(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 September 2009 (24.09.2009)

(21) International Application Number:
PCT/CA2009/000359

(22) International Filing Date:
18 March 2009 (18.03.2009)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
2,626,164 18 March 2008 (18.03.2008) CA

(71) Applicants and
Inventors: VACHON, Leandre [CA/CA]; 2045 Chemin de l’aéroport, Thetford Mines Quebec, G6G 5R7 (CA).
ASSALY, Jamil [CA/CA]; 4971 Terrasse St-Félix-Saint-Augustin-de-Desmaures, Quebec, G3A 1B4 (CA).

(74) Agent: ROBIC; CENTRE CDP CAPITAL, 1001, Square Victoria - Bloc E - 8th Floor, Montreal, Quebec H2Z 2B7 (CA).

(51) International Patent Classification:
F16L 55/115 (2006.01) B65D 90/66 (2006.01)
B65D 50/04 (2006.01) 56721560/2006.01)
B65D 50/14 (2006.01) F16L 15/02/01 (2006.01)
B65D 55/12 (2006.01) F17C 13/06/01 (2006.01)
B65D 90/10 (2006.01) F17D 5/00 (2006.01)
B65D 90/54 (2006.01)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

(54) Title: SECURITY CAP WITH LATCH

(57) Abstract: A security cap (1) for selectively closing an open end (3) of a pipe (5). The security cap (1) includes inner and outer cap assemblies (7, 11), at least one latch (17), and a driving assembly (21). The outer cap assembly (11) is rotatable with respect to the inner cap assembly (7), and along with it, is intended to cover the open end (3) of the pipe (5). Each latch (17) is co-operable with the inner and outer cap assemblies (7, 11), and displaceable with respect to the cap assemblies (7, 11) so as to be operable between first and second configurations, wherein in the first configuration, each latch (17) is drawn away from an outer groove (19) of the open end (3) of the pipe (5) thereby enabling the security cap (1) to be removed from the open end (3) of the pipe (5), and wherein in the second configuration, each latch (17) is engaged with the outer groove (19) thereby preventing the security cap (1) from being removed from the open end (3) of the pipe (5). The driving assembly (21) is operatively disposed between the inner and outer cap assemblies (7, 11), and co-operable with the same, as well as with the at least one latch (17), for selectively driving each latch (17) between the first and second configurations via a given rotation of the outer cap assembly (11) with respect to the inner cap assembly (7) of the security cap (1).

FIG. 1
Security Cap With Latch

Field of the invention:

The present invention relates to a security cap. More particularly, the present invention relates to a security cap such as the ones used for selectively opening and closing an open end of a pipe, typically found in the oil and gas industry. The present invention also relates to a kit with components for assembling the security cap, and also relates to a container having a pipe provided with the security cap.

Background of the invention:

In many industries, such as the oil and gas industry, or other related industries, such as the fuel distribution industry, there is a need to block an opening, such as an opening in a pipe of a fuel tank, to prevent unauthorized access to the fuel tank. Currently, such storage tanks include a filling pipe to which a filling tube is attachable for refuelling the tank. When the tank is not refilled, there is a need to protect the opening of the pipe so that unauthorized people cannot access this opening (in order to steal the gas, contaminate the same, etc.).

In currently existing caps for such pipe openings, the cap is typically fixed to the pipe and a lock is secured to the cap so as to prevent an unauthorized person from removing the cap from the pipe. However, the locks that are typically used are relatively easy to break. In addition, such locks are exposed to water infiltration and therefore are prone to rust. Also, when an authorized person needs to access the pipe, there is a need to locate the key corresponding to the given lock. If the key is not readily available, there is a loss of time looking for the key and/or in trying to break the lock. In this latter case, a replacement lock has to be provided, which is undesirable because it represents additional costs and additional waste of time.
Although the above example relates to the fuel distribution industry, there are also many other industries where there is the need to block an opening in a pipe so that access by unauthorized people is prevented.

Known to the Applicant are the following US patents which describe various security caps and the like for closing and open end of a pipe: 3,722,549 (WILSON et al., 1973); 4,351,446 (MADDEN, 1982); 5,437,309 (TIMMONS, 1995); 6,003,558 (NETO et al., 1999); 6,029,709 (BURGESS, 2000) and 7,134,454 B2 (MONTMINY, 2006).

Most of the caps disclosed in these US patents have the disadvantage to include complex mechanisms that may be partially or fully in contact with the atmosphere or with the solvent present in the tank closed by the cap, and therefore are prone to rust and mechanism jamming. Furthermore, most of the caps disclosed in these US patents require a pulling action of a component along a longitudinal axis of the cap in order to activate the latches into a disengaged configuration, which may be difficult when some other components of the mechanism are rusted or jammed, for the reasons described above. Furthermore, in most of the above-mentioned security caps, the latches thereof are engaged with a corresponding groove of the pipe via a pivotal movement which, in some cases, requires an additional and substantial effort through a pulling action of the complex mechanisms of the security cap in order to disengage the security cap from the open end of the pipe. Additionally, and in most of the caps disclosed in the above-mentioned US patents, the latches of the security caps are exposed, thereby also making them more prone to rust and/or jamming, as well as vandalism and/or breakage, which is also very undesirable.

