

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2017/0051502 A1 Wolf et al.

Feb. 23, 2017 (43) **Pub. Date:**

(54) ROOF INSULATION SYSTEMS

(71) Applicant: Owens Corning Intellectual Capital, LLC, Toledo, OH (US)

(72) Inventors: David Herman Wolf, Newark, OH (US); Mark Howard Smith, Newark, OH (US); Neil Robert Hettler, Granville, OH (US); Liang Gwee, New Albany, OH (US); Kelly Flaherty, New Albany, OH (US); James William

Rinne, Granville, OH (US)

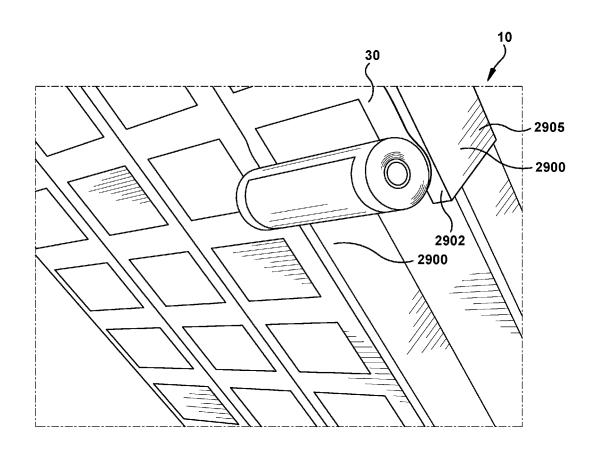
(21) Appl. No.: 15/224,870

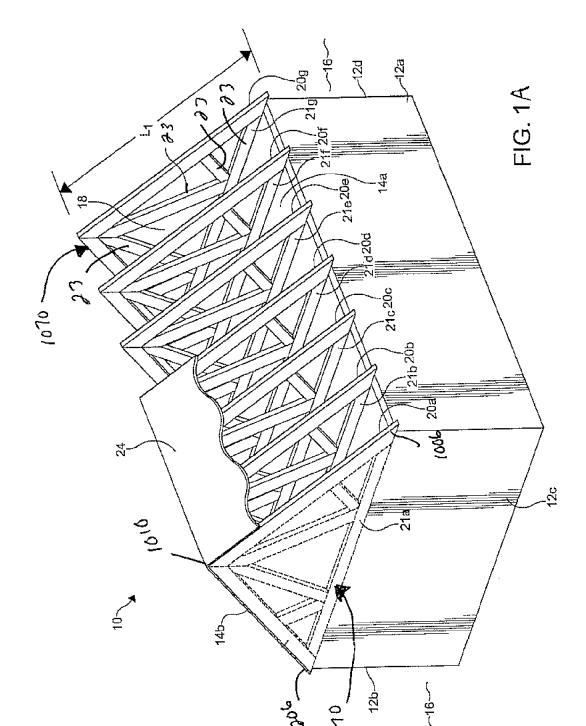
(22) Filed: Aug. 1, 2016

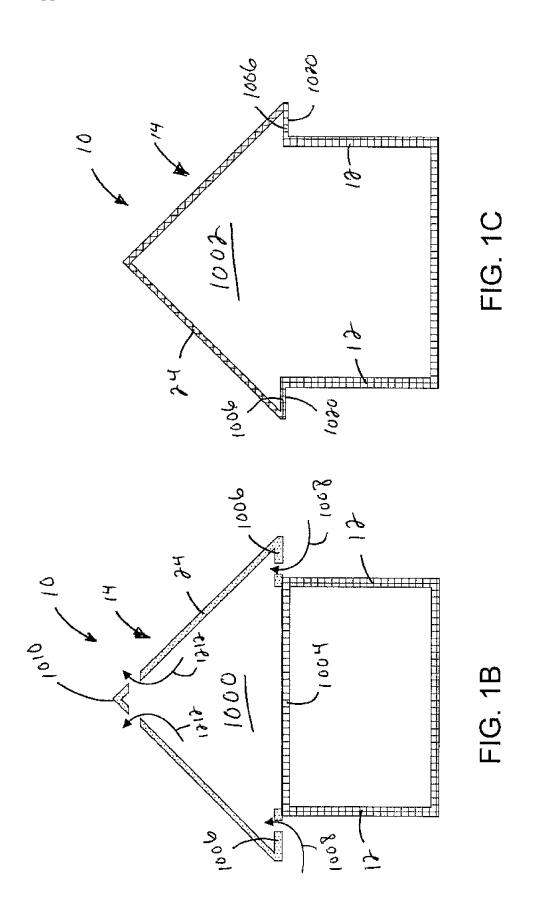
Related U.S. Application Data

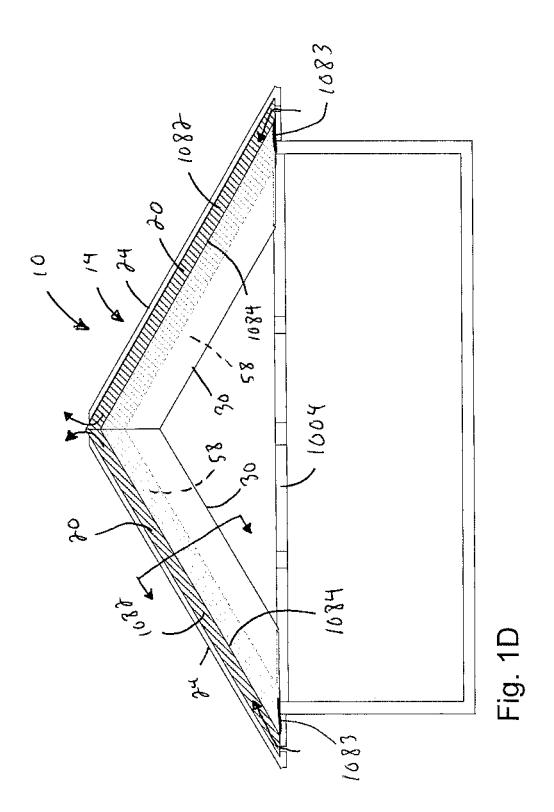
(63) Continuation-in-part of application No. 14/613,272, filed on Feb. 3, 2015, which is a continuation-in-part of application No. 14/532,302, filed on Nov. 4, 2014, said application No. 14/532,302 is a continuation-inpart of application No. 14/452,696, filed on Aug. 6, 2014, now Pat. No. 9,476,204.

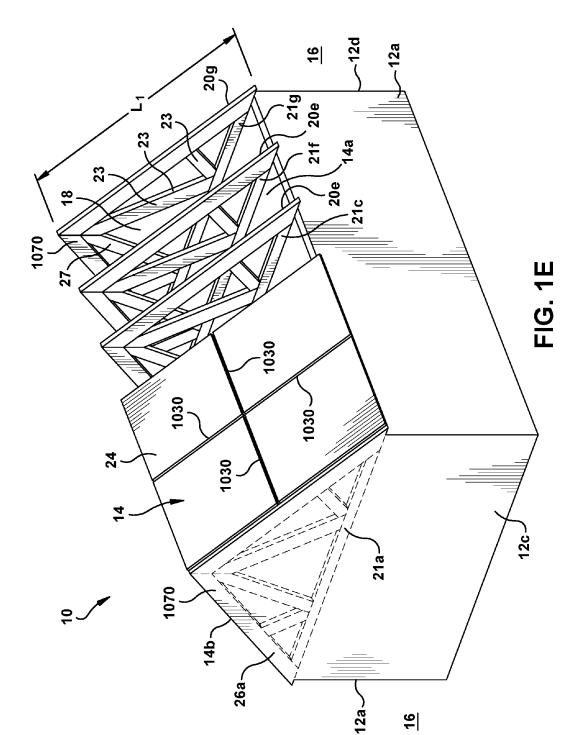
Provisional application No. 62/199,986, filed on Aug. 1, 2015, provisional application No. 62/079,766, filed on Nov. 14, 2014, provisional application No. 62/058, 034, filed on Sep. 30, 2014, provisional application No. 61/935,511, filed on Feb. 4, 2014.

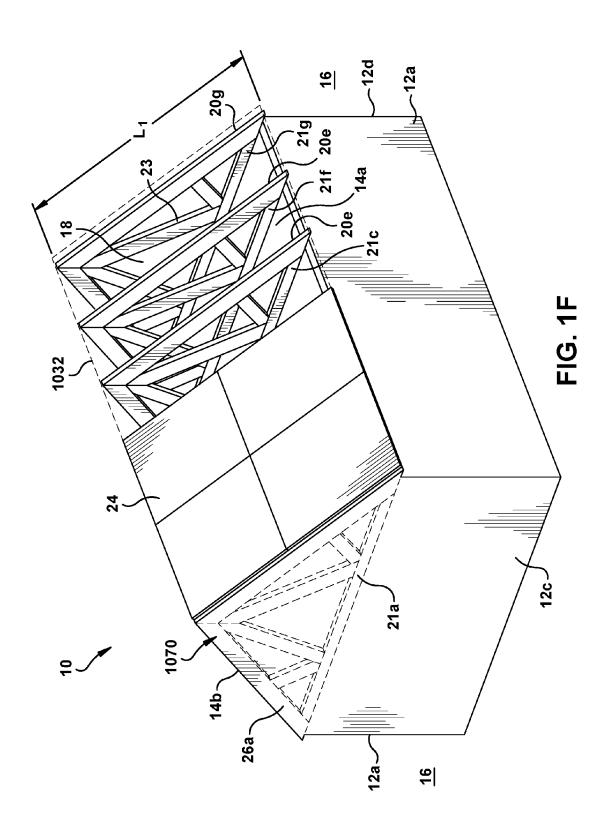

Publication Classification

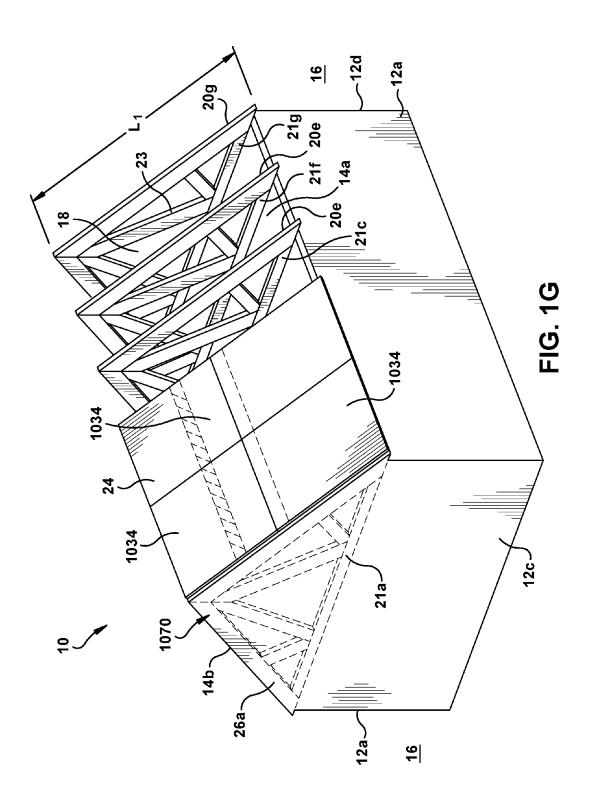

(51) Int. Cl. E04B 1/76 (2006.01)

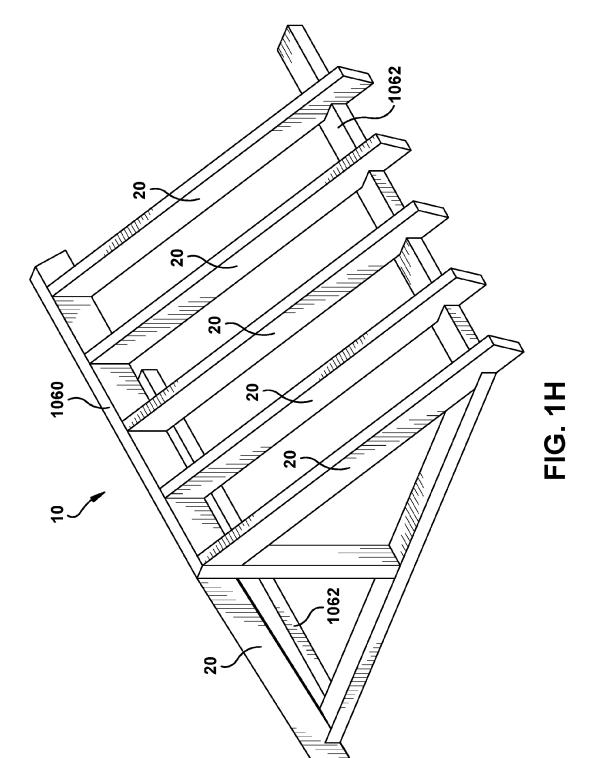

(52)U.S. Cl. CPC *E04B 1/7662* (2013.01); *E04B 7/022* (2013.01)

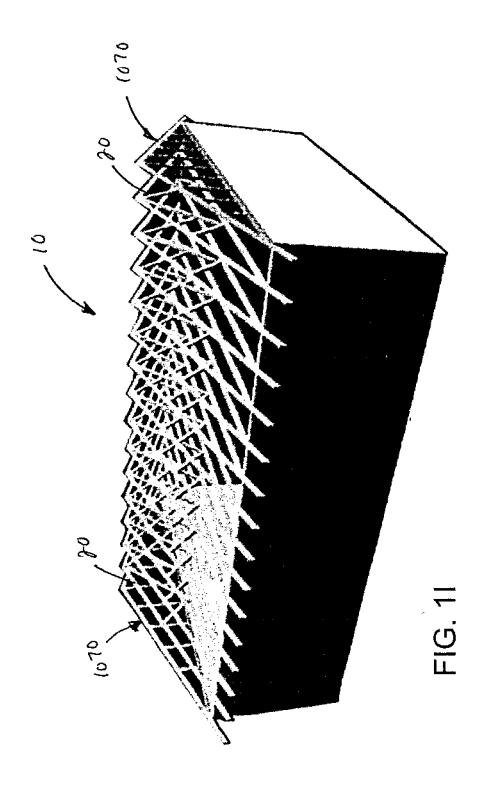

(57)ABSTRACT

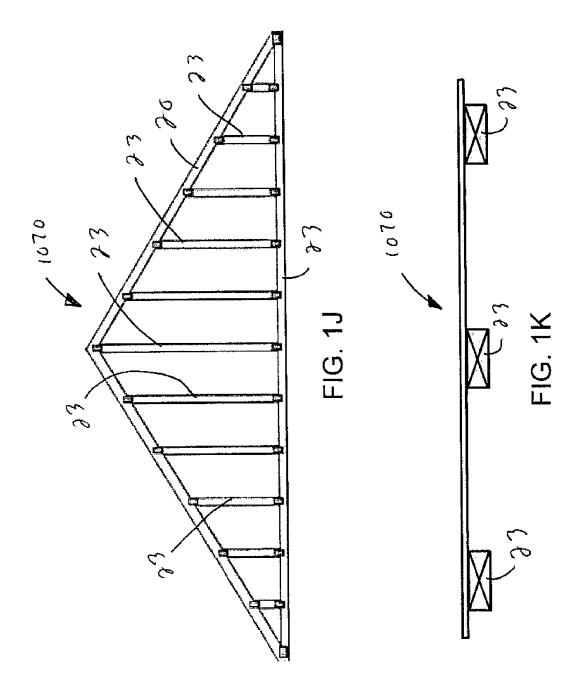

An insulation system includes insulation support wires connected to wooden structural members that support roof sheathing. Insulation batts are disposed between the wooden structural members and on the insulation support wire. Portions of the insulation batts are disposed directly under bottommost surfaces of the wooden structural members.



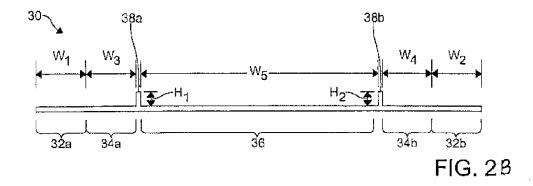


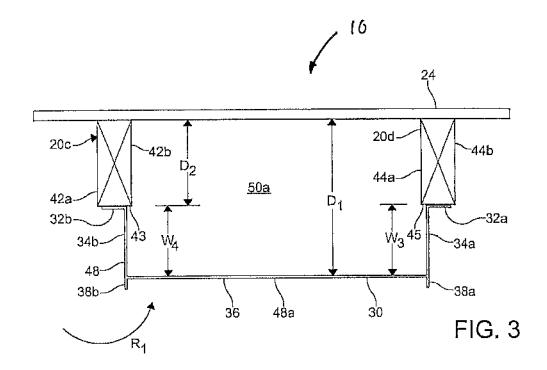












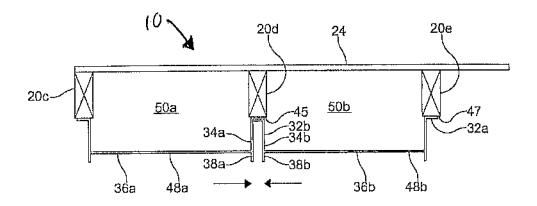
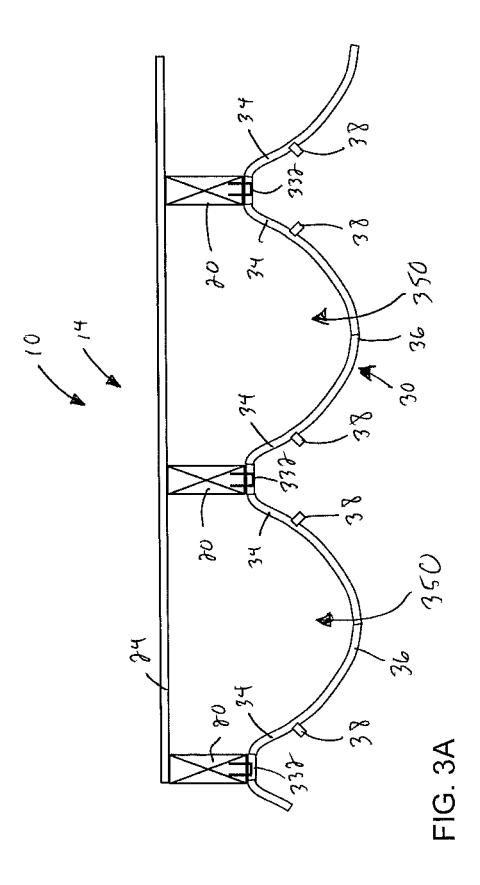



FIG. 4

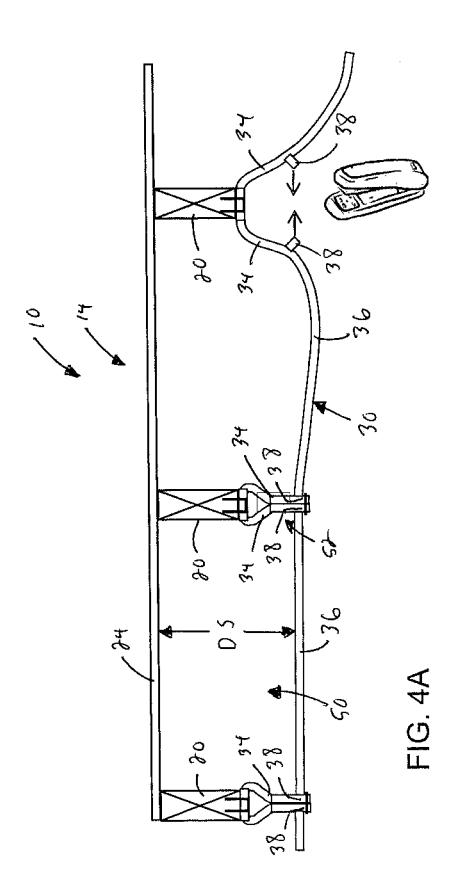
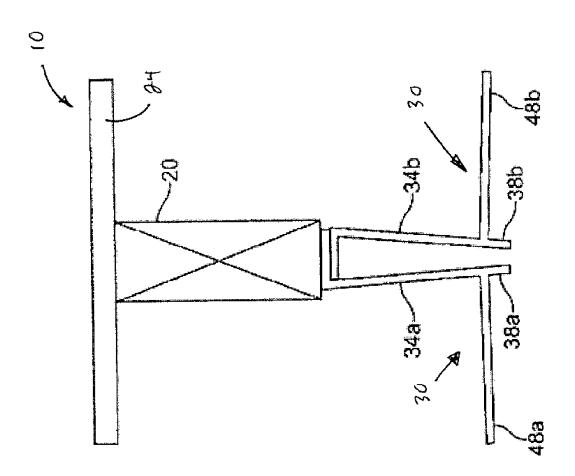
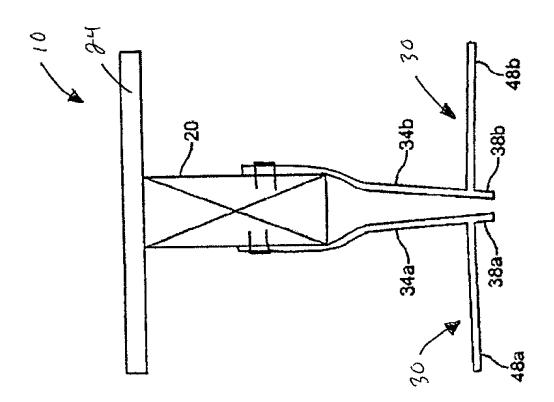
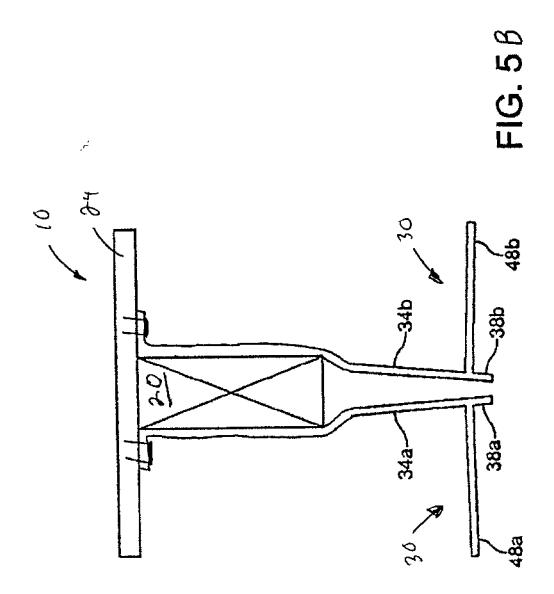
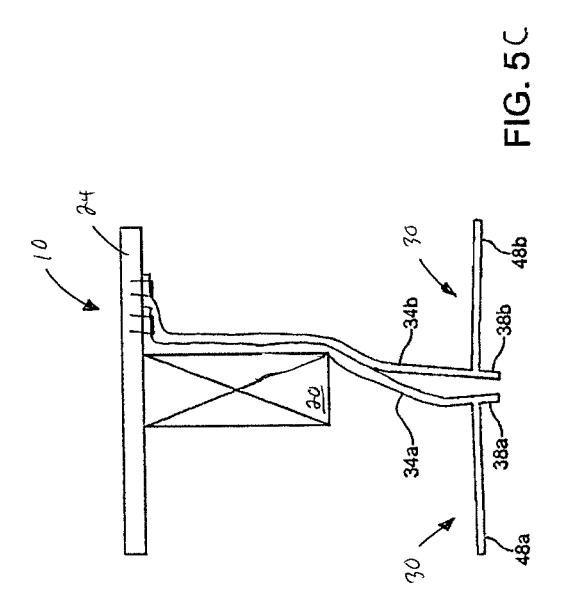
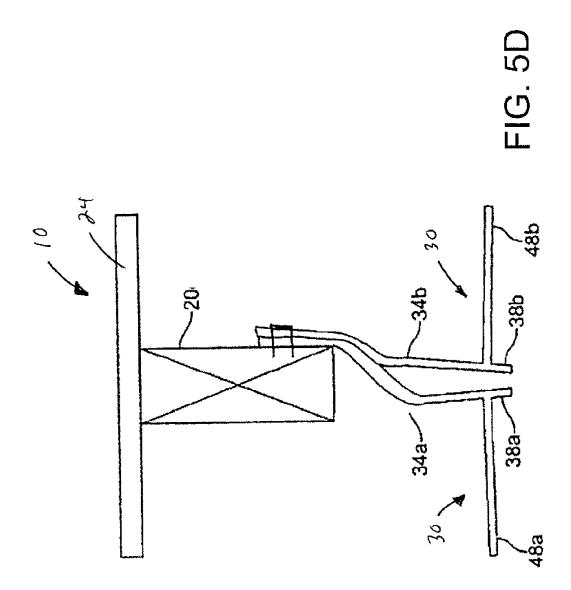
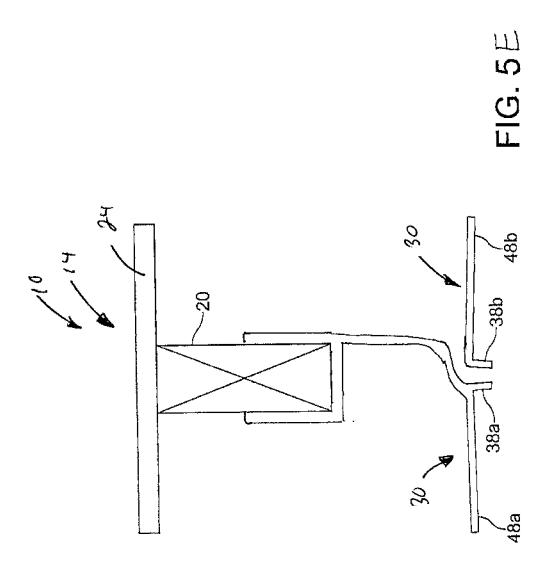
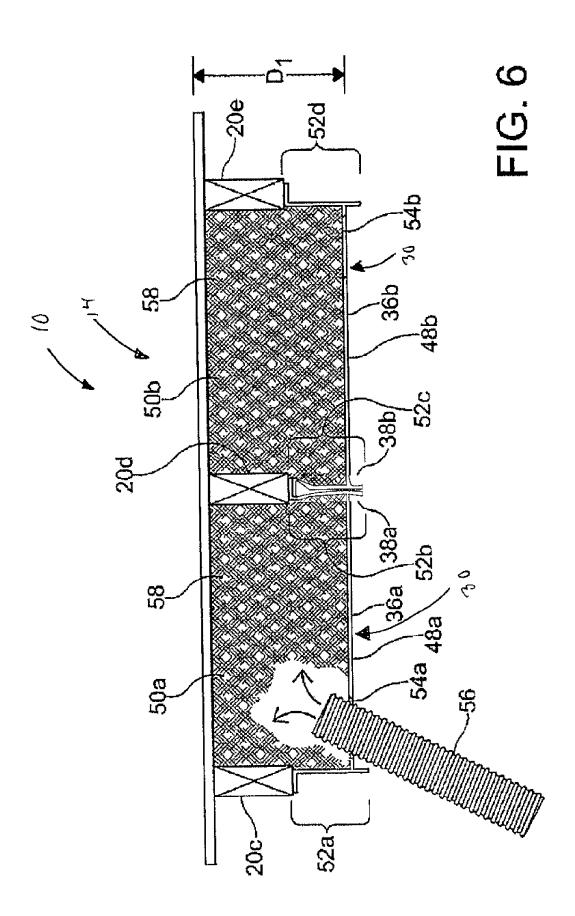
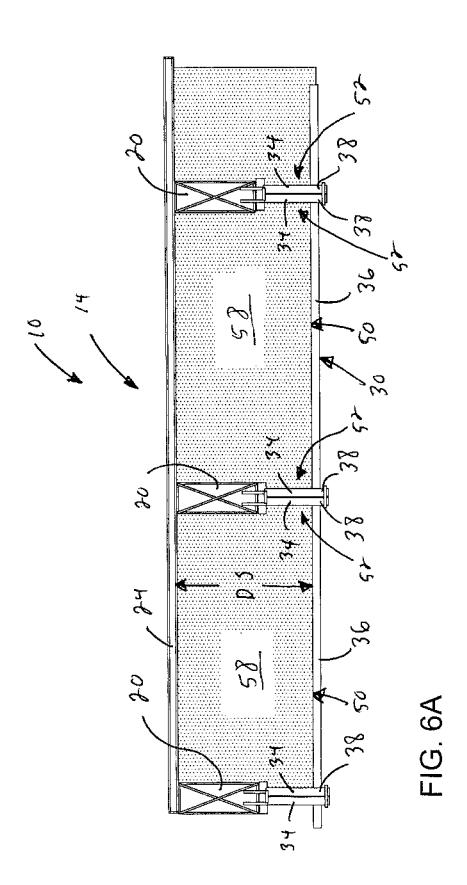


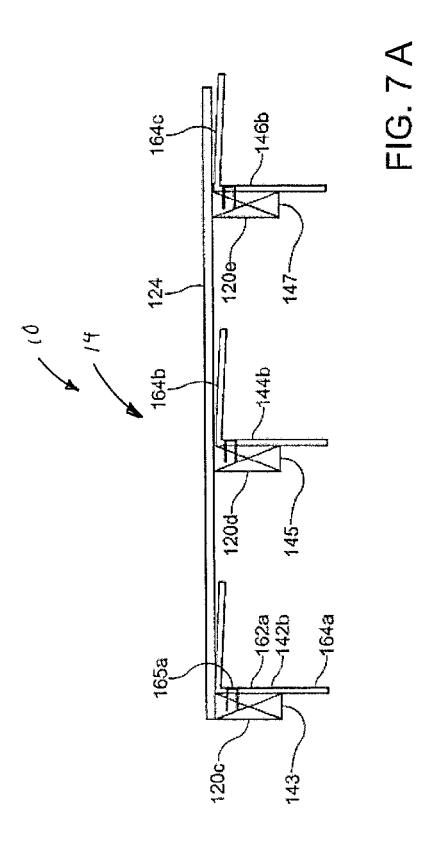
FIG. 5

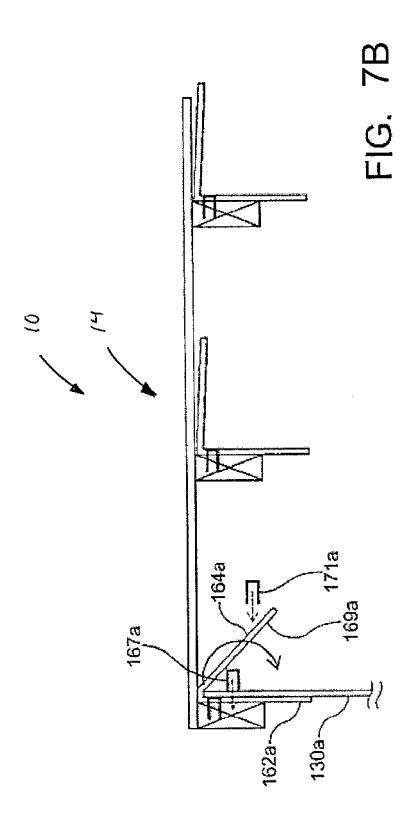






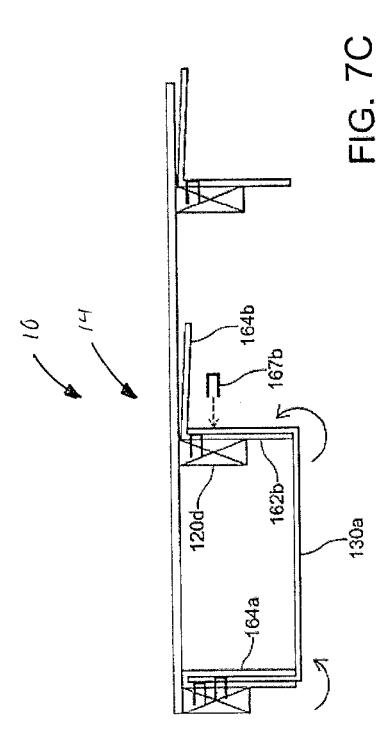

FIG. 5A

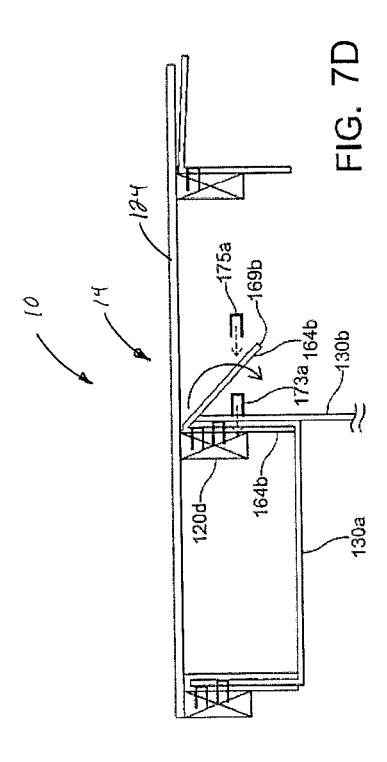


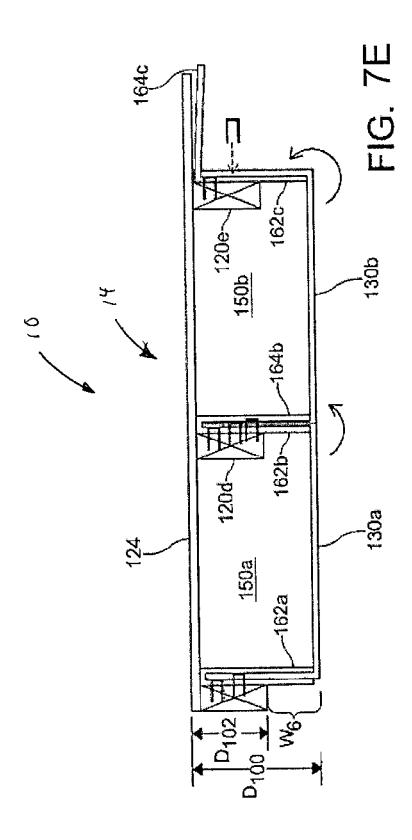


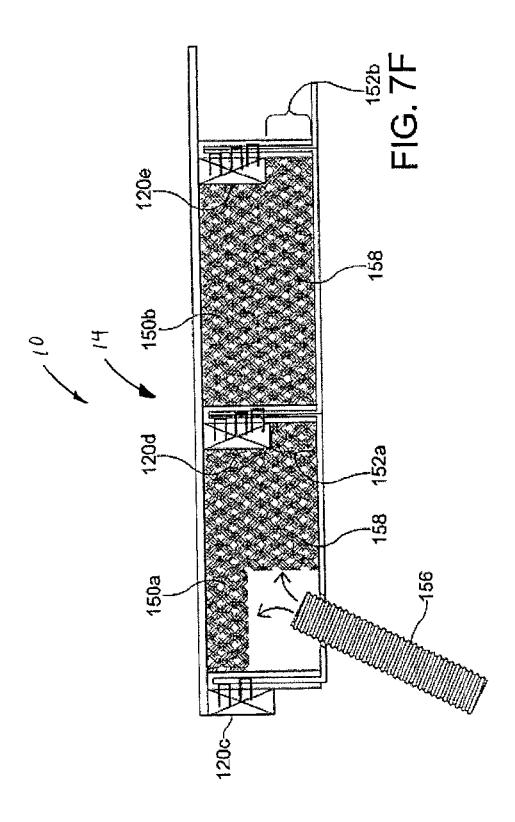


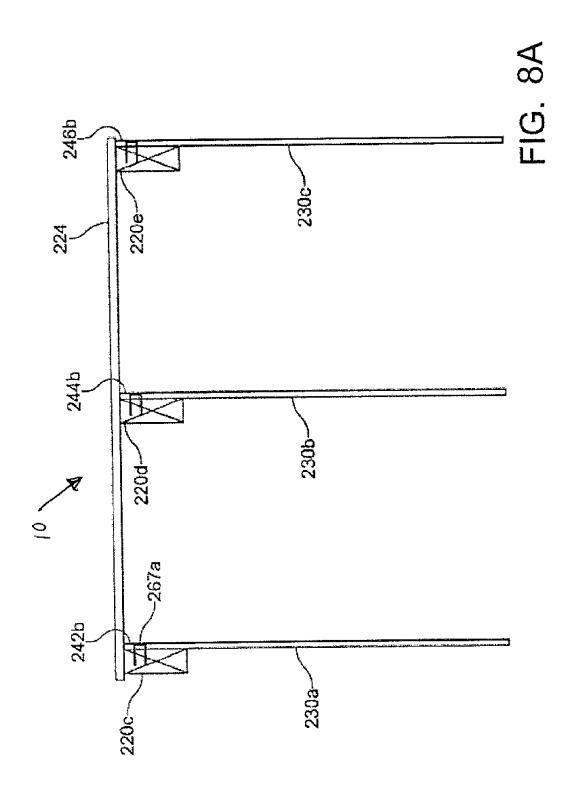


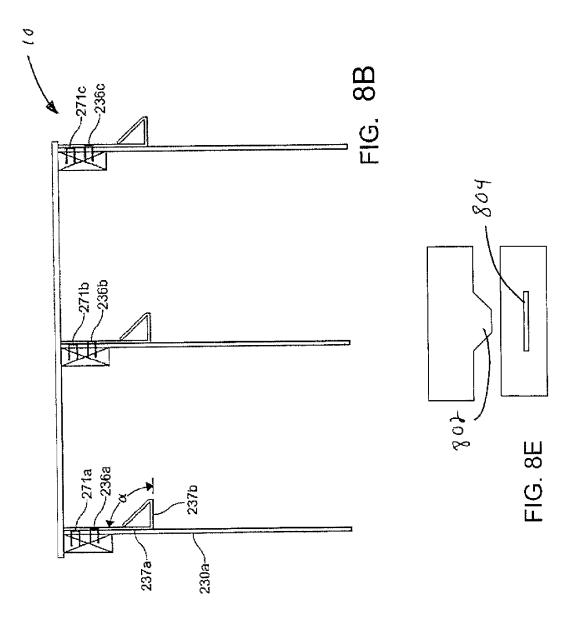


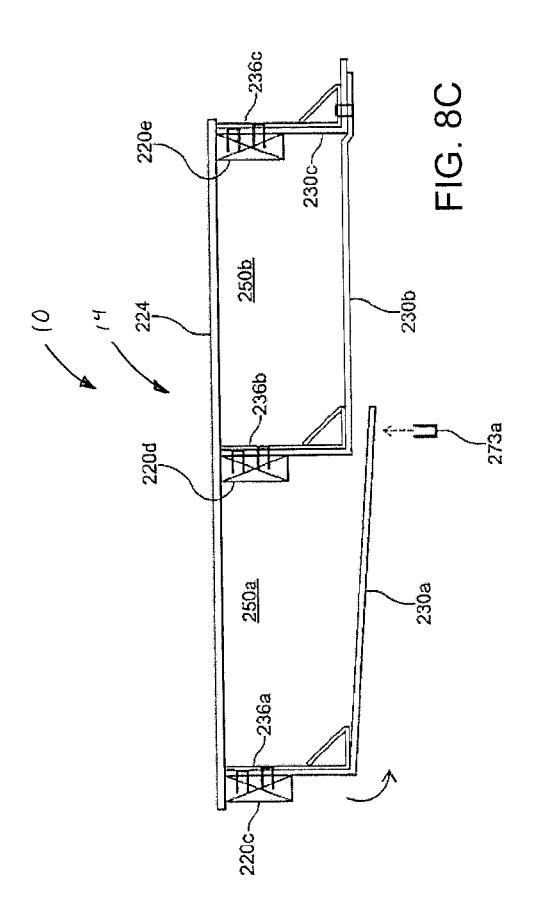


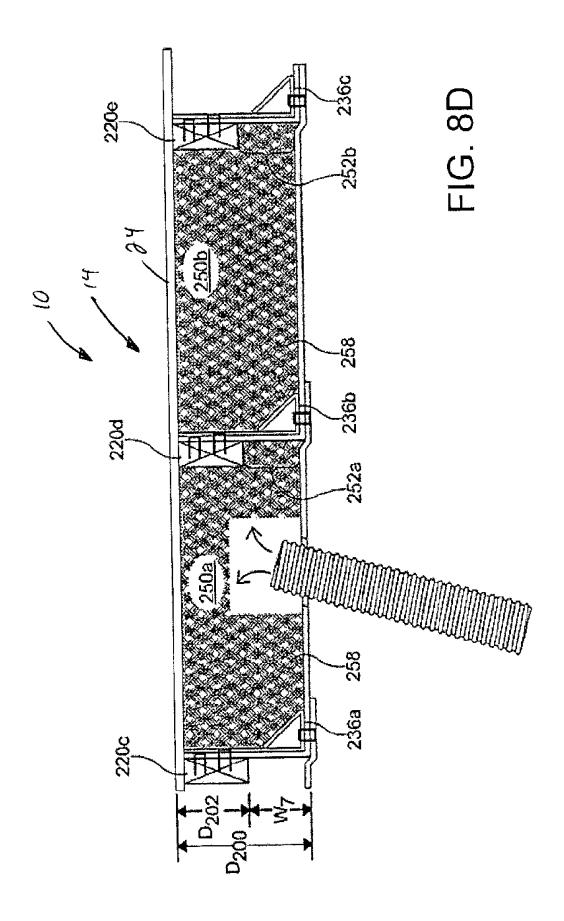


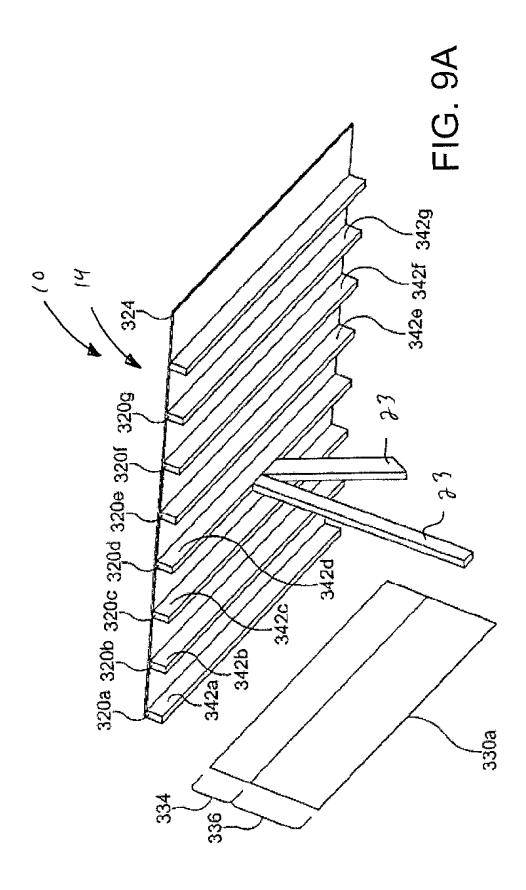


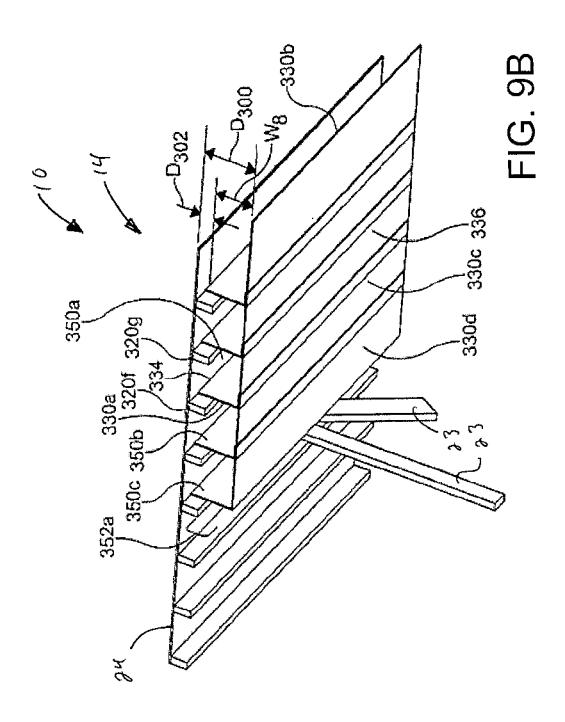


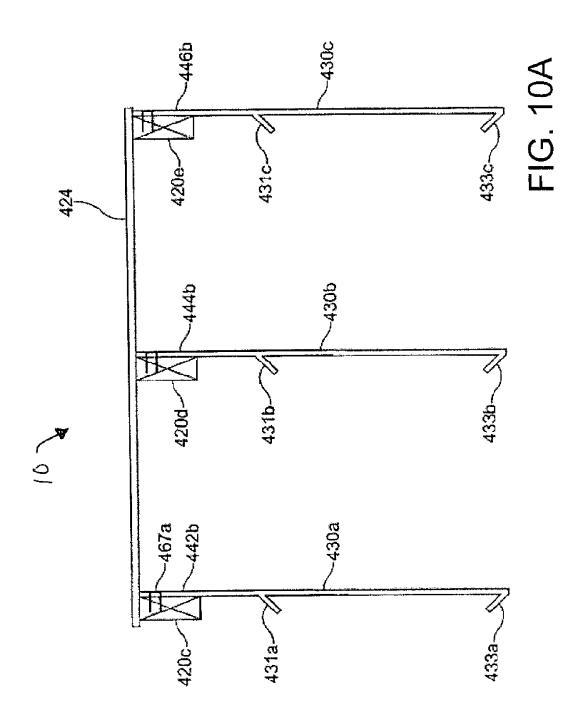


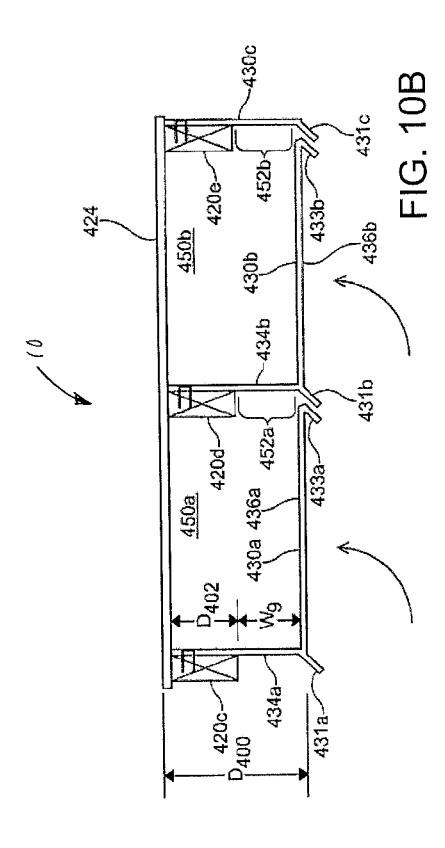


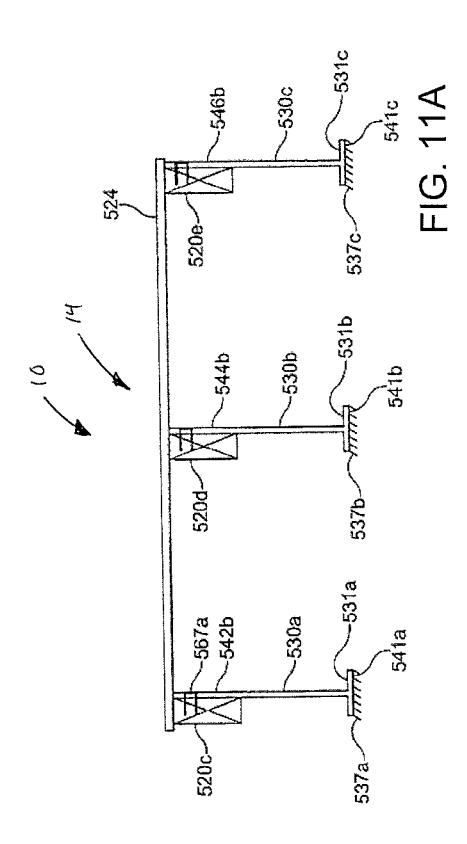


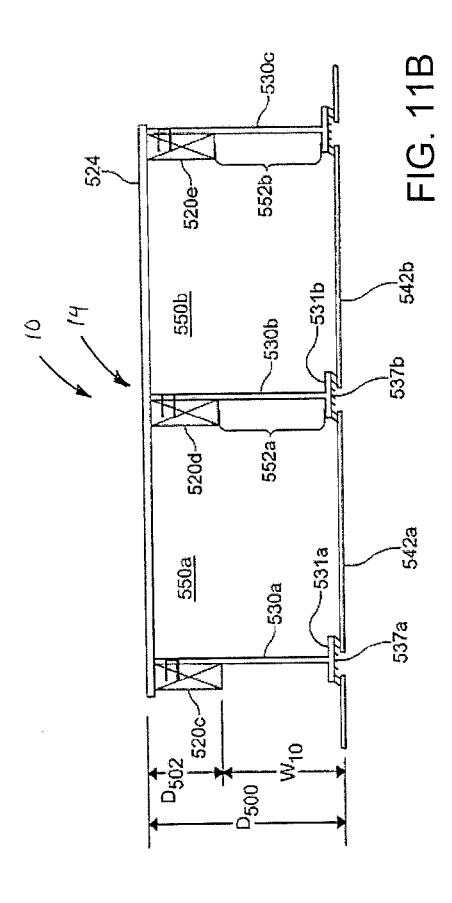


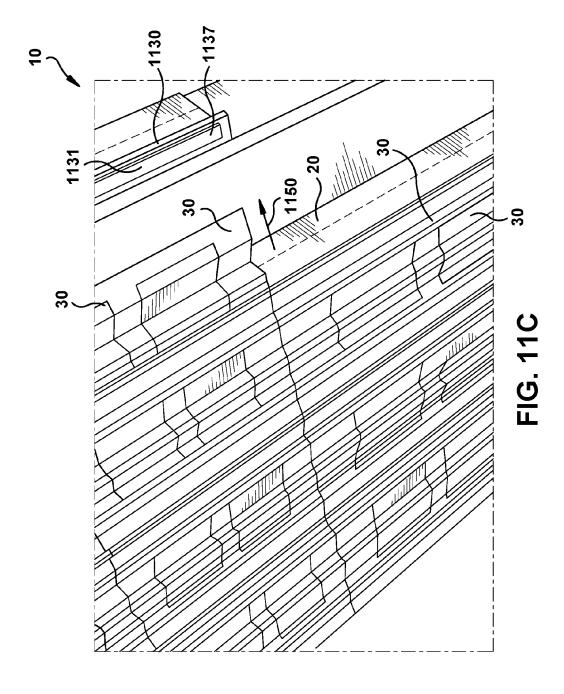


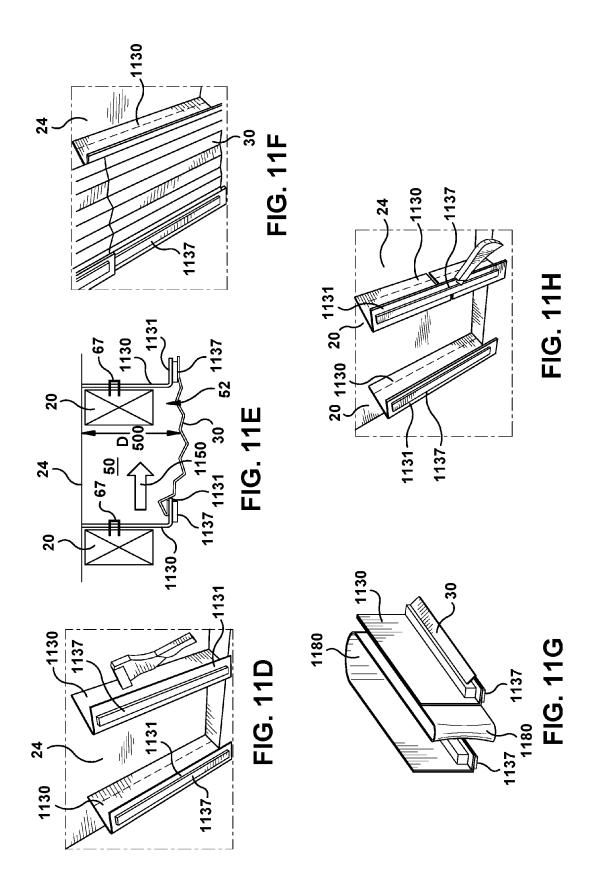


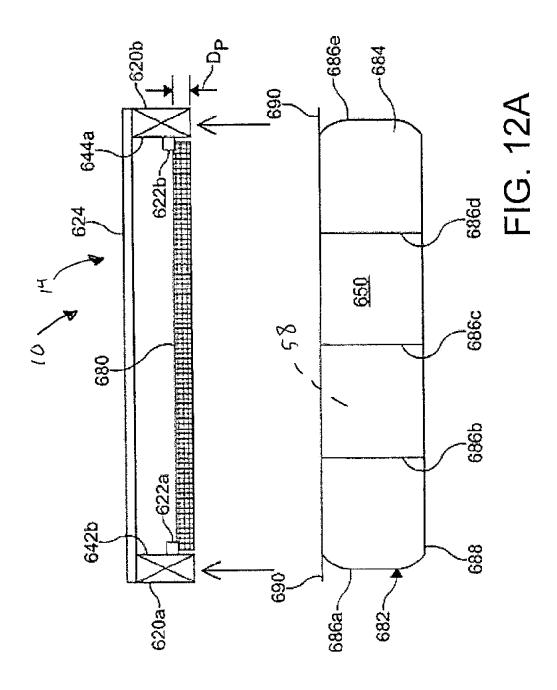


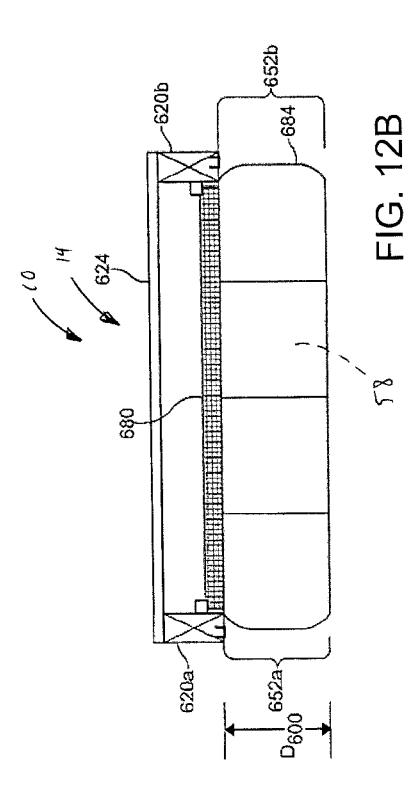


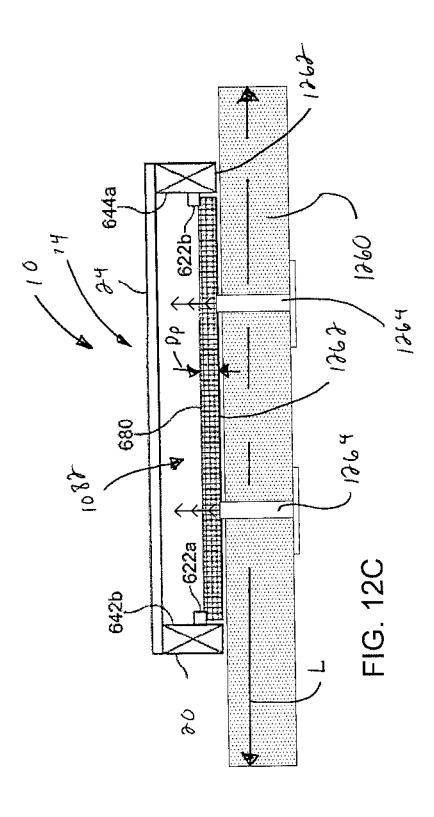


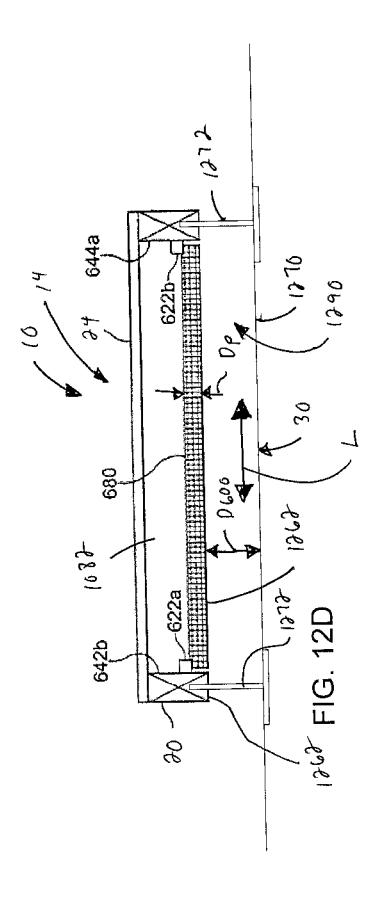


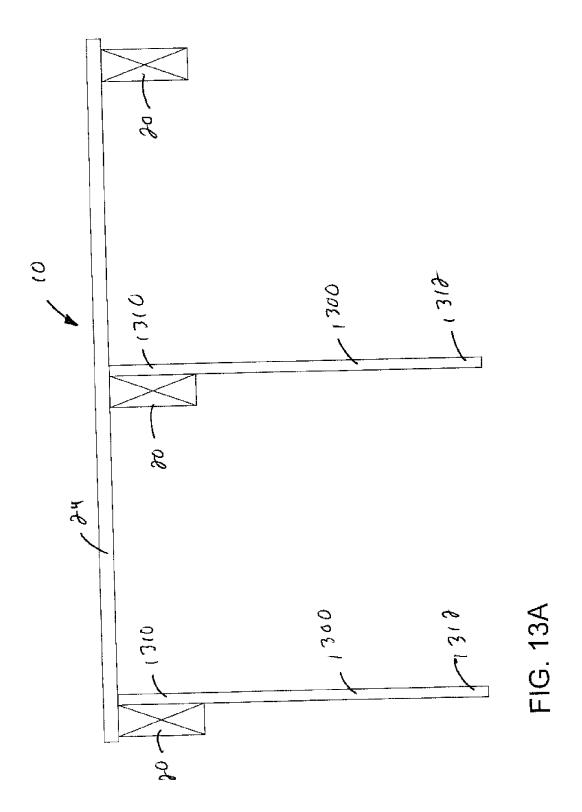


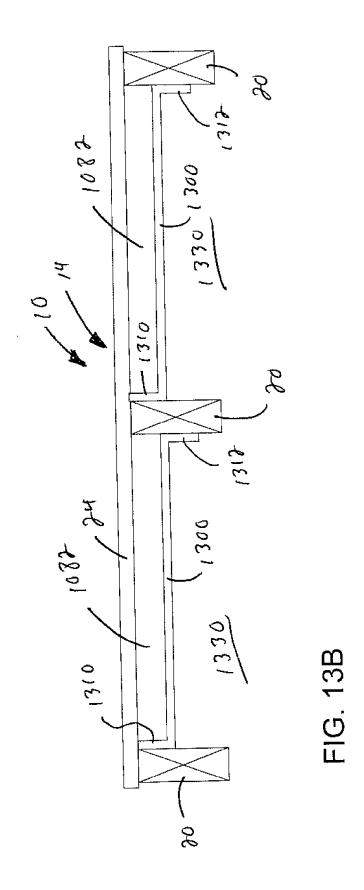


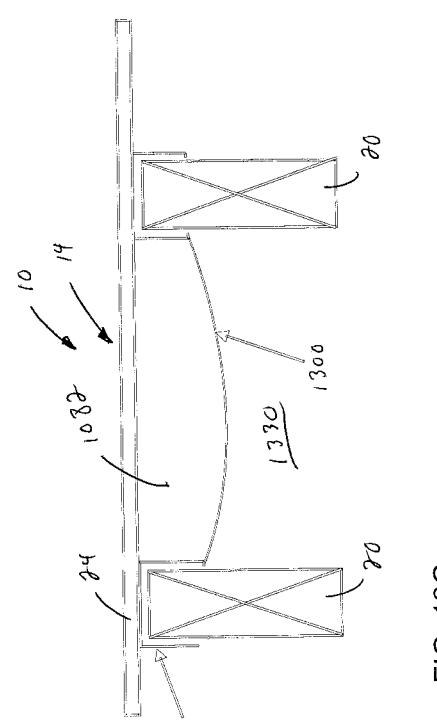
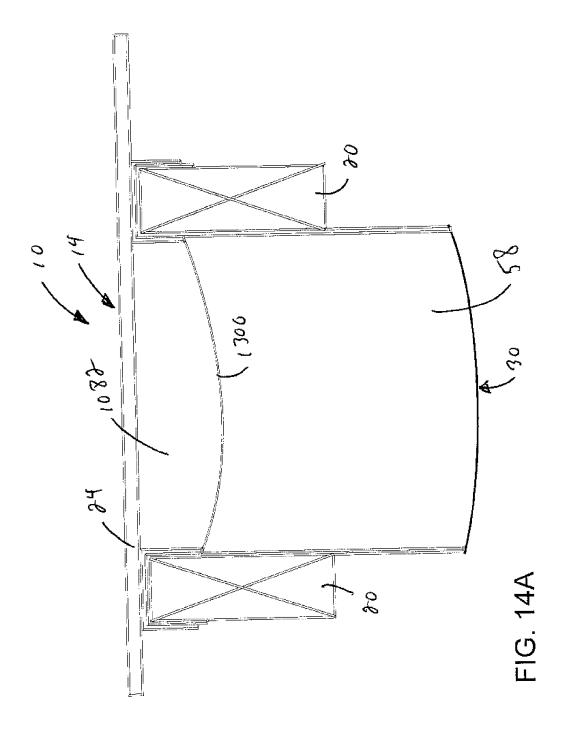
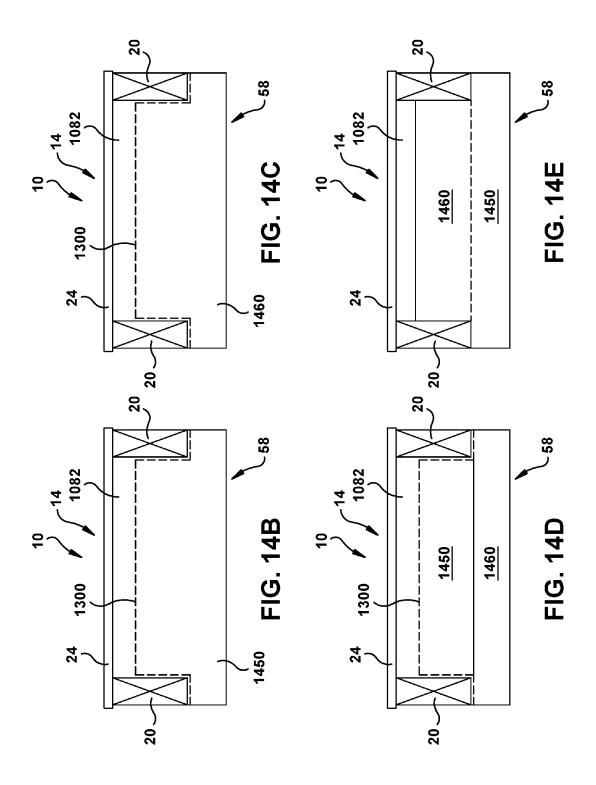
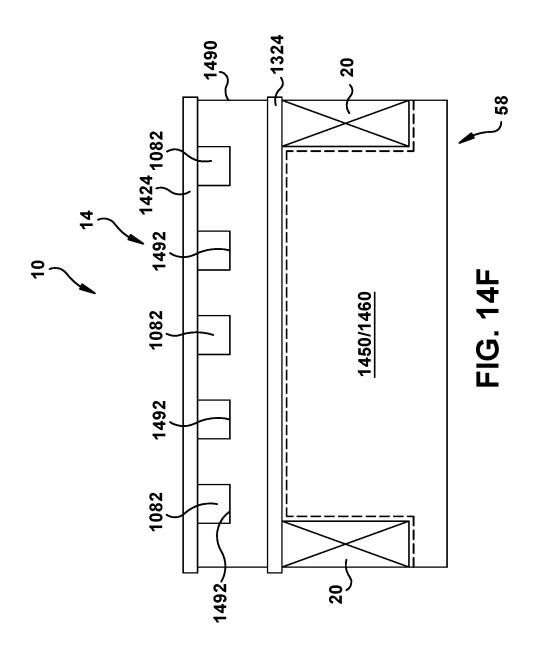
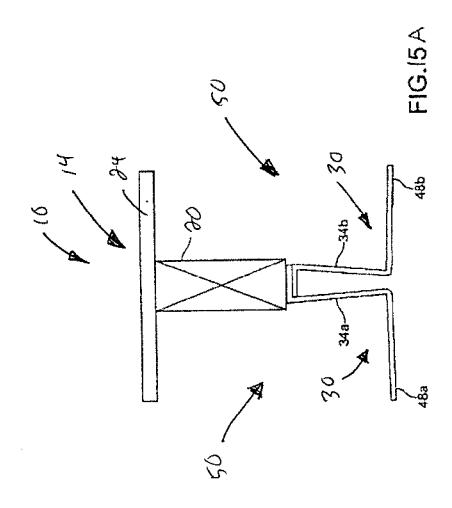


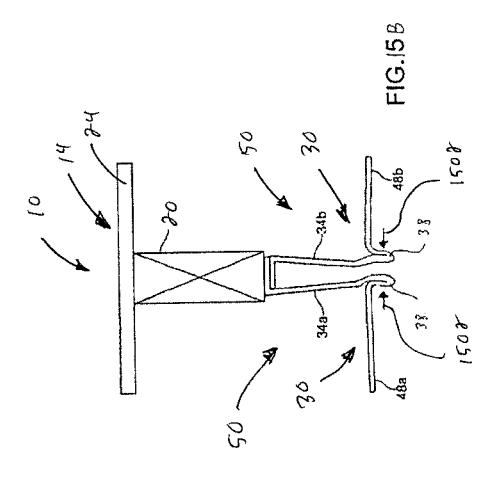


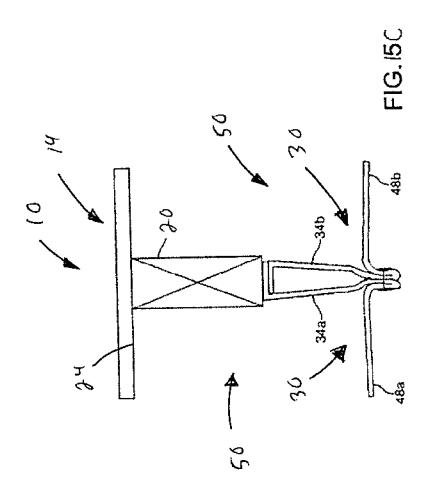


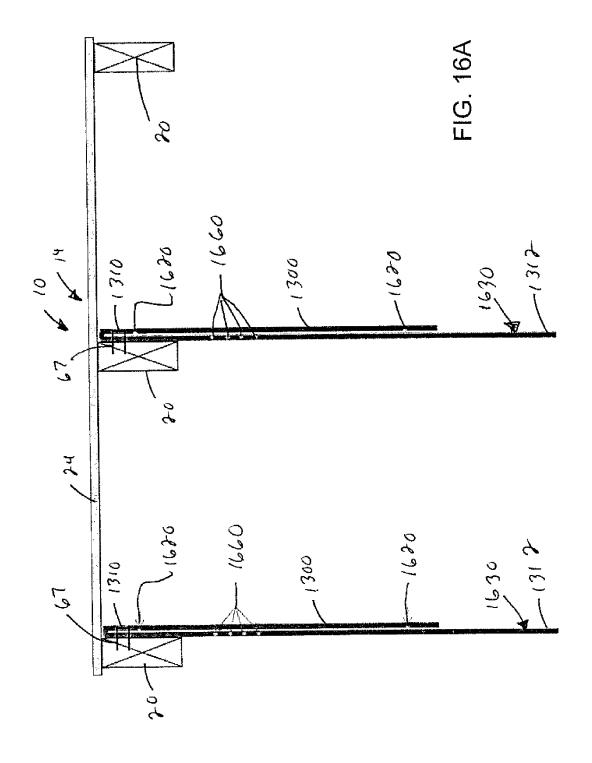


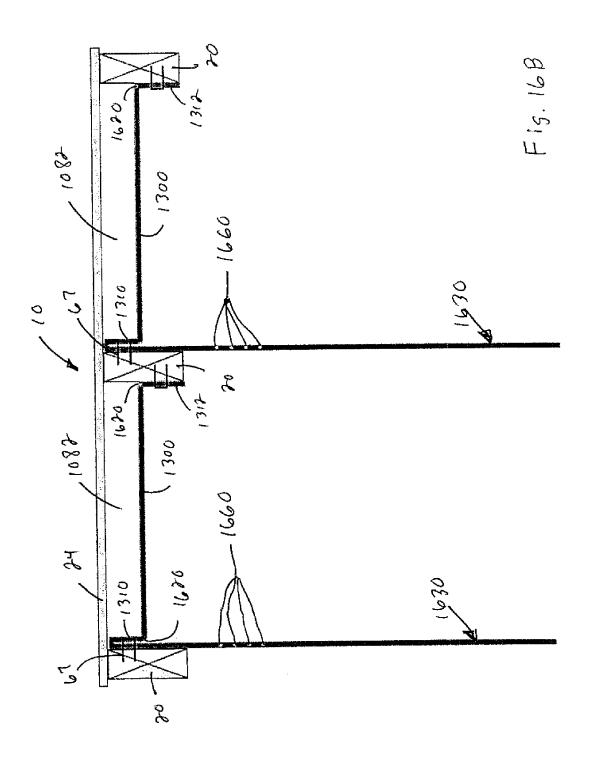


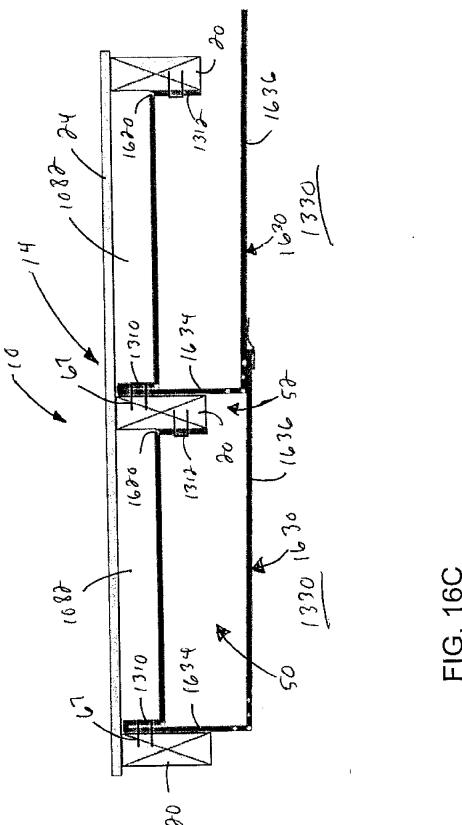






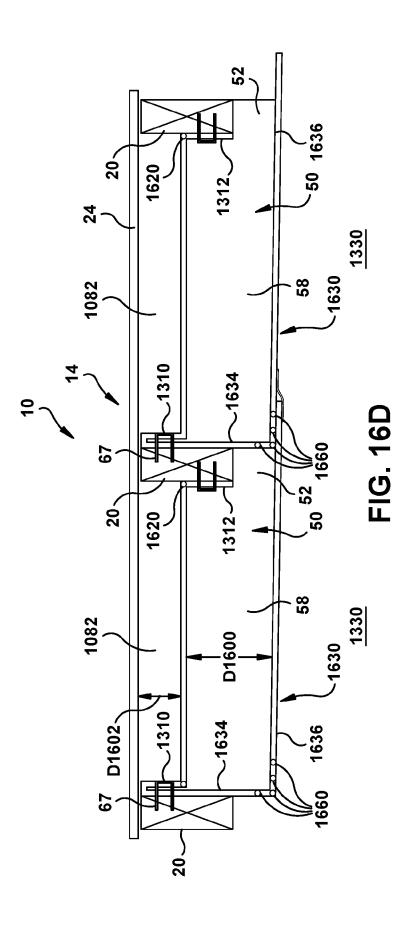

FIG. 13C

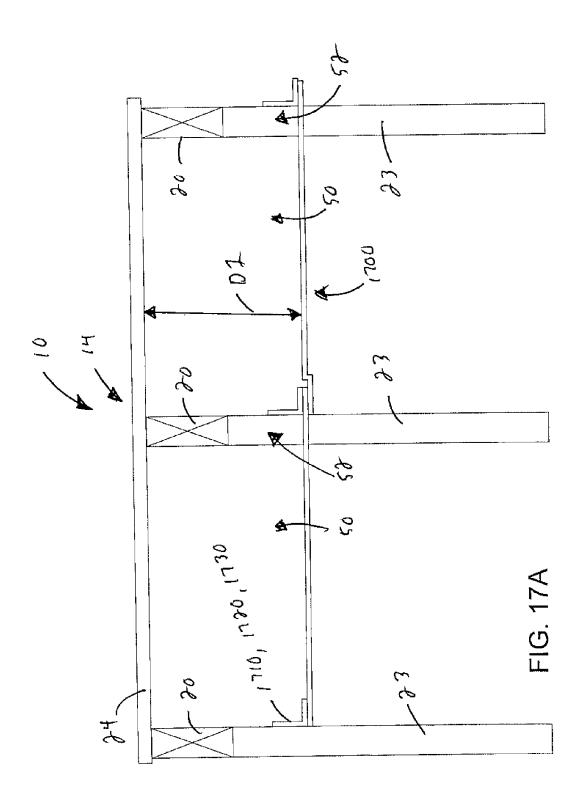


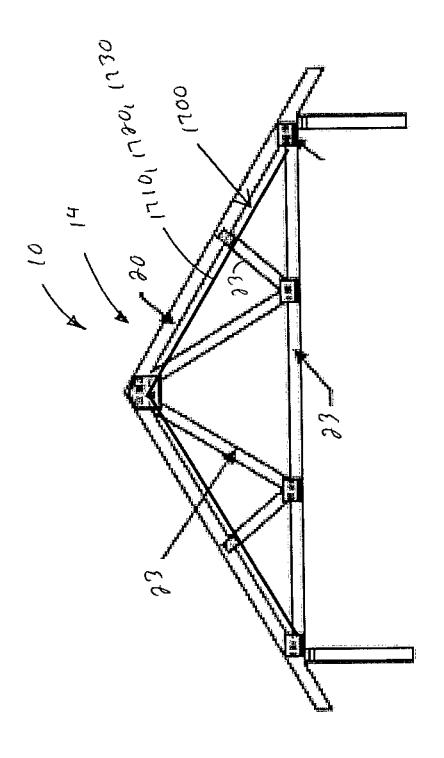
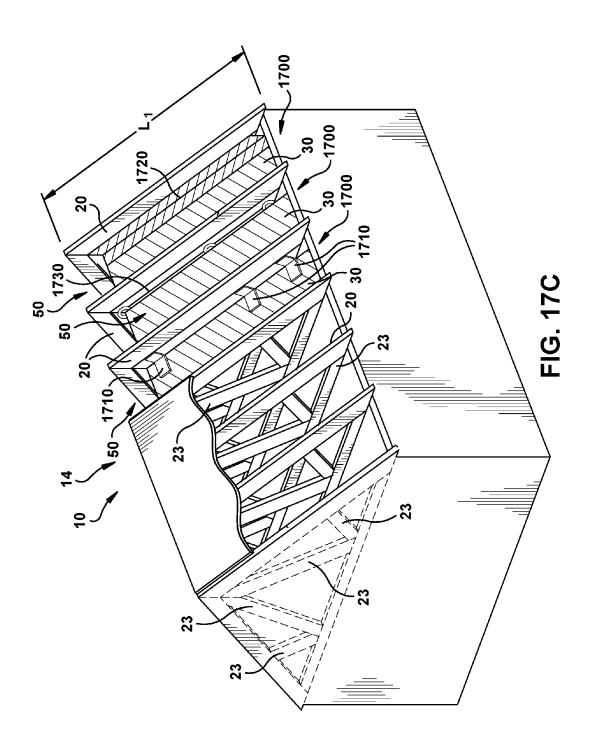
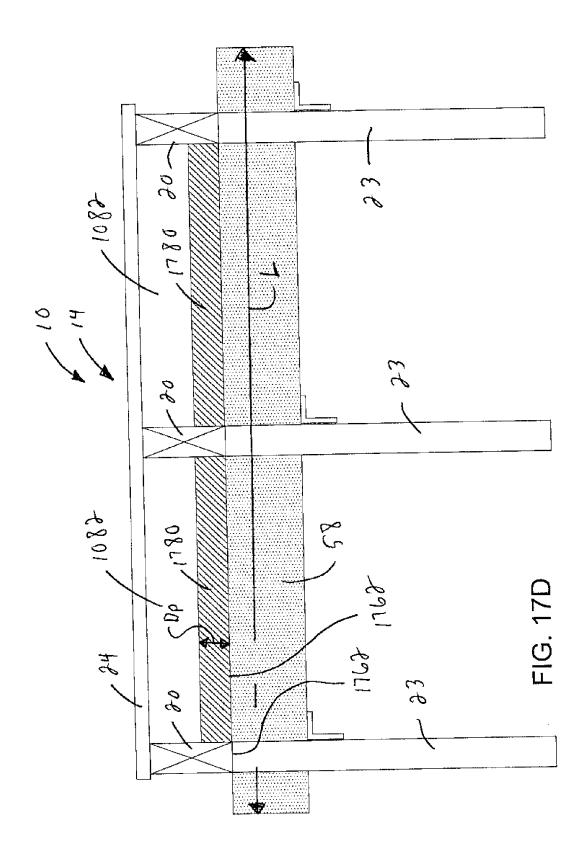
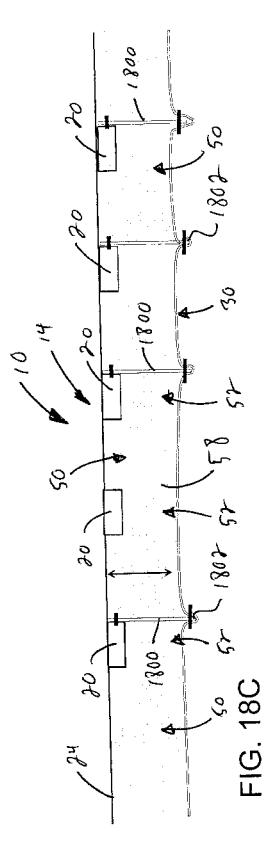


