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SKIP MACROBLOCK CODING

RELATED APPLICATION INFORMATION
The present application claims the benefit of U.S. Provisional Patent
Application Serial No. 60/341,674, entitled "Techniques and Tools for Video
Encoding and Decoding," filed December 17, 2001, the disclosure of which is
incorporated by reference. The present application also claims the benetit of U.S.
Provisional Patent Application Serial No. 60/377,712, entitled "Skip Macroblock
Coding," filed May 3, 2002, the disclosure of which is incorporated by reference.

TECHNICAL FIELD
Techniques and tools for encoding/decoding binary information in video
coding/decoding applications are described. For example, a video encoder

encodes skipped macroblock information.

BACKGROUND

Digital video consumes large amounts of storage and transmission capacity.
A typical raw digital video sequence includes 15 or 30 frames per second. Each
frame can include tens or hundreds of thousands of pixels (also called pels). Each
pixel represents a tiny element of the picture. In raw form, a computer commonly
represents a pixel with 24 bits. Thus, the number of bits per second, or bit rate, of a
typical raw digital video sequence can be 5 million bits/second or more.

Most computers and computer networks lack the resources to process raw
digital video. For this reason, engineers use compression (also called coding or
encoding) to reduce the bit rate of digital video. Compression can be lossless, in
which quality of the video does not suffer but decreases in bit rate are limited by the
complexity of the video. Or, compression can be lossy, in which quality of the video
suffers but decreases in bit rate are more dramatic. Decompression reverses
compression.

In general, video compression techniques include intraframe compression
and interframe compression. Intraframe compression techniques compress
individual frames, typically called I-frames, or key frames. Interframe compression
techniques compress frames with reference to preceding and/or following frames,

and are called typically called predicted frames, P-frames, or B-frames.
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Microsoft Corporation’s Windows Media Video, Version 7 ["WMV7”] includes
a video encoder and a video decoder. The WMV7 encoder uses intraframe and
interframe compression, and the WMV7 decoder uses intraframe and interframe
decompression.

A. Intraframe Compression in WMV7

Figure 1 illustrates block-based intraframe compression (100) of a block
(105) of pixels in a key frame in the WMV7 encoder. A block is a set of pixels, for
example, an 8x8 arrangement of pixels. The WMV7 encoder splits a key video
frame into 8x8 blocks of pixels and applies an 8x8 Discrete Cosine Transform
[“DCT”] (110) to individual blocks such as the block (105). A DCT is a type of
frequency transform that converts the 8x8 block of pixels (spatial information) into
an 8x8 block of DCT coefficients (115), which are frequency information. The DCT
operation itself is lossless or nearly lossless. Compared to the original pixel values,
however, the DCT coefficients are more efficient for the encoder to compress since
most of the significant information is concentrated in low frequency coefficients
(conventionally, the upper left of the block (115)) and many of the high frequency
coefficients (conventionally, the lower right of the block (115)) have values of zero
or close to zero.

The encoder then quantizes (120) the DCT coefficients, resulting in an 8x8
block of quantized DCT coefficients (125). For example, the encoder applies a
uniform, scalar quantization step size to each coefficient, which is analogous to
dividing each coefficient by the same value and rounding. For example, if a DCT
coefficient value is 163 and the step size is 10, the quantized DCT coefficient value
is 16. Quantization is lossy. The reconstructed DCT coefficient value will be 160,
not 163. Since low frequency DCT coefficients tend to have higher values,
guantization results in loss of precision but not complete loss of the information for
the coefficients. On the other hand, since high frequency DCT coefficients tend to
have values of zero or close to zero, quantization of the high frequency coefficients
typically results in contiguous regions of zero values. In addition, in some cases
high frequency DCT coefficients are quantized more coarsely than low frequency
DCT coetfficients, resulting in greater loss of precision/information for the high
frequency DCT coefficients.

The encoder then prepares the 8x8 block of quantized DCT coefficients
(125) for entropy encoding, which is a form of lossless compression. The exact
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type of entropy encoding can vary depending on whether a coefficient is a DC
coefficient (lowest frequency), an AC coefficient (other frequencies) in the top row
or left column, or another AC coefficient.

The encoder encodes the DC coefficient (126) as a differential from the DC
coefficient (136) of a neighboring 8x8 block, which is a previously encoded neighbor
(e.g., top or left) of the block being encoded. (Figure 1 shows a neighbor block
(135) that is situated to the left of the block being encoded in the frame.) The
encoder entropy encodes (140) the differential.

The entropy encoder can encode the left column or top row of AC
coefficients as a differential from a corresponding column or row of the neighboring
8x8 block. Figure 1 shows the left column (127) of AC coefficients encoded as a
differential (147) from the left column (137) of the neighboring (to the left) block
(135). The differential coding increases the chance that the differential coefficients
have zero values. The remaining AC coefficients are from the block (125) of
quantized DCT coefficients.

The encoder scans (150) the 8x8 block (145) of predicted, quantized AC
DCT coefficients into a one-dimensional array (155) and then entropy encodes the
scanned AC coefficients using a variation of run length coding (160). The encoder
selects an entropy code from one or more run/level/last tables (165) and outputs
the entropy code.

A key frame contributes much more to bit rate than a predicted frame. In
low or mid-bit rate applications, key frames are often critical bottlenecks for
performance, so efficient compression of key frames is critical.

Figure 2 illustrates a disadvantage of intraframe compression such as
shown in Figure 1. In particular, exploitation of redundancy between blocks of the
key frame is limited to prediction of a subset of frequency coefficients (e.g., the DC
coefficient and the left column (or top row) of AC coefficients) from the left (220) or
top (230) neighboring block of a block (210). The DC coefficient represents the
average of the block, the left column of AC coefficients represents the averages of
the rows of a block, and the top row represents the averages of the columns. In
effect, prediction of DC and AC coefficients as in WMV?7 limits extrapolation to the
row-wise (or column-wise) average signals of the left (or top) neighboring block.
For a particular row (221) in the left block (220), the AC coefficients in the left DCT
coefficient column for the left block (220) are used to predict the entire
corresponding row (211) of the block (210).
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B. Interframe Compression in WMV7

Interframe compression in the WMV7 encoder uses block-based motion
compensated prediction coding followed by transform coding of the residual error.
Figures 3 and 4 illustrate the block-based interframe compression for a predicted
frame in the WMV7 encoder. In particular, Figure 3 illustrates motion estimation for
a predicted frame (810) and Figure 4 illustrates compression of a prediction residual
for a motion-estimated block of a predicted frame.

The WMV7 encoder splits a predicted frame into 8x8 blocks of pixels.
Groups of 4 8x8 blocks form macroblocks. For each macroblock, a motion
estimation process is performed. The motion estimation approximates the motion
of the macroblock of pixels relative to a reference frame, for example, a previously
coded, preceding frame. In Figure 3, the WMV7 encoder computes a motion vector
for a macroblock (315) in the predicted frame (310). To compute the motion vector,
the encoder searches in a search area (335) of a reference frame (330). Within the
search area (335), the encoder compares the macroblock (315) from the predicted
frame (310) to various candidate macroblocks in order to find a candidate
macroblock that is a good match. The encoder can check candidate macroblocks
every pixel or every % pixel in the search area (335), depending on the desired
motion estimation resolution for the encoder. Other video encoders check at other
increments, for example, every % pixel. For a candidate macroblock, the encoder
checks the ditference between the macroblock (315) of the predicted frame (310)
and the candidate macroblock and the cost of encoding the motion vector for that
macroblock. After the encoder finds a good matching macroblock, the block
matching process ends. The encoder outputs the motion vector (entropy coded) for
the matching macroblock so the decoder can find the matching macroblock during
decoding. When decoding the predicted frame (310), a decoder uses the motion
vector to compute a prediction macroblock for the macroblock (315) using
information from the reference frame (330). The prediction for the macroblock
(315) is rarely perfect, so the encoder usually encodes 8x8 blocks of pixel
differences (also called the error or residual blocks) between the prediction
macroblock and the macroblock (315) itself.

Figure 4 illustrates the computation and encoding of an error block (435) for
a motion-estimated block in the WMV7 encoder. The error block (435) is the
difference between the predicted block (415) and the original current block (425).
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The encoder applies a DCT (440) to error block (435), resulting in 8x8 block (445)
of coefficients. Even more than was the case with DCT coefficients for pixel values,
the significant information for the error block (435) is concentrated in low frequency
coefficients (conventionally, the upper left of the block (445)) and many of the high
frequency coefficients have values of zero or close to zero (conventionally, the
lower right of the block (445)).

The encoder then quantizes (450) the DCT coefficients, resulting in an 8x8
block of quantized DCT coefficients (455). The quantization step size is adjustable.
Again, since low frequency DCT coefficients tend to have higher values,
quantization results in loss of precision, but not complete loss of the information for
the coefficients. On the other hand, since high frequency DCT coefficients tend to
have values of zero or close to zero, quantization of the high frequency coefficients
results in contiguous regions of zero values. In addition, in some cases high
frequency DCT coefficients are quantized more coarsely than low frequency DCT
coefficients, resulting in greater loss of precision/information for the high frequency
DCT coefficients.