Hence, in light of the aforementioned, there is a need for an improved device, which by virtue of its design and components, would be able to overcome some of the above-discussed prior art problems, and/or at the very least would be able to address some of the above-discussed concerns.
Summary of the invention:

The object of the present invention is to provide a security cap which, by virtue of its design and components, satisfies some of the above-mentioned needs and is thus an improvement over other related caps and/or securing methods known in the prior art.

In accordance with the present invention, the above object is achieved, as will be easily understood, with a security cap such as the one briefly described herein and such as the one exemplified in the accompanying drawings.

More particularly, and according to the present invention, there is provided a security cap for selectively closing an open end of a pipe, the security cap comprising:

an inner cap assembly, the inner cap assembly having a portion engageable with the open end of the pipe;

an outer cap assembly mounted about the inner cap assembly and rotatable with respect to the same, the outer cap assembly having a portion engageable with an outer portion of the open end of the pipe, and along with the inner cap assembly, being intended to cover the open end of the pipe;

at least one latch cooperable with the inner and outer cap assemblies, and displaceable with respect to said cap assemblies, so as to be operated between first and second configurations, wherein in the first configuration, said at least one latch is drawn away from an outer groove of the open end of the pipe thereby enabling the security cap to be removed from said open end of the pipe, and wherein in the second configuration, the at least one latch is engaged with the outer groove thereby preventing the security cap from being removed from the open end of the pipe; and

a driving assembly operatively disposed between the inner and outer cap assemblies, and cooperable with the same, as well as with the at least one latch, for selectively driving said at least one latch between the first and second
configurations via a given rotation of the outer cap assembly with respect to the inner cap assembly of the security cap.

The driving assemblies which may be used according to the present invention are various, but according to a preferred embodiment of the invention, the driving assembly comprises a railing track defined by an inner portion of the outer cap assembly and configured for receiving a given latch cooperable with the inner cap assembly, the railing track extending about an inner area of the outer cap assembly and having a varying radius of curvature between a given range of rotation of the outer cap assembly such that the given latch is urged transversally (or "radially") by the railing track with respect to the inner cap assembly when the outer cap assembly is rotated with respect to said inner cap assembly.

Preferably also, the security cap comprises a locking assembly having locking components cooperable with the cap assemblies, for preventing the outer cap assembly from being rotated with respect to the inner cap assembly in order to maintain the security cap in a locked configuration.

Preferably also, the security cap comprises a biasing assembly for biasing the security cap into a locking configuration by default.

Preferably also, the security cap comprises an unlocking assembly cooperable with the cap assemblies, and with the locking assembly, for allowing the outer cap assembly to be rotated with respect to the inner cap assembly in order to allow the security cap to be operated in an unlocked configuration.

Preferably also, the inner and outer cap assemblies are provided with corresponding seals for closing the open end of the pipe in a substantially sealed manner.
According to yet another aspect of the present invention, there is also provided a method of installing and/or operating the above-mentioned security cap.

According to yet another aspect of the present invention, there is also provided a kit with components for assembling the above-mentioned security cap.

According to yet another aspect of the present invention, there is also provided a method of assembling components of the above-mentioned kit.

According to yet another aspect of the present invention, there is also provided a container comprising a pipe with an open end having been closed off with the above-mentioned security cap and/or kit.

The objects, advantages and other features of the present invention will become more apparent upon reading of the following non-restrictive description of preferred embodiments thereof, given for the purpose of exemplification only, with reference to the accompanying drawings.

Brief description of the drawings:

Figure 1 is a cross-sectional view of a security cap mounted about an open end of a pipe according to a first preferred embodiment of the present invention, the security cap being shown in an engaged configuration.

Figure 2 is another cross-sectional view of what is shown in Figure 1, the security cap being now shown in a disengaged configuration and being removed from the open end of the pipe according to a preferred embodiment of the present invention.

Figure 3 is an exploded view of components of a security cap according to another preferred embodiment of the present invention, the security cap being
shown with a lever being removably mountable onto the outer cap assembly of the security cap.

Figure 4 is a top perspective view of the inner cap assembly of Figure 3, being further shown with latches according to a preferred embodiment of the present invention.

Figure 5 is a bottom perspective view of the outer cap assembly of Figure 3, being further shown provided with latches according to a preferred embodiment of the present invention.

Figure 6 is a top plan view of the outer cap assembly of Figure 3 being shown mounted about the inner cap assembly of Figure 4.

Figure 7 is a cross-sectional view of the security cap of Figure 3 being shown in an assembled state and mounted about an open end of a pipe, the security cap being further shown in an engaged configuration.

Figure 8 is another cross-sectional of what is shown in Figure 7, the first locking component of the inner cap assembly being now shown disengaged from the second locking component of the outer cap assembly via the actuating assembly of the security cap according to a preferred embodiment of the present invention.

Figure 9 is an enlarged view of a portion of what is shown in Figure 8.

Detailed description of preferred embodiments of the invention:

In the following description, the same numerical references refer to similar elements. The embodiments, geometrical configurations, materials mentioned and/or dimensions shown in the figures or described in the present description are preferred embodiments only, given for exemplification purposes only.
In the context of the present description, the expression "cap" or "plug" includes all types of devices used for selectively opening and closing an open end 3 of a pipe 5, such as those typically of reservoirs or containers used in the oil and gas industry, and/or other related industries, such as the fuel distribution industry for example, as can be easily understood by a person skilled in the art. Indeed, although the present invention was primarily designed for such industries, it may be used with other kinds of applications, and in various other fields, whether in agriculture, construction and/or the like, where an open end 3 of a pipe 5, which may or may not be operatively connected to a corresponding container, would require to be closed off selectively and securely. For this reason, the expressions "cap", "plug", "pipe", "tube", "container", "gas", "oil", "fuel", "solvent", etc. should not be taken as to limit the scope of the present invention and includes all other kinds of applications or items with which the present invention may be used and could be useful.