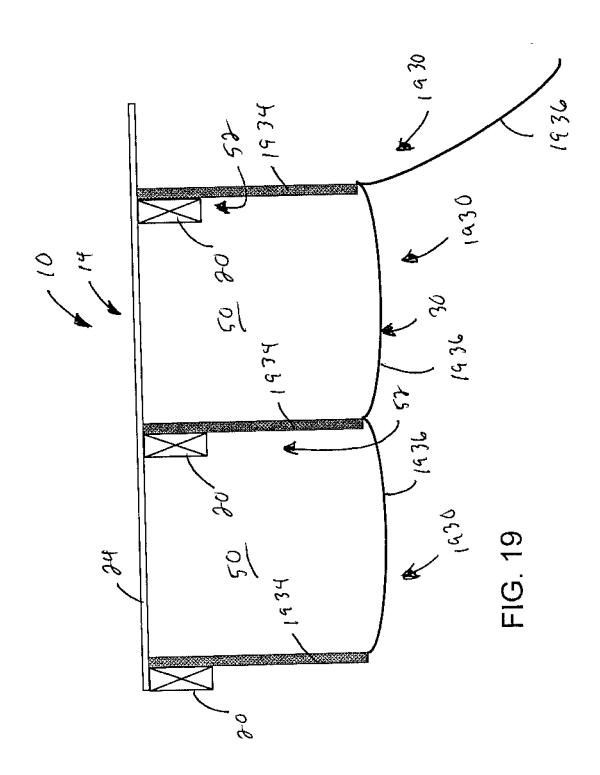


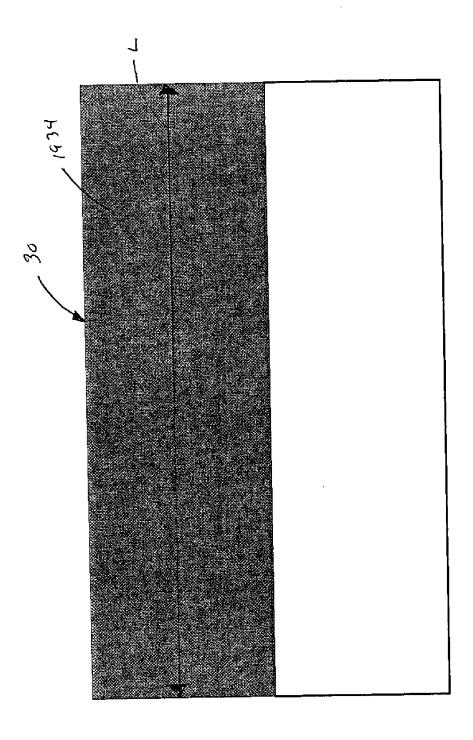
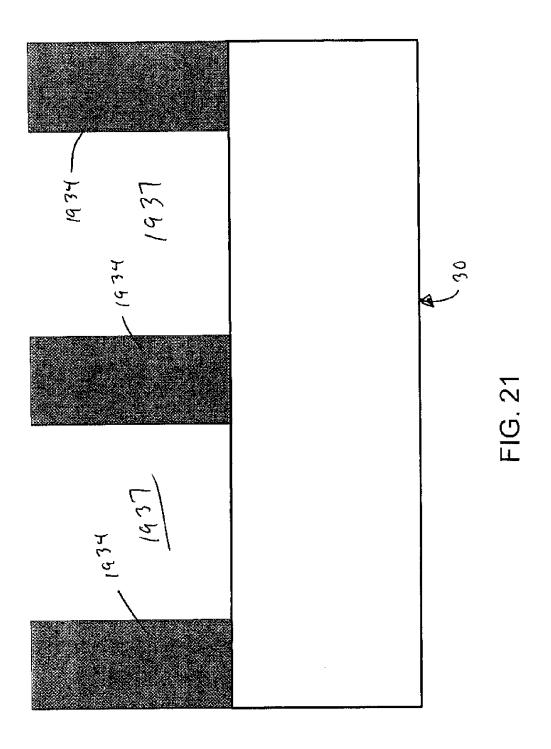
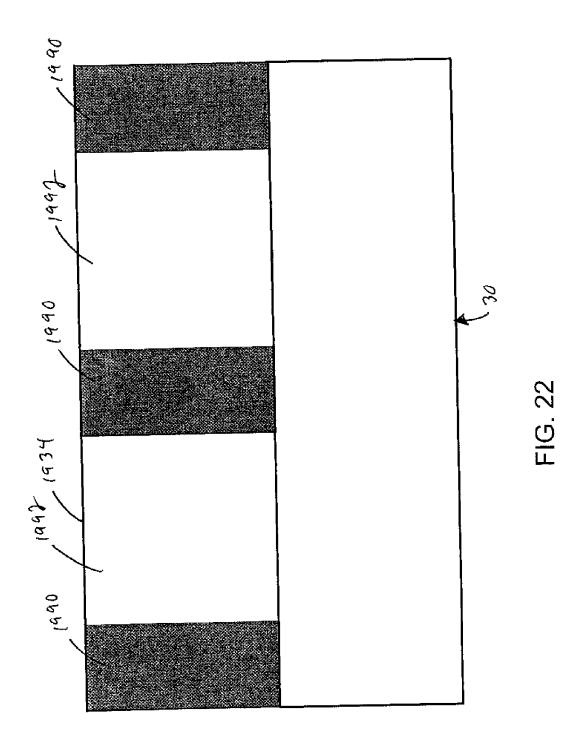
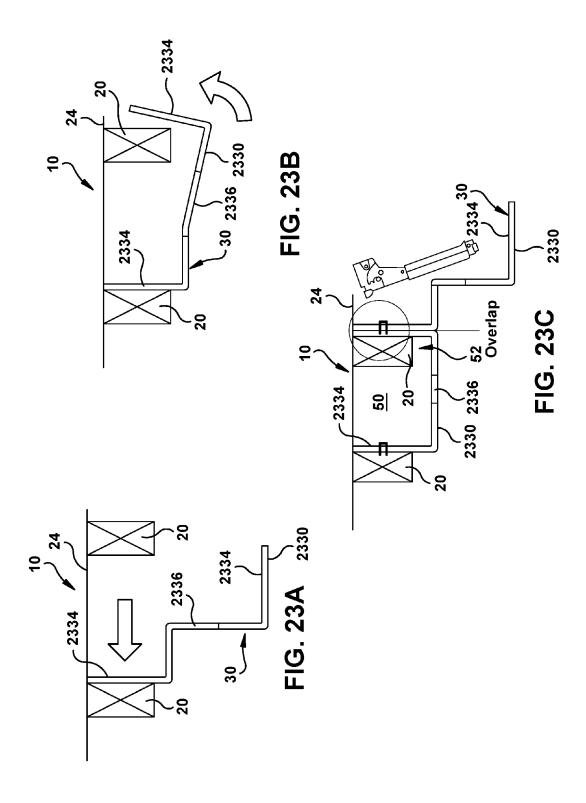
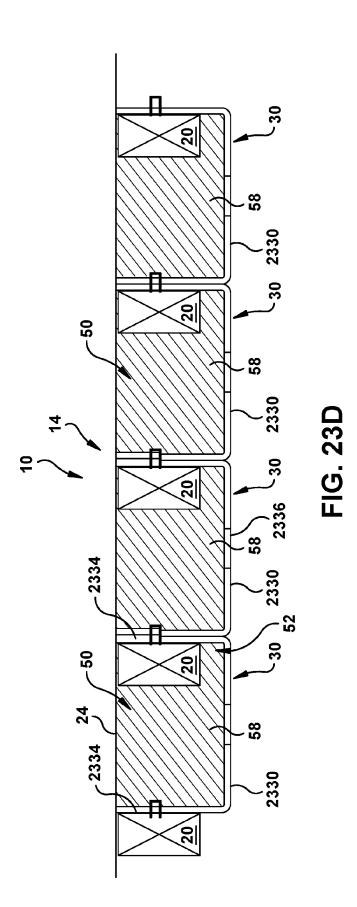


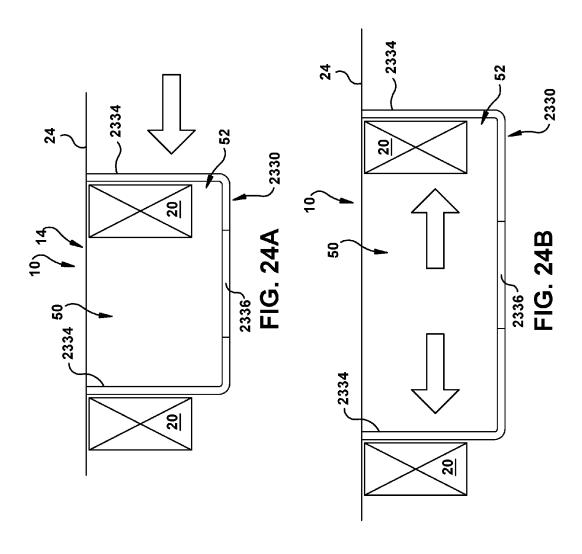


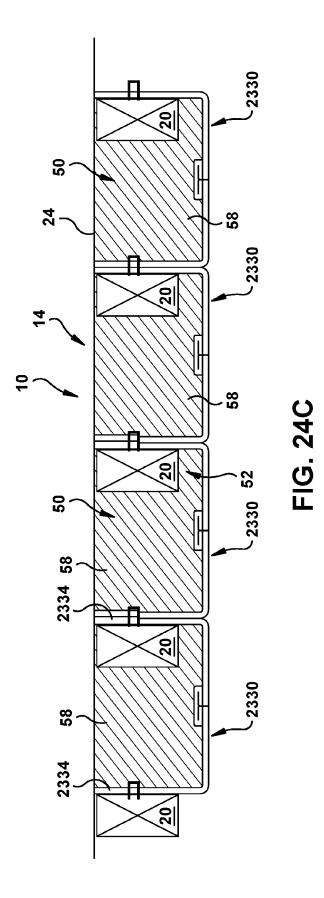


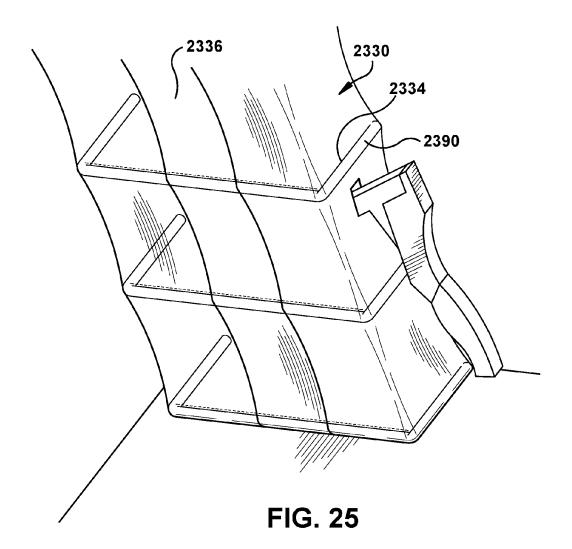





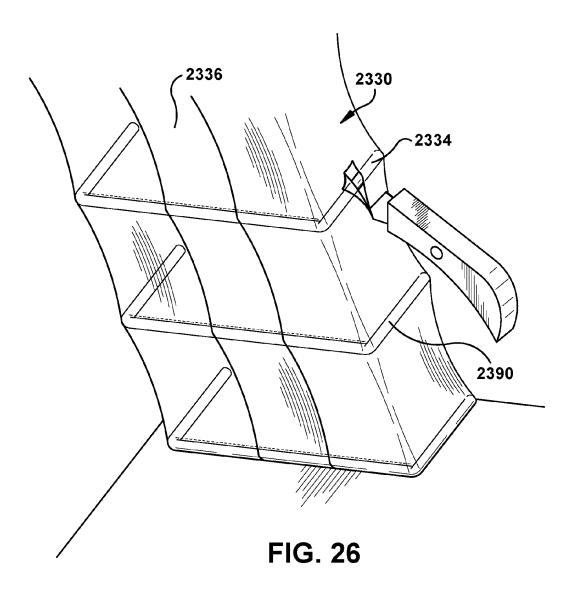

FIG. 17B


FIG. 2(







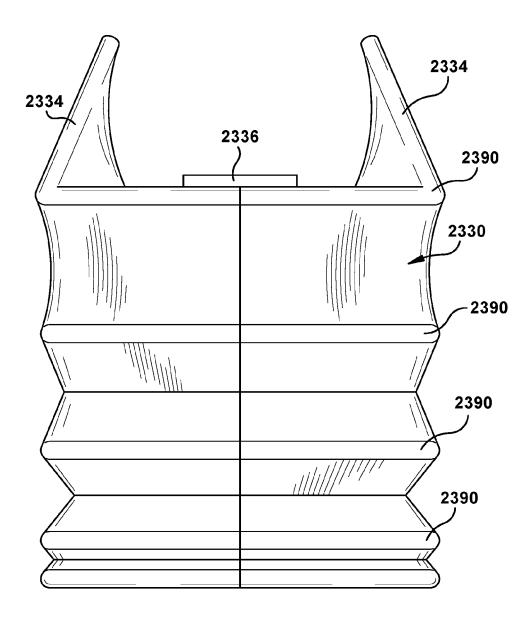


FIG. 27

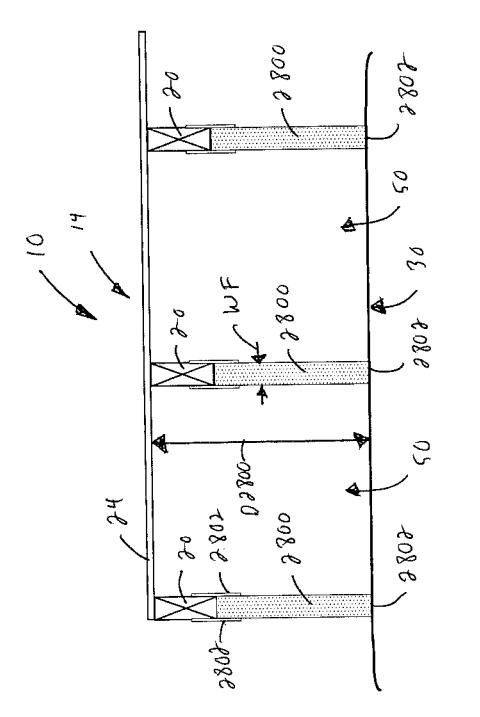


FIG. 28

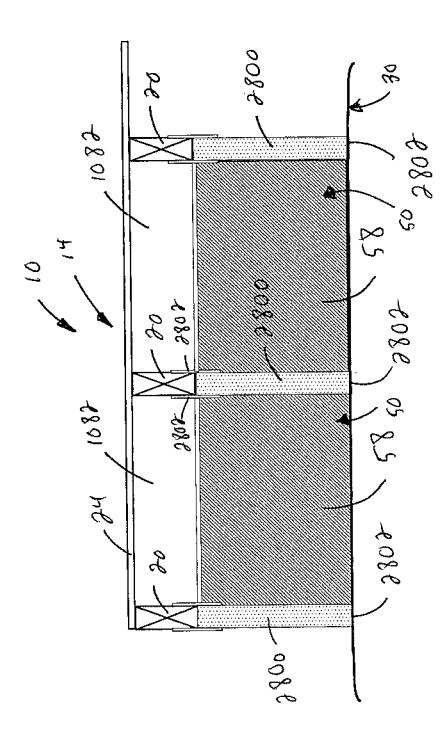


FIG. 28A

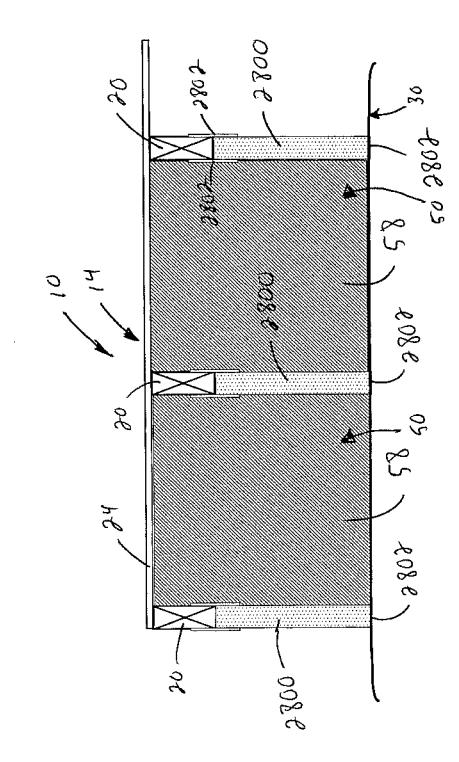
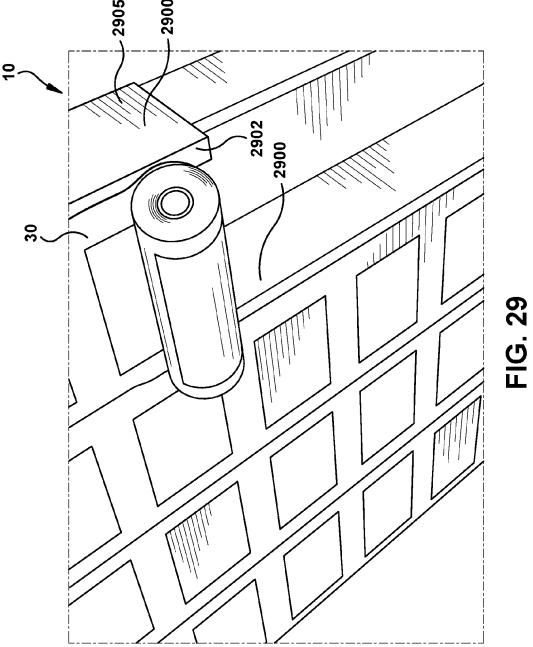
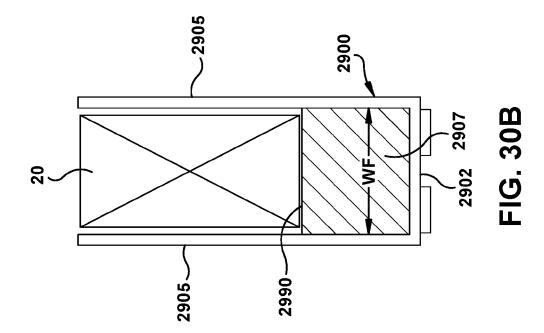
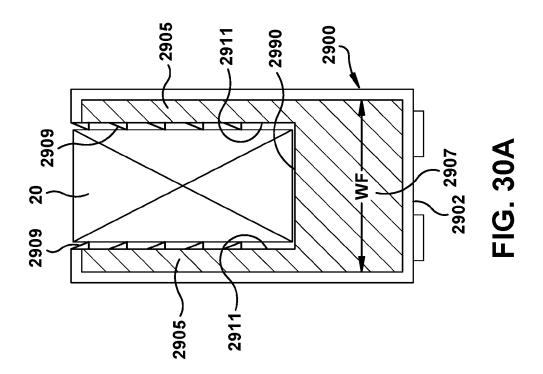





FIG. 28B

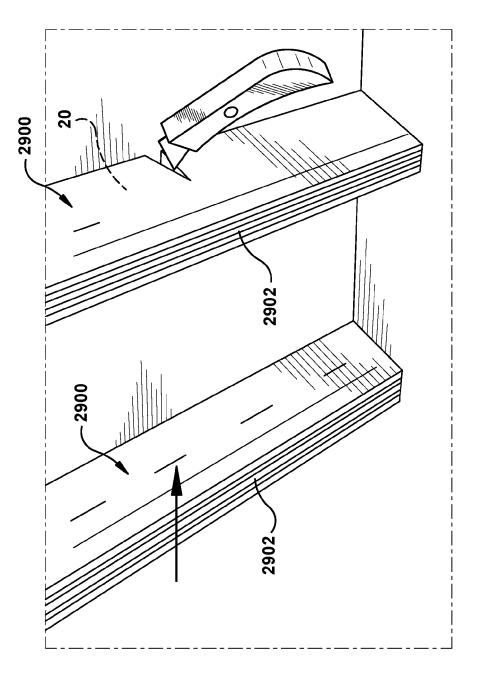
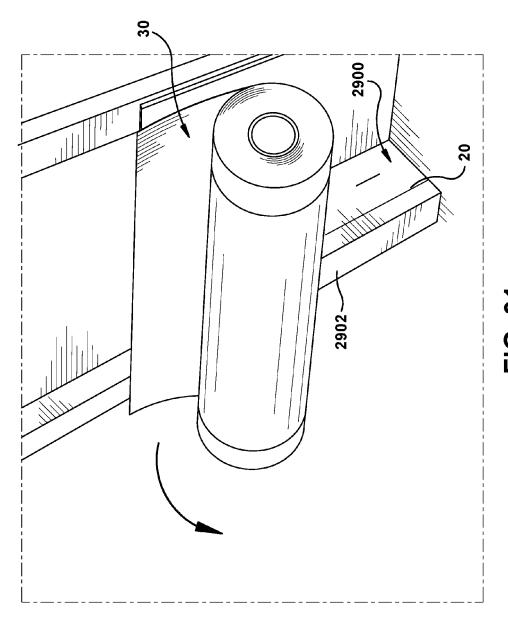
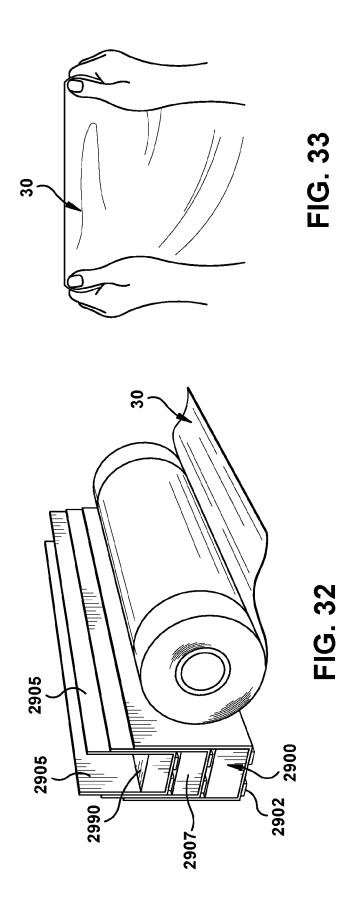
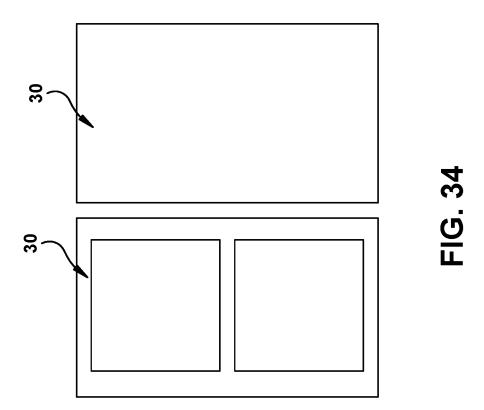
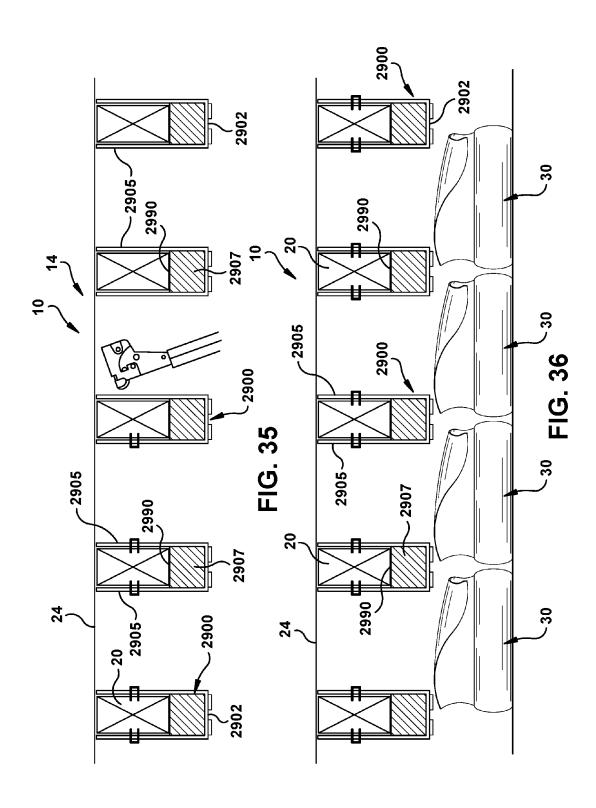
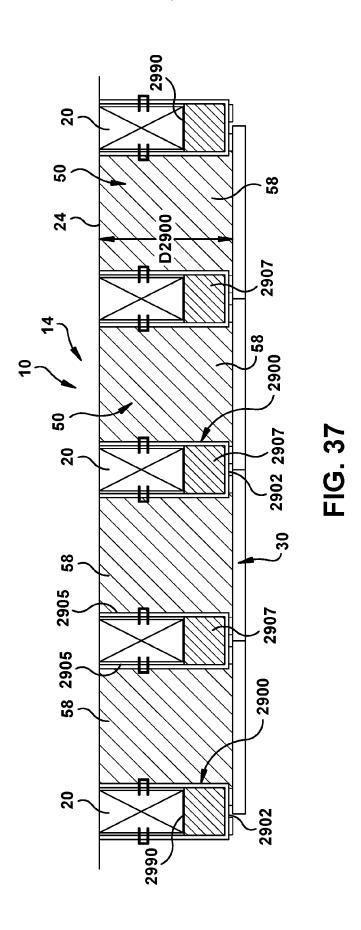
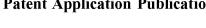
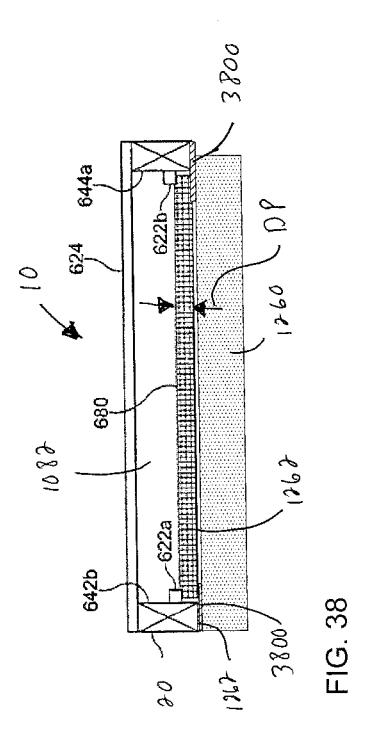
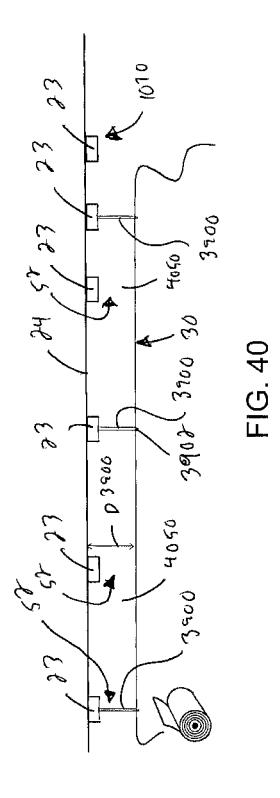


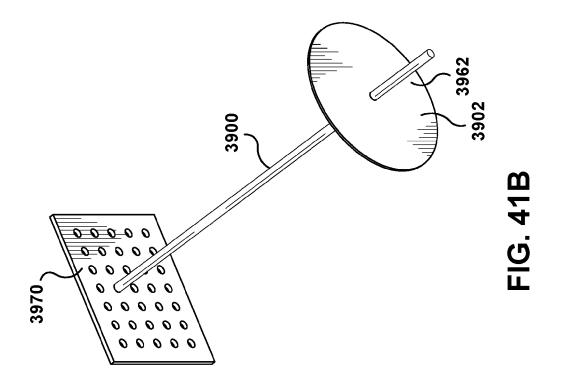
FIG. 30C

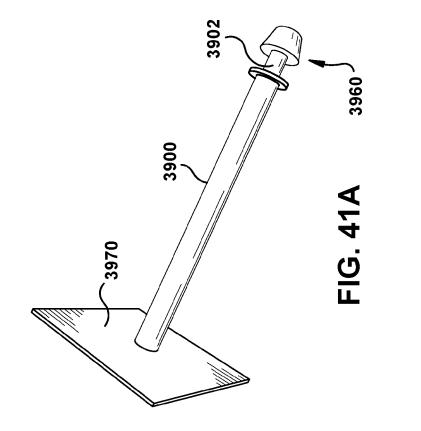






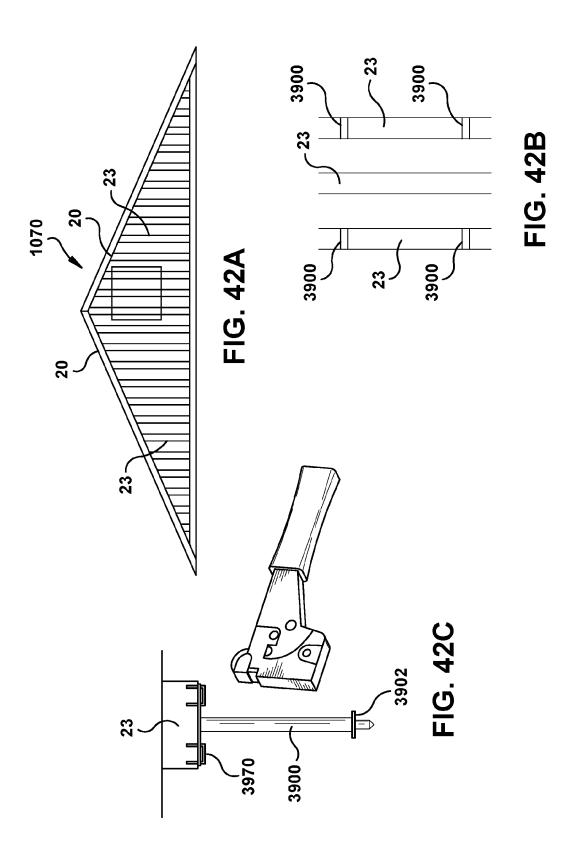

FIG. 31

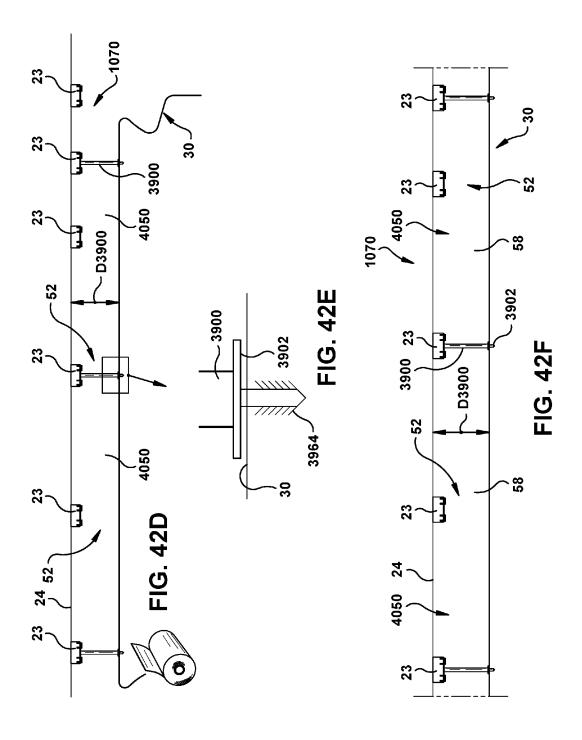


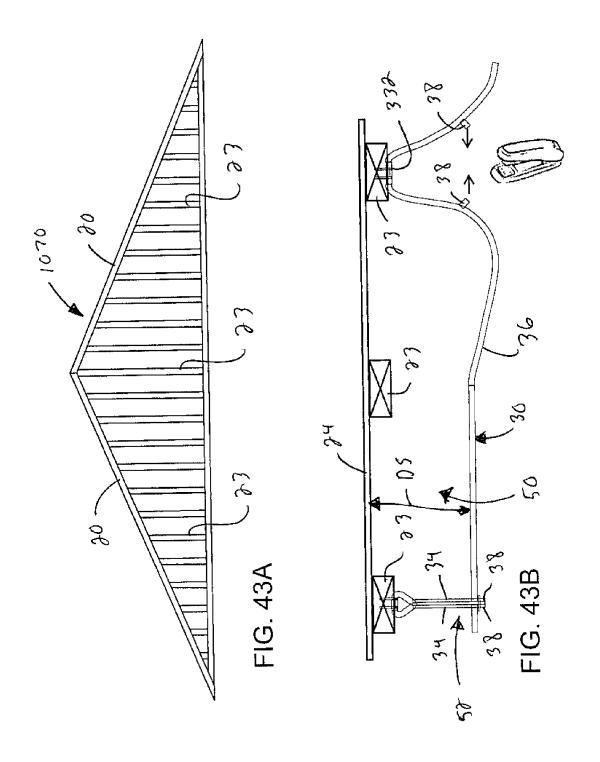


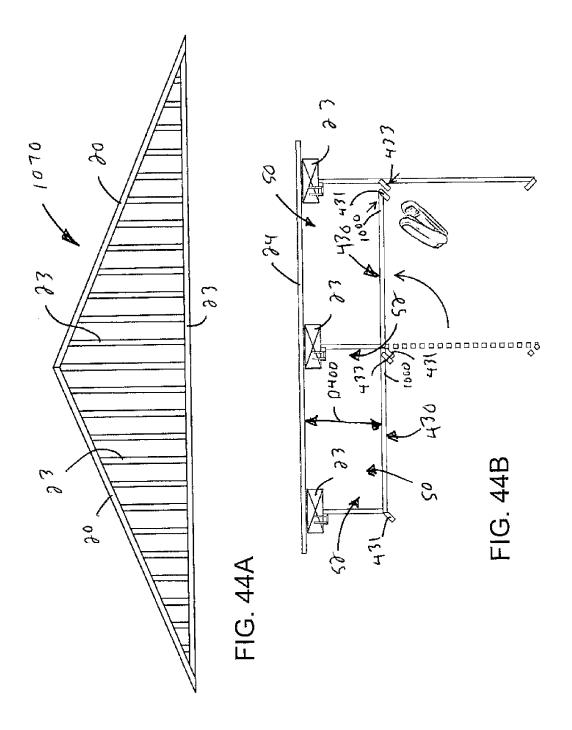


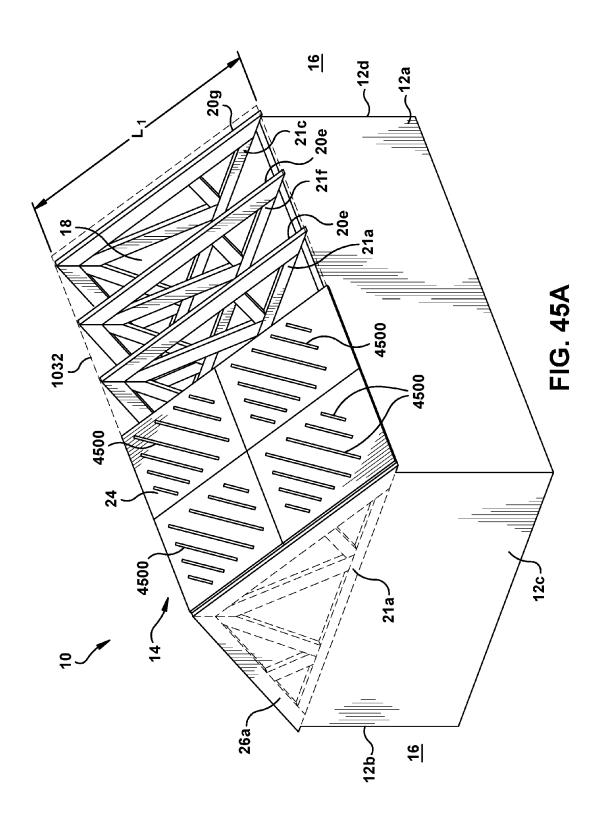


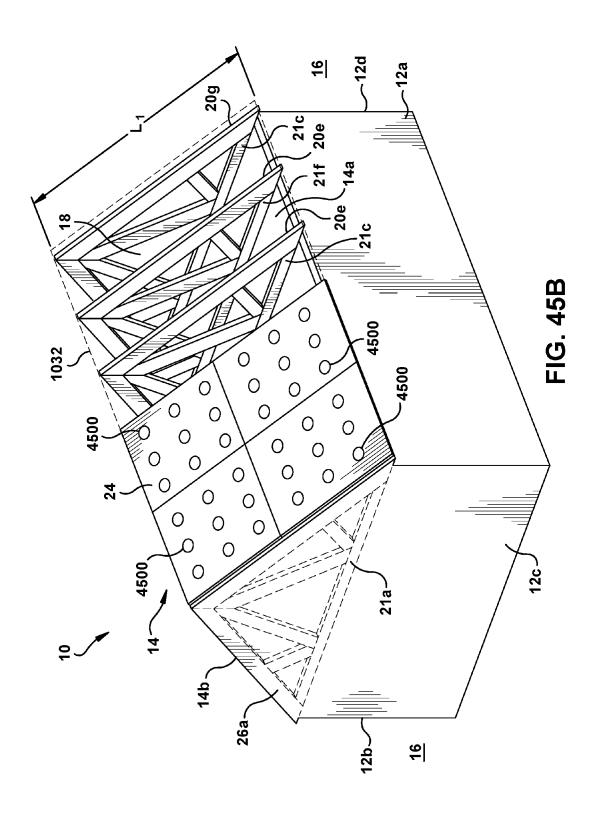


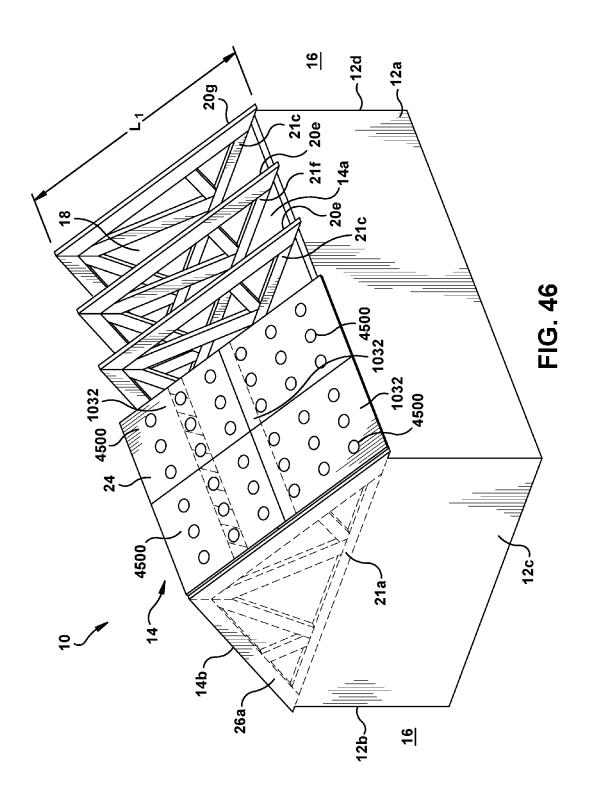


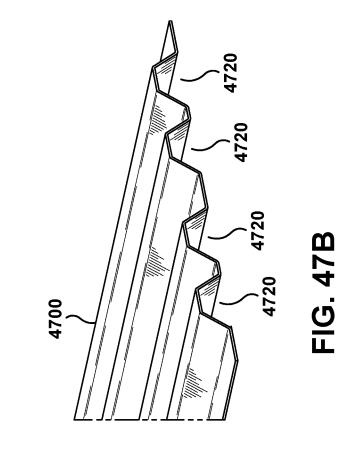


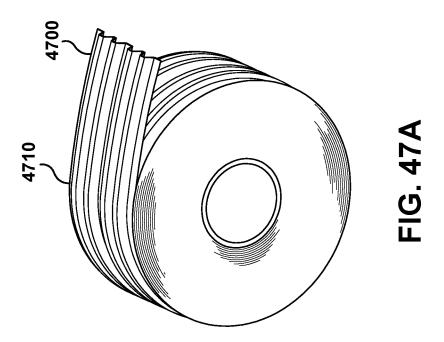


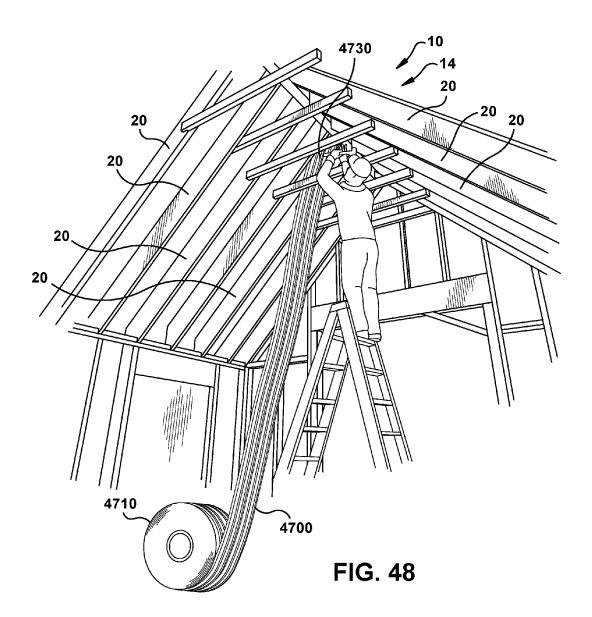


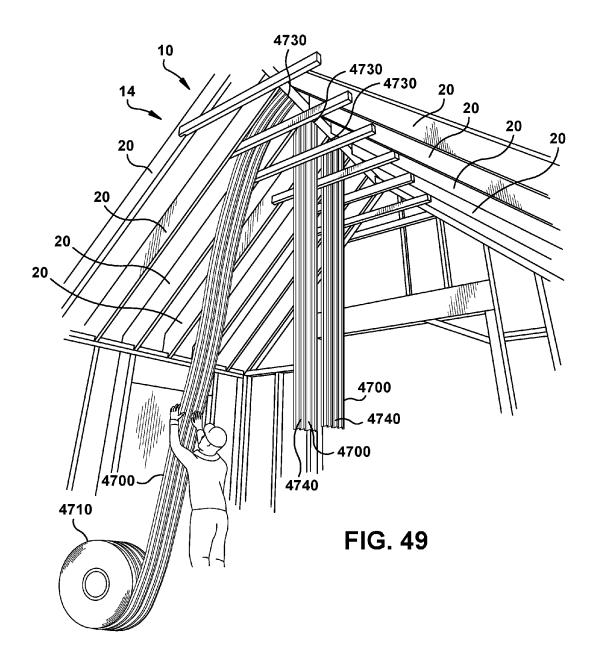


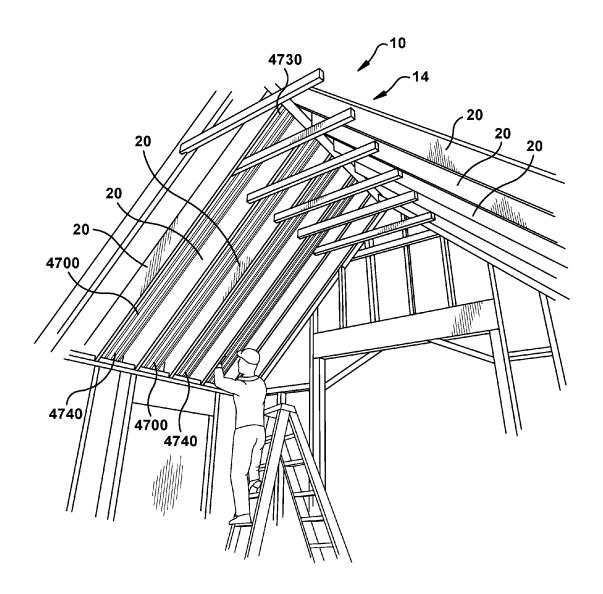
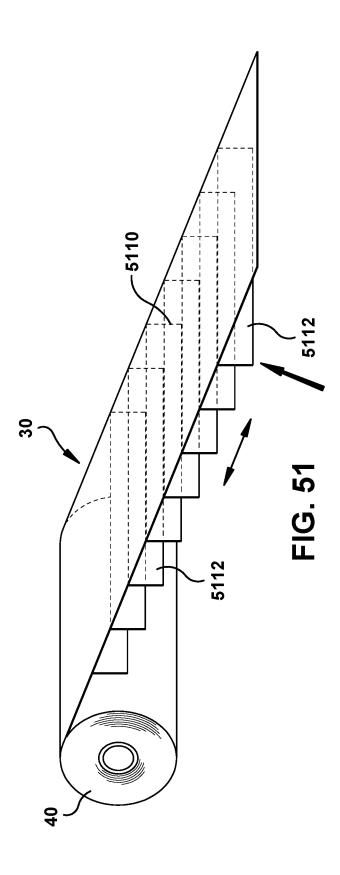
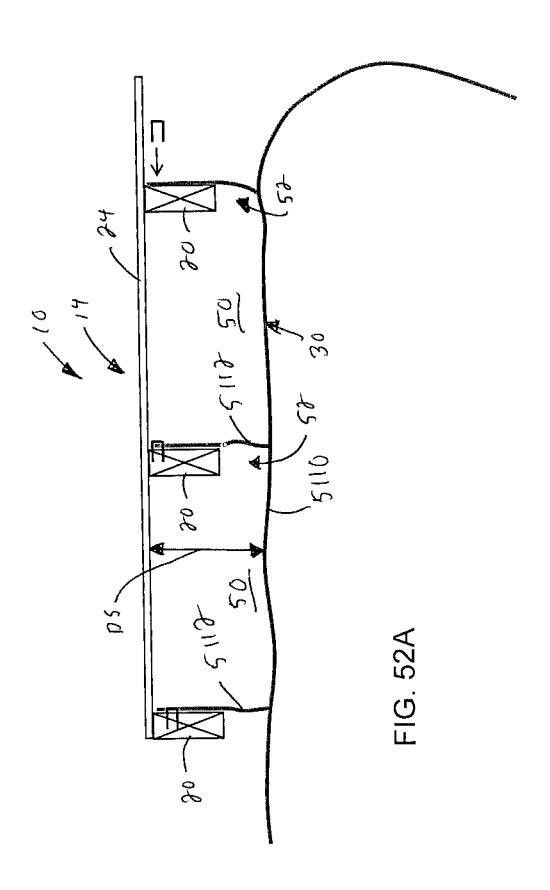
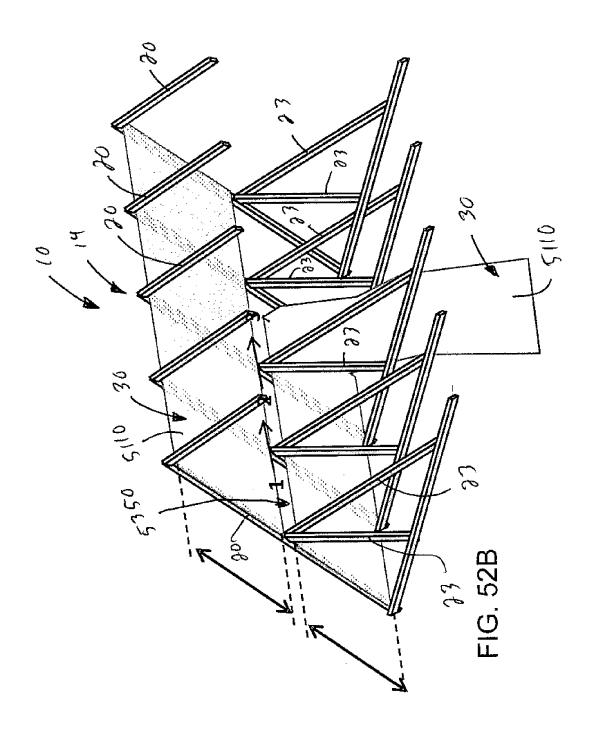
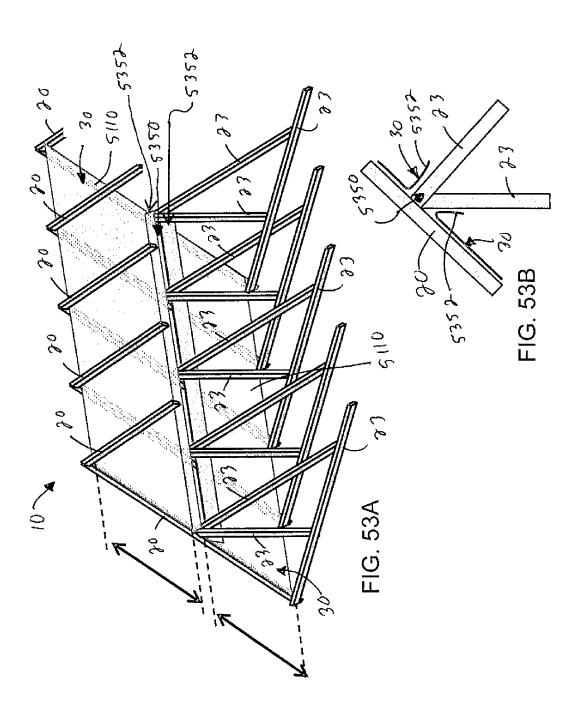


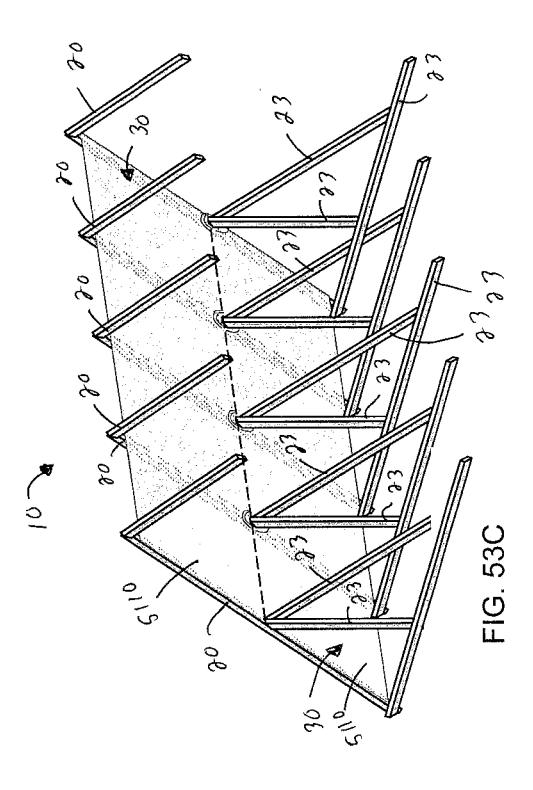


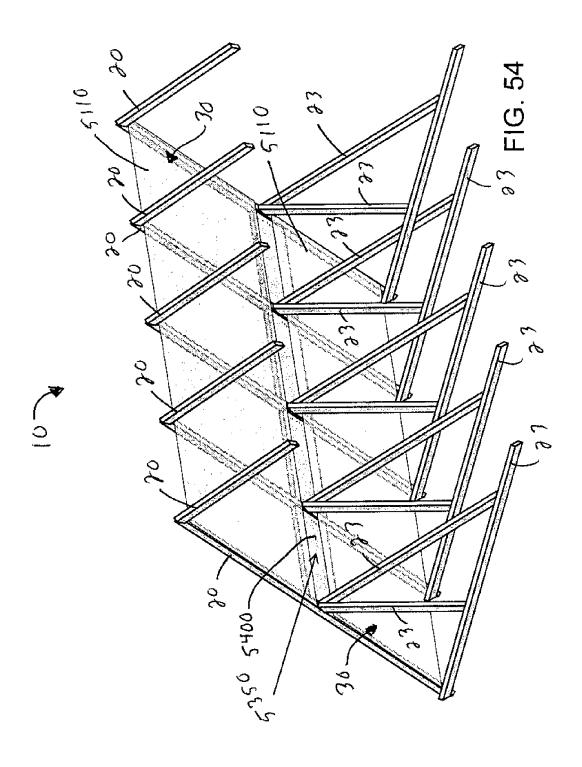


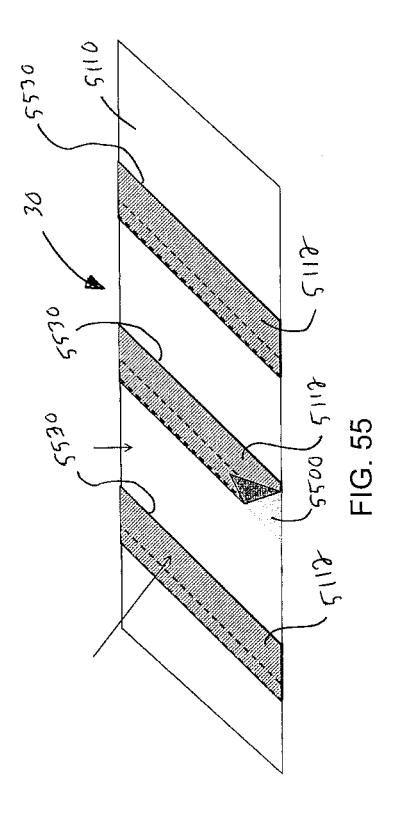


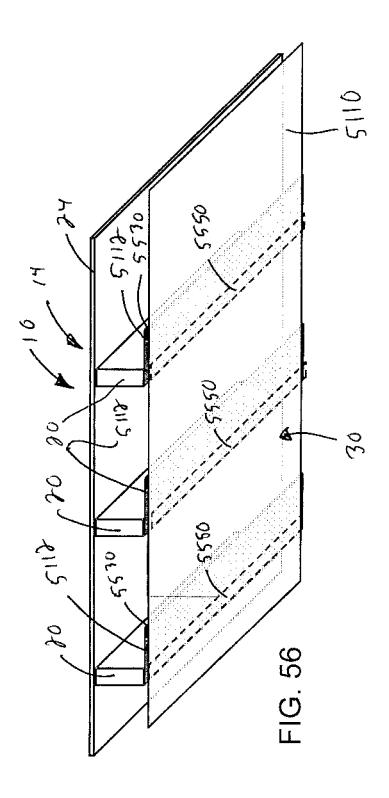


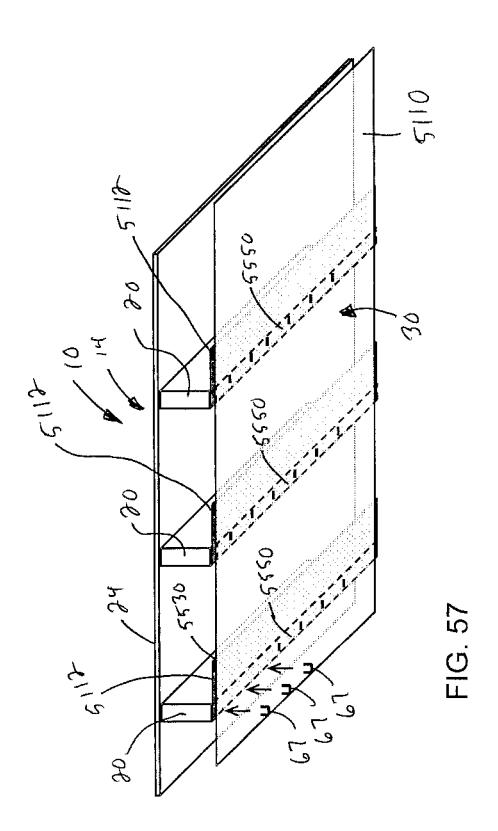







FIG. 50









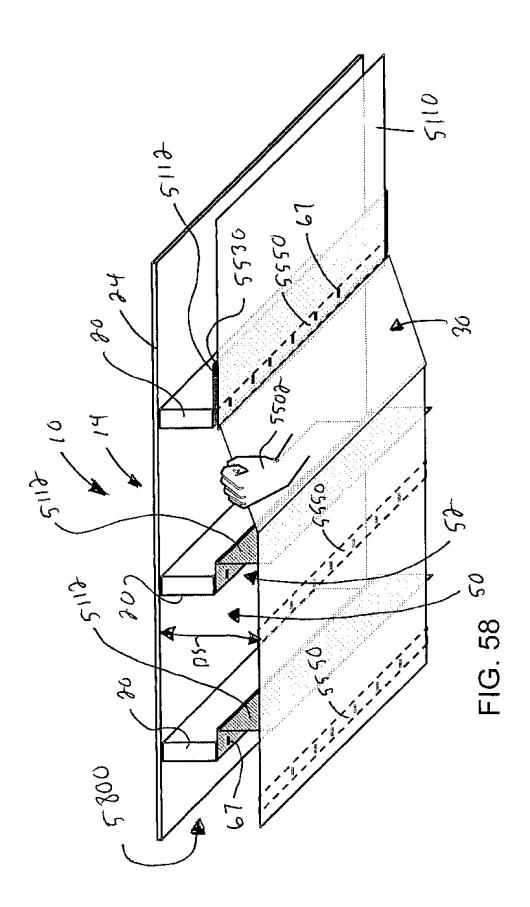


FIG. 59

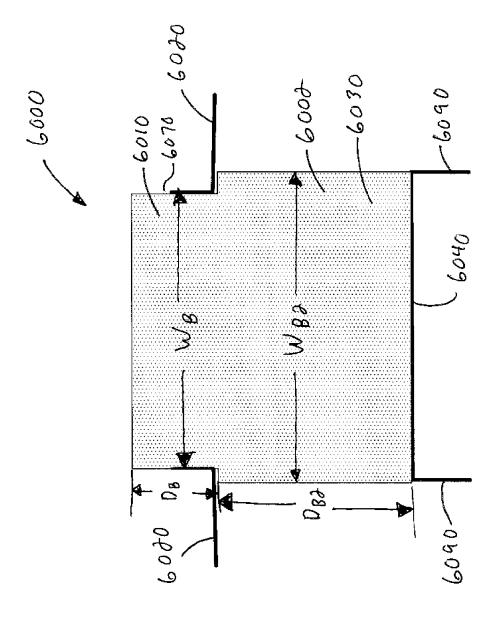


FIG. 59A

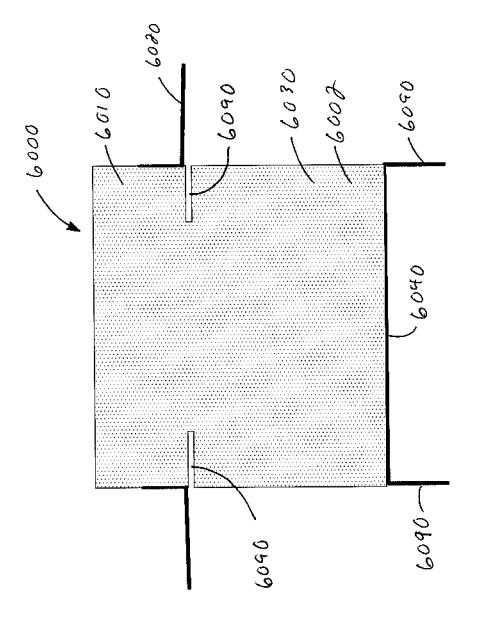
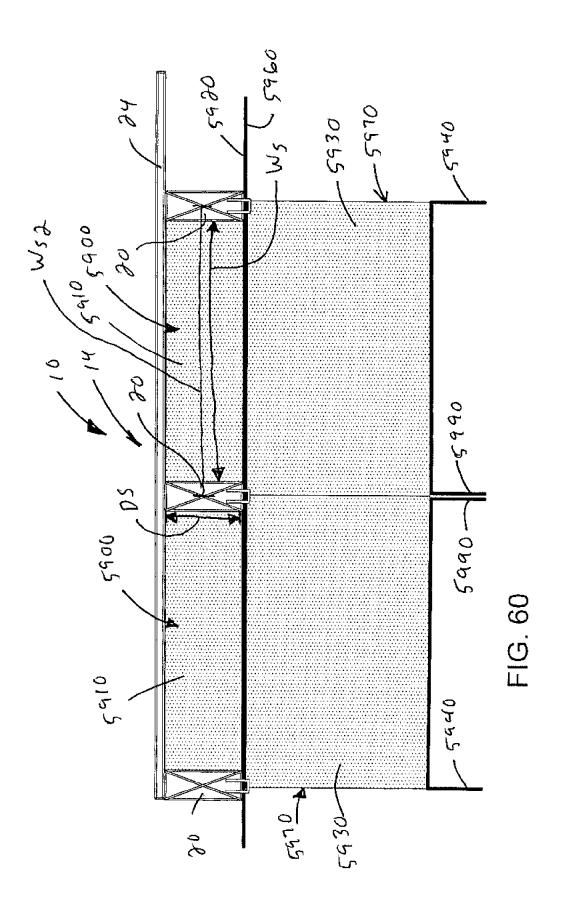
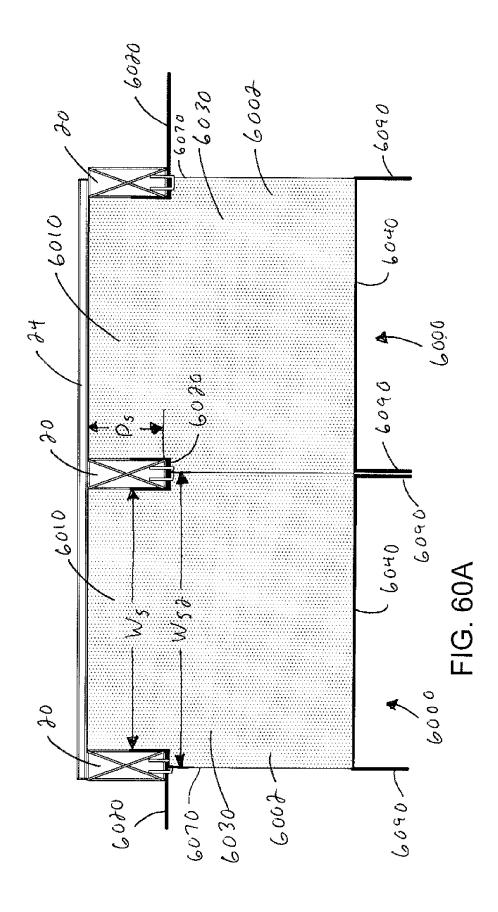
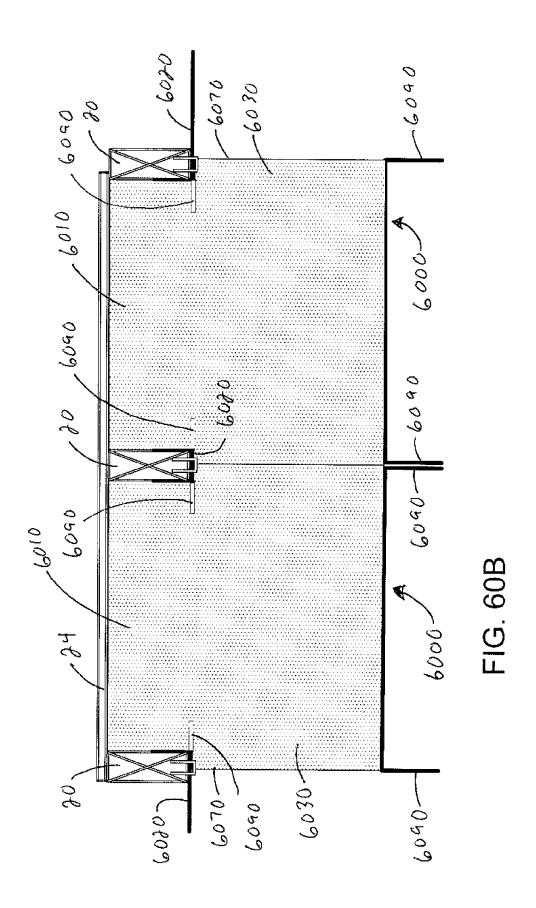
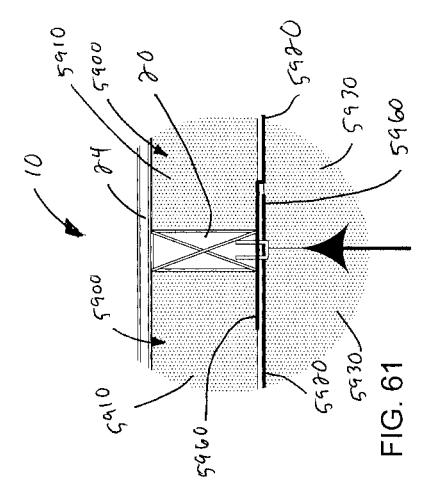
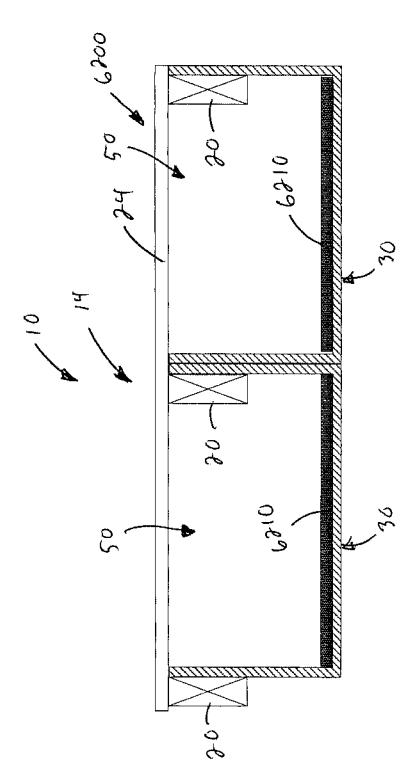
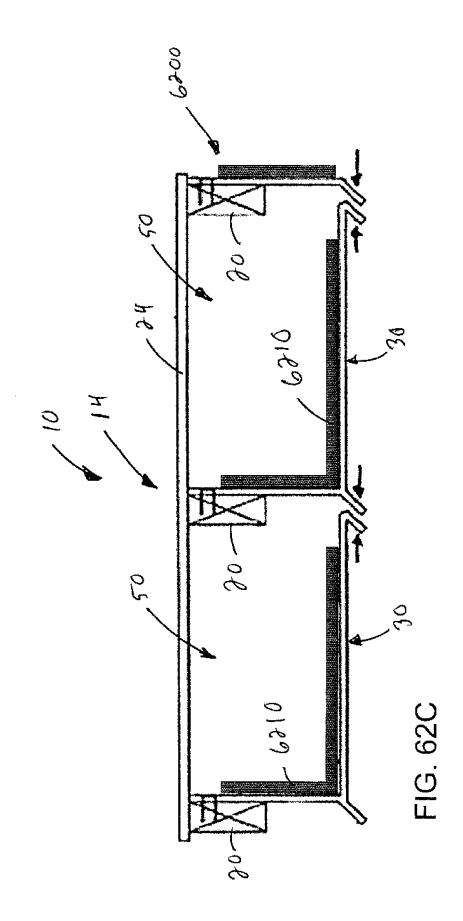
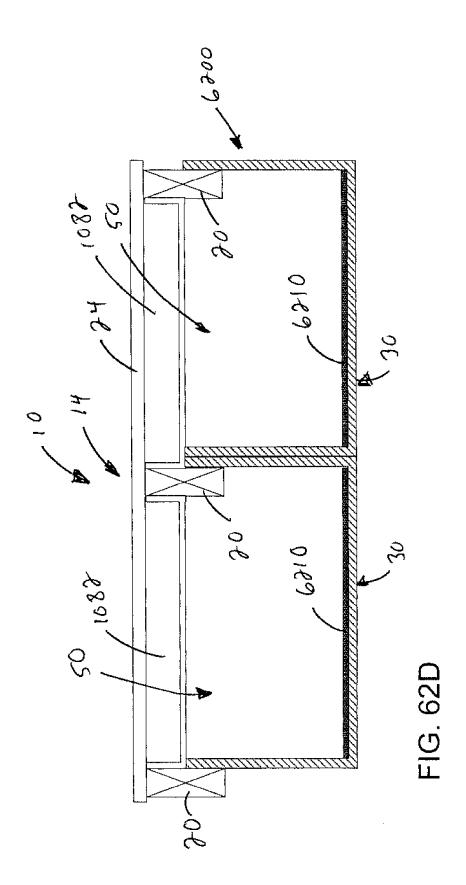
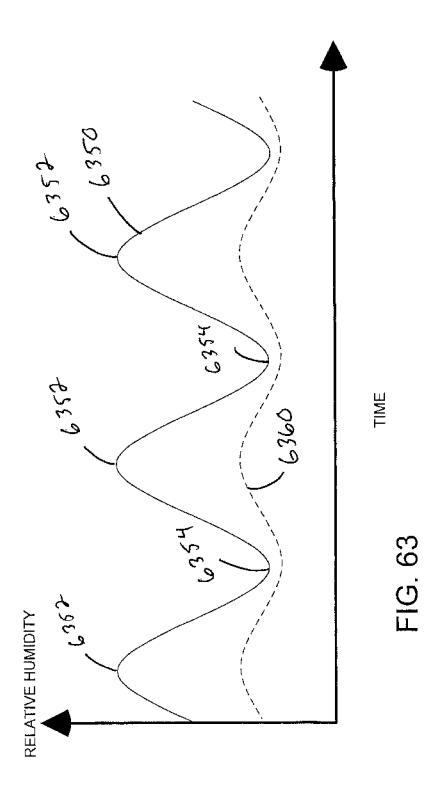
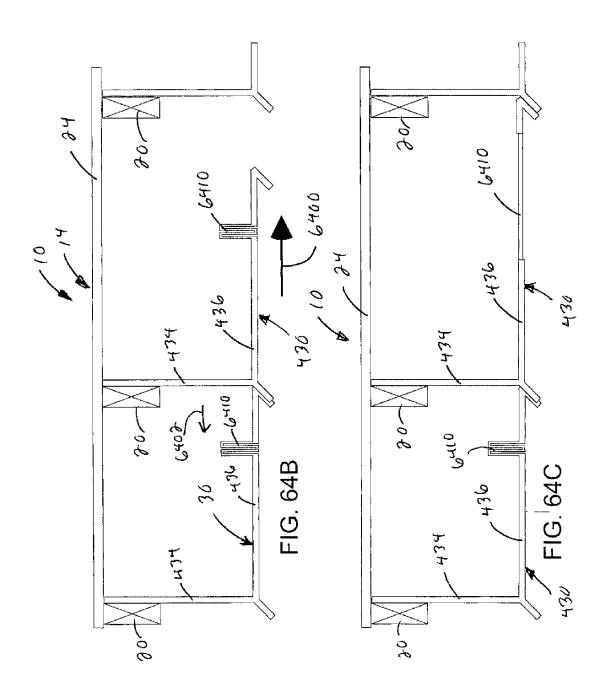
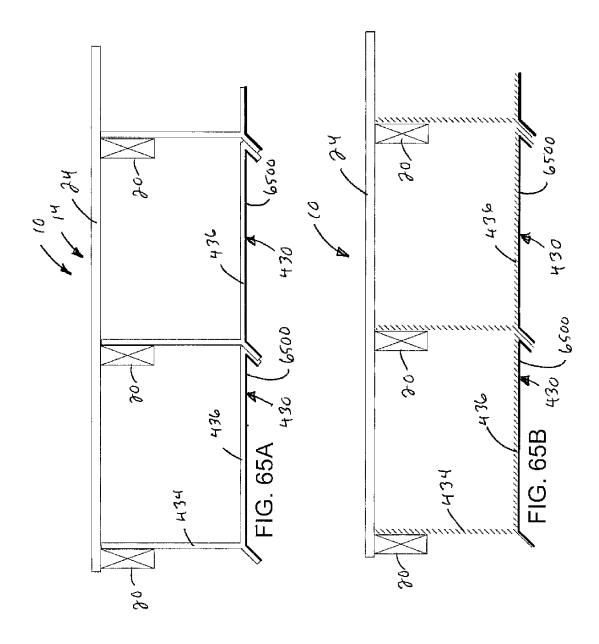
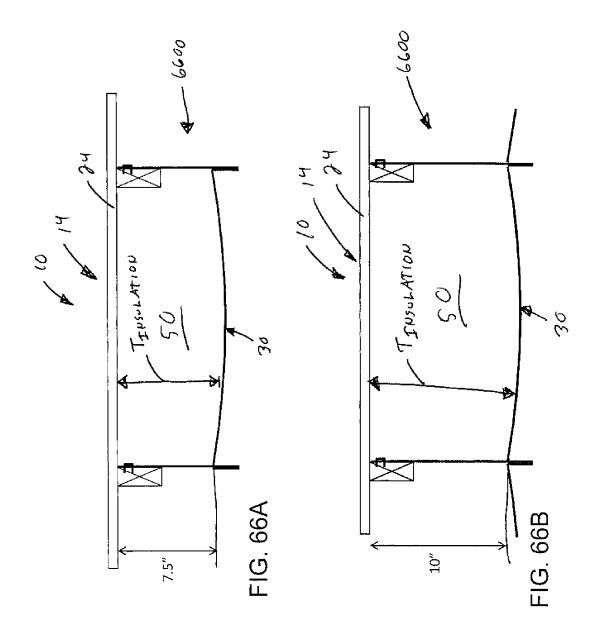