The encoder then prepares the 8x8 block (455) of quantized DCT
coefficients for entropy encoding. The encoder scans (460) the 8x8 block (455) into
a one dimensional array (465) with 64 elements, such that coefficients are generally
ordered from lowest frequency to highest frequency, which typical creates long runs
of zero values.

The encoder entropy encodes the scanned coefficients using a variation of
run length coding (470). The encoder selects an entropy code from one or more
run/level/last tables (475) and outputs the entropy code.

When the motion vector for a macroblock is zero (i.e., no motion) and no
residual block information is transmitted for the macroblock, the encoder uses a 1-
bit skip macroblock flag for the macroblock. For many kinds of video content (e.g.,
low motion and/or low bitrate video), this reduces bitrate by avoiding the
transmission of motion vector and residual block information. The encoder puts the
skip macroblock flag for a macroblock at the macroblock layer in the output
bitstream, along with other information for the macroblock.

Figure 5 shows the decoding process (500) for an inter-coded block. Due to
the quantization of the DCT coefficients, the reconstructed block (575) is not

identical to the corresponding original block. The compression is lossy.
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In summary of Figure 5, a decoder decodes (510, 520) entropy-coded
information representing a prediction residual using variable length decoding and
one or more run/level/last tables (515). The decoder inverse scans (530) a one-
dimensional array (525) storing the entropy-decoded information into a two-
dimensional block (535). The decoder inverse quantizes and inverse discrete
cosine transforms (together, 540) the data, resulting in a reconstructed error block
(545). In a separate path, the decoder computes a predicted block (565) using
motion vector information (555) for displacement from a reference frame. The
decoder combines (570) the predicted block (555) with the reconstructed error
block (545) to form the reconstructed block (575).

When the decoder receives a skip macroblock flag for a macroblock, the
decoder skips computing a prediction and decoding residual block information for
the macroblock. Instead, the decoder uses corresponding pixel data from the
location of the macroblock in the reference frame.

The amount of change between the original and reconstructed frame is
termed the distortion and the number of bits required to code the frame is termed
the rate. The amount of distortion is roughly inversely proportional to the rate. In
other words, coding a frame with fewer bits (greater compression) will result in
greater distortion and vice versa. One of the goals of a video compression scheme
is to try to improve the rate-distortion — in other words to try to achieve the same
distortion using fewer bits (or the same bits and lower distortion).

Although the use of skip macroblock flags in WMV7 typically reduces bitrate
for many kinds of video content, it is less than optimal in some circumstances. In
many cases, it fails to exploit redundancy in skip macroblock flags from macroblock
to macroblock, for example, when skipped macroblocks occur in bunches in a
picture. Also, WMV?7 ignores motion prediction for macroblocks in predicted frames
when the macroblocks are skipped, which hurts the efficiency of compression of

predicted frames in some cases.

C. Standards for Video Compression and Decompression

Aside from WMV?7, several international standards relate to video
compression and decompression. These standards include the Motion Picture
Experts Group ["MPEG”]) 1, 2, and 4 standards and the H.261, H.262, and H.263
standards from the International Telecommunication Union [“ITU"]. Like WMV?7,

these standards use a combination of intraframe and interframe compression,
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although the standards typically differ from WMV7 in the details of the compression
techniques used.

Some international standards recognize skipping coding of macroblocks as
a tool to be used in video compression and decompression. For additional detail
about skip macroblock coding in the standards, see the standards’ specifications
themselves.

The skipped macroblock coding in the above standards typically reduces
bitrate for many kinds of video content, but is less than optimal in some
circumstances. In many cases, it fails to exploit redundancy in skip macroblock
flags from macroblock to macroblock, for example, when skipped macroblocks
occur in bunches in a picture. Also, it ignores motion prediction for macroblocks in
predicted macroblocks/pictures when the macroblocks are skipped, which hurts the
efficiency of compression of predicted macroblocks/pictures in some cases.

Given the critical importance of video compression and decompression to
digital video, it is not surprising that video compression and decompression are
richly developed fields. Whatever the benefits of previous video compression and
decompression techniques, however, they do not have the advantages of the
following techniques and tools.

SUMMARY

In summary, the detailed description is directed to various techniques and
tools for encoding and decoding (e.g., in a video encoder/decoder) binary
information. The binary information may comprise bits indicating whether a video
encoder or decoder skips certain macroblocks in a video frame. Or, the binary
information may comprise bits indicating motion vector resolution for macroblocks
(e.g. 1-MV or 4-MV), interlace mode (e.g., field or frame), or some other
information. Binary information may be encoded on a frame-by-frame basis or on
some other basis.

In some embodiments, the binary information is arranged in a bit plane. For
example, the bit plane is coded at the picture/frame fayer. Alternatively, the binary
information is arranged in some other way and/or coded at a different layer. The
encoder and decoder process the binary information. The binary information may
comprise macroblock-level information. Alternatively, the encoder and decoder

process bit planes of block-level, sub-block-level, or pixel-level information.
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In some embodiments, the encoder and decoder switch coding modes. For
example, the encoder and decoder use normal, row-skip, or column-skip mode.
The different modes allow the encoder and decoder to exploit redundancy in the
binary information. Alternatively, the encoder and decoder use other and/or
additional modes such as differential modes. To increase efficiency, the encoder
and decoder may use a bit plane inversion technique in some modes.

~ in some embodiments, the encoder and decoder define a skipped
macroblock as a predicted macroblock whose motion is equal to its causally
predicted motion and which has zero residual error. Alternatively, the encoder and
decoder define a skipped macroblock as a predicted macroblock with zero motion
and zero residual error.

In some embodiments, the encoder and decoder use a raw coding mode to
allow for low-latency applications. For example, in the raw coding mode, encoded
macroblocks can be transmitted to the decoder right away, without having to wait
until all macroblocks in the frame/picture are encoded. The encoder and decoder
can switch between the raw coding mode and other modes.

The various techniques and tools can be used in combination or
independently. In particular, the application describes two implementations of
skipped macroblock encoding and decoding, along with corresponding bitstream
syntaxes. Different embodiments implement one or more of the described
technigues and tools.

Additional features and advantages will be made apparent from the
following detailed description of different embodiments that proceeds with reference

to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram showing block-based intraframe compression of an
8x8 block of pixels according to prior art.

Figure 2 is a diagram showing prediction of frequency coefficients according
to the prior art.

Figure 3 is a diagram showing motion estimation in a video encoder
according to the prior art.

Figure 4 is a diagram showing block-based interframe compression for an

8x8 block of prediction residuals in a video encoder according to the prior art.
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Figure 5 is a diagram showing block-based intraframe decompression for an
8x8 block of prediction residuals according to the prior art.

Figure 6 is a block diagram of a suitable computing environment in which
several described embodiments may be implemented.

Figure 7 is a block diagram of a generalized video encoder system used in
several described embodiments.

Figure 8 is a block diagram of a generalized video decoder system used in
several described embodiments.

Figure 9 is a chart showing the bitstream elements that make up the P
picture layer according to the first implementation.

Figure 10 is a flowchart showing a technique for encoding skipped
macroblock information in a video encoder having plural skip-macroblock coding
modes.

Figure 11 is a flowchart showing a technique for decoding skipped
macroblock information encoded by a video encoder having plural skip-macroblock
coding modes.

Figure 12 shows an example of a skipped macroblock coding frame.

Figure 13 is a flowchart showing a technique for encoding in normal skip-
macroblock coding mode.

Figure 14 is a flowchart showing a technique for encoding in a row-
prediction skip-macroblock coding mode.

Figure 15 is a code listing showing pseudo-code for row-prediction decoding
of skipped macroblock information.

Figure 16 is a flowchart showing a technique for encoding in a column-
prediction skip-macroblock coding mode.

Figure 17 is a code listing showing pseudo-code for column-prediction
decoding of skipped macroblock information.

Figure 18 is a flowchart showing a technique for determining whether to skip
coding of certain macroblocks in a video encoder.

Figure 19 is a flowchart showing a technique for encoding binary information
in a bit plane in a row-skip coding mode.

Figure 20 is a flowchart showing a technique for encoding binary information
in a bit plane in a column-skip coding mode.

Figure 21 is a flowchart showing a technique for encoding binary information
in a bit plane in a normal-2 coding mode.
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Figures 22, 23 and 24 show examples of frames of binary information tiled
in normal-6 mode.

Figure 25 is a flowchart showing a technique for encoding binary information
in a bit plane in a normal-6 coding mode.

Figure 26 is a flowchart showing a technique for encoding binary information
in a differential coding mode.

Figure 27 is a flowchart showing a technique for decoding binary information
encoded in a differential coding mode.

Figure 28 is a flowchart showing a technique for selectively encoding binary
information in raw coding mode for low latency applications.