Moreover, in the context of the present description, the expressions "system", "cap", "device", "plug", "unit", and "assembly", as well as any other equivalent expressions and/or compound words thereof, may be used interchangeably. The same applies for any other mutually equivalent expressions, such as "gas", "fuel", "solvent" and "fluid" for example, as well as "tube", "pipe" and "cylinder", as also apparent to a person skilled in the art.

In addition, although the preferred embodiment of the present invention as illustrated in the accompanying drawings comprises various components, and although the preferred embodiment of the security cap 1 and corresponding parts of the present invention as shown consists of certain geometrical configurations as explained and illustrated herein, not all of these components and geometries are essential to the invention and thus should not be taken in their restrictive sense, i.e. should not be taken as to limit the scope of the present invention. It is to be understood, as also apparent to a person skilled in the art, that other suitable components and cooperations thereinbetween, as well as other suitable
geometrical configurations may be used for the security cap 1 according to the present invention, as will be briefly explained herein and as can be easily inferred herefrom, without departing from the scope of the invention.

Broadly described, the security cap 1 according to the present invention, as exemplified in the accompanying drawings, is a security cap 1 for selectively opening and closing an open end 3 of a pipe 5, the security cap 1 comprising an inner cap assembly 7, an outer cap assembly 11, at least one latch 17, and a driving assembly 21. An important aspect of the present invention resides in the fact that the at least one latch 17 of the security cap 1 is protected by the inner and outer cap assemblies 7, 11, and is "drivable" via a rotation of the outer cap assembly 11 with respect to the inner cap assembly 7, as can be easily understood when contrasting Figures 1 and 2.

Indeed, as can be easily understood from these figures, the inner cap assembly 7 of the security cap 1 has a portion engageable with the open end 3 of the pipe 5. Preferably, this portion of the inner cap assembly 7 is one that engages an outer portion of the pipe 5, as exemplified in Figure 1, but is worth mentioning also that the present security cap 1 could be modified so that the inner cap assembly 7 thereof would have a corresponding inner portion being insertable or abutting with an inner portion of the open end 3 of the pipe 5, depending on the particular applications, and the desired end results intended for the security cap 1, as can be easily understood by a person skilled in the art.

As can also be easily understood from the accompanying figures, and more particularly from Figures 1-3, according to a preferred embodiment of the present invention, the outer cap assembly 11 is mounted about the inner cap assembly 7 and is rotatable with respect to the same. The outer cap assembly 11 has a portion 13 operatively engageable with an outer portion 15 of the open end 3 of the pipe 5, and along with the inner cap assembly 7, is intended to cover the open end 3 of the pipe 5. It is worth mentioning also, that the inner and outer assemblies 7, 11 may take on various shapes and forms other than those exemplified in the
accompanying drawings, so long as when mounted together, they be preferably intended to appropriately cover and close off the open end 3 of the pipe 5, as can be easily understood by a person skilled in the art.

As can also be easily understood when referring to the accompanying figures, and when contrasting Figures 1 and 2, each latch 17 of the security cap 1 is cooperable with the inner and outer cap assemblies 7,11, and is displaceable with respect to said cap assemblies 7,11 so as to be operated between first and second configurations, wherein in the first (disengaged, unsecured, unlocked, etc.) configuration, each latch 17 is drawn away from an outer groove 19 of the open end 3 of the pipe 5 thereby enabling the security cap 1 to be removed from said open end 3 of the pipe 5, and wherein in the second (engaged, secured, locked, etc.) configuration, each latch 17 is engaged with the outer groove 19 thereby preventing the security cap 1 from being removed from the open end 3 of the pipe 5.

As previously explained, the driving assembly intended to displace each latch 17 transversally or radially with respect to the cap assemblies 7,11, may be various, but in general terms, the driving assembly 21 is operatively disposed between the inner and outer cap assemblies 7,11, and cooperable with the same, as well as with each latch 17, for selectively driving (pushing, displacing, moving, urging, etc.) each latch 17 between the first and second configurations via a given rotation of the outer cap assembly 11 with respect to the inner cap assembly 7 of the security cap 1.

Preferably also, the security cap 1 comprises a locking assembly 23 having locking components cooperable with the cap assemblies 7,11 for preventing the outer cap assembly 11 from being rotated with respect to the inner cap assembly 7 in order to maintain the security cap 1 in a locked configuration.

Similarly to the driving assembly 21, the locking assembly 23 according to the present invention may take on various embodiments, but according to a
preferred embodiment thereof, and as better illustrated in Figures 3-5, the locking assembly 23 comprises a set of first and second locking components 25,27, a first locking component 25 being disposed on an outer portion of the inner cap assembly 7 and a second locking component 27 being disposed on an inner portion of the outer cap assembly 11, the first locking component 25 of the inner cap assembly 7 being engageable with the second locking component 27 of the outer cap assembly 11 when the security cap 1 is in the locked configuration for preventing the outer cap assembly 11 from being rotated with respect to the inner cap assembly 7.

