Abstract: The present invention relates to a method for the diagnosis of the involvement of the central nervous system in a subject afflicted with leukemia. In particular, the present invention relates to the determination of the relative level or absolute amount of interleukin-15 (IL-15) and/or interleukin-15 receptor alpha chain (IL-15Ralpha) in a sample from a subject afflicted with leukemia and comparing said level and/or amount with the level and/or amount of IL-15 and/or IL-15Ralpha in a control sample. An elevated relative level and/or absolute amount of IL-15 and/or IL-15Ralpha in the sample from a subject afflicted with leukemia relative to the control is indicative of the involvement of the central nervous system in leukemia and increased risk of relapse of leukemia and increased risk of relapse of leukemia.
Method for the diagnosis of leukemia

The present invention relates to a method for the diagnosis of the involvement of the central nervous system in a subject afflicted with leukemia. In particular, the present invention relates to the determination of the relative level or absolute amount of interleukin-15 (IL-15) and/or interleukin-15 receptor alpha chain (IL-15Ralpha) in a sample from a subject afflicted with leukemia and comparing said level and/or amount with the level and/or amount of IL-15 and/or IL-15Ralpha in a control sample. An elevated relative level and/or absolute amount of IL-15 and/or IL-15Ralpha in the sample from a subject afflicted with leukemia relative to the control is indicative of the involvement of the central nervous system in leukemia.

Furthermore, the present invention relates to a method for the stratification of a subject being afflicted with leukemia determining the therapy regimen for the treatment of leukemia comprising the determination of the relative or absolute level of IL-15 and/or IL-15Ralpha in said subject. In addition, the present invention relates to the use of at least one antagonist of IL-15 and/or IL-15Ralpha for the preparation of a medicament for the treatment of leukemia. Finally, the present invention relates to methods for treating leukemia comprising administering an IL-15 and/or IL-15Ralpha antagonist to the subject afflicted with leukemia in particular when the central nervous system is involved.

Prior art

The major forms of leukemia are divided into four categories. Myelogenous and lymphocytic/lymphoblastic leukemia each have acute and chronic forms. The terms myelogenous or lymphocytic/lymphoblastic denote the cell type involved. In addition, within each category, distinct leukemias are defined according to a combination of morphology, immunophenotype, and cytogenetic features in addition to clinical symptoms.
Acute leukemia is a clonal disease of hematopoietic stem cells. For example, in the United States more than half of all new leukemias are acute leukemias. Said acute leukemias can be differentiated into acute myelogenous leukemia (AML), also called acute non-lymphocytic leukemia and acute lymphocytic or acute lymphoblastic leukemia (ALL) based on whether hematopoietic stem cells have been differentiated along the lymphoid or myeloid lines.

The acute lymphoblastic leukemia is the most frequent type of cancer in childhood amounting 30 % of all cases. About 3.7 of 100,000 children under the age of 15 are suffering from ALL. For example, in Germany this amounts to approximately 600 new cases each year. Successful treatment strategies for childhood acute lymphoblastic leukemia are based on essential therapeutic phases that are consecutively applied over a time period of 2 to 3 years and lead to an overall long-term survival of approximately 80 %. Usually, the therapy includes chemotherapy and irradiation. However, about 20 % of the patients suffer from recurrence which can originate from the central nervous system (CNS) or from the bone marrow of the subjects. The CNS-directed therapy has be become a prerequisite for successful treatment of childhood ALL. Before the introduction of CNS-directed therapy in the 1960's, up to 75 % of children with ALL suffered from diseases recurrence originating from the CNS. Today, acute leukemia, in particular ALL, has the highest propensity to invade the meninges and to cause leukemic CNS disease. Also for other types of leukemia, e.g. the acute myelomonocytic leukemia (AMML), high risk for the development of leukemic CNS disease is described. In addition, also for other types of lymphoid hematopoietic malignancies, like the non Hodgkin's lymphoma entities Burkitt's lymphoma and lymphoblastic lymphoma, invasion of the meninges can be observed.

After applying CNS-directed therapy the high rate of disease recurrence originating from the CNS could be dramatically reduced to less than 5 % through the introduction of cranial irradiation, intrathecal chemotherapy of methotrexate alone or combination with other drugs and systemic application of chemotherapeutics with adequate penetration into the CNS. Also in adult patients with acute leukemia only 5 to 10 % develop recurrent disease with CNS involvement.
On the other hand, patients developing CNS recurrence with leukemia have a poor prognosis outlining the importance of identifying and stratifying the appropriate therapy. Presently, only 3 to 5% of childhood ALL patients are positive for CNS involvement based on the occurrence of leukemia cells in the cerebrospinal fluid of said patients. As indicated before, after introduction of CNS-directed therapy the rate of recurrence with involvement of the CNS decreased to 4 to 5% today. However, about 60% of the patients having recurrence with involvement of CNS are initially diagnosed as being CNS negative.

Thus, an insufficient characterization of the patients with the presently applied methods for diagnosing leukemia, results in high recurrence rates of leukemia with involvement of CNS. Today, the laboratory test used to diagnose CNS involvement in leukemia is the examination of the cerebrospinal fluid (CSF), which is usually obtained by lumbar puncture. CSF cytology positive for malignant cells is the standard method in most clinical series by which malignant CNS involvement is diagnosed. However, as mentioned before, most patients with disease recurrence involving the CNS were initially diagnosed as being CNS-negative.

Today, the intensity of CNS-targeted treatment is adjusted according to the risk of ALL relapse originating from the CNS, the most important risk factor being overt CNS involvement at diagnosis, which is >5 leukocytes/µl CSF in the presence of lymphoblasts. Additional, risk factors include a high initial white blood cell count, pro-B or T-cell immunophenotype, and a traumatic lumbar puncture with identifiable blast cells present at diagnosis. The CNS risk profile is important for the decision on the intensity of CNS-directed therapy, which may differ in the number of intrathecal injections and/or intrathecal\(^\text{\textregistered}\) applied drugs, as well as in the inclusion of cranial irradiation at different doses.