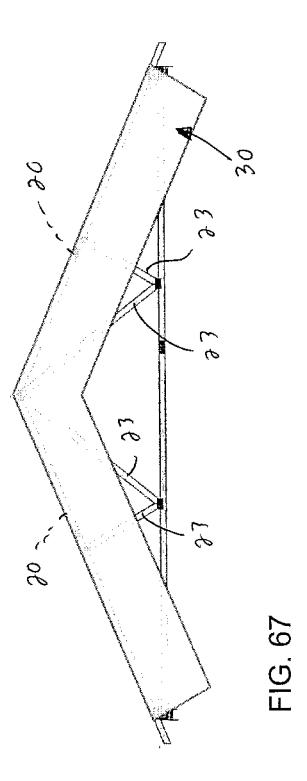
FIG. 59B

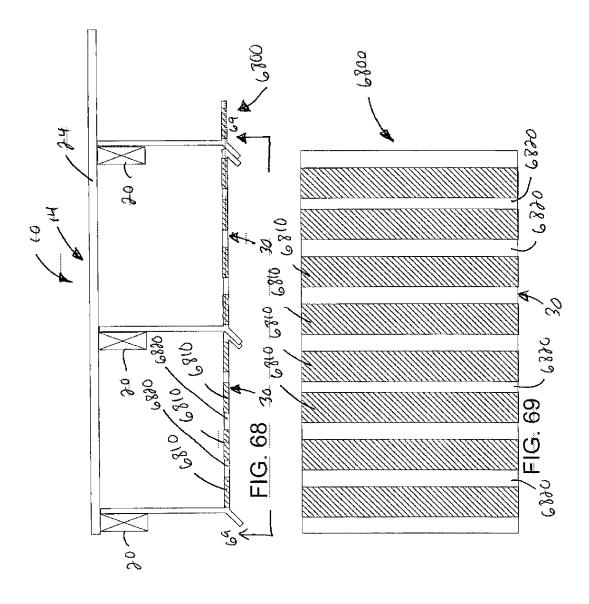





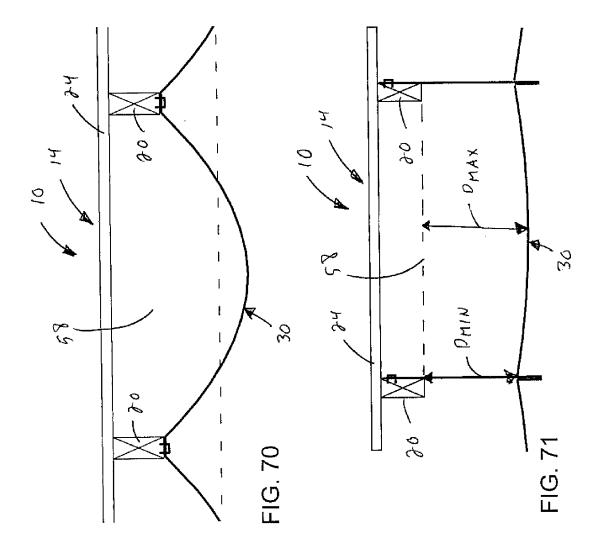


FIG. 62B

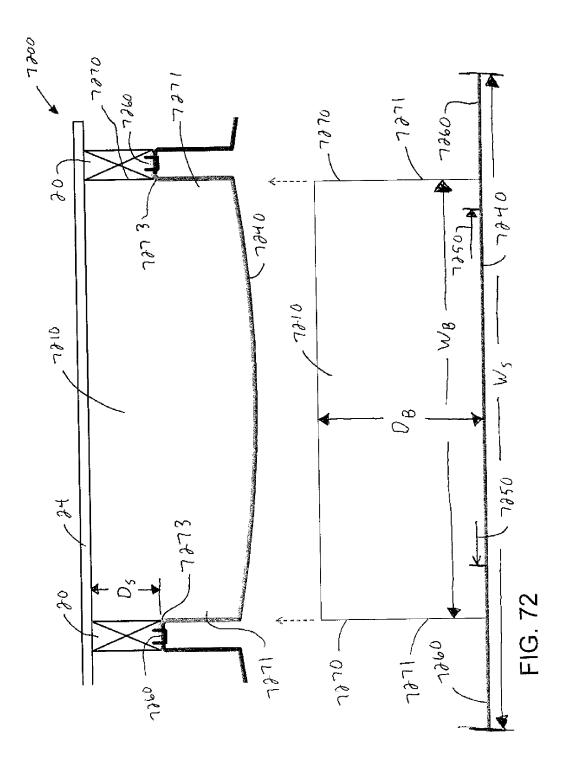


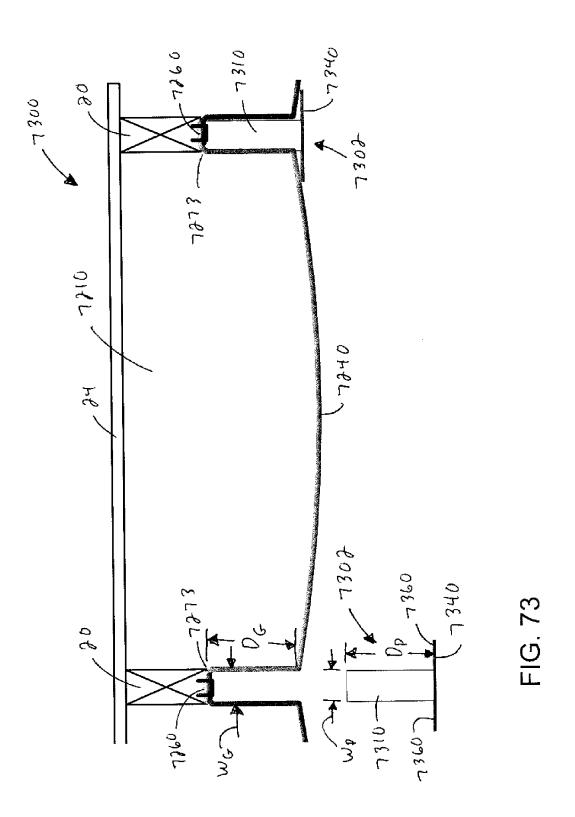


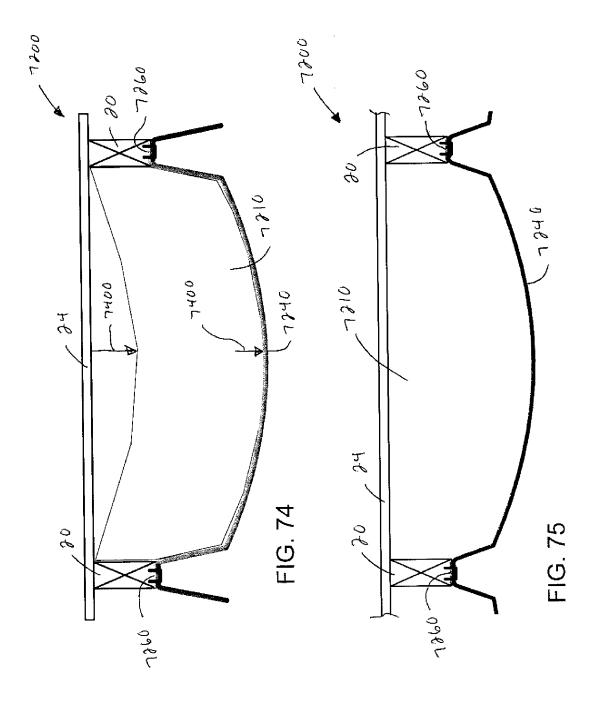


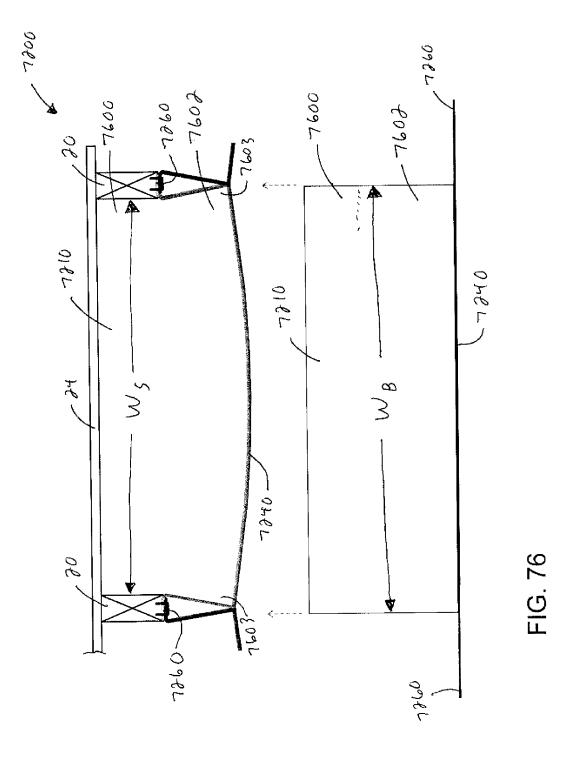


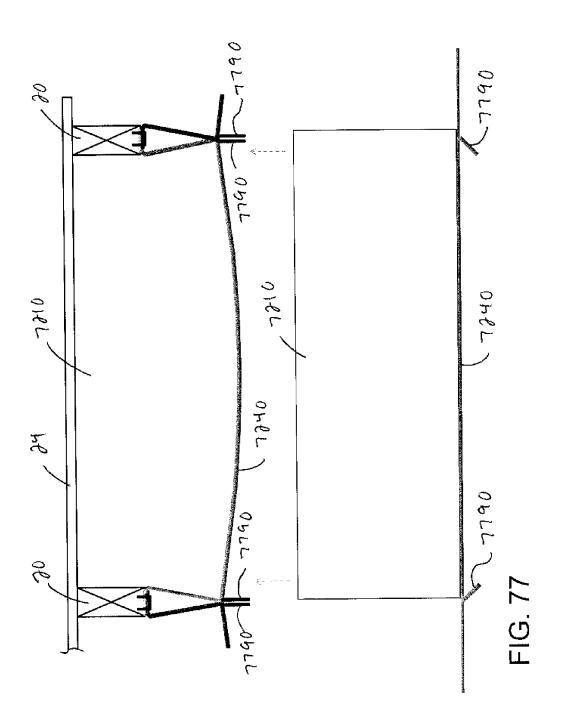


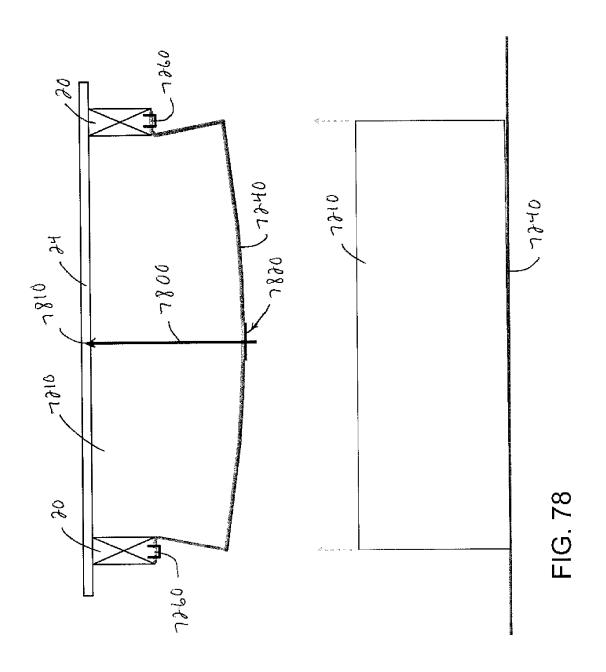


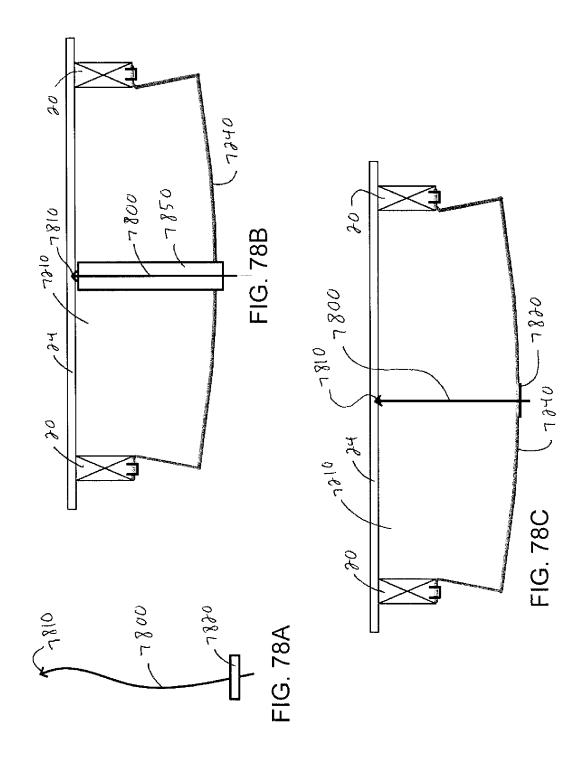


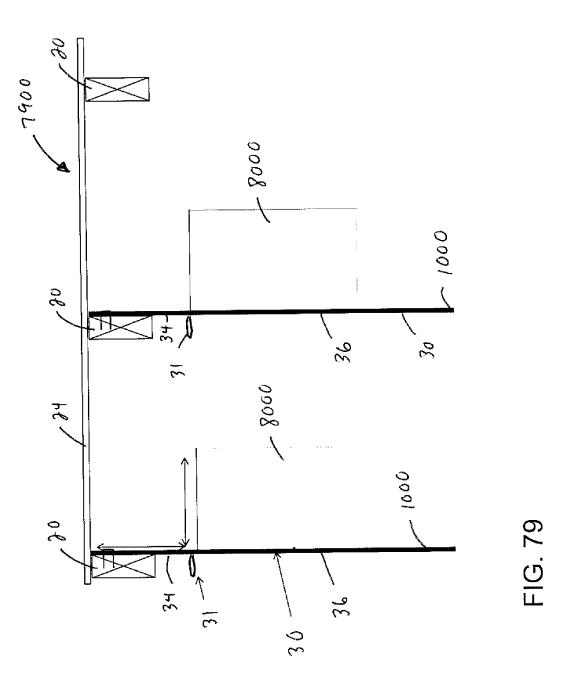


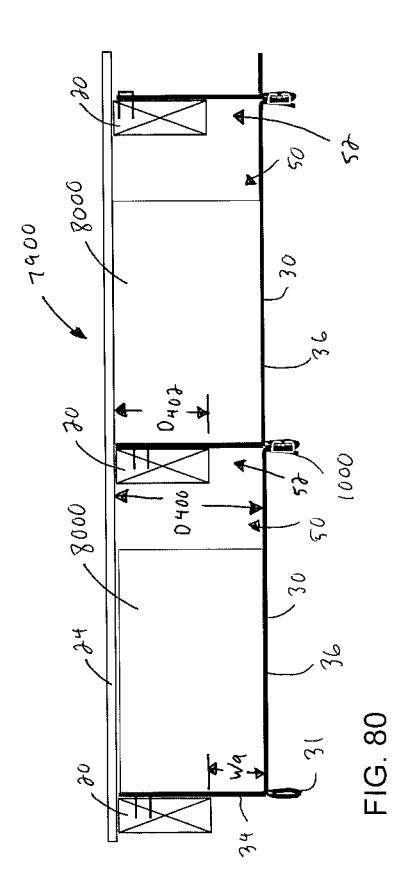












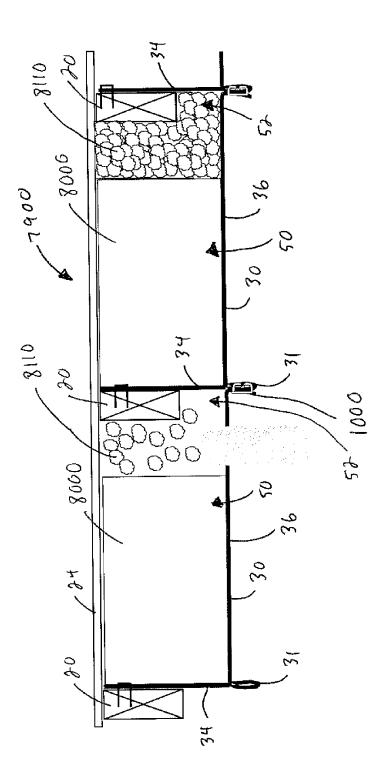
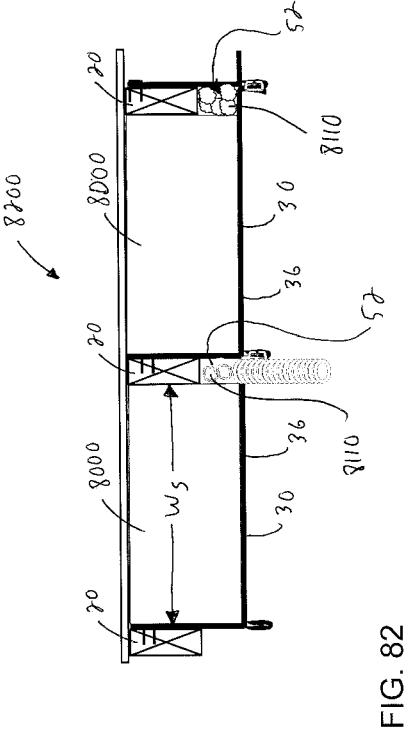
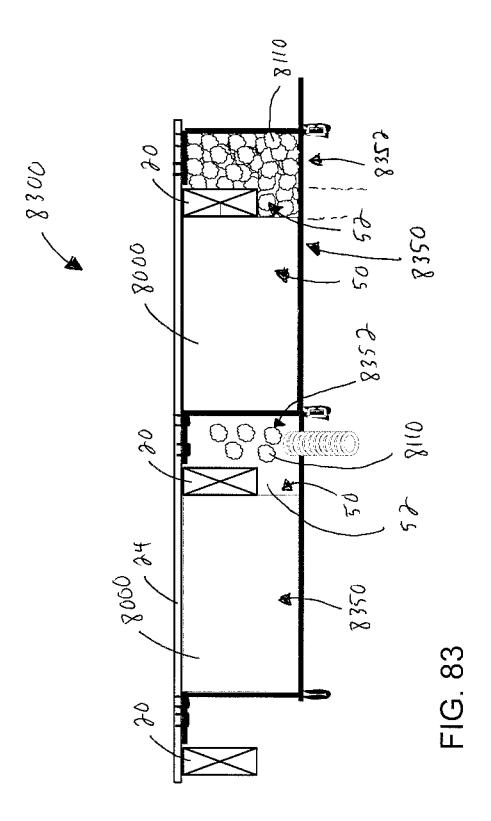




FIG. 89

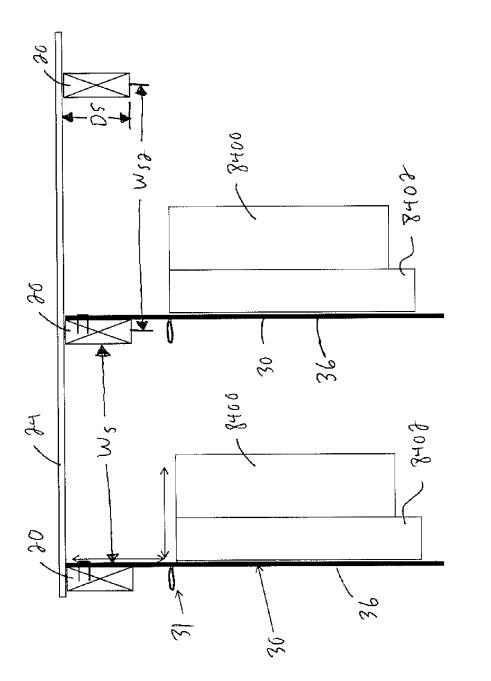
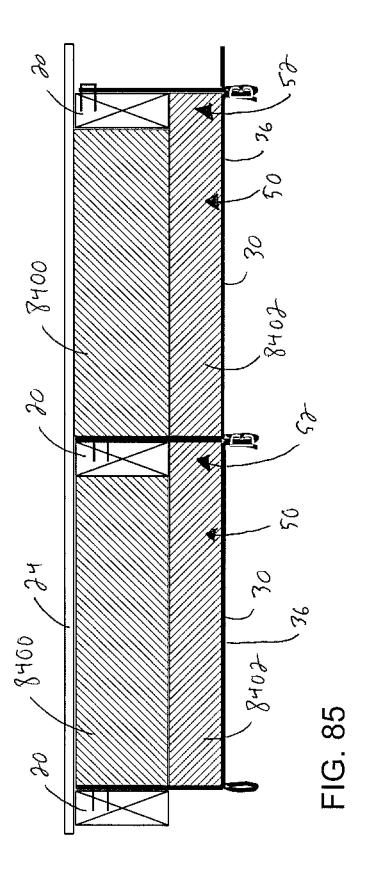
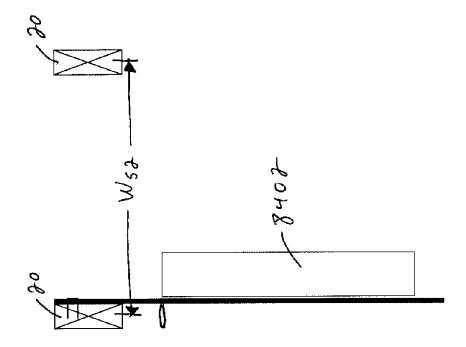




FIG. 84

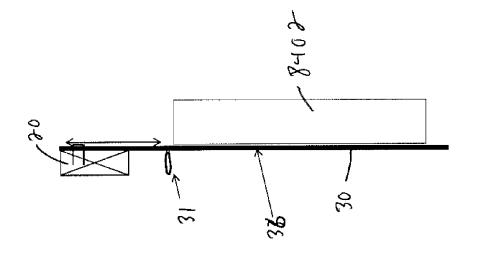
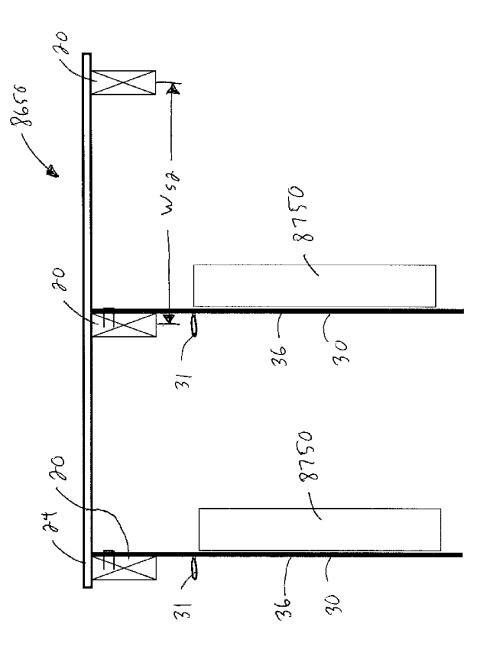
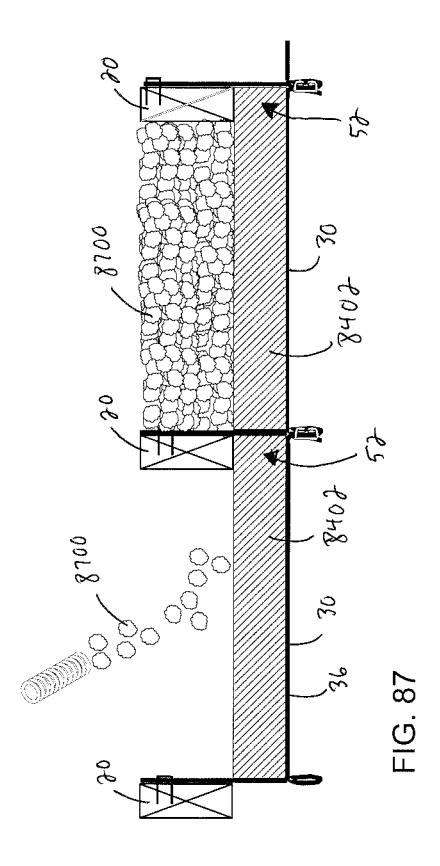
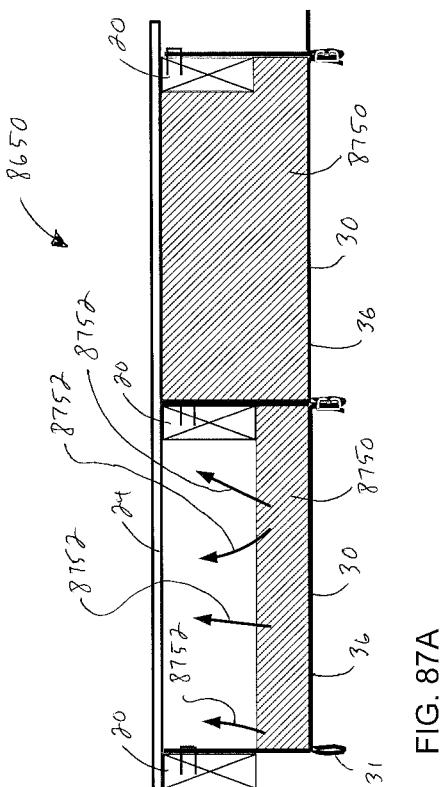
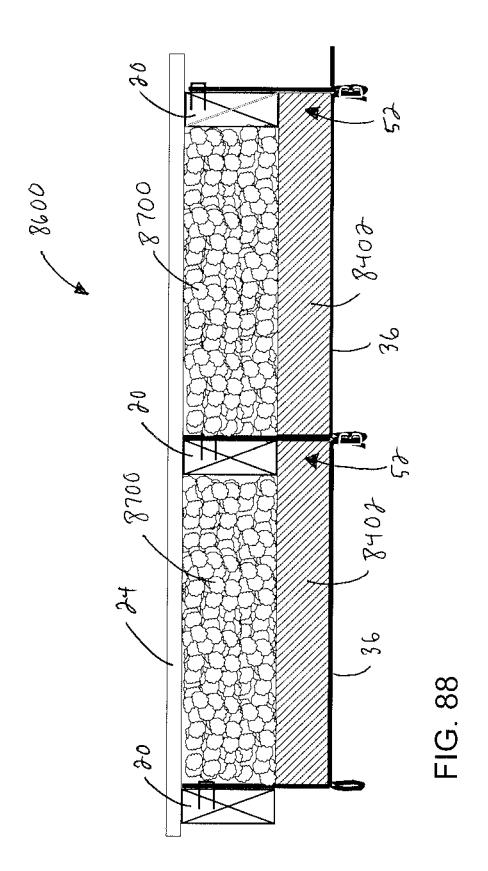
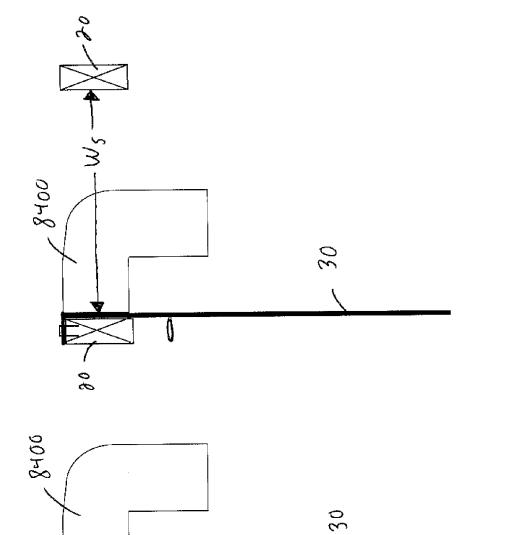
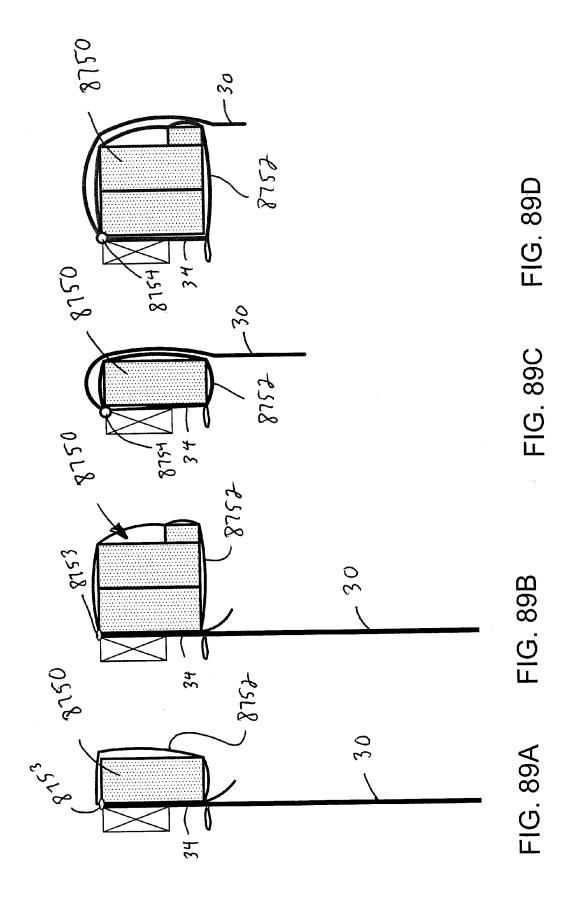
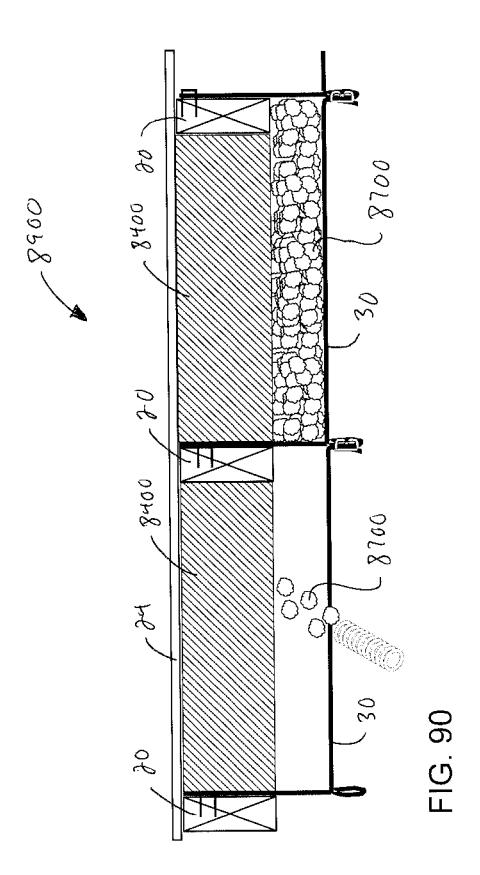
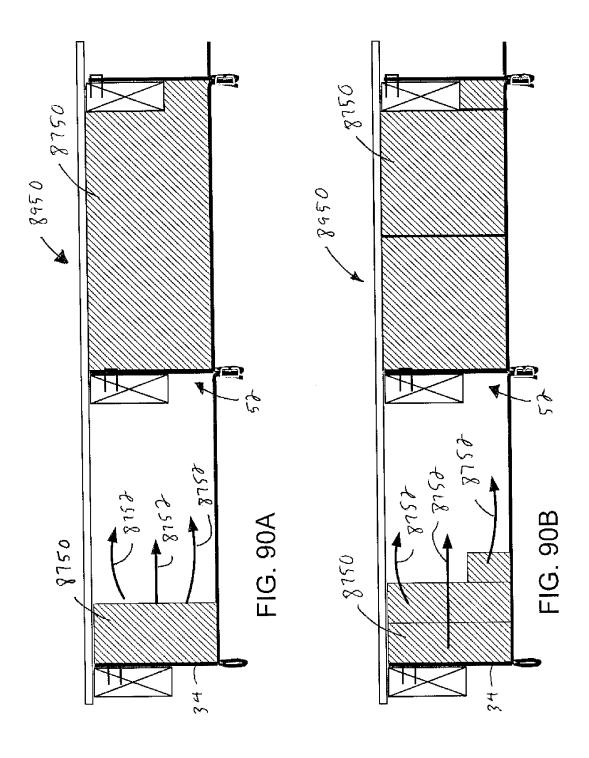


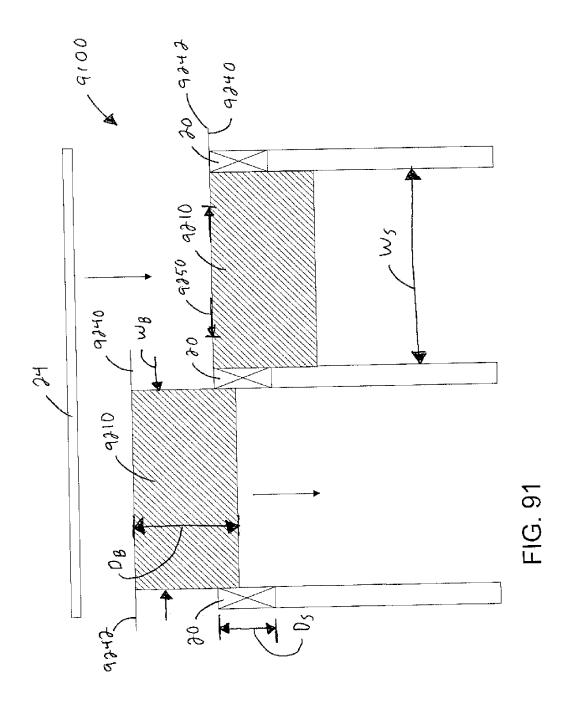
FIG. 86

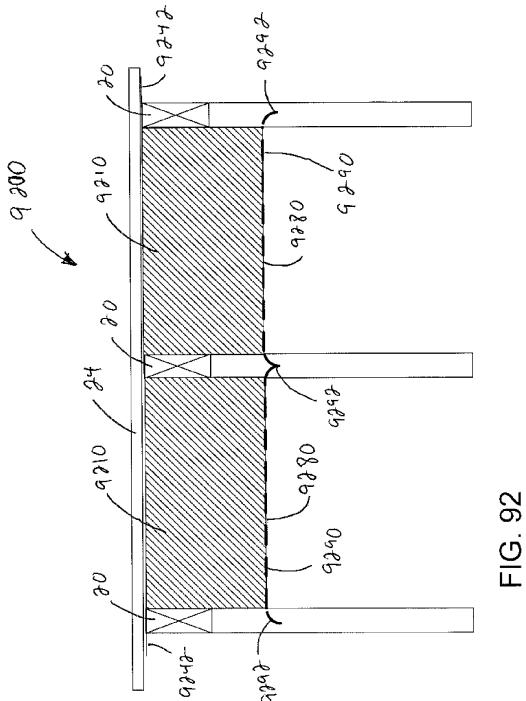






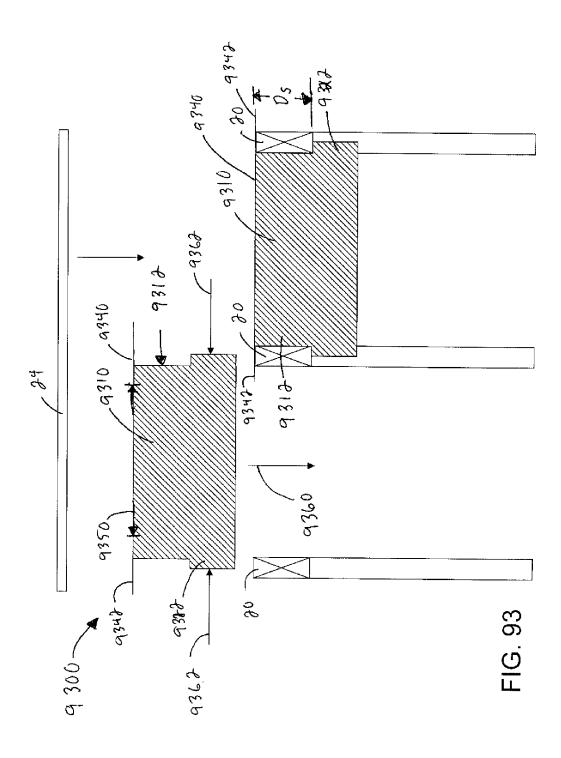

FIG. 86/

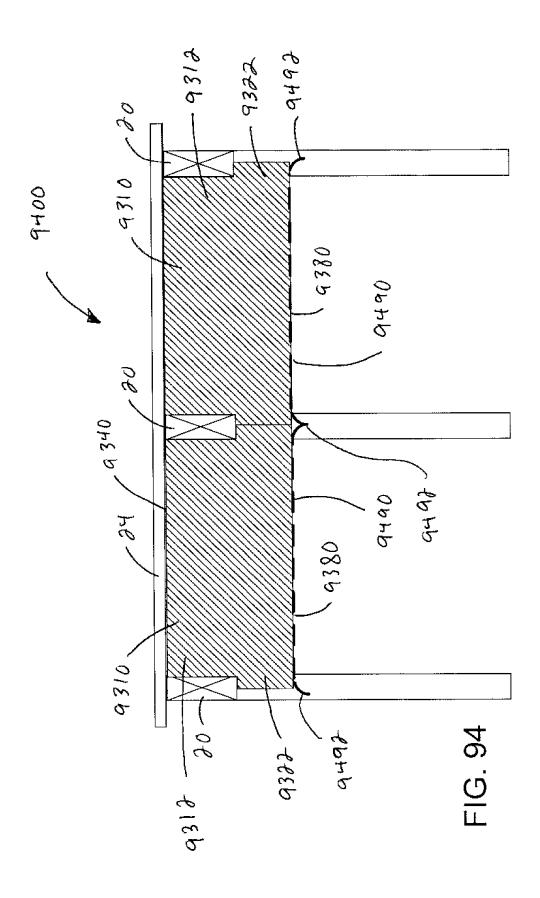


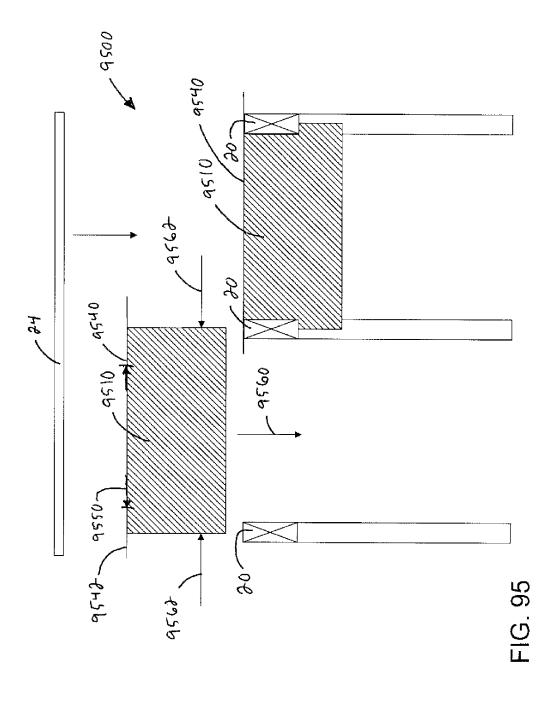


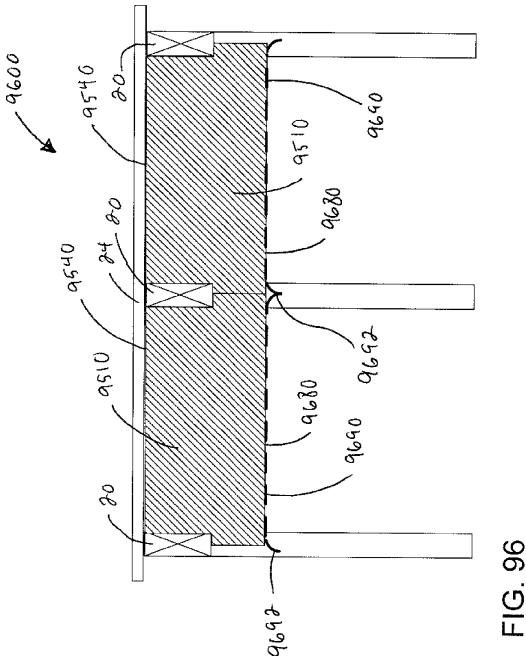


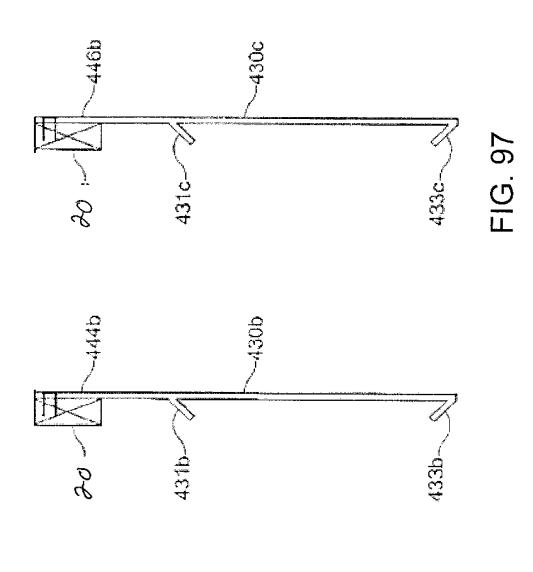


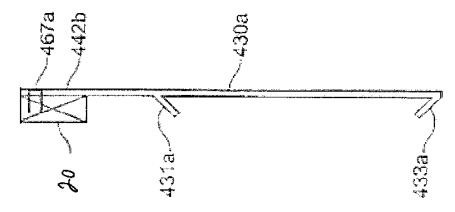


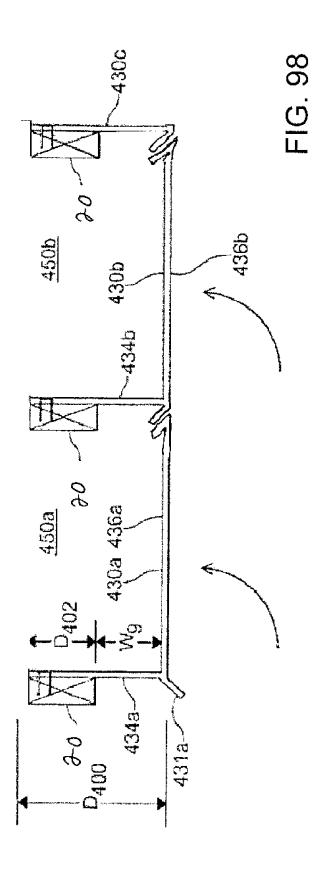


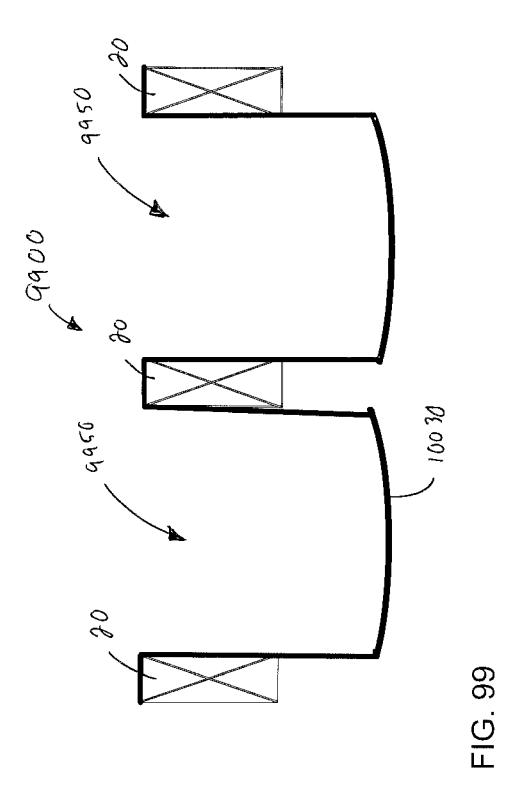


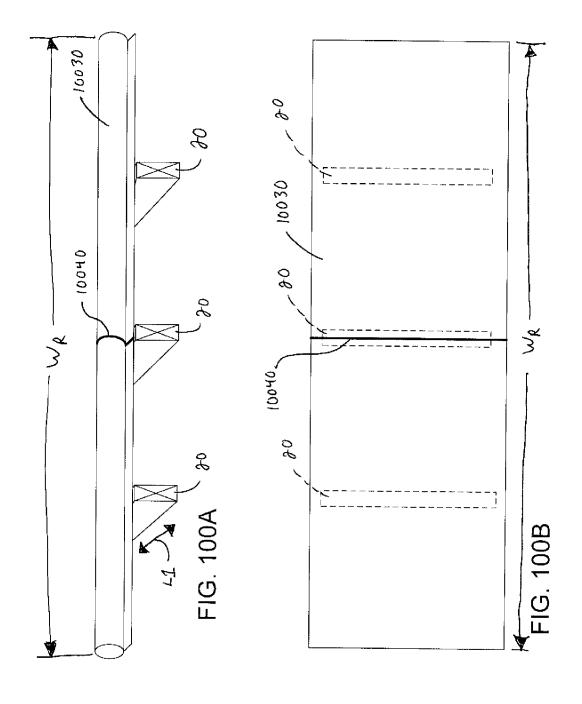


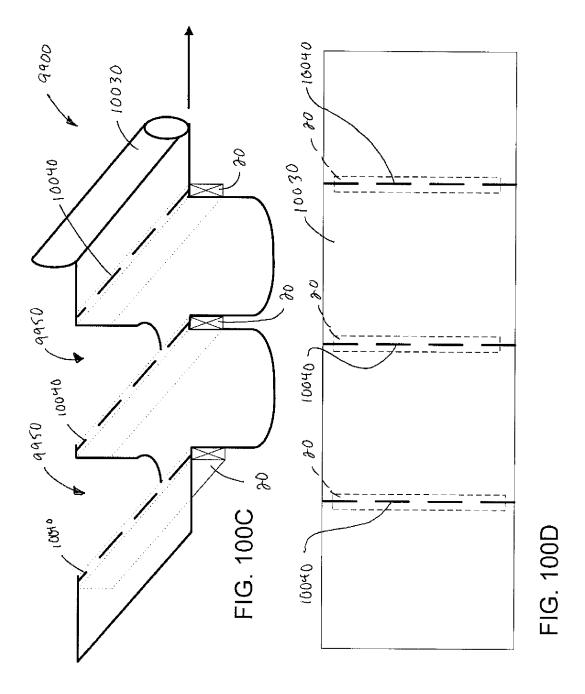


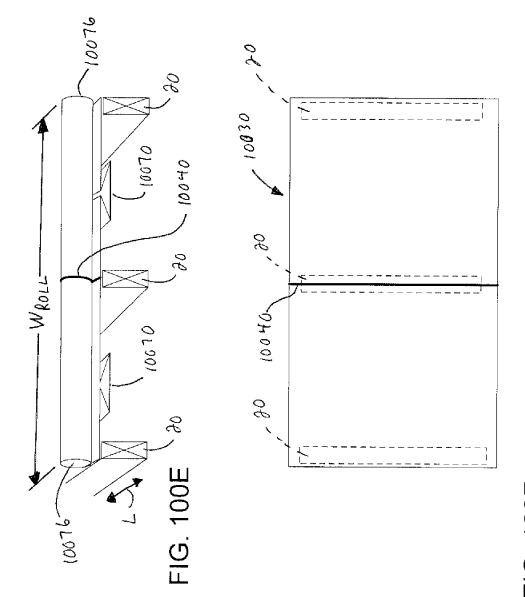
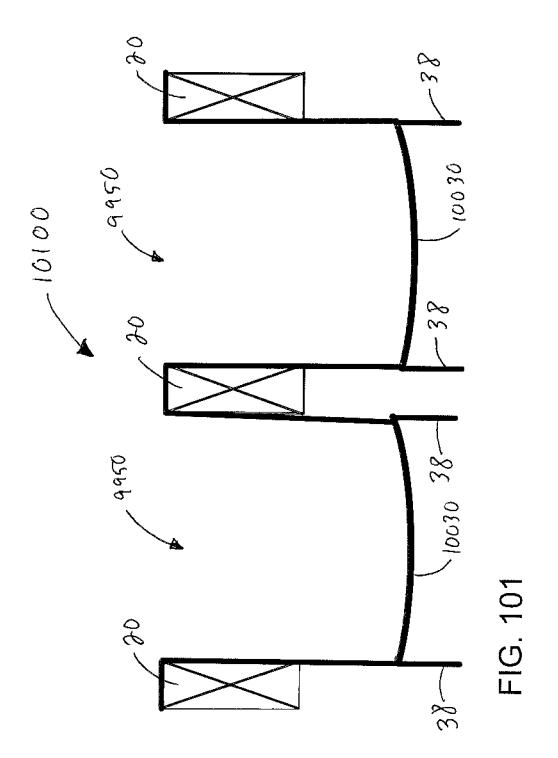
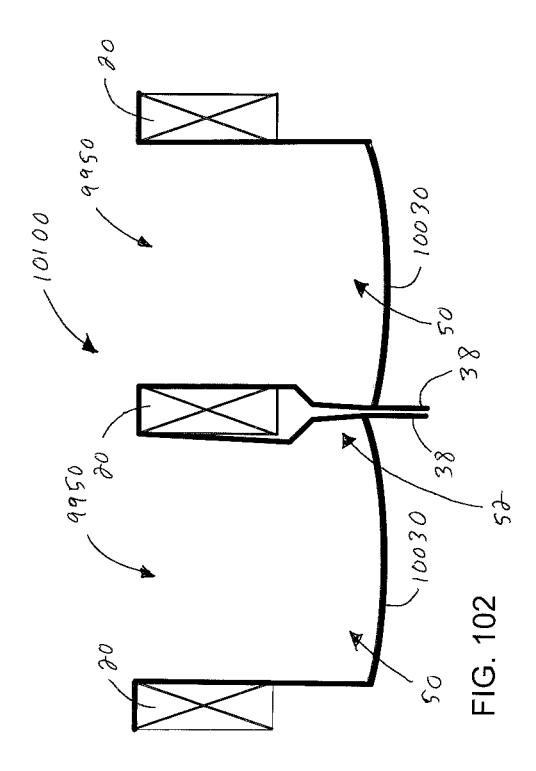
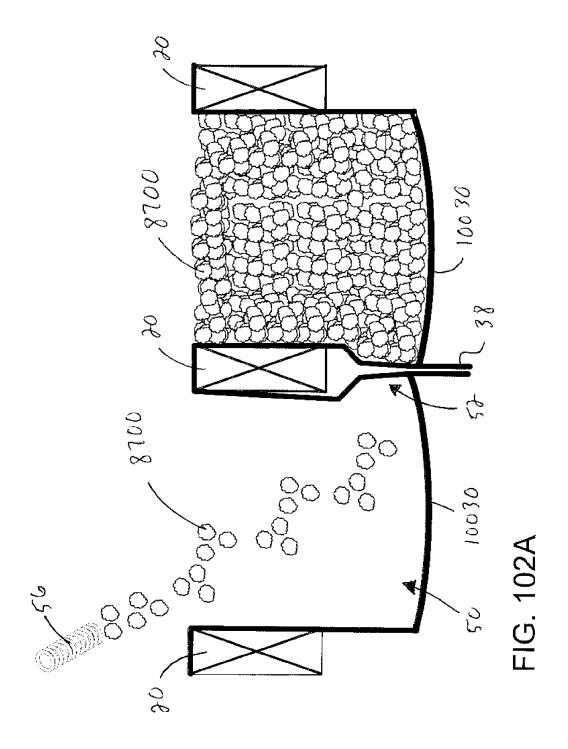
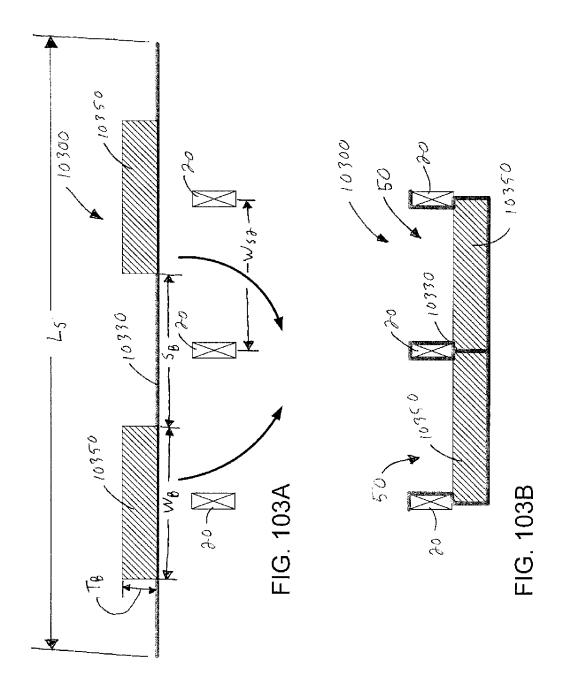


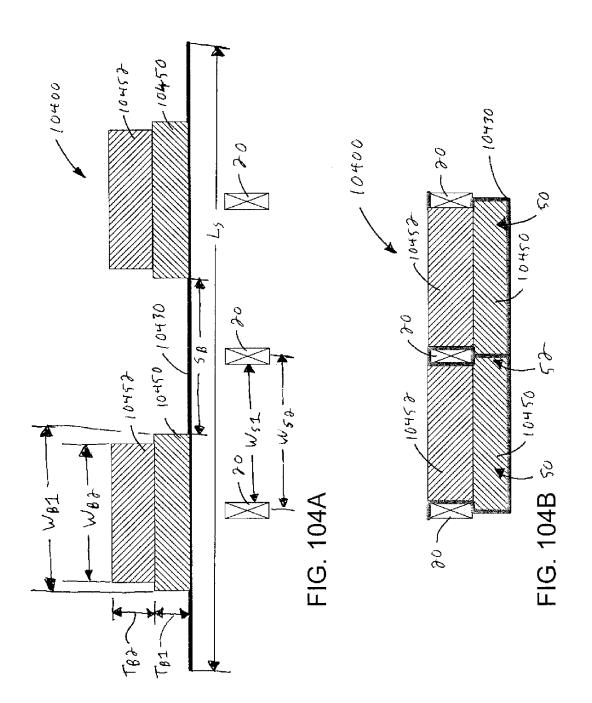


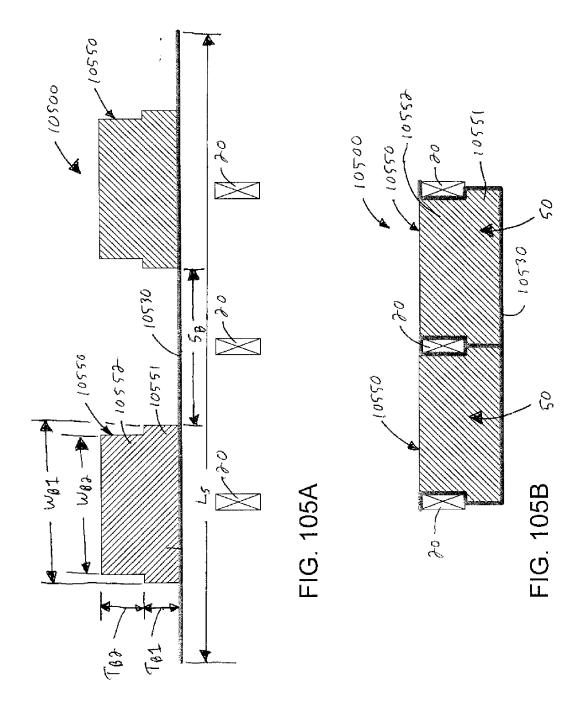


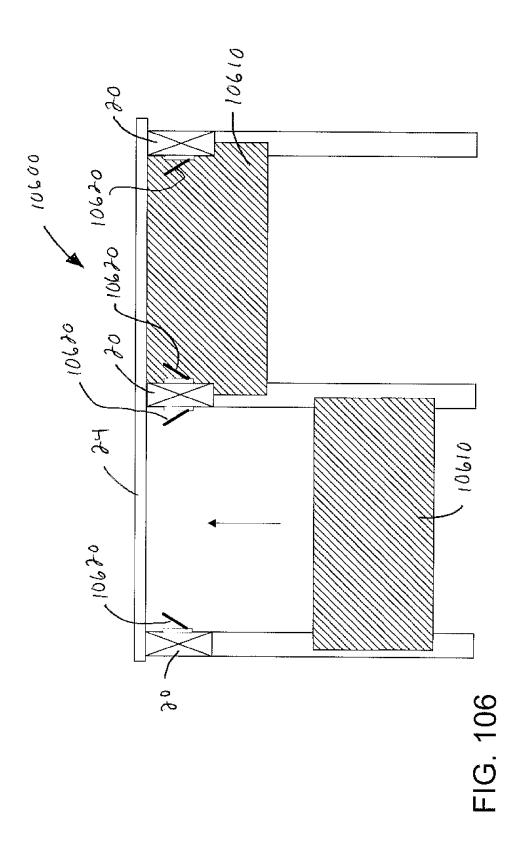


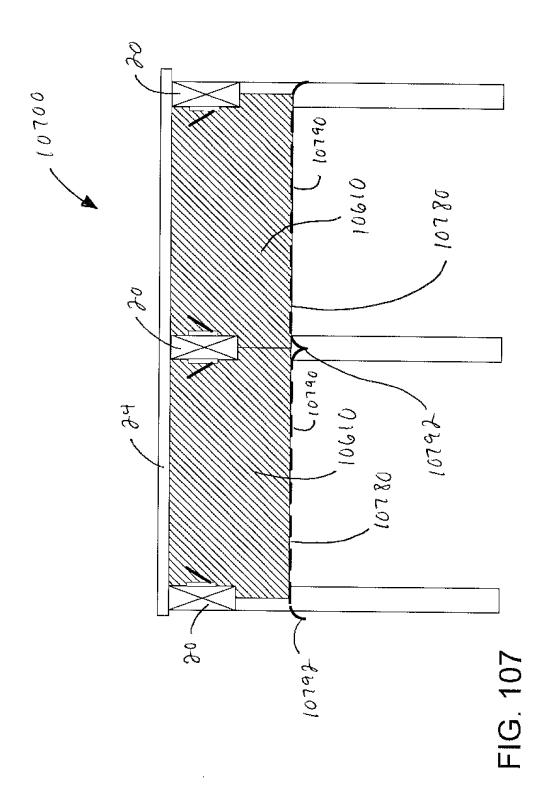


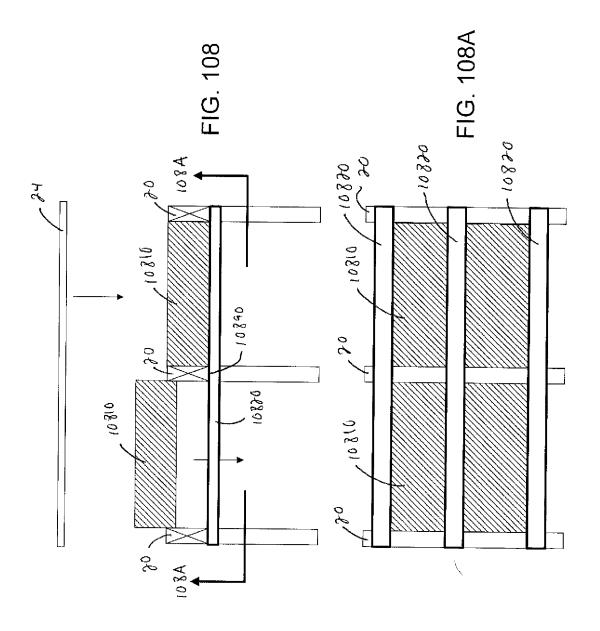






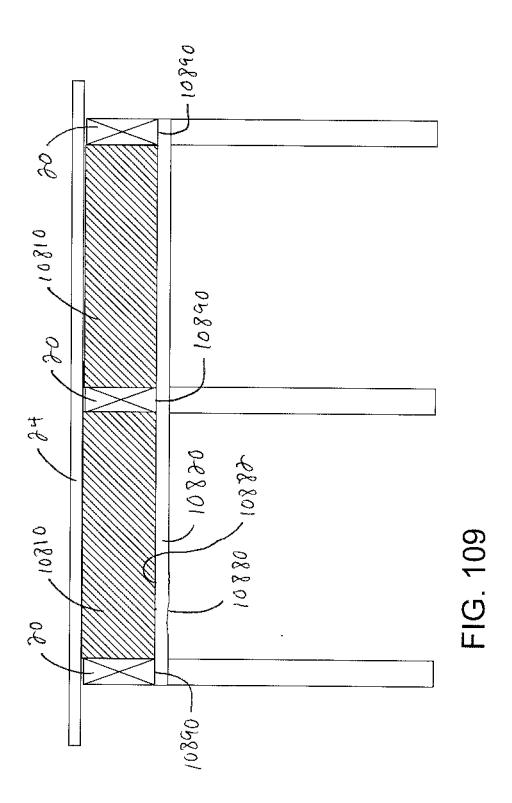

FIG. 100F

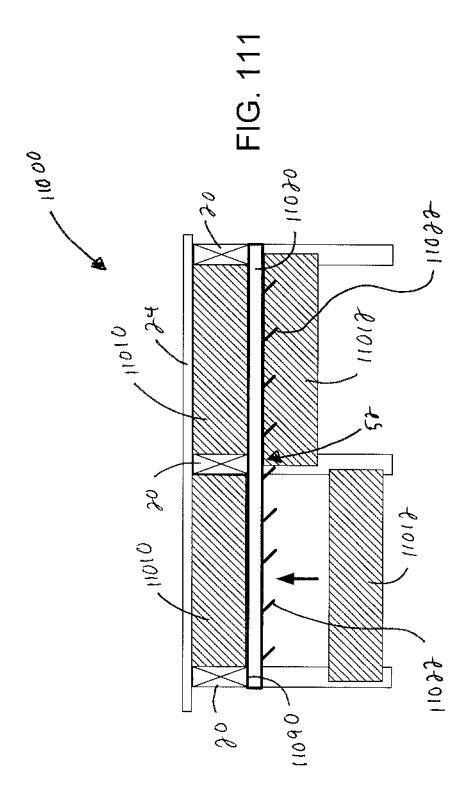


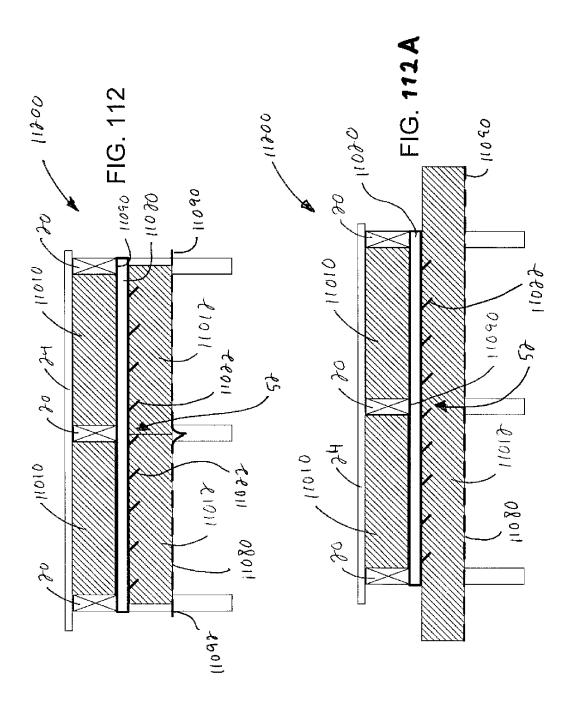


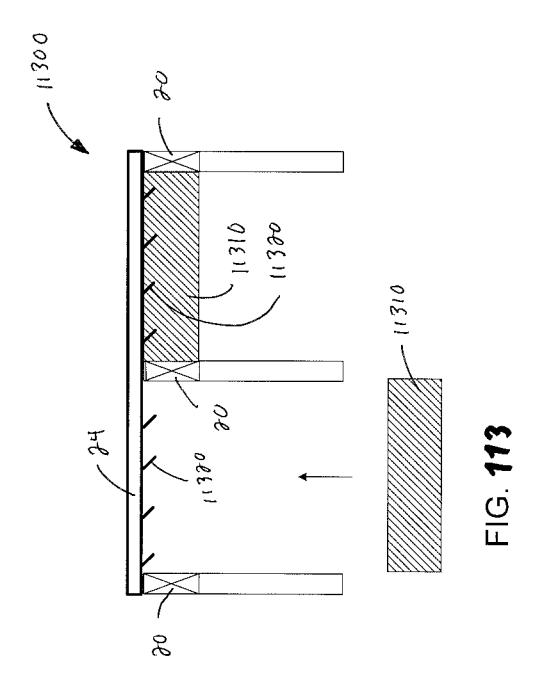


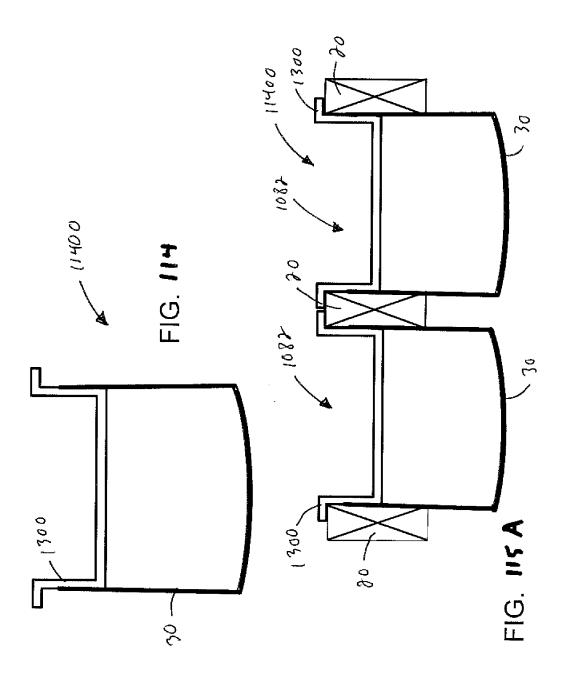


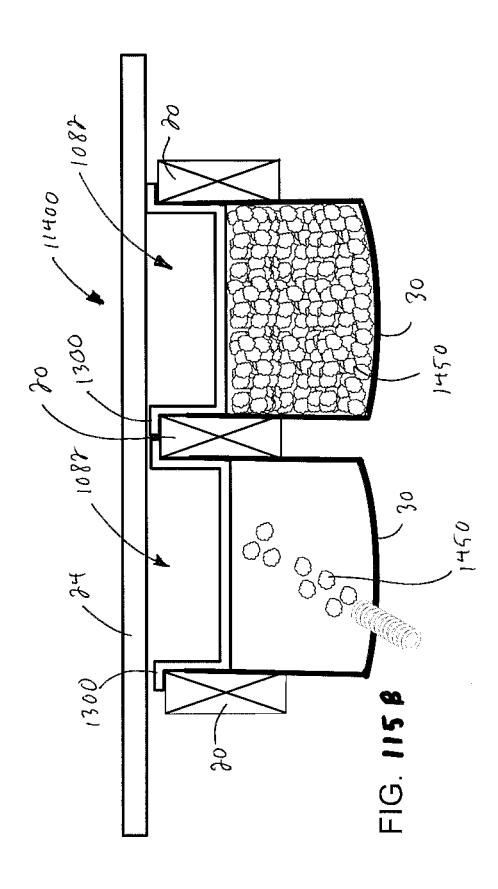


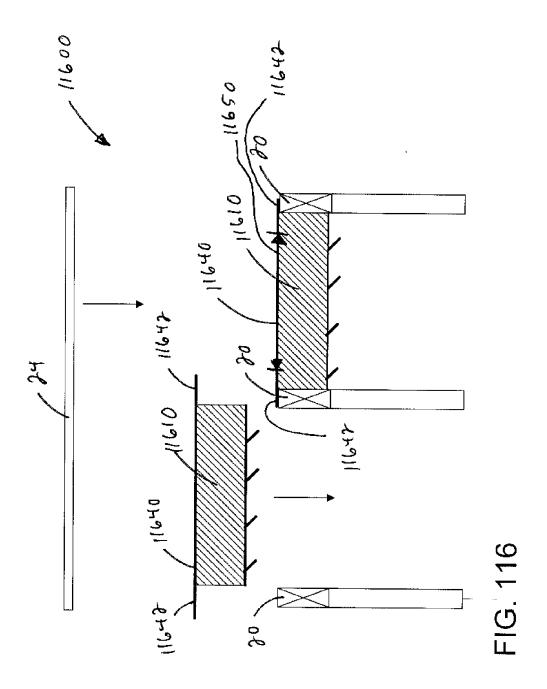


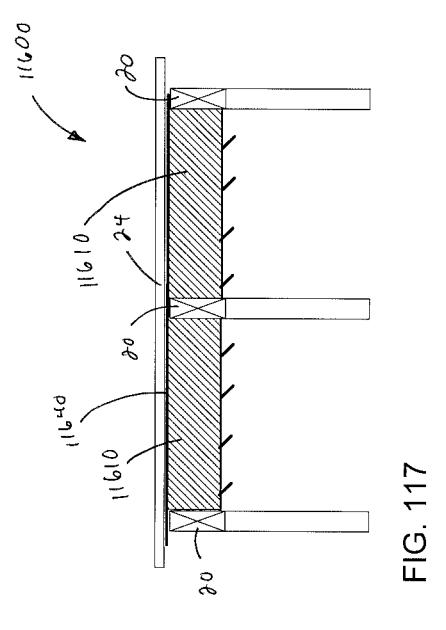


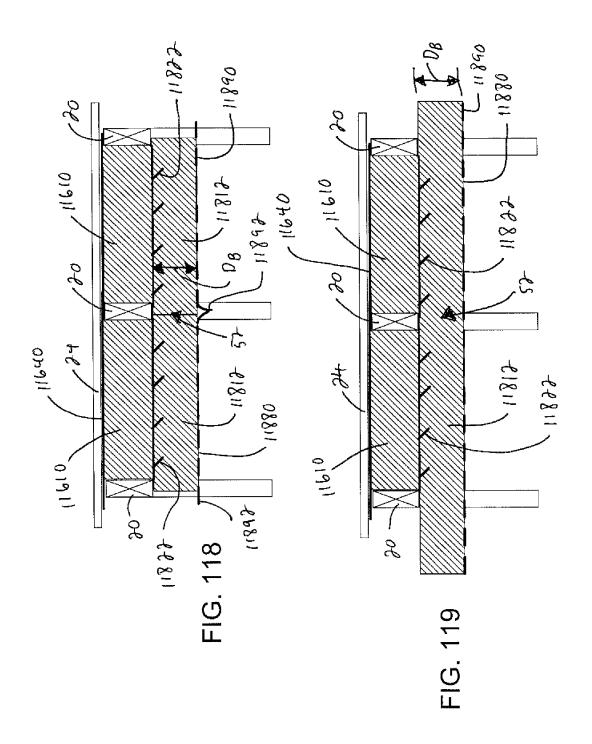












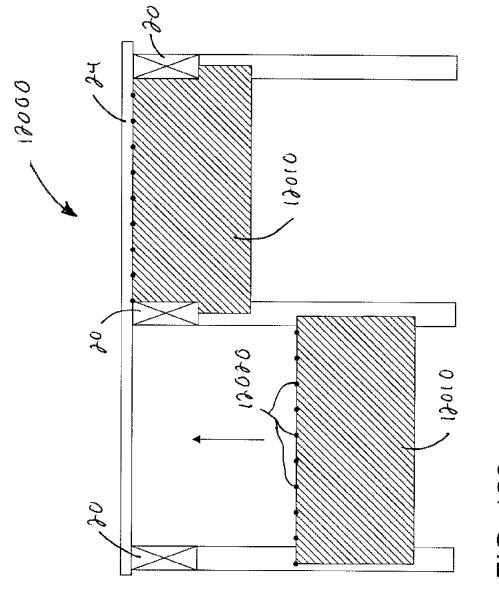
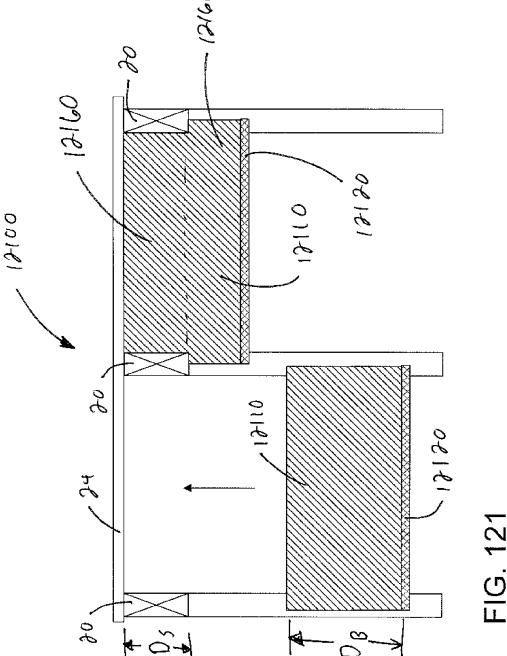
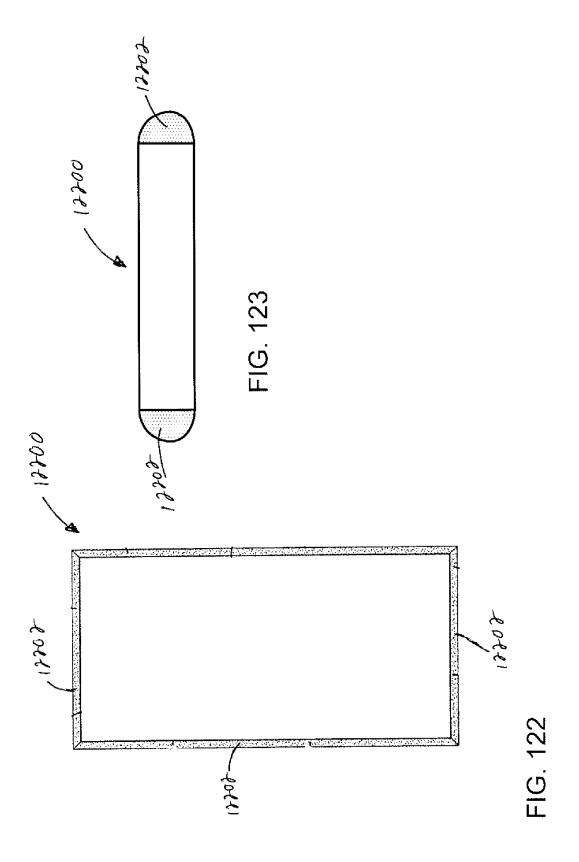
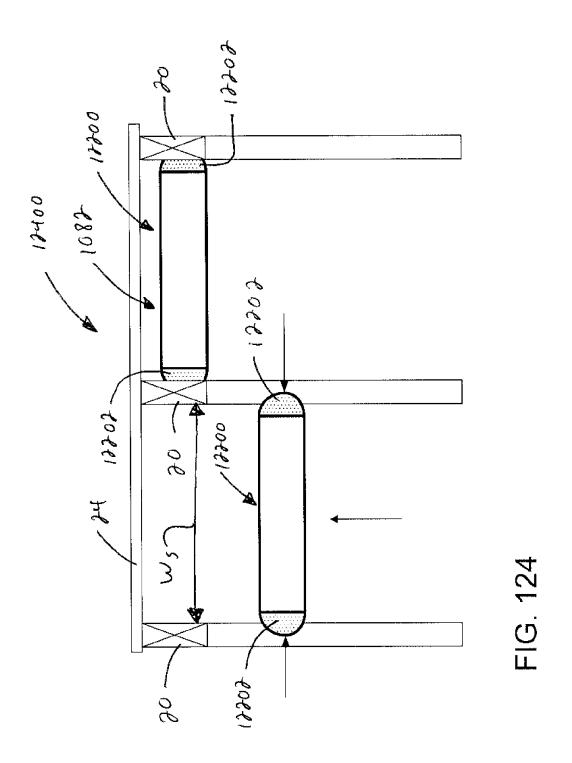
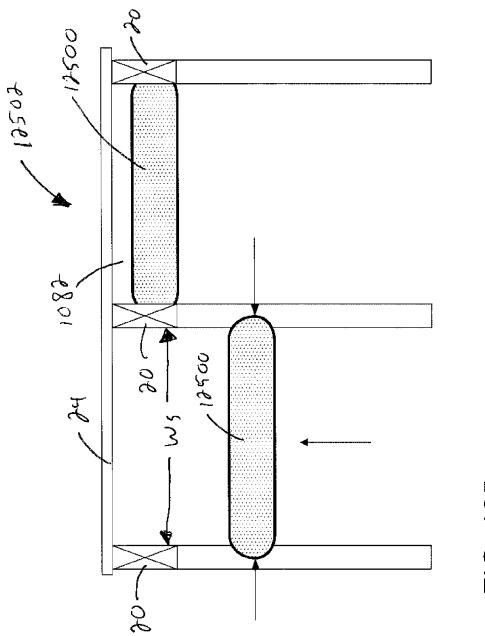
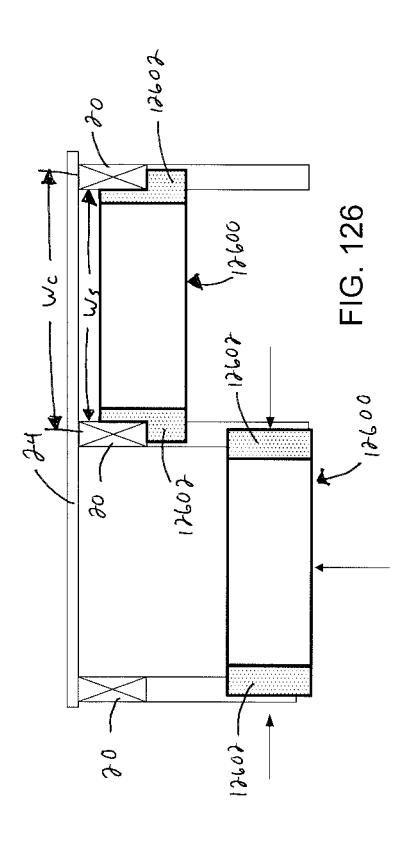
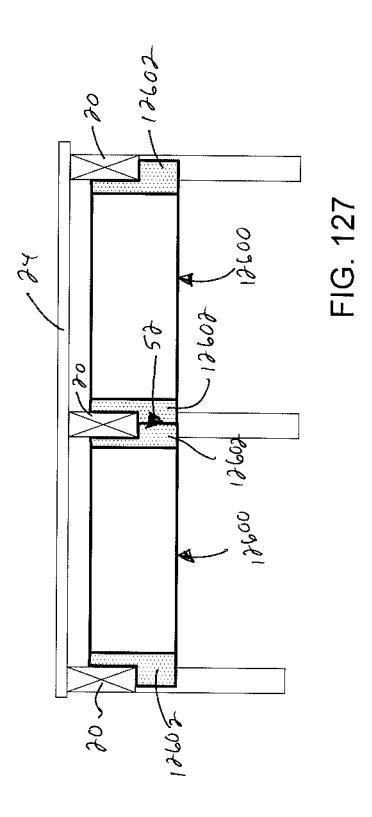
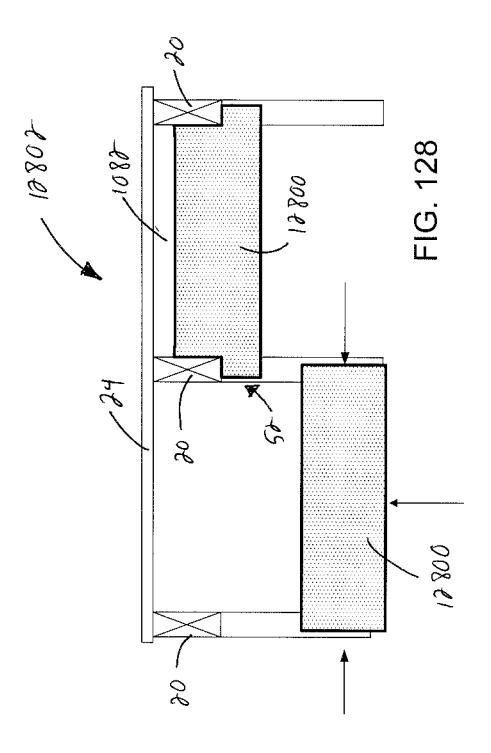
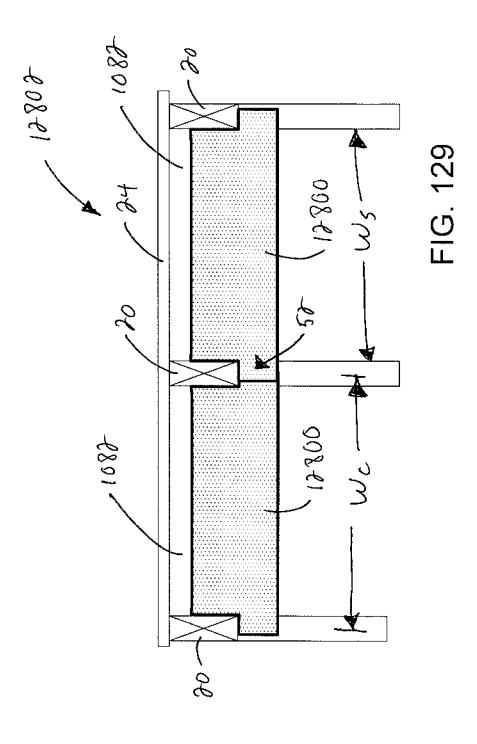
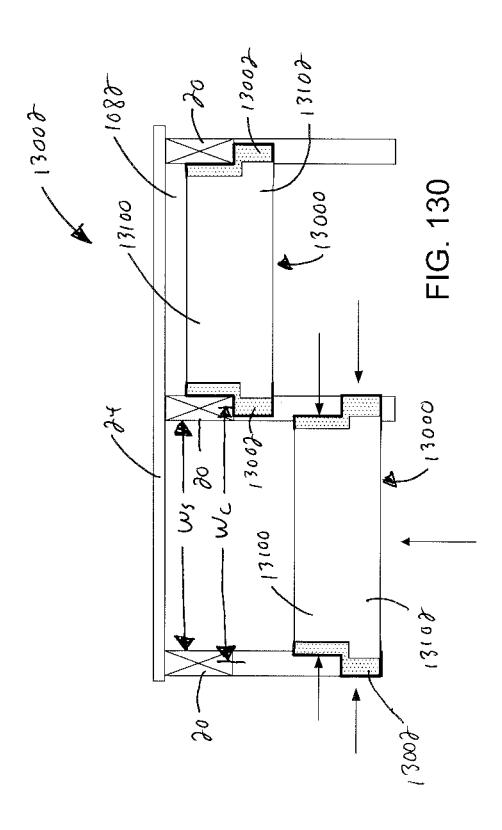
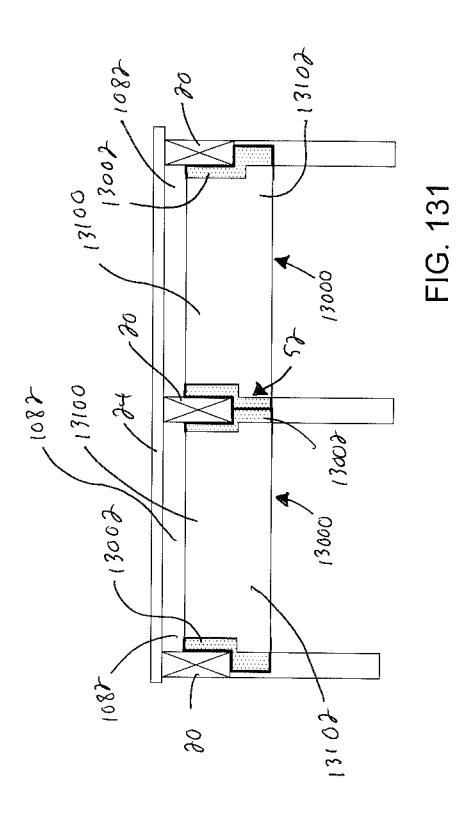
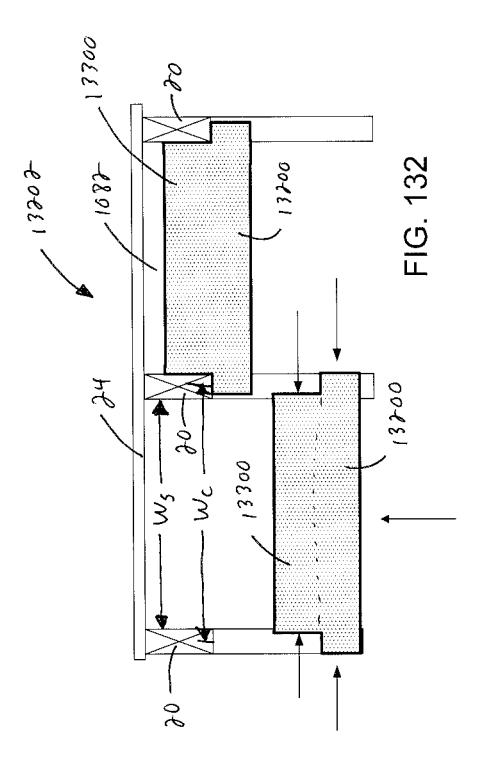