Preferably, the locking components 25,27 comprise a series of complementary and interlocking gears disposed respectively on the outer portion of the inner cap assembly 7 and on the inner portion of the outer cap assembly 11, as can be easily understood when referring to Figures 4 and 5. Once again, the locking assembly 23 which may be used according to the present invention in order to prevent the outer cap assembly 11 from being rotated with respect to inner cap assembly 7 in order to maintain the security cap 1 in a given configuration, whether an engaged configuration or a disengaged configuration, may be various, so long as the locking assembly 23 provides a positive engagement or locking of one cap assembly 7,11 with respect to the other 11,7. Indeed, another very simple locking assembly 23 which could be used according to the present invention would be simply to have at least one pin projecting from a corresponding cap assembly 7,11, and being removably engageable into a corresponding at least one socket provided on the other cap assembly 11,7 in order to enable to selectively have a positive engagement thereinbetween, and thus prevent rotation of the outer cap assembly 11 with respect to the inner cap assembly 7 in order to maintain the security cap 1 in a given mode, according to the intentions of a user of the security cap 1.

According to another preferred embodiment of the present invention, the security cap 1 comprises a biasing assembly 29 for biasing the security cap 1 into a locking configuration by default. As will be explained in greater detail
hereinbelow, by doing so, the security cap 1 being designed as such, with the presence of a biasing assembly 29, preferably requires the need of a special "key" in order to deactivate the locking configuration which is normally operated by default, thus providing an additional security feature to the present security cap 1, and preventing undesirable tampering thereof by unauthorized people.

Similarly to the driving and locking assemblies 21,23, the biasing assembly 29 of the present invention may take on various shapes and forms in order to achieve the above-mentioned result, as can be easily understood by a person skilled in the art.

According to a preferred embodiment of the present invention, the biasing assembly 29 is preferably provided by the inner cap assembly 7, which is preferably made of a resilient material, and is further positioned, shaped and sized with respect to the outer cap assembly 11 so that the first locking component 25 of the inner cap assembly 7 is biased by default into a locking configuration with the second locking component 27 of the outer cap assembly 11, as can be easily understood when contrasting Figures 7 and 8. Indeed, and according to a preferred embodiment of the present invention, as will be explained in greater detail hereinbelow, an unlocking or an actuating assembly 31,33 is required in order to disengage the locking assembly 23, and more particularly, for separating the first locking component 25 with respect to the second locking component 27, as better shown in Figure 9, in order to allow the outer cap assembly 11 to be rotated with respect to the inner cap assembly 7.

Indeed, and as shown, the security cap 1 preferably comprises an unlocking assembly 31 co-operative with the cap assemblies 7,11 and with the locking assembly 23, for allowing the outer cap assembly 11 to be rotated with respect to the inner cap assembly 7 in order to allow the security cap 1 to be operated in an unlocked configuration.
Preferably also, this unlocking assembly 31 may take on the form of an actuating assembly 33 for actuating the first locking component 25 of the inner cap assembly 7 away from the second locking component 27 of the outer cap assembly 11 in order to allow the outer cap assembly 11 to be rotated with respect to the inner cap assembly 7.

Similarly to the above-described assemblies of the security cap 1, the actuating assembly 33 according to the present invention may take on various forms and shapes, but according to a preferred embodiment thereof, the actuating assembly 33 comprises a hole 35, an actuator rod 37, a lever 43 and a button 45, as better exemplified in Figures 8 and 9. Preferably, the hole 35 is provided through the outer cap assembly 11. The actuator rod 37 is displaceable through the hole 35, and has first and second extremities 39,41. The lever 43 is cooperator with the first extremity 39 of the actuator rod 37 for displacing the assembly 33 into the hole 35 of the outer cap assembly 11 and for driving the second extremity 41 of the actuator rod 37 against a button 45 of the inner cap assembly 7 in order to disengage the first locking component 25 of the inner cap assembly 7 away from the second locking component 27 of the outer cap assembly 11 in order to allow the outer cap assembly 11 to be rotated with respect to the inner cap assembly 7.

As better exemplified in Figures 1-7, the button 45 protrudes from an outer surface of the inner cap assembly 7 and has a substantially flat top surface 47, the top surface 47 being substantially flush with an outer surface of the outer cap assembly 11 when the security cap 1 is in a locked configuration (see Figures 1 and 2).

As better shown in Figures 4 and 6, the top surface 47 of the button 45 is preferably provided with an indicator 49 alignable with a corresponding symbol 51 provided on the outer surface of the outer cap assembly 11 to indicate a given configuration of the security cap 1. For example, the corresponding symbols 51 may comprise a pair of symbols 51, namely a first symbol 51 representing a lock.
being "locked", and a second symbol representing a lock being "unlocked", and the various components of the security cap 1 are preferably designed so that when the indicator 49 is aligned with the symbol 51 of the lock being "locked", this would mean that it would correspond to a configuration of the security cap 1 where the latches 17 are engaged with the outer groove 19 of the pipe 5, whereas should the indicator 49 be aligned with the symbol 51 of the lock "unlocked", this would represent that the security cap 1 is in a configuration where the latches 17 are drawn away from the outer groove 19 and whereby the security cap 1 can be removed from said open end 3 of the pipe 5. It is worth mentioning however that various other corresponding symbols 51 and manners of indicating all given configurations of the security cap 1, whether engaged or disengaged, depending whether the latches 17 are engaged or disengaged with the outer groove 19 of the pipe 5, may be appropriately used according to the present invention, as apparent to a person skilled in the art.