However, the problem involved in CNS-directed therapy is that at higher intensity of CNS-directed therapy, especially cranial irradiation, long term sequelae may occur (e.g. impaired intellectual and psychomotor functioning, neuroendocrine system abnormalities and secondary malignancies).
Hence, despite extensive attempts to accurately assess CNS risk at diagnosis and to adjust routine CNS-directed therapy to avoid over- or undertreatment, the majority of relapses with CNS involvement occur in ALL patients that are CNS-negative at diagnosis. This indicates that the current CNS risk stratification strategies are insufficient for a comprehensive characterization of CNS status at diagnosis.

Thus, the problem underlying the present invention is a provision of a more precise CNS risk assessment to improve control of leukemia, like ALL in the CNS, to overcome the problems outlined above, namely, the recurrence of leukemia, like ALL with involvement of CNS in initially CNS-negative ALL patients, and also to avoid overtreatment with potential deleterious long-term effects.

Summary of the present invention

The inventors found that interleukin-15 (IL-15) and interleukin-15 receptor alpha chain (IL-15Ralpha) are suitable biological markers for leukemia with involvement of the CNS in a subject afflicted with leukemia, in particular, with acute leukemia.

Hence, the present invention relates to a method for the diagnosis of the involvement of the CNS in a subject afflicted with leukemia comprising determining the relative level and/or absolute amount of IL-15 and/or IL-15Ralpha in a sample from said subject. Further, said level and/or amount of IL-15 and/or IL-15Ralpha is compared with the level and/or amount of IL-15 and/or IL-15Ralpha in a control sample. An elevated level and/or amount of IL-15 and/or IL-15Ralpha in the sample from said subject relative to the control is indicative of the involvement of the CNS in leukemia in said subject.

In another embodiment the present invention relates to a method for the stratification of a subject being afflicted with leukemia to determine the therapy regimen for the treatment of said disease or disorder, e.g. leukemia, comprising determining the relative level and/or absolute amount of IL-15 and/or IL-15Ralpha in a sample from said subject and comparing the level and/or amount of IL-15 and/or IL-15Ralpha to
the level and/or amount of IL-15 and/or IL-15Ralpha in a control sample, with the
level and/or amount of IL-15 and/or IL-15Ralpha in samples obtained prior to the
begin of the therapy of said subject, or obtained in earlier stages of the regimen from
said subject. In preferred embodiments the sample to be used for determining the
level and/or amount of IL-15 and/or IL-15Ralpha is obtained from body fluids, in
particular, from bone marrow, blood, or CSF.

The level and/or amount of IL-15 and/or IL-15Ralpha may be determined on mRNA
or protein level. Preferably, the determination of the relative level and/or absolute
amount of IL-15 and/or IL-15Ralpha is performed by real time quantitative
polymerase chain reaction analysis after reverse transcription.

In another preferred embodiment the leukemia is childhood leukemia, in particular,
childhood acute lymphoblastic leukemia (ALL) or childhood acute myelogenous
leukemia (AML).

In another preferred embodiment, the stratification for leukemia therapy is performed
based on the results of the first diagnosis of leukemia with involvement of the CNS,
during initial treatment of said disease or disorder, like leukemia with or without
involvement of the CNS, after the first regimen of treatment of said disease or
disorder, like leukemia or during monitoring of leukemia relapse.

Further, the present invention relates to the use of at least one antagonist of IL-15
and/or IL-15Ralpha for the preparation of a medicament for the treatment of
leukemia, in particular, of leukemia with involvement of the CNS. Preferably, said IL-
15 and/or IL-15Ralpha antagonist is a nucleic acid molecule selected from the group
of small interfering RNA, microRNA, antisense RNA or double-stranded RNA or
antisense DNA specific for IL-15 and/or IL-15Ralpha nucleic acid molecules.

In another preferred embodiment, the IL-15 and/or IL-15Ralpha antagonist is a
monoclonal or polyclonal antibody specific for IL-15 and/or IL-15Ralpha.
The antagonist is preferably used in a form adapted for administration into the bone marrow, blood, or into the CSF.

Furthermore, the present invention relates to methods for treating lymphoma or leukemia, preferably childhood leukemia, like childhood ALL or childhood AML. Said method comprises the step of administering at least one 11-15 and/or IL-15Ralpha antagonist to the subject afflicted with lymphoma or leukemia, preferably afflicted with leukemia with involvement of the CNS.

Brief description of the drawings

Figure 1 Box plots demonstrating the positive association between the expression of interleukin-15 (IL-15) and CNS involvement in leukemia: (A) Leukemic IL-15 expression at diagnosis in patients with acute lymphoblastic leukemia with (CNS3) and without (CNS1) leukemic involvement of the central nervous system. Data depicted were derived through RQ-PCR after reverse transcription using RNA of leukemic bone marrow cells from those patients included in gene expression analyses using microarrays. (B) Leukemic IL-15 expression at diagnosis in patients with acute lymphoblastic leukemia with (CNS3) and without (CNS1) leukemic involvement of the central nervous system. Data depicted were derived through RQ-PCR after reverse transcription using RNA of leukemic bone marrow cells from a set of patients independent from those shown in (A). (C) Leukemic IL-15 expression at primary diagnosis in patients with acute lymphoblastic leukemia with subsequent relapse involving the CNS compared to patients in long-term remission. Both groups were classified as CNS1 at diagnosis using conventional methods for assessment of CNS status.

The line within the box plots corresponds to the median value, the box length to the interquartile range, and the lines emanating from the box (whiskers) extend to the smallest and largest observations; outliers and extremes are indicated; a.u. = arbitrary units.
Detailed description of the present invention of said leukemia

The term "leukemia" according to the invention comprises a cancer of blood-forming tissues of the bone marrow. It is characterized by the growth of immature white blood cells. The disease can be categorized based on which blood cells are abnormal. Lymphomas are cancers of lymphoid tissue (lymph nodes, spleen, and other organs of the immune system).