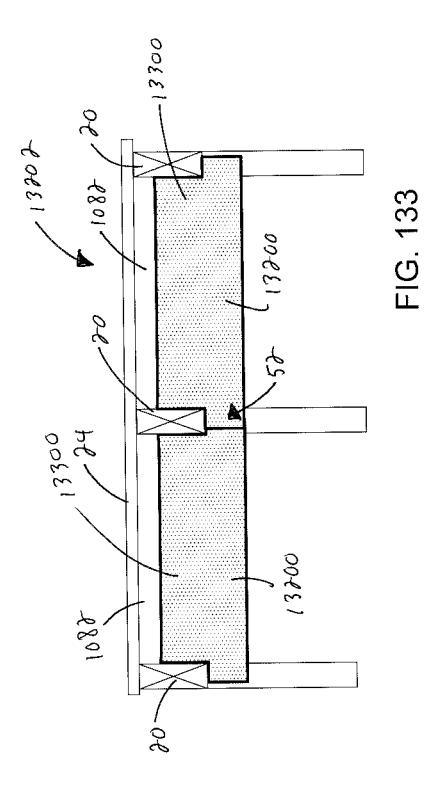
FIG. 120


FIG. 125







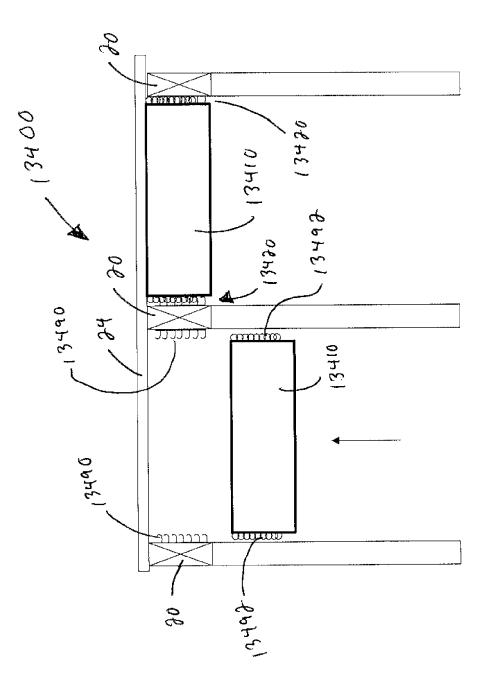
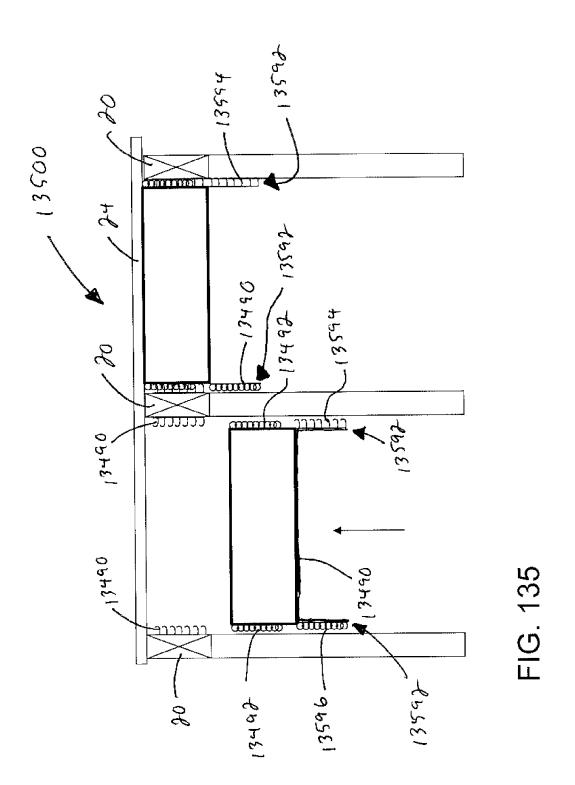



FIG. 134

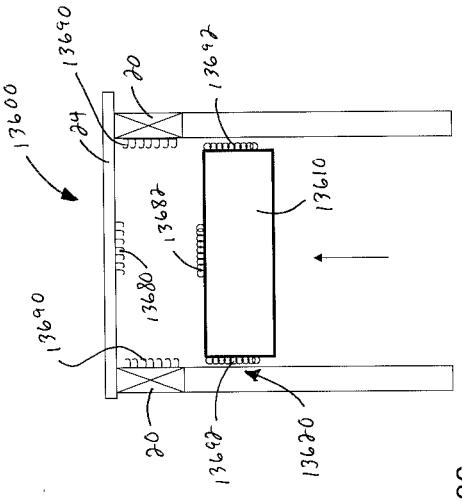
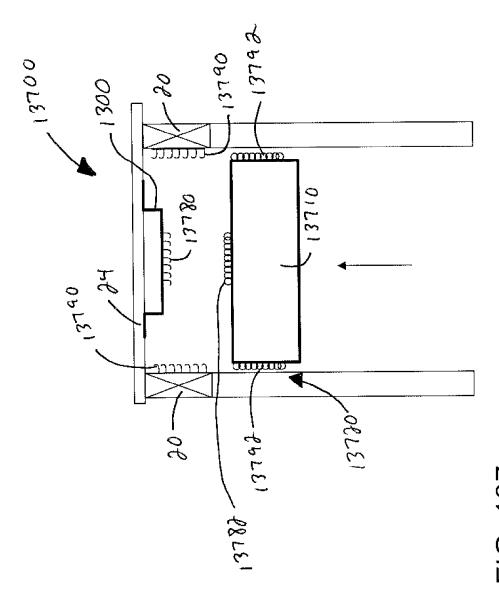
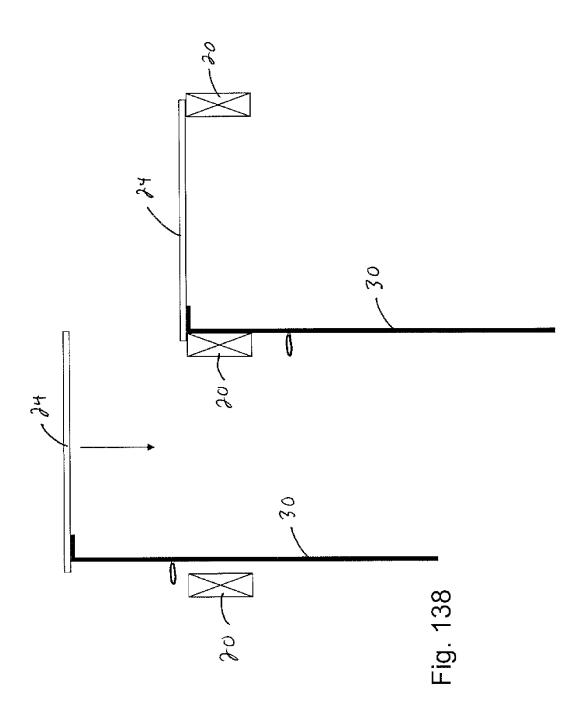
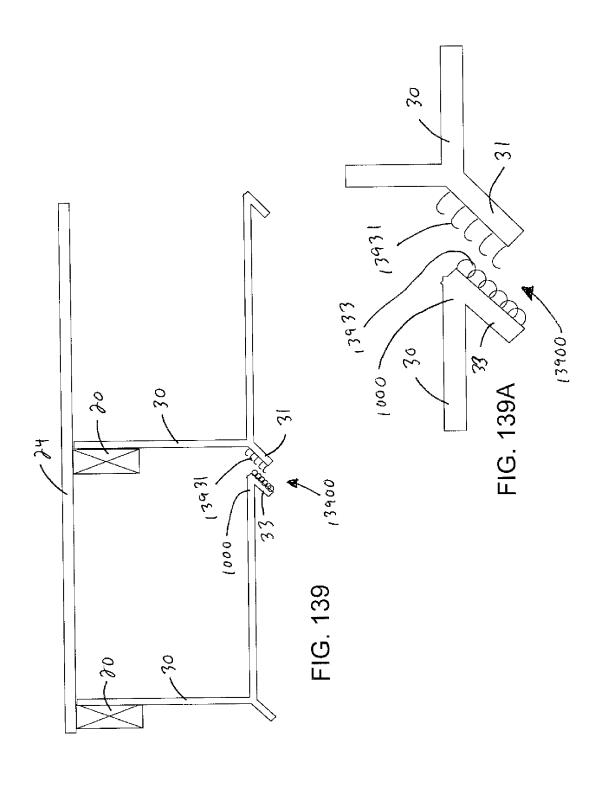
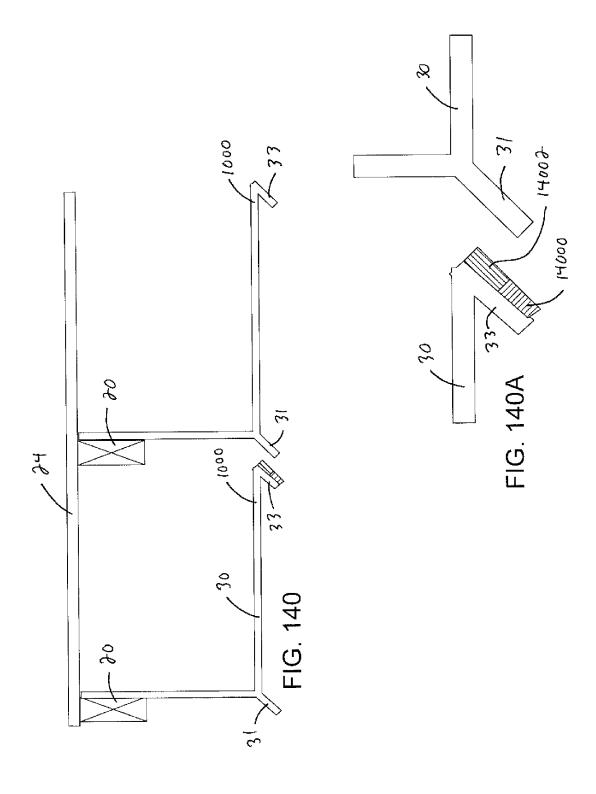
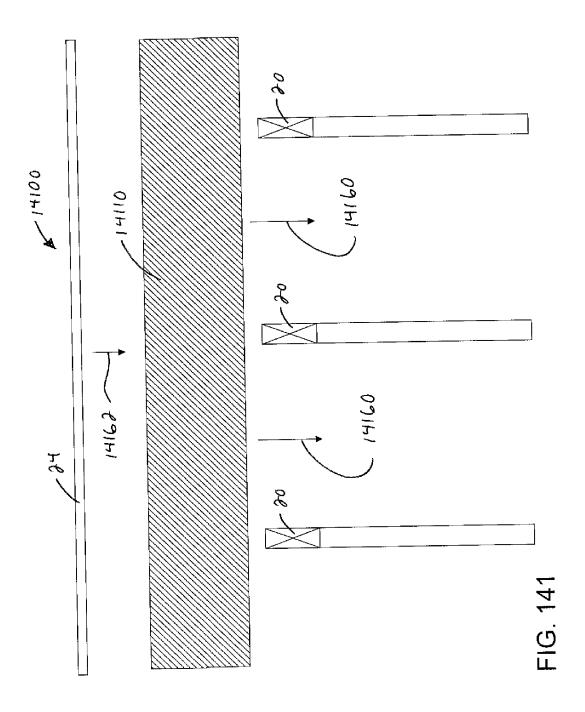
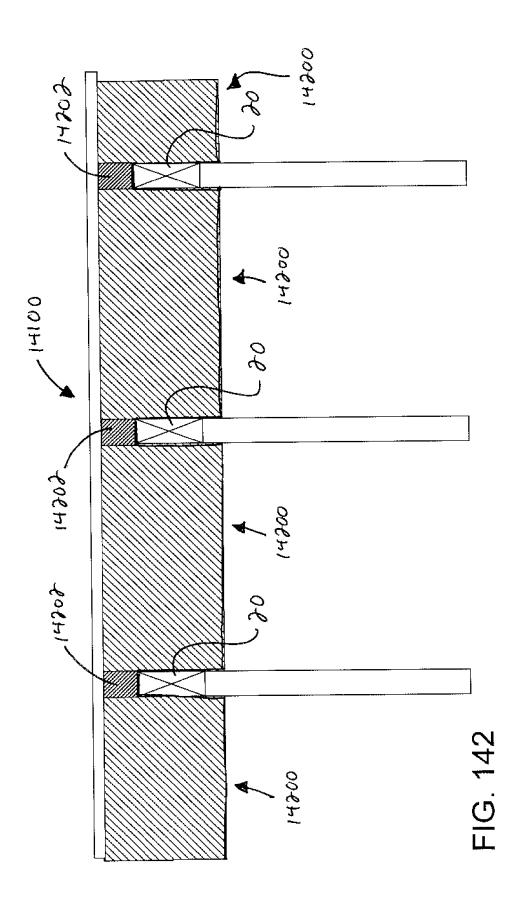
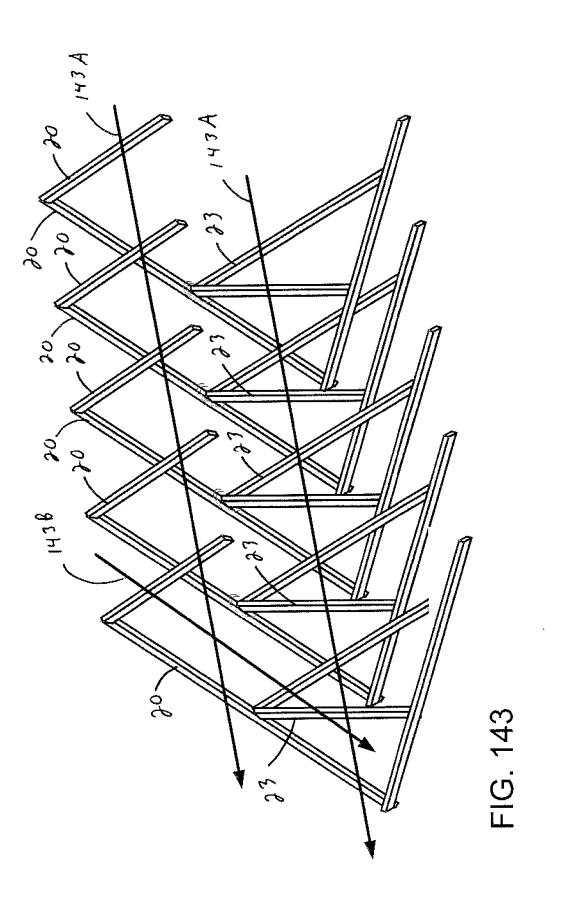
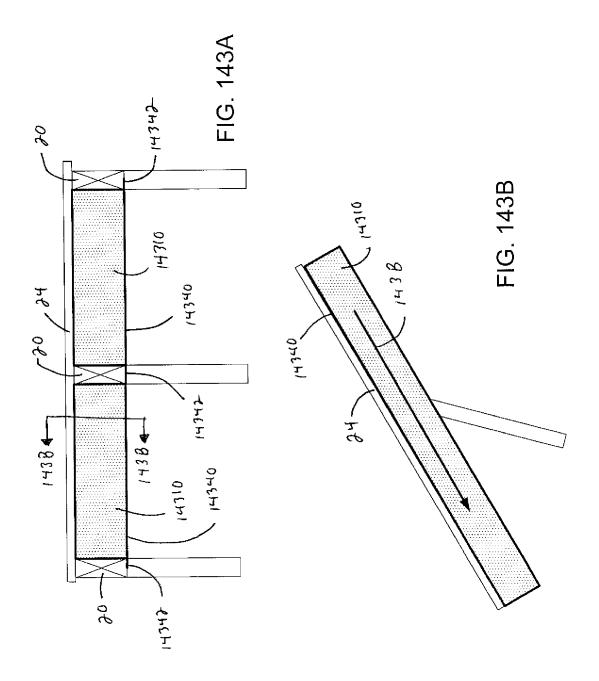


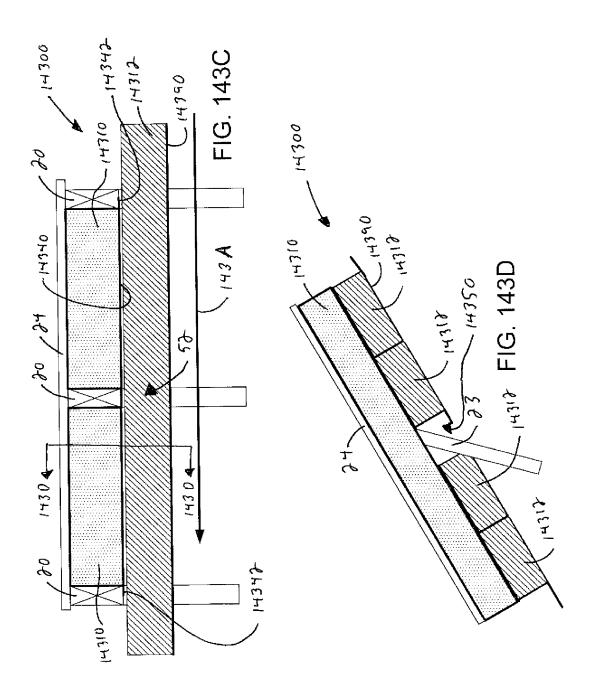
FIG. 136

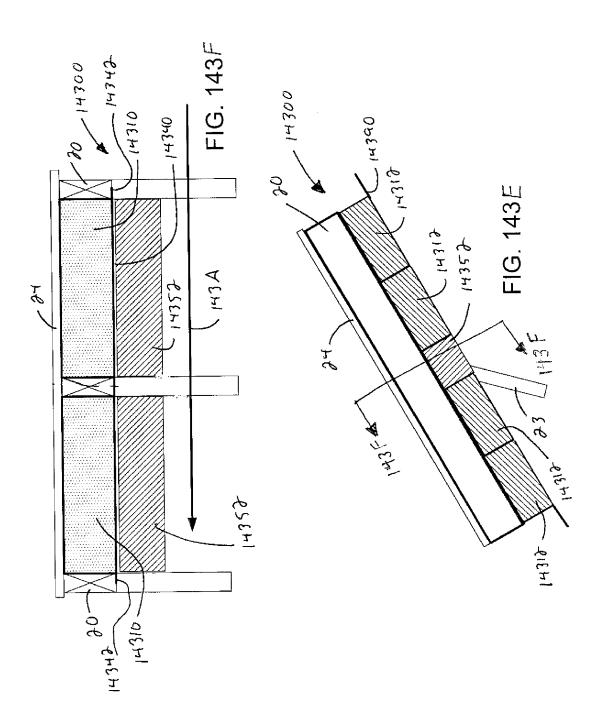






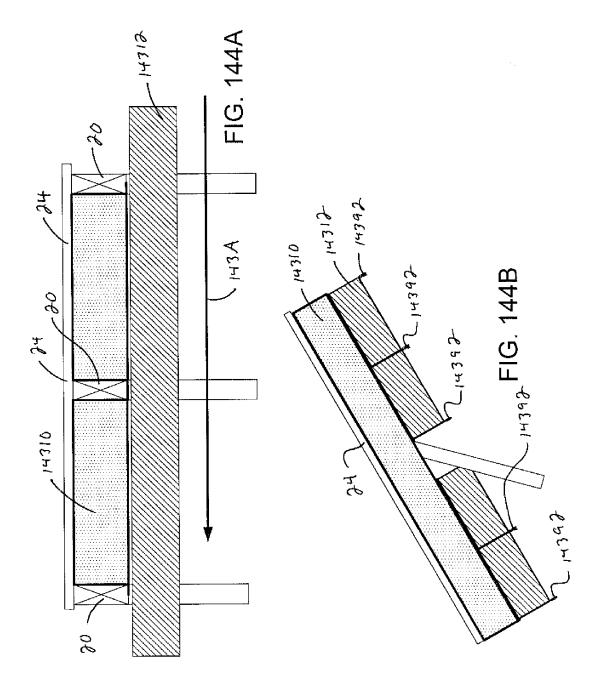

FIG. 13/

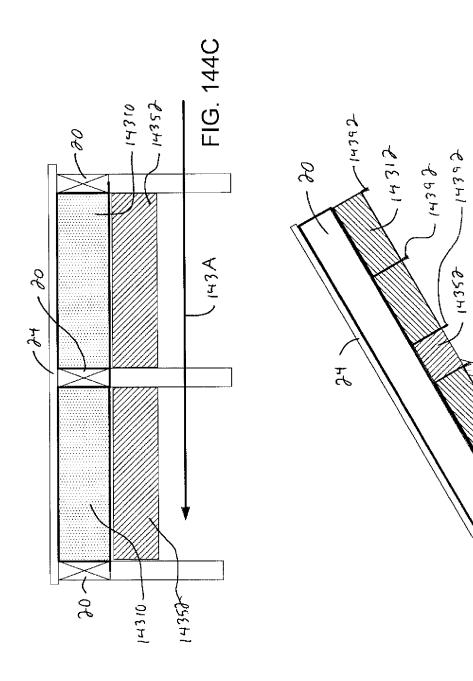


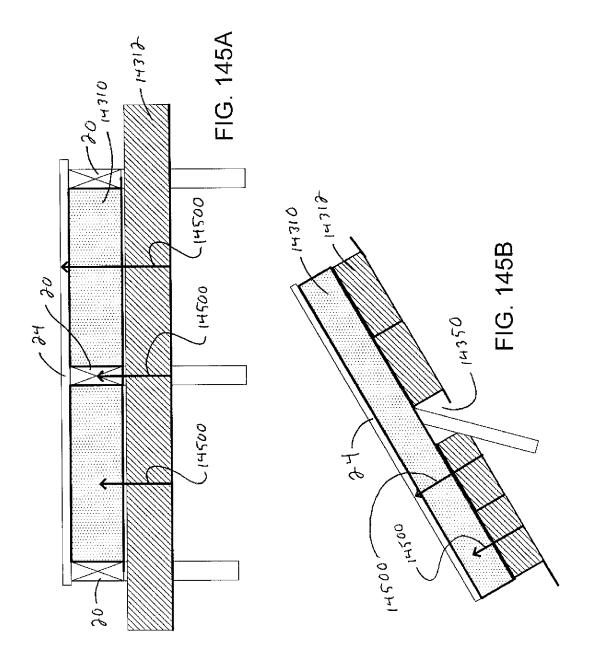


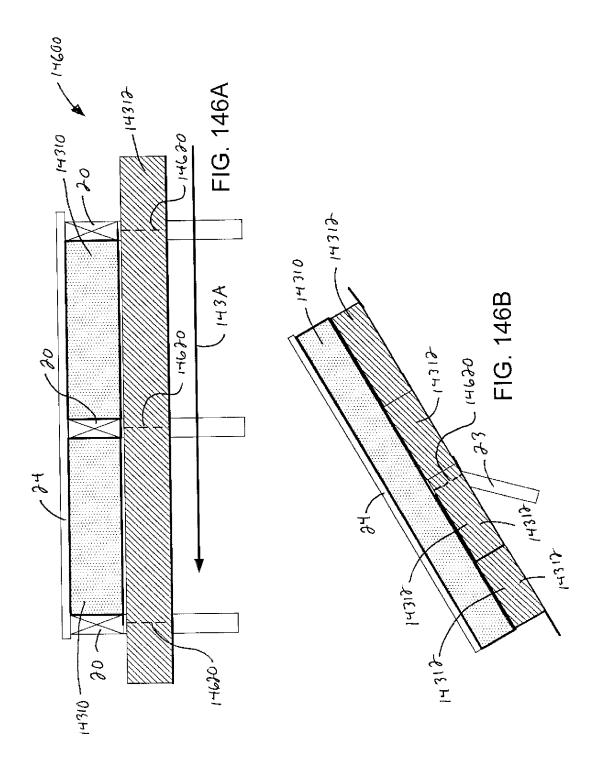


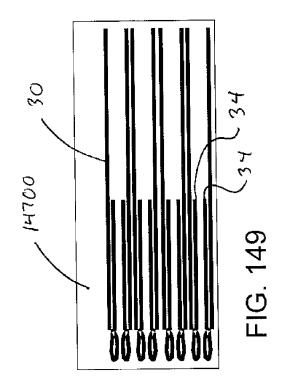


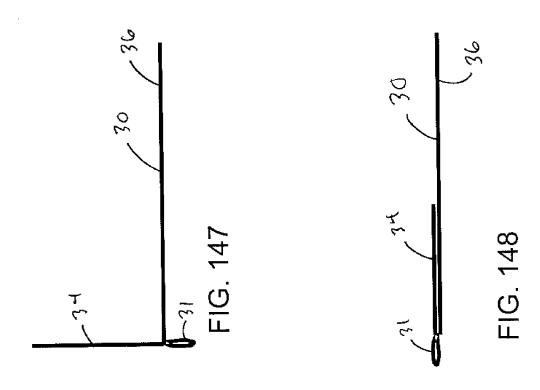


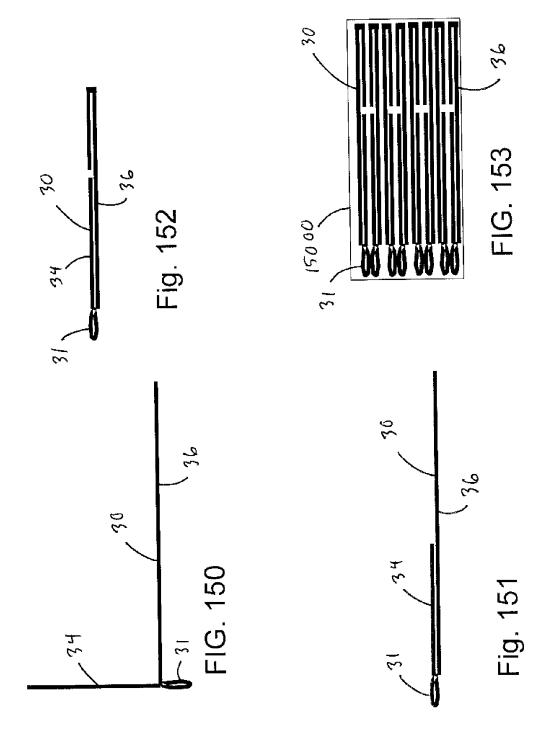


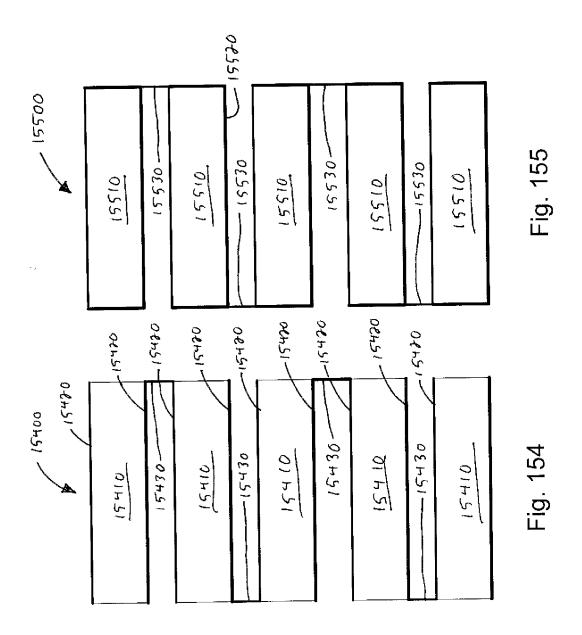


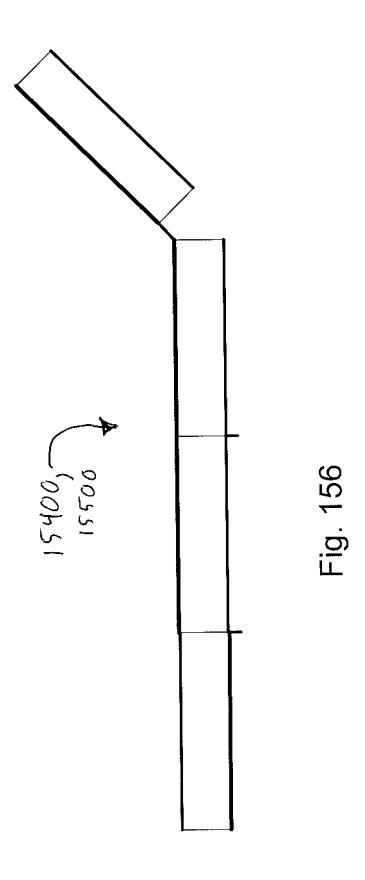


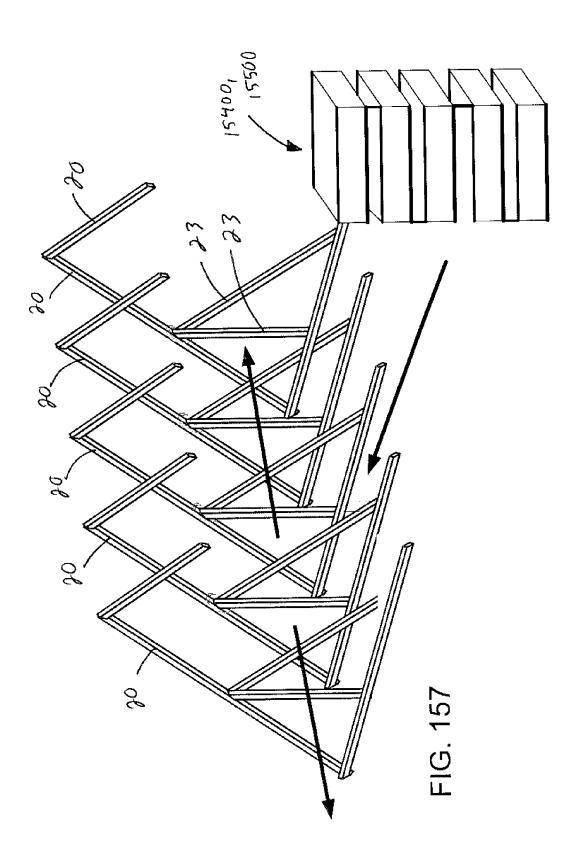


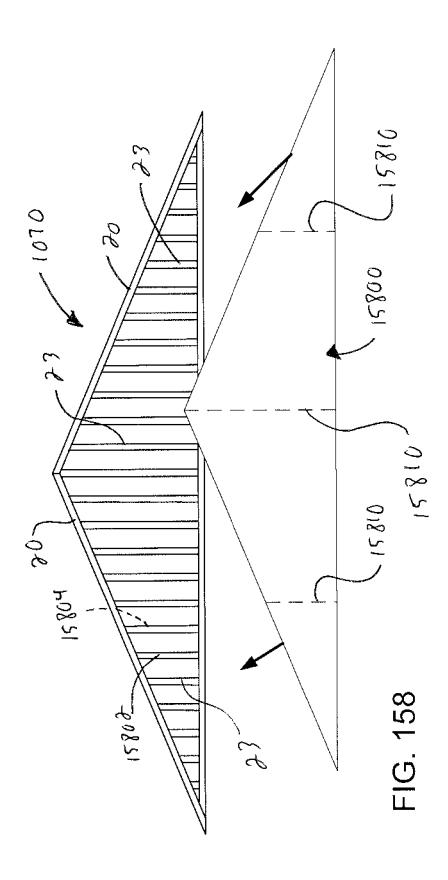


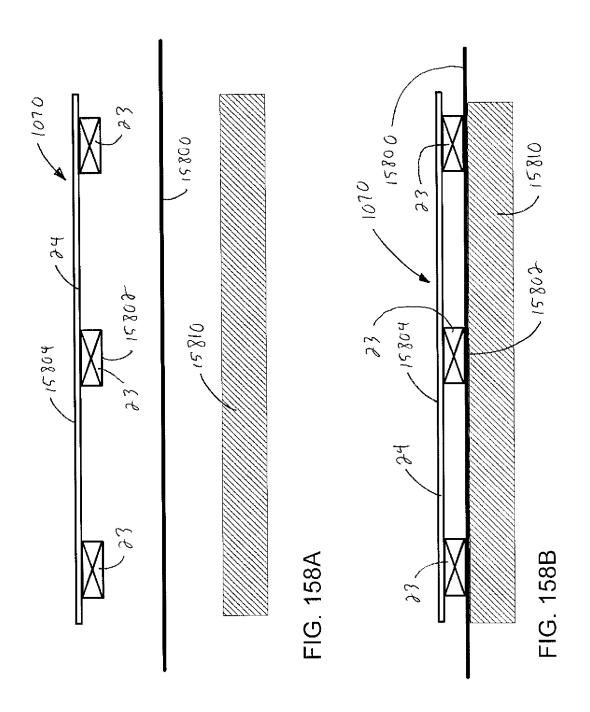


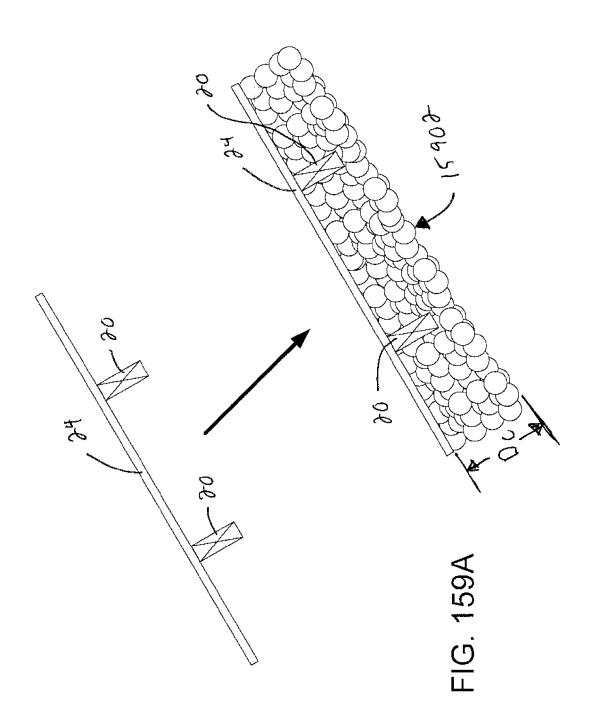


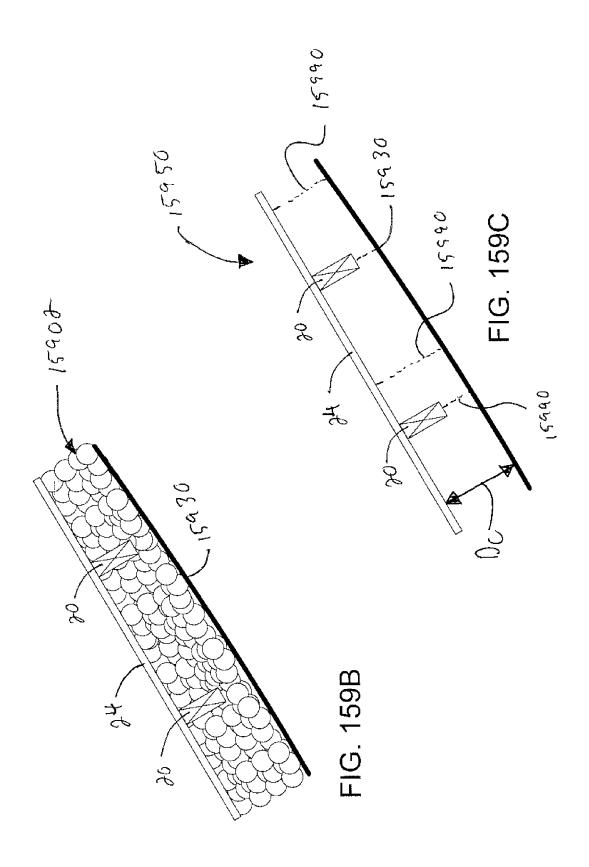


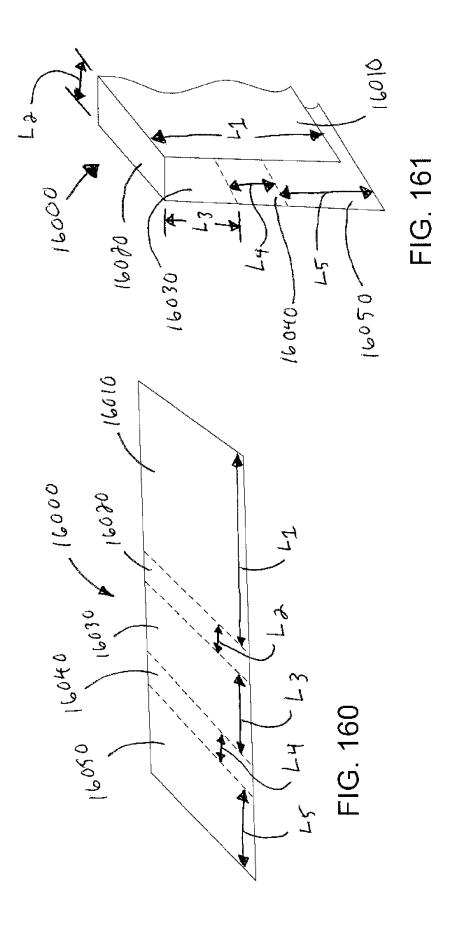


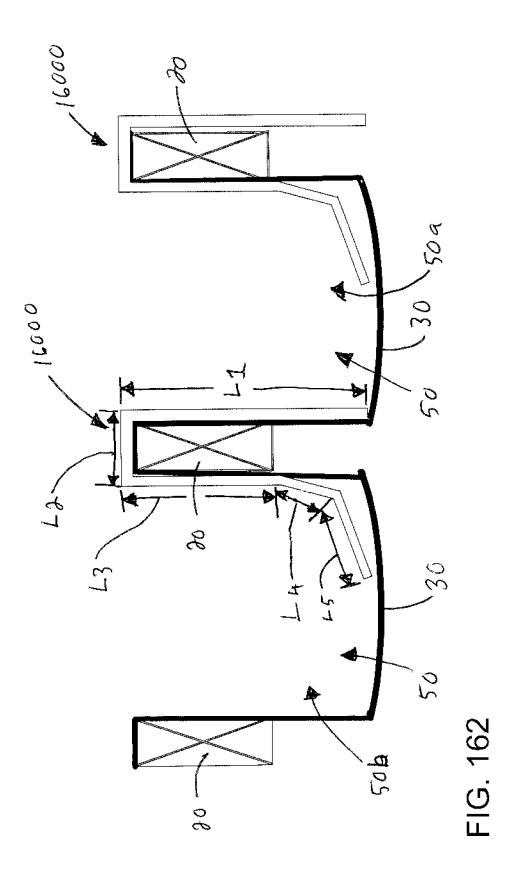


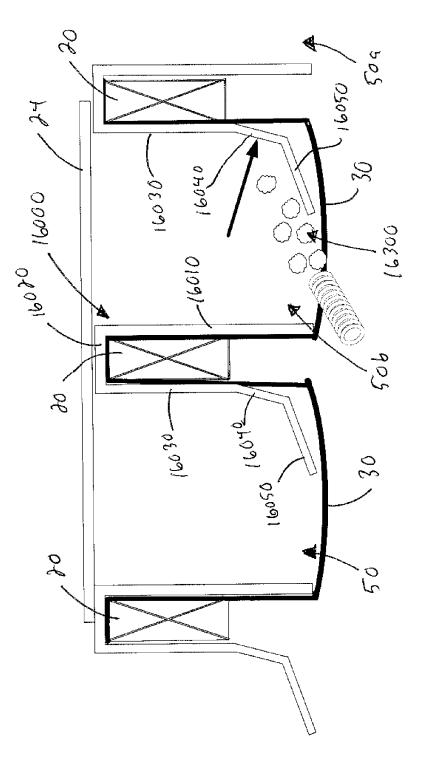
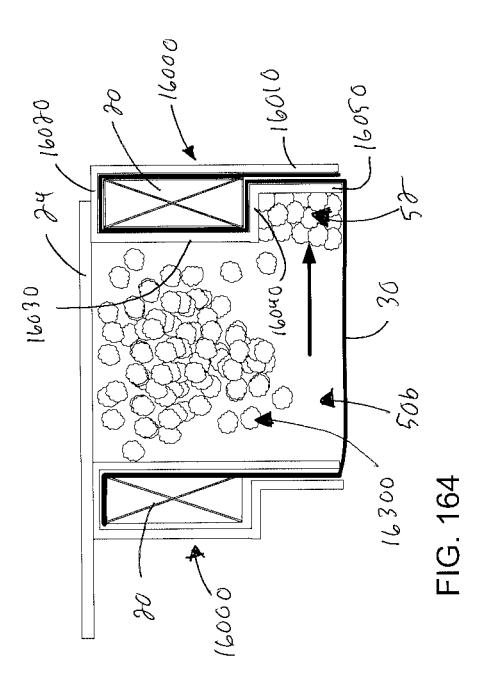
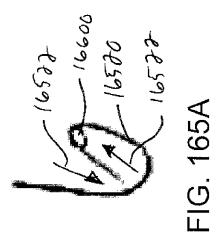
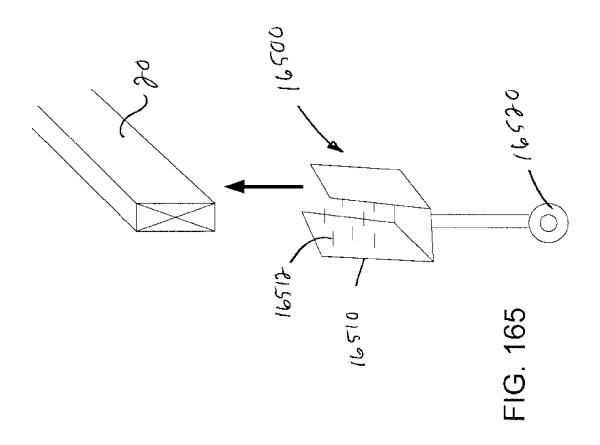
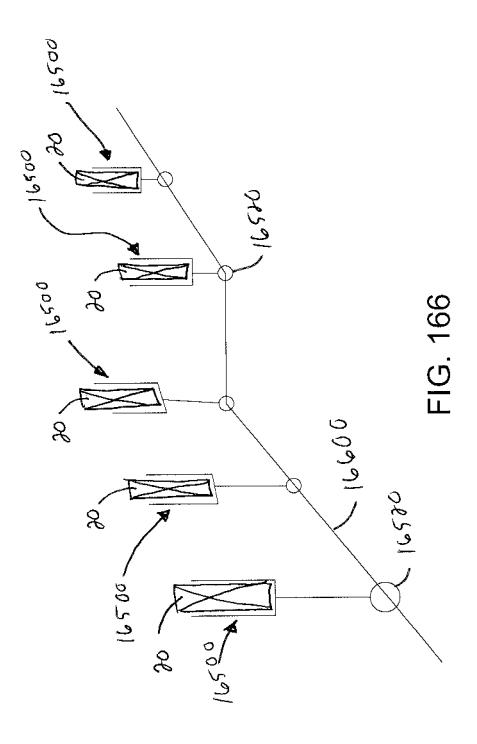


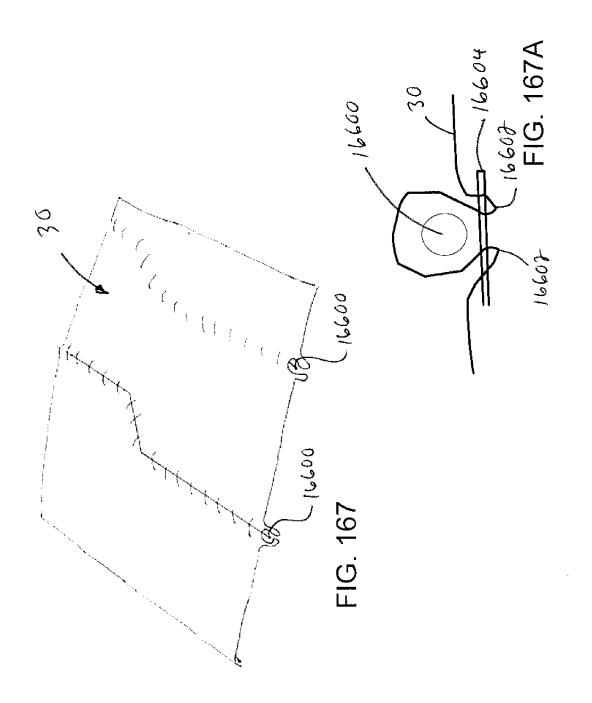


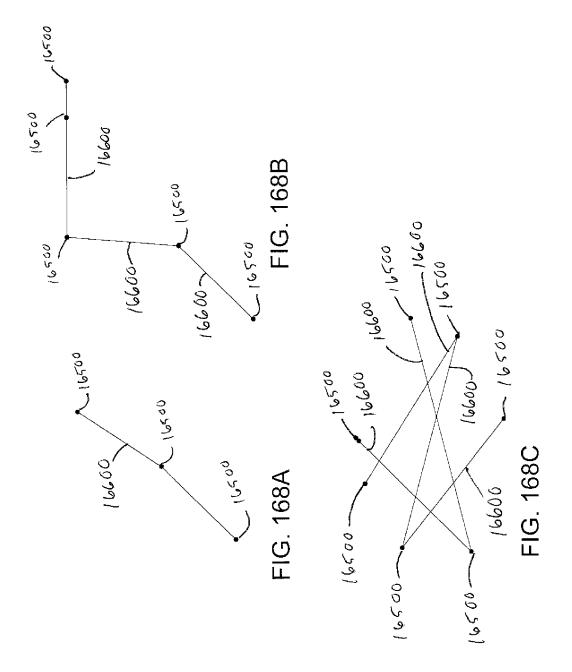


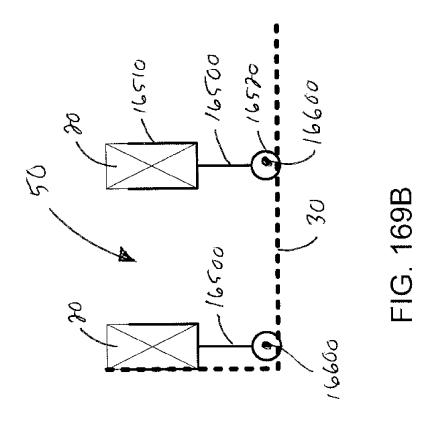


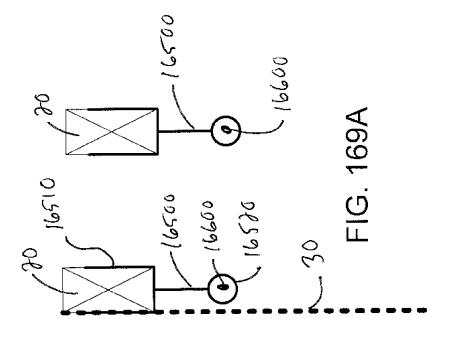


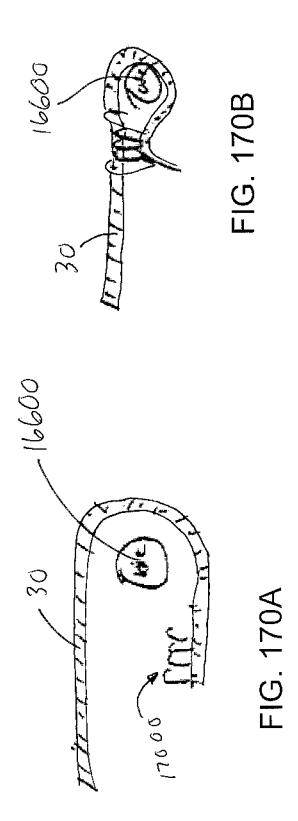






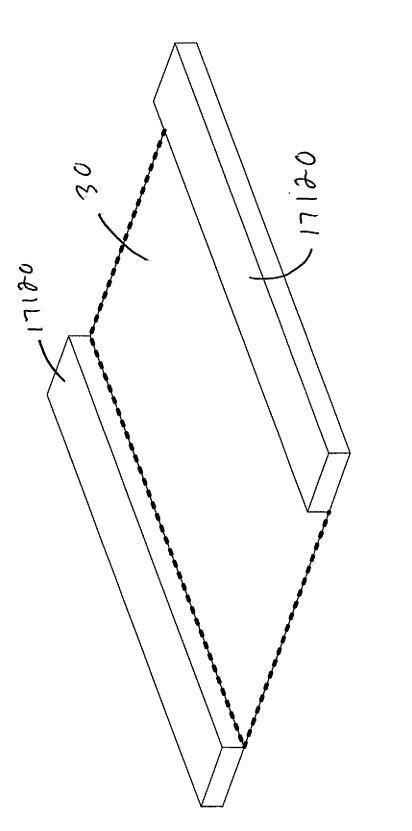
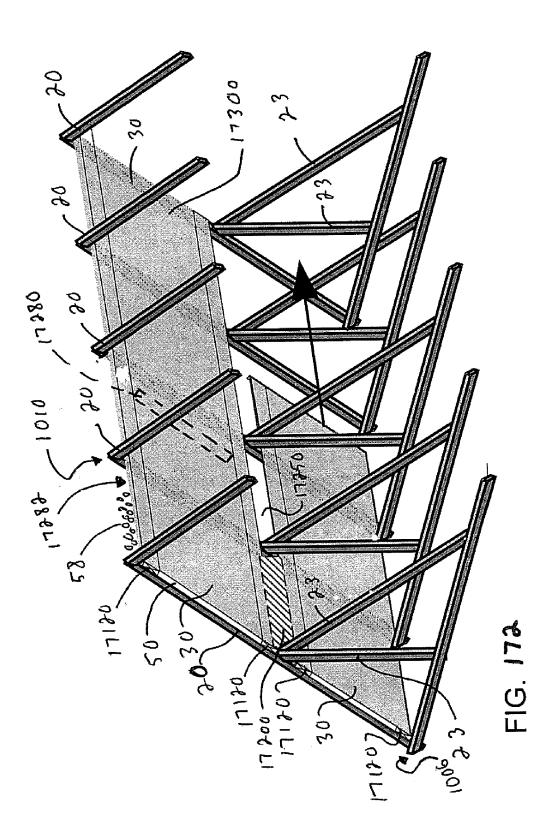
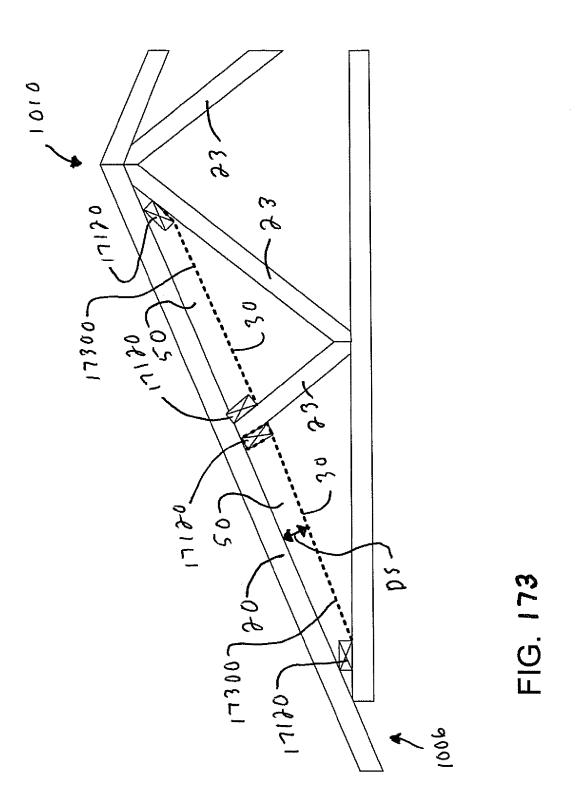
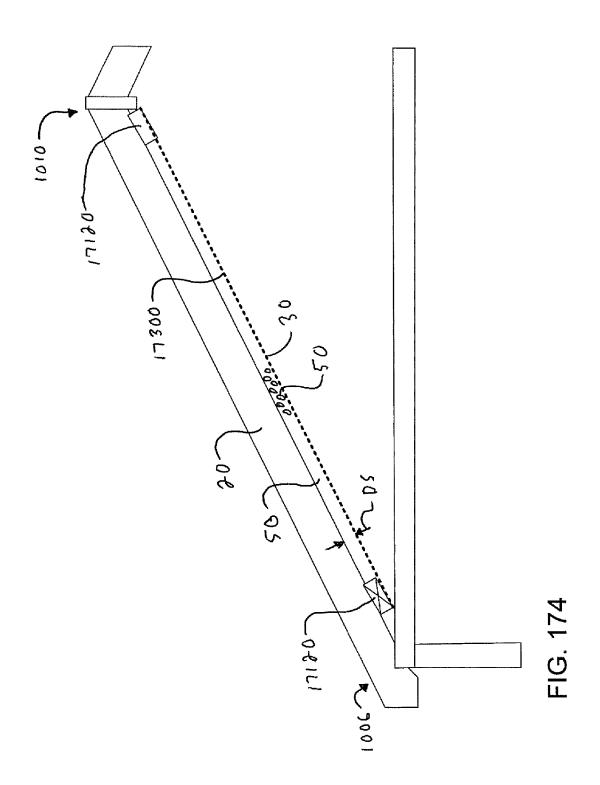
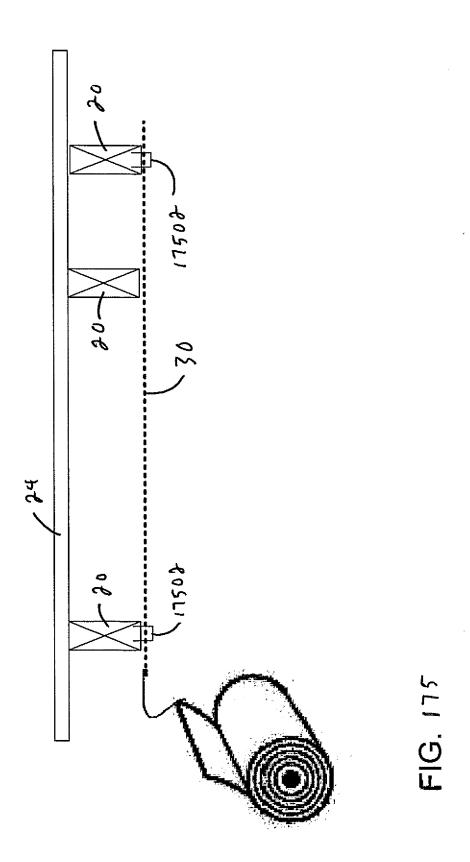

FIG. 163

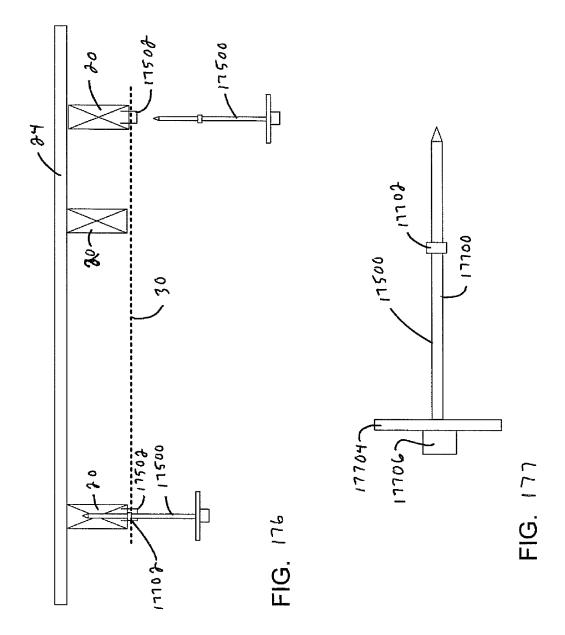


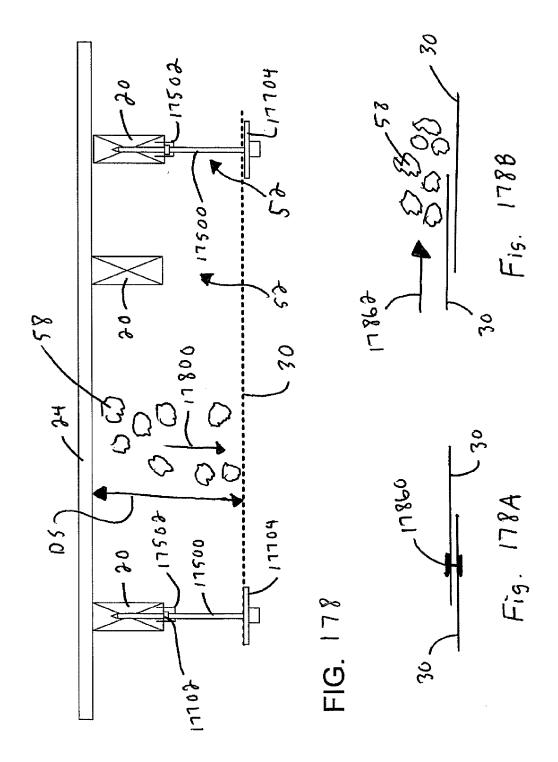


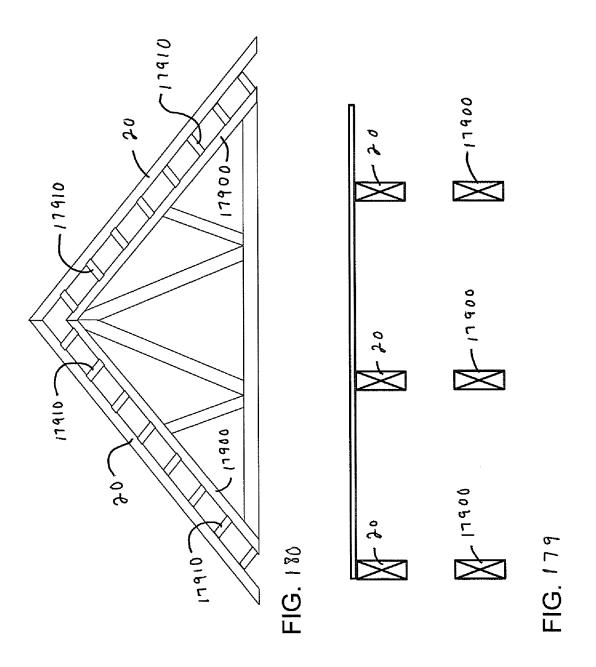


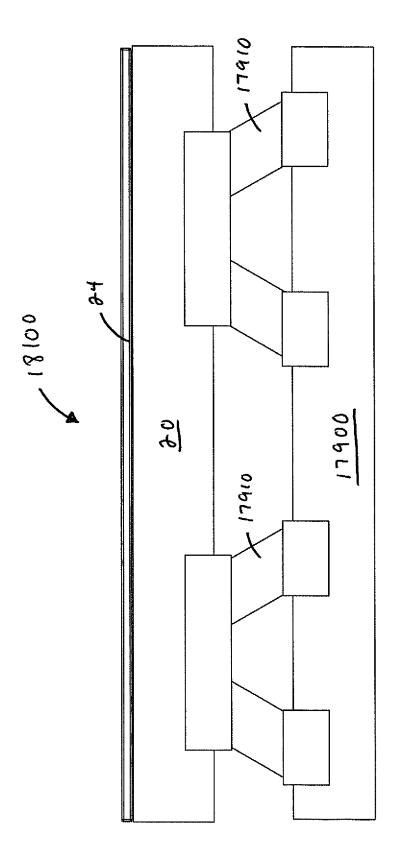
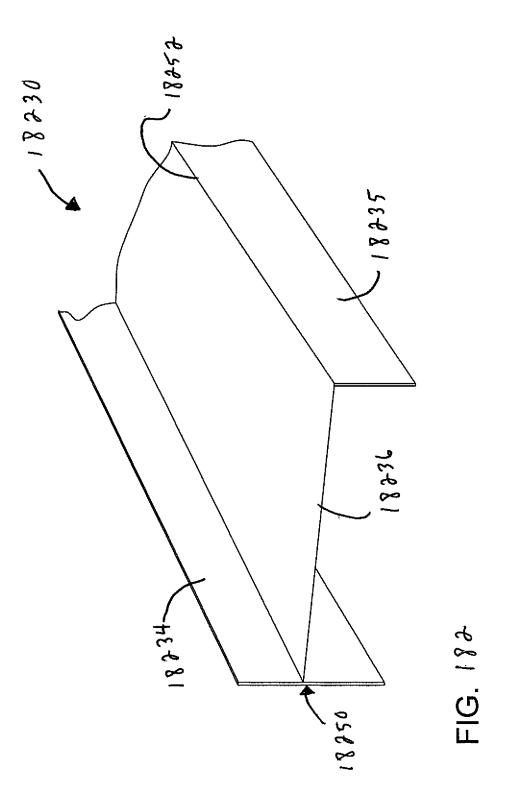
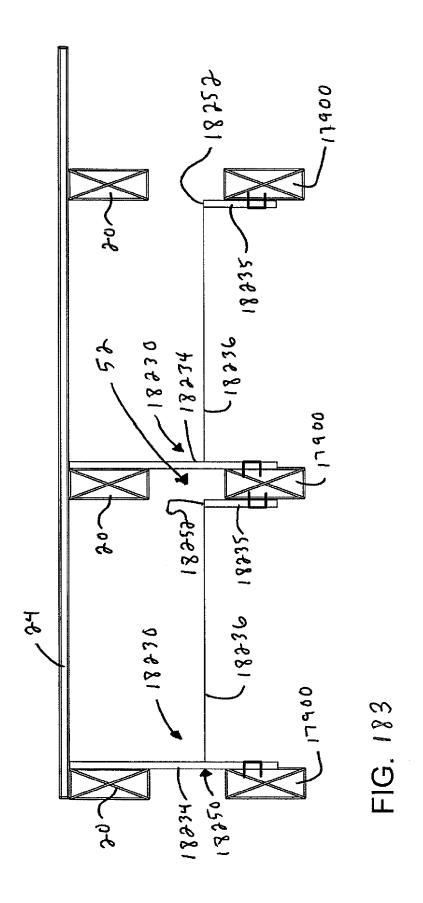
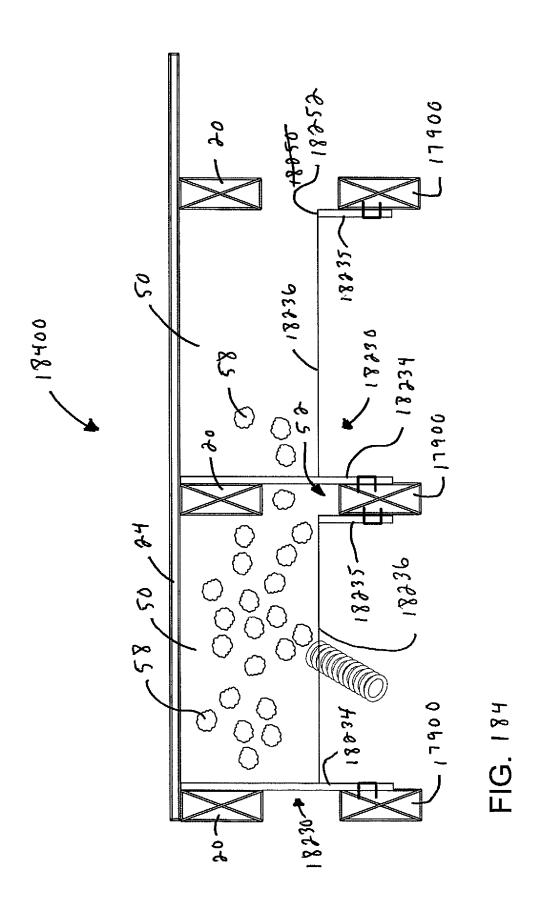
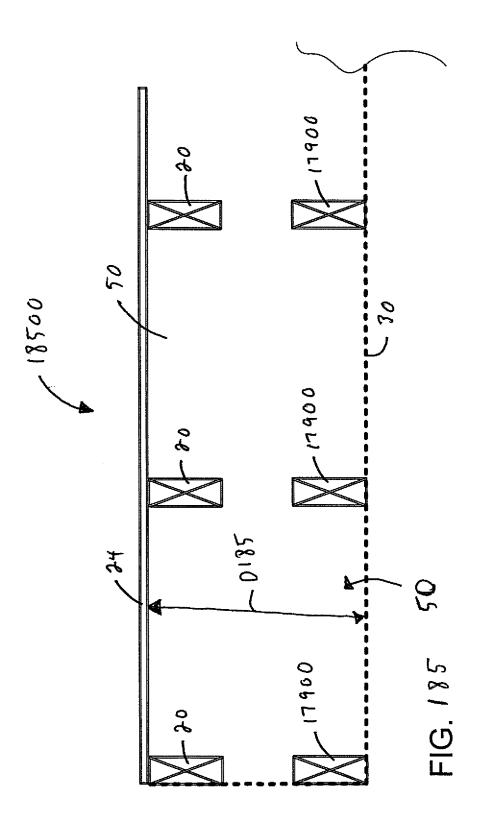


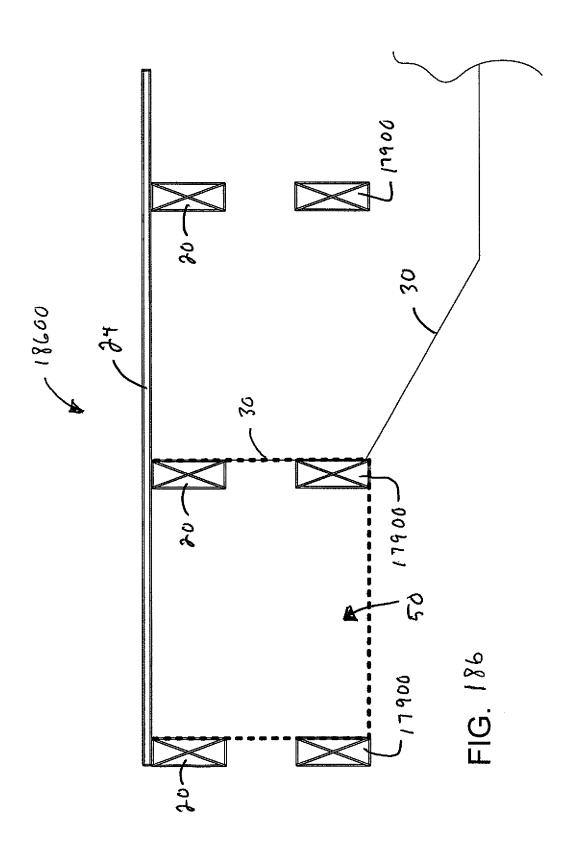






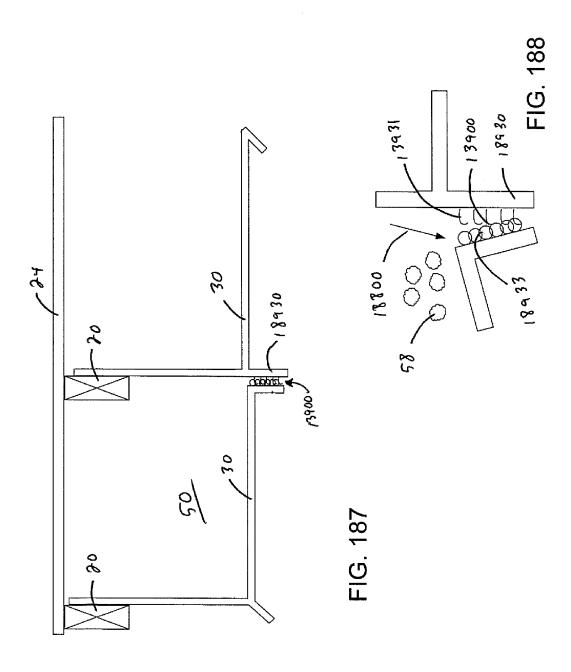

FIG. 171

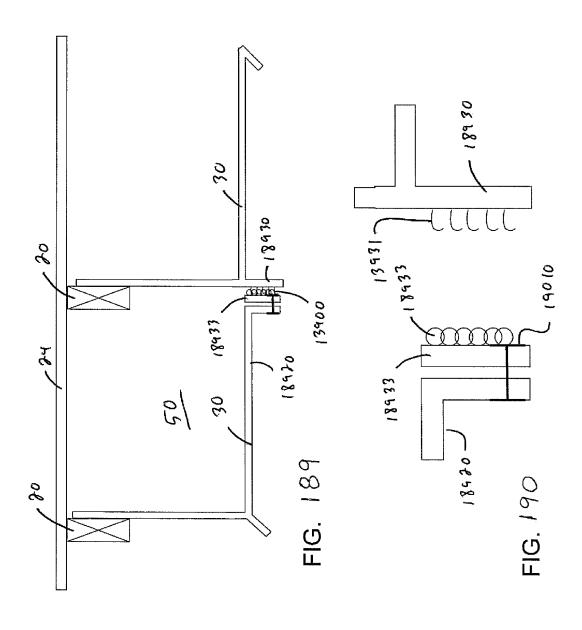


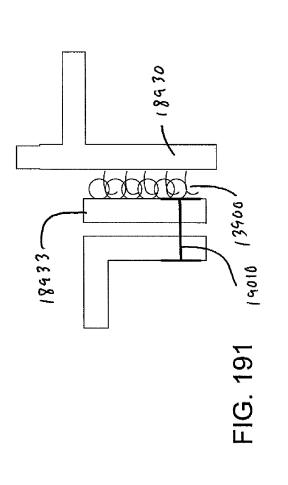


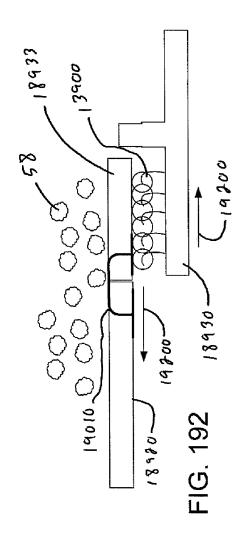






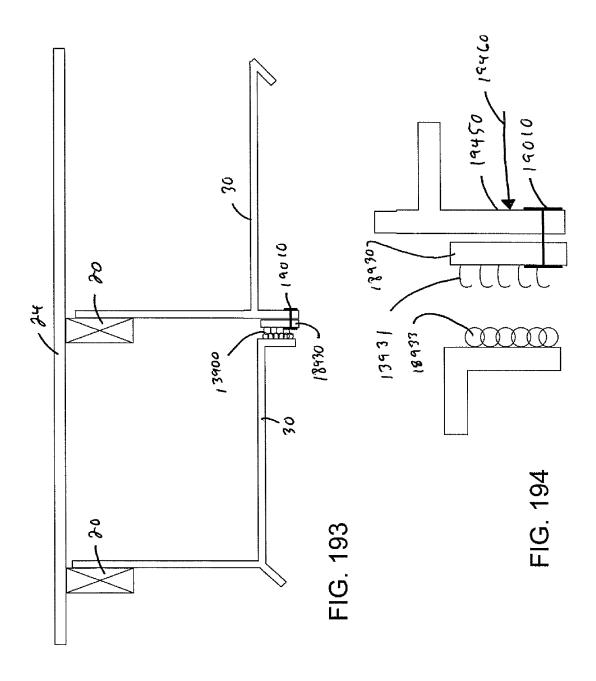

FIG. 181

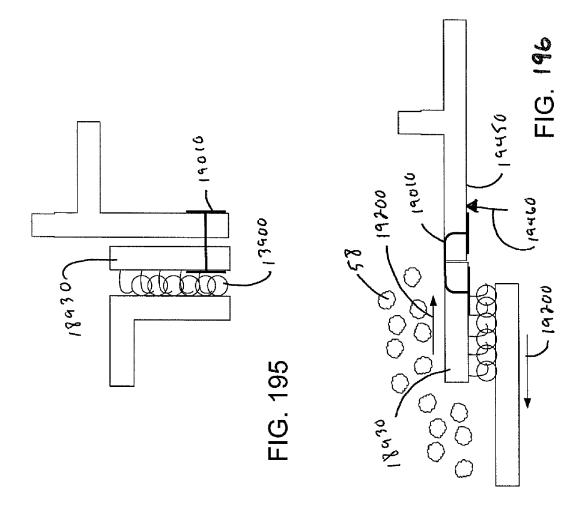


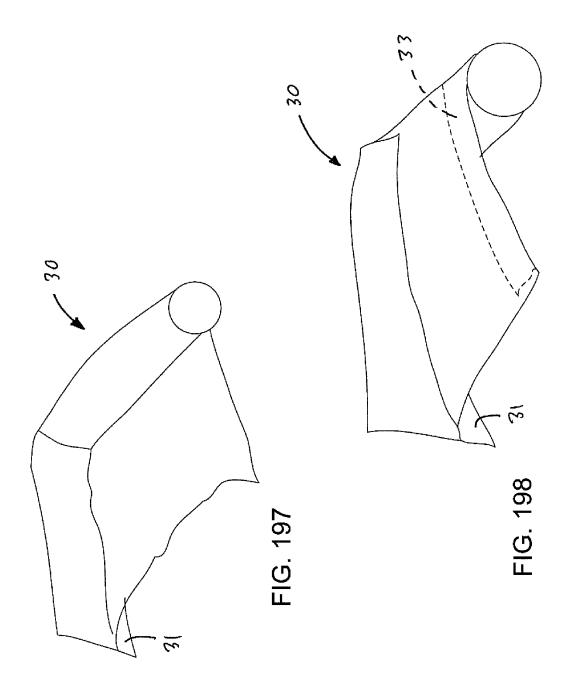












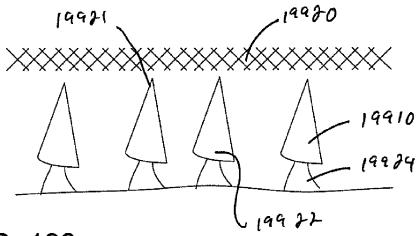
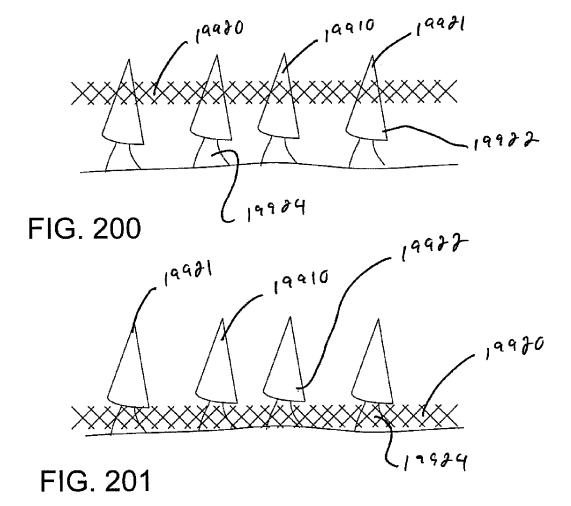



