is connected to additional gears (10), output shaft of the additional gears (10), is connected either directly or by using the coupling (12) to the axle (8) of the traction vehicle, or to the wheel (9), wherein at least the electrical motor (1) and the high-speed gearbox stage (11) are embedded in a single compact housing.

[Claim 3] The compact drive unit for traction vehicles according to any preceding claim characterized by that the electrical motor (1) is with passive cooling.

[Claim 4] The compact drive unit for traction vehicles according to any preceding claim characterized by that the rotor assembly (14) is supported by at least three bearings (3).

[Claim 5] The compact drive unit for traction vehicles according to any preceding claim characterized by that the shaft (6) is connected to a brake (13).

[Claim 6] The compact drive unit for traction vehicles according to claims 1 to 4
characterized by that the rotor assembly (14) is connected to a brake (13).

[Claim 7] The compact drive unit for traction vehicles according to claims 1 to 4 characterized by that the output of the low-speed gearbox stage is connected to a brake (13).

[Claim 8] The compact drive unit for traction vehicles according to any preceding claim characterized by that the electrical motor (1) is a thermal source for preheating of the lubricant of the high-speed gearbox stage (11) before running the gearbox under extremely low ambient temperatures.

[Claim 9] The compact drive unit for traction vehicles according to any preceding claim characterized by that the gear (7) is designed as a bevel gear, a spur/helical gear, or an epicyclic gear set.

[Claim 10] The compact drive unit for traction vehicles according to any preceding claim characterized by that the additional gear (10) is designed as a bevel gear, a spur/helical gear, or an epicyclic gear set.
We have defined the position of the axis of rotation of the rotor assembly (14) relating to the axis of rotation of the driven wheel (9). From Fig. 1 and Fig. 2, it is evident that the axis of rotation of the rotor assembly (14) in our invention has different direction than the axis of rotation of the driven wheel (9).

The position of the rotor assembly (14) and the axis of rotation of driven wheel (9)/axle (8) creates significant difference of our invention in comparison to configurations claimed in D1-D4. The perpendicular position of (14) allows a drive design for a low-floor rail vehicle when the drive with multistage gearbox is used. The rotor assembly (14) can be in the given configuration placed either longitudinally or vertically to the bogie. If the axis of rotation of the rotor assembly (14) is not perpendicular to the axis of rotation of the driven wheel (9)/axle (8), then it can be placed inside or outside the bogie. If it is placed inside the bogie, then full low-floor design of the vehicle is unachievable. If it is placed outside the bogie, then there is a problem with the mechanical connection of the drive to the wheel or wheelset. In spite of technical feasibility of such a configuration, the vehicle cannot be operated because its footprint exceeds the rail corridor. It can be concluded, that:

1. The perpendicularity of the axis of rotation of the rotor assembly (14) to the axis of rotation of driven wheel (9) is necessary condition of our invention allowing design of a full low-floor rail vehicle.
2. The coaxial configuration of the drive with multistage gearbox is not technically feasible for design of a full low-floor rail vehicle.
3. The proposed position of the drive unit, which is in our invention placed either longitudinally or vertically to the bogie and which is mounted from the outside of the bogie, brings important benefits from the viewpoint of the fast and easy drive unit disassembling from the bogie without any difficult manipulation with the bogie. This represents important advantage over considered solutions D1 - D4.

For further technical explanation and novelty/inventive step analysis, we refer to the Informal Comments which are attached to this letter.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. B61C9/52 H02K7/116

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B61C H02K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 10 2014 117570 AI (GKN DRIVELINE INT GMBH [DE]) 2 June 2016 (2016-06-02) paragraphs [0005], [0020], [0029], [0030], [0032], [0033]; figure 1 -----</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>US 5 751 081 A (MORI KAWA KUNIHIKO [JP]) 12 May 1998 (1998-05-12) column 1, lines 20-25; figure 4 -----</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>DE 198 05 679 AI (ZAHNRADFABRIK FRIEDRICHSHAFEN [DE]) 19 August 1999 (1999-08-19) column 2, lines 22-24, 26-28 column 3, lines 6-7, 17-20, 47-49, 57-60; figures 1-7 -----</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search

14 September 2017

Date of mailing of the international search report

21/09/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040

Fax: (+31-70) 340-3016

Authorized officer

Czogal l a, Thomas
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>CN 103 633 775 B (UNIV SOUTH CHINA TECH) 11 November 2015 (2015-11-11) figure 2</td>
<td>1-10</td>
</tr>
<tr>
<td>X</td>
<td>DE 199 45 464 AI (CKD DOPRAVNI SYSTEMY A S [CZ]) 20 April 2000 (2000-04-20) Title figure 6 column 4, lines 67-68 column 5, lines 12-20</td>
<td>1.3-6,9,10</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 428 091 AI (ALSTHÔM GEC [FR]) 22 May 1991 (1991-05-22) the whole document</td>
<td>1-10</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>DE 102014117570 AI</td>
<td>02-06-2016</td>
<td>DE 102014117570 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2016087178 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP H07323741 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5751081 A</td>
</tr>
<tr>
<td>DE 19805679 AI</td>
<td>19-08-1999</td>
<td>NONE</td>
</tr>
<tr>
<td>CN 103633775 B</td>
<td>11-11-2015</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 19945464 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 9903202 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 335531 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69003223 DI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69003223 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 0428091 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2044374 T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2654402 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 95880 A</td>
</tr>
</tbody>
</table>