As used herein, the term "subject" or "individual" or "patient" which is used herein interchangeably refers to an individual or a subject or a patient in need of a therapy or suspected to be afflicted with a condition or disease, namely leukemia. Preferably, the subject or individual is a vertebrate even more preferred a mammal, particularly, preferred a human.

The method according to the present invention is preferably conducted by collecting a sample from the subject and measuring in vitro the level and/or amount of IL-15 and/or IL-15Ralpha using appropriate means.

The term "control sample" as used herein refers e.g. to a sample of an individual of the same species which individual is not suffering from lymphoma or leukemia with involvement of the CNS. Preferably, the negative samples of the same type as the sample. In addition, the control sample may be a sample from an individual not afflicted with leukemia.

A sample according to the invention is biological material, which has been obtained from an individual. In particular, said term includes material obtained from blood, plasma, tissue, bone marrow or CSF. Particular, preferred the sample is obtained from bone marrow, blood, or CSF.

The expression "level" or "amount" is meant to describe the relative level of said molecules or the absolute amount of said molecules according to the present invention relative to the same molecule in a control sample. Relative means that no
distinct amounts such as mole or milligram per litre etc. are stated, but that for example is stated the sample contains more, less or the same amount of a certain molecule as compared to a control sample. The term "more, less or the same amount" in this situation includes also arbitrary units.

With "elevated" or "increased" according to the invention is meant, that the molecule is present in a sample in higher quantities, or amounts or concentration, as compared to another sample, or as compared to a control sample or as compared to a negative control sample or as compared to a reference value, regard as if these measurements are relative or absolute measurements. Preferably, the molecule which is increased is present in a concentration, or quantity or amount which is at least 10 %, at least 20 %, at least 30 %, at least 40 %, at least 50 %, at least 60 %, at least 70 %, at least 80 %, at least 90 %, at least 100 %, at least 200 %, at least 300 %, at least 400 %, at least 500 %, at least 1000 % or at least more than 1000 % above the value to which it is compared. In other words, preferably the molecule is increased at least 2-fold, 3-fold, at least 3-fold, at least 4-fold, at least 5-fold, at least 10-fold above the level and/or amount in the control sample.

With "stratification of a subject" according to the invention is meant to determine the therapy regimen for the treatment of leukemia. In particular, said stratification includes determining whether said subject will benefit from irradiation, in particular, from cranial irradiation, and determining the intensity of CNS-directed therapy. Said stratification allows CNS risk assessment in patients afflicted with leukemia.

The term "antagonist" as used herein is meant to include molecules which are able to decrease or inhibit the activity of the molecules of the present invention, i.e. of IL-15 and IL-15Ralpha. Said antagonist are particularly nucleic acid molecules, like small interfering RNA, microRNA, double-stranded RNA or antisense RNA or antisense DNA, whereby said nucleic acid molecules can specifically interact with the IL-15 and/or IL-15Ralpha nucleic acid molecules to decrease or inhibit IL-15 and/or IL-15Ralpha action.
The term "involvement of the CNS" refers to a disease state where invasion of the meninges by leukemic cells is present.

Thus, the present invention relates to a method for the diagnosis of the involvement of the CNS in leukemia in a subject. Said method comprises the steps of determining the relative level and/or absolute amount of IL-15 and/or IL-15Ralpha in a sample from said subject and comparing the level and/or amount of IL-15 and/or IL-15Ralpha to the level and/or amount of IL-15 and/or IL-15Ralpha in a control sample wherein the elevated level and/or amount of IL-15 and/or IL-15Ralpha in the sample from said subject relative to the control is indicative of the involvement of the CNS in leukemia in said subject. That is, the elevated expression level of IL-15 or IL-15Ralpha chain at initial diagnosis of leukemia allows to assess the involvement of the CNS in said leukemia.

At present, CNS status at the time of diagnosis, e.g. diagnosis of childhood ALL, is commonly assessed by examination of CSF obtained by lumbar puncture. However, in the brains of children with ALL after autopsy CNS involvement in more than 50% of the examined specimens was revealed. Further, without targeted CNS therapy more than 50% of the patients will relapse in the CNS suggesting that CNS involvement is present at diagnosis in the majority of these patients. The use of IL-15 and IL-15Ralpha levels now allows to diagnose leukemia with CNS involvement more precisely and, thus, allow to adjust the toxic CNS-directed anti-leukemia therapy more accurate. The determination of the relative level and/or absolute amount of IL-15 and/or IL-15Ralpha not only allows to initially diagnose leukemia with CNS involvement but also enables stratification of the subjects afflicted with leukemia. Hence, in a further embodiment the present invention relates to a method for the stratification of the subject being afflicted with leukemia to determine the therapy regimen for the treatment of leukemia comprising a) determining the relative level and/or absolute amount of IL-15 and/or IL-15Ralpha in a sample from said subject; and b) comparing the level and/or amount of IL-15 and/or IL-15Ralpha to the level and/or amount of IL-15 and/or IL-15Ralpha in a control sample, with the level and/or
amount of IL-15 and/or IL-15Ralpha in samples obtained prior to the begin of the therapy of said subject, or obtained in earlier stages of the regimen from said subject.

That is, determining the relative level and/or absolute amount of IL-15 and/or IL-15Ralpha chain in subjects undergoing the first diagnosis of leukemia is indicative for a CNS involvement, thus, requiring adapted CNS treatment in the therapy regimen of leukemia. In addition, IL-15 levels diagnosed during the initial therapy or during follow-up control after initial treatment is indicative for an eventual CNS relapse. Thus, controlling the IL-15 or IL-15 receptor levels allows to stratify whether patients with our without CNS involvement may have a CNS relapse. To conclude, the present invention provides a potential diagnostic tool and method for assessing CNS involvement in leukemia, in particular, in childhood ALL or AML, for protection of CNS relapse and CNS involvement in leukemia when assessing the IL-15 or IL-15Ralpha expression.