FIG. 199

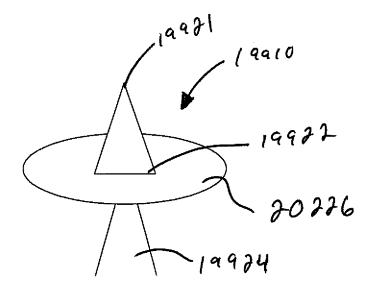
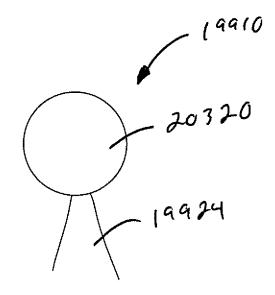
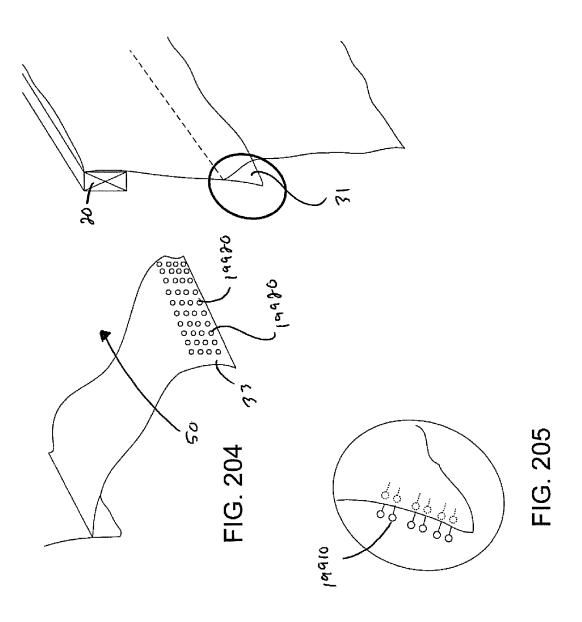
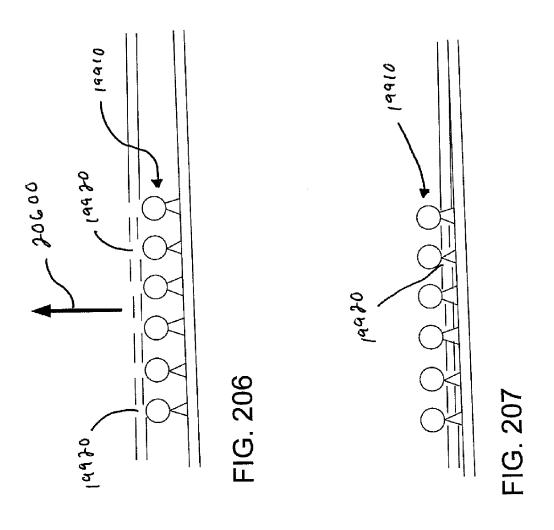
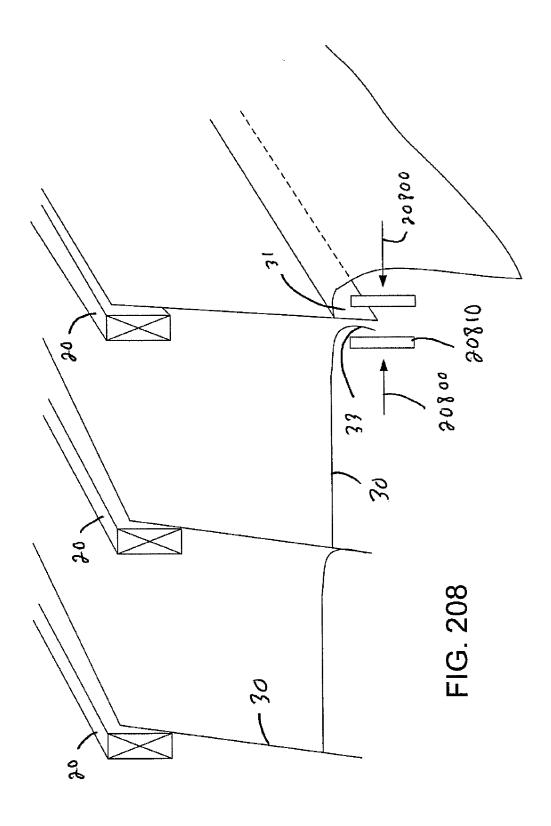
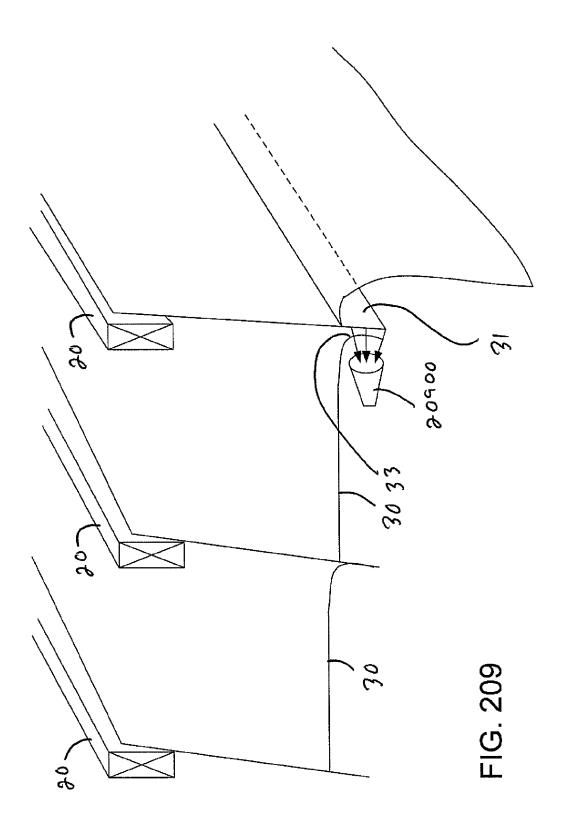
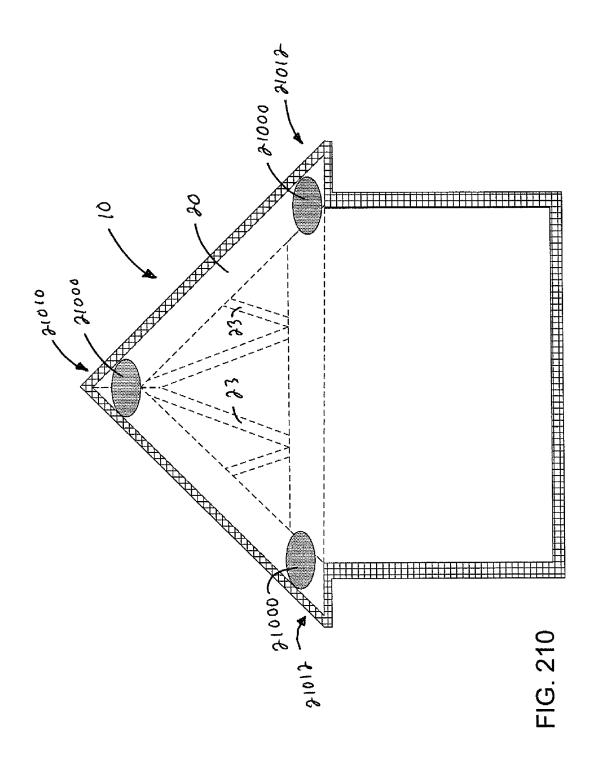
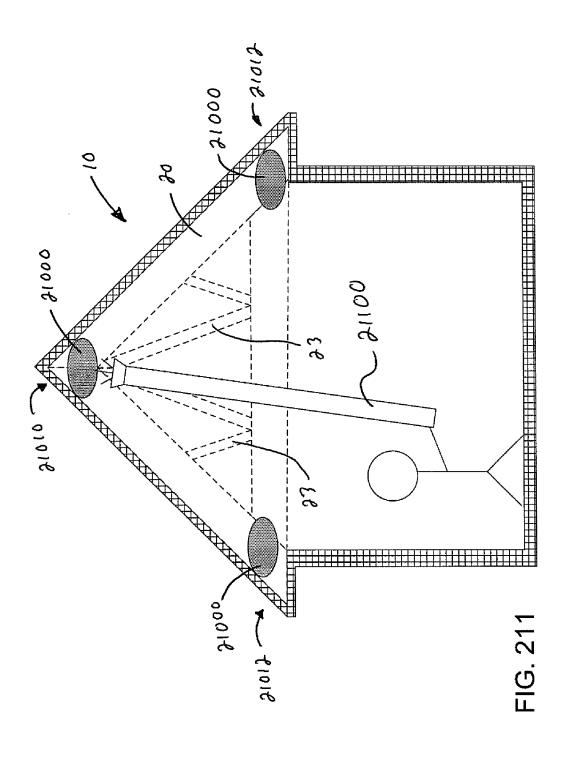
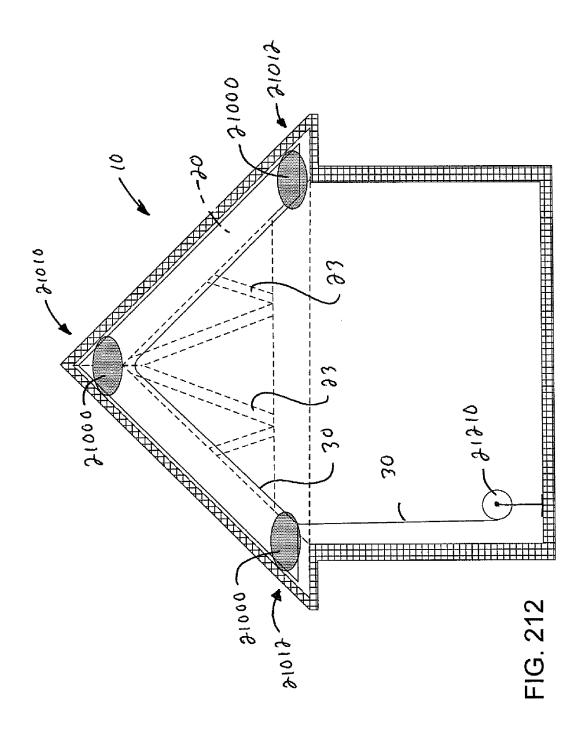


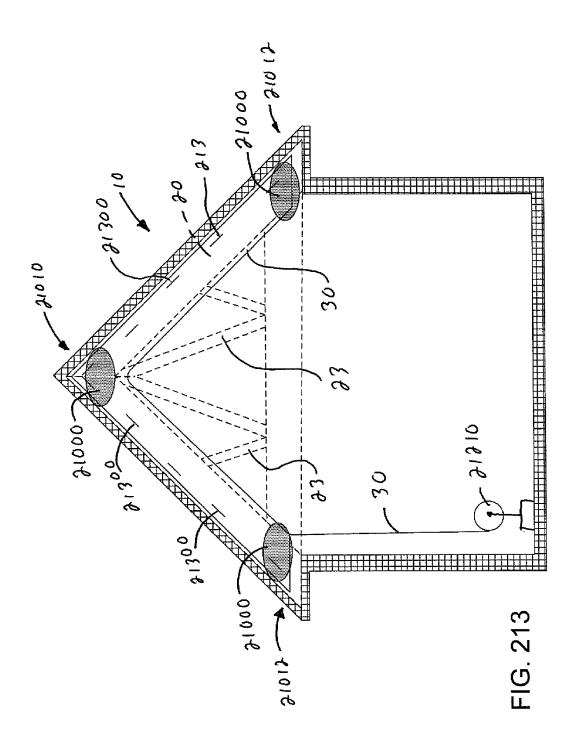
FIG. 202

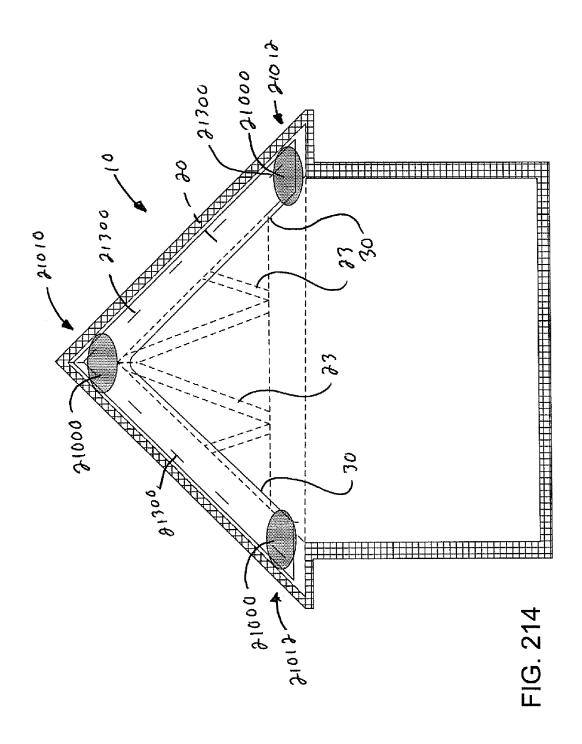






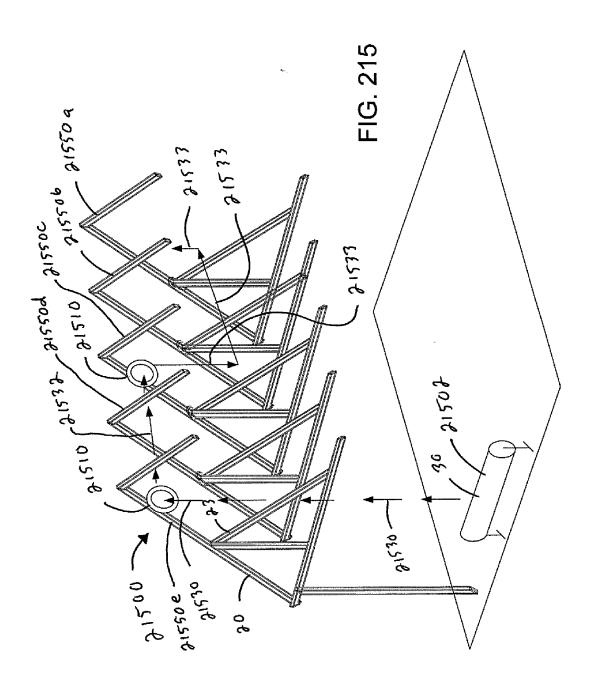

FIG. 203

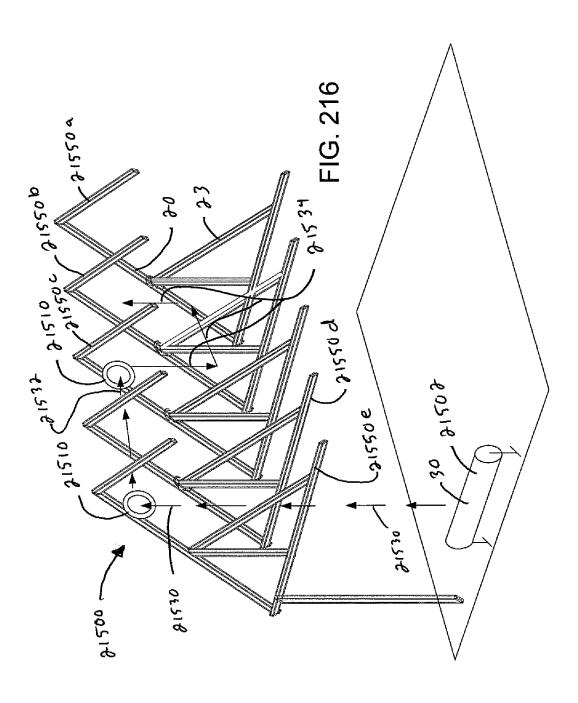


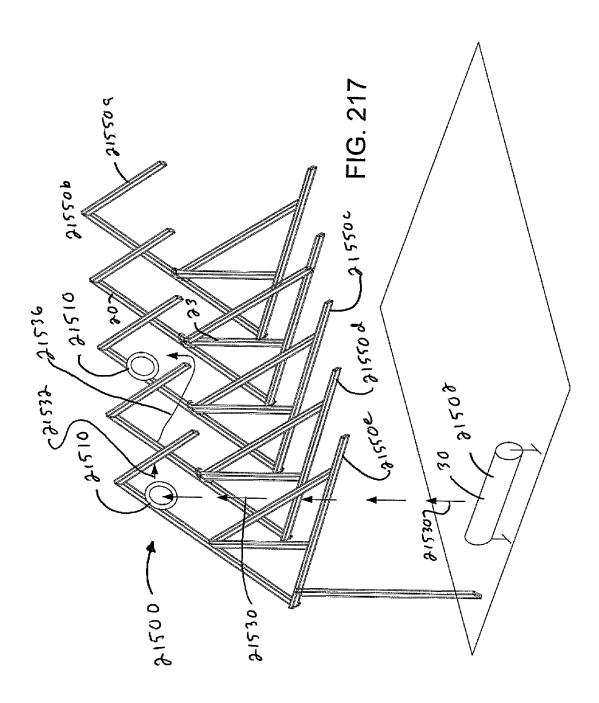












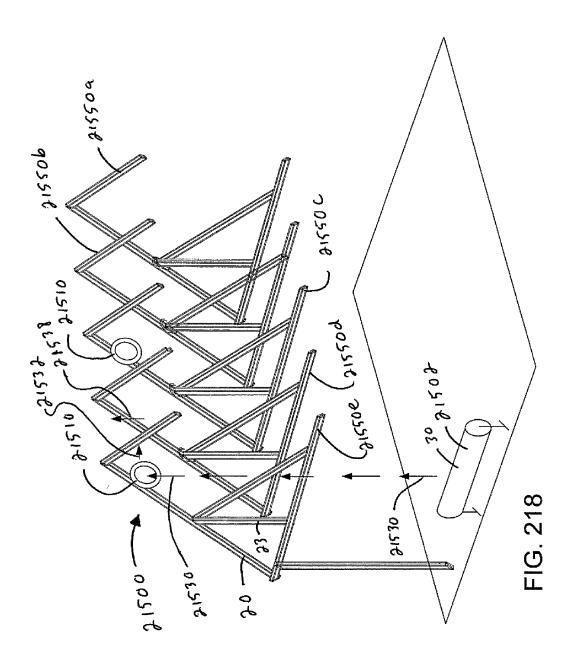


FIG. 219

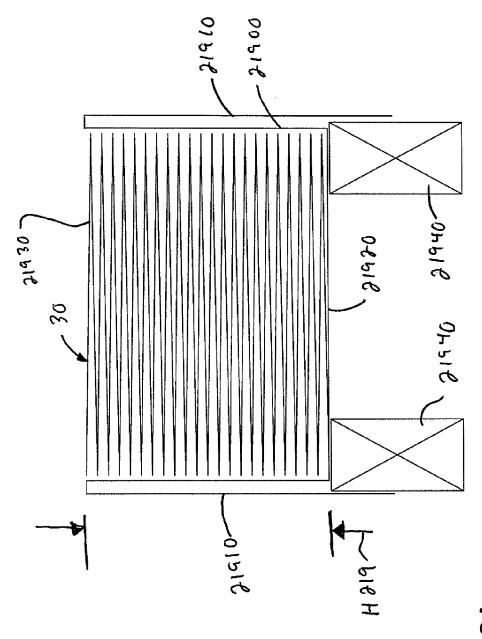
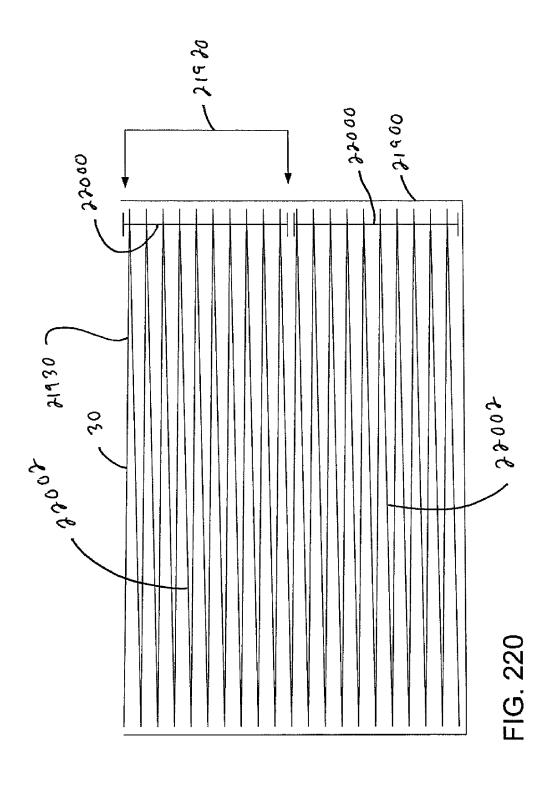
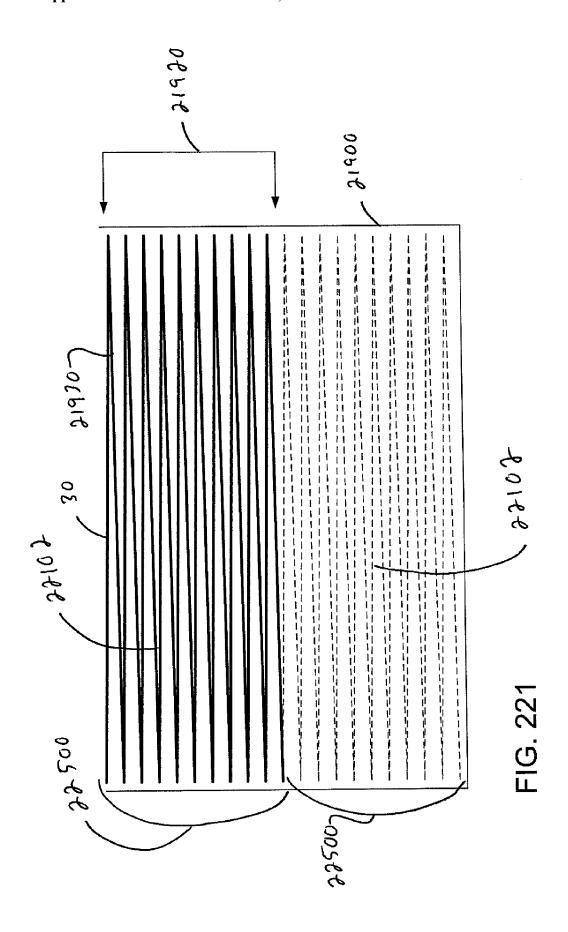




FIG. 219A

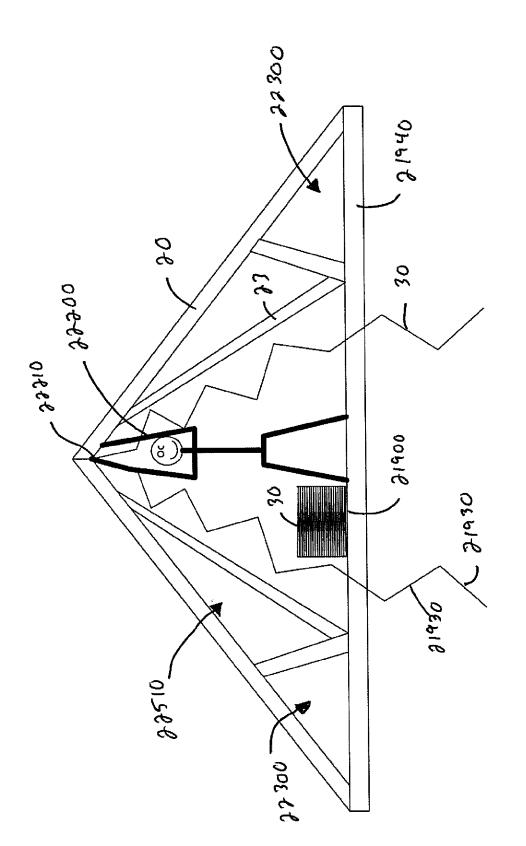
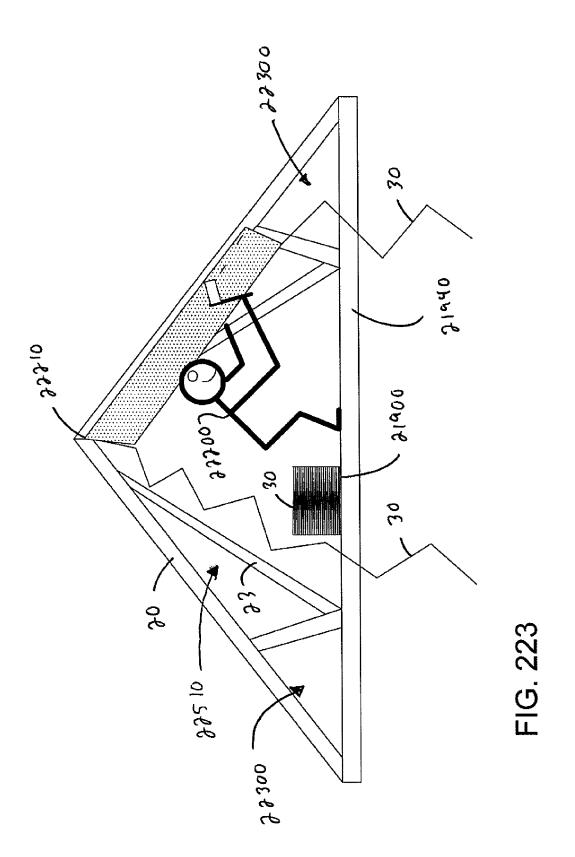
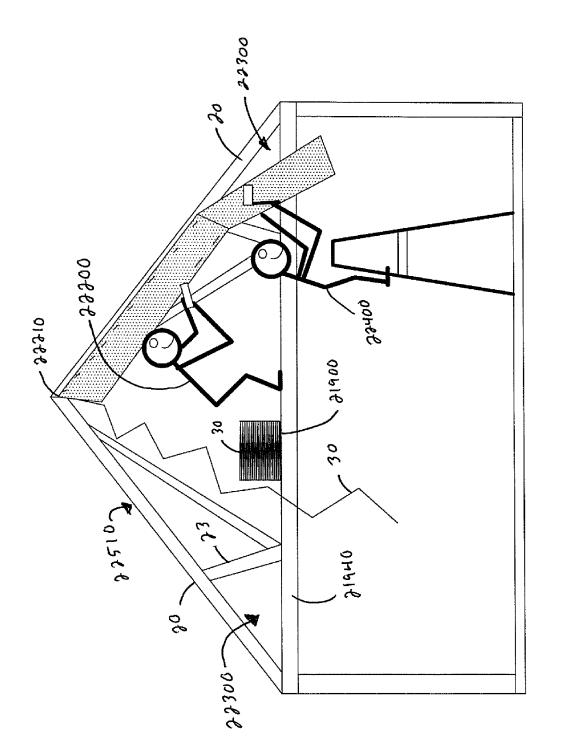
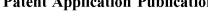
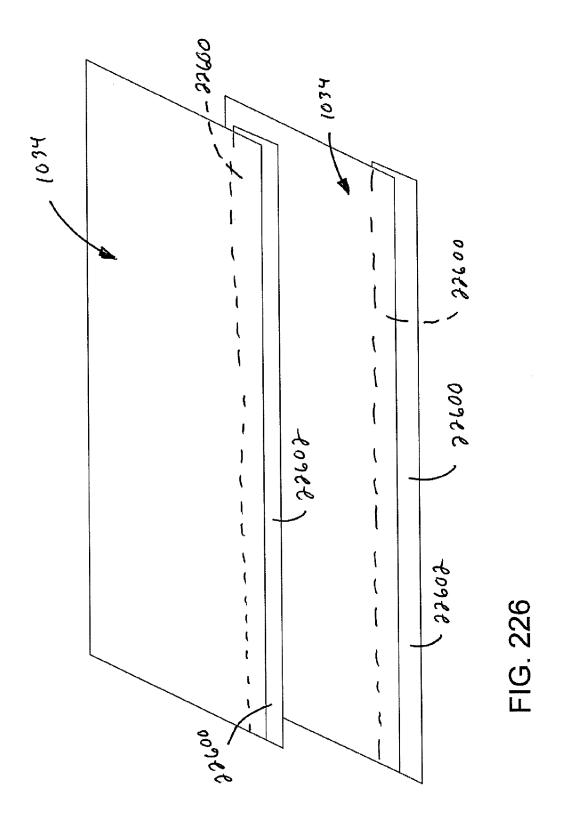
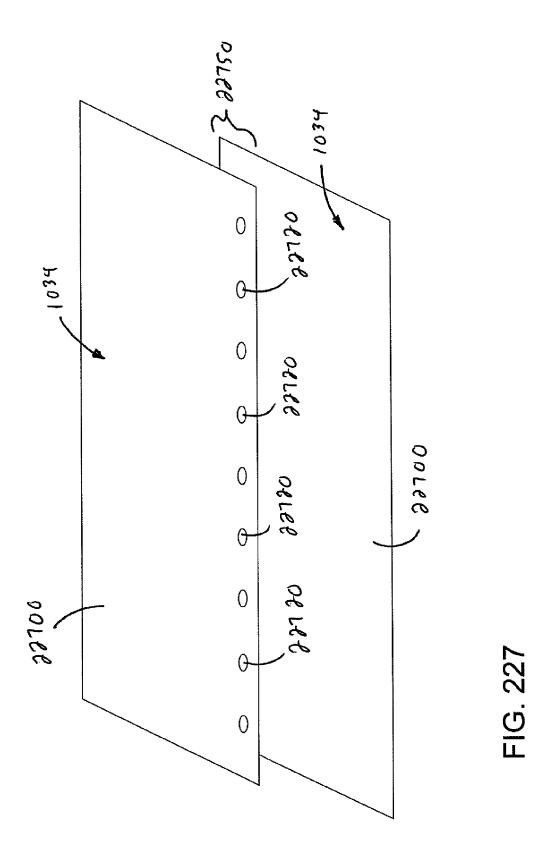
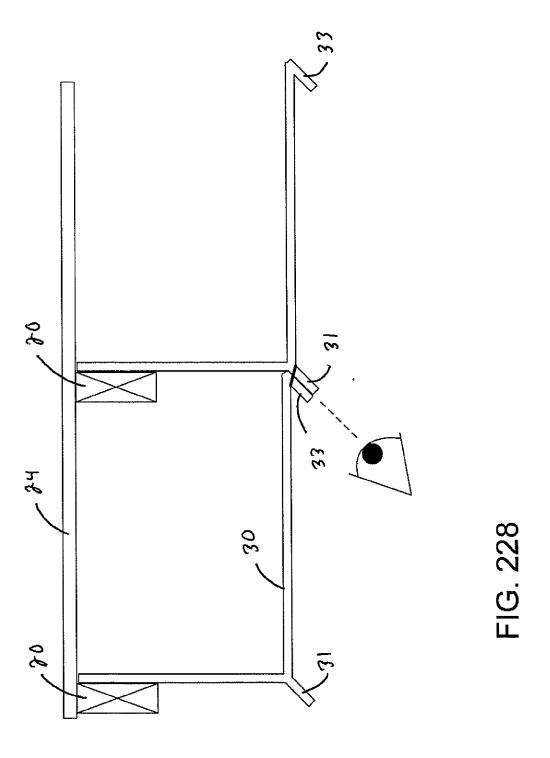
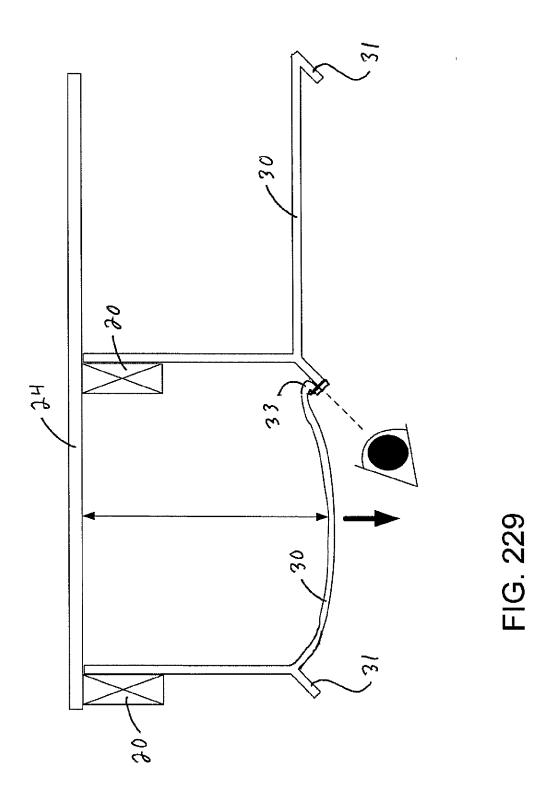
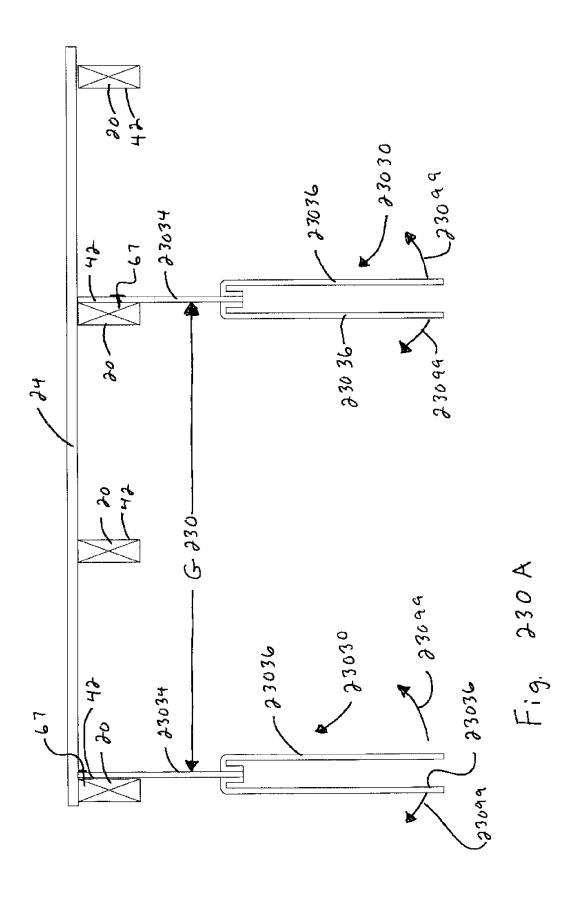



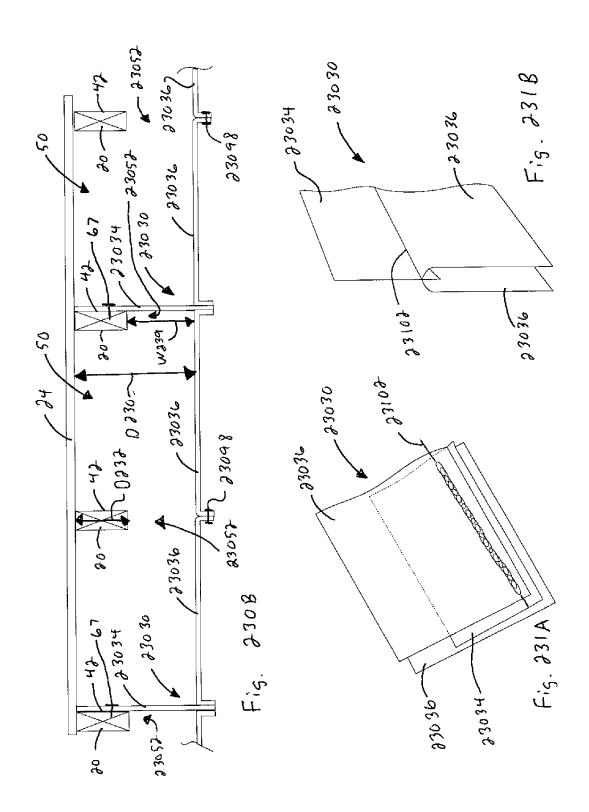
FIG. 222

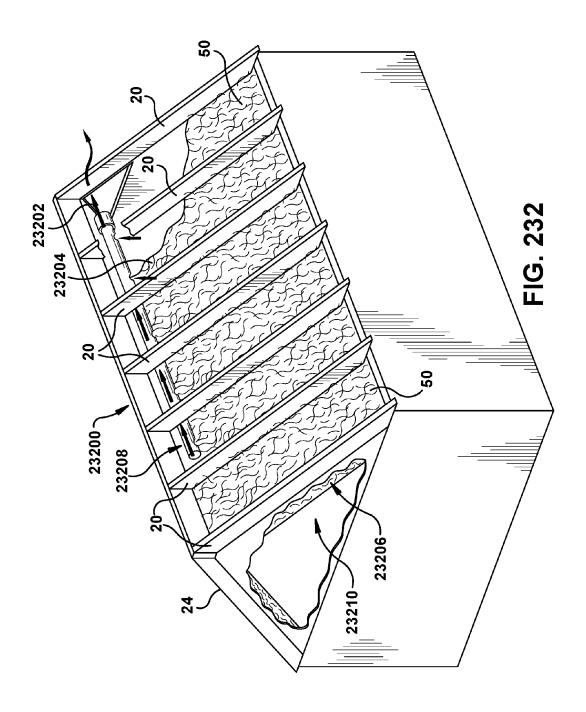






FIG. 224









ROOF INSULATION SYSTEMS

RELATED APPLICATIONS

[0001] The present application claims the benefit of U.S. Provisional Application No. 62/199,986, filed Aug. 1, 2015, titled "Roof Insulation Systems" and is a continuation-inpart of U.S. Ser. No. 14/613,272, filed Feb. 3, 2015, titled "Roof Insulation Systems", which is a continuation-in-part of U.S. Ser. No. 14/532,302, filed Nov. 4, 2014, titled "Roof Insulation Systems" and claims priority to U.S. Ser. No. 62/079,766, filed Nov. 14, 2014, titled "Roof Insulation Systems". U.S. Ser. No. 14/532,302 is a continuation-in-part of U.S. Ser. No. 14/452,696, filed Aug. 6, 2014, titled "Boxed Netting Insulation System for Roof Deck" and claims priority to U.S. Ser. No. 62/058,034, filed Feb. 3, 2014, titled "Roof Insulation Systems". U.S. Ser. No. 14/452,696 claims the benefit of U.S. Ser. No. 61/935,511, filed Feb. 3, 2014 titled "Boxed Netting Insulation System for Roof Deck". Applicant incorporates each of the above patent applications by reference in their entirety.

BACKGROUND

[0002] Buildings, such as for example residential buildings, can be covered by sloping roof decks. The interior portion of the building located directly below the sloping roof decks can form an interior space called an attic. In some instances, the attic can be vented by active or passive systems, such as to replace the air within the attic with fresh air (See FIG. 1B). One recent construction trend is to provide a sealed or unvented attic (See FIG. 1C).

[0003] The interior space defining an attic can be formed with structural members. The structural members can take a wide variety of different forms and configurations. Examples of structural member configurations that are used to form attics include, but are not limited to roof decks supported by trusses (See FIG. 1A) and roof decks supported by rafters (See FIG. 1H). Trusses include angled structural members commonly referred to as truss chords. Rafters are connected at top ends to a ridge beam and at lower ends to a roof beam and/or to wall framing. Conventional systems and methods for insulating unvented attics include filling the cavities formed between adjacent truss chords or rafters with insulation materials.

SUMMARY

[0004] In one exemplary an insulation system includes insulation support wires connected to wooden structural members that support roof sheathing. Insulation batts are disposed between the wooden structural members and on the insulation support wire. Portions of the insulation batts are disposed directly under bottommost surfaces of the wooden structural members.

[0005] In one exemplary embodiment, an insulation system includes insulation batts disposed between the wooden structural members that support roof sheathing. Pins extend through the insulation batts to secure the insulation batts to the sheathing panel.

[0006] In one exemplary embodiment, an insulation system includes a plurality of support members attached to truss webs below truss chords. Insulation is supported by the support members below sheathing of the roof.

[0007] In one exemplary embodiment, an insulation support system includes insulation support material connected

to wooden structural members or sheathing panels. The insulation support material includes a plurality of interconnecting portions. Each interconnecting portion includes a side panel segment, a first span segment connected to the side panel segment, and a second span segment connected to the side panel segment. The span segments of adjacent interconnecting portions are connected together to provide insulation cavities.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1A is a perspective view of a building structure illustrating truss chords and insulation cavities formed between adjacent truss chords;

[0009] FIG. 1B is a schematic illustration of a building with a vented attic;

[0010] FIG. 1C is a schematic illustration of a building with an unvented attic;

[0011] FIG. 1D is a schematic illustration of a building with a vented roof deck;

[0012] FIG. 1E illustrates an exemplary embodiment of a building having a sealed roof deck;

[0013] FIG. 1F illustrates an exemplary embodiment of a building having a sealed roof deck;

[0014] FIG. 1G illustrates an exemplary embodiment of a building having a sealed roof deck;

[0015] FIG. 1H is a perspective view of a building structure illustrating rafters and insulation cavities formed between adjacent rafters;

[0016] FIG. II is a perspective view of a building structure illustrating a gable end and vertically extending insulation cavities formed between structural members of the gable

[0017] FIG. 1J is a plan view illustrating a gable end shown in FIG. 1I;

 $\cite{by FIG. 1}\cite{K}$ is a top view of the gable end illustrated by FIG. 1J;

[0019] FIG. 2A is a perspective view of one embodiment of a netting for use between the adjacent truss chords of FIG. 1;

[0020] FIG. 2B is a front view, in elevation, of the netting of FIG. 2A;

[0021] FIG. 3 is a partial front view, in elevation, of a building structure illustrating a first embodiment of a boxed netting insulation system;

[0022] FIG. 3A is a partial front view, in elevation, of a building structure illustrating another embodiment of a boxed netting insulation system;

[0023] FIG. 4 is a partial front view, in elevation, of a building structure illustrating the embodiment of FIG. 3;

[0024] FIG. 4A is a partial front view, in elevation, of a building structure illustrating the embodiment of FIG. 3A;

[0025] FIG. 5 in an enlarged partial front view, in elevation, of adjacent nettings of the boxed netting insulation system of FIG. 4;

[0026] FIG. 5A is a view similar to FIG. 5 where netting is attached to opposite side faces of a roof deck supporting structural member;

[0027] FIG. 5B is a view similar to FIG. 5 where netting is attached a roof deck on opposite sides of a roof deck supporting structural member;

[0028] FIG. 5C is a view similar to FIG. 5 where netting is attached a roof deck on the same side of a roof deck supporting structural member;

[0029] FIG. 5D is a view similar to FIG. 5 where netting is attached to one side face of a roof deck supporting structural member;

[0030] FIG. 5E is a view similar to FIG. 5 where netting is clamped to opposite side faces of a roof deck supporting structural member;

[0031] FIG. 6 is a partial front view, in elevation, of a building structure illustrating distribution of loosefill insulation material within insulation cavities formed by the boxed netting insulation system of FIG. 4;

[0032] FIG. 6A is a partial front view, in elevation, of a building structure illustrating distribution of loosefill insulation material within insulation cavities formed by the boxed netting insulation system of FIG. 4A;

[0033] FIG. 7A is a partial front view, in elevation, of a building structure, illustrating initial installation of clamps for another embodiment of a boxed netting insulation system:

[0034] FIG. 7B is a partial front view, in elevation, of a building structure, illustrating initial installation of a first netting for the embodiment illustrated by FIG. 7A;

[0035] FIG. 7C is a partial front view, in elevation, of a building structure, illustrating completion of the first netting installation for the embodiment illustrated by FIG. 7A;

[0036] FIG. 7D is a partial front view, in elevation, of a building structure, illustrating initial installation of a second netting for the embodiment illustrated by FIG. 7A;

[0037] FIG. 7E is a partial front view, in elevation, of a building structure, illustrating completion of the second netting installation for the embodiment illustrated by FIG. 7A:

[0038] FIG. 7F is a partial front view, in elevation, of a building structure, illustrating distribution of loosefill insulation material within insulation cavities formed by the boxed netting insulation system of FIG. 7E;

[0039] FIG. 8A is a partial front view, in elevation, of a building structure, illustrating initial installation of nettings for another embodiment of a boxed netting insulation system:

[0040] FIG. 8B is a partial front view, in elevation, of a building structure, illustrating initial installation of fixtures for the embodiment illustrated by FIG. 8A;

[0041] FIG. 8C is a partial front view, in elevation, of a building structure, illustrating installation of nettings over the fixtures of FIG. 8B;

[0042] FIG. 8D is a partial front view, in elevation, of a building structure, illustrating distribution of loosefill insulation material within insulation cavities formed by the boxed netting insulation system of FIG. 8C;

[0043] FIG. 8E illustrates a tongue and groove arrangement for forming the fixtures illustrated by FIGS. 8B-8D;

[0044] FIG. 9A is a partial perspective view, of a building structure, illustrating initial installation of a rigid membrane for another embodiment of a boxed netting insulation system.

[0045] FIG. 9B is a partial perspective view, of a building structure, illustrating insulation cavities formed from the rigid membranes of FIG. 9A;

[0046] FIG. 10A is a partial front view, in elevation, of a building structure, illustrating initial installation of netting for another embodiment of a boxed netting insulation system:

[0047] FIG. 10B is a partial front view, in elevation, of a building structure, illustrating completed installation of the netting of FIG. 10A;

[0048] FIG. 11A is a partial front view, in elevation, of a building structure, illustrating initial installation of rigid members for another embodiment of a boxed netting insulation system;

[0049] FIG. 11B is a partial front view, in elevation, of a building structure, illustrating completed installation of the rigid members of FIG. 11A;

[0050] FIG. 11C is a perspective view illustrating installation of an insulation system on a building structure;

[0051] FIG. 11D is a perspective view that illustrates securing of support members to the building structure in the system of FIG. 11C;

[0052] FIG. 11E is an end view that illustrates securing of insulation support material to the support members in the system of FIG. 11C;

[0053] FIG. 11F is a perspective view that illustrates securing of insulation support material to the support members in the system of FIG. 11C;

[0054] FIG. 11G is a perspective view illustrating that the support members of the FIG. 11C embodiment can be interconnected;

[0055] FIG. 11H is a perspective view illustrating that the support members of the FIG. 11C embodiment can be cut to fit around webs of truss support members;

[0056] FIG. 12A is a partial front view, in elevation, of a building structure, illustrating components for another embodiment of a boxed netting insulation system;

[0057] FIG. 12B is a partial front view, in elevation, of a building structure, illustrating completed installation of the components of FIG. 12A;

[0058] FIG. 12C is a view illustrating components of another embodiment of another insulation system;

[0059] FIG. 12D is a view illustrating components of an embodiment of another insulation system;

[0060] FIG. 13A is an illustration of a building structure and a passage forming member;

[0061] FIG. 13B is an illustration of a building structure with the passage forming member of FIG. 13A forming a roof deck vent passage;

[0062] FIG. 13C is an illustration of a building structure with a flexible roof deck vent passage;

[0063] FIG. 14A is an illustration of an exemplary embodiment of an insulation support system with a roof deck vent passage;

[0064] FIG. 14B is an illustration of an exemplary embodiment of an insulation support system with a roof deck vent passage;

[0065] FIG. 14C is an illustration of an exemplary embodiment of an insulation support system with a roof deck vent passage;

[0066] FIG. 14D is an illustration of an exemplary embodiment of an insulation support system with a roof deck vent passage;

[0067] FIG. 14E is an illustration of an exemplary embodiment of an insulation support system with a roof deck vent passage;

[0068] FIG. 14F is an illustration of an exemplary embodiment of a building structure having a roof deck with vent spaces between an inner sheathing layer and an outer sheathing layer.

[0069] FIGS. 15A-15C illustrate another exemplary embodiment of an insulation support system;

[0070] FIGS. 16A-16D illustrate another exemplary embodiment of an insulation system;

[0071] FIGS. 17A-17C illustrate another exemplary embodiment of an insulation system;

[0072] FIG. 17D illustrates another exemplary embodiment of an insulation system;

[0073] FIGS. 18A-18C illustrate another exemplary embodiment of an insulation system;

[0074] FIG. 19 illustrates another exemplary embodiment of an insulation system;

[0075] FIG. 20 illustrates an example of a netting material for the insulation system illustrated by FIG. 19;

[0076] FIG. 21 illustrates an example of a netting material for the insulation system illustrated by FIG. 19;

[0077] FIGS. 23A-23D illustrate another exemplary embodiment of an insulation system;

[0078] FIGS. 24A and 24B illustrate widening of the insulation system of FIGS. 23A-23D to accommodate wider spaces between structural members;

[0079] FIG. 24C illustrates narrowing of the insulation system of FIGS. 23A-23D to accommodate narrower spaces between structural members;

[0080] FIG. 25 is a perspective view of an insulation support system being installed on a building structure;

[0081] FIG. 26 illustrates cutting of the insulation support system of FIG. 25 being cut to accommodate a truss web;

[0082] FIG. 27 illustrates that the insulation support system of FIG. 25 may have an accordion configuration that allows the insulation support system to be compressed for shipping and handling;

[0083] FIG. 28 is an illustration of an exemplary embodiment of an insulation support system;

[0084] FIG. 28A is an illustration of an exemplary embodiment of an insulation system that uses the insulation support system of FIG. 28;

[0085] FIG. 28B is an illustration of an exemplary embodiment of an insulation system that uses the insulation support system of FIG. 28;

[0086] FIG. 29 is a perspective view of an insulation system on a building structure;

[0087] FIGS. 30A and 30B are end views that illustrate securing of support members to the building structure in the system of FIG. 29;

[0088] FIG. 30C is a perspective view illustrating that the support members of the FIG. 29 embodiment can be cut to fit around webs of truss support members;

[0089] FIG. 31 is a perspective view that illustrates securing of insulation support material to the support members in the system of FIG. 29:

[0090] FIG. 32-34 illustrate components of the system of FIG. 29;

[0091] FIGS. 35-37 illustrate installation of the insulation system of FIG. 29;

[0092] FIG. 38 illustrates another exemplary embodiment of an insulation system;

[0093] FIG. 39A illustrates an exemplary embodiment of a gable end with insulation support material pins;

[0094] FIG. 39B illustrates an exemplary embodiment of an insulation support material pin;

[0095] FIG. 40 illustrates an exemplary embodiment of an insulation support system on a building structure;

[0096] FIGS. 41A and 41B illustrate exemplary embodiments of insulation support material pins;

[0097] FIGS. 42A-42C illustrate an exemplary embodiment of a gable end with insulation support material pins; [0098] FIGS. 42D and 42E illustrate an exemplary embodiment of a gable end with an insulation support system:

[0099] FIG. 42F illustrates an insulation system that includes the insulation support system of FIGS. 42D and 42F.

[0100] FIGS. 43A and 43B illustrate an exemplary embodiment of a gable end insulation support system;

[0101] FIGS. 44A and 44B illustrate an exemplary embodiment of a gable end insulation support system;

[0102] FIG. 45A illustrates an exemplary embodiment of a roof having an air barrier and that is water vapor breathable:

[0103] FIG. 45B illustrates an exemplary embodiment of a roof having an air barrier and that is water vapor breathable:

[0104] FIG. 46 illustrates an exemplary embodiment of a roof having an air barrier and that is water vapor breathable; [0105] FIGS. 47A and 47B illustrate an exemplary embodiment of a vent passage material;

[0106] FIGS. 48-50 illustrate installation of the vent passage material illustrated by FIGS. 47A and 47B in a building structure:

[0107] FIG. 51 illustrates an exemplary embodiment of an insulation support material;

[0108] FIG. 52A illustrates installation of the insulation support material of FIG. 51 on a building structure;

[0109] FIG. 52B illustrates installation of the insulation support material of FIG. 51 in an attic formed by trusses;

[0110] FIGS. 53A-53C illustrate an exemplary embodiment of installation of insulation support material of FIG. 51 in an attic formed by trusses;

[0111] FIG. 54 illustrates an exemplary embodiment of installation of insulation support material of FIG. 51 in an attic formed by trusses;

[0112] FIG. 55 illustrates an exemplary embodiment of an insulation support material;

[0113] FIGS. 56-58 illustrate installation of the insulation support material of FIG. 55 on a building structure;

[0114] FIG. 59 illustrates an exemplary embodiment of an insulation material;

[0115] FIG. 59A illustrates another exemplary embodiment of an insulation material;

[0116] FIG. 59B illustrates another exemplary embodiment of an insulation material;

[0117] FIGS. 60 and 61 illustrate installation of the insulation material illustrated by FIG. 59 on a building structure;

[0118] FIG. 60A illustrates installation of the insulation material illustrated by FIG. 59A on a building structure;

[0119] FIG. 60B illustrates installation of the insulation material illustrated by FIG. 59B on a building structure;

[0120] FIG. 62A illustrates an exemplary embodiment of an insulation system;

[0121] FIG. 62B illustrates an exemplary embodiment of and insulation support system;

[0122] FIG. 62C illustrates an exemplary embodiment of an insulation support system;

[0123] FIG. 62D illustrates an exemplary embodiment of an insulation support system;

[0124] FIG. 63 illustrates is a graph illustrating variations of relative humidity in an insulation cavity with and without a buffer material;

[0125] FIGS. 64A-64C illustrate an exemplary embodiment of an insulation support system;

[0126] FIG. 65A illustrates an exemplary embodiment of an insulation support system;

[0127] FIG. 65B illustrates an exemplary embodiment of an insulation support system;

[0128] FIGS. 66A and 66B illustrate an exemplary embodiment of a blown insulation system;

[0129] FIG. 67 illustrates an exemplary embodiment of a building structural assembly having a pre-installed insulation support material;

[0130] FIG. 68 illustrates an exemplary embodiment of an insulation support system having a composite insulation support material;

[0131] FIG. 69 is a view taken along lines 69-69 in FIG. 68 illustrating the composite insulation support material;

[0132] FIGS. 70 and 71 provide and illustration used to describe the term "substantially flat" in the present application:

[0133] FIG. 72 is a view illustrating an exemplary embodiment of a batt-type insulation system;

[0134] FIG. 73 is a view illustrating an exemplary embodiment of a batt-type insulation system with a support member insulation component;

[0135] FIG. 74 illustrates possible sag with the batt-type insulation system of FIG. 72;

[0136] FIG. 75 illustrates reduction or elimination of sag of the batt-type insulation system of FIG. 72 by pulling flanges of the batt-type insulation system taut;

[0137] FIG. 76 is a view of an exemplary embodiment of a batt-type insulation system where the insulation bat is wider than a space between a pair of support members;

[0138] FIG. 77 is a view of illustrating an exemplary embodiment of a batt-type insulation system where the insulation bat is wider than a space between a pair of support members and the bat includes tabs for holding edges of adjacent batts together;

[0139] FIG. 78 illustrates an exemplary embodiment of a batt-type insulation system that includes one or more pins for reducing or eliminating sag;

[0140] FIG. 78A illustrates an exemplary embodiment of a flexible pin;

[0141] FIGS. 78B and 78C illustrates installation of one or more flexible pins to reduce or eliminate sag of batt-type insulation material;

[0142] FIGS. 79-81 illustrate an exemplary embodiment of an insulation system that includes batt-type insulation and loose-fill-type insulation;

[0143] FIG. 82 illustrates another exemplary embodiment of an insulation system that includes batt-type insulation and loose-fill-type insulation;

[0144] FIG. 83 illustrates another exemplary embodiment of an insulation system that includes batt-type insulation and loose-fill-type insulation;

[0145] FIGS. 84 and 85 illustrate an exemplary embodiment of a batt-type insulation system;

[0146] FIGS. 86-88 illustrate an exemplary embodiment of an insulation system that includes batt-type insulation and loose-fill-type insulation;

[0147] FIGS. 86A and 87A illustrate an exemplary embodiment of an expandable insulation system;

[0148] FIGS. 89 and 90 illustrate an exemplary embodiment of an insulation system that includes batt-type insulation and loose-fill-type insulation;

[0149] FIGS. 89A and 89B illustrate an exemplary embodiment of an expandable insulation system;

[0150] FIGS. 89C and 89D illustrate an exemplary embodiment of an expandable insulation system;

[0151] FIG. 90A illustrates expansion of the insulation systems illustrated by FIGS. 89A and 89C.

[0152] FIG. 90B illustrates expansion of the insulation systems illustrated by FIGS. 89B and 89D.

[0153] FIG. 91 is a view of illustrating an exemplary embodiment of a batt-type insulation system that is installed from above support members before installation of roof deck material:

[0154] FIG. 92 illustrates that the insulation system illustrated by FIG. 91 may include a vapor retarder or vapor barrier material;

[0155] FIG. 93 is a view of illustrating an exemplary embodiment of a batt-type insulation system that is installed from above support members before installation of roof deck material;

[0156] FIG. 94 illustrates that the insulation system illustrated by FIG. 91 may include a vapor retarder or vapor barrier material;

[0157] FIG. 95 is a view of illustrating an exemplary embodiment of a batt-type insulation system that is installed from above support members before installation of roof deck material;

[0158] FIG. 96 illustrates that the insulation system illustrated by FIG. 91 may include a vapor retarder or vapor barrier material;

[0159] FIGS. 97 and 98 illustrate an exemplary embodiment of an insulation support system that is installed from above support members before installation of roof deck material;

[0160] FIG. 99 illustrates an exemplary embodiment of an insulation support system that is installed from above support members before installation of roof deck material;

[0161] FIGS. 100A and 100B illustrate an exemplary embodiment of an insulation support system that is installed from above support members before installation of roof deck material;

[0162] FIGS. 100C and 100D illustrate an exemplary embodiment of an insulation support system that is installed from above support members before installation of roof deck material;

[0163] FIGS. 100E and 100F illustrate an exemplary embodiment of an insulation support system that is installed from above support members before installation of roof deck material;

[0164] FIGS. 101, 102, and 102A illustrate an exemplary embodiment of an insulation support system that is installed from above support members before installation of roof deck material with tabs that provide an insulation pockets below a support member;

[0165] FIGS. 103A and 103B illustrate an exemplary embodiment of a batt-type insulation system that is installed from above roof deck support members before installation of roof deck material;

[0166] FIGS. 104A and 104B illustrate an exemplary embodiment of a batt-type insulation system that is installed from above roof deck support members before installation of roof deck material;

[0167] FIGS. 105A and 105B illustrate an exemplary embodiment of a batt-type insulation system that is installed from above roof deck support members before installation of roof deck material;

[0168] FIG. 106 is a view illustrating an exemplary embodiment of a batt-type insulation system;

[0169] FIG. 107 illustrates that the insulation system illustrated by FIG. 106 may include a vapor retarder or vapor barrier material;

[0170] FIGS. 108, 108A, and 109 illustrate an exemplary embodiment of a batt-type insulation system that is installed from above roof deck support members before installation of roof deck material;

[0171] FIGS. 110 and 110A illustrate an exemplary embodiment of a batt-type insulation system;

[0172] FIG. 111 illustrates an exemplary embodiment of a batt-type insulation system;

[0173] FIG. 112 illustrates an exemplary embodiment of an insulation assembly;

[0174] FIG. 112A illustrates an exemplary embodiment of a batt-type insulation system;

[0175] FIG. 113 illustrates an exemplary embodiment of a batt-type insulation system;

[0176] FIG. 114 is an illustration of an exemplary embodiment of an insulation support system that provides a roof deck vent passage and is installed from above support members prior to installation of a roof deck material;

[0177] FIGS. 115A and 115B illustrate installation of an insulation system that uses the insulation support system illustrated by FIG. 114;

[0178] FIGS. 116 and 117 illustrate an exemplary embodiment of a batt-type insulation system with insulation that is installed from above support members before installation of roof deck material;

[0179] FIG. 118 illustrates an exemplary embodiment of an insulation system with the components of the system of FIGS. 116 and 117 and batt-type insulation that is installed from below the support members;

[0180] FIG. 119 illustrates an exemplary embodiment of an insulation system with the components of the system of FIGS. 116 and 117 and batt-type insulation that is installed from below the support members;

[0181] FIG. 120 illustrates an exemplary embodiment of a batt-type insulation system with adhesive that secures the batts to the roof deck material;

[0182] FIG. 121 illustrates an exemplary embodiment of a batt-type insulation system with a stiffening layer;

[0183] FIGS. 122 and 123 illustrate an exemplary embodiment of an insulation panel having one or more compressible edges;

[0184] FIG. 124 illustrates installation of an insulation system using insulation panels having one or more compressible edges;

[0185] FIG. 125 illustrates installation of an insulation system using compressible foam insulation panels;

[0186] FIGS. 126 and 127 illustrate installation of an insulation system using insulation panels having one or more compressible edges;

[0187] FIGS. 128 and 129 illustrate installation of an insulation system using compressible foam insulation panels:

[0188] FIGS. 130 and 131 illustrate installation of an insulation system using stepped insulation panels having one or more compressible edges;

[0189] FIGS. 132 and 133 illustrate installation of an insulation system using stepped compressible foam insulation panels;

[0190] FIG. 134 illustrates installation of an insulation system with insulation batts that are secured to support members with hook and loop fasteners;

[0191] FIG. 135 illustrates installation of an insulation system with insulation batts that are secured to support members with hook and loop fasteners and with hook and loop fastener tabs;

[0192] FIG. 136 illustrates installation of an insulation system with insulation batts that are secured to support members and roof decking with hook and loop fasteners;

[0193] FIG. 137 illustrates installation of an insulation system with insulation batts that are secured to support members and a decking vent with hook and loop fasteners;

[0194] FIG. 138 illustrates installation of an exemplary embodiment of an insulation support system;

[0195] FIGS. 139 and 139A illustrate installation of an exemplary embodiment of an insulation support system with tabs that are connected together using hook and loop fasteners:

[0196] FIGS. 140 and 140A illustrate installation of an exemplary embodiment of an insulation support system with tabs that are connected together using two types of adhesives:

[0197] FIGS. 141 and 142 illustrate installation of an exemplary embodiment of an insulation system;

[0198] FIGS. 143 and 143A-143F illustrate installation of an exemplary embodiment of a batt-type roof insulation system:

[0199] FIG. 144A-144D illustrate installation of an exemplary embodiment of a batt-type roof insulation system;

[0200] FIGS. 145A and 145B illustrate installation of an exemplary embodiment of a batt-type roof insulation system;

[0201] FIGS. 146A and 146B illustrate installation of an exemplary embodiment of a batt-type roof insulation system:

[0202] FIGS. 147-149 illustrate an exemplary embodiment of an insulation support material folded and packaged in a box;

[0203] FIGS. 150-153 illustrate an exemplary embodiment of an insulation support material folded and packaged in a box;

[0204] FIG. 154 illustrates and exemplary embodiment of a foldable insulation batt;

[0205] FIG. 155 illustrates and exemplary embodiment of a foldable insulation batt;

[0206] FIG. 156 illustrates unfolding of the insulation batts illustrated by FIGS. 154 and 155;

[0207] FIG. 157 illustrates a roof structure and foldable insulation batt;

[0208] FIG. 158 illustrates a gable end and assembly of an air barrier material on an interior surface of the gable end;

[0209] FIGS. 158A and 158B illustrate a gable end and assembly of an air barrier material and insulation on an interior surface of the gable end;

[0210] FIGS. 159A-159C illustrate an exemplary embodiment of a method of forming an insulation cavity;

[0211] FIGS. 160 and 161 illustrate an exemplary embodiment of an insulation support material positioning device;

[0212] FIGS. 162-164 illustrate an exemplary embodiment of an insulation support system that automatically provides a pocket under a support member 20;

[0213] FIGS. 165 and 165A illustrate exemplary embodiments of a standoff;

[0214] FIG. 166 illustrates an exemplary embodiment of a standoff and wire assembly;

[0215] FIGS. 167 and 167A illustrate an exemplary embodiment of an insulation support system;

[0216] FIGS. 168A-168C illustrate examples of standoff and wire configurations;

[0217] FIGS. 169A and 169B illustrate an exemplary embodiment of an insulation support system;

[0218] FIGS. 170A and 170B illustrate an exemplary embodiment of an insulation support system;

[0219] FIG. 171 illustrates insulation support material pre-attached to secondary support members;

[0220] FIG. 172 illustrates installation of the insulation support material and pre-attached secondary support members in trusses of a roof;

[0221] FIG. 173 illustrates installation of the insulation support material and pre-attached secondary support members in trusses of a roof;

[0222] FIG. 174 illustrates installation of the insulation support material and pre-attached secondary support members below rafters of a roof;

[0223] FIG. 175 illustrates attachment of an insulation support material to roof supports:

[0224] FIG. 176 illustrates an insulation support system that includes insulation support pins with the insulation support material pre-attached to the support members;

[0225] FIG. 177 illustrates the pin used in the system of FIG. 176;

[0226] FIG. 178 illustrates the insulation system of FIG. 177 being filled with loosefill insulation;

[0227] FIG. 178A illustrates a joint between two sections of insulation support material;

[0228] FIG. 178B illustrates overlap between two sections of insulation support material;

[0229] FIG. 179 illustrates an exemplary embodiment of support members and spaced apart lower support members;

[0230] FIG. 180 illustrates an exemplary embodiment of a truss including support members and spaced apart lower support members;

[0231] FIG. 181 illustrates a support assembly that includes a support member and spaced apart lower support members:

[0232] FIG. 182 illustrates an exemplary embodiment of an insulation support material;

[0233] FIG. 183 illustrates an insulation support system that includes the insulation support material of FIG. 182;

[0234] FIG. 184 illustrates the insulation support system of FIG. 183 being filled with loosefill insulation;

[0235] FIG. 185 illustrates an exemplary embodiment of an insulation support system;

[0236] FIG. 186 illustrates an exemplary embodiment of an insulation support system;

[0237] FIG. 187 illustrates an exemplary embodiment of an insulation support system that includes a hook and loop connection:

[0238] FIG. 188 is an enlarged view of the hook and loop connection of FIG. 187;

[0239] FIG. 189 illustrates an exemplary embodiment of an insulation support system that includes a hook and loop connection:

[0240] FIG. 190 is an enlarged view of the hook and loop connection material of FIG. 189 before the connection is made:

[0241] FIG. 191 is an enlarged view of the hook and loop connection material of FIG. 189 after the connection is made:

[0242] FIG. 192 is an enlarged view of the hook and loop connection material of FIG. 189 after loosefill insulation is provided;

[0243] FIG. 193 illustrates an exemplary embodiment of an insulation support system that includes a hook and loop connection;

[0244] FIG. 194 is an enlarged view of the hook and loop connection material of FIG. 193 before the connection is made:

[0245] FIG. 195 is an enlarged view of the hook and loop connection material of FIG. 193 after the connection is made:

[0246] FIG. 196 is an enlarged view of the hook and loop connection material of FIG. 193 after loosefill insulation is provided;

[0247] FIG. 197 illustrates an exemplary embodiment of a roll of insulation support material;

[0248] FIG. 198 illustrates an exemplary embodiment of a roll of insulation support material;

[0249] FIGS. 199-201 illustrate connection of two pieces of material with a projection and hole connection;

[0250] FIG. 202 illustrates an exemplary embodiment of an alternate projection that can be used in the connection illustrated by FIGS. 199-201;

[0251] FIG. 203 illustrates an exemplary embodiment of an alternate projection that can be used in the connection illustrated by FIGS. 199-201;

[0252] FIGS. 204-207 illustrate an exemplary embodiment of an insulation support system that includes a projection and hole connection;

[0253] FIG. 208 illustrates fastening the projection and fastener connection of FIGS. 204-207 by pressing the projections into the holes;

[0254] FIG. 209 illustrates fastening the projection and fastener connection of FIGS. 204-207 by sucking the projections into the holes:

[0255] FIG. 210 illustrates a building with adhesive applied to support members;

[0256] FIG. 211 illustrates a building with adhesive being applied to roof support members from below the attic;

[0257] FIGS. 212-214 illustrate installation of insulation support material in the building illustrated by FIG. 210;

[0258] FIGS. 215-218 illustrate an exemplary embodiment of a system for routing insulation support material into an attic of a building;

[0259] FIG. 219 illustrates an exemplary embodiment of a supply of insulation support material;

[0260] FIG. 219A illustrates an exemplary embodiment of a supply of insulation support material;

[0261] FIG. 220 illustrates an exemplary embodiment of a supply of insulation support material;

[0262] FIG. 221 illustrates an exemplary embodiment of a supply of insulation support material;

[0263] FIGS. 222-225 illustrate an exemplary embodiment of a method of installing an insulation support system;

[0264] FIG. 226 illustrates an exemplary embodiment of an air barrier;

[0265] FIG. 227 illustrates an exemplary embodiment of an air barrier;

[0266] FIGS. 228 and 229 illustrate fastener placement in an exemplary embodiment of an insulation support system; [0267] FIGS. 230A and 230B illustrate an exemplary embodiment of an insulation support system;

[0268] FIGS. 231A and 231B illustrate an exemplary embodiment of a material used to make the insulation support system of FIGS. 230A and 230B; and

[0269] FIG. 232 is a perspective view of an exemplary embodiment of an insulation system with an exhaust.

DETAILED DESCRIPTION

[0270] The present invention will now be described with occasional reference to the specific embodiments of the invention. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.

[0271] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise.

[0272] Unless otherwise indicated, all numbers expressing quantities of dimensions such as length, width, height, and so forth as used in the specification and claims are to be understood as being modified in all instances by the term "about." Accordingly, unless otherwise indicated, the numerical properties set forth in the specification and claims are approximations that may vary depending on the desired properties sought to be obtained in embodiments of the present invention. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from error found in their respective measurements.

[0273] The description and figures disclose insulation systems for application to interior building spaces, such as interior building spaces located below roof decks. While the descriptions below will discuss and show insulation systems for use with sloped roof decks, it should be appreciated that the insulation systems can be applied to roof decks constituting flat roofs. The netting insulation systems are configured to form an insulation layer or layers having a desired depth and are positioned within the attic side of the roof deck. The insulation layer or layers may have a substantially uniform thickness, may have an adjustable thickness, and/or the insulation layer may insulate the structural members forming the roof deck.

[0274] The terms "roof deck", as used herein, is defined to mean any framework and/or support panels configured to support roofing materials, such as for example, shingles. As used herein, the term "roof deck" can refer to frameworks and/or support panels forming either sloped or flat roofs. The term "attic", as used herein, is defined to mean an interior portion of a building located directly below the roof decks. The term "unvented", as used herein, is defined to mean the absence of active or passive ventilation systems. The term "boxed" as used herein, is defined to mean having the general three dimensional shape or form of a box or rectangle. The term "netting", as used herein, is defined to mean any material used to contain insulation material within an insulation cavity. The term "loosefill insulation material" or "loosefill material" or "insulation material", as used herein, is defined to mean any insulation material configured for distribution in an airstream or otherwise conveyed in a loose manner. The term "unbonded", as used herein, is defined to mean the absence of a binder. The term "conditioned", as used herein, is defined to mean the shredding of the loosefill material to a desired density prior to distribution in an airstream or distribution in another loose manner.

[0275] Referring now to the drawings, FIG. 1A illustrates a first example of a structure 10. The structure 10 can take a wide variety of different forms. In one exemplary embodiment, the structure 10 is formed with a roof having a conventional truss construction (for purposes of clarity, only a few of the trusses are illustrated), and includes exterior walls 12a-12d and roof decks 14a, 14b. However, the roof can take a wide variety of different forms. For example, FIG. 1H illustrates a roof having a conventional rafter construction. Support members 20 for the roof decks 14a, 14b are rafters that extend between a ridge beam 1060 and lower roof beams 1062. The trusses illustrated by the FIGS. 1A and 1I embodiments can take a wide variety of different forms. Interspaced webs 23 of the trusses may or may not form triangles. In the example illustrated by FIG. 1I, the webs 23 of gable end trusses 1070 are vertical and do not form triangles, while the remainder of the trusses illustrated by FIGS. 1A and 1I have webs 23 that form triangles. Truss type roofs have the advantage of having trusses that can be pre-fabricated. Rafter type roofs have the advantage that webs are not included or are limited in number. With the webs not included or limited in number, the space of the attic is more open than with a truss-type roof.

[0276] The exterior walls 12a-12d are configured to separate the interior spaces (not shown) of the structure 10 from areas 16 exterior to the structure 10, as well as providing a protective and aesthetically pleasing covering to the sides of the structure 10. The exterior walls 12a-12d can be formed using any typical construction methods, such as the non-limiting example of stick and frame construction. The exterior walls 12a-12d can include any desired wall covering (not shown), such as for example brick, wood, or vinyl siding, sufficient to provide a protective and aesthetically pleasing covering to the sides of the structure 10.

[0277] Referring again to FIG. 1A, a ceiling (not shown) is formed within the structure 10, adjacent the upper portions of the exterior walls 12a-12d. The ceiling can include a ceiling covering (not shown) attached to ceiling joists 21a-21g. The ceiling covering can be made from any desired materials, including the non-limiting examples of ceiling tile or drywall. An interior space or attic 18 can be formed between the ceiling and the roof decks 14a, 14b.

[0278] In the example illustrated by FIG. 1A, the support members 20a-20g support other structures, such as for example, a plurality of sheathing panels 24 and shingles (not

shown). The structural support members 20a-20g can take a wide variety of different forms. In one exemplary embodiment, the support members 20a-20g are chords of trusses. In the embodiment illustrated in FIG. 1A, the support members 20a-20g are spaced apart on 24.0 inch centers. However, in other embodiments, the support members 20a-20g can be spaced apart by other distances. Each of the support members 20a-20g has a length L1.

[0279] A first gable 1070 is formed between the roof decks 14a, 14b and the exterior wall 12c. Similarly, a second gable 1070 is formed between the roof decks 14a, 14b and the exterior wall 12d.

[0280] FIGS. 1B and 1C illustrate a vented attic 1000 and an unvented attic 1002 respectively. The inventive concepts disclosed by this patent application can be applied to vented attics 1000 and/or unvented attics 1002. The unvented attic includes a substantially air sealed envelope that comprises the walls 12 and a ceiling 1004. The air can enter the attic 1000 through eaves 1006 as indicated by arrows 1008 exit the attic 1000 through a ridge 1010 as indicated by arrows 1212. FIG. 1B illustrates just one of the many different configurations of a vented attic 1000.

[0281] Referring to FIG. 1C, the unvented attic 1002 includes a substantially air sealed envelope that comprises the walls 12 and the roof deck 14. The walls 12 may be sealed to the roof deck 14 in a wide variety of different ways. In the example illustrated by FIG. 1C, the soffits 1020 that extend between the walls 12 and the roof deck 14 are sealed. However, the walls 12 can be sealed to the roof deck 14 in a wide variety of different manners.

[0282] The roof deck 14 of the unvented attic illustrated by FIG. 1C can be sealed in a wide variety of different ways. In the example illustrated by FIG. 1E, the roof deck 14 is sealed with a sealant 1030 that is applied to joints of the sheathing panels 24. The sealant 1030 can be applied from above the sheathing panels, from below the sheathing panels, and/or to between joints of the sheathing panels 24 as the sheathing panels are being installed. In the example illustrated by FIG. 1F, an air barrier layer 1032 is applied beneath the sheathing panels 24 to air seal the roof deck. The air barrier layer 1032 may be applied between the sheathing panels 24 and the structural members 20a-20g. For example, the air barrier layer 1032 can be applied to the structural members 20a-20g, before the sheathing panels 24 are installed. In the example illustrated by FIG. 1G, an air barrier layer 1034 is applied above the sheathing panels 24 to air seal the roof deck. The air barrier layer 1034 may take a wide variety of different forms. The air barrier layer 1034 may be an underlayment disposed between the sheathing panels 24 and shingles (not shown) or shingles disposed on the sheathing panels 24 may sealed to one another to provide the air barrier layer 1034. The underlayment may include a plurality of overlapping strips as illustrated by FIG. 1G. In one exemplary embodiment, an adhesive is applied to the edges of the underlayment overlap regions. The seals formed by the adhesive blocks airflow that would pass through the overlap region and enter the attic through gaps between the sheathing panels 24 of the roof deck.

[0283] FIG. 1D illustrates a building structure 10 having a roof deck with a vent space 1082 between sheathing 24 and insulation 58. The building structure 10 may have a ceiling 1004 or the ceiling may be omitted. When the ceiling 1004 is omitted, the building structure is considered to have a cathedral ceiling. The illustrated building structure 10

includes a substantially air sealed envelope that comprises the walls 12 and an air-sealed bottom 1084 of the vent space. The bottom 1084 of the vent space 1082 can be sealed in a wide variety of different ways. For example, the bottom 1084 of the vent space 1082 may be made from an air barrier material (See FIGS. 14A-14E) or the bottom surface 1084 of the vent space 1082 may be a sealed decking material (See FIG. 14F). The walls 12 may be air sealed to the bottom 1084 of the vent space 1082 as indicated by lines 1083.

[0284] A wide variety of different air barrier layers can be used in the embodiments disclosed by the present application that use an air barrier. The air barrier layer may be a vapor barrier that blocks all air and water vapor or may be a water vapor retarder that blocks air, but allows permeation of water vapor. In an exemplary embodiment, the air barrier layer is permeable to water vapor and may thus be considered as breathable while remaining substantially impervious to air and water such that wind and rain does not pass through. The air barrier layer may be non-breathable in some embodiments. In some embodiments, the air barrier layer is a polymeric or cellulosic material. The air barrier layer may have a wide range of thicknesses. For example, the thickness of the air barrier layer may be from about 0.25 mils to about 1000 mils.

[0285] The water vapor permeation of the air barrier layer may be designed to be either bidirectional or unidirectional. Depending on the circumstance and in a building envelope, for most of the cases, it is very important to get any water vapor from the inside to the outside environment and not the other way around. However, in some cases, it may be desirable to have bidirectionality of water permeation. Unidirectionality may be provided by the characteristics of the air barrier layer used.

[0286] The air barrier layer may comprise a polyolefin and preferably a polyethylene, polypropylene or polybutylene. The air barrier layer may be prepared from continuous fibers of such materials using a flash spinning followed by bonding with heat and pressure. Other materials like polystyrene, expanded polystyrene, polyester, acrylic, polycarbonate, fluoropolymers, fluorinated urethane, PTFE, expanded PTFE, phenol-formaldehyde, melamine-formaldehyde, a phenolic resin, or copolymers thereof, individually or in combinations can be used to manufacture the air barrier layer

[0287] One popular air barrier layer that is manufactured for building wrap is PinkWRAP® from Owens Corning. PinkWRAP® Housewrap is a woven polyolefin fabric engineered to be a weather resistant barrier. PinkWRAP® Housewrap reduces the air infiltration through residential and commercial exterior side wall construction.