DETAILED DESCRIPTION

Described embodiments relate to techniques and tools for encoding and
decoding (e.g., in a video encoder/decoder) binary information. The binary
information may comprise bits indicating whether a video encoder or decoder skips
certain macroblocks in a video frame. Or, the binary information may comprise bits
indicating motion vector resolution for macroblocks (e.g. 1-MV or 4-MV), interlace
mode (e.g., field or frame), or some other information. Binary information may be
encoded on a frame-by-frame basis or on some other basis.

in some embodiments, the binary information is arranged in a bit plane. The
bit plane is coded at the picture/frame layer. Alternatively, the binary information is
arranged in some other way and/or coded at a different layer.

In some embodiments, the encoder and decoder switch coding modes. For
example, the encoder and decoder use normal, row-skip, or column-skip modes.
The different modes allow the encoder and decoder to exploit redundancy in the
binary information. Alternatively, the encoder and decoder use other and/or
additional modes.

In some embodiments, the encoder and decoder define a skipped
macroblock as a predicted macroblock whose motion is equal to its causally
predicted motion and which has zero residual error. Alternatively, the encoder and
decoder define a skipped macroblock as a predicted macroblock with zero motion
and zero residual error.

In some embodiments, instead of efficient frame/picture-level coding, a raw

coding mode is permitted to allow for low-latency applications. In the raw coding
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mode, encoded macroblocks can be transmitted to the decoder right away, without
having to wait until all macroblocks in the frame/picture are encoded.

In some embodiments, the encoder and decoder process bit planes of
macroblock level information. Alternatively, the encoder and decoder process bit
planes of block, sub-block, or pixel-level information.

The various techniques and tools can be used in combination or
independently. In particular, the application describes two implementations of
skipped macroblock encoding and decoding, along with corresponding bitstream
syntaxes. Different embodiments implement one or more of the described
techniques and tools.

In described embodiments, the video encoder and decoder perform various
technigues. Although the operations for these techniques are typically described in
a particular, sequential order for the sake of presentation, it should be understood
that this manner of description encompasses minor rearrangements in the order of
operations, unless a particular ordering is required. For example, operations
described sequentially may in some cases be rearranged or performed
concurrently. Moreover, for the sake of simplicity, flowcharts typically do not show
the various ways in which particular techniques can be used in conjunction with
other techniques.

In described embodiments, the video encoder and decoder use various
flags and signals in a bitstream. While specific flags and signals are described, it
should be understood that this manner of description encompasses different
conventions (e.g., 0’s rather than 1’s) for the flags and signals.

l. Computing Environment

Figure 6 illustrates a generalized example of a suitable computing
environment (600) in which several of the described embodiments may be
implemented. The computing environment (600) is not intended to suggest any
limitation as to scope of use or functionality, as the techniques and tools may be
implemented in diverse general-purpose or special-purpose computing
environments.

With reference to Figure 6, the computing environment (600) includes at
least one processing unit (610) and memory (620). In Figure 6, this most basic
configuration (630) is included within a dashed line. The processing unit (610)

executes computer-executable instructions and may be a real or a virtual
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processor. In a multi-processing system, multiple processing units execute
computer-executable instructions to increase processing power. The memory (620)
may be volatile memory (e.g., registers, cache, RAM), non-volatile memory (e.g.,
ROM, EEPROM, fla’sh memory, etc.), or some combination of the two. The
memory (620) stores software (680) implementing an encoder or decoder, such as
a video encoder or decoder.

A computing environment may have additional features. For example, the
computing environment (600) includes storage (640), one or more input devices
(650), one or more output devices (660), and one or more communication
connections (670). An interconnection mechanism (not shown) such as a bus,
controller, or network interconnects the components of the computing environment
(600). Typically, operating system software (not shown) provides an operating
environment for other software executing in the computing environment (600), and
coordinates activities of the components of the computing environment (600).

The storage (640) may be removable or non-removable, and includes
magnetic disks, magnetic tapes or cassettes, CD-ROMs, DVDs, or any other
medium which can be used to store information and which can be accessed within
the computing environment (600). The storage (640) stores instructions for the
software (680) implementing the encoder or decoder.

The input device(s) (650) may be a touch input device such as a keyboard,
mouse, pen, or trackball, a voice input device, a scanning device, or another device
that provides input to the computing environment (600). For audio or video
encoding, the input device(s) (650) may be a sound card, video card, TV tuner card,
or similar device that accepts audio or video input in analog or digital form, or a CD-
ROM or CD-RW that reads audio or video samples into the computing environment
(600). The output device(s) (660) may be a display, printer, speaker, CD-writer, or
another device that provides output from the computing environment (600).

The communication connection(s) (670) enable communication over a
communication medium to another computing entity. The communication medium
conveys information such as computer-executable instructions, audio or video input
or output, or other data in a modulated data signal. A modulated data signal is a
signal that has one or more of its characteristics set or changed in such a manner
as to encode information in the signal. By way of example, and not limitation,
communication media include wired or wireless techniques implemented with an

electrical, optical, RF, infrared, acoustic, or other carrier.
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The techniques and tools can be described in the general context of
computer-readable media. Computer-readable media are any available media that
can be accessed within a computing environment. By way of example, and not
limitation, with the computing environment (600), computer-readable media include
memory (620), storage (640), communication media, and combinations of any of
the above.

The techniques and tools can be described in the general context of
computer-executable instructions, such as those included in program modules,
being executed in a computing environment on a target real or virtual processor.
Generally, program modules include routines, programs, libraries, objects, classes,
components, data structures, etc. that perform particular tasks or implement
particular abstract data types. The functionality of the program modules may be
combined or split between program modules as desired in various embodiments.
Computer-executable instructions for program modules may be executed within a
local or distributed computing environment.

For the sake of presentation, the detailed description uses terms like

” i

“determine,” “select,” “reconstruct,” and “inform” to describe computer operations in
a computing environment. These terms are high-level abstractions for operations
performed by a computer, and should not be confused with acts performed by a
human being. The actual computer operations corresponding to these terms vary

depending on implementation.

1. Generalized Video Encoder and Decoder

Figure 7 is a block diagram of a generalized video encoder (700) and Figure
8 is a block diagram of a generalized video decoder (800).

The relationships shown between modules within the encoder and decoder
indicate the main flow of information in the encoder and decoder; other
relationships are not shown for the sake of simplicity. In particular, Figures 7 and 8
usually do not show side information indicating the encoder settings, modes, tables,
etc. used for a video sequence, frame, macroblock, block, etc. Such side
information is sent in the output bitstream, typically after entropy encoding of the
side information. The format of the output bitstream can be Windows Media Video
version 8 format or another format.

The encoder (700) and decoder (800) are block-based and use a 4:2:0

macroblock format with each macroblock including 4 luminance 8x8 luminance
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blocks (at times treated as one 16x16 macroblock) and two 8x8 chrominance
blocks. Alternatively, the encoder (700) and decoder (800) are object-based, use a
different macroblock or block format, or perform operations on sets of pixels of
different size or configuration than 8x8 blocks and 16x16 macroblocks.

Depending on implementation and the type of compression desired,
modules of the encoder or decoder can be added, omitted, split into multiple
modules, combined with other modules, and/or replaced with like modules. In
alternative embodiments, encoder or decoders with different modules and/or other

configurations of modules perform one or more of the described techniques.

A. Video Encoder

Figure 7 is a block diagram of a general video encoder system (700). The
encoder system (700) receives a sequence of video frames including a current
frame (705), and produces compressed video information (795) as output.
Particular embodiments of video encoders typically use a variation or supplemented
version of the generalized encoder (700).

The encoder system (700) compresses predicted frames and key frames.
For the sake of presentation, Figure 7 shows a path for key frames through the
encoder system (700) and a path for forward-predicted frames. Many of the
components of the encoder system (700) are used for compressing both key
frames and predicted frames. The exact operations performed by those
components can vary depending on the type of information being compressed.

A predicted frame [also called p-frame, b-frame for bi-directional prediction,
or inter-coded frame] is represented in terms of prediction (or difference) from one
or more other frames. A prediction residual is the difference between what was
predicted and the original frame. In contrast, a key frame [also called i-frame, intra-
coded frame] is compressed without reference to other frames.

If the current frame (705) is a forward-predicted frame, a motion estimator
(710) estimates motion of macroblocks or other sets of pixels of the current frame
(705) with respect to a reference frame, which is the reconstructed previous frame
(725) buffered in the frame store (720). In alternative embodiments, the reference
frame is a later frame or the current frame is bi-directionally predicted. The motion
estimator (710) can estimate motion by pixel, ¥z pixel, % pixel, or other increments,
and can switch the resolution of the motion estimation on a frame-by-frame basis or

other basis. The resolution of the motion estimation can be the same or different
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horizontally and vertically. The motion estimator (710) outputs as side information
motion information (715) such as motion vectors. A motion compensator (730)
applies the motion information (715) to the reconstructed previous frame (725) to
form a motion-compensated current frame (735). The prediction is rarely perfect,
however, and the difference between the motion-compensated current frame (735)
and the original current frame (705) is the prediction residual (745). Alternatively, a
motion estimator and motion compensator apply another type of motion
estimation/compensation.