The samples may be obtained from body fluids. In a preferred embodiment said samples are obtained from bone marrow, or CSF. Of course, other sources are possible, like blood, lymph, and tissue. A sample can also be material indirectly obtained from an individual, such as cells obtained from the individual which have been cultured in vitro, prior to obtain a sample from these in vitro cultured cells. A sample can also be pretreated prior to analysis with the methods of the invention. Such pretreatments for example can be storage of the sample at various temperatures, such as room temperature, 4 °C, 0 °C, -20 °C, -70 °C, -80 °C, or other temperatures or storage on water ice or dry ice, or storage in liquid nitrogen or storage in other solid, liquid or gas media.

Suitable methods to detect the relative level and/or absolute amount of IL-15 or IL-15Ralpha in the samples are well known in the art. For example, suitable methods include suitable mass spectrometry methods, e.g. matrix assisted laser desorption ionisation (MALDI), continuous or pulsed electrospray ionisation (ESI) and related methods such as ionspray or thermospray or massive cluster impact. The ion sources can be matched with detection formats including linear or non-linear
reflection time of light (TOF), single or multiple quadrupole, single or multiple magnetic sector, Fourier transformation ion cyclotron resonance (FTICR), ion trap, and combinations thereof. Other mass spectrometric methods suitable are for example fast atom bombardment (FAB), mass spectrometry, surface enhanced laser desorption (ionisation) (SELDI), mass spectrometry, etc.

Further, suitable immunologic methods among other are enzyme link immunoassays (ELISA), sandwich, direct, indirect, or competitive ELISA assays, enzyme link immunospot assays (ELIspot), radio immunoassays (RIA), flow-cytometry assays (FACS), immunohistochemistry, Western Blot, fluorescence resonance energy transfer (FRET) assays, protein chip assays using for example antibodies, antibody fragments, receptor ligands or other agents binding the molecules of the invention.

Among other Northern Blot or Southern Blot hybridization, nucleic acid dot or slot Blot Hybridization, in situ hybridization, nucleic acid chip assays (for example using RNA, DNA or other nucleic acids to specifically capture the nucleic acid of interest), polymerase chain reaction (PCR), reverse transcriptase-PCR (RT-PCR), real time PCR, and in particular, real time quantitative polymerase chain reaction (RQ-PCR) after reverse transcription may be used as molecular biology methods to detect the molecules of the invention.

Further methods, such as nuclear magnetic resonance (NMR), fluorometry, colorimetry, radiometry, luminometry or other spectrometric methods, liquid chromatography, capillary chromatography, thin-layer chromatography, plasmon resonance, one-or-two gel dimensional electroporesis etc. can be used to detect the molecules of the invention.

In another preferred embodiment the level and/or amount of IL15 and/or IL-15Ralpha is determined on mRNA level. Particular preferred the determination is conducted by RQ-PCR, for example applying known real time PCR-methods. Another preferred embodiment relates to the determination of the level and/or amount of IL-15 and/or IL-15Ralpha on protein level. For example, said level may be determined by
immunological methods as outlined above using specific IL-15 and/or IL-15Ralpha antibodies.

In another preferred embodiment, the level and/or amount of IL-15 and/or IL-15Ralpha is determined using flow cytometry analysis of cells which are obtained from body fluids of the subjects. Particular preferred the cells are obtained from bone marrow, blood, or CSF.

The control sample to be used in the method of the present invention are samples obtained from individuals not afflicted with leukemia or from individuals afflicted with leukemia but known to have no involvement of the CNS.

In another embodiment, e.g. for stratification of the subject, the "control sample" is a sample obtained before from the same subject, e.g. obtained prior the begin of therapy or at earlier stages of the therapy to monitor the necessity to continue with a respective intensity of CNS treatment. When diagnosing leukemia with involvement of the CNS, the elevated level relative to the control sample is at least 2-fold, 3-fold, 4-fold, preferably at least 5-fold or 10-fold relative to the level and/or amount of IL-15 and/or IL-15Ralpha of the control sample.

The methods according to the present invention are suitable for diagnosing or stratification of a subject afflicted with any kind of leukemia. Thus, lymphoid and myelogenous leukemias of acute and chronic types can be diagnosed independent of the patient's age at diagnosis. Particular preferred the diagnosis is for acute leukemia, in particular, for acute myelogenous leukemia (AML) and acute lymphoblastic/lymphocytic leukemia (ALL) and most preferably in childhood ALL and childhood AML. In addition, the present invention is also suitable for diagnosing CNS involvement of other hematological malignant neoplasias such as lymphomas (e.g., the non-Hodgkin and Hodgkin lymphomas) and can be used for guiding the intensity of CNS-directed treatment in these diseases. Similarly, the invention presented herein can be used to diagnose the propensity of solid malignant neoplasias such as carcinomas to involve the CNS (e.g., in the form of metastasis). Also in this latter
instance, the invention allows guidance of the intensity of CNS-directed treatment in these diseases.

In another embodiment the present invention relates to the preparation of a medicament for the treatment of leukemia. Said medicament or pharmaceutical composition comprises at least one antagonist of IL-15 and/or IL-15Ralpha. These pharmaceutical compositions comprising said antagonist enable to decrease or inhibit the action of IL-15 and/or IL-15 receptor respectively. Preferably, said antagonist is a nucleic acid molecule. For example, said nucleic acid molecule may be a small interfering RNA, microRNA, antisense RNA or double-stranded RNA known in the art to interfere with nucleic acid molecules encoding for IL-15 and/or IL-15Ralpha allowing to inhibit the same. Alternatively, the antagonist may be an antisense DNA specific for said IL-15 and/or IL-15Ralpha nucleic acid molecule. In another embodiment, the antagonist is a monoclonal or polyclonal antibody specific for IL-15 and/or IL-15 receptor alpha.

The pharmaceutical compositions of the invention can be used for primary therapy and treatment of a relapse of leukemia, especially of leukemia with involvement of the CNS, like ALL or AML with involvement of the CNS.

The pharmaceutical compositions can be administered orally, sublingually, injected intravenously, subcutaneously, into the muscle, fat or other tissues, administered topically onto the skin or onto a mucosa, inhaled as aerosol into the lungs or administered rectal or through other routes.