[0288] PinkWRAP® Housewrap has microperforations that permit trapped moisture to escape from the wall to the exterior. PinkWRAP® Housewrap is translucent to allow installers to see the framing underneath. PinkWRAP® Housewrap has excellent tensile strength and tear resistance to withstand installation and wind driven loads. PinkWRAP® Housewrap can be left uncovered for up to 300 days before siding is installed. PinkWRAP® Housewrap meets the requirements of a weather resistant barrier as defined by ICC-ES Acceptance Criteria AC 38. See ICC Evaluation Services ESR 2801. PinkWRAP® Housewrap has the following properties.

Property	Test Method	Actual	Required
Tensile Strength	ASTM D 828	60/44	20/20
(lbs./in., MD/CD) Trapezoidal Tear Strength	ASTM D 1117	37/49	_
(lbs., MD/CD) Water Resistance	ASTM D 779	>60	10 minute
(10 min. minimum) Water Vapor Transmission Rate	ASTM E 96-Procedure A Dry Cup (75 F., 50% RH)	52	Minimum >35
(g/m 2/24 hrs)			
Water Vapor Permeance Rate (perms)	ASTM E 96-Procedure A Dry Cup (75 F., 50% RH)	7.7	>5
Fire Characteristics- Flame Spread	ASTM E 84	5	<25
Fire Characteristics- Smoke	ASTM E 84	30	<450
Application Exposure (months)	Ambient exposure	9	N/A

[0289] Another material that is manufactured for housewrap that can be used as an air barrier layer is a flash spunbonded polyolefin that may be obtained from DuPont under the name TyvekTM. Another material that can be used as an air barrier layer is a microporous polyolefin film composite and may be obtained from Simplex Products under the trademark "R-WrapTM" There are a variety of other brands such as Typar® from Reemay, Amowrap® from Teneco building products, Barricade® from Simplex, and others that can be used as an air barrier layer.

[0290] In one exemplary embodiment, the air barrier is a smart vapor retarder material. Smart vapor retarder materials have a permeance (a measure of how readily water vapor can pass through) that varies based on the humidity. The goal is low permeance in the winter when humidity is low to block moisture flow and prevent condensation, and high permeance in the summer when humidity is higher and drying to both the interior and exterior is desired. U.S. Pat. Nos. 7,008,890; 6,808,772; 6,890,666; and U.S. Pat. No. 6,878, 455 disclose examples of vapor retarder materials and are incorporated herein by reference in their entirety. Intello Plus and DB+ are two variable products made by Pro Clima in Germany and distributed by 475 High Performance Building Supply in Brooklyn, N.Y. Intello Plus is made from a polyethylene copolymer, and it varies in permeance from 0.17 in the winter to 13 in the summer, while DB+ is made mostly from recycled paper (with a fiberglass reinforcement grid) that varies in permeance from 0.8 perms with low humidity to 5.5 perms at high humidity.

[0291] As will be explained in more detail below, an insulation system (hereafter "system") can be installed in the attic 18 in a position adjacent to the roof decks 14a, 14b such as to provide an insulation layer having a substantially uniform thickness, at an adjustable insulation depth and/or that insulates the support members 20a-20g forming the roof decks 14a, 14b.

[0292] Referring now to FIGS. 2A and 2B, an exemplary embodiment of a netting or insulation support material 30 is illustrated. As will be explained below in more detail, the netting 30 is configured for attachment to the support members 20a-20g or other structure and further configured to contain the loosefill insulation material 58 in a layer having a substantially uniform thickness.

[0293] The netting 30 includes end portions 32a, 32b, side panels 34a, 34b and a span segment 36. The end portions

32a, 32b are configured for attachment to a minor face of the support members 20a-20g. In the embodiment illustrated in FIG. 2A, the end portions 32a, 32b are defined by indicia 37a, 37b printed on a major face of the netting 30. However, it should be appreciated that the indicia 37a, 37b is optional and the boxed netting insulation system can be practiced without the indicia 37a, 37b.

[0294] The end portions 32a, 32b have widths W1, W2, respectively, that generally correspond to the widths of the minor faces of the support members 20a-20g. In the illustrated embodiment, the widths W1, W2 are in a range of from about 1.0 inches to about 2.0 inches. In other embodiments, the widths W1, W2 can be less than about 1.0 inches or more than about 2.0 inches. Optionally, the end portions 32a, 32b can be reinforced with any desired reinforcing material, such as for example, fiberglass tape.

[0295] Referring again to FIGS. 2A and 2B, the side panels 34a, 34b have widths W3 and W4 respectively. As will be explained in more detail below, the side panels 34a, 34b are configured to hang from support members, and when coupled with the depth of the support members, form a desired insulation depth. In the illustrated embodiment, the widths W3, W4 are in a range of from about 2.0 inches to about 14.0 inches. In other embodiments, the widths W3, W4 can be less than about 2.0 inches or more than about 14.0 inches.

[0296] Referring again to FIGS. 2A and 2B, the span segment 36 is configured to extend from one truss chord to an adjacent truss chord and has a width W5. In the illustrated embodiment, the width W5 is in a range of from about 14.0 inches to about 30.0 inches. In other embodiments, the width W5 can be less than about 14.0 inches or more than about 30.0 inches, consistent with the distance from support member to an adjacent support member.

[0297] Referring again to FIGS. 2A and 2B, the netting 30 may have two or more tabs 38a, 38b extending from a major face. As will be explained in more detail below, the tabs 38a, 38b are configured for connection to the tabs of adjacent nettings. In the illustrated embodiment, the tabs 38a, 38b are formed by folded portions of the netting. However, the tabs 38a, 38b can be formed by other desired methods, such as for example, gathering and pinching portions of the nettings. Still further, it is within the contemplation of this invention that the tabs 38a, 38b can be separate and distinct components that are fastened to the netting 30.

[0298] In the embodiment shown in FIG. 2A, the tabs 38a, 38b extend continuously along any length of the netting 30 that may cut from a roll 40. However, in other embodiments, the tabs 38a, 38b can form discontinuous lengths sufficient to allow the tabs of netting positioned adjacent to each other to be connected together.

[0299] The tabs 38a, 38b have heights H1, H2 respectively. The heights H1, H2 are configured to allow the tabs of adjacent nettings to connect to each other. In the illustrated embodiment, the heights H1, H2 are in a range of from about 0.50 inches to about 4.0 inches. In other embodiments, the heights HI, 142 can be less than about 0.50 inches or more than about 4.0 inches, sufficient to allow the tabs of adjacent nettings to be connected together. While the tabs 38a, 38b are illustrated as having substantially the same height, it is contemplated that the tabs 38a, 38b can have different heights.

[0300] The netting 30 can be made from a wide variety of different materials. In the embodiment illustrated in FIGS.

2A and 2B, the netting 30 is formed from a nonwoven polymeric-based material, such as for example spunbonded polyester. In other embodiments, the netting 30 can be formed from other desired materials, such as the non-limiting examples of knitted or woven fabrics and materials formed from natural, synthetic or blended fibers.

[0301] The netting 30 has a basis weight. The term "basis weight", as used herein, is defined to mean a weight per square area. The basis weight of the netting 30 is configured to support the weight and compression of the loosefill insulation material 58 within the insulation cavity. Accordingly, the basis weight of the netting 30 can vary as the depth of the insulation cavity varies. The basis weight of the netting can further vary as different fastening methods are used to connect the netting to the support members 20. In the illustrated embodiment, the netting 30 has a basis weight in a range from about 30 grams/square meter (gm/m²) to about 70 gm/m². However, in other embodiments, the netting 30 can have a basis weight less than about 30 gm/m² or more than about 70 gm/m², such that the netting 30 can be attached to the support members 20a-20g and the netting 30 can contain the loosefill material 58 in a layer having a substantially uniform thickness.

[0302] Referring again to the embodiment shown in FIG. 2A, the netting 30 is provided on a roll 40. However, the netting 30 can be provided in other forms, such as the non-limiting example of folded sheets.

[0303] In one exemplary embodiment, all or portions of the netting is porous or very air permeable. This porosity or air permeability allows the loosefill insulation 58 to be blown into the insulation cavities, while allowing the air that blows the loosefill insulation 58 to escape from the insulation cavities. In some exemplary embodiments, portions of the netting 30 are porous or very air permeable, while other portions are air barriers. For example, in one exemplary embodiment, the side panels 34a, 34b are porous, very air permeable, and/or include spaced apart discrete sections and the tabs 38a, 38b and span segment 36 are made from a water vapor retarder material and/or an air barrier material. This allows the netting or insulation support material 30 to form a vapor retarder and/or air barrier, while still allowing the air that blows the loose-fill insulation 58 into the cavities to escape through the side panels 34a, 34b.

[0304] Referring now to FIGS. 3-6, installation of the netting 30 illustrated by FIGS. 2A and 2B is illustrated. Referring first to FIG. 3, representative adjacent support members 20c and 20d, such as a truss chords or rafters and sheathing panel 24 are illustrated. Support member 20c has a first major face 42a, a second major face 42b and a first minor face 43. Similarly, support member 20d has a first major face 44a, a second major face 44b and a first minor face 45. In a first step, the netting 30 is unrolled from the roll 40 shown in FIG. 2A to expose a length of netting 30 that generally corresponds to the length L1 of the adjacent support members 20c and 20d. The netting 30 is cut thereby forming a formed length of netting 48a.

[0305] In a next step, the formed length of netting 48a is positioned along the length L1 of the adjacent support members 20c, 20d such that the tabs 38a, 38b extend in a direction away from the sheathing panel 24. Next, the end segment 32b is fastened to the first minor face 43 of support member 20c along the length L1 of the support member 20c, thereby allowing the formed length of netting 48 to hang from the first minor face 43 of support member 20c. While

the embodiment illustrated in FIGS. 3-6 shows fastening of the end segment 32b to the first minor face 43 of support member 20c, it should be appreciated that in other embodiments, the end segment 32b can be fastened to other portions of the support member 20c, such as the non-limiting examples of a major face 42a, 42b or at the intersections of the first minor face 43 and the major faces 42a, 42b. In the illustrated embodiment, the end segment 32b is fastened to the first minor face 43 of the support member 20c with staples (not shown). In other embodiments, other desired fasteners can be used, such as the non-limiting examples of double sided tape, adhesives, clips or clamps.

[0306] Referring again to FIG. 3, in a next step, the span segment 36, side panel 34a and end portion 32a are rotated in a counter-clockwise direction, as indicated by direction arrow R1, toward the support member 20d. Next, the end segment 32a is fastened to the first minor face 45 of support member 20d along the length L1 of support member 20d, thereby allowing the side panels 34a, 34b and span segment 36 to hang from the support members 20c, 20d. In this position, the side panels 34a, 34b, span segment 36, support members 20c, 20d and the sheathing panel 24 cooperate to define a first insulation cavity 50a.

[0307] The first insulation cavity 50a extends the length L1 of the support members 20c, 20d and has a depth D1. The depth D1 of the first insulation cavity 50a is defined as the total of the depth D2 of the support members 20c, 20d and the widths W3, W4 of the side panels 34a, 34b. The depth D1 will be discussed in more detail below.

[0308] Referring now to FIG. 4, netting 48a is shown attached to support members 20c, 20d. In a manner similar, end portion 32b of netting 48b is attached to the first minor face 45 of support member 20d and end portion 32a of netting 48b is attached to the first minor face 47 of support member 20e, thereby allowing the netting 48b to hang from the support members 20d, 20e. In this position, the netting 48b, support members 20d, 20e and the sheathing panel 24 define a second insulation cavity 50b.

[0309] Referring now to FIGS. 4 and 5, the tab 38a of netting 48a and the tab 38b of netting 48b hang such as to be substantially adjacent to each other. In a next step, the tabs 38a, 38b are fastened together along the length L1 of the support member 20d. Fastening of the tabs 38a, 38b brings portions of the side panel 34a of netting 48a and portions of the side panel 34b of netting 48b substantially together, and imparts a tension of the span segments 36a, 36b of the nettings 48a, 48b. The tension imparted on the span segments 36a, 36b results in the side panels 34a, 34b and the span segments 36a, 36b of the respective insulation cavities 50a, 50b forming boxlike cross-sectional shapes that are substantially retained after loosefill insulation 50 is blown into the insulation cavities 50a, 50b.

[0310] In the illustrated embodiment, the tabs 38a, 38b are fastened together at intervals in a range of about 2.0 inches to about 8.0 inches. In other embodiments, the tabs 38a, 38b can be fastened together at intervals less than about 2.0 inches or more than about 8.0 inches. Referring again to FIGS. 4 and 5, the tabs 38a, 38b have been fastened together using a plurality of fasteners (not shown). In the illustrated embodiment, the fasteners are staples. However, in other embodiments, the tabs 38a, 38b can be fastened together using other structures and devices, such as the non-limiting examples of adhesives, clips, clamps, zip-lock type fastening arrangements. These fastening devises can be used in

any of the embodiments disclosed by the present application. In one exemplary embodiment, the fasteners are arranged such that a shear force is applied to the connection by the blown-in insulation, instead of a peel force. For example, when the tabs 38a, 38b are adhered together, the tabs and/or the adhesive are configured such that, insulation blown into the cavity applies a predominantly shear force to the adhesive connection, instead of peeling force. This can be done in a wide variety of different ways. For example, the tabs and/or the adhesive can be configured in the same or similar manner as described with respect to the hook and loop connection in FIGS. 189-196. That is, the hook and loop connections in FIGS. 189-196 can be replaced with an adhesive connection.

[0311] Referring now to FIG. 6, the nettings 48a, 48b are shown after the tabs 38a, 38b have been fastened together and a tension has been established in the span segments 36a, 36b, thereby forming the box-like cross-sectional shapes of the insulation cavities 50a, and 50b. As further shown in FIG. 6, a first insulation pocket 52a is formed as a portion of insulation cavity 50a and is located under support member 20c. A second insulation pocket 52b is formed as a portion of insulation cavity 50a and is located under support member 20d. A third insulation pocket 52c is formed as a portion of insulation cavity 50b and is located under support member 20d and a fourth insulation pocket 52d is formed as a portion of insulation cavity 50b and is located under support member 20c. The insulation pockets 52a-52d will be discussed in more detail below.

[0312] Referring again to FIG. 6 in a next step, opening 54a is formed in the span segment 36a such as to allow insertion of a distribution hose 56 into the insulation cavity 50a. The distribution hose 56 is attached to a blowing insulation machine (not shown) and configured to convey conditioned loosefill insulation material 58 from the blowing insulation machine to the insulation cavity 50a. Any desired distribution hose 56 and blowing insulation machine can be used sufficient to convey conditioned loosefill insulation material 58 from the blowing insulation machine to the insulation cavity 50a. Distribution of the loosefill insulation material 58 into the insulation cavity 50a continues until the insulation cavity 50a is filled. An opening 54b is formed in the span segment 36b and the insulation cavity 50b is filled in a similar manner. In the illustrated embodiment, a single opening 54a is used to fill an insulation cavity. However, it should be appreciated that more than one opening can be used to fill an insulation cavity.

[0313] Referring again to FIG. 6, the loosefill insulation material 58 can be any desired loosefill insulation material, such as a multiplicity of discrete, individual tuffs, cubes, flakes, or nodules. The loosefill insulation material 58 can be made of glass fibers or other mineral fibers, and can also be polymeric fibers, organic fibers or cellulose fibers. The loosefill insulation material 58 can have a binder material applied to it, or it can be binderless.

[0314] Referring again to FIG. 6 in a final step, the openings 54a, 54b are covered with coverings (not shown) sufficient to prevent loosefill insulation material within the insulation cavities 50a, 50b from falling out of the openings 54a, 54b. In the illustrated embodiment, the coverings are formed from an adhesive tape. However, the coverings can be formed from other desired structures or materials. The steps of forming the box-shaped insulation cavities between adjacent support members and filling the insulation cavities

with loosefill insulation material are repeated until all of the insulation cavities between support members forming a roof deck are completed. While the embodiment shown in FIG. 6 has been described above as covering the openings 54a, 54b with coverings in the form of adhesive tape, in other embodiments the openings 54a, 54b can be plugged with compressible or conformable materials. One non-limiting example of a compressible or conformable material is a portion of a bat of fiberglass insulation.

[0315] The boxed netting insulation system advantageously provides many benefits, although not all benefits may be realized in all circumstances. First, as shown in FIG. 6, the box-shaped insulation cavities, 50a, 50b provide a uniform thickness of the loosefill insulation material. The term "uniform thickness", as used herein, is defined to mean having a substantially consistent depth. The uniform thickness of the loosefill insulation material is substantially maintained by the tension formed in the span segments after the loosefill insulation cavities are filled with the loosefill insulation material.

[0316] Second, the depth D1 of the insulation cavities can be adjusted to provide different depths of the loosefill insulation material. Referring to FIG. 3 as discussed above, the depth of the loosefill insulation material is the sum of the depth D2 of the support members 20c, 20d and the width W3, W4 of the side panels 34a, 34b. Accordingly, differing the widths W3, W4 of the side panels 34a, 34b provides differing depths D1 of the insulation cavity. As the thermal resistance (R-Value) of the loosefill insulation material within the insulation cavities is, in part, a function of the depth of the loosefill insulation material, the thermal resistance (R-Value) of the loosefill insulation material can be adjusted by differing with widths W3, W4 of the side panels 34a, 34b.

[0317] In the illustrated embodiment, varying the widths W3, W4 of the side panels 34a, 34b results in different R-values of the resulting layer of loosefill insulation material within the insulation cavities as shown in Table 1.

TABLE 1

Side Panel Width (Inches)	Truss Chord Depth (Inches)	Insulation Cavity Depth (Inches)	Insulation Material Density (Lbs/Ft ³)	Thermal Resistance (R-value) (Btu-In/ (Hr \cdot Ft ² \cdot $^{\circ}$ F.))
2.00	3.50	5.50	1.30	R-22
4.00	3.50	7.50	1.30	R-30
6.00	3.50	9.50	1.30	R-38
8.75	3.50	12.25	1.30	R-49

[0318] As shown in Table 1, the thermal resistance (R-value) of the layer of a particular brand of loosefill insulation material can be varied by varying the width of the side panels. As one specific example, a thermal resistance (R-Value) of 22 can be achieved with an insulation cavity depth of 5.50 inches. While the specific example discussed above is based on a side panel width W3 of 2.00 inches and a support member depth D2 of 3.50 inches, it should be noted that Table 1 advantageously includes other values of thermal resistance (R-Value) for other side panel widths. It should also be appreciated that the results shown in Table 1 would be different for Support member depths of more or less than 3.50 inches and for Insulation Material Densities of more or less than about 1.30 lbs/ft3.

[0319] Referring to again to FIG. 6 for a third advantage, distributing the loosefill insulation material 58 into the insulation cavities 50a, 50b results in loosefill insulation material filling the insulation pockets 52a-52d. As the filled insulation pockets 52a-52d are positioned below the support members 20c, 20d and 20e, the filled insulation pockets 52a-52d are configured to insulate the support members 20c, 20d and 20e.

[0320] While the embodiment illustrated in FIGS. 3-6 shows fastening of the end segment 32b to the first minor face 43 of support member 20c, it should be appreciated that in other embodiments, the insulation support material 30 can be fastened to other portions of the support member 20, such as the non-limiting examples of a major face 42a, 42b or at the intersections of the first minor face 43 and the major faces 42a, 42b. In the exemplary embodiment illustrated by FIG. 5A, the insulation support materials 30 are attached to opposite side faces of a roof deck supporting structural member 20. For example, side panels 34a, 34b may be attached to opposite side faces of a roof deck supporting structural member 20. In the exemplary embodiment illustrated by FIG. 5B the insulation support material 30 is attached to a roof deck sheathing panel 24 on opposite sides of a roof deck supporting structural member 20. For example, side panels 34a, 34b may be attached to a roof deck sheathing panel 24 on opposite sides of a roof deck supporting structural member 20. In the exemplary embodiment illustrated by FIG. 5C, the insulation support material 30 is attached to a roof deck sheathing panel 24 on the same side of a roof deck supporting structural member 20. For example, side panels 34a, 34b may be attached to a roof deck sheathing panel 24 on the same side of a roof deck supporting structural member 20. In the exemplary embodiment illustrated by FIG. 5D, the insulation support materials 30 are attached to one side face of a roof deck supporting structural member 20. For example, side panels 34a, 34b may be attached to one side face of a roof deck supporting structural member 20. In the exemplary embodiment illustrated by FIG. 5E, the insulation support materials 30 are clamped to opposite side faces of a roof deck supporting structural member 20. For example, the side panel 34a may include a clamp 502 that clamps onto opposite faces of the roof deck supporting structural member 20. Any of the fastening arrangements illustrated by FIGS. 5, 5A-5E can be used in with any of the insulation support material embodiments disclosed by the present application.

[0321] In the exemplary embodiments illustrated by FIGS. 5, 5A-5D, the insulation support material or nettings 48a, 48b are fastened with staples (not shown). In other embodiments, other desired fasteners can be used, such as the non-limiting examples of double sided tape, adhesives, clips, velcro, and/or clamps.

[0322] FIGS. 3A, 4A, and 6A illustrate an exemplary embodiment similar to the embodiment illustrated by FIGS. 3, 4, and 5, where the insulation support material 30 is wide enough to span at least three support members 20 (i.e. to form two or more insulation cavities 50 with one piece of netting 48. Like the embodiment illustrated by FIG. 3, FIG. 3A illustrates representative adjacent support members 20, such as a truss chords or rafters and a sheathing panel 24 In a first step, the netting 30 is unrolled from a roll 40 (like the roll shown in FIG. 2A, but wider and with more tab portions 38) to expose a length of netting 30 that generally corre-

sponds to the length L1 of the adjacent support members 20. The netting is cut thereby forming a formed length of netting 30.

[0323] In a next step, the formed length of support material 30 is positioned along the length L1 of the adjacent support members 20 such that the tabs 38 extend in a direction away from the sheathing panel 24. Next, the fastening segments 332 are fastened to the minor faces of support member 20 along the length L1 of the support member 20, thereby allowing the formed length of insulation support material 30 to hang from the first minor faces to define drooping insulation cavities 350.

[0324] Referring to FIG. 4A, in a next step, the tabs 38 are fastened together as shown to form substantially taught insulation cavities 50, each having a substantially rectangular configuration. In an exemplary embodiment, a distance DS from the sheathing panel 24 to the span segments 36 is substantially uniform. Fastening of the tabs 38 brings the span segments substantially together under tension. The tension imparted on the span segments 36 results in the side panels 34 and the span segments 36 of the insulation cavities 50 forming boxlike cross-sectional shapes that are substantially retained after loosefill insulation is blown into the insulation cavities 50.

[0325] Referring now to FIG. 6A, the insulation support material 30 is shown after the tabs 38 have been fastened together and a tension has been established in the span segments 36, thereby forming the box-like cross-sectional shapes of the insulation cavities 50. As further shown in FIG. 6A, a insulation pockets 52 are formed as a portion of insulation cavity 50 and are located under support members 20.

[0326] Referring again to FIG. 6A the insulation cavities may be filled with loosefill insulation in the same manner as described with respect to FIG. 6.

[0327] While the embodiment illustrated in FIGS. 3-6 shows fastening of the netting 48 to the first minor face 43 of support member 20, it should be appreciated that in other embodiments, the nettings 48 can be fastened to other portions of the support member 20 and/or to roof decking (See, for example, FIGS. 5A-5E for examples of possible fastening locations).

[0328] Referring now to FIGS. 7A-7G, another method of forming boxed insulation cavities is illustrated. Generally, this method entails use of a clamp having a clam-shell configuration to secure the netting to adjacent support members. The clamp is further configured to shape the netting in the form of a box, thereby forming the boxed insulation cavities.

[0329] Referring first to FIG. 7A, support members 120c, 120d, and 120e and sheathing panel 124 are illustrated. In the illustrated embodiment, support members 120c, 120d, 120e and sheathing panel 124 are the same as, or similar to, support members 20c, 20d, 20e and sheathing panel 24 shown in FIG. 6 and described above. However, in other embodiments, support members 120c, 120d, 120e and sheathing panel 124 can be different from support members 20c, 20d, 20e and sheathing panel 24. Support member 120c has a major face 142b and a minor face 143. Similarly, support member 120d has a major face 144b and a minor face 145, and support member 120e has a major face 146b and a minor face 147.

[0330] Referring again to FIG. 7A, a first leg 162a of a first clamp 164a is fastened to the major face 142b of the

support member 120c with one or more fasteners 165a. In the illustrated embodiment, the fastener 165a is a staple. However, the fastener 165a can be other mechanisms, devices or structures, such as for example clips, clamps or adhesives sufficient to fasten the first clamp 164a to the support member 120c. In a similar manner, second and third clamps 164b, 164c are fastened to support members 120d, 120c

[0331] In the embodiment shown in FIG. 7A, the clamps 164a-164c are formed from structural cardboard material. In other embodiments, the clamps 164a-164c can be formed from other desired materials, such as the non-limiting example of fabric or fiberglass scrim, sufficient to form a clam-shell configuration to secure the netting to the support members.

[0332] Referring now to FIG. 7B, a first netting 130a is positioned adjacent to the first leg 162a of the first clamp 164a and fastened to the support member 120c with one or more fasteners 167a. After the first netting 130a is fastened to the support member 120c, a second leg 169a of the first clamp 164a is rotated such as to be positioned adjacent to the first netting 130a and fastened to the support member 120c with one or more fasteners 171a. In the illustrated embodiment, the fasteners 167a, 171a are the same as, or similar to the fastener 165a, However, in other embodiments, the fasteners 167a, 171a can be different from the fastener 165a.

[0333] Referring now to FIG. 7C, the portion of the first netting 130a extending from the first clamp 164a is rotated in a counter-clockwise direction such that a portion of the first netting 130a is positioned adjacent to a first leg 162b of the second clamp 164b. The first netting 130a is fastened to the support member 120d by fastener 167b as discussed above. Fastening of the first netting 130a to the first leg 162b of the second clamp 164b imparts a tension on first netting 130a.

[0334] Referring now to FIG. 7D, once the first netting 130a is fastened to the support member 120d, a second netting 130b is positioned adjacent to the first netting 130a and fastened to the support member 120d with one or more fasteners 173a. After the second netting 130b is fastened to the support member 120d, a second leg 169b of the second clamp 164b is rotated such as to be positioned adjacent to the second netting 130b and the second leg 169b fastened to the support member 120d with one or more fasteners 175a.

[0335] Referring now to FIG. 7E, the portion of the second netting 130b extending from the second clamp 164b is rotated in a counter-clockwise direction such that a portion of the second netting 130b is positioned adjacent to a first leg 162c of the third clamp 164c. The second netting 130b is fastened to the support member 120e as discussed above. In a repetitive manner, nettings and clamps are installed on the desired support members.

[0336] Referring again to FIG. 7e, the first clamp 162a, first netting 130a, support member 120d, second clamp 162b and sheathing panel 124 define a first insulation cavity 150a. Similarly, the second clamp 162b, second netting 130b, support member 120e, third clamp 162c and sheathing material 124 define a second insulation cavity 150b. As discussed above, a tension is imparted on the nettings 130a, 130b. Accordingly, the tensions result in the insulation cavities 150a, 150b having boxlike cross-sectional shapes that are substantially retained after loosefill insulation is blown into the insulation cavities 150a, 150b.

[0337] Referring now to FIG. 7F, loosefill insulation 150 is distributed within the insulation cavities 150a, 150b by a distribution hose 156 and a blowing insulation machine (not shown) as discussed above. Referring again to FIG. 7E, the insulation cavities 150a, 150b has a depth D100. The depth D100 is defined as the total of the depth D102 of the support members 120c-120e and the width W6 of portions of the clamps 164a-164c that extend below the support members. The width W6 is adjustable such as to result in different depths D100 of the insulation cavity.

[0338] Referring again to FIG. 7F, a first insulation pocket 152a is formed as a portion of insulation cavity 150a and is located under support member 120d. A second insulation pocket 152b is famed as a portion of insulation cavity 150b and is located under support member 120e. Distributing loosefill insulation material 158 into the insulation cavities 150a, 150b results in loosefill insulation material filling the insulation pockets 152a, 152b are positioned below the support members 120d, 120e, the filled insulation pockets 152a, 152b are configured to insulate the support members 120d, 120e.

[0339] Referring again to FIGS. 7A-7F, the boxed netting insulation system provides the same advantages as previously discussed, namely, a uniform thickness of the loosefill insulation material, the depth of the insulation cavities can be adjusted to provide different depths of the loosefill insulation material and insulation pockets positioned below the support members are filled with loosefill insulation material, thereby insulating the support members.

[0340] Referring now to FIGS. 8A-8D, another method of forming insulation cavities is illustrated. Generally, this method entails use of fixture having shapes that defines a box-like perimeter over which nettings are positioned.

[0341] Referring first to FIG. 8A, support members 220c, 220d, and 220e and sheathing panel 224 are illustrated. In the illustrated embodiment, support members 220c, 220d, 220e and sheathing panel 224 are the same as, or similar to, support members 20c, 20d, 20e and sheathing panel 24 shown in FIG. 6 and described above. However, in other embodiments, support members 220c, 220d, 220e and sheathing panel 224 can be different from support members 20c, 20d, 20e and sheathing panel 24. Support member 220c has a major face 242b, support member 220d has a major face 244b and support member 220e has a major face 246b. [0342] Referring again to FIG. 8A, a portion of a first netting 230a is positioned adjacent to the major face 242b of support member 220c and fastened to the support member 220c with one or more fasteners 267a. In a similar manner, portions of a second netting 230b and a third netting 230care fastened to the support members 220d, 230e respec-

[0343] Referring now to FIG. 8B, after the first netting 230a is fastened to the support member 220c, a fixture 236a is positioned adjacent to the first netting 230a and fastened to the support member 220c with one or more fasteners 271a. In a similar manner, fixtures 236b and 236c are fastened to support members 220d and 220e respectively. [0344] Referring again to FIG. 8B, a portion of the fixture 236a has the cross-sectional shape of a right triangle incorporating a base angle α and a base legs 237a and 237b. For example, the fixture may initially be a straight piece of rigid material, such as cardboard, that is bent to form the right

triangle. Referring to FIGS. 8B and 8E, the triangle is held

in place by inserting a tab 802 into a slot 804 in the fixture.

[0345] As will be discussed in more detail below, the base legs 237a, 237b and the base angle α a provide a perimeter around which the netting 230a is positioned, thereby forming a boxed insulation cavity. In the illustrated embodiment the base angle α is approximately 90° . In other embodiments, the base angle α can be more or less than about 90° , sufficient to allow the netting 230a to form a box shape. While the embodiment shown in FIG. 8B illustrates a portion of the fixture 236a as having the cross-sectional shape of a right triangle, in other embodiments, the fixture can incorporate other geometric cross-sectional shapes, such as for example a simple "L" cross-sectional shape sufficient to allow the netting 230a to form a box shape.

[0346] Referring now to FIG. 8C, the first netting 230a and fixture 236a and a second netting 230b and fixtures 236b, 236e are illustrated. The second netting 230b is shown wrapped around the triangular portion of the fixture 236b and attached to the triangular portion of the fixture 236c. In a next assembly step, the first netting 230a is wrapped around the triangular portion of the fixture 236a and positioned over the second netting 230b. Finally the first netting 230a is attached to the triangular portion of the fixture 236b with a fastener 273a as discussed above. In a repetitive manner, nettings and fixtures are installed on the desired support members.

[0347] In the embodiment shown in FIGS. 8B and 8C, the fixtures 236a-236c are formed from structural cardboard. In other embodiments, the fixtures 236a-236c can be formed from other materials, such as the non-limiting example of reinforced fiberglass or polymeric-based materials sufficient to allow a netting to be wrapped around the fixture and form a box-shaped insulation cavity.

[0348] Referring again to FIG. 8C, the first fixture 236a, first netting 230a, support member 220d, second netting 230b and sheathing panel 224 define a first insulation cavity 250a. Similarly, the second fixture 236b, second netting 230b, support member 220e, third netting 230c and sheathing panel 224 define a second insulation cavity 250b. Fastening of the first netting 230a to the fixtures 236a, 236b imparts a tension on first netting 230a and fastening of the second netting 230b to the fixtures 236b, 236c imparts a tension on the second netting 230b. As discussed above, the tension on the nettings 230a, 230b results in the insulation cavities 250a, 250b having box-like cross-sectional shapes that are substantially retained after loosefill insulation is blown into the insulation cavities 250a, 250b.

[0349] Referring now to FIG. 8D, loosefill insulation 258 is distributed within the insulation cavities 250a, 250b as discussed above. The insulation cavities 250a, 250b have a depth D200. The depth D200 of is defined as the total of the depth D202 of the support members 220e-220e and the width W7 of the fixtures that extend below the support members. The width W7 is adjustable such as to result in different depths D200 of the insulation cavity.

[0350] As further shown in FIG. 8D, a first insulation pocket 252a is formed as a portion of insulation cavity 250a under support member 220d. A second insulation pocket 252b is formed as a portion of insulation cavity 250b under support member 220e. Distributing loosefill insulation material 258 into the insulation cavities 250a, 250b results in loosefill insulation material filling the insulation pockets 252a, 252b. As the filled insulation pockets 252a, 252b are located below the support members 220d, 220e, the filled

insulation pockets 252*a*, 252*b* are configured to insulate the support members 220*d*, 220*e*.

[0351] Referring again to FIG. 8D, optionally the triangular portion of the fixtures 236a-236c could include openings (not shown). The openings can be configured to allow the distributed loosefill insulation material into the interior of the triangular portion of the fixtures 236a-236c such that the loosefill insulation material fills the interior of the triangular portion of the fixtures 236a-236c. In this manner, the insulation cavities 250a, 250b maintain a substantially uniform thickness of loosefill insulation material.

[0352] Referring again to FIGS. 8A-8D, the boxed netting insulation system provides the same advantages as previously discussed, namely, a uniform thickness of the loosefill insulation material, the depth of the insulation cavities can be adjusted to provide different depths of the loosefill insulation material and insulation pockets positioned below the support members are filled with loosefill insulation material, thereby insulating the support members.

[0353] Referring now to FIGS. 9A and 9B, another method of forming boxed insulation cavities is illustrated. Generally, this method entails use of substantially rigid membranes as nettings. The rigid membranes are formed into shapes that subsequently define box-like insulation cavities in an installed position.

[0354] Referring first to FIG. 9A, support members 320a-320g and sheathing panel 324 are illustrated. In the illustrated embodiment, support members 320a-320g and sheathing panel 324 are the same as, or similar to, support members 20c, 20d, 20e and sheathing panel 24 shown in FIG. 6 and described above. However, in other embodiments, support members 320a-320g and sheathing panel 324 can be different from support members 20c, 20d, 20e and sheathing panel 24. Support members 320a-320g have major faces 342a-342g respectively.

[0355] Referring again to FIG. 9A, a membrane 330a, which may be a rigid membrane is illustrated. The membrane 330a includes a side panel segment 334 and a span segment 336. Referring now to FIG. 9B, the side panel segment 334 of rigid membrane 330a is positioned adjacent to the major face 342f of support member 320f and fastened to the support member 320f with one or more fasteners (not shown). The rigid membrane 330a is bent such that the side panel segment 334 and the span segment 336 form an approximate right angle with each other. The span segment 336 spans the distance between adjacent support members 320f, 320g and is subsequently fastened to a previously installed rigid membrane 330b with any desired fasteners (not shown). In a repetitive manner, additional rigid membranes 330c, 330d are installed on the desired support members.

[0356] As shown in FIG. 9B, the approximate right angles formed between the side panel segments and the span segments define box-shaped insulation cavities 350a-350c. The membranes may be formed from a wide variety of different materials. In one exemplary embodiment shown in FIGS. 9A and 9B, the membranes are formed from a structural cardboard material. The structural cardboard material is configured to retain the box-like cross-sectional shape of the insulation cavity after the loosefill insulation material is distributed into the formed insulation cavities. In other embodiments, the rigid membranes can be formed from other materials, such as the non-limiting example of

reinforced fiberglass or polymeric-based materials sufficient to form a box-shaped insulation cavity.

[0357] Referring again to FIG. 9B, the insulation cavities 350a-350c have a depth D300. The depth D300 is defined as the total of the depth D302 of the support members 320a-320g and the width W8 of the side panel segments 334 that extend below the support members. The width W8 is adjustable such as to result in different depths D300 of the insulation cavities.

[0358] As further shown in FIG. 9B, a first insulation pocket 352a is formed as a portion of insulation cavity 350a and is located under support member 320g. Similarly, other insulation pockets are formed as portions of the insulation cavities and are located under the support members. Distributing loosefill insulation material (not shown) into the insulation cavities results in loosefill insulation material filling the insulation pockets. As the filled insulation pockets are located below the support members, the filled insulation pockets are configured to insulate the support members.

[0359] Referring again to FIGS. 9A and 9B, the netting insulation system provides the same advantages as previously discussed, namely, a uniform thickness of the loosefill insulation material, the depth of the insulation cavities can be adjusted to provide different depths of the loosefill insulation material and insulation pockets located below the support members are filled with loosefill insulation material, thereby insulating the support members.

[0360] Referring now to FIGS. 10A and 10B, another method of forming boxed insulation cavities is illustrated. Generally, this method entails use of interconnecting, substantially rigid members and/or flexible material such as netting, for example, the netting 30 described in the embodiments illustrated by FIGS. 2A, 2B and 3-6 to form box-shaped insulation cavities. The interconnecting material may take a wide variety of different forms and may take a wide variety of different configurations. For example, rigid interconnecting material may comprise cardboard, plastic, and the like. The netting material 30 may comprise a plastic film, a mesh, combinations of plastic film and mesh, and the like. In one exemplary embodiment, the netting material may be a breathable material, a vapor barrier, a vapor retarder, and/or an air barrier material.

[0361] Referring first to FIG. 10A, support members 420c, 420d, and 420e and sheathing panel 424 are illustrated. In the illustrated embodiment, support members 420c, 420d, 420e and sheathing panel 424 are the same as, or similar to, support members 20c, 20d, 20e and sheathing panel 24 shown in FIG. 6 and described above. However, in other embodiments, support members 420c, 420d, 420e and sheathing panel 424 can be different from support members 20c, 20d, 20e and sheathing panel 24. Support member 420c has a major face 442b, support member 420d has a major face 446b.

[0362] Referring again to FIG. 10B, interconnecting portions 430a, 430b and 430c are illustrated. Part of interconnection portion 430a is positioned adjacent to the major face 442b of support member 420c and fastened to the support member 420c with one or more fasteners 467a. However, as noted above, the netting, such as the interconnecting portion 430a can be connected to an portion of the support member 420c and/or to the roof sheathing 24. In a similar manner, interconnection portions 430b, 430c are fastened to the support members 420d, 430e respectively.

[0363] Interconnecting portion 430a has an optional first tab 431a spaced apart from an optional second tab 433a. Similarly, interconnecting portions 430b, 430c may have optional first tabs 431b, 431c spaced apart from optional second tabs 433b, 433c. As will be discussed in more detail below, the optional first tabs 431a-431c are configured for attachment to the second tabs 433a-433c, thereby forming box-shaped insulation cavities. In one exemplary embodiment, the second tabs 433a-433c are omitted and the first tabs 431a-431c are connected to ends 1000 of the interconnecting portions 430a-430c.

[0364] Referring now to FIG. 10B, after the first interconnecting portion 430a has been fastened to the support member 420c, the first interconnecting portions 430a is bent or folded at a point below the first tab 431a and a span segment 436a is rotated in a counterclockwise direction such that second tab 433a aligns with the first tab 431b of the second interconnecting portion 430b. The second tab 433a and the first tab 431b are attached together with any desired fastener (not shown). In a similar manner, after the second interconnecting portion 430b is fastened to the support member 420d, the second interconnecting portion 430b is bent or folded at a point below the first tab 431b and a span segment 436b is rotated in a counterclockwise direction such that second tab 433b aligns with the first tab 431c of the third interconnecting portion 430c. The second tab 433b and the first tab 431c are attached together with any desired fastener (not shown). As noted above, the second tabs 433a-433c can be omitted and the first tabs 431a-431c can be connected to ends 1000 of the interconnecting portions 430a-430c.

[0365] Referring again to FIG. 10B, when made from a rigid material, interconnecting portion 430a is bent such that a side panel segment 434a and the span segment 436a form an approximate right angle with each other. Also, the span segment 436a forms an approximate right angle with the side panel segment 434b of the second right member 430b. As shown in FIG. 10B, the approximate right angles formed between the side panels segments 434a, 434b with the span segment 436a defines a box-shaped insulation cavity 450a. In a repetitive manner, the interconnecting portions 430b, 430c are bent or folded such that first tabs 431b, 431c are connected to corresponding second tabs or ends 1000.

[0366] In one exemplary embodiment the interconnecting portions shown in FIGS. 10A and 10B, are formed from a rigid material structural cardboard material. The rigid material, such as structural cardboard material is configured to retain the box-like cross-sectional shape of the insulation cavity after the loosefill insulation material is distributed into the formed insulation cavities. In other embodiments, the interconnecting portions can be formed from other materials, such as the non-limiting example of reinforced fiberglass or polymeric-based materials sufficient to form a box-shaped insulation cavity. In still other embodiments, the interconnecting portions 430a-430c can be formed from flexible materials, such as for example, the netting 30 illustrated in FIG. 2A and described above. In this embodiment, the tabs of the flexible members 430a-430c can be fastened together in the same, or similar, manner as illustrated in FIG. 5 and described above. In some exemplary embodiments, the interconnecting portions are made from more than one different material. For example, the span segments 436 may be made from a flexible material and the side panel segments 434 may be made from a rigid material. As another example, the span segments 436 may be made from an air barrier material, a vapor barrier material, and/or a vapor retarder material, while the side panel segments **434** are made from a breathable material, an open netting, or a mesh.

[0367] Referring again to FIG. 10B, insulation cavities 450a, 450b have a depth D400. The depth D400 is defined as the total of the depth D402 of the support members 420c-420e and the widths W9 of the material that extends below the support members. The widths W9 are adjustable such as to result in different depths D400 of the insulation cavities

[0368] As further shown in FIG. 10B, a first insulation pocket 452a is formed as a portion of insulation cavity 450a and located under support member 420b. Similarly, other insulation pockets are formed as portions of the insulation cavities and are located under the support members. Distributing loosefill insulation material (not shown) into the insulation cavities results in loosefill insulation material filling the insulation pockets. As the filled insulation pockets are located below the support members, the filled insulation pockets are configured to insulate the support members.

[0369] Referring again to FIGS. 10A and 10B, the boxed netting insulation system provides the same advantages as previously discussed, namely, a uniform thickness of the loosefill insulation material, the depth of the insulation cavities can be adjusted to provide different depths of the loosefill insulation material and insulation pockets positioned below the support members are filled with loosefill insulation material.

[0370] Referring now to FIGS. 11A and 11B, another method of forming boxed insulation cavities is illustrated. Generally, this method entails use of T-shaped members and hook fasteners to form box-shaped insulation cavities. Referring first to FIG. 11A, support members 520c, 520d, and 520e and sheathing panel 524 are illustrated. In the illustrated embodiment, support members 520c, 520d, 520e and sheathing panel 524 are the same as, or similar to, support members 20c, 20d, 20e and sheathing panel 24 shown in FIG. 6 and described above. However, in other embodiments, support members 520c, 520d, 520e and sheathing panel **524** can be different from support members 20c, 20d, 20e and sheathing panel 24. Support member 520chas a major face 542b, support member 520d has a major face 544b and support member 520e has a major face 546b. [0371] Referring again to FIG. 11A, rigid members 530a, 530b and 530c are illustrated. A portion of rigid member 530a is positioned adjacent to the major face 542b of support member 520c and fastened to the support member 520c with one or more fasteners 567a. In a similar manner, portions of rigid member 530b and rigid member 530c are fastened to the support members 520d, 530e respectively.

[0372] Rigid member 530a has a segment 531a positioned at an end of the rigid member 530a. As shown in FIG. 11A, the rigid member 530a and the segment 531a have a cross-sectional shape of an inverted "T". As shown in FIG. 11B, the inverted T cross-sectional shape of the rigid member 530a, coupled with the netting 542a combine to form a boxed insulation cavity. While the embodiment shown in FIG. 11A illustrates the inverted "T" cross-sectional shape of the rigid member 530a, in other embodiments, the rigid member can incorporate other geometric cross-sectional shapes, such as for example, a simple "L" cross-sectional shape sufficient to combine with the netting 542a to form a boxed insulation cavity.

[0373] The segment 531a includes a plurality of "hook" fasteners 537a positioned on a major face 541a. It should be apparent that "loop" fasteners could be on the face 541a, instead of the hook fasteners. The netting 542a may include corresponding loop fasteners, hook fasteners, or be made from a material that attaches to hook fasteners. Some hook and loop fastening systems are referred to as velcro. As will be discussed in more detail below, the hook or loop fasteners 537a are configured for attachment to a netting (not shown), thereby forming box-shaped insulation cavities. In a similar manner, rigid members 530b, 530c have segments 531b, 531c positioned at the ends of the rigid members 530b, 530c. The segments 531b, 531c include a plurality of "hook" or loop fasteners 537b, 537c positioned on major faces 541b, 541c.

[0374] Referring now to FIG. 11B, after the rigid members 530a-530c have been fastened to the support members 520c-520e, a first netting 542a is positioned to span the segments 531a, 531b and engage the hook or loop fasteners 537a, 537b, such that a tension is formed in the netting 542a. In a similar manner, subsequent nettings are positioned to span other segments and engage hook or loop fasteners such that a tension is formed in each of the nettings. The tension imparted on the nettings results in the rigid members and the nettings forming insulation cavities 550a, 550b having box-like cross-sectional shapes that are substantially retained after loosefill insulation is blown into insulation cavities 550a, 550b.

[0375] In the illustrated embodiment, the nettings 542a, 542b constitute the "loop" portion of the hook and loop fastening to the rigid members 530a-530c. In certain embodiments, the material forming the nettings 542a, 542b can having naturally occurring loops sufficient to provide the loop function. In other embodiments, the material forming the nettings 542a, 542b can be roughened to form loops sufficient to provide the loop function. In still other embodiments, additional materials can be added to the nettings 542a, 542b sufficient to provide the loop or hook function. One non-limiting example of an additional material is a strip of material having loops or hooks that is fastened to the nettings 542a, 542b.

[0376] In the embodiment shown in FIGS. 11A and 11B, the rigid members are formed from a structural cardboard material. The structural cardboard material is configured to retain the box-like cross-sectional shape of the insulation cavity after the loosefill insulation material is distributed into the formed insulation cavities. In other embodiments, the rigid membranes can be formed from other materials, such as the non-limiting example of reinforced fiberglass or polymeric-based materials sufficient to form a box-shaped insulation cavity.

[0377] Referring again to FIG. 11B, insulation cavities 550a, 550b each have a depth D500. The depth D500 is defined as the total of the depth D502 of the support members 520c-520e and the width W10 of the rigid members that extend below the support members. The width W10 is adjustable such as to result in different depths D500 of the insulation cavities.

[0378] Referring again to FIG. 11B, a first insulation pocket 552a is formed as a portion of insulation cavity 550a and located under support member 520d. Similarly, other insulation pockets are formed as portions of the insulation cavities and located under the support members. Distributing loosefill insulation material (not shown) into the insulation

lation cavities results in loosefill insulation material filling the insulation pockets. As the filled insulation pockets are positioned below the support members, the filled insulation pockets are configured to insulate the support members.

[0379] Referring again to FIGS. 11A and 11B, the boxed netting insulation system provides the same advantages as previously discussed, namely, a uniform thickness of the loosefill insulation material, the depth of the insulation cavities can be adjusted to provide different depths of the loosefill insulation material and insulation pockets located below the support members are filled with loosefill insulation material, thereby insulating the truss cords.

[0380] Referring now to FIGS. 11C-11H, another method of forming boxed insulation cavities is illustrated. Generally, this method entails use of L-shaped members 1130 with pre-installed insulation support material 30 and optional hook fasteners to form box-shaped insulation cavities 50. Support members 20 and sheathing panel 24 may be the same as, or similar to, support members 20 and sheathing panel 24 shown and described above elsewhere in the present application. However, the support members 20 and sheathing panels 524 can take a wide variety of different forms.

[0381] Referring to FIG. 11E, rigid members 1130 have a portion positioned adjacent to a support member 20 and fastened to the support member 20 with one or more fasteners 67. Each rigid member 1130 has a segment 1131 positioned at an end of the rigid member 1130. As shown in FIG. 11E, the rigid member 1130 and the segment 1131 have a cross-sectional shape of an "L". As shown in FIG. 11E, the "L" cross-sectional shape of the rigid member 1130, coupled with the pre-installed insulation support material combine to form a boxed insulation cavity. While the embodiment shown in FIG. 11E illustrates the "L" cross-sectional shape of the rigid member 1130, in other embodiments, the rigid member can incorporate other geometric cross-sectional shapes, such as for example, a simple inverted "T" crosssectional shape sufficient to combine with the pre-installed netting to form a boxed insulation cavity.

[0382] In the example illustrated by FIGS. 11C-11H, the segment 1131 optionally includes a plurality of "hook" fasteners 1137 positioned on a the segment 1131. It should be apparent that "loop" fasteners could be on the segment 1131, instead of the hook fasteners. The pre-installed insulation support material 30 may include corresponding loop fasteners, hook fasteners, or be made from a material that attaches to hook fasteners. Some hook and loop fastening systems are referred to as velcro.

[0383] FIG. 11D illustrates fastening of rigid members 1130 to support members. Referring now to FIGS. 11E and 11F, after the rigid members 1130 have been fastened to the support members 20, the pre-installed insulation support material 30 is pulled as indicated by arrow 1150 to span the segments 1131 and optionally engage the hook or loop fasteners 1137. In another exemplary embodiment, the hook and loop material is omitted and the insulation support material 30 is attached to the segment 1131 by a fastener, such as a staple. The pre-installed insulation support material 30 may take a wide variety of different forms. In the example illustrated by FIGS. 11C-11F, the pre-installed insulation support material 30 is folded into an accordion configuration. In another exemplary embodiment, the preinstalled insulation support material 30 is in a rolled configuration prior to installation.

[0384] In a similar manner, subsequent nettings are pulled to span other segments and engage hook or loop fasteners or otherwise be attached A tension may optionally be formed in each of the insulation support materials 30 that results in the rigid members 1130 forming insulation cavities 50 having box-like cross-sectional shapes that are substantially retained after loosefill insulation is blown into insulation cavities 50.

[0385] In the illustrated embodiment, the insulation support material 30 includes a "hook" portion or a "loop" portion of the hook and loop fastening to the rigid members 1130. In certain embodiments, the material forming the insulation support material 30 can having naturally occurring loops sufficient to provide the loop function. In other embodiments, the material forming the pre-installed insulation support material can be roughened to form loops sufficient to provide the loop function. In still other embodiments, additional materials can be added to the pre-installed insulation support material sufficient to provide the loop or hook function. One non-limiting example of an additional material is a strip of material having loops or hooks that is fastened to the pre-installed insulation support material.

[0386] In the embodiment shown in FIGS. 11D and 11E, the rigid members 1130 are formed from a structural cardboard material. The structural cardboard material is configured to retain the box-like cross-sectional shape of the insulation cavity after the loosefill insulation material is distributed into the formed insulation cavities. In other embodiments, the rigid membranes can be formed from other materials, such as the non-limiting example of reinforced fiberglass or polymeric-based materials sufficient to form a box-shaped insulation cavity.

[0387] Referring to FIG. 1G, in one exemplary embodiment the rigid members 1130 are connected together by optional webs 1180. The illustrated webs 1180 extend the height of the rigid members 1130. The webs 1180 hold the rigid members 1130 together during shipping and installation, and provide an end wall to the insulation cavity 50. In one exemplary embodiment, webs 1180 are provided on both ends of the rigid members to provide walls on both ends of the insulation cavities 1150.

[0388] Referring to FIG. 11H, in one exemplary embodiment, the rigid members 1130 are formed from a material that is easily cutable, for example cutable by a utility knife. This cutability allows slots or openings to be cut in the rigid members 1130 to allow the rigid members 1130 to be installed over cross-members 23 of trusses. For example, the rigid members 1130 may be made from cardboard material that is easily cutable with a utility knife razor blade. In another exemplary embodiment, the rigid members 130 has pre-cut slots or openings that allow the rigid members 1130 to be installed over cross-members 23 of trusses.

[0389] Referring again to FIG. 11E, insulation cavities 50 each have a depth D500. The depth D500 is defined as the total of the depth of the support members 1120 and the width of the rigid members 1130 that extend below the support members. The width of the rigid members 1130 that extends below the support member is adjustable such as to result in different depths D500 of the insulation cavities.

[0390] Referring again to FIG. 11E, an insulation pocket 52 is formed as a portion of insulation cavity 50 and located under support member 20. Similarly, other insulation pockets are formed as portions of the insulation cavities and located under the support members. Distributing loosefill

insulation material (not shown) into the insulation cavities results in loosefill insulation material filling the insulation pockets. As the filled insulation pockets are positioned below the support members, the filled insulation pockets are configured to insulate the support members.

[0391] Referring again to FIGS. 11C-11F, the boxed netting insulation system provides the same advantages as previously discussed, namely, a uniform thickness of the loosefill insulation material, the depth of the insulation cavities can be adjusted to provide different depths of the loosefill insulation material and insulation pockets located below the support members are filled with loosefill insulation material, thereby insulating the support members, such as truss cords.

[0392] Referring to FIGS. 12A and 12B, another system is illustrated. Generally, this system entails use of shaped insulative containers to form box-shaped insulation cavities. In the example illustrated by FIGS. 12A and 12B, the system optionally provides a vent space 1082 1200. The vent space 1082 may extend from an eve 1202 of the roof (See FIG. 1) to a ridge 1204 of the roof to cool the sheathing 624 and/or shingles disposed above the sheathing. The vent space 1082 also provides a path for moisture beneath the sheathing to escape.

[0393] Referring first to FIG. 12A, support members 620a and 620b and sheathing panel 624 are illustrated. In the illustrated embodiment, support members 620a, 620b and sheathing panel 624 are the same as, or similar to, support members 20c, 20d and sheathing panel 24 shown in FIG. 6 and described above. However, in other embodiments, support members 620a, 620b and sheathing panel 624 can be different from support members 20c, 20d, 20e and sheathing panel 24. Support member 620a has a major face 642b and support member 620b has a major face 644a.

[0394] Referring again to FIG. 12A, in a first assembly step cleat 622a is fastened to the major face 642b of support member 620a by fasteners, an adhesive, and/or a sealant (not shown). The cleat 622a can be a continuous member that extends substantially the length of the support member 620a or the cleat 622b can constitute discontinuous segments. In a similar manner, cleat 622b is fastened to the major face 644a of support member 620b by fasteners (not shown). As will be explained below, the cleats 622a, 622b are configured as fastening supports for a panel 680. In the illustrated embodiment, the cleats 622a, 622b are wooden framing members having dimensions of 1.0 inch by 1.0 inch. However, in other embodiments the cleats 622a, 622b can be other structures and can be formed from other materials sufficient to provide fastening supports for the panel 680.

[0395] Referring again to FIG. 12A, the panel 680 is fastened to the cleats 622a, 622b by fasteners (not shown). In the illustrated embodiment, the panel 680 is formed from rigid foam insulation. The rigid foam insulation is configured to complement the insulative characteristics of the insulative containers. However, in other embodiments, the panel 680 can be any desired material, such as for example, plywood. The panel 680 has a depth DP such that in an installed position, a bottom face of the panel 680 is substantially flush with bottom faces of support members 620a, 620b. However, in other embodiments, the bottom face of the panel extends beyond the bottom faces of the support members 620a, 620b or is recessed from the bottom faces of the support members 620a, 620b. In one exemplary embodi-

ment, the panel 680 substantially fills the cavity, such that there is no vent space 1082 or substantially no vent space 1082.

[0396] Referring again to FIG. 12A, an insulative container 682 (hereafter "container") is illustrated. The container 682 is configured for attachment to the support members 620a, 620b and further configured to form a substantially box-shaped insulation cavity. The box-shaped insulative container is subsequently filled with loosefill insulation material.

[0397] Referring again to FIG. 12A, the container 682 includes an outer skin 684, a plurality of reinforcing ties 686a-686e and a reinforced bottom 688. In the illustrated embodiment, the outer skin 684 is the same as, or similar to, the netting 30 illustrated in FIG. 5 and described above. However, in other embodiments, the outer skin 684 can be different from the netting 30.

[0398] The reinforcing ties 686a-686e are configured to restrain expansion of the outer skin 684 during filling of the container 682 with loosefill insulation material, such that a filled container retains a box-like shape having a substantially planar lower surface. In the illustrated embodiment, the reinforcing ties are formed from reinforced fiberglass materials. In other embodiments, the reinforcing ties can be formed from other desired materials, such as for example, polymeric materials, sufficient to restrain expansion of the outer skin 684 during filling of the container 682 with loosefill insulation material, such that a filled container forms a box-like shape having a substantially planar lower surface.

[0399] Referring again to FIG. 12A, the container 682 includes a flange 690. Portions of the flange 690 extend beyond the outer skin 684 of the container 682. During assembly of the container 682 to the truss cords 620a, 620b, fasteners (not shown) are inserted through the portions of the flange 690 extending beyond the outer skin 684 of the container and into the support members 620a, 620b.

[0400] Referring now to FIG. 12B, a container 682 filled with loosefill insulation material is shown fastened to the support members 620a, 620b and adjacent to the panel 680. The container 682 forms a box-like cross-sectional shape with a substantially planar bottom surface. After the container 682 has been filled with loosefill insulation material, the reinforcing ties 686a-686e form a tension in the outer skin 684. The tension imparted on the outer skin 684 by the reinforcing ties 686a-686e results in the container 682 retaining a box-like cross-sectional shape.

[0401] Referring again to FIG. 12B, the insulation cavity 650 has an adjustable depth D600, such as to provide different insulative values. As further shown in FIG. 12B, a first insulation space 652a is located under support member 620a and a second insulation space 652b is located under support member 620b. As shown in FIG. 12B, the containers 682 filled with loosefill insulation material, expand in a horizontal direction such as to fill insulation spaces 652a, 652b. When additional containers 682 are installed, the combination of expanded adjacent containers act to fill the insulation spaces 652a, 652b located under the support members.

[0402] Referring again to FIGS. 12A-12B, the boxed netting insulation system provides the same advantages as previously discussed, namely, a uniform thickness of the loosefill insulation material, the depth of the insulation cavities can be adjusted to provide different depths of the

loosefill insulation material and insulation spaces located below the support members are filled with loosefill insulation material, thereby insulating the support members.

[0403] FIG. 12C illustrates another insulation system. In the example illustrated by FIG. 12C, the system optionally provides a vent space 1082. The vent space 1082 may extend from an eve 1006 of the roof (See FIG. 1) to a ridge 1010 of the roof to cool the sheathing 624 and/or shingles disposed above the sheathing. The vent space 1082 also provides a path for moisture beneath the sheathing to escape. [0404] Referring first to FIG. 12C, support members 20 and sheathing panel 24 are illustrated. In a first assembly step, cleats 622 are fastened to major faces 642 of support members 20 by fasteners, an adhesive, and/or a sealant (not shown). The cleat 622 can be a continuous member that extends substantially the length of the support member 20 or the cleat 622 can constitute discontinuous segments. The cleats 622 are configured as fastening supports for a panel 680. In the illustrated embodiment, the cleats 622 are wooden framing members having dimensions of 1.0 inch by 1.0 inch. However, in other embodiments the cleats 622 can be other structures and can be formed from other materials sufficient to provide fastening supports for the panel 680. [0405] Referring again to FIG. 12C, the panel 680 is fastened to the cleats 622 by fasteners (not shown). In the illustrated embodiment, the panel 680 is formed from rigid foam insulation. The rigid foam insulation is configured to complement the insulative characteristics of the insulation 58. However, in other embodiments, the panel 680 can be any desired material, such as for example, plywood. The panel 680 has a depth DP such that in an installed position, a bottom face of the panel 680 is substantially flush with bottom faces of support members 620. In one exemplary embodiment, the panel 680 substantially fills the cavity, such

[0406] The flush alignment of the panel 680 with the support members 20 provides a flush surface 1262 for mounting of an insulation material. In the example illustrated by FIG. 12C, an insulation material 1260, such as a batt of fiberglass insulation, a foam insulation board, and the like, can be mounted with the length L extending across three or more support members. The insulation material 1260 can be mounted to the flush surface 1262 in a wide variety of different ways. In the example illustrated by FIG. 12C, fasteners 1264 extend through the insulation material 1260 and into the panel 680 and/or the support members 20. The fasteners 1264 can be selected based on whether the insulation material 1260 is secured to the support member 20 of the panel 680. For example, a nail may be used to secure the insulation material 1260 to the support members 20 while a barbed fastener may be used to secure the insulation material to a panel 680 made from foam.

that there is no vent space 1082 or substantially no vent

[0407] FIG. 12D illustrates another insulation system. In the example illustrated by FIG. 12D, the system optionally provides a vent space 1082. The vent space 1082 may extend from an eve 1202 of the roof (See FIG. 1) to a ridge 1204 of the roof to cool the sheathing 24 and/or shingles disposed above the sheathing. The vent space 1082 also provides a path for moisture beneath the sheathing to escape.

[0408] Referring first to FIG. 12D, support members 20 and sheathing panel 24 are illustrated. In a first assembly step, cleats 622 are fastened to major faces 642 of support members 20 by fasteners, and adhesive, or a sealant (not

shown). The cleat 622 can be a continuous member that extends substantially the length of the support member 20 or the cleat 622 can constitute discontinuous segments. The cleats 622 are configured as fastening supports for a panel 680. In the illustrated embodiment, the cleats 622 are wooden framing members having dimensions of 1.0 inch by 1.0 inch. However, in other embodiments the cleats 622 can be other structures and can be formed from other materials sufficient to provide fastening supports for the panel 680.

[0409] Referring again to FIG. 12D, the panel 680 is fastened to the cleats 622 by fasteners, an adhesive, and/or a sealant (not shown). In the illustrated embodiment, the panel 680 is formed from rigid foam insulation. The rigid foam insulation is configured to complement the insulative characteristics of the insulative containers. However, in other embodiments, the panel 680 can be any desired material, such as for example, plywood. The panel 680 has a depth DP such that in an installed position, a bottom face of the panel 680 is substantially flush with bottom faces of support members 620. In one exemplary embodiment, the panel 680 substantially fills the cavity, such that there is no vent space 1082 or substantially no vent space.

[0410] The flush alignment of the panel 680 with the support members 20 provides a flush surface 1262 for mounting of an insulation support material sheet 1270 with support pins 1272 having the same length. The insulation support sheet can be made from any of the materials described in this patent application. The insulation support material sheet 1270 can be mounted with the length L extending across three or more support members 20. The insulation support sheet 1270 can be mounted to the flush surface 1262 in a wide variety of different ways. In the example illustrated by FIG. 12D, support pins 1272 extend through the insulation support sheet and into the panel 680 and/or the support members 20. The pins 1272 can be configured based on whether the insulation support sheet 1270 is secured to the support member 20 or the panel 680. For example, a sharply pointed support pin 1272 may be used to secure the sheet 1270 to the support members 20 while a barbed fastener may be used to secure the sheet 1270 to a panel 680 made from foam.

[0411] Space 1290 defined by the insulation support sheet 1270, the sheathing 24, and the support members 20 is filled with loosefill insulation material 58. The insulation cavity 650 has an adjustable depth D600, by adjusting the length of the pins 1272, such as to provide different insulative values. [0412] Any of the insulation systems by the present application can be used in a building structure 10 having a roof deck with a vent space 1082 between sheathing 24 and insulation 58. Referring to FIGS. 1D, and 13A-13C, the vent space 1082 can be formed in a wide variety of different ways. In the exemplary embodiment illustrated by FIGS. 13A and 13B, the vent space 1082 is provided by attaching a vent member or material 1300 from below the roof sheathing 24. In the exemplary embodiment illustrated by FIG. 13C, the vent space 1082 is provided by attaching a vent member or material 1300 from above the roof sheathing

[0413] The vent member or material 1300 can take a wide variety of different forms. The vent member or material 1300 can be made from any of the materials disclosed by the present application. In the example illustrated by FIGS. 13A and 13B, the vent member 1300 or material is rigid or substantially rigid. In the exemplary embodiment illustrated

by FIGS. 13A and 13B, the vent member 1300 is formed in place between a pair of support members 20. Referring to FIG. 13A, a first end 1310 is attached to a support member 20. Referring to FIG. 13B, the vent member or material 1300 is bent or folded to fit between two support members 20 and a second end 1312 is attached to a support member 20 to form the vent space 1082. In another exemplary embodiment, the vent member 1300 is preformed and sized to fit between pairs of support members. In an exemplary embodiment, the vent member or material is configured to provide an air barrier between the vent space 1082 and an interior 1330 of the building structure 10. In another exemplary embodiment, a vent member or structure 1300 that is made from a flexible material is installed from below the roof sheathing.

[0414] In the example illustrated by FIG. 13C, the vent material 1300 is flexible. In the exemplary embodiment illustrated by FIG. 13C, the vent material 1300 is placed over a pair of support members 20 prior to the sheathing 24. The attachment of the sheathing 24 attaches the vent material 1300 to the support members 20. In an exemplary embodiment, the vent material 1300 is configured to provide an air barrier between the vent space 1082 and an interior 1330 of the building structure 10. In another exemplary embodiment, a vent member or structure 1300 that is made from a rigid material is installed from above the roof sheathing.

[0415] FIGS. 14A-14E illustrate exemplary embodiments of building structures 10 having a roof deck with a vent space 1082 between sheathing 24 and insulation 58. In the example illustrated by FIG. 14A, the vent material 1300 and/or the insulation support material 30 is installed from above the support members 20. In the example illustrated by FIG. 14A, the vent material 1300 and the insulation support material are flexible, but may be rigid or have rigid portions. In the exemplary embodiment illustrated by FIG. 14A, the vent material 1300 and the insulation support material 30 are placed over a pair of support members 20 prior to the sheathing 24 attaches the vent material 1300 and insulation support material 30 to the support members 20.

[0416] In the example illustrated by FIG. 14B, a flexible insulation material 1450, such as a fiberglass insulation bat or blown-in insulation, is provided beneath the vent material 1300. Blown-in insulation can be supported by any of the insulation support materials and configurations disclosed by the present application. The illustrated flexible insulation material is provided between pairs of support members 20 and below the support members.

[0417] In the example illustrated by FIG. 14C, a rigid insulation material 1460, such as a foam board, is provided beneath the vent material 1300. The illustrated rigid insulation material is provided between pairs of support members 20 and below the support members.

[0418] In the example illustrated by FIG. 14D, a flexible insulation material 1450, such as a fiberglass insulation bat or blown-in insulation, and a rigid insulation material 1460, such as a foam board are provided beneath the vent material 1300. The flexible insulation material 1450 is supported by the rigid insulation material 1460. The illustrated flexible insulation material is provided between pairs of support members 20 and the rigid insulation material is provided below the support members.

[0419] In the example illustrated by FIG. 14E, a rigid insulation material 1460 and a flexible insulation material 1450, such as a fiberglass insulation batt or blown-in insulation, are provided beneath the vent material 1300. The illustrated rigid insulation material is provided between pairs of support members 20. The flexible insulation material 1450 is provided below the rigid insulation material 1460 and support members 20. Blown-in insulation can be supported by any of the insulation support materials and configurations disclosed by the present application.

[0420] FIG. 14F illustrates an exemplary embodiment of a building structures 10 having a roof deck with vent spaces 1082 between an inner sheathing layer 1324 and an outer sheathing layer 1424 and insulation 58. The vent spaces 1082 can be provided in a wide variety of different ways. For example, the vent space 1482 can be formed by a panel 1490 having grooves 1492. The panel 1490 may be a foam insulation panel. The vent spaces 1082 may also be formed using spacers or framing members. In the example illustrated by FIG. 14F, a flexible insulation material 1450, such as a fiberglass insulation batt or blown-in insulation, and/or a rigid insulation material 1460, such as a foam board, are provided beneath the inner sheathing layer 1324. Blown-in insulation can be supported by any of the insulation support materials and configurations disclosed by the present application. The flexible and/or rigid insulation material is provided between pairs of support members 20 and below the support members.

[0421] FIGS. 15A-15C illustrate another exemplary embodiment similar to the insulation support system embodiments disclosed by FIGS. 3, 3A, 4, 4A, 5-5E, 6, 6A, 10A and 10B. In the embodiment illustrated by FIGS. 15A-15C, one or more of the tabs 38 (See FIG. 15B) are formed during installation of the insulation support material 30. The netting can otherwise have any of the insulation support material 30 configurations illustrated by FIGS. 3, 3A, 4, 4A, 5-5E, 6, 6A, 10A and/or 10B.

[0422] The insulation support material 30 is configured for attachment to the support members 20, sheathing 24, or other structure and further configured to contain the loosefill insulation material Referring to FIG. 15A, the insulation support material 30 does not initially have any tabs. Referring to FIG. 15B, the insulation support material 30 may bunched or gathered as indicated by arrows 1502 to form one or more tabs 38. Referring to FIG. 15C a tab 38 is connected to another tab 38 or another portion of the insulation support material to form an insulation cavity 50. The insulation cavities can have any of the configurations disclosed by the present application or other configurations. [0423] FIGS. 16A-16D, illustrate another exemplary embodiment of a building structure 10 with an insulation system having a the vent space 1082. In the exemplary embodiment illustrated by FIGS. 16A-16D, the vent space 1082 is provided by attaching a vent member or material 1300 from below the roof sheathing 24.

[0424] The vent member or material 1300 can take a wide variety of different forms. The vent member or material 1300 can be made from any of the materials disclosed by the present application. In the example illustrated by FIGS. 16A-16D, the vent member 1300 or material is rigid or substantially rigid. In the exemplary embodiment illustrated by FIGS. 16A-16D, the vent member 1300 is formed in place between a pair of support members 20. Referring to FIG. 16A, a first end 1310 of the vent member and a first end

of insulation support material 30 is attached to a support member 20. Referring to FIG. 16B, the vent member or material 1300 is bent or folded along optional pre-formed creases 1620 to fit between two support member 20 and a second end 1312 is attached to a support member 20 to form the vent space 1082. In an exemplary embodiment, the vent member or material is configured to provide an air barrier between the vent space 1082 and an interior 1330 of the building structure 10. In another exemplary embodiment, a vent member or structure 1300 that is made from a flexible material is installed from below the roof sheathing.

[0425] In the example illustrated by FIGS. 16A-16D, the insulation system uses interconnecting, substantially rigid members and/or flexible material such as netting. The interconnecting material may take a wide variety of different forms and may take a wide variety of different configurations. For example, rigid interconnecting material may comprise cardboard, plastic, and the like. The flexible insulation support material 30 may comprise a plastic film, a mesh, combinations of plastic film and mesh, and the like. In one exemplary embodiment, the netting material may be a breathable material, a vapor barrier, a vapor retarder, and/or an air barrier material.

[0426] Referring to FIG. 16C, interconnecting portions 1630 are illustrated. Part of an interconnection portion 1630 is positioned adjacent to the major face of a support member 20 and fastened to the support member 20 with one or more fasteners 67 along with the vent member 1300. However, as noted above, the netting, such as the interconnecting portion 30 can be connected to any portion of the support member 20 and/or to the roof sheathing 24.

[0427] Referring to FIG. 16C, interconnecting portion 1630 can be folded on top of and connected to and adjacent interconnecting portion 1630, thereby forming a box-shaped insulation cavities 50. When made from a rigid material, interconnecting portion 1630 is bent such that a side panel segment 1634 and the span segment 1636 form an approximate right angle with each other. The approximate right angles formed between the side panels segments 1634 with the span segment 1636 defines a box-shaped insulation cavity 50.

[0428] In one exemplary embodiment the interconnecting portions are formed from a rigid material structural cardboard material. The rigid material, such as structural cardboard material is configured to retain the box-like crosssectional shape of the insulation cavity after the loosefill insulation material is distributed into the formed insulation cavities. In other embodiments, the interconnecting portions can be formed from other materials, such as the non-limiting example of reinforced fiberglass or polymeric-based materials sufficient to form a box-shaped insulation cavity. In still other embodiments, the interconnecting portions 1630 can be formed from flexible materials, such as for example, the netting 30 illustrated in FIG. 2A and described above. In some exemplary embodiments, the interconnecting portions are made from more than one different material. For example, the span segments 1636 may be made from a flexible material and the side panel segments 1634 may be made from a rigid material. As another example, the span segments 1636 may be made from an air barrier material, a vapor barrier material, and/or a vapor retarder material, while the side panel segments 1634 are made from a breathable material, an open netting, or a mesh.

[0429] Referring again to FIG. 16D, insulation cavities 50 have a depth D1600. The depth D1600 is defined as the total of the depth of the support members 20 and the widths of the side panel segments that extends below the support members, minus the depth D1602 of the vent space 1082. In one exemplary embodiment, the interconnecting portions 1630 include creases 1660 that allow the depth D1600 to be adjusted using the same interconnecting portions 1630. Thereby, the R value can be adjusted using the same interconnecting portions 1630.

[0430] As further shown in FIG. 16C, an insulation pockets 52 are formed as a portion of insulation cavity 50 and located under a support member 20. Distributing loosefill insulation material (not shown) into the insulation cavities results in loosefill insulation material filling the insulation pockets 52. As the filled insulation pockets are located below the support members, the filled insulation pockets are configured to insulate the support members.

[0431] FIGS. 17A-17C illustrate another exemplary embodiment of a building structure 10 having an insulation support system 1700. In the exemplary embodiment illustrated by FIGS. 17A-17C, the insulation support material 30 may be a sheet of material. In the illustrated embodiment, roof sheathing support members 20 are supported by support members 23. For example, when the support members 20 are truss chords, the support members 23 are webs that support the truss chords. In the exemplary embodiment illustrated by FIGS. 17A-17C, the insulation support material 30 is attached to and supported by the support members 23 below the support members 20.

[0432] Referring to FIG. 17C, the insulation support material 30 can be attached to and supported by the support members 23 in a wide variety of different ways. For example, discrete brackets 1710 can be attached to the support members 23 and the insulation support material 30 can be attached to the discrete brackets. A continuous bracket 1720 that extends the length L1 of the insulation cavity can be attached to the support members 23 and the insulation support material 30 can be attached to the continuous bracket 1720. A chord, ribbon, rope, or tape 1730 that extends the length L1 of the insulation cavity can be attached to the support members 23 and the insulation support material 30 can be attached to the chord, ribbon, rope, or tape 1730. The insulation support material 30 can be attached to the chord, ribbon, rope, or tape 1730 in a wide variety of different ways. In one exemplary embodiment, the chord, ribbon, rope, or tape 1730 could include hooks that connect with loops on the insulation support material 30. The insulation support material 30 can be connected to the brackets 1710, bracket 1720, or chord, ribbon, rope, or tape 1730 with staples or other desired fasteners, such as the non-limiting examples of double sided tape, adhesives, clips or clamps.

[0433] Referring to FIG. 17C, a length of insulation support material is positioned along the length L1 of the adjacent support members 20 and attached to brackets 1710, a bracket 1720, or chord, ribbon, rope, or tape 1730. An insulation cavity 50 extends the length L1 (See FIG. 17C) of the support members 20 and has a depth D1 (See FIG. 17A). Referring to FIG. 17A, insulation pockets 52 are formed as a portion of insulation cavity under support members 20. The insulation support system 1700 illustrated by FIGS.

17A-17C can be filled with loosefill insulation in the same manner as described with respect to the embodiment of FIG. 6 above.

[0434] The insulation system illustrated by FIGS. 17A-17C advantageously provides many benefits, although not all benefits may be realized in all circumstances. First, as shown in FIG. 17A, the insulation cavity 50 provides a uniform thickness of the loosefill insulation material. The term "uniform thickness", as used herein, is defined to mean having a substantially consistent depth. Second, the depth D1 of the insulation cavities can be adjusted to provide different depths of the loosefill insulation material. As the thermal resistance (R-Value) of the loosefill insulation material within the insulation cavities is, in part, a function of the depth of the loosefill insulation material, the thermal resistance (R-Value) of the loosefill insulation material can be adjusted by differing depth D1 by adjusting the placement of the brackets 1710, bracket 1720, or chord, ribbon, rope, or tape 1730 on the support members 23. A third advantage is that distributing the loosefill insulation material 58 into the insulation cavity 50 results in loosefill insulation material filling the insulation pockets 52. As the filled insulation pockets 52 are positioned below the support members 20, the filled insulation pockets 52 are configured to insulate the support members 20.

[0435] FIG. 17D illustrates another insulation system. In the example illustrated by FIG. 17D, the system optionally provides a vent space 1082. The vent space 1082 may extend from an eve 1202 of the roof (See FIG. 1) to a ridge 1204 of the roof to cool the sheathing 24 and/or shingles disposed above the sheathing. The vent space 1082 also provides a path for moisture beneath the sheathing to escape.

[0436] Support members 20, support members 23 that support members 20, and sheathing panel 24 are illustrated. In a first assembly step, panels 1780 are fastened between pairs of support members 20 to form the vent space 1082. In the illustrated embodiment, the panel 1780 is formed from rigid foam insulation. The rigid foam insulation is configured to complement the insulative characteristics of the insulation system. However, in other embodiments, the panel 1780 can be any desired material, such as for example, plywood. The panel 1780 has a depth DP such that in an installed position, a bottom face of the panel 1780 is substantially flush with bottom faces of support members 20. In one exemplary embodiment, the panel 1780 substantially fills the cavity, such that there is no vent space 1082 or substantially no vent space.