A frequency transformer (760) converts the spatial domain video information
into frequency domain (i.e., spectral) data. For block-based video frames, the
frequency transformer (760) applies a discrete cosine transform [“DCT”] or variant
of DCT to blocks of the pixel data or prediction residual data, producing blocks of
DCT coefficients. Alternatively, the frequency transformer (760) applies another
conventional frequency transform such as a Fourier transform or uses wavelet or
subband analysis. In embodiments in which the encoder uses spatial extrapolation
(not shown in Figure 7) to encode blocks of key frames, the frequency transformer
(760) can apply a re-oriented frequency transform such as a skewed DCT to blocks
of prediction residuals for the key frame. In other embodiments, the frequency
transformer (760) applies an 8x8, 8x4, 4x8, or other size frequency transforms (e.g.,
DCT) to prediction residuals for predicted frames.

A quantizer (770) then quantizes the blocks of spectral data coefficients.
The quantizer applies uniform, scalar quantization to the spectral data with a step-
size that varies on a frame-by-frame basis or other basis. Alternatively, the
quantizer applies another type of quantization to the spectral data coefficients, for
example, a non-uniform, vector, or non-adaptive quantization, or directly quantizes
spatial domain data in an encoder system that does not use frequency
transformations. In addition to adaptive quantization, the encoder (700) can use
frame dropping, adaptive filtering, or other techniques for rate control.

If a given macroblock in a predicted frame has no information of certain
types (e.g., no motion information for the macroblock and no residual information),
the encoder (700) may encode the macroblock as a skipped macroblock. If so, the
encoder signals the skipped macroblock in the output bitstream of compressed
video information (795).

When a reconstructed current frame is needed for subsequent motion

estimation/compensation, an inverse quantizer (776) performs inverse quantization
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on the quantized spectral data coefficients. An inverse frequency transformer (766)
then performs the inverse of the operations of the frequency transformer (760),
producing a reconstructed prediction residual (for a predicted frame) or a
reconstructed key frame. If the current frame (705) was a key frame, the
reconstructed key frame is taken as the reconstructed current frame (not shown). If
the current frame (705) was a predicted frame, the reconstructed prediction residual
is added to the motion-compensated current frame (735) to form the reconstructed
current frame. The frame store (720) buffers the reconstructed current frame for
use in predicting the next frame. In some embodiments, the encoder applies a
debilocking filter to the reconstructed frame to adaptively smooth discontinuities in
the blocks of the frame.

The entropy coder (780) compresses the output of the quantizer (770) as
well as certain side information (e.g., motion information (715), spatial extrapolation
modes, quantization step size). Typical entropy coding techniques include
arithmetic coding, differential coding, Huffman coding, run length coding, LZ coding,
dictionary coding, and combinations of the above. The entropy coder (780) typically
uses different coding techniques for different kinds of information (e.g., DC
coefficients, AC coefficients, different kinds of side information), and can choose
from among multiple code tables within a particular coding technique.

The entropy coder (780) puts compressed video information (795) in the
buffer (790). A buffer level indicator is fed back to bit rate adaptive modules.

The compressed video information (795) is depleted from the buffer (790) at
a constant or relatively constant bit rate and stored for subsequent streaming at that
bit rate. Therefore, the level of the buffer (790) is primarily a function of the entropy
of the filtered, quantized video information, which affects the efficiency of the
entropy coding. Alternatively, the encoder system (700) streams compressed video
information immediately foIIoWing compression, and the level of the buffer (790)
also depends on the rate at which information is depleted from the buffer (790) for
transmission.

Before or after the buffer (790), the compressed video information (795) can
be channel coded for transmission over the network. The channel coding can apply

error detection and correction data to the compressed video information (795).

B. Video Decoder
Figure 8 is a block diagram of a general video decoder system (800). The
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decoder system (800) receives information (895) for a compressed sequence of
video frames and produces output including a reconstructed frame (805). Particular
embodiments of video decoders typically use a variation or supplemented version
of the generalized decoder (800).

The decoder system (800) decompresses predicted frames and key frames.
For the sake of presentation, Figure 8 shows a path for key frames through the
decoder system (800) and a path for forward-predicted frames. Many of the
components of the decoder system (800) are used for compressing both key
frames and predicted frames. The exact operations performed by those
components can vary depending on the type of information being compressed.

A buffer (890) receives the information (895) for the compressed video
sequence and makes the received information available to the entropy decoder
(880). The buffer (890) typically receives the information at a rate that is fairly
constant over time, and includes a jitter buffer to smooth short-term variations in
bandwidth or transmission. The buffer (890) can include a playback buffer and
other buffers as well. Alternatively, the buffer (890) receives information at a
varying rate. Before or after the buffer (890), the compressed video information can
be channel decoded and processed for error detection and correction.

The entropy decoder (880) entropy decodes entropy-coded quantized data
as well as entropy-coded side information (e.g., motion information (815), spatial
extrapolation modes, quantization step size), typically applying the inverse of the
entropy encoding performed in the encoder. Entropy decoding techniques include
arithmetic decoding, differential decoding, Huffman decoding, run length decoding,
LZ decoding, dictionary decoding, and combinations of the above. The entropy
decoder (880) frequently uses different decoding techniques for different kinds of
information (e.g., DC coefficients, AC coefficients, different kinds of side
information), and can choose from among multiple code tables within a particular
decoding technique.

If the frame (805) to be reconstructed is a forward-predicted frame, a motion
compensator (830) applies motion information (815) to a reference frame (825) to
form a prediction (835) of the frame (805) being reconstructed. For example, the
motion compensator (830) uses a macroblock motion vector to find a macroblock in
the reference frame (825). A frame buffer (820) stores previous reconstructed
frames for use as reference frames. The motion compensator (830) can

compensate for motion at pixel, ¥ pixel, ¥ pixel, or other increments, and can
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switch the resolution of the motion compensation on a frame-by-frame basis or
other basis. The resolution of the motion compensation can be the same or
different horizontally and vertically. Alternatively, a motion compensator applies
another type of motion compensation. The prediction by the motion compensator is
rarely perfect, so the decoder (800) also reconstructs prediction residuals.

When the decoder needs a reconstructed frame for subsequent motion
compensation, the frame store (820) buffers the reconstructed frame for use in
predicting the next frame. In some embodiments, the encoder applies a deblocking
filter to the reconstructed frame to adaptively smooth discontinuities in the blocks of
the frame.

An inverse quantizer (870) inverse quantizes entropy-decoded data. In
general, the inverse quantizer applies uniform, scalar inverse quantization to the
entropy-decoded data with a step-size that varies on a frame-by-frame basis or
other basis. Alternatively, the inverse quantizer applies another type of inverse
quantization to the data, for example, a non-uniform, vector, or non-adaptive
guantization, or directly inverse quantizes spatial domain data in a decoder system
that does not use inverse frequency transformations.

An inverse frequency transformer (860) converts the quantized, frequency
domain data into spatial domain video information. For block-based video frames,
the inverse frequency transformer (860) applies an inverse DCT [“IDCT”] or variant
of IDCT to blocks of the DCT coefficients, producing pixel data or prediction
residual data for key frames or predicted frames, respectively. Alternatively, the
frequency transformer (860) applies another conventional inverse frequency
transform such as a Fourier transform or uses wavelet or subband synthesis. In
embodiments in which the decoder uses spatial extrapolation (not shown in Figure
8) to decode blocks of key frames, the inverse frequency transformer (860) can
apply a re-oriented inverse frequency transform such as a skewed IDCT to blocks
of prediction residuals for the key frame. In other embodiments, the inverse
frequency transformer (860) applies an 8x8, 8x4, 4x8, or other size inverse
frequency transforms (e.g., IDCT) to prediction residuals for predicted frames.

When a skipped macroblock is signaled in the bitstream of information (895)
for a compressed sequence of video frames, the decoder (800) reconstructs the
skipped macroblock without using the information (e.g., motion information and/or
residual information) normally included in the bitstream for non-skipped

macroblocks.
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{18 First Implementation
In a first implementation, a video encoder and decoder encode and decode,

respectively, skipped macroblock information with improved efficiency. The skipped
macroblock information is signaled at the picture layer in the video bitstream, which
allows the encoder to exploit redundancy in the skipped macroblock information.
Also, the encoder and decoder select between multiple coding modes for encoding

and decoding the skipped macroblock information.

A. Picture Layer Coding of Skipped Macroblock Information

In the first implementation, a compressed video sequence is made up of
data structured into four hierarchical layers. From top to bottom the layers are: 1)
sequence layer; 2) picture layer; 3) macroblock layer; and 4) block layer. At the
picture layer, data for each picture consists of a picture header followed by data for
the macroblock layer. (Similarly, at the macroblock layer, data for each macroblock
consists of a macroblock header followed by the block layer.) While some of the
bitstream elements for | pictures and-P pictures are identical, others appear only in
P pictures, and vice versa.

Figure 9 shows the bitstream elements that make up the P-picture layer
(900). Table 1 briefly describes the bitstream elements of the P-picture layer (900).