The pharmaceutical composition can be supplied as tablets, pills, capsules, powders, granulates, salves plasters releasing substances transdermal to the individual, tinctures, uvula, suspensions, solutions, preferably in sterile physiological sodium chlorine solutions for use in injections or as continuous infusions etc. The pharmaceutical compositions can comprise additives, such as filling additives, antimicrobial additives, preservatives, colouring additives, flavouring additives, smelling additives, protective or stabilizing additives etc. Preferred protective or
stabilizing additives for example are substances which inhibit degradation of the nucleic acid molecules or the antibody or carrier proteins and are known in the art. The pharmaceutical compositions can be applied to an individual in need once or repeatedly. It can be applied one or more times today, weekly, monthly or in longer time intervals. The pharmaceutical compositions can be used alone or in combination with other pharmaceutical compositions. In particular, the pharmaceutical compositions according to the present invention can be used in combination with known therapeutica for the treatment of leukemia and cytostatica and irradiation.

Thus, the pharmaceutical composition may be administered with a physiologically acceptable carrier to a patient. In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency or other generally recognized pharmacopaeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient or vehicle with which the therapeutic is administered.

 Typically, "pharmaceutically or therapeutically acceptable carrier" is a carrier medium which does not interfere with the effectiveness of the biological activity of the active ingredients and which is not toxic to the host or patient.

Generally, the ingredients of the pharmaceutical compositions are supplied separately or mixed together in a unit dosage form.

In vitro assays may optionally be employed to help identifying optimal dosage and ranges. The precise dose to be employed in the formulation is also dependent on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgement of the practitioner and each patient's circumstances.

By "therapeutically effective amount" is meant a dose that produces the effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques. As it is
known in the art and described above, adjustment of systemic versus localized
delivery, age, body weight, general health, sex, diet, time of administration, drug
interaction and the variety of the condition may be necessary and will be
ascertainable with routine experimentation by those skilled in the art.

In a particular preferred embodiment, the pharmaceutical composition is adapted to
be administered into the bone marrow, the blood, or into CSF of the subject is a need
thereof.

In still another embodiment, the present invention relates to methods of treating
subjects afflicted with leukemia. In particular, the present invention relates to
methods for treating leukemia with involvement of the CNS. Said treatment
comprises the step of administering at least one IL-15 and/or IL-15Ralpha antagonist
to the subject afflicted with leukemia. The antagonist may be administered together
with additional active ingredients, either in combination, separately, or sequentially.

Examples

The following examples are provided to illustrate the invention. However, they are not
meant to limit the scope of the invention in any way.

Methods

Patients

Patients were newly diagnosed with ALL between October 1999 and May 2004 and
were aged 1 to 18 years. Informed consent was obtained from patients or legal
guardians and the protocol approved by the local ethical committee. Leukemia
diagnoses were made according to morphological criteria of the French-American-
British (FAB) classification and by immunophenotyping of blast cells according to
recommendations of the European Group for the Immunological Characterization of
Leukemias (EGIL) in reference laboratories. CNS status was defined as follows:
CNS1 (puncture nontraumatic without leukemia blasts after cytocentrifugation) CNS2 (puncture nontraumatic, \(\leq 5 \) white blood cells (WBC)/µL CSF with identifiable blasts), CNS3 (puncture nontraumatic, > 5 WBC/µL CSF with identifiable blasts), traumatic lumbar puncture (TLP)+ (TLP with blasts), and TLP- (TLP without blasts). A TLP was defined as 10 or more erythrocytes per microliter CSF or macroscopically contaminated CSF. In addition to the CNS3 group as defined above, patients with a cerebral mass or patients with cranial nerve palsy in combination with blasts after cytocentrifugation were regarded as having CNS3 disease. Complete remission (CR) was defined as the absence of leukemic blasts in the peripheral blood and cerebrospinal fluid, less than 5% lymphoblasts in bone marrow aspiration smears, and no evidence of localized disease. Relapse was defined as recurrence of lymphoblasts or localized leukemic infiltrates at any site. Isolated CNS relapse was defined by a CSF with > 5 WBC/µL CSF with identifiable blasts on cytospin preparations with less than 5% of bone marrow blasts, and no other localized leukemic infiltrates. Combined relapses included those with simultaneous recurrence in the bone marrow and in an extramedullar site.

For gene expression analysis using microarrays, patients with CNS3 status and available diagnostic specimens from trial ALL-BFM 2000 who could be matched to at least one CNS1 control sample according to gender age at diagnosis (between 1 to 10 y; ≥ 10 years), initial WBC count (< 10,000/µl: 10,000 to < 50,000/µl: 50,000 to < 100,000/µl; ≥ 100,000/µl), and immunophenotype (pro B, precursor B, common, T-cell were included). Validation analysis in independent patients with CNS3 status from the same population could only be performed with control individuals matched according to immunophenotype. Patients that were initially CNS-negative (CNS1) with subsequent isolated or combined CNS relapse were compared to CNS1 patients with a minimum follow-up of five years. Bone marrow or peripheral blood specimens were required to contain more than 70% blasts as assessed morphologically before gradient centrifugation.

Initially nine precursor B-cell ALL patients with CNS3 status who were matched to 18 control subjects with CNS1 status according to gender, age at diagnosis, initial WBC
count, and immunophenotype (two control CNS1 patients per one CNS3 patient) were identified. Using the same criteria, eight additional patients with T-cell ALL and CNS3 status were matched to eight controls. Characteristics of these patients are given in Table 1.

Leukemic cell purification

Leukemic cells from kryopreserved diagnostic ALL specimens were purified with a FACSVantage cell sorter (Becton Dickinson, Heidelberg, Germany) using anti-CD19 and anti-CD10 antibodies (Becton Dickinson).

RNA isolation, amplification, and reference RNA

Total RNA of the primary set was isolated with Trizol reagent (Invitrogen, Paisley, United Kingdom) and subsequently passed over a Qiagen RNeasy column (Qiagen, Hilden, Germany) for the removal of small fragments. Each of the total RNA samples was linearly amplified using the MessageAmp aRNA Kit (Ambion, Austin, TX). Total and amplified RNA were quantified and validated for integrity using the Bioanalyzer 2100 (Agilent, Palo Alto, CA). The reference RNA used for all arrays was Universal Human Reference RNA (Stratagene Europe, Amsterdam, The Netherlands) linearly amplified using the same method.