[0437] The flush alignment of the panel 1780 with the support members 20 provides a flush surface 1762 for mounting of an insulation material. In one exemplary embodiment, the insulation material 1760 is mounted with the length of the insulation material extending along the length L1 of the support members 20. In the example illustrated by FIG. 17D, an insulation material 1760, such as a bat of fiberglass insulation, a foam insulation board, and the like, can be mounted with the length L extending across three or more support members. The insulation material 1760 can be mounted to the flush surface 1762 in a wide variety of different ways. In the example illustrated by FIG. 17D, brackets 1710, bracket 1720, or chord, ribbon, rope, or tape 1730 on the support members 23 support the insulation material 1760 (See FIG. 17C). The brackets 1710, bracket 1720, or chord, ribbon, rope, or tape 1730 on the support members 23 optionally hold or sandwich the insulation material 1760 against the panel 1780. The brackets 1710, bracket 1720, or chord, ribbon, rope, or tape 1730 on the support members 23 can support the insulation material 1760 without penetrating the insulation material 1760 of a facing of the insulation material, like a nail or staple would. This support system is useful when the insulation material 1760 or a facing on the insulation material provides an air barrier.

[0438] Referring now to FIGS. 18A-18C, another method of forming insulation cavities is illustrated. Generally, this method entails use of a supports 1800 secured to support members 20. Insulation support material 30 is secured to ends 1802, for example by pinching the insulation support material 30 over the ends 1802 and securing the insulation support material 30 to the ends 1802 with a fastener 1804. [0439] The supports 1800 are connected to support members 20. The support members 1800 can be attached to the support members 20 in a wide variety of different ways. For example, fasteners, such as nails, staples, clips, and clamps, and/or adhesives can be used to connect the supports 1800 to the support members 20. Sheathing panels 24 are attached to the support members 20.

[0440] The supports 1800 can be made from a wide variety of different materials and can have a variety of different configurations. In an exemplary embodiment, supports 1800 are rigid or substantially rigid and abut the sheathing panel 24 before being secured to the support members. This abutment accurately and repeatably sets the depth D1800 of the insulation cavity 50. Using different supports 1800 allows the depth of the insulation cavities 50 to be varied in the same building structure 10 or between different building structures. The supports 1800 can be formed from structural cardboard material, fabric or fiberglass scrim, wood, foam, etc. In one exemplary embodiment, the supports 1800 may have a length that corresponds to the length L1 of the support members 20, such that the supports 1800 extend substantially from the eave 1006 of the roof to the ridge 1010 of the roof. In another exemplary embodiment, the supports 1800 may have a length that is much shorter than the length L1 of the support members 20. In this embodiment, discrete, spaced apart supports 1800, such that the supports 1800 are attached to the support members from the eave 1006 of the roof to the ridge 1010 of the roof, with gaps in-between.

[0441] The length (longer dimension) of the insulation support material 30 extends across the supports 1800 as illustrated by FIG. 18B. In another exemplary embodiment, the length of the insulation support material 30 extends in the direction of the length of the support members 20. The support material 30, pairs of spaced apart supports 1800, and sheathing 24 define insulation cavities 50. In the illustrated embodiment, the insulation cavities 50 have boxlike cross-sectional shapes that are substantially retained after loosefill insulation is blown into the insulation cavities. As illustrated by FIGS. 18A and 18B, insulation supports 1800 may not be attached to every support member 20, such that some insulation cavities 50 span multiple support members. As such, the width of the insulation cavities 50 is adjustable.

[0442] Referring now to FIG. 18C, loosefill insulation 150 is distributed within the insulation cavities 50. Insulation pockets 52 are formed as a portion of insulation cavity located under the support members 20. In the embodiment where gaps are formed between discrete, spaced apart supports 1800, distribution of loosefill material 58 into one

cavity 50 causes the loosefill material 58 to pass into another cavity through the gaps. This allows multiple cavities 50 to be filled at once by inserting the loosefill supply hose into a single cavity. Distributing loosefill insulation material 58 into the insulation cavities 50 results in loosefill insulation material filling the insulation pockets 52. As the filled insulation pockets 52 are positioned below the support members 20, the filled insulation pockets 52 are configured to insulate the support members 20.

[0443] FIG. 19 illustrates another exemplary embodiment of an insulation system. Generally, this method entails use of interconnecting insulation support components 1930. In the example illustrated by FIG. 19, the support components 1930 each include a rigid or at least partially rigid side panel 1934 and a flexible insulation support or span portion 1936, such as netting, for example, the netting 30 described in the embodiments illustrated by FIGS. 2A, 2B and 3-6. The interconnecting support components 1930 may take a wide variety of different forms and may take a wide variety of different configurations. For example, the side panel 1934 may comprise cardboard, plastic, foam board and the like. Span portion 1936 may comprise a plastic film, a mesh, combinations of plastic film and mesh, and the like. In one exemplary embodiment, the span portion 1936 material may be a breathable material, a vapor barrier, a vapor retarder, and/or an air barrier material.

[0444] Support members 20 and sheathing panel 24 and interconnecting support components 1930 are illustrated by FIG. 19. Side panel segment 1934 of an interconnecting support component 1930 is positioned adjacent to a support member 20, in abutment with sheathing panel 24, and fastened to the support member 20. The abutment of the side panel segment 1934 with the sheathing panel 24 sets the depth the insulation cavity.

[0445] The span segments 1936 are configured for attachment to the side panel segments 1934, thereby forming insulation cavities. The span segment 1936 of one interconnecting support component 1930 is connected to side panel segment 1934 of another interconnecting support component 1930 with any desired fastener, tape, adhesive, and the like.

[0446] Referring to FIG. 20, in one exemplary embodiment, side panel segments 1934 are continuous and have a length that corresponds to the length L1 of the support members 20, such that the supports side panel segments 1934 extend substantially from the eave 1006 of the roof to the ridge 1010 of the roof Referring to FIG. 21, in another exemplary embodiment, the side panel segments 1934 have a length that is much shorter than the length L1 of the support members 20. In this embodiment, discrete, spaced apart side panel segments 1934 are attached to the span segment 1936 with gaps 1937 in-between. Referring to FIG. 22, in another exemplary embodiment, the side panel segments 1934 have rigid portions 1990 with lengths that are much shorter than the length L1 of the support members 20 and flexible portions 1992 in between the rigid portions 1990. In one exemplary embodiment, the flexible portions do not substantially restrict airflow, so that air that blows the loosefill insulation 58 into the cavity 50 can escape the

[0447] Referring to FIG. 19, insulation pockets 52 are formed as a portion of insulation cavities 50 and located under support members 20. In the embodiment of FIG. 21, where gaps are formed between discrete, spaced apart side

panel segments 1934, distribution of loosefill material 58 into one cavity 50 causes the loosefill material 150 to pass into another cavity through the gaps. This allows multiple cavities 50 to be filled at once by inserting the loosefill supply hose into a single cavity. Distributing loosefill insulation material (not shown) into the insulation cavities results in loosefill insulation material filling the insulation pockets. As the filled insulation pockets are located below the support members, the filled insulation pockets are configured to insulate the support members.

[0448] FIGS. 23A-23D, 24A-24C, and 25-27 illustrate another exemplary embodiment of an insulation system. This method entails use of insulation support components 2330. In the example illustrated by FIGS. 23A-23D, 24A-24C, and 25-27, the support components 2330 each include a pair of rigid or at least partially rigid side members 2334 and a flexible center portion 2336, such as netting, for example, the netting 30 described in the embodiments illustrated by FIGS. 2A, 2B and 3-6. The support components 2330 may take a wide variety of different forms. For example, the side members 2334 may comprise cardboard, plastic, foam board and the like. In the illustrated embodiment, the side members 2334 are "L" shaped in crosssection, but may have any shape. For example, the side members 2334 may be straight. The flexible center portion 2336 may comprise a plastic film, a mesh, combinations of plastic film and mesh, and the like. In one exemplary embodiment, the all or portions of the side members 2334 and/or all or portions of the flexible center portion 2336 may be made from a breathable material, a vapor barrier, a vapor retarder, and/or an air barrier material.

[0449] Support members 20, a sheathing panel 24, and support components 2330 are illustrated by FIGS. 23A-23D, 24A-24C, and 25-27. Referring to FIG. 23A, a side member 2334 of support component 2330 is positioned adjacent to a support member 20, in abuttment with sheathing panel 24, and fastened to the support member 20. Referring to FIGS. 23B and 25, the side member 2334 of support component 2330 is positioned adjacent to a support member 20, in abutment with sheathing panel 24, and fastened to the support member 20. The abutment of the side members 2334 with the sheathing panel 24 sets the depth of the insulation cavity. Referring to FIGS. 23C and 23D, the side members 2334 of other support components 2330 are fastened to additional support members 20 to form multiple insulation cavities 50.

[0450] Referring to FIGS. 24A and 24B, in one exemplary embodiment, the flexible center portion 2336 is stretchable or extendable to accommodate different spacings between support members 20. In an exemplary embodiment, the flexible center portion 2336 is resilient to allow the support component 2330 to retract after being stretched. FIG. 24A illustrates the flexible center portion 2336 retracting to accommodate a narrower spacing between the support members 20. FIG. 24B illustrates the flexible center portion 2336 being stretched to accommodate a wider spacing between the support members 20. FIG. 24C illustrates that the flexible center portion 2336 can be inwardly folded to accommodate spaces between support members 20 that are narrower than the retracted width of the support component 2330.

[0451] In one exemplary embodiment, side members 2334 are continuous and have a length that corresponds to the length L1 of the support members 20, such that the supports

side members 2334 extend substantially from the eave 1006 of the roof to the ridge 1010 of the roof. Referring to FIGS. 25-27. in one exemplary embodiment, the side members 2334 have narrow rigid portions 2390 that are much narrower than the length L1 of the support members 20 and a flexible portion 2392 that is supported by the narrow rigid portions 2390. Referring to FIG. 27, in one exemplary embodiment the configuration of the narrow rigid portions and the flexible portion provides the support component 2330 with an accordion configuration that allows the insulation support system to be compressed in length for shipping and handling and expanded in length for installation. In one exemplary embodiment, the flexible portions do not substantially restrict airflow, so that air that blows the loosefill insulation 58 into the cavity 50 can escape the cavity.

[0452] Referring to FIG. 23D, insulation pockets 52 are formed as a portion of insulation cavities 50 and located under support members 20. Distributing loosefill insulation material (not shown) into the insulation cavities results in loosefill insulation material filling the insulation pockets. As the filled insulation pockets are located below the support members, the filled insulation pockets are configured to insulate the support members.

[0453] Referring to FIG. 26, in one exemplary embodiment, the side members 2334 or portions of the side members 2334 are formed from a material that is easily cutable, for example cutable by a utility knife. This cutability allows slots or openings to be cut in the side members 2334 to allow side members 2334 to be installed over cross-members 23 of trusses. For example, the side members may be made from an air barrier material, a vapor barrier material, and/or a cardboard material that is easily cutable with a utility knife razor blade. In another exemplary embodiment, the side members 2334 have pre-cut slots or openings that allow the side members 2334 to be installed over cross-members of trusses

[0454] Referring now to FIG. 28, another method of forming insulation cavities is illustrated. Generally, this method entails use of a supports 2800 secured to faces of support members 20. Insulation support material 30 is secured to ends 2802, for example by stapling, gluing, or otherwise fastening the insulation support material 30 to the ends 2802. In one exemplary embodiment, the supports 2800 are pre-installed on the support members 20 by the manufacturer of the support members. For example, the support members 20 may be truss chords of pre-assembled trusses. The truss manufacturer uses computer software to size and cut all of the components of the truss, including the supports. The truss manufacturer the pre-assembles the truss, including the supports 2800 to reduce thermal bridging. The supports allow an insulation bat or blown-in insulation support 30 to be easily assembled to the truss. The insulation batt may be a FRK-25 or FSK-25 faced insulation

[0455] The support members 2800 are connected to support members 20. The support members 2800 can be attached to the support members 20 in a wide variety of different ways. For example, fasteners, such as nails, staples, clips, and clamps, and/or adhesives can be used to connect the supports 2800 to the support members 20. In the example illustrated by FIG. 28, fastening substrates 2802 are attached to opposite sides of the support members 2800 and the support members 20 to fasten the two together. The sub-

strates 2802 can take a wide variety of different forms. For example, the substrates 2802 can be tape, metal, plastic or wood panels, etc. Sheathing panels 24 are attached to the support members 20.

[0456] The supports 2800 can be made from a wide variety of different materials and can have a variety of different configurations. In an exemplary embodiment, supports 2800 are rigid or substantially rigid and abut the support members 20 before being secured to the support members. This abutment accurately and repeatably sets the depth D2800 of the insulation cavity 50. Using different supports 2800 allows the depth of the insulation cavities 50 to be varied in the same building structure 10 or between different building structures. The supports 2800 can be formed from structural cardboard material, fabric or fiberglass scrim, wood, insulating foam, etc. In one exemplary embodiment, the width WF of a foam support 2800 matches or substantially matches the width WS of the support 20. As such, the foam support 2800 insulates the support members 20

[0457] In one exemplary embodiment, the support members 2800 may have a length that corresponds to the length L1 of the support members 20 or lengths that correspond to lengths of spans of the support members between web supports 23, such that the supports 1800 extend substantially from the eave 1006 of the roof to the ridge 1010 of the roof. As such, the support members 2800 may insulate or substantially insulate the entire length and/or width of the support members 20.

[0458] In another exemplary embodiment, the supports 2800 may have a length that is much shorter than the length L1 of the support members 20. In this embodiment, discrete, spaced apart supports 00, such that the supports 1800 are attached to the support members 20 from the eave 1006 of the roof to the ridge 1010 of the roof, with gaps in-between.

[0459] The length (longer dimension) of the insulation support material 30 extends across the supports 2800 as illustrated by FIG. 28. In another exemplary embodiment, the length of the insulation support material 30 extends in the direction of the length of the support members 20. The support material 30, pairs of spaced apart supports 2800, and sheathing 24 define insulation cavities 50. In the illustrated embodiment, the insulation cavities 50 have boxlike cross-sectional shapes that are substantially retained after loosefill insulation 58 is blown into the insulation cavities. Insulation supports 2800 may not be attached to every support member 20, such that some insulation cavities 50 span multiple support members. As such, the width of the insulation cavities 50 is adjustable.

[0460] Referring to FIGS. 28A, and 28B, the insulation system may be provided with vent passage 1082 (FIG. 28A) or be completely filled with insulation 58 (FIG. 28B). In either case, loosefill insulation 58 is distributed within the insulation cavities 50. Insulation pockets are formed as a portion of insulation cavity located under the support members 20 in the embodiment where gaps are formed between discrete, spaced apart supports 2800. In the embodiment where gaps are formed between discrete, spaced apart supports 2800, distribution of loosefill material 58 into one cavity 50 causes the loosefill material 58 to pass into another cavity through the gaps. This allows multiple cavities 50 to be filled at once by inserting the loosefill supply hose into a single cavity. Distributing loosefill insulation material 58

into the insulation cavities 50 results in loosefill insulation material filling the insulation pockets.

[0461] Referring now to FIGS. 29-37, another method of forming insulation cavities is illustrated. Generally, this method entails use of a supports 2900 secured to faces of support members 20 by extensions 2905 that fit against or clamp against side surfaces of the support member.

[0462] The extensions 2905 can take a wide variety of different forms. In the example illustrated by FIG. 30A, the extensions 2905 are integrally formed with a body 2907 of the supports 2900. Optional frictional devices 2909, such as teeth, can be provided on inside surfaces 2911 of the flanges. The frictional devices 2909 hold the support on the support member 20 after installation.

[0463] In the example illustrated by FIG. 30B, the extensions 2905 are attached to the body 2907 of the supports 2900. The separate extensions 2905 can be made from a wide variety of different materials. Referring to FIG. 32, the body 2907 and extension 2905 configuration of the supports 2900 allows the supports to be nested and stacked in one exemplary embodiment.

[0464] Referring to FIGS. 32 and 33, the insulation support material 30 may be provided on a roll and may be a stretchy material. The insulation support material may be any of the materials described in the present application. Insulation support material 30 is secured to ends 2902, for example by stapling, gluing, or otherwise fastening the insulation support material 30 to the ends 2902. In the example illustrated by FIGS. 29-37, the insulation support material 30 is secured to the ends 2902 by a hook and loop material, such as velcro. In one exemplary embodiment, loops are provided on the insulation support material (see FIG. 34) and hooks are provided on the ends 2902 of the supports 2900. In another exemplary embodiment, hooks are provided on the insulation support material and loops are provided on the ends 2902 of the supports 2900.

[0465] The support members 2900 are connected to support members 20 by placing the extensions 2902 over the support members 20, such that an inside surface 2990 abuts the support surface. Then, the extensions 2902 and/or the inside surface 2990 can optionally be attached to the support member. The extensions 2902 and/or the inside surface 2990 can optionally be attached to the support member 20 in a wide variety of different ways. For example, fasteners, such as nails, staples, clips, clamps, and/or the teeth described above, and/or adhesives can be used to connect the extensions 2902 and/or the inside surface 2990 to the support members 20.

[0466] The supports 2900 can be made from a wide variety of different materials and can have a variety of different configurations. In an exemplary embodiment, supports 2900 are rigid or substantially rigid and abut the support members 20 to accurately and repeatably sets the depth D2900 of the insulation cavity 50. Using different supports 2900 allows the depth of the insulation cavities 50 to be varied in the same building structure 10 or between different building structures. The supports 2900 can be formed from structural cardboard material, fabric or fiberglass scrim, wood, insulating foam, etc. In one exemplary embodiment, the width WF of a foam support 2900 matches (FIG. 30B) or is wider (FIG. 30A) than the width of the support 20. As such, the foam support 2900 insulates the support members 20.

[0467] In one exemplary embodiment, the support members 2900 may have a length that corresponds to the length L1 of the support members 20 or lengths that correspond to lengths of spans of the support members between web supports 23, such that the supports 2900 extend substantially from the eave 1006 of the roof to the ridge 1010 of the roof Referring to FIG. 30C, in one exemplary embodiment, the support members 2900 are formed from a material that is easily cutable, for example cutable by a utility knife. This cutability allows slots or openings to be cut in the support members 2900 to allow the support members 2900 to be installed over cross-members 23 of trusses. For example, the support members 2900 may be made from a foam material that is easily cutable with a utility knife razor blade. In another exemplary embodiment, the support members 2900 have pre-cut slots or openings that allow the support members 2900 to be installed over cross-members 23 of trusses. As such, the support members 2900 may insulate or substantially insulate the entire length of the support members **2900**.

[0468] In another exemplary embodiment, the supports 2800 may have a length that is much shorter than the length L1 of the support members 20. In this embodiment, discrete, spaced apart supports 2900 are attached to the support members 20 from the eave 1006 of the roof to the ridge 1010 of the roof, with gaps in-between.

[0469] The length of the insulation support material 30 extends in the direction of the length of the support members 20 in the example illustrated by FIG. 29. In another exemplary embodiment, the length of the insulation support material 30 extends across the supports 2900. Referring to FIG. 37, support material 30, pairs of spaced apart supports 2900, and sheathing 24 define insulation cavities 50. In the illustrated embodiment, the insulation cavities 50 have box-like cross-sectional shapes that are substantially retained after loosefill insulation is blown into the insulation cavities. Insulation supports 2900 may not be attached to every support member 20, such that some insulation cavities 50 span multiple support members. As such, the width of the insulation cavities 50 is adjustable.

[0470] Loosefill insulation 58 is distributed within the insulation cavities 50. Insulation pockets are formed as a portion of insulation cavity located under the support members 20 in the embodiment where gaps are formed between discrete, spaced apart supports 2800. In the embodiment where gaps are formed between discrete, spaced apart supports 2800, distribution of loosefill material 58 into one cavity 50 causes the loosefill material 58 to pass into another cavity 50 through the gaps. This allows multiple cavities 50 to be filled at once by inserting the loosefill supply hose into a single cavity. Distributing loosefill insulation material 58 into the insulation cavities 50 results in loosefill insulation material filling the insulation pockets under the support members 20.

[0471] FIG. 38 illustrates another insulation system that provides a vent space 1082 and insulation 58 attached to support members 20 by velcro 3800. The vent space 1082 may extend from an eve 1202 of the roof (See FIG. 1) to a ridge 1204 of the roof to cool the sheathing 24 and/or shingles disposed above the sheathing. The vent space 1082 also provides a path for moisture beneath the sheathing to escape.

[0472] The vent space 1082 can be formed in any manner. In the example illustrated by FIG. 38, a panel 680 is attached

between a spaced apart pair of supports 20. Sheathing 24 is disposed on the supports 20. In the illustrated embodiment, the panel 680 is formed from rigid foam insulation. The rigid foam insulation is configured to complement the insulative characteristics of the insulative containers. However, in other embodiments, the panel 680 can be any desired material, such as for example, plywood. The panel 680 has a depth DP such that in an installed position, a bottom face of the panel 680 is substantially flush with bottom faces of support members 20. In one exemplary embodiment, the panel 680 substantially fills the cavity, such that there is no vent space 1082 or substantially no vent space.

[0473] Referring to FIG. 38, the flush alignment of the panel 680 with the support members 20 provides a flush surface 1262 for mounting of an insulation material. An insulation material 1260, such as a batt of fiberglass insulation, a foam insulation board, and the like, can be mounted to the flush surface 1262 with hook and loop fasteners 3800. [0474] Any of the insulation support systems and/or insulation systems disclosed by the present application can be used or adapted to a gable end 1070 of a building structure 10. Gable ends 1070 have a top support member 20. In the example illustrated by FIG. 39, the webs 23 of gable end trusses 1070 are vertical and do not form triangles. However, the gable end can take any form.

[0475] Referring now to FIGS. 39A, 39B, 41A, 41B, and 42A-42F, further embodiments of methods of forming insulation cavities are illustrated. Generally, this method entails use of supports pins 3900 secured to support members 20 of gable ends 1070. While FIGS. 39A, 39B, 41A, 41B, and 42A-42F illustrate the use of pins 3900 on gable ends 1070, the pins 3900 can be used in or be adapted to be used in any of the embodiments of the present application.

[0476] The pins 3900 can be made from a wide variety of different materials and can have a variety of different configurations. Insulation support material 30 is secured to ends 3902 of the pins 3900. The insulation support material 30 may be secured to ends 3902 of the pins 3900 in a wide variety of different ways. For example, the pins 3900 may include a fastener 3960 (See FIG. 41A), the pins 3900 may include a large diameter backing washer 3962 (See FIG. 41B) and a fastener (not shown), and/or the pins 3900 may include barbs 3964 (See FIG. 42E).

[0477] The pins 3900 are connected to support members 20 and/or the support members 23. The support members 3900 can be attached to the support members 20 and/or the support members 23 in a wide variety of different ways. Referring to FIG. 42C for example, fasteners, such as nails, staples, clips, and clamps, and/or adhesives can be used to connect an enlarged base portion 3970 of the pins 3900 to the support members 20 and/or the support members 23.

[0478] In an exemplary embodiment, pins 3900 are rigid and abut the support members 20 and/or the support members 23 or have a stop that abuts the support members 20 and/or the support members 23. This abutment accurately and repeatably sets the depth D3900 of the insulation cavity 50. Using different length pins 3900 allows the depth of the insulation cavities 50 to be varied in the same building structure 10 or between different building structures.

[0479] The length (longer dimension) of the insulation support material 30 extends across the gable 1070 as illustrated by FIG. 40. In another exemplary embodiment, the length of the insulation support material 30 extends in the direction of the height of the support members 23. The

support material 30 and gable end sheathing 24 define a gable end insulation cavity 4050.

[0480] Referring now to FIG. 42F, loosefill insulation 58 is distributed within the gable end insulation cavity 4050. Insulation pockets 52 are formed as a portion of insulation cavity 4050 located under the support members 20. Distribution of loosefill material 58 causes the loosefill material 58 to pass the support members 23 through the pockets 52. This allows the gable end 1070 to be filled at once by inserting the loosefill supply hose into the insulation support material 30. Distributing loosefill insulation material 58 into the insulation cavity 4050 results in loosefill insulation material filling the insulation pockets 52. As the filled insulation pockets 52 are positioned next to the support members 23, the filled insulation pockets 52 are configured to insulate the support members 23.

[0481] FIGS. 43A and 43B illustrate an exemplary embodiment similar to the embodiment illustrated by FIGS. 3A, 4A, and 6A, except the insulation system is applied to a gable end 1070. The insulation support material 30 may be unrolled or otherwise dispensed to expose a length of insulation support material that generally corresponds to the width of gable end truss 1070. The insulation support material 30 is cut to the shape of the gable end truss 1070.

[0482] In a next step, the formed insulation support material is positioned along the width of adjacent support members 23 such that the tabs 38 extend in a direction away from the sheathing panel 24. Next, the fastening segments 332 are fastened to the minor faces of support members 23 along the height of the support member 23, thereby allowing the formed length of insulation support material 30 to extend from the support members 23 to define insulation cavities 50

[0483] Referring to FIG. 43B, in a next step, the tabs 38 are fastened together as shown to form substantially taught insulation cavities 50, each having a substantially rectangular configuration. In an exemplary embodiment, a distance DS from the sheathing panel 24 to the span segments 36 is substantially uniform. F Fastening of the tabs 38 brings the span segments substantially together under tension. The tension imparted on the span segments 36 results in the side panels 34 and the span segments 36 of the insulation cavities 50 forming boxlike cross-sectional shapes that are substantially retained after loosefill insulation is blown into the insulation cavities 50. Referring now to FIG. 43B, insulation pockets 52 are formed as a portion of insulation cavity 50 and are located behind support members 23. The insulation support system illustrated by FIGS. 43A and 43B can be filled with loosefill insulation in the same manner as described with respect to FIG. 6 above.

[0484] FIGS. 44A and 44B illustrate an exemplary embodiment similar to the embodiment illustrated by FIGS. 10A and 10B, except the insulation system is applied to a gable end 1070. This method entails use of interconnecting, substantially rigid members and/or flexible insulation support material 30 to form box-shaped insulation cavities. The interconnecting material may take a wide variety of different forms and may take a wide variety of different configurations. For example, rigid interconnecting material may comprise cardboard, plastic, and the like. Flexible netting material 30 may comprise a plastic film, a mesh, combinations of plastic film and mesh, and the like. In one exemplary

embodiment, flexible netting material may be a breathable material, a vapor barrier, a vapor retarder, and/or an air barrier material.

[0485] Support members 23 and sheathing panel 24 are illustrated by FIG. 44B. Interconnecting portions 430 are optionally cut to the shapes defined by the support members 20 and the support members 23 of the gable end truss 1070. Part of interconnecting portions 430 are positioned adjacent to a major face of a support member 23 and fastened to the support member 23 with one or more fasteners. However, as noted above, the interconnecting portion 430 can be connected to a portion of the support member 20, a portion of the support member 23 and/or to the roof sheathing 24.

[0486] Each interconnecting portion 430 has an optional first tab 431 spaced apart from an optional second tab 433. The optional first tabs 431 are configured for attachment to the optional second tabs 433, thereby forming box-shaped insulation cavities. In one exemplary embodiment, the second tabs 433 are omitted and the first tabs 431 are connected to ends 1000 of the interconnecting portions 430.

[0487] After each first interconnecting portion 430 has been fastened to the support member 23, the interconnecting portion 430 is bent or folded at a point below the first tab 431 and a span segment 436 is rotated in a counterclockwise direction such that second tab 433 aligns with the first tab 431 of another interconnecting portion 430. The second tab 433 and the first tab 431 are attached together with any desired fastener (not shown).

[0488] When made from a rigid material, interconnecting portion 430 is bent such that a side panel segment 434 and the span segment 436 form an approximate right angle with each other. Also, the span segment 436 forms an approximate right angle with the side panel segment 434 of the next interconnecting member 430. The approximate right angles formed between the side panels segments 434 with the span segment 436 define a box-shaped insulation cavity 50. In a repetitive manner, the interconnecting portions 430 are bent or folded such that first tabs 431 are connected to corresponding second tabs 433 or ends 1000.

[0489] In one exemplary embodiment the interconnecting portions 430, are formed from a rigid material structural cardboard material. The rigid material, such as structural cardboard material is configured to retain the box-like cross-sectional shape of the insulation cavity after the loose-fill insulation material is distributed into the formed insulation cavities. In other embodiments, the interconnecting portions can be formed from other materials, such as the non-limiting example of reinforced fiberglass or polymeric-based materials sufficient to form a box-shaped insulation cavity.

[0490] In still other embodiments, the interconnecting portions 430 can be formed from flexible materials, such as netting or insulation support material 30 described above. In this embodiment, the tabs of the flexible interconnecting portions 430 can be fastened together in the same, or similar, manner as illustrated in FIG. 5 and described above. In some exemplary embodiments, the interconnecting portions 430 are made from more than one different material. For example, the span segments 436 may be made from a flexible material and the side panel segments 434 may be made from a rigid material. As another example, the span segments 436 may be made from an air barrier material, a vapor barrier material, and/or a vapor retarder material,

while the side panel segments **434** are made from a breathable material, an open netting, or a mesh.

[0491] Referring again to FIG. 44B, insulation cavities 50 have a depth D400. The depth D400 is defined as the total of the depth of the support members 23 and the amount of material of the side panel 434 that extends past the support members 23.

[0492] Insulation pockets 52 are formed as a portion of insulation cavity 50 and located behind the support member 23. Distributing loosefill insulation material (not shown) into the insulation cavities results in loosefill insulation material filling the insulation pockets 52. As the filled insulation pockets 52 are located behind the support members 23, the filled insulation pockets are configured to insulate the support members 23.

[0493] FIGS. 45A, 45B, and 46 illustrate exemplary embodiments of roof decks 14. Water vapor is less dense than air so it will stay high in the attic space, meaning it is always close to the underside of the roof deck. Moisture laden water vapor enters the attic space from normal activities in the home (breathing, cooking, bathing, laundry, etc) through ceiling penetrations for lights, ceiling fans, HVAC diffuser penetrations or any other path the water vapor can follow into the attic 18 and to the roof deck 14. Depending on the area of the country/world, the roof sees alternating hot and cold temperatures. Areas with generally high ambient temperatures do not allow the water vapor to condense on the underside of the roof deck because the dew point is never reached. There may be occasional periods where the dew point is reached but this is infrequent. There is only a small amount of moisture that is absorbed by the underside of the roof deck under these conditions. The little water that is absorbed is displaced when the roof sees higher temperatures again and exits the attic 18 through standard vents. In other areas, cold temperatures outside the roof exceed the dewpoint of the water vapor in the attic. Roofs in these cold temperature areas of the country may see many hot and cold cycles/seasons.

[0494] The roof decks 14 illustrated by FIGS. 45A, 45B, and 46 can be used with any of the embodiments of insulation support systems and/or insulation systems. The roof decks 14 of these embodiments are designed to create a way for water vapor to exit the attic 18 through the roof deck 14, while keeping atmospheric air from entering the building 10 through the roof deck. This can be accomplished in a variety of different ways. In the exemplary embodiments illustrated by FIGS. 45A, 45B, and 46, sheathing panels 24 provide a way for water vapor to exit the attic 18 at various locations along the slope of the roof, while an air barrier layer 1032 prevents atmospheric air from entering the attic 18.

[0495] The sheathing panels 24 can be configured to allow water vapor to exit the attic in a wide variety of different ways. In the examples illustrated by FIGS. 45A, 45B, and 46, the sheathing panels 24 include opening 4500, such as slots or holes that are designed to allow water vapor to exit the attic 18. In another exemplary embodiment, gaps are provided between adjacent sheathing panels in addition to or instead of the openings 4500. Any way of providing a path for water vapor below the sheathing panels 24 to move above the panels 24 can be employed.

[0496] In one exemplary embodiment, the combination of the sheathing panels 24 and the air barrier layer 1032 provides a path for vapor to exit an unvented attic at all

times. The path the vapor follows allow the vapor to exit the attic 18 at all times, while disallowing atmospheric air to enter at all times. In the exemplary embodiments illustrated by FIGS. 45A, 45B, and 46, paths for water vapor to exit are created along the inclined slope of the roof deck 14, not just at the ridge. In the example illustrate by FIG. 45A, the openings 4500 are slots that are perpendicular or at some angle to the roof support members 20. These slots are sized and spaced up the slope of the roof deck 14 and may run the entire width or some portion of the width of the sheathing panels 24 or roof deck. In the examples illustrated by FIGS. 45B and 46, the openings 4500 or exit points may be holes or some other optimal shape, pattern or configuration. The openings create paths 4500 or exit points from low to high points in the roof deck 14 for water vapor in the attic to escape the attic 18.

[0497] In one exemplary embodiment, the sheathing panels 24 have the configuration of a lath used in older buildings for plaster and lath walls. The laths on the roof deck 14 may be much wider than the gaps between them in some exemplary embodiments. For example, the laths may be five times as wide, ten times as wide, twenty times as wide or more than the gaps between laths. The gaps between the laths provide the path for water vapor to exit the attic.

[0498] The air barrier layer 1032 can take a wide variety of different forms. The air barrier layer can be any of the air barrier layers described in this application or other air barrier layers. In an exemplary embodiment, the air barrier layer 1032 is a membrane that allows water vapor to escape through the engineered openings and at the same time does not allow atmospheric air to enter the attic 18. In this way, the water vapors are never able to reach their dewpoint, because the water vapor exits the attic 18 before the water vapor can change phase into liquid water. The attic 18 is still considered to be unvented because the barrier layer 1032 does not allow atmoshperic air to enter where the water vapor escapes. Shingles or other roof coverings are configured and installed such that the water vapors from the attic are released to the atmosphere, but prevent water from rain, melting ice or other moisture sources to reach, enter or penetrate the barrier layer 1032, and thereby enter into the attic space.

[0499] Referring to FIGS. 45A, 45B, and 46, in an exemplary embodiment, the air barrier layer 1032 is installed over any number of gaps or openings 4500 between or in the roof sheathing 24 for the entire width of the roof deck 14 or less than the entire width of the roof deck. The air barrier layer 1032 is not air permeable so external air cannot enter the attic. Water vapor from the attic 18 escapes from under the shingles at various points up the pitch of the roof until the slope ends at the peak or ridge or at a ridge vent.

[0500] The air barrier layer 1032 can be applied to the roof deck 14 in a wide variety of different ways. In the examples illustrated by FIGS. 45A and 45B, an air barrier layer 1032 is applied beneath the sheathing panels 24 to air seal the roof deck. The air barrier layer 1032 may be applied between the sheathing panels 24 and the structural members 20. For example, the air barrier layer 1032 can be applied to the structural members 20, before the sheathing panels 24 are installed. In the example illustrated by FIG. 46, an air barrier layer 1032 is applied above the sheathing panels 24 to air seal the roof deck. The air barrier layer 1032 may take a wide

variety of different forms. The air barrier layer 1034 may be an underlayment disposed between the sheathing panels 24 and shingles (not shown).

[0501] FIGS. 47A, 47B, and 48-50 illustrate exemplary embodiments of roof decks 14 and devices 4700 for providing a vent space 1082 below sheathing panels 24 of a roof deck. For example, the devices 4700 may be used to provide a vent space 1082 in an unvented attic (See FIG. 1D) or a cathedral ceiling. The roof decks 14 illustrated by FIGS. 47A, 47B, and 48-50 can be used with any of the embodiments of insulation support systems and/or insulation systems disclosed herein and/or with other insulation systems. [0502] The devices 4700 can take a wide variety of different forms. Referring to FIGS. 47A and 47B, in one exemplary embodiment, the vent space forming device 4700 is a continuous vent chute that is supplied on a roll 4710 and is used to provide the vent space 1082 (See FIG. 1D) in building structures 10 with cathedral ceilings or unvented attics. Because the vent chute 4700 can be cut to the precise length needed, and attached at just the ends of the chute, the vent chute 4700 minimizes the amount of ladder work needed to provide cathedral ceiling vent space 1082. This minimized ladder work is as compared to the conventional method of tiling individual 4 ft chutes from soffit to ridge, which requires multiple trips up and down a ladder for installation of each 4 ft chute. By reducing ladder work, the installer will complete the installation much more quickly. [0503] Insulation contractors working in the new construction market have a need for products that reduce the labor associated with installation of insulation products. One of the most labor intensive jobs is the installation of vent chutes in cathedral ceilings. Installing vent chutes on a cathedral ceiling (prior to the installation of batts or loose fill) can take as much time, if not more, than the installation of all of the other vents/baffles combined (i.e. those that are installed at eaves in what will be the attic). There are two main reasons that the installation of vent chutes is so labor intensive:

[0504] (1) the roof deck along a cathedral ceiling is provided with a vent chute continuously from eave to ridge, requiring many more baffles than what is required at the eaves in a vented attic.

[0505] (2) existing vent chutes only come in 4-6 ft lengths, requiring the installer to go up and down ladder many times to install each individual piece, which takes time.

[0506] Referring to FIG. 47A, in one exemplary embodiment, the vent chutes 4700 are in a compact roll 4710 form (for example, about 3 ft in diameter, but any size can be used depending on the application). The roll can easily be stored stored in a warehouse, loaded on and off a truck, and carried to and from the jobsite. The vent chutes 4700 can have any shape that provides one or more vent spaces 1082. In the exemplary embodiment illustrated by FIG. 47B, the vent chute 4700 provides multiple vent spaces 1082 in the form of a plurality of parallel channels 4720. However, in other embodiments, the vent chute 4700 provides a single, wide vent space that extends the width or substantially the width of the chute 4710. The vent chute 4700 can be sized and shaped for any given roof deck application.

[0507] FIGS. 48-50 illustrate installation of the vent chutes 4700. Referring to FIG. 48 in a first step an installer unrolls an excess of the vent chute 4700 while climbing up a ladder positioned underneath a cathedral ceiling. The vent chute 4700 can similarly be installed, optionally without a

ladder, in an unvented attic. The installer attaches a top 4730 of the vent chute 4700 to the top of one of the cathedral ceiling's cavities or to the top of one of the unvented attic's cavities by stapling or otherwise fastening the vent chute 4700 to the sheathing and/or the support members 20 of the roof deck. Referring to FIG. 49, in a second step, the installer cuts the vent chute 4700 to the desired length for all of the cavities in the cathedral ceiling or unvented attic. Measuring and cutting the vent chutes 4700 to the appropriate length can be facilitated with markings (notches, different color, etc.) every foot along the sides of the vent chute 4700. In a third step, the installer staples or otherwise fastens lower ends 4740 of the vent chutes 4700 to the sheathing 24 and/or the support member 20 at the eaves of the cavities using either stilts or a ladder if the vent chutes are being applied in a cathedral ceiling or optionally without stilts or a ladder if the vent chutes are applied in an unvented attic. This process is repeated for each vent chute 4700 and corresponding pair of support members 20.

[0508] One benefit of the method illustrated by FIGS. 48-50 is that the installer would only need the ladder once or twice per cavity or bay, compared 3 to 6+ times per bay (depending on the cathedral ceiling size) using the conventional approach of nesting individual baffles along the cavity's length. An alternative to the method illustrated by FIGS. 48-50 is to measure and cut one vent chute 4700 to the appropriate length, and then use the cut vent chute as a template to cut the rest of the vent chutes in succession on the floor. Then the installer may go up the ladder with 2 or 3 vents at one time to make multiple attachments near the roofs ridge. Using this approach, the installer would further minimize ladder usage, possibly to one trip up and down per every 3 cavities.

[0509] In one embodiment, the vent chutes 4700 may sheets would sag somewhat in the middle. However, this sagging is removed when the cavities are filled with insulation, such as loose fill or batts. The insulation 58 (batts or LF), presses the vent chutes 4700 into place against the roof deck sheathing 24. If however the sagging were not taken up by the insulation 58, the installer may apply another line of staples at the mid-section of the vent chutes 4700, or the installer may be able to pull the vent chute 4700 taught at the bottom. An air barrier layer 1032 may be provided below the vent chute 4700 in one exemplary embodiment. The air barrier layer may be provided between the insulation 58 and the vent chute 4700. In another exemplary embodiment, the vent chutes are configured to act as air barriers for the roof deck 14. A variety of different material options can be used to achieve vent chutes that allow moisture (gas/vapor) to easily pass through, but restrict air-flow. One advantage of the polymer mesh materials is that they would not provide a significant surface for condensation to form on. However, the mesh of polymer fibers do little to impede air-flow. In one exemplary embodiment, an air barrier layer 1032 (which may be any of the air barrier layers described herein), such as a non-woven veil that allows moisture transport, but block air-flow, can be laminated to the vent chutes 4700. One example of an air barrier layer that may be bonded to the vent chute 4700 material is non-woven polypropylene used in weather resistant barriers like TyvekTM. Other possibilities for air barrier layers 1032 include woven and non woven fabrics made from glass fibers, natural fibers, or plastic fibers.

[0510] The vent chutes 4700 can be made from a wide variety of different materials and have a variety of different geometric configurations to achieve the desired functionalities for the application. For example, the vent chutes can be configured to:

[0511] (1) Provide the ventilation gap or space 1082 between the roof deck sheathing 24 and the insulation.

[0512] (2) Be easily attached to the roof deck (for example with a hammer stapler).

[0513] (3) Be able to be rolled onto and off of a spool.

[0514] (4) Not collapse under pressure from attached insulation.

[0515] (5) Be easily cut to the desired length. and/or

[0516] (6) Not lead to issues with condensation or excessive air-leakage into the building's conditioned space.

[0517] The vent chutes 4700 can be made from a wide variety of different materials and can have a wide variety of different configurations. For example, the vent chutes 4700 can be made from a continuous sheet of mesh material, with a width of the cavities, that is made out of extruded polymer fibers and has corrugations that run along the length of the chute. The polymer mesh material is stiff enough to maintain its profile after the insulation is installed to keep the vent gap open, and is also flexible enough to be easily packaged in a roll. The polymer mesh has the advantage of not being a surface for condensation.

[0518] One configuration of the vent chute 4700 material is an "egg carton" surface profile made from entangled, but open, polymer fibers. In combination with a wire mesh material, this open air "egg carton" surface profile keeps the insulation separated from the roof deck sheathing 24, while also allowing more air to flow from soffit to ridge than would be possible with air-impermeable membrane of the same "egg carton" shape (as air must flow around the egg cartons, instead of through them). The metal wire mesh provides good rigidity to the vent chute. Another configuration of the vent chute 4700 material has a one-dimension surface variation, such as those illustrated by FIG. 47B can result in a more compact roll.

[0519] In one exemplary embodiment, the vent chutes 4700 include perforations that run along the length of the vent chutes. These perforations enable the installer to reduce the width (22.5" wide for example or other width) to fit a narrower cavity width (e.g. 16" on center, or narrow cavities along rakes).

[0520] FIGS. 51, 52A, and 52B illustrate an exemplary embodiment where the insulation support material 30 can be rolled out to span multiple support members 20 (i.e. to form two or more insulation cavities 50 with one piece of insulation support material. In the embodiment illustrated by FIGS. 51, 52A, and 52B, the insulation support material 30 creates an enclosure for loose fill fiberglass to be installed along the underside of roof deck sheathing 24 in unvented attic assemblies. The system illustrated by 51, 52A, and 52B has insulation support material that comprises a continuous membrane 5110 that optionally is provided on a roll 5100, and has side panels 5112 that branch out to one side and run perpendicular to the membrane's length. In an exemplary embodiment, the side panels 5112 are regularly spaced. In one embodiment, the spacing between the side panels 5112 matches a given support member spacing, such as truss or rafter spacing, for example 24 inches. The width of the side panels 5112 is such that the appropriate enclosure depth can be accurately and easily achieved.

[0521] FIG. 52A illustrates representative adjacent support members 20, such as a truss chords and a sheathing panel 24 Referring to FIG. 52B, the insulation support material 30 is unrolled onto the support members 20 from a roll 40 between webs 23, between webs 23 and upper ends of support members 20, and/or between webs 23 and lower ends of support members 20. The support material 30 is cut thereby forming a length of insulation support material that corresponds to the span of the roof deck 14.

[0522] Referring to FIG. 52A, the side panels 5112 are attached to the support member 20. In the illustrated embodiment, the side panels 5112 are attached to the inside-face of support member of a truss, using a fastened, such as a stapler. However, it should be apparent that the side panels can be attached to any structure of the roof deck 14 in any manner. The side panels 5112 can be attached to any portion of the support members 20, to any portion of the support members 23, and/or to any portion of the sheathing.

[0523] Referring to FIGS. 53A and 54B, upon terminating the support material 30 on opposing ends, usually at the eave 1006 and ridge 1010, the enclosures that are created are filled with loose fill insulation 58. However, the truss webs 23 prevent a continuous membrane 5110 from being applied over an entire section of the roof deck 14. In the example illustrated by FIG. 52B, the insulation support material 30 is applied in long sections than run horizontally, i.e. parallel to the eaves. This leaves a gap 5350 between the each section. If the gap 5350 is not bridged, the blown loose fill insulation 58 is not contained. In one exemplary embodiment, adjacent horizontally running sections of the membrane 5110 are spliced together. This splicing can be accomplished in a wide variety of different ways. In one exemplary embodiment, the membranes 5110 are provided with flaps 5352 (FIG. 53B). Referring to FIG. 53C, the flaps 5352 can be stretched around the webs 23 and fastened together, for example by stapling. FIG. 54 illustrates another way to splice the two sections together. In the example illustrated by FIG. 54, an insulation bat 5400 is placed into the gap between the two sections.

[0524] The insulation support material 30 illustrated by FIGS. 51, 52A, and 52B, form insulation cavities 50, each having a substantially rectangular configuration. In an exemplary embodiment, a distance DS from the sheathing panel 24 to the membrane 5110 is substantially uniform. Referring to FIG. 52A, the insulation cavities 50 have insulation pockets 52 located under support members 20. Loosefill insulation material 58 is distributed into the insulation cavities 50 until the insulation cavities 50 are filled.

[0525] FIGS. 55-58 illustrate an exemplary embodiment that is similar to the embodiment illustrated by FIGS. 51, 52A, and 52B, except the side panels 5112 are attached to the support members 20 by passing fasteners through the membrane 5110 and into the side panels 5112. This allows the insulation support material 30 to be attached by simply rolling out a sheet of the support material 30 to be attached in the same manner as a wall fabric or in the same manner as housewrap is installed.

[0526] Referring to FIG. 55, one edge 5530 of each side panel 5112 is permanently attached to the membrane 5110. The edge 5530 can be permanently attached to the membrane 5110 in a wide variety of different ways. For example, the edge 5530 of the side panel 5112 can be attached to the membrane 5110 by sewing seams, thermal bonding, strong adhesive, etc. In one exemplary embodiment, the side panels

5112 lay flat against the membrane 5110 and are releasably attached to the side panels 5112, so that the side panels 5112 can be peeled away from the membrane 5110, except for the attachment at the edge 5530. This releasable attachment can be achieved in a wide variety of different ways. In one exemplary embodiment, the side panels 5112 are attached to the membrane 5110 by a mild, releasable adhesive 5500 to hold the side panels 5112 in the flat layed configuration. The releasable adhesive 5500 allows the membrane 5110 to be released from the continuous membrane with a mild to moderate force as indicated by hand 5502. Possible adhesive options include pressure sensitive adhesives, Velcro, etc.

[0527] Referring to FIG. 58, in one exemplary embodiment, the side panels 5112 have significantly more pull through resistance or strength to staples or other fasteners than the continuous membrane 5110. For example, the side panels 5112 may have twice, three times, or more pull through resistance than the pull through resistance of the membrane 5110. Referring again to FIG. 55, in one exemplary embodiment, one or more optional fastening guide strips 5550 are provided to assist alignment of the panels 5112 with the support member 20 at the location corresponding to the desired enclosure depth/R-value. In another exemplary embodiment, the membrane 5110 is made from a transparent material to assist alignment of the panels 5112 with the support members 20. The panels 5112 may include guide strips 5550 to assist alignment of the panels 5112 with the support member 20 at the location corresponding to the desired enclosure depth/R-value.

[0528] FIGS. 56-58 illustrate installation of the membrane 30 of FIG. 55. Referring to FIG. 56, the membrane 30 is unrolled and cut to the dimensions of the roof deck 14. The membrane 30 is positioned with respect to the support members 20, so that the panels 5112 are aligned with the support members 20. For example, the optional fastening guide strips 5550 are aligned with truss chords. Referring to FIG. 57, the membrane 30 is fastened in place with fasteners that pass through the membrane 5110 and panels 5112. For example, an installer fires staples or other fasteners 67 through the fastening guide strip 5550, and into the front face of the support member 20, such as a truss chord.

[0529] Referring to FIG. 58, the membrane 30 is converted to a panelized insulation enclosure 5800. In the example illustrated by FIG. 58, the membrane 5110 is pulled or otherwise applying force as indicated by the hand 5502 in FIG. 58. In an exemplary embodiment, a light to moderate force pulls/rips the membrane over the staples while, also releasing the side panels 5112 from the continuous membrane 5110. This step can be accomplished either by manually pulling as indicated by the hand 5810 in FIG. 58 or by simply filling the enclosure with insulation 58, such as loose fill insulation. In another exemplary embodiment, the membrane 5110 can be provided with perforated circles, or complete holes, into which the fasteners or staples are applied. The perforated circles or holes ensure that the membrane 5110 pulls over the fastener, such as the illustrated staples. Splicing two sections of the membrane enclosure can be accomplished using the same methods shown by and described with respect to FIGS. 53A and 54.

[0530] The membrane 5110 and the side panels 5112 can be made from a wide variety of different materials. For example, the membrane 5110 and the side panels 5112 can be made from any of the materials described in this application. The membrane 5110 and/or the side panels 5112 can

be made from woven & non-woven fabric, plastic sheets, and vapor control membranes.

[0531] The insulation support material 30 illustrated by FIGS. 55-58, form insulation cavities 50, each having a substantially rectangular configuration. In an exemplary embodiment, a distance DS from the sheathing panel 24 to the membrane 5110 is substantially uniform. Referring to FIG. 58, the insulation cavities 50 have insulation pockets 52 located under support members 20. Loosefill insulation material 58 is distributed into the insulation cavities 50 until the insulation cavities 50 are filled.

[0532] FIGS. 59-61 illustrate an exemplary embodiment of an insulation assembly 5900. Referring to FIG. 59, the insulation assembly 5900 includes a first insulation piece 5910, a joining sheet 5920, a second insulation piece 5930, and an optional connecting sheet 5940. The first insulation piece 5910 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 5910 is a fiberglass insulation batt or a foam board having a depth DB that substantially matches the depth DS of the supports 20. In one exemplary embodiment, the insulation piece 5910 is a fiberglass insulation batt or a foam board having a depth DB that is larger than the depth DS of the supports 20, but the depth DB can be compressed to the depth DS of the supports 20. In one exemplary embodiment, the insulation piece 5910 is a fiberglass insulation batt or a foam board having a width WB that substantially matches the width WS between the supports 20. In one exemplary embodiment, the insulation piece 5910 is a fiberglass insulation batt or a foam board having a width WB that is larger than the width WS between the supports 20, but the width WB can be compressed to the width WS between the supports 20.

[0533] The second insulation piece 5930 can take a wide variety of different forms. In one exemplary embodiment, the second insulation piece 5930 is a fiberglass insulation batt or a foam board having a depth DB2 that is selected based on a desired R value for the insulation assembly. In one exemplary embodiment, the second insulation piece 5930 is a fiberglass insulation batt or a foam board having a width WB2 that substantially matches the center to center distance or width WS2 between the supports 20. In one exemplary embodiment, the second insulation piece 5930 is a fiberglass insulation bat or a foam board having a width WB2 that is wider than the center to center width WS2 of the supports 20, but the width WB2 can be compressed to the center to center width WS2 of the supports 20.

[0534] In an exemplary embodiment, the first insulation piece 5910 is connected to the second insulation piece 5930 by the joining sheet 5920. The first insulation piece 5910 can be connected to the second insulation piece 5930 in a wide variety of different ways. For example, the first and second insulation pieces 5910, 5930 can be connected to opposite sides of the joining sheet 5920 by an adhesive. In one exemplary embodiment, the insulation piece 5910 is adhered to the joining sheet 5920 across less than entire width of the first insulation piece. For example, the first insulation piece 5910 can be joined to the joining sheet 5920 in the area indicated by arrows 5950. In one exemplary embodiment, the second insulation piece 5930 is adhered to the joining sheet 5920 across less than entire width of the second insulation piece. For example, the second insulation piece 5930 can be joined to the joining sheet 5920 in the area indicated by arrows 5950.

[0535] The joining sheet 5920 can take a wide variety of different forms and can be made from a wide variety of different materials. In one exemplary embodiment, the joining sheet 5920 has a width that is wider than the width WB2 of the second insulation piece 5930. The wider width results mounting tabs 5960 that extend from sides 5970 of the insulation assembly 5900. In one exemplary embodiment, the joining sheet 5920 is made from an air and moisture permeable material. For example, the joining sheet may be an air and moisture permeable scrim, kraft material, or non-woven material. The joining sheet may be any air and moisture permeable material, such as any of the air and moisture permeable materials disclosed in the present patent application.

[0536] In an exemplary embodiment, the optional connecting sheet 5940 is connected to the second insulation piece 5930. The connecting sheet 5940 can be connected to the second insulation piece 5930 in a wide variety of different ways. For example, the connecting sheet 5940 can be connected to the second insulation piece by an adhesive. [0537] The optional connecting sheet 5940 can take a wide variety of different forms and can be made from a wide variety of different materials. In one exemplary embodiment, the joining sheet 5920 has a width that is wider than the width WB2 of the second insulation piece 5930. The wider width results connecting tabs 5990 that extend from sides 5970 of the insulation assembly 5900. In one exemplary embodiment, the connecting sheet 5940 is made from an air permeable and moisture impermeable material. For example, the connecting sheet 5940 may be a water vapor retarder material, such as any of the vapor retarder materials disclosed in the present application.

[0538] FIGS. 60 and 61 illustrate installation of the insulation assembly 5900. In one exemplary embodiment, the insulation piece 5910 is placed in the space between the supports 20. If necessary, the width WB of the insulation piece 5910 is compressed to fit the width WS between the supports 20. Referring to FIG. 61, the mounting tabs 5960 are overlapped, placed over the supports 20, and fastened to the supports 20. In exemplary embodiment, the second insulation piece 5930 is compressed to allow the mounting tabs 5960 to be fastened to the supports 20, for example by staples. In one exemplary embodiment, the second insulation piece 5930 can be compressed without pulling the mounting tabs 5960 away from the supports, because the joining sheet 5920 is adhered across less than entire width of the second insulation piece. For example, adhering the joining sheet 5920 to the second insulation piece in the area indicated by arrows 5950 allows the side ends of the insulation piece 5930 to be compressed to thereby allow the mounting tabs 5960 to be fastened to the faces of the supports 20, for example, by stapling. Once the mounting tabs 5960 are fastened to the supports 20, the connecting tabs 5970 are connected together and in one embodiment, sealed together to provide the insulation system 5900 with a continuous vapor retarder.

[0539] Referring to FIG. 60, the insulation piece 5930 has end portions that are located under or behind support members 20. In one exemplary embodiment, the insulation pieces 5930 abut one another to provide continuous or substantially continuous insulation behind or below the support member s 20.

[0540] FIGS. 59A and 60A illustrate an exemplary embodiment of an insulation assembly 6000 that is similar

to the embodiment illustrated by FIGS. 59-61, but includes one insulation piece 6002, instead of two. Referring to FIG. 59A, the insulation assembly 6000 includes an insulation piece 6002 having a first portion 6010 and a second portion 6030, mounting tabs 6020, and an optional connecting sheet 6040. The insulation piece 6002 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 6002 is a fiberglass insulation batt or a foam board. The illustrated first portion 6010 has a depth DB that substantially matches the depth DS of the supports 20. In one exemplary embodiment, the portion 6010 has a depth DB that is larger than the depth DS of the supports 20, but the depth DB can be compressed to the depth DS of the supports 20. In one exemplary embodiment, the portion 6010 is a fiberglass insulation batt or a foam board having a width WB that substantially matches the width WS between the supports 20. In one exemplary embodiment, the portion 6010 has a width WB that is larger than the width WS between the supports 20, but the width WB can be compressed to the width WS between the supports 20.

[0541] The second portion 6020 can take a wide variety of different forms. In one exemplary embodiment, the second portion 6020 has a depth DB2 that is selected based on a desired R value for the insulation assembly. In one exemplary embodiment, the second portion 6030 is a fiberglass insulation batt or a foam board having a width WB2 that substantially matches the center to center distance or width WS2 between the supports 20. In one exemplary embodiment, the second portion 6030 has a width WB2 that is wider than the center to center width WS2 of the supports 20, but the width WB2 can be compressed to the center to center width WS2 of the supports 20.

[0542] The mounting tabs 6020 can take a wide variety of different forms and can be made from a wide variety of different materials. In one exemplary embodiment, the mounting tabs 6020 extend from sides 6070 of the insulation assembly 6000. In an exemplary embodiment, the optional connecting sheet 6040 is connected to the second portion 6030. The connecting sheet 6040 can be connected to the second insulation piece 6030 in a wide variety of different ways. For example, the connecting sheet 6040 can be connected to the second insulation piece by an adhesive.

[0543] The optional connecting sheet 6040 can take a wide variety of different forms and can be made from a wide variety of different materials. In one exemplary embodiment, the connecting sheet 6040 has a width that is wider than the width WB2 of the second insulation piece 6030. The wider width results in connecting tabs 6090 that extend from sides 6070 of the insulation assembly 6000. In one exemplary embodiment, the connecting sheet 6040 is made from an air permeable and moisture impermeable material. For example, the connecting sheet 6040 may be a water vapor retarder material, such as any of the vapor retarder materials disclosed in the present application.

[0544] In one exemplary embodiment, the insulation portion 6010 is placed in the space between the supports 20. If necessary, the width WB of the insulation portion 6010 is compressed to fit the width WS between the supports 20. The mounting tabs 6020 are overlapped, placed over the supports 20, and fastened to the supports 20. The second insulation piece 6030 is compressed to allow the mounting tabs 6020 to be fastened to the supports 20, for example by staples. Referring to FIGS. 59B and 60B, in one exemplary embodiment, the second insulation portion 6030 can be

compressed without pulling the mounting tabs 6020 away from the supports, because the insulation piece includes cut or grooves 6090 at the juncture between the portion 6010 and the portion 6030. As a result, the portion 6030 is connected to the portion 6010 across less than the entire width of the second portion. This allows the side ends of the portion 6030 to be compressed to thereby allow the mounting tabs 6020 to be fastened to the faces of the supports 20, for example, by stapling. Once the mounting tabs 6020 are fastened to the supports 20, the connecting tabs 6090 are connected together and in one embodiment, sealed together to provide the insulation system 6000 with a continuous vapor retarder.

[0545] Referring to FIG. 60A, the portion 6030 have end portions that are located under or behind support members 20. In one exemplary embodiment, the insulation portions 6030 abut one another to provide continuous or substantially continuous insulation behind or below the support members 20.

[0546] FIGS. 62A-62D illustrate exemplary embodiments of insulation systems 6200 that include a moisture buffering material 6210 on an inside of an insulation cavity 50. The moisture buffering material adds a moisture capacitance to the insulation system. The insulation system 6200 can be any of the insulation systems disclosed by the present patent application. In the examples, illustrated by FIGS. 62A-62D, the systems 6200 include insulation 58, roof deck sheathing 24, support members, insulation support material 30, and the moisture buffering material 6210.

[0547] Referring to FIG. 63, moisture in the insulation cavities 50 can swing or fluctuate depending on the time of day and/or the season as indicated by plot 6350. Typically, the mean humidity (over the course of any given day and/or over the course of seasons) in the cavity 50 is less than an unacceptable level, where the dew point is reached and water condenses inside the cavity 50. However, peak humidities 6352 at particular times of day and/or in particular seasons may result in times where the humidity inside the cavity 50 exceeds the dew point. The moisture buffering material 6210 adds a moisture capacitance to the insulation system 6200 to absorb water vapor before the water vapor condenses at the peaks 6352 where the humidity exceeds the dew point. This absorbtion of water vapor keeps the humidity in the insulation cavity at a level where the water can condense out of the air if temperature drops. The moisture buffering material 6210 releases the moisture back into the interior of the building, when the drying potential exists (see for example the valleys 6354). That is, when the local humidity (the humidity in and near the insulation cavity 50) drops, the moisture buffering material releases the moisture as water vapor back to the location of lowest moisture concentration as dictated by Frick's law. For example, when the relative humidity in the cavity 50 drops below a threshold value, such as 50%, the moisture buffering material 6210 will release the water. The released water vapor will always return to the area of lowest humidity, which will typically be outside the cavity 50. The plot 6360 illustrates how the moisture buffering material 6210 reduces the peak humidities in the insulation cavities 50.

[0548] In one exemplary embodiment, the moisture buffering material 6210 is tuned based on the lowest that will be seen in the insulation cavity. The moisture buffering material 6210 is tuned to keep the relative humidity in the insulation cavity 50 from reaching the dew point at the minimum

temperature that will be seen in the insulation cavity 50. This prevents saturation and condensation from ever occurring in the cavity.

[0549] The moisture buffering material 6210 can take a wide variety of different forms. For example, the moisture buffering material can be a hygric buffer, a desiccant, a wicking material, or other moisture absorbing material. In one exemplary embodiment, the moisture buffering material can hold many times its weight in water. For example, the moisture buffering material can hold more than five times its weight in water, more than ten times its weight in water, more than twenty times its weight in water, more than fifty times its weight in water, more than 100 times its weight in water, or even 500 times its weight in water. In one exemplary embodiment, the moisture buffering material 6210 is a superabsorbancy polymer (SAP). One acceptable SAP is Gelok, which has previously been used in diapers. 1.5 g of Gelok can absorb 90 g of water. The insulation support material can take a wide variety of different forms and can be made from a wide variety of different materials. For example, the insulation support material 30 can be any of the materials disclosed by the present patent application.

[0550] In one exemplary embodiment, the insulation support material 30 is a conventional insulation support material that allows air to freely pass through the material 30. This allows the insulation 58 to be easily blown into the insulation cavity 50. Air that blows the insulation 58 into the cavity can easily exit the through the insulation support material. The moisture buffering material 6210 can be applied to the insulation support material 30 in a wide variety of different ways. In one exemplary embodiment, the moisture buffering material 6210 is applied to an inside surface or portion(s) of the inside surface of the air permeable insulation support material (i.e. the side inside the cavity 50). For example, the moisture buffering material 6210 can be applied in multiple discrete locations of the inside surface of the insulation support material 30, so that uncovered areas of the insulation support material still allow air to freely pass through the material 30. In one exemplary embodiment, the buffering material is applied to a back side of a facing of an insulation batt, between the facing and the batt of insulation material.

[0551] In another exemplary embodiment, the insulation support material 30 is a vapor retarder. For example, the vapor retarder may have a perm rating of greater than 1 or the vapor retarder may be an adaptive vapor retarder that will change perm rating based on relative humidity and/or temperature. The moisture buffering material 6210 can be applied to the water vapor insulation support material 30 in a wide variety of different ways. For example, the moisture buffering material 6210 may be attached to the water vapor retarder insulation support material 30, laminated to the water vapor retarder insulation support material 30, and/or infused into the fabric of the insulation support material. In one exemplary embodiment, the moisture buffering material 6210 is applied to an inside surface or portion(s) of the inside surface of the water vapor retarder insulation support material 30 (i.e. the side inside the cavity 50). In one exemplary embodiment, the moisture buffering material 6210 can be applied in multiple discrete locations of the inside surface of the water vapor retarder insulation support material 30, so that uncovered areas of the insulation support material still have the desired permeance or the desired adaptive permeance. In one exemplary embodiment, the buffering material is applied to a back side of a facing of an insulation batt, between the facing and the batt of insulation material.

[0552] In another exemplary embodiment, the insulation support material 30 is a vapor barrier. The moisture buffering material 6210 can be applied to the water vapor insulation support material 30 in a wide variety of different ways. For example, the moisture buffering material 6210 may be attached to the water vapor barrier insulation support material 30, laminated to the water vapor barrier insulation support material 30, and/or infused into the fabric of the water vapor barrier insulation support material. In one exemplary embodiment, the moisture buffering material 6210 is applied to an inside surface or portion(s) of the inside surface of the water vapor retarder insulation support material 30 (i.e. the side inside the cavity 50). In one exemplary embodiment, the moisture buffering material 6210 can be applied in multiple discrete locations of the inside surface of the water vapor retarder insulation support material 30, so that uncovered areas of the insulation support material still have the desired permeance or the desired adaptive permeance. In one exemplary embodiment, the buffering material is applied to a back side of a facing of an insulation batt, between the facing and the batt of insulation

[0553] In the example illustrated by FIG. 62A, the cavities 50 are defined between the sheathing 24, the support members 20, and the insulation support material 30. The moisture buffering material 6210 is provided inside the cavities 50, such as on the inside surface of the insulation support material 30. In the example illustrated by FIG. 62B, the insulation support system is generally the same or the same as the insulation support system illustrated by FIGS. 7A-7F with the moisture buffering material 6210 added. FIG. 62B illustrates that the clamps 164 (See FIG. 7A) can be omitted. In the example illustrated by FIG. 62C, the insulation support system is the same or generally the same as the insulation support system illustrated by FIGS. 10A and 10B with the moisture buffering material 6210 added. In the example illustrated by FIG. 62D, the insulation support system is the same or generally the same as the insulation support system illustrated by FIGS. 16A-16B with the moisture buffering material 6210 added in the insulation cavity 50.

[0554] FIGS. 64A-64C illustrate a variation of the embodiment illustrated by FIGS. 10A and 10B. Referring to FIG. 64A, when the cavity 50 has the normal or designed width WDESIGN, the span segments 436 of the embodiment illustrated by FIGS. 10A and 10B, form rectangular insulation cavities 50 as described above. However, width WWIDER between the support members 20 is wider than the designed width WDESIGN, the span segment 436 may not reach the side panel segment 434 of the next interconnecting portion 430 or a rectangular insulation cavity may not be formed. Similarly when the distance between the support members 20 is narrower than the designed width WDESIGN, the span segment may droop and a substantially rectangular insulation cavity is not formed.

[0555] In the exemplary embodiment illustrated by FIGS. 64B and 64C, the span segments 436 of the interconnecting portions 430 are expandable 6400 and/or retractable 6402 to accommodate different widths or spacing between the support members 20. The concept of expandable and retractable insulation support material 30 can be applied to any of the

embodiments of the present application. The span segments 436 can be made to be expandable and/or retractable in a wide variety of different ways. For example, the span segment 436 can be made from an elastic material or have a portion 6410 that is made from an elastic material, the span segment can be accordion folded (see FIGS. 11C and 11E), the span segment can be provided with extension pieces or portions. Any way of making the span segments 436 expandable and/or retractable can be employed.

[0556] FIGS. 65A and 65B illustrate a versions of the embodiment illustrated by FIGS. 10A and 10B where a vapor retarder material 6500 or a vapor barrier material is applied to the span segment 436 or is the span segment of the interconnecting portions 430. The concept of a vapor retarder material 6500 or a vapor barrier material is applied to the span segment 436 of the interconnecting portions 430 can be applied to any of the embodiments of the present application. The vapor retarder material 6500 or vapor barrier can be any of the vapor retarder or vapor barrier materials disclosed in the present application. For example, the vapor retarder may have a perm rating of greater than 1 or the vapor retarder may be an adaptive vapor retarder that will change perm rating based on relative humidity and/or temperature.

[0557] Referring to FIG. 65A, in one exemplary embodiment, the span segment 436 and the side panel segment 434 are made from a spun bond non-woven fabric, such as a spun bond polyester non-woven fabric. The non-woven fabric provides breathability for blowing the insulation 58 into the cavity 50. Covering the span segment 436 with the vapor retarder material 6500 or replacing the span segment 436 with the vapor retarder material reduces the breathability for blowing the insulation 58 into the cavity 50, since the air can no-longer escape through the span segment 436. Air used to blow insulation into the cavity 50 escapes through the side panel segments 434, instead of through the side panel segments 434 and the span segments 436. The air used to blow insulation into the cavity 50 is blocked by the vapor retarder material of the span segments 436.

[0558] FIG. 65B illustrates an exemplary embodiment that is similar to the embodiment illustrated by FIG. 65A, except the side panel segment 434 and optionally the span segment 436 (with the vapor retarder material 6500 on it) are made from a material that provides more airflow as compared to the spun bond, non-woven material of FIG. 65A. Or, the span segment 436 can be made of only the vapor retarder material 6500. For example, the side panel segment 434 and the optionally the span segment 436 (when the span segment is not made only of the vapor retarder material 6500) are made from an open scrim material. For example, ratio of open area of the scrim material to blocked area of the scrim material (Open Area)/(Closed Area) may be greater than 10%, greater than 20%, greater than 30%, greater than 40%, or greater than 50%. More open area enhances the ability of the air that blows the insulation 58 into the cavity 50 to escape through the side panel segments 434, since the air is blocked by the vapor retarder material of the span segments

[0559] FIGS. 66A and 66B illustrate an exemplary embodiment of an insulation system 6600 where the R value of the system is increased using less insulation. In a building structure 10 with an unvented attic, more space may be available under the roof deck sheathing 24 than in a cathedral ceiling. As such, in some buildings 10, the thickness

TINSULATION of the insulation **58** that can be provided below the roof deck sheathing can be increased without intruding on finished space in the building. By utilizing this increased thickness TINSULATION (compare the greater thickness in FIG. **66**B to the thickness in FIG. **66**A) and decreasing the density of the insulation **58**, such as the density of loosefill insulation, a higher R value can be achieved with less insulation. An insulation with a decreased density may be lighter and have larger nodules than conventional loosefill insulation.

[0560] For example, the insulation system in FIG. 66A may have an insulation thickness TINSULATION of 7.5 inches, a density of 1.3 pounds per cubic foot (pcf), and a resulting R value of R4.0/in. As such, the overall R value of the insulation system is R30. The insulation system in FIG. 66B may have an insulation thickness TINSULATION of 10 inches, a density of only 0.7, and a resulting R value of R3.0/in. As such, the overall R value of the insulation system is also R30. However, since the density of the insulation 58 in the FIG. 66B embodiment is much less than the density of the insulation in the FIG. 66A embodiment, less insulation material is used in the FIG. 66B embodiment as compared to the FIG. 66A embodiment. In the example, 28% less insulation material 58 is used in the FIG. 66B embodiment as compared to the FIG. 66A embodiment, while achieving the same R value. The specific densities and thicknesses referred to in the example of FIGS. 66A and 66B is not meant to limit the application of the concept. The concept illustrated by FIGS. 66A and 66B can be adjusted based on the specific requirements of the building 10. The concept illustrated by FIGS. 66A and 66B can be applied to any of the insulation support and insulation system embodiments disclosed by the present application. In one exemplary embodiment, the insulation in the FIG. 66A insulation system is L77 insulation that is available from Owens Corning. In one exemplary embodiment, the insulation in the FIG. 66B insulation system is an insulation having a density that is less than the density of L77 insulation available from Owens Corning. For example, the insulation 58 of the example illustrated by FIG. 66B has a density that is at least 10% less, at least 20% less at least 30% less, at least 40% less, or at least 50% less than the density of L77 insulation available from Owens Corning.

[0561] FIG. 67 illustrates an exemplary embodiment where insulation support material 30 is pre-installed on a support member or assembly, such as a pre-fabricated truss. The insulation support material can be any of the insulation support materials disclosed by the present application. When the support members or assemblies, such as the illustrated trusses, are erected to form the building structure 10, the insulation support material 30 is necessarily attached to the supports 20 in the correct, pre-installed position. After all of the support members or assemblies, such as the illustrated trusses, are erected, the insulation support materials are assembled together to form the insulation cavities. For example, the insulation support material 30 that is preinstalled on the illustrated trusses may have the form of the interconnecting portions illustrated by FIGS. 10A and 10B. [0562] FIGS. 68 and 69 illustrate an exemplary embodiment of a composite vapor retarder material 6800. The composite vapor retarder material 6800 can take a wide variety of different forms. In the illustrated exemplary

embodiment, the composite vapor retarder material includes

a visually opaque material 6810 having a very low perme-

ability and a visually transparent/translucent material 6820 having a much higher permeability. The resulting composite vapor retarder material has the desired permeability and is transparent/translucent enough to be easily installed onto the support members 20 and to allow blowing in of loose fill insulation to be viewed. The visually opaque material 6810 with low permeability and the visually transparent/translucent material 6820 with high permeability are illustrated as being in a striped configuration. However, the visually opaque material 6810 with low permeability and the visually transparent/translucent material 6820 can be arranged in any pattern of shapes and sizes. The permeability, the sizes, and/or the shapes of the visually opaque material 6810 with low permeability and the visually transparent/translucent material 6820 with high permeability are selected to provide a composite vapor retarder material 6800 with the desired permeability. For example, the permeability of the visually opaque material 6810 with low permeability is lower than the desired permeability and the visually transparent/translucent material 6820 with high permeability has a higher permeability that is higher than the desired permeability, such that the overall composite vapor retarder 6800 has the desired permeability. As a more specific example, the desired permeability may be 1 perm. In this example, the permeability of the visually opaque material 6810 with low permeability is less than 1 perm and the visually transparent/ translucent material 6820 with high permeability has a permeability that is higher than 1 perm, such that the overall composite vapor retarder 6800 has a 1 perm permeability.

[0563] Referring to FIGS. 70 and 71, the present application describes insulation systems as having insulation with a substantially uniform thickness or depth and insulation support cavities that are substantially rectangular or that have substantially flat span segments. FIG. 70 illustrates an example of an insulation system that does not have insulation with a substantially uniform thickness or depth and insulation support cavities that not are substantially rectangular and that do not have substantially flat span segments. FIG. 71 illustrates an example of an insulation system having insulation with a substantially uniform thickness or depth and insulation support cavities that are substantially rectangular and that have substantially flat span segments. In one exemplary embodiment, insulation with a substantially uniform thickness or depth and insulation support cavities that are substantially rectangular and that have substantially flat span segments are quantified in terms of the minimum distance DMIN from the support member 20 to the bottom of the insulation 58 (typically directly below the support member) or the insulation support material 30 and the maximum distance DMAX (typically midway between the support members) from the support member 20 to the bottom of the insulation 58 or the insulation support material 30. In one exemplary embodiment, (DMAX-DMIN)/ DMIN≤0.5 for insulation with a substantially uniform thickness or depth and insulation support cavities that are substantially rectangular and that have substantially flat span segments. In one exemplary embodiment, (DMAX-DMIN)/ DMIN≤0.4 for insulation with a substantially uniform thickness or depth and insulation support cavities that are substantially rectangular and that have substantially flat span segments. In one exemplary embodiment, (DMAX-DMIN)/ DMIN≤0.3 for insulation with a substantially uniform thickness or depth and insulation support cavities that are substantially rectangular and that have substantially flat span segments. In one exemplary embodiment, (DMAX-DMIN)/DMIN≤0.2 for insulation with a substantially uniform thickness or depth and insulation support cavities that are substantially rectangular and that have substantially flat span segments. In one exemplary embodiment, (DMAX-DMIN)/DMIN≤0.1 for insulation with a substantially uniform thickness or depth and insulation support cavities that are substantially rectangular and that have substantially flat span segments.

[0564] FIG. 72 schematically illustrates installation of an exemplary embodiment of a batt-type insulation system 7200. The insulation assembly 7200 includes a first insulation piece 7210 and an optional connecting sheet 7240. The first insulation piece 7210 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 7210 is a fiberglass insulation batt or a foam board having a depth DB that is substantially deeper than the depth DS of the supports 20. In one exemplary embodiment, the insulation piece 7210 is a fiberglass insulation batt or a foam board having a width WB that substantially matches or is slightly larger than the the width WS between the supports 20, but the width WB can be compressed to the width WS between the supports 20. The depth DB is selected based on a desired R value for the insulation assembly.

[0565] In an exemplary embodiment, the first insulation piece 7210 is connected to the connecting sheet 7240. The first insulation piece 7210 can be connected to the connecting sheet 7240 in a wide variety of different ways. For example, the first insulation piece 7210 can be connected to the connecting sheet 7240 by an adhesive. In one exemplary embodiment, the insulation piece 7210 is adhered to the joining sheet 7240 across less than the entire width of the first insulation piece. For example, the first insulation piece 7210 can be joined to the connecting sheet 7240 in the area indicated by arrows 7250.

[0566] The connecting sheet 7240 can take a wide variety of different forms and can be made from a wide variety of different materials. In one exemplary embodiment, the connecting sheet 7240 has a width WS that is much wider than the width WB of the first insulation piece 7210. In one exemplary embodiment, the width WS of the connecting sheet 7240 is greater than the depth DB of the bat minus the depth DS of the support member 20. The wider width WS results in mounting tabs 7260 that extend along the sides 7270 in the area 7271 and from the sides 7270 of the insulation assembly at 7273. The wide mounting tabs allow the insulation pieces 7210 to be connected to the support members 20 to secure the insulation pieces 7210 in place. [0567] In one exemplary embodiment, the connecting sheet 7240 is made from an air and moisture permeable material. For example, the connecting sheet 7240 may be an air and moisture permeable scrim, kraft material, or nonwoven material. The connecting sheet may be any air and moisture permeable material, such as any of the air and moisture permeable materials disclosed in the present patent application. In one exemplary embodiment, the connecting sheet 7240 is made from an air permeable and moisture impermeable material. For example, the connecting sheet 7240 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application.