Field Description
PTYPE (910) Picture type
PQUANT (912) Picture quantizer scale
SMBC (920) Skipped macroblock code
SMB (930) Skipped macroblock field
CPBTAB (940) Coded biock pattern table
MVRES (942) Motion vector resolution
TTMBF (944) Macroblock-level transform type flag
TTFRM (946) Frame-level transform type
DCTACMBEF (948) Macroblock-level DCT AC coding set flag
DCTACFRM (950) Frame-level DCT AC coding set index
DCTDCTAB (952) Intra DCT DC table
MVTAB (954) Motion vector table
MB LAYER (960) Macroblock layer

Table 1: Bitstream elements of the P-picture layer in first implementation

In particular, the P-picture layer (900) includes a Skipped Macroblock field
("SMB”) (930) for the macroblocks in the P picture as well as a Skipped Macroblock
Code (“SMBC”) field (920) that signals the coding mode for the skipped macroblock
field (930). The SMBC field (920) is present only in P-picture headers. SMBC
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(920) is a 2-bit value that signals one of four modes used for indicating the skipped
macroblocks in the frame. In the first implementation, the fixed length codes
(“FLCs") for the skipped macroblock coding modes are as follows:

SMBC FLC Skipped Bit Coding Mode
00 No skipped bit coding
01 Normal skipped bit coding
10 Row-prediction (or, “row-skip”) skipped bit coding
11 Column-prediction (or, “column-skip”) skipped bit coding

Table 2: Skipped macroblock coding mode code table in first implementation

If the coding mode is normal, row-prediction, or column-prediction, then the
next field in the bitstream is the SMB field (930) containing the skipped macroblock
information. So, the SMB field is present only in P-picture headers and only if
SMBC signals normal, row-prediction, or column-prediction skipped macroblock
coding. If SMBC signals normal coding, then the size of the SMB field is equal to
the number of macroblocks in the frame. If SMBC signals row-prediction or
column-prediction, then the size of the SMB is variable as described below.

The skipped macroblock information informs the decoder as to which
macroblocks in the frame are not present in the macroblock layer. For these
macroblocks, the decoder will copy the corresponding macroblock pixel data from

the reference frame when reconstructing that macroblock.

B. Switching Coding Modes for Skipped Macroblock Information

As described above, the SMBC field (920) signals the coding mode for the
skipped macroblock field (930). More generally, Figure 10 shows a technique
(1000) for encoding skipped macroblock information in a video encoder having
multiple skip-macroblock coding modes. Figure 11 shows a corresponding
technique (1100) for decoding skipped macroblock information encoded by a video
encoder having plural skip-macroblock coding modes.

With reference to Figure 10, the encoder selects a skip-macroblock coding
mode for coding skipped macroblock information (1010). For example, in the first
implementation, the skipped macroblock coding modes include a mode where no
macroblocks are skipped, a normal mode, a row-prediction (or, “row-skip”) mode,
and a column-prediction (or “column-skip”) mode. After the coding mode is
selected, the encoder encodes the skipped macroblock information (1020). The

encoder selects coding modes on a picture-by-picture basis. Alternatively, the
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encoder selects coding modes on some other basis (e.g., at the sequence level).
When the encoder is done encoding the skipped macroblock information (1030),
encoding ends.

With reference to Figure 11, the decoder determines the skip-macroblock
coding mode used by the encoder to encode the skipped macroblock information
(1110). The decoder then decodes the skipped macroblock information (1120).
The decoder determines coding modes on a picture-by-picture basis. Alternatively,
the decoder determines coding modes on some other basis (e.g., at the sequence
level). When the decoder is done decoding the skipped macroblock information
(1130), decoding ends.

C. Coding Modes

In the first implementation, the skipped macroblock coding modes include a
mode where no macroblocks are skipped, a normal mode, a row-prediction (or,
“row-skip”) mode, and a column-prediction (or “column-skip”) mode. The following
sections describe how skipped macroblock information is encoded in each mode
with reference to Figure 12, which shows an example (1200) of a skipped
macroblock coding frame.

1. Normal Skipped Macroblock Coding Mode

In normal mode, the skipped/not-skipped status of each macroblock is
represented with a bit. Therefore, the size of the SMB field in bits is equal to the
number of macroblocks in the frame. The bit position within the SMB field
corresponds to the raster scan order of the macroblocks within the frame starting
with the upper-left macroblock. A bit value of 0 indicates that the corresponding
macroblock is not skipped; a bit value of 1 indicates that the corresponding
macroblock is skipped.

Figure 13 shows a technique (1300) for encoding in normal skip-macroblock
coding mode. First, the encoder checks whether coding of a macroblock will be
skipped (1310). If so, the encoder adds a bit value of 1 to the SMB field to indicate
that the corresponding macroblock is skipped (1320). Otherwise, the encoder adds
a bit value of 0 to the SMB field to indicate that the corresponding macroblock is not
skipped (1330). When the encoder is done adding bits to the SMB field (1340), skip
macroblock coding ends.
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As an example, using normal mode coding, the SMB field for the example
frame (1200) in Figure 12 would be encoded as: 010010111111111111010010.

2. Row-prediction Skipped Macroblock Coding Mode

In row-prediction mode, the status of each macroblock row (from top to
bottom) is indicated with a bit. If the bit is 1, then the row contains all skipped
macroblocks and the status for the next row follows. If the bit equals 0, then the
skipped/not skipped status for each macroblock in that row is signaled with a bit.
Therefore, a bit field equal in length to the number of macroblocks in a row follows.
The bits in the bit field represent the macroblocks in left-to-right order. Again, a
value of 0 indicates that the corresponding macroblock is not skipped; a value of 1
indicates that the corresponding macroblock is skipped.

Figure 14 shows a technigue (1400) for encoding in row-prediction (or, “row-
skip”) macroblock coding mode. First, the encoder checks if a row contains all
skipped macroblocks (1410). If so, the encoder adds an indicator bit of 1 to the
SMB field (1420) and the status for the next row follows. If the row does not contain
all skipped macroblocks, the encoder adds an indicator bit of 0 to the SMB field,
and the skipped/not-skipped status for each macroblock in that row is signaled with
a bit (1430). When the encoder is done with all the rows in the frame (1440), the
row-prediction encoding ends.

As for decoding, Figure 15 shows pseudo-code (1500) illustrating row-
prediction decoding of the skipped macroblock information. In the pseudo-code
(1500), the function get_bits(n) reads n bits from the bitstream and returns the
value.

As an example, using row-prediction mode coding, the SMB field for the
example frame (1200) in Figure 12 would be encoded as: 0010010110010010.

3. Column-prediction Skipped Macroblock Coding Mode
In column-prediction mode, the status of each macroblock column (from left
to right) is indicated with a bit. If the bit is 1, then the column contains all skipped
macroblocks and the status for the next column follows. If the bit equals 0, then the
skipped/not skipped status for each macroblock in that column is signaled with a bit.
Therefore, a bit field equal in length to the number of macroblocks in a column
follows. The bits in the bit field represent the macroblocks in top-to-bottom order.
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Again, a value of 0 indicates that the corresponding macroblock is not skipped; a
value of 1 indicates that the corresponding macroblock is skipped.

Figure 16 shows a technique (1600) for encoding in column-prediction (or,
“column-skip”) macroblock coding mode. First, the encoder checks if the column
contains all skipped macroblocks (1610). If so, the encoder adds an indicator bit of
1 to the SMB field (1620) and the status for the next column follows. If the column
does not contain all skipped macroblocks, the encoder adds an indicator bit of 0 to
the SMB field, and the skipped/not-skipped status for each macroblock in that
column is signaled with a bit (1630). When the encoder is done with all the
columns in the frame (1640), the column-prediction encoding ends.

As for decoding, Figure 17 shows pseudo-code (1700) illustrating column-
prediction decoding of the skipped macroblock information.

As an example, using column-prediction mode coding, the SMB field for the
example frame (1200) in Figure 12 would be encoded as:
0011010011000110100110.

IV, Second Implementation

In a second implementation, a video encoder and decoder encode and
decode, respectively, skipped macroblock information and/or other 2-D binary data
with improved efficiency. The encoder and decoder define a skipped macroblock
as having a default motion (not necessarily zero motion), which allows the encoder
and decoder tc skip more macroblocks in many cases. Efficient frame-level coding
of bit planes indicates skipped macroblock information and/or other 2-D binary data.
Also, the encoder and decoder may use a raw (MB-level) coding option of skipped

macroblocks for low-latency applications.

A. Skip Bit Definition (Definition of Skipped Macroblock)

The second implementation includes a new definition of the concept of a
skipped macroblock. “Skip” refers to a condition in a bitstream where no further
information needs to be transmitted at that level of granularity. A skipped
macroblock (block) is a macroblock (block) that has a default type, default motion,
and default residual error. (In comparison, in other implementations and standards,
skipped macroblocks are predicted macroblocks with zero motion and zero

residuals.
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The new definition of skipped macroblock is a predicted macroblock whose
motion is equal to its causally predicted motion, and which has zero residual error.
(The point of difference from the other definition is the default motion is equal to the
motion predictor, and this may not necessarily be zero.)