Gene expression measurements and analysis

Spotted cDNA microarrays that contained more than 43,000 features representing approximately 30,000 genes were used (Stanford Functional Genomics Facility, Stanford, CA). The sample RNA and the reference RNA with different fluorescent dyes (Cy5-deoxyuridine triphosphate (dUTP) and Cy3-dUTP; Amersham Pharmacia Biotech Europe, Freiburg, Germany) and comparatively hybridized them to an array. Protocols are posted at http://brownlab.stanford.edu/protocols.html. The fluorescence intensities of Cy5 and Cy3 were measured using a GenePix 4000 scanner (Axon Instruments, Foster City, CA). Images were analyzed using GenePix Pro 4.1
software (Axon Instruments). Any areas of the microarrays that had obvious blemishes were manually omitted from subsequent analyses. Spots were considered well measured only if the reference RNA fluorescence intensity was greater than 2.5 times the local background and if the regression correlation was greater than 0.6. Any clone that was not well measured on at least 70% of the arrays was excluded from subsequent analysis. For each array, we used a scaling factor to set the mean sample/reference ratio for all well-measured spots to 1. For all subsequent analysis, log2 of this normalized sample/reference ratio was used. The data for each clone across all arrays within each of 2 array print runs were mean centered to minimize potential print run-specific bias. To analyze the data in an unsupervised manner, agglomerative hierarchial clustering was applied. In the supervised analysis of the data, the significance analysis of microarrays (SAM) was used.

Real-time quantitative polymerase chain reaction analysis (RQ-PCR) after reverse transcription was performed on selected genes. We used random hexamer priming and MuLV reverse transcriptase (Fermentas, Hanover, MD) to generate cDNA. PCR was carried out on an Applied Biosystem Model 7700 Sequence Detector (Applied Biosystems, Darmstadt, Germany) using the QuantiTect SYBR Green PCR kit as described in the manufacturer’s instructions (Qiagen AG, Hilden, Germany). The expression level of the SDHA gene was used to normalize for differences in input cDNA. Primer pairs used to measure mRNA abundances of the Interleukin-15 (IL-15) and SDHA genes were purchased from Qiagen AG (QuantiTect Primer Assays for human IL-15 and SDHA). IL-15 mRNA primers detected both IL-15 isoforms. Melting curve analyses were performed to verify the amplification specificity. Each sample was tested in duplicate. The expression ratio was calculated as 2^n, where n was the CT value difference (IL-15 - SDHA) normalized by the CT difference of a calibrator sample.

The Mann-Whitney U test was applied to evaluate the significance of differences between sample mean values. Statistical significance was defined at P = 0.05.
Example 1

Identification of differently expressed genes in patients with CNS3 compared to subjects with CNS1 status.

With the help of the gene expression measurements and analysis described above, patients with CNS3 status were compared to matched controls with CNS1 status (Table 1).

In the supervised analysis of the data, using SAM (1000 permutations; fold-change > 2; false discovery rate = 61%), 18 differentially expressed genes were identified. To assure that differential gene expression was not simply a reflection of different percentages of normal bone marrow cells in the analytical specimens, purified leukemic cells from four precursor B-cell patients (two CNS3 and two CNS1 patients) with additional available kryopreserved diagnostic specimens were subjected to a second analysis. Out of the 18 genes, differential expression of IL-15 could be confirmed with an up to 10-fold higher expression in CNS-positive patients. IL-15 expression was validated by RQ-PCR in all patients included in the initial microarray analysis and found to be significantly different between CNS3 and CNS1 patients (Mann-Whitney U test P<0.001; Figure 1a). Furthermore, we were able to confirm the high expression of IL-15 in CNS3 patients in an independent set of 13 patients with CNS3 status compared to 26 CNS1 study subjects (Table 1) by RQ-PCR. Differential IL-15 expression was detected in a similar range as described above (Mann-Whitney U test, P< 0.001, Figure 1b). In a logistic regression analysis controlling gender, age and WBC at diagnosis, immunophenotype, and BCR/ABL, or TEL/AML1 fusion transcripts (yes/no), IL-15 expression levels above the median conferred a more than 10-fold increased risk of CNS3 status compared to expression equal to or below the median (odds ratio = 10.70, 95% CI 2.95 - 38.81, P < 0.001). Thus, the expression of IL-15 is higher in leukemic cells from diagnostic bone marrow samples of ALL patients with overt CNS involvement.
Example 2

Comparison of CNS-negative patients at initial diagnosis having CNS relapse with CNS-negative patients with no CNS relapse.

Next, it was analyzed if the expression level of IL-15 at initial diagnosis of CNS-negative patients could predict CNS relapse. The IL-15 expression was analyzed by RQ-PCR at initial diagnosis of ALL in 22 CNS1 patients subsequently relapsing with leukemic CNS involvement (nine isolated and 13 combined relapses) and 44 of the 52 patients without CNS disease at diagnosis also used in the two analyses above who remained in remission for more than three years (Table 2). A significantly higher IL-15 expression was detected in the diagnostic samples of patients with subsequent CNS relapse (Mann-Whitney, U test, P<0.001, Figure 1c) and in a logistic regression analysis controlling gender, age and WBC at diagnosis, immunophenotype, and BCR/ABL or TEL/AML1 fusion transcripts (yes/no), IL-15 expression levels above the median still conferred a more than 5-fold increased risk of CNS relapse compared to expression equal to or below the median (odds ratio = 5.39 %, CI 1.37 - 21.23, P = 0.016). There was no significant difference in IL-15 expression levels detectable between isolated and combined relapses (Mann-Whitney U test, P = 0.764). Thus, higher expression levels of IL-15 in diagnostic leukemic bone marrow cells of patients with ALL and no overt CNS involvement are associated with CNS relapse.