As previously explained, the security cap 1 according to a preferred embodiment of the present invention preferably comprises a "key" for unlocking the locking assembly 23 of the security cap 1, and this key preferably takes the form of a lever 43 which is preferably removably mountable onto the outer cap assembly 11, as can be easily understood when contrasting Figures 3 and 8 for example. Once again, the manners in which the lever 43 may be removably mountable onto the outer cap assembly 11 may be various, as apparent to a person skilled in the art, but according to a preferred embodiment of the present invention, the lever 43 comprises a base 53 having at least one female component 55 being removably engageable into a corresponding male component 57 provided on the outer portion of the outer cap assembly 11. As better shown in Figure 3, and according to the preferred embodiment of the present invention, the base 53 of the lever 43 preferably comprises at least a pair of female components 55 being slidably insertable into at least a pair of corresponding male components 57.
As previously explained, and similarly to the other assemblies, the security cap 1, the driving assembly 21 according to the present invention may take on various forms and shapes, depending on the particular applications and the desired end results intended for the security cap 1, as can be easily understood by a person skilled in the art. Generally speaking, the driving assembly 21 according to the present invention is intended to selectively "drive" (push, displace, move, urge, etc.) each latch 17 between the first and second configurations via a given rotation of the outer cap assembly 11 with respect to the inner cap assembly 7 of the security cap 1, and preferably also, the driving assembly 21 is intended to drive each latch 17 transversally (or "radially") with respect to the cap assemblies 7,11, such that each latch 17 is not displaceable in a "pivotal" manner, but rather preferably, in a substantially "linear" manner, and radially with respect to the security cap 1, each latch 17 being preferably aligned towards the center of the security cap 1, and displaceable linearly along a corresponding radius thereof, when the outer cap assembly 11 is rotated with respect to the inner cap assembly 7, or vice versa.

According to a preferred embodiment of the present invention, considered to be reliable and easy to manufacture, as well as to assemble, and as better shown in Figures 1, 2 and 5, the driving assembly 21 comprises a railing track 59 defined by an inner portion of the outer cap assembly 11 and configured for receiving a given latch 17 co-operative with the inner cap assembly 7, the railing track 59 extending about an inner area of the outer cap assembly 11 and having a varying radius of curvature 61a,61b between a given range of rotation 63 of the outer cap assembly 11 such that the given latch 17 is urged transversally by the railing track 59 with respect to the inner cap assembly 7 when the outer cap assembly 11 is rotated with respect to said inner cap assembly 7, as can be easily understood for example when contrasting Figures 1 and 2, wherein in Figure 1, the railing track has a shorter radius of curvature 61b, and is thus closer to the center of the security cap 1, whereas in Figure 2, the railing track has a bigger radius of curvature 61a, and is thus further away from the center of the security cap 1, which explains that said railing track 59 has driven or urged the corresponding
latch 17 away from the center of the security cap 1, into a "disengaged" configuration.

Reference is also made to Figures 5 and 8, where there is shown that each latch 17 preferably comprises a groove 65 for engaging the railing track 59, and wherein preferably also, the railing track 59 is provided with a pair of end stoppers 67 for containing a given latch 17 on a given railing track 59, as can be easily understood when referring more particularly to Figure 5.

As better shown in Figures 3 and 4, the inner cap assembly 7 preferably comprises a given slot 69 being positioned, shaped and sized for allowing a given latch 17 to extend therethrough in order to engage the outer groove 19 of the open end 3 of the pipe 5 when operated in the second configuration.

As better shown in Figure 8, each given latch 17 preferably comprises a tip 71 having a slanted contact surface 73 for engaging the outer groove 19 of the open end 3 of the pipe 5, and the security cap 1 preferably comprises four latches 17, as better shown in Figures 3 and 5.

According to a preferred embodiment of the present invention, and as better shown in Figures 1-4, the inner cap assembly 7 comprises a collar 75 engageable with an outer portion of the open end 3 of the pipe 5, and a dome 77 covering the collar 75, and being nestable into the outer cap assembly 11. Preferably also, the hole 35, actuator rod 37 and button 45 extend along a longitudinal axis of the security cap 1, as can be easily understood from Figures 3, 8 and 9, and preferably also, the inner cap assembly 7 is mounted concentrically within the outer cap assembly 11. Preferably also, the security cap 1 further comprises a holding ring 79 for holding both cap assemblies 7,11 together, and said holding ring 79 may be considered a separate piece, or simply an "extension" of the outer cap assembly 11, depending on the particular embodiment of the present invention. Indeed, it is worth mentioning that although a holding ring 79 is provided for holding both cap assemblies 7,11 together, the outer cap assembly 11
nevertheless has a portion operatively engageable with an outer portion of the pipe 5 via the above-mentioned holding ring 79.

As can be easily understood by a person skilled in the art when referring to the accompanying drawings, and according to a preferred embodiment of the present invention, the inner and outer cap assemblies 7,11 are provided with corresponding seals 81 for closing the open end 3 of the pipe 5 in a substantially sealed manner.

According to another aspect of the present invention, there is also provided a gas container 83 for containing gas, the gas container 83 comprising a pipe 5 operatively connected to the gas container 83, the pipe 5 having an open end 3 through which gas can be introduced into the gas container 83 and through which gas can be extracted; an adapter 85 removably mountable onto said open end 3 of the pipe 5; and a security cap 1 such as the one described herein, the security cap 1 being selectively closable onto the open end 3 of the pipe 5 via the adapter 85.