For example, in some embodiments, predicted motion vectors for a current
macroblock are taken from the macroblock directly above or directly to the left of
the current macroblock. Or, horizontal and vertical components of the predictor are
generated from the horizontal and vertical component-wise medians of the
macroblocks the left, top, and top right of the current macroblock.

The motion vectors of a skipped macroblock with four motion vectors (4MV)
are given by their predictions performed sequentially in the natural scan order. As
with the one motion vector (1MV) case, the error residuals are zero.

Figure 18 shows a technique (1800) for determining whether to skip coding
of particular macroblocks in a video encoder according to the new definition of
skipped macroblocks. First, the encoder checks whether the current frame is an |-
frame or a P-frame (1810). If the current frame is an |-frame, no macroblocks in the
current frame are skipped (1820), and skip-macroblock coding for the frame ends.

On the other hand, if the current frame is a P-frame, the encoder checks for
macroblocks in the current frame that can be skipped. For a given macroblock, the
encoder checks whether the motion vector for the macroblock is equal to the
causally predicted motion vector for the macroblock (e.g., whether the differential
motion vector for the macroblock is equal to zero) (1830). If the motion for a
macroblock does not equal the causally predicted motion, the encoder does not
skip the macroblock (1840). Otherwise, the encoder checks whether there is any
residual to be encoded for the macroblock (1850). If there is a residual to be
coded, the encoder does not skip the macroblock (1860). If there is no residual for
the macroblock, however, the encoder skips the macroblock (1870). The encoder

continues to encode or skip macroblocks until encoding is done (1880).

B. Bit Plane Coding

In the second implementation, certain macroblock-specific information

(including signaling skipped macroblocks) can be encoded in one bit per
macroblock. The status for all macroblocks in a frame can be coded together as a

bit plane and transmitted in the frame header.
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In the second implementation, the encoder uses bit plane coding in three
cases to signal information about macroblocks in a frame. The three cases are: 1)
signaling skipped macroblocks, 2) signaling field or frame macroblock mode, and 3)
signaling 1-MV or 4-MV motion vector mode for each macroblock. This section
describes bit plane coding for any of the three cases and corresponding decoding.

Frame-level bit plane coding is used to encode two-dimensional binary
arrays. The size of each array is rowMB x colMB, where rowMB and colMB are the
number of macroblock rows and columns, respectively. Within the bitstream, each
array is coded as a set of consecutive bits. One of seven modes is used to encode

each array, as enumerated in Table 3 and described below.

Coding Mode Description
Raw Coded as one bit per symbol
Normal-2 Two symbols coded jointly
Diff-2 Differential coding of bit plane, followed by coding two

residual symbols jointly

Normal-6 Six symbols coded jointly

Diff-6 Differential coding of bit plane, followed by coding six residual
symbols jointly '

Row-skip One bit skip to signal rows with no set bits.

Column-skip | One bit skip to signal columns with no set bits.

Table 3: Coding modes in second implementation

In the second implementation, the encoder uées three syntax elements to
embed the information in a bit plane: MODE, INVERT and DATABITS.

The MODE field is a variable length code (“VLC”) that encodes the coding
mode for the bit plane. For example, the VLC in the MODE field represents any of
the seven coding modes enumerated in Table 3. To save bits, the encoder can
assign shorter codes to more probable coding modes and longer codes to less
probable coding modes. As noted above, the MODE field is transmitted in the
frame header.

The encoder and decoder switch between coding modes on a frame-by-
frame basis. For example, the encoder and decoder switch between coding modes
as like the encoder and decoder of the first implementation switch between skipped
macroblock coding modes in Figures 10 and 11, respectively. Alternatively, the
encoder and decoder switch using some other technique and/or on some other
basis.

If the mode is not raw mode, the one bit INVERT field is sent. In several
coding modes where conditional inversion may be performed, the INVERT field
indicates whether the bits in the bit plane are to be inverted before encoding takes
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place in the encoder and whether the output of decoding in the decoder is to be
inverted. The INVERT field is 1 when most of the bits in the bit plane are equal to
1, and 0 when most of the bits in the bit plane are equal to 0. The encoder employs
several coding modes (such as normal-2 and normal-6) that consume less bits
when more Os are present. If the bit plane to be encoded has more 1s than 0s, the
encoder can invert the bit plane to increase the proportion of Os in the bit plane and
increase the potential for bit savings. Other modes (such as diff-2 and diff-6) use
the value of the INVERT to calculate a predictor bit plane. Therefore, in some
coding modes, the final bit plane reconstructed at the decoder depends on INVERT.

The DATABITS field is an entropy coded stream of VLC symbols containing
the information necessary to reconstruct the bit plane, given the MODE and
INVERT fields.

C. Coding Modes
_ In the second implementation, the encoder encodes binary information (e.g.,

skipped macroblock information) in any of seven different coding modes: row-skip
mode, column-skip mode, normal-2 mode, normal-6 mode, diff-2 mode, diff-6
mode, and raw mode. A decoder performs corresponding decoding for any of the
seven coding modes. Each mode is described in detail below.

Alternatively, the encoder and decoder use other and/or additional coding

modes.

1. Row-skip and Column-skip Modes

The row-skip coding mode saves bits by representing a row in a bit plane
with a single bit if each binary symbol in the row is of a certain value. For example,
the encoder represents a skipped macroblock with a 0 in a bit plane, and uses a
row-skip coding mode that represents a row of all Os with a single bit. The encoder
therefore saves bits when entire rows of macroblocks are skipped. The decoder
performs corresponding decoding.

In the second implementation, all-zero rows are indicated using one bit set
to 0. When the row is not all zero, the one bit indicator is set to 1, and this is
followed by colMB bits containing the bit plane row in order. Rows are scanned in
the natural order.

Likewise, for the column-skip mode, if the entire row is zero, a 0 bit is sent.

Else, a 1 is sent, followed by the rowMB bits containing the entire column, in order.
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Columns are scanned in the natural order.

For coding of leftover rows and/or columns in diff-6 and normal-6 modes
(described below), the same logic is applied. A one-bit flag indicates whether the
row or column is all zero. If not, the entire row or column is transmitted using one
bit per symbol.

When the encoder encodes a bit plane consisting primarily of 1s, row-skip
and column-skip coding are usually less efficient, because of the lower probability
that rows/columns will consist entirely of 0Os. However, the encoder can perform an
inversion on the bit plane in such a situation to increase the proportion of 0s and
potentially increase bit savings. Thus, when conditional inversion is indicated
through the INVERT bit, the encoder pre-inverts the bit plane before the bit plane is
tiled and coded. On the decoder side, conditional inversion is implemented by
taking the inverse of the final output. (This is not performed for the diff-2 and diff-6
mode.)

Figure 19 shows a technique (1900) for encoding binary information in a bit
plane in a row-skip coding mode. The encoder first checks whether inversion of the
bit plane is appropriate, and, if so, performs the inversion (1910). The encocer then
checks a row in the bit plane to see if each bit in the row is equal to 0 (1920). If so,
the encoder sets the indicator bit for the row to 0 (1930). !f any of the bits in the row
are not 0, the encoder sets the indicator bit for the row to 1 and encodes each bit in
the row with one bit (1940). When the encoder is.done encoding all rows in the bit
plane (1950), encoding of the bit plane ends.

A decoder performs corresponding decoding for the row-skip coding mode.

Figure 20 shows a technique for encoding binary information in a column-
skip coding mode. The encoder first checks whether inversion of the bit plane is
appropriate, and, if so, performs the inversion (2010). The encoder then checks a
column in the bit plane to see if each bit in the column is equal to 0 (2020). If so,
the encoder sets the indicator bit for the column to 0 (2030). If any of the bits in the
column are not 0, the encoder sets the indicator bit for the column to 1 and encodes
each bit in the column with one bit (1940). When the encoder is done encoding all
columns in the bit plane (1950), encoding of the bit plane ends.

A decoder performs corresponding decoding for the column-skip coding
mode.
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2.  Normal-2 Mode

The encoder uses the normal-2 mode to jointly encode plural binary
symbols in a bit plane (e.g., by using a vector Huffman or other variable length
encoding scheme). The encoder encodes pairs of binary symbols with variable
length codes. The decoder performs corresponding decoding.

If rowMB x colMB is odd, the first symbol is encoded as a single bit.
Subsequent symbols are encoded pairwise, in natural scan order. A VLC table is
used to encode the symbol pairs to reduce overall entropy.

When conditional inversion is indicated through the INVERT bit, the encoder
pre-inverts the bit plane before the bit plane is coded pairwise. On the decoder
side, conditional inversion is implemented by taking the inverse of the final output.
(When the diff-2 mode i$ used, conditional inversion is not performed at this step.)

Figure 21 shows a technique (2100) for encoding binary information in
normal-2 mode. The encoder performs an initial check to determine whether
inversion of the bit plane is appropriate to improve codirig efficiency and, if so,
performs the inversion (2110). The encoder then determines whether the bit plane
being coded has an odd number of binary symbols (2120). If so, the encoder
encodes the first symbol with a single bit (2130). The encoder then encodes
symbol pairs with variable length codes, using shorter codes to represent more
probable pairs and longer codes to represent less probable pairs (2140). When
encoding of the symbol pairs is done (2150), the encoding ends.