Further data demonstrates that the same principle is given in AML and recurrent ALL.
Table 1. Characteristics of 43 patients with acute lymphoblastic leukemia analyzed by gene expression profiling and 39 patients included in validation analysis stratified by CNS involvement at diagnosis.

<table>
<thead>
<tr>
<th></th>
<th>Patients analyzed by gene expression profiling</th>
<th>Patients included in validation analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CNS3a n (%)</td>
<td>CNS1b n (%)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - < 10</td>
<td>11 (64.7)</td>
<td>18 (69.2)</td>
</tr>
<tr>
<td>≥ 10</td>
<td>6 (35.3)</td>
<td>8 (30.8)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>12 (70.6)</td>
<td>18 (69.2)</td>
</tr>
<tr>
<td>female</td>
<td>5 (29.4)</td>
<td>8 (30.8)</td>
</tr>
<tr>
<td>Presenting WBCd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10,000</td>
<td>3 (17.6)</td>
<td>6 (23.1)</td>
</tr>
<tr>
<td>10,000 - < 50,000</td>
<td>4 (23.5)</td>
<td>7 (26.9)</td>
</tr>
<tr>
<td>50,000 - < 100,000</td>
<td>2 (11.8)</td>
<td>3 (11.5)</td>
</tr>
<tr>
<td>≥ 100,000</td>
<td>8 (47.1)</td>
<td>10 (38.5)</td>
</tr>
<tr>
<td>Immunophenotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-precursor</td>
<td>9 (52.9)</td>
<td>18 (69.2)</td>
</tr>
<tr>
<td>T-ALL</td>
<td>8 (47.1)</td>
<td>8 (30.8)</td>
</tr>
<tr>
<td>BCR/ABL positive</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MLL/AF4 positive</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TEL/AML1 positive</td>
<td>2 (11.8)</td>
<td>-</td>
</tr>
</tbody>
</table>

a CNS3 (puncture nontraumatic, > 5 WBC/μL CSF with identifiable blasts); b CNS1 (puncture nontraumatic without leukemic blasts after cytocentrifugation); c P χ^2 or Fisher’s exact test; d white blood cell.
Table 2. Characteristics of 22 patients with acute lymphoblastic leukemia relapsing with CNS involvement and 44 patients being in long-term remission.

<table>
<thead>
<tr>
<th></th>
<th>Relapse</th>
<th>Remission</th>
<th>P<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td>1 - < 10</td>
<td>15 (68.2)</td>
<td>27 (61.4)</td>
<td></td>
</tr>
<tr>
<td>≥ 10</td>
<td>7 (31.8)</td>
<td>17 (38.6)</td>
<td>0.587</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>17 (77.3)</td>
<td>26 (59.1)</td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>5 (22.7)</td>
<td>18 (40.9)</td>
<td>0.144</td>
</tr>
<tr>
<td>Presenting WBC b count/ µl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 10,000</td>
<td>6 (27.3)</td>
<td>7 (15.9)</td>
<td></td>
</tr>
<tr>
<td>10,000 - < 50,000</td>
<td>4 (18.2)</td>
<td>16 (36.4)</td>
<td></td>
</tr>
<tr>
<td>50,000 - < 100,000</td>
<td>5 (22.7)</td>
<td>9 (20.5)</td>
<td></td>
</tr>
<tr>
<td>≥ 100,000</td>
<td>7 (31.8)</td>
<td>12 (27.3)</td>
<td>0.440</td>
</tr>
<tr>
<td>Immunopheno-type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-precursor</td>
<td>19 (86.4)</td>
<td>37 (84.1)</td>
<td></td>
</tr>
<tr>
<td>T-ALL</td>
<td>3 (13.6)</td>
<td>7 (15.9)</td>
<td>0.808</td>
</tr>
<tr>
<td>BCR/ABL positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 (9.1)</td>
<td>-</td>
<td>0.108</td>
</tr>
<tr>
<td>MLL/AF4 positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TEL/AML1 positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 (9.1)</td>
<td>-</td>
<td>0.108</td>
</tr>
</tbody>
</table>

^a P χ² or Fisher's exact test; ^b white blood cell.
Claims

1. A method for the diagnosis of the involvement of the central nervous system in leukemia or lymphoma in a subject comprising
 a) determining the relative level and/or absolute amount of interleukin-15 (IL-15) and/or interleukin-15 receptor alpha chain (IL-15Ralpha) in a sample from said subject;
 b) comparing the level and/or amount of IL-15 and/or IL-15Ralpha to the level and/or amount of IL-15 and/or IL-15Ralpha in a control sample, wherein the elevated level and/or amount of IL-15 and/or IL-15Ralpha in the sample from said subject relative to the control is indicative of the involvement of the central nervous system in leukemia or lymphoma in said subject.

2. A method for the stratification of a subject being afflicted with leukemia or lymphoma to determine the therapy regimen for the treatment of the leukemia or lymphoma comprising
 a) determining the relative level and/or the absolute amount of IL-15 and/or IL-15Ralpha in a sample from said subject;
 b) comparing the level and/or amount of IL-15 and/or IL-15Ralpha to the level and/or amount of IL-15 and/or IL-15Ralpha in a control sample, with the level and/or amount of IL-15 and/or IL-15Ralpha in samples obtained prior to the begin of the therapy of said subject, or obtained in earlier stages of the regimen of said subject.

3. The method according to any one of claims 1 or 2 wherein the sample is obtained from body fluids.

4. The method according to any one of the preceding claims wherein the samples are obtained from bone marrow, blood, or cerebrospinal fluid.
5. The method according to any one of the preceding claims wherein the level and/or amount of IL-15 and/or IL-15Ralpha is determined on mRNA level.

6. The method according to any one of claims 1 to 4 wherein the level and/or amount of IL-15 and/or IL-15Ralpha is determined on protein level.

7. The method according to any one of the preceding claims wherein the level of IL-15 (short and/or long form of IL-15) is determined.

8. The method according to any one of the preceding claims wherein the control sample is from an individual not afflicted with leukemia or lymphoma, or an individual afflicted with leukemia or lymphoma without involving the central nervous system.