According to another aspect of the present invention, there is also provided a kit 87 for assembling a security cap 1 intended for selectively closing an open end 3 of a pipe 5, the kit 87 comprising:

an inner cap assembly 7, the inner cap assembly 7 having a portion engageable with the open end 3 of the pipe 5;

an outer cap assembly 11 mountable about the inner cap assembly 7 and rotatable with respect to the same, the outer cap assembly 11 having a portion engageable with an outer portion 15 of the open end 3 of the pipe 5, and along with the inner cap assembly 7, being intended to cover the open end 3 of the pipe 5;

at least one latch 17 co-engageable with the inner and outer cap assemblies 7,11 when the security cap 1 is assembled, and displacable with respect to said cap assemblies 7,11 so as to be operated between first and second configurations, wherein in the first configuration, said at least one latch 17 is drawn away from an outer groove 19 of the open end 3 of the pipe 5 thereby enabling the
security cap 1 to be removed from said open end 3 of the pipe 5, and wherein in
the second configuration, the at least one latch 17 is engaged with the outer
groove 19 thereby preventing the security cap 1 from being removed from the
open end 3 of the pipe 5; and

5 a driving assembly 21 operatively disposable between the inner and outer
cap assemblies 7,11, and cooperable with the same, as well as with the at least
one latch 17, for selectively driving said at least one latch 17 between the first and
second configurations via a given rotation of the outer cap assembly 11 with
respect to the inner cap assembly 7 of the security cap 1.

10 Preferably also, the kit 87 further comprises at least one additional
component such as the ones described herein.

Finally, and according to the present invention, the security cap 1 and
15 corresponding parts are preferably made of substantially rigid materials, such as
metallic materials (stainless steel, etc.), hardened polymers, composite materials,
and/or the like, whereas other components thereof according to the present
invention, in order to achieve the resulting advantages briefly discussed herein,
are preferably made of a suitably malleable and resilient material, such as a
polymeric material (plastic, rubber, etc.), and/or the like, depending on the
particular applications for which the security cap 1 and corresponding container
are intended for and the different parameters in cause, as apparent to a person
skilled in the art.

20 The present invention is a more compact, easier to use, easier to maintain,
and more cost effective system than those available in the prior art. For example,
according to the present invention, the latches 17 of the security cap 1 are not
exposed to an outside environment, being protected internally between the inner
and outer cap assemblies 7,11, and preferably also, instead of having to pull one
or several components in order to activate the security cap 1 in an engaged or a
disengaged configuration, such configurations are operated by simply pivoting or
rotating the outer cap assembly 11 with respect to the inner cap assembly 7,
thereby providing several advantages over the conventional security caps known in the art, and as discussed hereinabove.

Of course, numerous modifications could be made to the above-described embodiments without departing from the scope of the invention, as defined in the appended claims.
CLAIMS:

1. A security cap (1) for selectively closing an open end (3) of a pipe (5), the security cap (1) comprising:

 an inner cap assembly (7), the inner cap assembly (7) having a portion engageable with the open end (3) of the pipe (5);

 an outer cap assembly (11) mounted about the inner cap assembly (7) and rotatable with respect to the same, the outer cap assembly (11) having a portion (13) engageable with an outer portion (15) of the open end (3) of the pipe (5), and along with the inner cap assembly (7), being intended to cover the open end (3) of the pipe (5);

 at least one latch (17) cooperable with the inner and outer cap assemblies (7, 1), and displacable with respect to said cap assemblies (7, 1) so as to be operated between first and second configurations, wherein in the first configuration, said at least one latch (17) is drawn away from an outer groove (19) of the open end (3) of the pipe (5) thereby enabling the security cap (1) to be removed from said open end (3) of the pipe (5), and wherein in the second configuration, the at least one latch (17) is engaged with the outer groove (19) thereby preventing the security cap (1) from being removed from the open end (3) of the pipe (5); and

 a driving assembly (21) operatively disposed between the inner and outer cap assemblies (7, 1), and cooperable with the same, as well as with the at least one latch (17), for selectively driving said at least one latch (17) between the first and second configurations via a given rotation of the outer cap assembly (11) with respect to the inner cap assembly (7) of the security cap (1).

2. A security cap (1) according to claim 1, wherein the security cap (1) comprises a locking assembly (23) having locking components cooperable with the cap assemblies (7, 1) for preventing the outer cap assembly (11) from being rotated with respect to the inner cap assembly (7) in order to maintain the security cap (1) in a locked configuration.
3. A security cap (1) according to claim 2, wherein the locking assembly (23) comprises a set of first and second locking components (25,27), a first locking component (25) being disposed on an outer portion of the inner cap assembly (7) and a second locking component (27) being disposed on an inner portion of the outer cap assembly (11), the first locking component (25) of the inner cap assembly (7) being engageable with the second locking component (27) of the outer cap assembly (11) when the security cap (1) is in the locked configuration for preventing the outer cap assembly (11) from being rotated with respect to the inner cap assembly (7).

4. A security cap (1) according to claim 2 or 3, wherein the security cap (1) comprises a biasing assembly (29) for biasing the security cap (1) into a locking configuration by default.