A decoder performs corresponding decoding for the normal-2 coding mode.

3. Normal-6 Mode

The encoder also uses the normal-6 mode to jointly encode plural binary
symbols in a bit plane (e.g., by using a vector Huffman or other variable length
encoding scheme). The encoder tiles groups of six binary symbols and represents
each group with a variable length code. The decoder performs corresponding
decoding.

In the normal-6 mode (and the diff-6 mode), the bit plane is encoded in
groups of six pixels. These pixels are grouped into either 2x3 or 3x2 tiles. The bit
plane is tiled maximally using a set of rules, and the remaining pixels are encoded
using variants of row-skip and column-skip modes.

In the second implementation, 3x2 “vertical” tiles are used if and only if

rowMB is a multiple of 3 and colMB is not a multiple of 3. Otherwise, 2x3
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“horizontal” tiles are used. Figures 22, 23 and 24 show examples of frames tiled in
the normal-6 coding mode. Figure 22 shows a frame (2200) with 3x2 vertical tiles
and a 1-symbol wide remainder (shown as a shaded area) to be coded in column-
skip mode. Figure 23 shows a frame (2300) with 2x3 horizontal tiles and a 1-
symbol wide remainder to be coded in row-skip mode. Figure 24 shows a frame
(2400) with 2x3 horizontal tiles and 1-symbol wide remainders to be coded in row-
skip and column-skip modes.

While 3x2 and 2x3 tiles are used in this example, in other embodiments,
different configurations of tiles and/or different tiling rules are used.

The 6-element tiles are encoded first, followed by the column-skip and row-
skip encoded linear tiles. [f the array size is a multiple of 3x2 or 2x3, the latter
linear tiles do not exist and the bit plane is perfectly tiled. The 6-element
rectangular tiles are encoded using a VLC table.

When conditional inversion is indicated through the INVERT bit, the encoder
pre-inverts the bit plane before the bit plane is tiled and coded. On the decoder
side, conditional inversion is implemented by taking the inverse of the final output.
(When the diff-6 mode is used, conditional inversion is not performed at this step.)

Figure 25 shows a technique (2500) for encoding binary information in
normal-6 mode. The encoder performs an initial check to determine whether
inversion of the bit plane is appropriate to improve coding efficiency and, if so,
performs the inversion (2510). The encoder then checks whether the number of
rows in the bit plane is a multiple of three (2520). If the number of rows is not a
multiple of three, the encoder groups the symbols in the bit piane into 2x3 horizontal
tiles (2530).

If the number of rows is a multiple of three, the encoder checks whether the
number of columns in the bit plane is a multiple of three (2540). If the number of
columns is a multiple of three, the encoder groups the symbols in the bit plane into
2x3 horizontal tiles (2530). If the number of columns is not a multiple of three, the
encoder groups the symbols into 3x2 vertical tiles (2550).

After grouping symbols into 3x2 or 2x3 tiles, the encoder encodes the
groups of six tiled symbols using a technique such as a six-dimension vector
Huffman coding technique or some other coding technique (2560). The encoder
encodes any remaining untiled symbols using the row-skip and/or column-skip
coding techniques described above (2570).

A decoder performs corresponding decoding for the normal-6 coding mode.
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In other embodiments, an encoder uses other techniques to code the tiled

and untiled symbols.

4. Diff-2 and Diff-6 Modes

Differential coding modes such as diff-2 or diff-6 mode encode bit planes by
first generating a bit plane of differential (or residual) bits for the bit plane to be
coded, based on a predictor for the bit plane to be coded. The residual bit plane is
then encoded using, for example, the normal-2 or normal-6 coding mode, without
conditional inversion. .

In the second implementation, the diff-2 and diff-2 modes employ differential
coding denoted by the operation diff. If either differential mode is used, a bit plane
of differential bits is first generated by examining the predictor &(, j) of the bit plane
b(i, j) , which is defined as the causal operation:

INVERT  i=j=0,0rb(, j-1)#b(i-1,j)
b, j)=<b(0, j-1) i=0 (1).
b(i-1, ) otherwise

In other words, the predictor b(i, j) of a given binary symbol b(, j) will be
the binary symbol just to the left b(i -1, j) except in the following special cases:

1) If b(i, j) is at the top left corner of the bit plane, or if the above binary

symbol b(i, j — 1) is not equal to the binary symbol to the left

b(i -1, j), the predictor B(i, J) is equal to the value of INVERT; or
2) If 1) does not apply and b(, j) is in the left column (i == 0), the

predictor (i, j) will be the above binary symbol b(i, j-1).

On the encoder side, the diff operation computes the residual bit plane r
according to:

r(i, /) = b(i, j)® b, j) (2),
where @ is the exclusive or operation. The residual bit plane is encoded using the
normal-2 or normal-6 modes with no conditional inversion.

On the decoder side, the residual bit plane is regenerated using the
appropriate normal mode. Subsequently, the residual bits are used to regenerate

the original bit plane as the binary 2-D difference:

b(i, ) = r(i, ) ® b, J) (3).
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Figure 26 shows a technique (2600) for encoding binary information in a
differential coding mode. The encoder calculates a predictor for a bit plane (2610),
for example, as shown in equation 1. The encoder then calculates a residual bit
plane, for example, by performing an XOR operation on the bit plane and its
predictor (2620). The encoder then encodes the residual bit plane (e.g., in normal-
2 or normal-6 mode) (2630).

Figure 27 shows a technique (2700) for decoding binary information
encoded in a differential coding mode. The decoder decodes the residual bit plane
(2710) using an appropriate decoding technique, based on the mode used to
encode the residual bit plane (e.g., normai-2 or normal-6 mode). The decoder also
calculates the predictor for the bit plane (2720), using the same technique used in
the encoder. The decoder then reconstructs the original bit plane, for example, by
performing an XOR operation on the decoded residual bit plane and the predictor
bit plane (2730).

5. Raw Mode

All modes except for raw mode encode a bit plane at the frame level, which
calls for a second pass through the frame during encoding. However, for low-
latency situations, the second pass can add unaccéptable delay (e.g., because
transmission of the frame header and macroblock layer information is delayed until
the last macroblock in the frame is reached, because of the time spent encoding the
bit plane).

The raw mode uses the traditional method of encoding the bit plane one bit
per binary symbol at the same location in the bitstream as the rest of the
macroblock level information. Although macroblock-level coding of symbols is not a
new concept by itself, switching the coding of symbols from frame level to
macroblock level provides a low latency alternative to frame-level coding.

Figure 28 shows a technique (2800) for selectively encoding binary
information for a macroblock in raw coding mode for low latency applications. First,
the encoder checks whether to use raw mode to encode the binary information
(2810). If so, the encoder encodes a bit at the macroblock level for a macroblock
(2820) and checks whether the macroblock is the last macroblock in the frame
(2830). If the macroblock is not the last macroblock in the frame, the encoder
continues by encoding a bit for the next macroblock at the macroblock level (2820).
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If the encoder does not use the raw coding mode, the encoder encodes a bit
plane at the frame level for the macroblocks in the frame (2840). When the
encoding of the macroblocks in the frame is done (2850), the encoding ends for the
frame.

While the technique (2800) shows switching modes on a frame-by-frame
basis, alternatively the encoder switches on some other basis.

Having described and illustrated the principles of our invention with
reference to various embodiments, it will be recognized that the various
embodiments can be modified in arrangement and detail without departing from
such principles. It should be understood that the programs, processes, or methods
described herein are not related or limited to any particular type of computing
environment, unless indicated otherwise. Various types of general purpose or
specialized computing environments may be used with or perform operations in
accordance with the teachings described herein. Elements of embodiments shown
in software may be implemented in hardware and vice versa.

In view of the many possible embodiments to which the principles of our
invention may be applied, we claim as our invention all such embodiments as may
come within the scope and spirit of the following claims and equivalents thereto.
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CLAIMS

We claim:

1. In a computer system, a computer-implemented method of processing one
or more video images, the method comprising:

selecting a coding mode from a group of plural available coding modes; and

processing a bit plane according to the selected coding mode, wherein the bit
plane includes binary information for plural units of a video image, wherein the binary
information represents characteristics of the plural units of the video image, wherein
each of the plural units includes plural pixels, and wherein the binary information

includes one bit for each of the plural units of the video image.
2. The method of claim 1 wherein the processing is performed at picture level.

3. The method of claim 1 wherein the group of plural available coding modes

comprises a row-prediction coding mode and a column-prediction coding mode.

4. The method of claim 1 wherein the group of plural available coding modes

further comprises one or more vector variable length coding modes.

5. The method of claim 1 wherein the group of plural available coding modes

further comprises one or more differential coding modes.

6. The method of claim 1 wherein the plural units are macroblocks, and
wherein the binary information in the bit plane comprises skipped macroblock

information.

7. The method of claim 1 wherein the plural units are macroblocks, and
wherein the binary information in the bit plane comprises motion vector count

information.