9. The method according to any one of the preceding claims wherein the elevated level is at least 2-fold, preferably at least 5-fold, relative to the level and/or amount of IL-15 and/or IL-15Ralpha of the control sample.

10. The method according to any one of the preceding claims wherein the subject is a human subject.

11. The method according to any one of claims 2 to 10, wherein the stratification is conducted based on the first diagnosis of leukemia or lymphoma with or without involvement of central nervous system, during initial treatment of leukemia or lymphoma with or without involvement of the central nervous system, after the first regimen of treatment of leukemia or lymphoma, or during monitoring of leukemia or lymphoma relapse.

12. The method according to claim 13 herein the leukemia is childhood leukemia, preferably acute lymphoblastic leukemia or acute myelogenous leukemia.
13. A use of at least one antagonist of IL-15 and/or IL-15Ralpha for the preparation of a medicament for the treatment of leukemia or lymphoma.

14. The use according to claim 13 wherein the at least one IL-15 and/or IL-15Ralpha antagonist is a nucleic acid molecule selected from the group of small interfering RNA, microRNA, antisense RNA or double stranded RNA or antisense DNA specific for said IL-15 and/or IL-15Ralpha nucleic acid molecules.

15. The use according to any one of claims 13 or 14 wherein the antagonist is a monoclonal or polyclonal antibody specific against IL-15 and/or IL-15Ralpha.

16. The use according to any one of claims 13 to 15, wherein the antagonist is adapted for administration into the bone marrow, blood, or into the cerebrospinal fluid.

17. A method for treating leukemia or lymphoma, preferably childhood leukemia, like acute lymphoblastic leukemia or acute myelogenous leukemia, comprising the step of administering at least one IL-15 and/or IL-15Ralpha antagonist to the subject afflicted with said disorder or disease.

18. The method according to claim 17, wherein the leukemia is leukemia with involvement of the central nervous system.
Figure 1b

![Box plot showing Interleukin-15 expression (a.u.) for CNS3 and CNS1 with N values of 13 and 26 respectively.]

- Interleukin-15 expression (a.u.)
- CNS3: N = 13
- CNS1: N = 26
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. GOIN33/574

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOIN

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category *</th>
<th>Citation of document, with indication where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 001 973 A (STROM TERRY B [US] ET AL)</td>
<td>13-18</td>
</tr>
<tr>
<td></td>
<td>14 December 1999 (1999-12-14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 13, line 44 - column 14, line 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 10, line 22 - line 32</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>US 2006/057680 A1 (ZHENG XIN X [US] ET AL)</td>
<td>13, 14, 17, 18</td>
</tr>
<tr>
<td></td>
<td>16 March 2006 (2006-03-16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0030] - paragraph [0032]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0039] - paragraph [0041]; claims 1, 3, 7</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents

'A' document defining the general state of the art which is not considered to be of particular relevance

'E' earlier document but published on or after the international filing date

'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

'O' document referring to an oral disclosure, use, exhibition or other means

'I' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art

'&' document member of the same patent family

Date of the actual completion of the international search

8 January 2008

Date of mailing of the international search report

15/01/2008

Name and mailing address of the ISA/ European Patent Office P B 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx 341 651 epo nl, Fax (+31-70) 340-3016

Authorized officer

Mulder, Lonneke
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SEEGER KARL ET AL: "Different cytokine gene expressions in BM samples from initial and relapsed childhood ALL" BLOOD, vol. 96, no. 11 Part 2, 16 November 2000 (2000-11-16), page 167b, XP008074835 & 42ND ANNUAL MEETING OF THE AMERICAN SOCIETY OF HEMATOLOGY; SAN FRANCISCO, CALIFORNIA, USA; DECEMBER 01-05, 2000 ISSN: 0006-4971 abstract</td>
<td>1-12</td>
</tr>
</tbody>
</table>

Form PCT/SA/210 (continuation of second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>
| P,X | CARIO GUNNAR ET AL: "High Interleukin 15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the central nervous system."
INTERNATIONAL SEARCH REPORT

International application No.

INTERNATIONAL SEARCH REPORT PCT/EP2007/009689

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. **X** Claims Nos. 13-18
 because they relate to subject matter not required to be searched by this Authority, namely:

 see FURTHER INFORMATION sheet PCT/ISA/210

2. **X** Claims Nos.: 13-18
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

 see FURTHER INFORMATION sheet PCT/ISA/210

3. ☐ Claims Nos -
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims

2. ☐ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation

☐ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)
Continuation of Box II.1

Although claims 17 and 18 are directed to a method of treatment of the human/animal body by therapy and/or surgery, the search has been carried out and based on the alleged effects of the compound/composition.

Continuation of Box II.1

Claims Nos.: 13-18

Rule 39.1(1v) PCT - Method for treatment of the human or animal body by surgery
Rule 39.1(1v) PCT - Method for treatment of the human or animal body by therapy

Continuation of Box II.2

Claims Nos.: 13-18

Present claims 13-18 relate to compounds which have a given desired property or effect, namely IL-15 antagonists having a therapeutical effect on leukemia and lymphoma. However, the description does not provide support and disclosure in the sense of Article 6 and 5 PCT for any such compound having the said property or effect and there is no common general knowledge of this kind available to the person skilled in the art. This non-compliance with the substantive provisions is to such an extent that the search was performed taking into consideration the non-compliance in determining the extent of the search of the claim (PCT Guidelines 9.19 and 9.20).

The search of claim 13-18 was consequently restricted to IL-15 antibodies and nucleotides as mentioned in claims 14 and 15, that relate to the claimed properties and/or effects, will be taken into consideration.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.2), should the problems which led to the Article 17(2)PCT declaration be
overcome.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6001973 A</td>
<td>14-12-1999</td>
<td>US 6451308 B1</td>
<td>17-09-2002</td>
</tr>
<tr>
<td>US 2006057680 A1</td>
<td>16-03-2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2006104945 A1</td>
<td>18-05-2006</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>