5. A security cap (1) according to claim 4, wherein the biasing assembly (29) comprises an inner cap assembly (7) being made of a resilient material, and being further positioned, shaped and sized with respect to the outer cap assembly (11) so that the first locking component (25) of the inner cap assembly (7) is biased by default into a locking configuration with the second locking component (27) of the outer cap assembly (11).

6. A security cap (1) according to any one of claims 2-5, wherein the locking components (25,27) comprises a series of complementary and interlocking gears disposed respectively on the outer portion of the inner cap assembly (7) and on the inner portion of the outer cap assembly (11).

7. A security cap (1) according to any one of claims 2-6, wherein the security cap (1) comprises an unlocking assembly (31) cooperable with the cap assemblies (7,11) and with the locking assembly (23), for allowing the outer cap assembly (11) to be rotated with respect to the inner cap assembly (7) in order to allow the security cap (1) to be operated in an unlocked configuration.
8. A security cap (1) according to any one of claims 2-7, wherein the security cap (1) comprises an actuating assembly (33) for actuating the first locking component (25) of the inner cap assembly (7) away from the second locking component (27) of the outer cap assembly (11) in order to allow the outer cap assembly (11) to be rotated with respect to the inner cap assembly (7).

9. A security cap (1) according to claim 8, wherein the actuating assembly (33) comprises:
 a hole (35) provided through the outer cap assembly (11);
 an actuator rod (37) displaceable through the hole (35), the actuating rod (37) having first and second extremities (39,41); and
 a lever (43) cooperable with the first extremity (39) of the actuator rod (37) for displacing the same through the hole (35) of the outer cap assembly (11) and for driving the second extremity (41) of the actuator rod (37) against a button (45) of the inner cap assembly (7) in order to disengage the first locking component (25) of the inner cap assembly (7) away from the second locking component (27) of the outer cap assembly (11) in order to allow the outer cap assembly (11) to be rotated with respect to the inner cap assembly (7).

10. A security cap according to claim 9, wherein the button (45) protrudes from an outer surface of the inner cap assembly (7) and has a substantially flat top surface (47), the top surface (47) being substantially flush with an outer surface of the outer cap assembly (11) when the security cap (1) is in a locked configuration.

11. A security cap (1) according to claim 10, wherein the top surface (47) of the button (45) is provided with an indicator (49) alignable with a corresponding symbol (51) provided on the outer surface of the outer cap assembly (11) to indicate a given configuration of the security cap (1).
12. A security cap (1) according to any one of claims 9-11, wherein the hole (35), actuator rod (37) and button (45) extend along a longitudinal axis of the security cap (1).

13. A security cap (1) according to any one of claims 9-12, wherein the lever (43) is removably mountable onto the outer cap assembly (11).

14. A security cap (1) according to claim 13, wherein the lever (43) comprises a base (53) having at least one female component (55) being removably engageable into a corresponding male component (57) provided on the outer portion of the outer cap assembly (11).

15. A security cap (1) according to any one of claims 1-14, wherein the driving assembly (21) comprises a railing track (59) defined by an inner portion of the outer cap assembly (11) and configured for receiving a given latch (17) coooperable with the inner cap assembly (7), the railing track (59) extending about an inner area of the outer cap assembly (11) and having a varying radius of curvature (61a,61b) between a given range of rotation (63) of the outer cap assembly (11) such that the given latch (19) is urged transversally by the railing track (59) with respect to the inner cap assembly (7) when the outer cap assembly (11) is rotated with respect to said inner cap assembly (7).

16. A security cap (1) according to claim 15, wherein the given latch (19) comprises a groove (65) for engaging the railing track (59).

17. A security cap (1) according to claim 15 or 16, wherein the railing track (59) is provided with a pair of end stops (67) for containing the given latch (19) on said railing track (59).

18. A security cap (1) according to any one of claims 1-17, wherein the inner cap assembly (7) comprises a given slot (69) being positioned, shaped and sized for allowing a given latch (17) to extend therethrough in order to engage the
outer groove (19) of the open end (3) of the pipe (5) when operated in the second configuration.

19. A security cap according to any one of claims 1-18, wherein the given latch (17) comprises a tip (71) having a slanted contact surface (73) for engaging the outer groove (19) of the open end (3) of the pipe (5).

20. A security cap (1) according to any one of claims 1-19, wherein said at least one latch (17) comprises four latches (17).

21. A security cap (1) according to any one of claims 1-20, wherein the inner cap assembly (7) comprises:
 a collar (75) engageable with an outer portion of the open end (3) of the pipe (5); and
 a dome (77) covering the collar (75), and being nestable into the outer cap assembly (11).

22. A security cap (1) according to any one of claims 1-21, wherein the inner cap assembly (7) is mounted concentrically within the outer cap assembly (11), and wherein the security cap (1) further comprises a holding ring (79) for holding both cap assemblies (7,11) together.

23. A security cap (1) according to any one of claims 1-22, wherein the inner and outer cap assemblies (7,11) are provided with corresponding seals (81) for closing the open end (3) of the pipe (5) in a substantially sealed manner.

24. A gas container (83) for containing gas, the gas container (83) comprising:
 a pipe (5) operatively connected to the gas container (83), the pipe (5) having an open end (3) through which gas can be introduced into the gas container (83) and through which gas can be extracted;
an adapter (85) removably mountable onto said open end (3) of the pipe (5); and

a security cap (1) according to any one of claims 1-23, the security cap (1) being selectively closable onto the open end (3) of the pipe (5) via the adapter (85).