8. The method of claim 1 wherein the plural units are macroblocks, and

wherein the binary information in the bit plane comprises field/frame flags.
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9. A computer-readable medium storing computer-executable instructions for
causing the computer system to perform the method of claim 1 during video decoding,
wherein the processing comprises entropy decoding according to the selected coding

mode.

10. A computer-readable medium storing computer-executable instructions for
causing the computer system to perform the method of claim 1 during video encoding,
wherein the processing comprises entropy encoding according to the selected coding

mode.

11. In a computer system, a computer-implemented method of processing
plural video images in a video image sequence, the method comprising:

selecting a coding mode from a group of plural available coding modes; and

processing a bit plane according to the selected coding mode, wherein the bit
plane includes binary information signifying whether macroblocks in a predicted video
image are skipped or not skipped, and wherein a macroblock in the predicted video
image is skipped if the motion for the macroblock is equal to the predicted motion of

the macroblock and the macroblock has no residual error.

12. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 11 during video encoding.

13. In a computer system, a method of processing plural video images of a
video sequence, the plural video images including one or more predicted video images,
wherein each of the one or more predicted video images includes plural macroblocks,
the method comprising:

processing one or more skipped macroblocks among the plural macroblocks of
at least one of the one or more predicted video images, wherein each of the at least
one of the one or more predicted video images is predicted from no more than one
reference video image, wherein each of the one or more skipped macroblocks uses

predicted motion for the skipped macroblock based upon motion of one or more other
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macroblocks, and wherein each of the one or more skipped macroblocks lacks residual

information.

14. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 13 during video encoding.

15. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 13 during video decoding.

16. In a computer system, a method of processing plural video images of a
video sequence, the plural video images including plural predicted macroblocks,
wherein each of the plural predicted macroblocks is predicted from no more than one
reference video image, the method comprising:

processing one or more skipped macroblocks among the plural predicted

‘macroblocks, wherein each of the one or more skipped macroblocks uses predicted

motion for the skipped macroblock based upon motion of one or more other predicted
macroblocks, and wherein each of the one or more skipped macroblocks lacks residual

information.

17. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 16 during video encoding.

18. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 16 during video decoding.

19. In a computer system, a computer-implemented method of processing one
or more images in a video image sequence, wherein a bitstream syntax for the video
image sequence includes plural hierarchical layers, the plural hierarchical layers
including at least a sequence layer, a picture layer, and a macroblock layer, the
method comprising:

processing a bit plane at a layer higher than the macroblock layer in the

bitstream syntax for the video image sequence, wherein the bit plane includes binary
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information for plural macroblocks in an image in the video image sequence, wherein
each of the plural macroblocks includes plural blocks, wherein each of the plural blocks
includes plural pixels, and wherein the binary information includes one bit for each of

the plural macroblocks in the image.

20. The method of claim 19 wherein the binary information comprises skipped
macroblock information.

21. The method of claim 19 wherein the binary information comprises motion

vector count information.

22. The method of claim 19 wherein the binary information comprises interlace

mode information.

23. The method of claim 19 wherein the higher layer is the picture layer.

24. The method of claim 19 wherein a header at the higher layer includes the
bit plane during transmission.

25. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 19 during video encoding.

26. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 19 during video decoding.

27. In a computer system, a computer-implemented method of processing one
or more images in a video image sequence, wherein a bitstream syntax for the video
image sequence includes plural hierarchical layers, the plural hierarchical layers
including at least a picture layer and a macroblock layer, the method comprising:

processing skipped macroblock information at a layer higher than the
macroblock layer in the bitstream syntax for the video image sequence, wherein the

skipped macroblock information is for plural macroblocks in an image in the video
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image sequence, wherein each of the plural macroblocks includes plural blocks,

wherein each of the plural blocks includes plural pixels.

28. The method of claim 27 wherein the higher layer is the picture layer.

29. The method of claim 27 wherein a header at the higher layer includes the
skipped macroblock information.

30. A computer-readable medium storing computer-executable instructions for |

causing the computer system to perform the method of claim 27 during video encoding.

31. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 27 during video decoding.

32. In a computer systern, a computer-implemented method of processing
plural images in a video image sequence, wherein skipped macroblock information is
associated with the plural images, the method comprising:

selecting a coding mode from a group of plural available coding modes,
wherein at least two of the plural available coding modes involve reduction of bitrate
associated with the skipped macroblock information; and

processing the skipped macroblock information according to the selected

coding mode.

33. The method of claim 32 wherein the group of plural available coding modes

comprises a row-prediction mode, a column-prediction mode, and a normal mode.

34. The method of claim 32 wherein the group of plural available coding modes
comprises a row-skip mode, a column-skip mode, a differential mode, an entropy

coding mode, and a raw mode.

35. The method of claim 32 wherein the processing is low latency processing,

and wherein the selected coding mode is a one-pass macroblock-level coding mode.
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36. The method of claim 32 wherein a bitstream syntax for the video image
sequence includes plural hierarchical layers, the plural hierarchical layers including a
sequence layer, a picture layer, and a macroblock layer, and wherein the processing

occurs at the picture layer.

37. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 32 during video encoding.

38. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 32 during video decoding.

39. In a computer system, a computer-implemented method of processing
plural units in a video image sequence, wherein binary information represents
characteristics of plural units, wherein each of the plural units includes plural pixels,
and wherein the binary information includes one bit for each of the plural units, the
method comprising:

selecting a coding mode from a group of plural available coding modes,
wherein the plural available coding modes include a low latency coding mode; and

if the selected coding mode is the low latency coding mode, processing the
binary information according to the selected coding mode at a unit layer in a bitstream
syntax for the video image sequence,

otherwise, processing the binary information as a bit plane according to the
selected coding mode at a layer higher than the unit layer in the bitstream syntax for

the video image.

40. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 39 during video encoding.

41. A computer-readable medium storing computer-executable instructions for
causing the computer system to perform the method of claim 39 during video decoding.
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42. In a computer system, a computer-implemented method of processing
plural units in a video image sequence, wherein a bitstream syntax for the video image
sequence includes plural hierarchical layers, the plural hierarchical layers including a
sequence layer and a unit layer, the method comprising:

selecting a coding mode from a group of plural available coding modes,
wherein the plural available coding modes include a low latency coding mode; and

if the selected coding mode is the low latency coding mode, processing binary
information according to the selected coding mode at the unit layer,

otherwise, processing the binary information as a bit plane according to the

selected coding mode at a layer higher than the unit layer.

43. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 42 during videc encoding.

44. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 42 during video decoding.

45. In a computer system, a computer-implemented method of compressing a
bit plane comprising binary symbols in a matrix arranged in rows or columns, the
method comprising:

for each row in the bit plane where each binary symbol in the row is equal to a
first value, or for each column in the bit plane where each binary symbol in the column
is equal to a first value, encoding the row or column with a single bit in an encoded bit
stream; and

for each row in the bit plane where at least one binary symbol in the row is not
equal to the first value, or for each column in the bit plane where at least one binary
symbol in the column is not equal to the first value, encoding the row or column with

one bit per binary symbol in the row or column.

46. The method of claim 45 wherein the binary symbols in the matrix represent
skipped macroblock information in a video sequence.
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47. A computer-readable medium storing computer-executable instructions for

causing the computer system to perform the method of claim 45 during video encoding.

48. In a computer system, a computer-implemented method of processing one
or more video images, the method comprising:

processing a bit plane according to a coding mode, wherein the bit plane
includes binary information for plural units of a video image, wherein the binary
information represents characteristics of the plural units of the video image, wherein
each of the plural units includes plural pixels, wherein the binary information includes
one bit for each of the plural units of the video image, and wherein an invert flag
indicates whether to invert the bit plane as part of the processing.

49. A computer-readable medium storing computer-executable instructions for
causing the computer system to perform the method of claim 48 during video encoding,
wherein the processing includes entropy encoding according to the coding mode, and
wherein inversion of the bit plane occurs, if at all, before the entropy encoding.

50. A computer-readable medium storing computer-executable instructions for
causing the computer system to perform the method of claim 48 during video decoding,
wherein the processing includes entropy decoding according to the coding mode, and
wherein inversion of the bit plane occurs, if at all, after the entropy decoding.
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Figure 14
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1500
for (mbrow = 0; mbrow < NumMBRows; mbrow++)
{ e

if (get_bits(1) == 1)
## All the macroblocks in this macroblock row are skipped

else
{

## At least one macroblock in this row is not skipped

## Get coded status of each macroblock in the row starting from left-to-right

for (mb = 0; mb < NumMBsPerRow; mb++)

k = get_bits(1); ## k equals status of macroblock
## k ==0 if not skipped, k == 1 if skipped

}
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Figure 17 1700
for (mbcol = 0; mbcol < NumMBColumns; mbcol++) /
{

if (get_bits(1) == 1)
## All the macroblocks in this macroblock column are skipped

else
## At least one macroblock in this column is not skipped.
## Get coded status of each macroblock in column starting from top-to-bottom
for (mb = 0; mb < NumMBsPerColumn; mb++)
k = get_bits(1); ## k equals status of macroblock
## k ==0 if not skipped, k == 1 if skipped
}
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