25. A kit (87) for assembling a security cap (1) intended for selectively closing an open end (3) of a pipe (5), the kit (87) comprising:

an inner cap assembly (7), the inner cap assembly (7) having a portion engageable with the open end (3) of the pipe (5);

an outer cap assembly (11) mountable about the inner cap assembly (7) and rotatable with respect to the same, the outer cap assembly (11) having a portion (13) engageable with an outer portion (15) of the open end (3) of the pipe (5), and along with the inner cap assembly (7), being intended to cover the open end (3) of the pipe (5);

at least one latch (17) cooperable with the inner and outer cap assemblies (7,11) when the security cap (1) is assembled, and displacable with respect to said cap assemblies (7,11) so as to be operated between first and second configurations, wherein in the first configuration, said at least one latch (17) is drawn away from an outer groove (19) of the open end (3) of the pipe (5) thereby enabling the security cap (1) to be removed from said open end (3) of the pipe (5), and wherein in the second configuration, the at least one latch (17) is engaged with the outer groove (19) thereby preventing the security cap (1) from being removed from the open end (3) of the pipe (5); and

a driving assembly (21) operatively disposable between the inner and outer cap assemblies (7,11), and cooperable with the same, as well as with the at least one latch (17), for selectively driving said at least one latch (17) between the first and second configurations via a given rotation of the outer cap assembly (11) with respect to the inner cap assembly (7) of the security cap (1).
26. A kit (87) according to claim 25, wherein the kit (87) further comprises at least one additional component such as the one defined in any one of claims 2-23.
FIG. 1
INTERNATIONAL SEARCH REPORT

International application No
PCT/CA2009/000359

A CLASSIFICATION OF SUBJECT MATTER
IPC FUL 55/115 (2006 01), B65D 50/04 (2006 01), B65D 50/14 (2006 01), B65D 55/12 (2006 01), B65D 90/10 (2006 01), B65D 90/54 (2006 01) (more IPCs on the last page)

According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC F16L 55/115 (2006 01), B65D 50/04 (2006 01), B65D 50/14 (2006 01), B65D 55/12 (2006 01), B65D 90/10 (2006 01), B65D 90/54 (2006 01), USPC 138/89

Documentation searched other than to minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Espacenet, USPTO, CPD, keywords latch, pipe, conduit, tube, tubular, tubing, inner, outer, inside, outside, upper, lower, cover, cap, stopper, rotate, rotation, rotating, rotated (solely or in combination, with or without class, variations thereof)

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5269433 A (PIQUEREZ, C) 14 December 1993 (14-12-1993)</td>
<td>1 - 26</td>
</tr>
<tr>
<td>A</td>
<td>GB 1200947 A (LUDEMAN, E H) 5 August 1970 (05-08-1970)</td>
<td>1 - 26</td>
</tr>
<tr>
<td>A</td>
<td>CA 2491097 A1 (MONTIMINY, A) 23 June 2006 (23-06-2006)</td>
<td>1 - 26</td>
</tr>
</tbody>
</table>

[X] See patent family annex

[] Further documents are listed in the continuation of Box C

* Special categories of cited documents
A document defining the general state of the art which is not considered to be of particular relevance
E earlier application or patent but published on or after the international filing date
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
O document referring to an oral disclosure, use, exhibition or other means
P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not m conflict with the application but cited to understand the principle or theory underlying the invention
X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art
& document member of the same patent family

Date of the actual completion of the international search
30 April 2009 (30-04-2009)

Date of mailing of the international search report
02 July 2009 (02-07-2009)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office
Place du Portage I, Cl 14 - 1st Floor, Box PCT
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No 001-819-953-2476

Authorized officer
Edward Dabrowski 819- 953-1378

Form PCT/ISA/210 (second sheet) (July 2008)
INTERNATIONAL SEARCH REPORT

International application No
PCT/CA2009/000359

B65D 90/66 (2006.01), B67D 5/60 (2006.01), FUJ 13/02 (2006.01), F17C 13/06 (2006.01),
F17D 5/00 (2006.01)

Form PC17ISA/210 (extra sheet) (July 2008)
<table>
<thead>
<tr>
<th>Patent Document</th>
<th>Publication Date</th>
<th>Patent Family Member(s)</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 3051200A</td>
<td>28-08-1962</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US 3672403A</td>
<td>27-06-1972</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US 3722549A</td>
<td>27-03-1973</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8090382A 27-01-1983</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1166468A1 01-05-1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2102397A 02-02-1983</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2102397B 24-10-1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 8202469A 16-02-1983</td>
<td></td>
</tr>
<tr>
<td>US 5269433A</td>
<td>14-12-1993</td>
<td>DE 522426T1 22-07-1993</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69205349D1 16-11-1995</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69205349T2 30-05-1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0522426B1 11-10-1995</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2678916A1 15-01-1993</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2678916B1 11-03-1994</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 305064B1 29-03-1999</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 922748A 13-01-1993</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 92274B DO 10-07-1992</td>
<td></td>
</tr>
<tr>
<td>GB 1200947A</td>
<td>05-08-1970</td>
<td>DE 1650088A1 27-08-1970</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 1549399A 13-12-1968</td>
<td></td>
</tr>
<tr>
<td>CA 2491097A1</td>
<td>23-06-2006</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>