[0568] FIG. 73 illustrates an exemplary embodiment of a batt-type insulation system 7300 that is substantially the

same as the insulation system 7200 with the addition of a support member insulation component 7302. The insulation component 7302 includes an insulation piece 7310 and an optional connecting sheet 7340. The insulation piece 7310 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 7310 is a fiberglass insulation batt or a foam board having a depth DP that matches or substantially matches the depth DG of the gap G (i.e. from the bottom surface of the support member 20 to the bottom surface of the insulation pieces 7210). In one exemplary embodiment, the insulation piece 7310 is a fiberglass insulation batt or a foam board having a width WP that substantially matches or is slightly larger than the width WG of the gap (i.e. the width of the support 20) between the supports 20, but the width WB can be compressed to the width WG. [0569] In an exemplary embodiment, the insulation piece 7310 is connected to an optional connecting sheet 7340. The insulation piece 7310 can be connected to the connecting sheet 7340 in a wide variety of different ways. For example, the first insulation piece 7310 can be connected to the connecting sheet 7340 by an adhesive.

[0570] The connecting sheet 7340 can take a wide variety of different forms and can be made from a wide variety of different materials. In one exemplary embodiment, the connecting sheet has mounting tabs 7360. The mounting tabs 7360 may include an adhesive that allows the mounting tabs 7360 to adhere to the connecting sheet 7240 and thereby secure the insulation piece 7210 in the gap G and insulate the pocket behind the support member 20.

[0571] In one exemplary embodiment, the connecting sheet 7340 is made from an air and moisture permeable material. For example, the connecting sheet 7340 may be an air and moisture permeable scrim, kraft material, or non-woven material. The joining sheet may be any air and moisture permeable material, such as any of the air and moisture permeable materials disclosed in the present patent application. In one exemplary embodiment, the connecting sheet 7340 is made from an air permeable and moisture impermeable material. For example, the connecting sheet 7340 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application.

[0572] FIG. 74 illustrates possible sag 7400 with the batt-type insulation system of FIG. 72. FIG. 75 illustrates that that the sag 7400 can be reduced or eliminated by pulling the mounting tabs 7260 taut. The mounting tabs 7260 are secured to the support members 20 in the taut condition.

[0573] FIG. 76 illustrates an exemplary embodiment that is similar to the embodiment illustrated by FIG. 72, except the insulation batt 7210 is wider than the space WS between a pair of support members 20. An upper portion 7600 of the insulation piece 7210 can be compressed to fit between the supports 20. A lower portion is not constrained by the support members 20. As such, ends 7603 of the lower portions 7602 are located under or behind support members 20. In one exemplary embodiment, the ends of the lower portions 7602 abut one another to provide continuous or substantially continuous insulation behind or below the support members 20.

[0574] FIG. 77 illustrates an exemplary embodiment that is similar to the embodiment illustrated by FIG. 76, except the connecting sheet 7240 includes tabs 7790. The tabs hold

edges of adjacent batts together. The tabs **7790** can be connected together as described above to reduce or eliminate sag of the insulation batt **7210** and/or to provide a continuous vapor barrier or vapor retarder.

[0575] FIG. 78 illustrates an exemplary embodiment of a batt-type insulation system similar to the system of FIG. 76, except one or more pins 7800 for reducing or eliminating sag are included. The pins 7800 can take a wide variety of different forms. FIG. 78A illustrates an exemplary embodiment where the pin 7800 is a flexible pin. FIGS. 78B and 78C illustrate installation of one or more flexible pins to reduce or eliminate sag of batt-type insulation material. A tool 7850 is used to insert the flexible pin 7800 through the insulation batt 7210 and fasten a connecting end 7810 to the roof sheathing 24. An enlarged head 7820 is attached to the flexible pin 7800 against the connecting sheet 7240 to hold the batt 7210 up and thereby prevent or reduce sagging of the insulation bat 7210. The tool is withdrawn from the bat **7210** and is used to install additional flexible pins **7800**. Any of the pins described by the present application can be used. [0576] FIGS. 79-81 illustrate an exemplary embodiment of an insulation system 7900 that includes batt-type insulation 8000 and loose-fill-type insulation 8100 (see FIG. 81). This system entails use of interconnecting, substantially rigid members and/or flexible material such as netting, for example, the netting 30 described in the embodiments illustrated by FIGS. 2A, 2B and 3-6 to form box-shaped insulation cavities. The interconnecting material may take a wide variety of different forms and may take a wide variety of different configurations. For example, rigid interconnecting material may comprise cardboard, plastic, and the like. The netting material 30 may comprise a plastic film, a mesh, combinations of plastic film and mesh, and the like. In one exemplary embodiment, the netting material may be a breathable material, a vapor barrier, a vapor retarder, and/or an air barrier material.

[0577] Referring first to FIG. 79, support members 20 and sheathing panel 24 are illustrated. Interconnecting portions 30 are positioned adjacent to the support member 20 and fastened with one or more fasteners. However, as noted above, the netting, such as the interconnecting portion 30 can be connected to any portion of the support member 20 and/or to the roof sheathing 24. Interconnecting portion 30 has an optional first tab 31 spaced apart from an optional second tab (See FIG. 10A). Referring to FIG. 80, the optional first tabs 31 are configured for attachment to the second tabs or ends of the interconnection portions 30, thereby forming box-shaped insulation cavities. In the exemplary embodiment illustrated by FIG. 80, the second tabs are omitted and the first tabs 31 are connected to ends 1000 of the interconnecting portions.

[0578] Referring to FIGS. 79 and 80, an insulation batt 8000 is optionally attached to each of the interconnecting portions 30. In a anther exemplary embodiment, the insulation bat 8000 is separate from the interconnecting portions. The insulation batt 8000 may be any fiberglass insulation batt or may be a foam board.

[0579] Referring now to FIG. 80, after the interconnecting portion 30 has been fastened to the support member 20, the interconnecting portion 30 is bent or folded at a point below the first tab and a span segment 36 is rotated in a counterclockwise direction such that the end 1000 or a second tab aligns with the first tab 31 of another interconnecting portion. In the example illustrated by FIGS. 79 and 80, the

insulation batt **7910** is attached to the span segment **36**. The insulation batt **7910** is rotated with the span segment **36**. The tabs (or tab and end) are attached together with any desired fastener.

[0580] Referring again to FIG. 80, the interconnecting portion 30 and the span segment 36 form an approximate right angle around the insulation batt 8000. Also, the span segment 36 forms an approximate right angle with the side panel segment 34 of another interconnecting portion 30. As shown in FIG. 80, a box-shaped insulation cavity 50 that is partially filled with the insulation batt 8000 is formed.

[0581] Referring again to FIG. 80, insulation cavities 50 have a depth D400. The depth D400 is defined as the total of the depth D402 of the support members 20 and the widths W9 of the material that extends below the support members. The widths W9 are adjustable such as to result in different depths D400 of the insulation cavities.

[0582] As further shown in FIG. 80, an insulation pocket 52 is formed as a portion of insulation cavity 50 and located under support member. Referring to FIG. 81, distributing loosefill insulation material 8110 into the insulation cavities results in loosefill insulation material filling the insulation pockets and the portions of the cavity 50 that is not filled by the insulation batt 8000. As the filled insulation pockets are located below the support members, the filled insulation pockets are configured to insulate the support members.

[0583] FIG. 82 illustrates another exemplary embodiment of an insulation system 8200 that is similar to the embodiment illustrated by FIGS. 79-81, except the insulation batt 8000 fills the space between the support members 20. For example, the insulation batt 8000 has a width that is the same or wider than the width WS of the space between the support members 20. The insulation batt 8000 may be separate from the interconnecting portion 30 and may be placed between the support members 20 before span segment 36 is folded into place. Or, the insulation batt 8000 may be attached to the interconnecting portion 30 and folded into the space between the support members 20. As further shown in FIG. 82, a small insulation pocket 52 is formed under each support member 20. Loosefill insulation is distributed into the small insulation pocket 52. As the filled insulation pockets 52 are located below the support members, the filled insulation pockets 52 insulate the support members 20.

[0584] FIG. 83 illustrates an exemplary embodiment of an insulation system 8300 that is similar to the insulation system 7900 illustrated by FIGS. 79-81. In the exemplary embodiment illustrated by FIG. 83, the interconnecting portions 30 are positioned spaced apart from the support member 20 and fastened roof sheathing 24 with one or more fasteners. This configuration provides a cavity 50 with space 8350, 8352 on each side of the support member 20 and a pocket 52 below the support member, between the spaces 8350, 8352.

[0585] Referring to FIG. 83, an insulation batt 8000 is optionally attached to each of the interconnecting portions 30. In a another exemplary embodiment, the insulation batt 8000 is separate from the interconnecting portions. The insulation batt 8000 may be any fiberglass insulation batt or may be a foam board. A box-shaped insulation cavity 50 that is partially filled with the insulation batt 8000 is formed.

[0586] As further shown in FIG. 83, the insulation pocket 52 is formed as a portion of insulation cavity 50 and located under support member. Distributing loosefill insulation material into the space 8352 of the insulation cavities results

in loosefill insulation material filling the insulation pocket 52. As the filled insulation pockets 52 are located below the support members, the filled insulation pockets are configured to insulate the support members.

[0587] FIGS. 84 and 85 illustrate an exemplary embodiment of a batt-type insulation system that is similar to the embodiment illustrated by FIGS. 79-81, except insulation batts 8400, 8402 are provided that are configured to fill or substantially fill the insulation cavity 50. The batts 8400, 8402 can be configured to fill or substantially fill the insulation cavity in a wide variety of different ways. In the exemplary embodiment illustrated by FIGS. 84 and 85, the batt 8400 is configured to fill or substantially fill the space between the support members 20 (i.e. the batt 8400 has the same width or is wider than the distance WS between the support members 20 and the batt 8400 has a thickness that is substantially the same as the depth D5 of the support members). The batt 8402 is configured to fill or substantially fill the space in the cavity 50 that is below the support members 20 (i.e. the batt 8402 has the same width or is wider than the center to center distance space WS2 between the support members 20 and the batt 8402 has a thickness that is substantially the same as the depth of the cavity below the support members 20).

[0588] Referring to FIG. 84, in one exemplary embodiment, the batts 8400, 8402 are attached to the span portion 36 of the interconnecting web 30. Referring to FIG. 85, the span portion 36 is folded up and attached to an adjacent web 30 as described above. This folding positions the batt 8400 between the support members 20 and the batt 8402 below the support members 20. In this manner, the batts 8400, 8402 completely or substantially completely fill the cavity 50, including the portion 52 below the support member 20.

[0589] FIGS. 86-88 illustrate an exemplary embodiment of an insulation system 8600 that includes batt-type insulation and loose-fill-type insulation. The exemplary embodiment illustrated by FIGS. 86-88 is similar to the embodiment illustrated by FIGS. 84 and 85, except the batt 8400 is replaced with loose-fill insulation 8700. In the exemplary embodiment illustrated by FIGS. 86-88, the web 30 is attached to the support members 20 before the sheathing panels 24 are attached to the support members 20. The batt **8402** is configured to fill or substantially fill the space in the cavity 50 that is below the support members 20 (i.e. the batt 8500 has the same width or is wider than the center to center distance space WS2 between the support members 20 and the batt 8402 has a thickness that is substantially the same as the depth of the cavity below the support members 20). [0590] Referring to FIG. 86, in one exemplary embodiment, the batt 8402 is optionally attached to the span portion 36 of the interconnecting web 30. Referring to FIG. 85, the span portion 36 is folded up and attached to an adjacent web 30 as described above. In another exemplary embodiment, the batt 8500 is placed in the cavity 50 after the span portion 36 is folded up (i.e., from above the supports 20). Referring to FIG. 87, loosefill insulation 8700 is blown into the cavity 50 on top of the batt 8402 from above the roof structure. In another exemplary embodiment a batt 8400 is placed on top of the batt 8402 from above the roof structure, instead of the illustrated loose-fill insulation. In an exemplary embodiment, the batt 8402 and loosefill insulation completely or substantially completely fill the cavity 50, including the portion 52 below the support member 20. Less insulation can be provided in the cavity, depending on the desired

insulation value. Referring to FIG. **88**, in the illustrated exemplary embodiment, the roof sheathing **24** is attached to the support members after the installation of the insulation system **8600**.

[0591] FIGS. 86A and 87A illustrate an exemplary embodiment of an expandable insulation system 8650. The expandable insulation 8650 is similar to the exemplary embodiment illustrated by FIGS. 86-88, except the insulation bat 8402 is replaced with expandable insulation 8750 and the loose-fill insulation is omitted. In the exemplary embodiment illustrated by FIGS. 86A and 87A, the web 30 can be attached to the support members 20 before or after the sheathing panels 24 are attached to the support members 20. The expandable insulation 8750 is configured to fill or substantially fill the space in the cavity 50.

[0592] The expandable insulation 8750 can be made from a wide variety of different materials and can have a wide variety of different configurations. For example, the expandable insulation 8750 can be a compressed fiberglass insulation bat, expanding foam, or any other expanding insulation material. In the illustrated embodiment, a compressed expandable insulation 8750, such as a compressed fiberglass insulation blanket, is configured to fill or substantially fill the space below the support members 20 (i.e. the compressed expandable insulation 8750 has the same width as the width WS2 of the support members 20 and the same thickness that is substantially the same as the depth between the support members and the web 30). However, the compressed expandable insulation 8750 can have any configuration.

[0593] Referring to FIG. 87A, the expandable insulation 8750 is configured to expand as indicated by arrows 8752 and fill or substantially fill the space in the cavity 50.

[0594] Referring to FIG. 86A, in one exemplary embodiment, the expandable insulation 8750 is optionally attached to the span portion 36 of the interconnecting web 30. The span portion 36 is folded up and attached to an adjacent web 30 as described above.

[0595] FIGS. 89 and 90 illustrate an exemplary embodiment of an insulation system 8900 that includes batt-type insulation and loose-fill-type insulation. The insulation system 8900 is similar to the embodiment illustrated by FIGS. 86-88, except an insulation batt 8400 is positioned between the support members 20, instead of an insulation batt 8402 below the support members 20. In the exemplary embodiment illustrated by FIGS. 89 and 90, the web 30 is attached to the support members 20 before the sheathing panels 24 are attached to the support members 20. The batt 8400 is configured to fill or substantially fill the space in the cavity 50 that is between the support members 20 (i.e. the bat 8400 has the same width or is wider than the distance WS between the support members 20 and the batt 8400 has a thickness that is substantially the same as the depth of the support members 20).

[0596] Referring to FIG. 89, the batt 8400 is optionally attached to the interconnecting web 30 adjacent to the support member 20. Referring to FIG. 90, the span portion 36 is folded up and attached to an adjacent web 30 as described above. Referring to FIG. 90, loosefill insulation 8700 is blown into the cavity 50 below of the batt 8400. In an exemplary embodiment, the bat 8400 and loosefill insulation completely or substantially completely fill the cavity 50, including the portion 52 below the support member 20. Less insulation can be provided in the cavity, depending on the desired insulation value.

[0597] FIGS. 89A, 89B, 89C, 89D, 90A, and 90B illustrate further exemplary embodiments of expandable insulation systems 8950. In the embodiments illustrated by FIGS. 89A, 89B, 89C, 89D, 90A, and 90B the expandable insulation 8750 is restrained by a restraining device 8752. The restraining device 8752 can take a wide variety of different forms. In the examples illustrated by FIGS. 89A and 89B, the restraining device 8752 is a removable flap. When the removable flap is removed, for example by pulling and breaking a connection 8753, the expandable insulation expands as illustrated by FIGS. 90A and 90B respectively. In the examples illustrated by FIGS. 89C and 89D, the restraining device 8752 is the web 30 or a portion of the web 30. When the web 30 releases the expandable insulation 8750, for example by pulling and breaking a connection 8754, the expandable insulation expands as illustrated by FIGS. 90A and 90B respectively. Referring to FIGS. 89A-89D, in one exemplary embodiment, the expandable insulation 8750 is optionally attached to the side panel portion 34 of the interconnecting web 30. The side panel portion 34 is attached to a support member 20 as described above.

[0598] In the exemplary embodiments illustrated by FIGS. 90A and 90B, the web 30 can be attached to the support members 20 before or after the sheathing panels 24 are attached to the support members 20. The expandable insulation 8750 is configured to fill or substantially fill the space in the cavity 50. The expandable insulation 8750 can be made from a wide variety of different materials and can have a wide variety of different configurations. For example, the expandable insulation 8750 can be a compressed fiberglass insulation batt (FIG. 90A) or batts (FIG. 90B), expanding foam, or any other expanding insulation material. Referring to FIGS. 90A and 90B, the expandable insulation 8750 is configured to expand as indicated by arrows 8752 and fill or substantially fill the space in the cavity 50, including the pocket 52 that is below the support members 20.

[0599] FIG. 91 illustrates an exemplary embodiment a batt-type insulation assembly 9100 that is installed from above support members 20 before installation of roof deck material 24. The insulation assembly 9100 includes a first insulation piece 9210 and a mounting sheet 9240. The first insulation piece 9210 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 9210 is a fiberglass insulation batt or a foam board having a depth DB that is substantially deeper than the depth DS of the supports 20. In one exemplary embodiment, the insulation piece 9210 is a fiberglass insulation batt or a foam board having a width WB that substantially matches or is slightly larger than the width WS between the supports 20, but the width WB can be compressed to the width WS between the supports 20. The depth DB is selected based on a desired R value for the insulation assembly.

[0600] In an exemplary embodiment, the first insulation piece 9210 is connected to the mounting sheet 9240. The first insulation piece 9210 can be connected to the mounting sheet 9240 in a wide variety of different ways. For example, the first insulation piece 9210 can be connected to the mounting sheet 9240 by an adhesive. In one exemplary embodiment, the insulation piece 9210 is adhered to the mounting sheet 9240 across less than the entire width of the first insulation piece. For example, the first insulation piece 9210 can be joined to the mounting sheet 9240 in the area indicated by arrows 9250.

[0601] The mounting sheet 9240 can take a wide variety of different forms and can be made from a wide variety of different materials. In one exemplary embodiment, the mounting sheet 9240 has a width that is wider than the width of the first insulation piece 9210, such that mounting tabs 9242 are formed. The mounting tabs 9242 are attached on top of the support members 20 to mount the first insulation piece 9210 between the support members.

[0602] The mounting sheet 9240 may be made from an air barrier material to provide an air seal at the roof deck 24 or the mounting sheet may be made from an air and moisture permeable material. For example, the mounting sheet 9240 may be an air and moisture permeable scrim, kraft material, or non-woven material. The mounting sheet may be any air and moisture permeable material, such as any of the air and moisture permeable materials disclosed in the present patent application. In one exemplary embodiment, the mounting sheet 9240 is made from an air permeable and moisture impermeable material. For example, the connecting sheet 9240 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application.

[0603] FIG. 92 illustrates an exemplary embodiment of an insulation assembly 9200 that is similar to the insulation assembly 9100, except an interior side 9280 of the insulation material 9210 includes a vapor retarder or vapor barrier material 9290. In one exemplary embodiment, the material 9290 is an air permeable and moisture impermeable material. For example, the material 9290 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application. In the illustrated embodiment, the material 9290 includes tabs 9292 that can be connected together to form a continuous vapor retarder or vapor barrier.

[0604] FIG. 93 illustrates an exemplary embodiment a batt-type insulation assembly 9300 that is installed from above support members 20 before installation of roof deck material 24. The insulation assembly 9300 includes a first insulation piece 9310 and a mounting sheet 9340. The first insulation piece 9310 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 9310 is a fiberglass insulation batt or batts having a first portion 9312 that is sized to closely fit between the supports 20 and a second portion 9322 that fills the center to center width of the supports 20. The first portion 9312 has a depth that matches or substantially matches the depth DS of the supports 20. The second portion 9322 extends below the supports 20. The overall depth DB of the first insulation piece 9310 is selected based on a desired R value for the insulation assembly.

[0605] In an exemplary embodiment, the first insulation piece 9310 is connected to the mounting sheet 9340. The first insulation piece 9310 can be connected to the mounting sheet 9340 in a wide variety of different ways. For example, the first insulation piece 9310 can be connected to the mounting sheet 9340 by an adhesive. In one exemplary embodiment, the insulation piece 9310 is adhered to the mounting sheet 9340 across less than the entire width of the first insulation piece. For example, the first insulation piece 9310 can be joined to the mounting sheet 9340 in the area indicated by arrows 9350.

[0606] The mounting sheet 9340 can take a wide variety of different forms and can be made from a wide variety of different materials. In one exemplary embodiment, the mounting sheet 9340 has a width that is wider than the width of the first insulation piece 9310, such that mounting tabs 9342 are formed. The first insulation piece 9310 is inserted between the supports 20 as indicated by arrow 9360 and the second portion 9322 is compressed as indicated by arrows 9362 to pass the supports. The second portions 9322 expand back out and fill the area below the supports 20. The mounting tabs 9342 are optionally attached on top of the support members 20 to secure the first insulation piece 9310 to the support members 20. The roof deck 24 is then installed on top of the insulation pieces 9310. The installation of the roof deck may secure the mounting tabs in place, without having to separately attach the mounting tabs 9342 to the support members.

[0607] The mounting sheet 9340 may be made from an air barrier material to provide an air seal at the roof deck 24 or the mounting sheet may be made from an air and moisture permeable material. For example, the mounting sheet 9240 may be an air and moisture permeable scrim, kraft material, or non-woven material. The mounting sheet may be any air and moisture permeable materials, such as any of the air and moisture permeable materials disclosed in the present patent application. In one exemplary embodiment, the mounting sheet 9340 is made from an air permeable and moisture impermeable material. For example, the mounting sheet 9340 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application.

[0608] FIG. 94 illustrates an exemplary embodiment of an insulation assembly 9400 that is similar to the insulation assembly 9300, except an interior side 9380 of the insulation material 9310 includes a vapor retarder or vapor barrier material 9490. In one exemplary embodiment, the material 9490 is an air permeable and moisture impermeable material. For example, the material 9490 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application. In the illustrated embodiment, the material 9490 includes tabs 9492 that can be connected together to form a continuous vapor retarder or vapor barrier.

[0609] FIG. 95 illustrates an exemplary embodiment a batt-type insulation assembly 9500 that is installed from above support members 20 before installation of roof deck material 24. The insulation assembly 9500 includes a first insulation piece 9510 and a mounting sheet 9540. The first insulation piece 9510 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 9510 is sized to fill the center to center width of the supports 20. The insulation piece 9510 can be compressed, so that the insulation piece 9510 fits between the supports 20 and extends below and fills the volume below the supports 20. The depth of the first insulation piece 9510 is selected based on a desired R value for the insulation assembly.

[0610] In an exemplary embodiment, the first insulation piece 9510 is connected to the mounting sheet 9540. The first insulation piece 9510 can be connected to the mounting sheet 9340 in a wide variety of different ways. For example, the first insulation piece 9510 can be connected to the mounting sheet 9540 by an adhesive. In one exemplary

embodiment, the insulation piece 9510 is adhered to the mounting sheet 9540 across less than the entire width of the first insulation piece. For example, the first insulation piece 9510 can be joined to the mounting sheet 9540 in the area indicated by arrows 9550.

[0611] The mounting sheet 9540 can take a wide variety of different forms and can be made from a wide variety of different materials. In one exemplary embodiment, the mounting sheet 9540 has a width that is wider than the width of the first insulation piece 9510, such that mounting tabs 9542 are formed. The first insulation piece 9510 is inserted between the supports 20 as indicated by arrow 9560 and is compressed as indicated by arrows 9562 to pass the supports 20. The bottom portion of the insulation piece 9510 expands back out and fills the area below the supports 20. The mounting tabs 9542 are optionally attached on top of the support members 20 to secure the first insulation piece 9510 to the support members. The roof deck 24 is then installed on top of the insulation pieces 9510. The installation of the roof deck may secure the mounting tabs in place, without having to separately attach the mounting tabs 9542 to the support members.

[0612] The mounting sheet 9540 may be made from an air barrier material to provide an air seal at the roof deck 24 or the mounting sheet may be made from an air and moisture permeable material. For example, the mounting sheet 9540 may be an air and moisture permeable scrim, kraft material, or non-woven material. The mounting sheet may be any air and moisture permeable material, such as any of the air and moisture permeable materials disclosed in the present patent application. In one exemplary embodiment, the mounting sheet 9540 is made from an air permeable and moisture impermeable material. For example, the connecting sheet 9540 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application

[0613] FIG. 96 illustrates an exemplary embodiment of an insulation assembly 9600 that is similar to the insulation assembly 9500, except an interior side 9680 of the insulation material 9610 includes a vapor retarder or vapor barrier material 9690. In one exemplary embodiment, the material 9690 is an air permeable and moisture impermeable material. For example, the material 9690 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application. In the illustrated embodiment, the material 9690 includes tabs 9692 that can be connected together to form a continuous vapor retarder or vapor barrier.

[0614] FIGS. 97 and 98 illustrate an exemplary embodiment of an insulation support system illustrated by FIGS. 10A and 10B, installed from above support members 20 before installation of roof deck material. Generally, this method entails use of interconnecting, substantially rigid members and/or flexible material such as netting, for example, the netting 30 described in the embodiments illustrated by FIGS. 2A, 2B and 3-6 to form box-shaped insulation cavities. The interconnecting material may take a wide variety of different forms and may take a wide variety of different configurations. For example, rigid interconnecting material may comprise cardboard, plastic, and the like. The netting material 30 may comprise a plastic film, a mesh, combinations of plastic film and mesh, and the like. In one

exemplary embodiment, the netting material may be a breathable material, a vapor barrier, a vapor retarder, and/or an air barrier material.

[0615] Referring first to FIG. 97, support members 20 and interconnecting portions 430a, 430b and 430c are illustrated. Part of interconnection portion 430a is positioned adjacent to the major face 442b of support member 20 and fastened to the support member 20 with one or more fasteners 467a. In a similar manner, interconnection portions 430b, 430c are fastened to support members 20. In an exemplary embodiment, the interconnecting portions 430a, 430b, 430c are installed before installation of the roof deck material 24.

[0616] Interconnecting portion 430a has an optional first tab 431a spaced apart from an optional second tab 433a. Similarly, interconnecting portions 430b, 430c may have optional first tabs 431b, 431c spaced apart from optional second tabs 433b, 433c. As will be discussed in more detail below, the optional first tabs 431a-431c are configured for attachment to the second tabs 433a-433c, thereby forming box-shaped insulation cavities. In one exemplary embodiment, the second tabs 433a-433c are omitted and the first tabs 431a-431c are connected to ends of the interconnecting portions 430a-430c.

[0617] Referring now to FIG. 98, after the first interconnecting portion 430a has been fastened to the support member 420c, the first interconnecting portions 430a is bent or folded at a point below the first tab 431a and a span segment 436a is rotated in a counterclockwise direction such that second tab 433a aligns with the first tab 431b of the second interconnecting portion 430b. The second tab 433a and the first tab 431b are attached together with any desired fastener (not shown). In a similar manner, after the second interconnecting portion 430b is fastened to the support member 420d, the second interconnecting portion 430b is bent or folded at a point below the first tab 431b and a span segment 436b is rotated in a counterclockwise direction such that second tab 433b aligns with the first tab 431c of the third interconnecting portion 430c. The second tab 433b and the first tab 431c are attached together with any desired fastener (not shown). As noted above, the second tabs 433a-433c can be omitted and the first tabs 431a-431c can be connected to ends 1000 of the interconnecting portions 430a-430c.

[0618] Referring again to FIG. 98, when made from a rigid material, interconnecting portion 430a is bent such that a side panel segment 434a and the span segment 436a form an approximate right angle with each other. Also, the span segment 436a forms an approximate right angle with the side panel segment 434b of the second right member 430b. As shown in FIG. 98, the approximate right angles formed between the side panels segments 434a, 434b with the span segment 436a defines a box-shaped insulation cavity 450a. In a repetitive manner, the interconnecting portions 430b, 430c are bent or folded such that first tabs 431b, 431c are connected to corresponding second tabs or ends.

[0619] In one exemplary embodiment the interconnecting portions shown in FIGS. 97 and 98, are formed from a rigid material structural cardboard material. The rigid material, such as structural cardboard material is configured to retain the box-like cross-sectional shape of the insulation cavity after the insulation, such as loosefill insulation material, an insulation bat, or other type of insulation, is placed in the formed insulation cavities from above the support members. In other embodiments, the interconnecting portions can be formed from other materials, such as the non-limiting

example of reinforced fiberglass or polymeric-based materials sufficient to form a box-shaped insulation cavity. In still other embodiments, the interconnecting portions 430a-430c can be formed from flexible materials, such as for example, the netting 30 illustrated in FIG. 2A and described above. In this embodiment, the tabs of the flexible members 430a-430c can be fastened together in the same, or similar, manner as illustrated in FIG. 5 and described above. In some exemplary embodiments, the interconnecting portions are made from more than one different material. For example, the span segments 436 may be made from a flexible material and the side panel segments 434 may be made from a rigid material. As another example, the span segments 436 may be made from an air barrier material, a vapor barrier material, and/or a vapor retarder material, while the side panel segments 434 are made from a breathable material, an open netting, or a mesh.

[0620] Referring again to FIG. 98, insulation cavities 450a, 450b have a depth D400. The depth D400 is defined as the total of the depth D402 of the support members 420c-420e and the widths W9 of the material that extends below the support members. The widths W9 are adjustable such as to result in different depths D400 of the insulation cavities.

[0621] As further shown in FIG. 98, a first insulation pocket 452a is formed as a portion of insulation cavity 450a and located under support member 420b. Similarly, other insulation pockets are formed as portions of the insulation cavities and are located under the support members. Filling the insulation cavities with insulation, such as loosefill insulation material and/or insulation batts, results in insulation material filling the insulation pockets. As the filled insulation pockets are located below the support members, the filled insulation pockets are configured to insulate the support members.

[0622] Referring again to FIGS. 97 and 98, the boxed netting insulation system provides the same advantages a uniform insulation cavity depth, the depth of the insulation cavities can be adjusted to provide different depths of the loosefill insulation material and insulation pockets positioned below the support members are filled with insulation material

[0623] FIG. 99 illustrates an exemplary embodiment of an insulation support system 9900 that is installed from above support members 20 before installation of roof deck material to provide an insulation cavity 9950. The insulation cavity 9950 can be formed in a wide variety of different ways. In the exemplary embodiment illustrated by FIG. 99, the insulation cavity 9950 is provided by attaching a support member or material 10030 from above the roof sheathing 24.

[0624] The support member or material 10030 can take a wide variety of different forms. The support member or material 10030 can be made from any of the materials disclosed by the present application. The support member or material 10030 can be rigid or substantially rigid. In the exemplary embodiment illustrated by FIG. 99, the insulation cavity 9950 is formed in place between a pair of support members 20. In another exemplary embodiment, the support member 10030 is preformed and sized to fit between pairs of support members. In an exemplary embodiment, the support member or material 10030 is a vapor retarder or a vapor barrier.

[0625] In the example illustrated by FIG. 99, the support material 10030 is flexible. In the exemplary embodiment

illustrated by FIG. 99, the support material 10030 is placed over support members 20 prior to the sheathing 24. The support material 10030 can be placed over the support members 20 in a wide variety of different ways. In the example illustrated by FIGS. 100A and 100B, the support material 10030 is rolled out along the length of the support members. The support material 10030 illustrated by FIGS. 100A and 100B has a fixed width WR. The width WR is selected to span two or more support members 20 and droop between the support members 20 to form the insulation cavities 9950. In the example illustrated by FIGS. 100A and 100B, width WR is selected to span three support members 20 and droop to form two insulation cavities 9950.

[0626] In the example illustrated by FIGS. 100A and 100B, the support material 10030 includes an optional alignment aid 10040. The alignment aid 10040 can take a wide variety of different forms. In the example illustrated by FIGS. 100A and 100B, the alignment aid 10040 is a line that is lined up with one or more of the supports 20 to properly align the support material 10030 on the supports. One line is illustrated in FIGS. 100A and 100B to align the center of the support material 10030 with a center support 20. However, any number of lines can be included.

[0627] In the example illustrated by FIGS. 100C and 100D, the support material 10030 is rolled out transverse to the length of the support members 20. In the example illustrated by FIGS. 100C and 100D, the support material 10030 includes optional alignment aids 10040. In the example illustrated by FIGS. 100C and 100D, the alignment aids 10040 are lines that are lined up with the supports 20 to properly align the support material 10030 on the supports. The lines are spaced to set the depth of droop between the support members 20 to form the insulation cavities 9950. In one exemplary embodiment, the attachment of the sheathing 24 attaches the support material 10030 to the support members 20.

[0628] In the example illustrated by FIGS. 100A and 100B, the support material 10030 is rolled out along the length L of the support members 20 and includes pleats 10070. The support material 10030 illustrated by FIGS. 100A and 100B has a fixed overall width WR (see FIG. 100B) including the width of the unfolded material of the pleats 10070. The width WR and the size of the pleats 10070 are selected such that the width of the roll WROLL matches or substantially matches the span of three support members 20 (illustrated by FIG. 100E), the span of four support members, or the span of more than four support members. The number of pleats 10070 is one less than the number of support members 20 (i.e. two cavities are between three support members, three cavities are between four support members, etc.). The overall width WR including the width of the unfolded material of the pleat 10070 is selected to provide the predetermined droop between the support members 20 to form the insulation cavities 9950 (see FIG. 99). In the example illustrated by FIGS. 100E and 100F, width WR and the size of the pleats is selected to align the ends 10076 of the roll with the outside two of the illustrated three support members 20 and droop to form two insulation cavities 9950. In the example illustrated by FIGS. 100E and 100F, the support material 10030 includes an optional alignment aid 10040. The alignment aid 10040 can take a wide variety of different forms. In the example illustrated by FIGS. 100E and 100F, the alignment aid 10040 is a line that is lined up with one or more of the supports 20 to properly

align the support material 10030 on the supports. One line is illustrated in FIGS. 100E and 100F to align the center of the support material 10030 with a center support 20. However, any number of lines can be included.

[0629] FIGS. 101 and 102 illustrate an exemplary embodiment of an insulation support system 10100 that is similar to the insulation support system 9900, but includes tabs 38. The tabs 38 are attached together as illustrated by FIG. 102 to provide pockets 52 below the support members. The tabs 38 are fastened together along the length L1 (see FIG. 100A) of the support member 20. Fastening of the tabs 38 brings portions of the insulation cavities 9950 substantially together, and imparts a tension on the support material 10030. The tension imparted on support material 10030 results in boxlike cross-sectional shapes that are substantially retained after insulation, such as loosefill insulation, insulation batts and/or other types of insulation are provided in the insulation cavities.

[0630] In one exemplary embodiment, the tabs 38 are fastened together at intervals in a range of about 2.0 inches to about 8.0 inches. In other embodiments, the tabs 38 can be fastened together at intervals less than about 2.0 inches or more than about 8.0 inches. The tabs 38 can be fastened together using a plurality of fasteners (not shown). The fasteners can be staples or other structures and devices, such as the non-limiting examples of adhesives, clips, clamps, zip-lock type fastening arrangements, heat welding, and Velcro. These fastening devices can be used in any of the embodiments disclosed by the present application. In one exemplary embodiment, the fasteners are arranged such that a shear force is applied to the connection by the blown-in insulation, instead of a peel force. For example, when the tabs 38 are adhered together, the tabs and/or the adhesive are configured such that, insulation blown into the cavity applies a predominantly shear force to the adhesive connection, instead of peeling force. This can be done in a wide variety of different ways. For example, the tabs and/or the adhesive can be configured in the same or similar manner as described with respect to the hook and loop connection in FIGS. 189-196. That is, the hook and loop connections in FIGS. 189-196 can be replaced with an adhesive connection.

[0631] After the tabs 38 have been fastened together and a tension has been established, box-like cross-sectional shaped insulation cavities 50 are formed. Insulation pockets 52 are formed as a portion of insulation cavities 50 and are located under the support members 20.

[0632] Loosefill insulation, insulation batts and/or other types of insulation are provided in the insulation cavities. In the example illustrated by FIG. 102A, the insulation cavities 9950 are filled with loose fill insulation from above the supports 50. In one exemplary embodiment, a distribution hose 56 is attached to a blowing insulation machine (not shown) and configured to convey conditioned loosefill insulation material 8700 from the blowing insulation machine to the insulation cavity 50. Any desired distribution hose 56 and blowing insulation machine can be used sufficient to convey conditioned loosefill insulation material 8700 from the blowing insulation machine to the insulation cavity 50. Distribution of the loosefill insulation material 8700 into the insulation cavity 50 continues until the insulation cavity 50 is filled.

[0633] Loosefill insulation material 8700 can be any desired loosefill insulation material, such as a multiplicity of discrete, individual tuffs, cubes, flakes, or nodules. The

loosefill insulation material **8700** can be made of glass fibers or other mineral fibers, and can also be polymeric fibers, organic fibers or cellulose fibers. The loosefill insulation material **8700** can have a binder material applied to it, or it can be binderless. In one exemplary embodiment, distributing the loosefill insulation material **8700** into the insulation cavities **50** results in loosefill insulation material filling the insulation pockets **52**. As the filled insulation pockets **52** are positioned below the support members **20**, the filled insulation pockets **52** are configured to insulate the support members **20**.

[0634] FIGS. 103A and 103B illustrate an exemplary embodiment of a batt-type insulation system 10300 that is installed from above roof deck support members 20 before installation of roof deck material. The batt-type insulation system 10300 includes support material 10330 and insulation batts 10350. The support material 10330 can take a wide variety of different forms. The support material 10330 can be any of the materials disclosed by the present application. The batts 10350 are attached to the support material 10330. Referring to FIG. 103A, the batts 10350 are attached to the support material 10330 at a predetermined spacing. In the exemplary embodiment, the width WB of the batts, the thickness TB of the batts, the spacing SB between the batts, and the length LS of the support material 10330 that extends from the batts are selected such that the batts 10350 and the support material 10330 can be moved from the position illustrated by FIG. 103A to the position illustrated by FIG. 103B. In the position illustrated by FIG. 103B, the batts 10350 are positioned below the supports and fill the space below the supports. In the illustrated embodiment, the support material 10330 spans three support members 20 and two batts 10350 are included. However, the support material 10330 can span any number of support members 20 and any number of batts 10350 can be included. In the exemplary embodiment illustrated by FIGS. 103A and 103B, multiple insulation cavities 50 are formed by a single piece of support material 10330.

[0635] In the exemplary embodiment illustrated by FIGS. 103A and 103B, the web 30 is attached to the support members 20 before the sheathing panels 24 are attached to the support members 20. The batt 10350 is configured to fill or substantially fill the space in the cavity 50 that is below the support members 20 (i.e. the batt 10350 has the same width or is wider than the center to center distance space WS2 between the support members 20. In the illustrated exemplary embodiment, the batt 10350 is attached to the support material 10330. In another exemplary embodiment, the batt 10350 is separate from the support material 10330 and is placed in the cavity 50 on top of the support material. Additional insulation, such as loosefill insulation, another batt, a foam board, or another type of insulation is provided in the cavity 50 on top of the batt 10350 from above the roof structure. In an exemplary embodiment, the batt 10330 additional insulation completely or substantially completely fill the cavity 50, including the portion 52 below the support member 20.

[0636] FIGS. 104A and 104B illustrate an exemplary embodiment of a batt-type insulation system 10400 that is installed from above roof deck support members 20 before installation of roof deck material. The batt-type insulation system 10400 includes support material 10430, insulation batts 10450, and insulation batts 10452. The support material 10430 can take a wide variety of different forms. The

support material 10430 can be any of the materials disclosed by the present application. The batts 10450 are attached to the support material 10330. The batts 10452 are attached to the batts 10452. In the illustrated embodiment, the batts 10452 are centered on the batts 10450. Referring to FIG. 104A, the batts 10450 and the batts 10452 are attached to the support material 10330 at a predetermined spacing. In the exemplary embodiment, the width WB1 of the batts 10450, the thickness TB1 of the batts 10450, the width WB2 of the batts 10452, the thickness TB2 of the batts 10452, the spacing SB between the batts, and the length LS of the support material 10330 are selected such that the batts 10450, 10452 and the support material 10430 can be moved from the position illustrated by FIG. 104A to the position illustrated by FIG. 104B. In the position illustrated by FIG. 103B, the batts 10450 are positioned below the supports and fill the space below the supports and the batts 10452 fill the space between the supports 20. In the illustrated embodiment, the support material 10430 spans three support members 20, and two batts 10450, and two batts 10452 are included. However, the support material 10430 can span any number of support members 20, any number of batts 10450 can be included, and any number of batts 10452 can be included.

[0637] The batt 10450 is configured to fill or substantially fill the space in the cavity 50 that is below the support members 20 (i.e. the batt 10350 has the same width or is wider than the center to center distance space WS1 of the support members 20). The batt 10452 is configured to fill or substantially fill the space in the cavity 50 that is between the support members 20 (i.e. the batt 10452 has the same width or is wider than the distance WS1 between the support members 20). In an exemplary embodiment, the batts 10450, 10452 completely or substantially completely fill the cavity 50, including the portion 52 below the support member 20. [0638] FIGS. 105A and 105B illustrate an exemplary embodiment of a batt-type insulation system 10500 that is installed from above roof deck support members 20 before installation of roof deck material. The batt-type insulation system 10500 includes support material 10530, and insulation batts 10550, each having a lower portion 10551 and an upper portion 10552.

[0639] The support material 10530 can take a wide variety of different forms. The support material 10530 can be any of the materials disclosed by the present application. The batts 10550 are attached to the support material 10330. In the illustrated embodiment, the portions 10552 are centered on the portions 10551.

[0640] Referring to FIG. 105A, the batts 10550 are attached to the support material 10530 at a predetermined spacing. In the exemplary embodiment, the width WB1 of the portions 10551, the thickness TB1 of the portions 10551, the width WB2 of the portions 10552, the thickness TB2 of the portions 10552, the spacing SB between the batts, and the length LS of the support material 10530 are selected such that the batts 10550 and the support material 10530 can be moved from the position illustrated by FIG. 105A to the position illustrated by FIG. 105B. In the position illustrated by FIG. 105B, the portions 10551 are positioned below the supports and fill the space below the supports and the portions 10552 fill the space between the supports 20. In the illustrated embodiment, the support material 10530 spans three support members 20 and two batts 10550 are included. However, the support material 10530 can span any number of support members 20 and any number of batts 10550 can be included. The bat 10550 is configured to fill or substantially fill the cavity 50.

[0641] FIG. 106 is a view illustrating an exemplary embodiment of a batt-type insulation system 10600. The insulation system 10600 includes insulation pieces 10610 and insulation supports 10620. The insulation supports 10620 can take a wide variety of different forms. In the illustrated embodiment, the insulation supports 10620 are configured to allow the insulation to be moved and positioned in one direction (i.e. toward the deck material 24), but substantially limiting or preventing movement in another direction. For example, the insulation supports 10620 can be angled spikes or pins, hooks, and the like. The insulation pieces 10610 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 10610 is sized to fill the center to center width of the supports 20. The insulation piece 10610 can be compressed, so that the insulation piece 10610 fits between the supports 20 and extends below and fills the volume below the supports 20. In the exemplary embodiment illustrated by FIG. 106, the insulation supports 10620 engage the portion of the insulation piece 10610 that is between the supports 20. For example, pins or spikes may pierce into the insulation piece 10610 to hold the insulation piece 10610 in place. The depth of the insulation piece 9510 is selected based on a desired R value for the insulation assembly.

[0642] In an exemplary embodiment, the insulation supports 10620 are connected to the supports 20. The insulation supports 10620 can be connected to the supports 20 in a wide variety of different ways. For example, the insulation supports 10620 can be connected to the supports by an adhesive, by fasteners, by piercing the supports, etc.

[0643] FIG. 107 illustrates an exemplary embodiment of an insulation assembly 10700 that is similar to the insulation assembly 10600, except an interior side 10780 of the insulation material 10710 includes a vapor retarder or vapor barrier material 10790. In one exemplary embodiment, the material 10790 is an air permeable and moisture impermeable material. For example, the material 10790 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application. In the illustrated embodiment, the material 10790 includes tabs 10792 that can be connected together to form a continuous vapor retarder or vapor barrier.

[0644] FIGS. 108, 108A, and 109 illustrate an exemplary embodiment of a batt-type insulation system that is installed from above roof deck support members 20 before installation of roof deck material 24. Referring to FIG. 109, the roof deck 24 may be installed after installation of the batts. The insulation system 10800 includes insulation pieces 10810 and insulation supports 10820. The insulation supports 10820 can take a wide variety of different forms. In the illustrated embodiment, the insulation supports 10820 are structural members, such as boards, planks, panels, rope, tape, wires, mesh, etc. attached to a bottom surface 10890 of the supports 20 to support the underside (or inside surface) of the insulation batts 10810.

[0645] The insulation pieces 10810 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 10810 is sized to fill the space between the supports 20. The insulation piece 10810 can be slightly larger and can be compressed, so that the insulation piece

10610 fits between the supports 20 and fills the volume between the supports 20. In the exemplary embodiment illustrated by FIG. 108, the insulation supports 10820 hold up the bottom of the insulation piece 10810 that is between the supports.

[0646] In an exemplary embodiment, the insulation supports 10820 are connected to the supports 20. The insulation supports 10820 can be connected to the supports 20 in a wide variety of different ways. For example, the insulation supports 10820 can be connected to the supports by an adhesive, by fasteners, by piercing the supports, etc.

[0647] In one exemplary embodiment, an interior side 10880 or an exterior side 10882 of the insulation supports 10820 are provided with a vapor retarder or vapor barrier material. In one exemplary embodiment, the material is an air permeable and moisture impermeable material. For example, the material may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application. The vapor retarder materials or vapor barrier materials form a continuous vapor retarder or vapor barrier below the insulation material in one exemplary embodiment.

[0648] FIGS. 110 and 110A illustrate an exemplary embodiment of a batt-type insulation system 11000 with insulation batts 11010 that are installed from above roof deck support members 20 before installation of roof deck material 24 and insulation batts 11012 that are optionally installed from below the roof deck support members 20 (See FIG. 111). The insulation system 11000 includes insulation pieces 11010, 11012 and insulation supports 11020. The insulation supports 11020 can take a wide variety of different forms. In the illustrated embodiment, the insulation supports 11020 are structural members, such as boards, planks, panels, rope, tape, wires, mesh, etc. attached to a bottom surface 11090 of the supports 20 to support the underside (or inside surface) of the insulation batts 11010. In the example illustrated by FIG. 110, the insulation supports 11020 also include insulation securing devices 11022 that are configured to allow the insulation to be moved and positioned in one direction (i.e. toward the deck material 24), but substantially limiting or preventing movement in another direction. For example, the insulation securing devices 11022 can be angled spikes or pins, hooks, and the like. In an exemplary embodiment, the insulation securing devices 11022 are connected to the inner side of the insulation supports 11020. The insulation securing devices 11022 can be connected to the insulation supports 11020 in a wide variety of different ways. For example, the insulation securing devices 11022 can be connected to the insulation supports 11020 by an adhesive, by fasteners, by piercing the supports, etc. In the exemplary embodiment illustrated by FIG. 111, the insulation securing devices 11022 engage the face of the insulation piece 11012. For example, pins or spikes may pierce into the insulation piece 11012 to hold the insulation piece in place. The depth of the insulation piece 11012 is selected based on a desired R value for the insulation assembly.

[0649] The insulation pieces 11010, 11012 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 11010 is sized to fill the space between the supports 20. The insulation piece 11010 can be slightly larger and can be compressed, so that the insulation piece 11010 fits between the supports 20 and fills the volume between the supports 20. In the exemplary embodiment illustrated by FIG. 110, the insulation supports 11020 hold up the bottom of the insulation piece 11010 that is between the supports. In one exemplary embodiment, the insulation piece 11012 is sized to fill the space below the supports 20. In the exemplary embodiment illustrated by FIG. 111, the insulation pieces 11012 are sized to the center to center distance of the supports. The insulation piece 11012 can be slightly larger than the center to center distance and can be compressed, so that the insulation piece 11012 fills the volume below the supports 20, including the area or pocket 52 directly below the supports. Referring to FIG. 112A, in another exemplary embodiment, the insulation pieces 11012 extend across or transverse to the supports 20. The insulation piece 11012 also fills the volume below the supports 20, including the area or pocket 52 directly below the supports in this configuration.

[0650] In an exemplary embodiment, the insulation supports 11020 are connected to the supports. The insulation supports 11020 can be connected to the supports 20 in a wide variety of different ways. For example, the insulation supports 11020 can be connected to the supports by an adhesive, by fasteners, by piercing the supports, etc.

[0651] FIGS. 112 and 112A illustrate exemplary embodiments of an insulation assembly 11200 that is similar to the insulation assembly 11000, except an interior side 11080 of the insulation material 11012 includes a vapor retarder or vapor barrier material 11090. In one exemplary embodiment, the material 11090 is an air permeable and moisture impermeable material. For example, the material 11090 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application. In the embodiment illustrated by FIG. 112, the material 11090 includes tabs 11092 that can be connected together to form a continuous vapor retarder or vapor barrier. Similar tabs can be included in the embodiment illustrated by FIG. 112A, but are not shown.

[0652] FIG. 113 is a view illustrating an exemplary embodiment of a batt-type insulation system 11300. The insulation system 11300 includes insulation pieces 11310 and insulation supports 11320. The insulation supports 11320 can take a wide variety of different forms. In the illustrated embodiment, the insulation supports 11320 are configured to allow the insulation to be moved and positioned in one direction (i.e. toward the deck material 24), but substantially limiting or preventing movement in another direction. For example, the insulation supports 11320 can be angled spikes or pins, hooks, and the like. The insulation pieces 11310 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 11310 is sized to fill the gap between the supports 20. In the exemplary embodiment illustrated by FIG. 113, the insulation supports 11320 engage the face of the insulation piece 11310 that is oriented toward the roof deck 24. For example, pins or spikes may pierce into the insulation piece 11310 to hold the insulation piece 11310 in place. In the illustrated embodiment, the depth of the insulation piece 11310 matches or substantially matches the depth of the supports 20. The insulation piece 11310 may have the size and/or configuration of any of the insulation pieces described in this patent application. The insulation piece 11320 may include a vapor retarder or vapor barrier material (See FIG. 107). [0653] In an exemplary embodiment, the insulation sup-

ports 11320 are connected to the roof deck 24. The insulation

supports 11320 can be connected to the deck 24 in a wide variety of different ways. For example, the insulation supports 11320 can be connected to the supports by an adhesive, by fasteners, by piercing the supports, etc.

[0654] FIG. 114 is an illustration of an exemplary embodiment of an insulation support system 11400 that provides a roof deck vent passage 1082 and is installed from above support members 20 prior to installation of a roof deck material. In the example illustrated by FIG. 114, the vent material 1300 and/or the insulation support material 30 is installed from above the support members 20. In the example illustrated by FIG. 114, the vent material 1300 and the insulation support material are flexible, but may be rigid or have rigid portions. In the exemplary embodiment illustrated by 114, the vent material 1300 and the insulation support material 30 are placed over a pair of support members 20 prior to the sheathing 24. The attachment of the sheathing 24 attaches the vent material 1300 and insulation support material 30 to the support members 20.

[0655] In the example illustrated by FIG. 115B, a flexible insulation material 1450, such as a fiberglass insulation bat or blown-in insulation, is provided beneath the vent material 1300. For example, a fiberglass insulation batt can be provided in the insulation support material 30 or a fiberglass insulation bat can be installed in the insulation support material 30 prior to installation of the vent material. Blown-in insulation can be supported by any of the insulation support materials and configurations disclosed by the present application. The illustrated flexible insulation material is provided between pairs of support members 20 and below the support members in an exemplary embodiment.

[0656] FIGS. 116 and 117 illustrate an exemplary embodiment of a batt-type insulation system 11600 with insulation 11610 that is installed from above support members 20 before installation of roof deck material 24. The insulation assembly 11600 includes a first insulation piece 11610 and a mounting sheet 11640. The first insulation piece 11610 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 11610 is a fiberglass insulation batt or a foam board having a depth that is substantially the same as the depth of the supports 20. In one exemplary embodiment, the insulation piece 11610 is a fiberglass insulation batt or a foam board having a width that substantially matches or is slightly larger than the width between the supports 20, but the width can be compressed to the width between the supports 20.

[0657] In an exemplary embodiment, the first insulation piece 11610 is connected to the mounting sheet 11640. The first insulation piece 11610 can be connected to the mounting sheet 11640 in a wide variety of different ways. For example, the first insulation piece 11610 can be connected to the mounting sheet 11640 by an adhesive. In one exemplary embodiment, the insulation piece 11610 is adhered to the mounting sheet 11640 across less than the entire width of the first insulation piece. For example, the first insulation piece 11610 can be joined to the mounting sheet 11640 in the area indicated by arrows 11650.

[0658] The mounting sheet 11640 can take a wide variety of different forms and can be made from a wide variety of different materials. In one exemplary embodiment, the mounting sheet 11640 has a width that is wider than the width of the first insulation piece 11610, such that mounting tabs 11642 are formed. The mounting tabs 11642 are

attached on top of the support members 20 to mount the first insulation piece 11610 between the support members.

[0659] The mounting sheet 11640 may be made from an air barrier material to provide an air seal at the roof deck 24 or the mounting sheet may be made from an air and moisture permeable material. For example, the mounting sheet 11640 may be an air and moisture permeable scrim, kraft material, or non-woven material. The mounting sheet may be any air and moisture permeable materials, such as any of the air and moisture permeable materials disclosed in the present patent application. In one exemplary embodiment, the mounting sheet 11640 is made from an air permeable and moisture impermeable material. For example, the mounting sheet 11640 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application.

[0660] Referring to FIGS. 118 and 119, insulation batts 11812 are optionally installed from below the roof deck support members 20. The insulation pieces 11610 include insulation securing devices 11822 that are configured to allow the insulation 11812 to be moved and positioned in one direction (i.e. toward the deck material 24), but substantially limiting or preventing movement in another direction. For example, the insulation securing devices 11822 can be angled spikes or pins, hooks, and the like. In an exemplary embodiment, the insulation securing devices 11822 are connected to the inner side of the insulation pieces 11610. The insulation securing devices 11022 can be connected to the insulation pieces 11610 in a wide variety of different ways. For example, the insulation securing devices 11822 can be connected to the insulation pieces 11610 by an adhesive, by fasteners, by piercing the supports, etc. In the exemplary embodiment illustrated by FIG. 118, the insulation securing devices 11822 engage the face of the insulation piece 11812. For example, pins or spikes may pierce into the insulation piece 11812 to hold the insulation piece in place. The depth DB of the insulation piece 11812 is selected based on a desired R value for the insulation assembly.

[0661] Referring to FIGS. 118 and 119, the insulation pieces 11610, 11812 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 11610 is sized to fill the space between the supports 20. The insulation piece 11610 can be slightly larger and can be compressed, so that the insulation piece 11610 fits between the supports 20 and fills the volume between the supports 20. In one exemplary embodiment, the insulation piece 11812 is sized to fill the space below the supports 20. In the exemplary embodiment illustrated by FIG. 118, the insulation pieces 11812 are sized to the center to center distance of the supports. The insulation piece 11812 can be slightly larger than the center to center distance and can be compressed, so that the insulation piece 11812 fills the volume below the supports 20, including the area or pocket 52 directly below the supports. Referring to FIG. 119, in another exemplary embodiment, the insulation pieces 11012 extend across or transverse to the supports 20. The insulation piece 11812 also fills the volume below the supports 20, including the area or pocket 52 directly below the supports in this configuration.

[0662] In the exemplary embodiments illustrated by FIGS. 118 and 119 an interior side 11880 of the insulation material 11812 includes a vapor retarder or vapor barrier material 11890. In one exemplary embodiment, the material 11890 is

an air permeable and moisture impermeable material. For example, the material **11890** may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application. In the embodiment illustrated by FIG. **118**, the material **11890** includes tabs **11892** that can be connected together to form a continuous vapor retarder or vapor barrier. Similar tabs can be included in the embodiment illustrated by FIG. **119**, but are not shown.

[0663] FIG. 120 illustrates an exemplary embodiment of a batt-type insulation system 12000 with adhesive 12020 that secures insulation pieces 12010, such as batts and/or foam boards to the roof deck material 24. The adhesive 12020 can take a wide variety of different forms. In the illustrated embodiment, the adhesive 12020 is disposed on the faces of the insulation pieces 12010. In another exemplary embodiment, the adhesive 12020 is disposed on the interior side of the roof deck material 24 or on both the insulation pieces 12010 and the roof deck material 24. Providing the adhesive 12020 (or other fasteners described herein) across the entire width or substantially the entire width of the insulation pieces 12010 reduces or eliminates sagging of the insulation pieces 12010.

[0664] The insulation pieces 12010 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 12010 is sized to fill the center to center width of the supports 20. The insulation piece 12010 can be compressed, so that the insulation piece 12010 fits between the supports 20 and extends below and fills the volume below the supports 20. The depth of the insulation piece 12010 is selected based on a desired R value for the insulation assembly. The insulation piece 12010 may have the size and/or configuration of any of the insulation pieces described in this patent application. The insulation piece 12020 may include a vapor retarder or vapor barrier material

[0665] FIG. 121 illustrates an exemplary embodiment of a batt-type insulation system 12100 with a stiffening layer 12120. The insulation system 12100 includes an insulation piece 12110 and a stiffening layer 12120. The insulation piece 12110 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 12110 is a fiberglass insulation batt. The insulation batt may have a depth DB that is substantially deeper than the depth DS of the supports 20. In one exemplary embodiment, the insulation piece 12110 is a fiberglass insulation batt or a foam board having a width that substantially matches or is slightly larger than the center to center width of the supports 20, but the width of the piece 12110 can be compressed to the width between the supports 20. An upper portion 12160 of the insulation piece 12110 can be compressed to fit between the supports 20. Lower portions 12162 are not constrained by the support members 20. As such, ends of the lower portions 12162 are located under or behind support members 20. In one exemplary embodiment, the ends of the lower portions 12162 abut one another to provide continuous or substantially continuous insulation behind or below the support members 20. The depth DB is selected based on a desired R value for the insulation assembly. The insulation piece 12110 may optionally be connected to the roof sheathing and/or the supports 20 or the insulation piece 12110 may be held in place by a friction fit between the supports 20.

[0666] In an exemplary embodiment, the first insulation piece 12110 is connected to the stiffening layer 12120. The

insulation piece 12110 can be connected to the stiffening layer 12120 in a wide variety of different ways. For example, the insulation piece 12110 can be connected to the stiffening layer 12110 by an adhesive.

[0667] The stiffening layer 12120 can take a wide variety of different forms and can be made from a wide variety of different materials that provide stiffness to the insulation piece 12110 that prevent or substantially prevent the insulation piece 12110 from sagging after installation between the supports 20. For example, the stiffening layer 12120 can be plastic, cardboard, or any other material that makes the insulation piece 12110 stiffer and prevents or inhibits sagging.

[0668] In one exemplary embodiment, the stiffening layer 12120 is made from an air and moisture permeable material. For example, the stiffening layer 12120 may be an air and moisture permeable scrim, kraft material, or non-woven material. The stiffening layer 12120 may be stiff versions of any air and moisture permeable material, such as any of the air and moisture permeable materials disclosed in the present patent application. In one exemplary embodiment, the stiffening layer 12120 is made from an air permeable and moisture impermeable material. For example, the stiffening layer 12120 may be a water vapor retarder material or a water vapor barrier material, such as stiff versions of any of the vapor retarder materials or vapor barrier materials disclosed in the present application.

[0669] FIGS. 122 and 123 illustrate an exemplary embodiment of an insulation panel 12200 having one or more compressible edges 12202. The insulation panel 12200 and the compressible edges 12202 can take a wide variety of different forms. Examples of acceptable insulation panels 12200 with compressible edges 12202 are disclosed in US Published Patent Application Pub. No. US2012/0247042, which is incorporated herein by reference in its entirety. In the example illustrated by FIG. 122, the insulation panel 12200 is made from a rigid material, such as a foam board, such as extruded polystyrene or other foam material, a honeycomb material, or other rigid insulating material. The compressible edges 12202 may be made from a viscoelastic material, such as the material used to make foam earplugs. The compressible edges 12202 may be conformable to support members 20, such as roofing trusses, and other rigid obstructions during installation. The compressible edges 12202 also provide enough re-expansion to provide air sealing in the unvented attic and other applications. Once the compressible edges 12202 re-expand, they retain the seal and shape over time. The insulation panel 12200 having one or more compressible edges 12202 provide simultaneous air sealing, insulation, and conformability to difficult spaces.

[0670] FIG. 124 illustrates an exemplary embodiment of an insulation system 12400 using an insulation panel 12200 having one or more compressible edges 12202. The insulation panel 12200 having one or more compressible edges 12202 can be installed from above support members 20 before installation of roof deck material 24 or from below support members after installation of roof deck material 24. In the illustrated embodiment, the insulation panel 12210 has a depth or thickness that is less than the depth of the supports 20. This provides a vent space 1082 between the insulation panel 12210 and the roof deck material 24. In another exemplary embodiment, the insulation panel 12210 has the same depth or may be substantially deeper than the depth of the supports 20. The insulation panel 12210 may be

positioned to abut the roof deck material 24 or provide a vent space 1082 as shown. In the illustrated exemplary embodiment, the distance between the ends of the compressible edges 12202 are larger than the width WS between the supports 20. The compressible edges 12202 can be compressed to the width WS between the supports 20 to fit the insulation panel 12200 and compressible edges 12202 between the supports. The compressible edges 12202 expand to engage the supports 20 to hold the insulation panel 12200 and compressible edges 12202 in position. In one exemplary embodiment, the compressible edges seal against the supports 20. The depth of the panel 12200 is selected based on a desired R value for the insulation assembly.

[0671] The insulation panel 12200 and/or compressible edges 12202 may be made from an air barrier material to provide an air seal at the roof deck 24 or the insulation panel 12200 and/or the insulation panel 12200 and compressible edges 12202 may be made from an air and moisture permeable material. In one exemplary embodiment, the insulation panel 12200 and/or compressible edges 12202 is made from an air permeable and moisture impermeable material. [0672] FIG. 125 illustrates an exemplary embodiment with an insulation panel 12500 made from a compressible material. The compressible insulation panel 12500 can take a wide variety of different forms. The compressible insulation panel 12500 may be made from a viscoelastic material, such as the material used to make foam earplugs or another compressible, but resilient foam. The compressible insulation panel 12500 may be conformable to support members 20, such as roofing trusses, and other rigid obstructions during installation. The compressible insulation panel 12500 also provides enough re-expansion to provide air sealing in the unvented attic and other applications. Once the compressible insulation panel 12500 re-expands, it retains the seal and shape over time. The compressible insulation panel 12500 provides simultaneous air sealing, insulation, and conformability to difficult spaces.

[0673] FIG. 125 illustrates an exemplary embodiment of an insulation system 12502 using a compressible insulation panel 12500. The compressible insulation panel 12500 can be installed from above support members 20 before installation of roof deck material 24 or from below support members after installation of roof deck material 24. In the illustrated embodiment, the compressible insulation panel 12500 has a depth or thickness that is less than the depth of the supports 20. This provides a vent space 1082 between the compressible insulation panel 12500 and the roof deck material 24. In another exemplary embodiment, the compressible insulation panel 12500 has the same depth or may be substantially deeper than the depth of the supports 20. The compressible insulation panel 12500 may be positioned to abut the roof deck material 24 or provide a vent space 1082 as shown. In the illustrated exemplary embodiment, the distance between the ends of the compressible insulation panel 12500 are larger than the width WS between the supports 20. The compressible insulation panel 12500 can be compressed to the width WS between the supports 20 to fit the compressible insulation panel 12500 between the supports. The compressible insulation panel 12500 expands to engage the supports 20 to hold the compressible insulation panel 12500 in position. In one exemplary embodiment, the compressible insulation panel 12500 seals against the supports 20. The depth of the insulation panel 12500 is selected based on a desired R value for the insulation assembly.

[0674] The compressible insulation panel 12500 may be made from an air barrier material to provide an air seal at the roof deck 24 or the compressible insulation panel 12500 may be made from an air and moisture permeable material. In one exemplary embodiment, the compressible insulation panel 12500 is made from an air permeable and moisture impermeable material.

[0675] FIGS. 126 and 127 illustrate an exemplary embodiment of an insulation panel 12600 having one or more compressible edges 12602. The insulation panel 12600 and the compressible edges 12602 can take a wide variety of different forms. Examples of acceptable insulation panels 12600 with compressible edges 12602 are disclosed in US Published Patent Application Pub. No. US2012/0247042. In the example illustrated by FIGS. 126 and 127, the insulation panel 12600 is made from a rigid material, such as a foam board, such as extruded polystyrene or other foam material, a honeycomb material, or other rigid insulating material. The compressible edges 12602 may be made from a viscoelastic material, such as the material used to make foam earplugs. The compressible edges 12602 may be conformable to support members 20, such as roofing trusses, and other rigid obstructions during installation. The compressible edges 12602 also provide enough re-expansion to provide air sealing in the unvented attic and other applications. Once the compressible edges 12602 re-expand, they retain the seal and shape over time. The insulation panel 12600 having one or more compressible edges 12602 provide simultaneous air sealing, insulation, and conformability to difficult spaces.

[0676] FIGS. 126 and 127 illustrate an exemplary embodiment of an insulation system 12602 with the insulation panel 12600 having one or more compressible edges 12602. The insulation panels 12600 having one or more compressible edges 12602 can be installed from above support members 20 before installation of roof deck material 24 or from below support members after installation of roof deck material 24. In the illustrated embodiment, the insulation panel 12600 provides a vent space 1082 between the insulation panel 12610 and the roof deck material 24. In another exemplary embodiment, the insulation panel 12610 abuts the roof deck material 24 and fills the space between the supports 20. In the illustrated exemplary embodiment, the distance between the ends of the compressible edges 12602 are larger than the center to center distance WC of the supports 20. The compressible edges 12602 can be compressed to the width WS between the supports 20 to fit the insulation panel 12600 and compressible edges 12602 between the supports. The compressible edges 12602 expand to engage the supports 20 to hold the insulation panel 12600 and compressible edges 12602 in position. In one exemplary embodiment, the compressible edges seal against the supports 20. The compressible edges 12602 also engage each other and seal against each other. In the illustrated embodiment, the compressible edges 12602 and/or the insulation panel 12600 extends below the support member 20 to insulate the area 52. That is, insulation panel 12600 and compressible edges 12602 are sized to fill the center to center width of the supports 20. The compressible edges 12602 can be compressed, so that the insulation panel 12600 and compressible edges 12602 fit between the supports 20 and extend below and fill the volume below the supports 20. The depth DB is selected based on a desired R value for the insulation assembly.

[0677] The insulation panel 12600 and/or compressible edges 12602 may be made from an air barrier material to provide an air seal at the roof deck 24 or the insulation panel 12600 and/or compressible edges 12602 may be made from an air and moisture permeable material. In one exemplary embodiment, the insulation panel 12600 and/or compressible edges 12602 is made from an air permeable and moisture impermeable material.

[0678] FIGS. 128 and 129 illustrate an exemplary embodiment of a compressible insulation panel. The insulation panel 12800 can take a wide variety of different forms. In the example illustrated by FIGS. 128 and 129, the insulation panel 12800 is made from viscoelastic material, such as the material used to make foam earplugs. The compressible insulation panel 12800 may be conformable to support members 20, such as roofing trusses, and other rigid obstructions during installation. The compressible insulation panel 12800 also provide enough re-expansion to provide air sealing in the unvented attic and other applications. Once the compressible insulation panel 12800 re-expands, it retains the seal and shape over time. In an exemplary embodiment, the compressible insulation panel 12800 provides simultaneous air sealing, insulation, and conformability to difficult spaces.

[0679] FIGS. 128 and 129 illustrate an exemplary embodiment of an insulation system 12802 with the compressible insulation panel 12800. The compressible insulation panel 12800 can be installed from above support members 20 before installation of roof deck material 24 or from below the support members after installation of roof deck material 24. In the illustrated embodiment, the insulation panel 12800 provides a vent space 1082 between the insulation panel 12800 and the roof deck material 24. In another exemplary embodiment, the insulation panel 12800 abuts the roof deck material 24 and fills the space between the supports 20. In the illustrated exemplary embodiment, the distance between the ends of the compressible insulation panel 12800 are larger than the center to center distance WC of the supports 20. The compressible insulation panel 12800 can be compressed to the width WS between the supports 20 to fit the compressible insulation panel 12800 between the supports. The compressible insulation panel 12800 expands to hold the insulation panel 12800 in position. In one exemplary embodiment, the compressible insulation panel 12800 seals against the supports 20. The compressible insulation panels 12800 also engage each other and seal against each other. In the illustrated embodiment, the compressible insulation panel 12800 extends below the support member 20 to insulate the area 52. That is, compressible insulation panel 12800 is sized to fill the center to center width of the supports 20. The compressible insulation panel 12800 fit between the supports 20 and extend below and fill the volume below the supports 20. The depth of the insulation panel 12800 is selected based on a desired R value for the insulation assembly.

[0680] The compressible insulation panel 12800 may be made from an air barrier material to provide an air seal at the roof deck 24 or the compressible insulation panel 12800 may be made from an air and moisture permeable material. In one exemplary embodiment, the compressible insulation panel 12800 is made from an air permeable and moisture impermeable material.

[0681] FIGS. 130 and 131 illustrate an exemplary embodiment of an insulation panel 13000 having one or more

compressible edges 13002. The insulation panel 13000 and the compressible edges 13002 can take a wide variety of different forms. In the example illustrated by FIGS. 130 and 131, the insulation panel 13000 is made from a rigid material, such as a foam board, such as extruded polystyrene or other foam material, a honeycomb material, or other rigid insulating material. In the illustrated embodiment, the insulation panel 13000 has a stepped configuration with a top portion 13100 and a bottom portion 13102. The compressible edges 13002 may be made from a viscoelastic material, such as the material used to make foam earplugs. The compressible edges 13002 may be conformable to support members 20, such as roofing trusses, and other rigid obstructions during installation. The compressible edges 13002 also provide enough re-expansion to provide air sealing in the unvented attic and other applications. Once the compressible edges 13002 re-expand, they retain the seal and shape over time. The insulation panel 13000 having one or more compressible edges 13002 provide simultaneous air sealing, insulation, and conformability to difficult spaces.

[0682] FIGS. 130 and 131 illustrate an exemplary embodiment of an insulation system 13002 with the stepped insulation panel 13000 having one or more compressible edges 13002. The insulation panels 13000 having one or more compressible edges 13002 can be installed from below support members after installation of roof deck material 24. In the illustrated embodiment, the insulation panel 13000 provides a vent space 1082 between the insulation panel 13010 and the roof deck material 24. In another exemplary embodiment, the top portion 13100 of the insulation panel 13000 abuts the roof deck material 24 and fills the space between the supports 20. In the illustrated exemplary embodiment, the distance between the ends of the compressible edges 13002 at the bottom portion 13102 are larger than the center to center distance WC of the supports 20. The compressible edges 13002 at the top portion 13100 can be compressed to the width WS between the supports 20 to fit the insulation panel 13000 and compressible edges 13002 between the supports. The compressible edges 13002 expand to engage the supports 20 to hold the insulation panel 13000 and compressible edges 13002 in position. In one exemplary embodiment, the compressible edges 13002 along the top portion 13100 seal against the supports 20. The compressible edges 13002 at the bottom portion 13102 also engage each other and seal against each other. In the illustrated embodiment, the bottom portion 13102 and/or compressible edges 13002 extend below the support member 20 to insulate the area 52. That is, the bottom portion 13102 and compressible edges 13002 are sized to fill the center to center width of the supports 20. The compressible edges 13002 can be compressed, so that the bottom portion 13102 fill the volume below the supports 20. The depth of the insulation panel 13000 is selected based on a desired R value for the insulation assembly.

[0683] The insulation panel 13000 and/or compressible edges 13002 may be made from an air barrier material to provide an air seal at the roof deck 24 or the insulation panel 13000 and/or compressible edges 13002 may be made from an air and moisture permeable material. In one exemplary embodiment, the insulation panel 13000 and/or compressible edges 13002 are made from an air permeable and moisture impermeable material.

[0684] FIGS. 132 and 133 illustrate an exemplary embodiment of a compressible insulation panel 13200. The insula-

tion panel 13200 can take a wide variety of different forms. In the example illustrated by FIGS. 132 and 133, the insulation panel 13200 is made from viscoelastic material, such as the material used to make foam earplugs. The compressible insulation panel 13200 may be conformable to support members 20, such as roofing trusses, and other rigid obstructions during installation. The compressible insulation panel 13200 also provides enough re-expansion to provide air sealing in the unvented attic and other applications. Once compressible insulation panel 13200 re-expands, it retains the seal and shape over time. The compressible insulation panel 13200 provides simultaneous air sealing, insulation, and conformability to difficult spaces.

[0685] FIGS. 132 and 133 illustrate an exemplary embodiment of an insulation system 13202 with the compressible insulation panel 13200. The compressible insulation panel 13200 can be installed from above support members 20 before installation of roof deck material 24 or from below the support members after installation of roof deck material 24. In the illustrated embodiment, the insulation panel 13200 provides a vent space 1082 between a top portion 13300 of the insulation panel 13200 and the roof deck material 24. In another exemplary embodiment, the top portion 13300 of the insulation panel 13300 abuts the roof deck material 24 and fills the space between the supports 20. In the illustrated exemplary embodiment, the distance between the ends of the bottom portion 13302 of the compressible insulation panel 13200 is larger than the center to center distance WC of the supports 20. The top portion 13300 of the compressible insulation panel 13200 can be compressed to the width WS between the supports 20 to fit the compressible insulation panel 13200 between the supports. The compressible insulation panel 13200 expands to hold the insulation panel 13200 in position. In one exemplary embodiment, the top portion 13300 of the compressible insulation panel 13200 seals against the supports 20. The bottom portions 13202 of the compressible insulation panels 13200 also engage each other and seal against each other. In the illustrated embodiment, the bottom portions 13202 of the compressible insulation panel 13200 extend below the support member 20 to insulate the area 52. That is, compressible insulation panel 13200 is sized to fill the center to center width of the supports 20. The compressible insulation panel 13200 fits between the supports 20 and extends below and fills the volume below the supports 20. The depth of the insulation panel 13200 is selected based on a desired R value for the insulation assembly.

[0686] The compressible insulation panel 13200 may be made from an air barrier material to provide an air seal at the roof deck 24 or the compressible insulation panel 13200 may be made from an air and moisture permeable material. In one exemplary embodiment, the compressible insulation panel 13200 is made from an air permeable and moisture impermeable material.

[0687] FIG. 134 illustrates installation of an insulation system 13400 with insulation pieces 13410, such as insulation batts or foam boards, that are secured to support members 20 with hook and loop fasteners 13420 The hook and loop fasteners 13420 can take a wide variety of different forms. A hook piece or strip 13490 may be attached to the support 20, as illustrated, or may be attached to sides of the insulation pieces 13410. A loop piece or strip 13492 may be attached to sides of the insulation pieces 13410 as shown or may be attached to the support 20. In the illustrated embodi-

ment, the hook and loop fasteners 13420 are configured to allow the insulation to be moved and positioned in one direction (i.e. toward the deck material 24), but substantially limit or prevent movement in another direction.

[0688] The insulation pieces 13410 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 13410 is sized to fill the space between the supports 20. The insulation piece 13410 can be compressed, so that the insulation piece 13410 fits between the supports 20 and extends below the supports 20. In the exemplary embodiment illustrated by FIG. 134, the hook and loop fasteners 13420 engage between the supports 20 to hold the insulation piece 13410 in place. The depth of the insulation piece 13410 is selected based on a desired R value for the insulation assembly.

[0689] In an exemplary embodiment, the hook piece or strip 13490 and the loop piece or strip 13492 are connected to the supports 20 and the insulation pieces 13410. The hook piece or strip 13490 and the loop piece or strip 13492 can be connected to the supports 20 and the insulation pieces 13410 in a wide variety of different ways. For example, the hook piece or strip 13490 and the loop piece or strip 13492 can be connected to the supports 20 and the insulation pieces 13410 by an adhesive, by fasteners, etc.

[0690] FIG. 135 illustrates an exemplary embodiment of an insulation assembly 13500 that is similar to the insulation assembly 13400, except an interior side 13480 of the insulation material 13410 includes a vapor retarder or vapor barrier material 13490. In one exemplary embodiment, the material 13490 is an air permeable and moisture impermeable material with hook and loop fastener tabs 13592. The material 13490 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application. The tabs 13492 include hook fasteners 13594 on one tab that connect with loop fasteners 13596 on an adjacent tab to form a continuous vapor retarder or vapor barrier. The hook and loop fastener tabs 13592 can be used in any of the embodiments of the present application.

[0691] FIG. 136 illustrates installation of an insulation system 13600 with insulation pieces 13610, such as insulation batts or foam boards, that are secured to support members 20 and roof decking 24 with hook and loop fasteners 13620 The hook and loop fasteners 13620 can take a wide variety of different forms. A hook piece or strip 13690 may be attached to the support 20, as illustrated, or may be attached to sides of the insulation pieces 13610. A loop piece or strip 13692 may be attached to sides of the insulation pieces 13610 as shown or may be attached to the support 20. A hook piece or strip 13680 may be attached to the roof deck material 24, as illustrated, or may be attached to the top face of the insulation pieces 13610. A loop piece or strip 13682 may be attached to the top face of the insulation pieces 13610 as shown or may be attached to the roof deck material 24. The hook and loop pieces 13680 and 13682 support the middle of the insulation pieces 13610 and prevent or substantially prevent sagging of the insulation pieces. In the illustrated embodiment, the hook and loop fasteners 13620 are configured to allow the insulation to be moved and positioned in one direction (i.e. toward the deck material 24), but substantially limit or prevent movement in another direction.

[0692] The insulation pieces 13610 can take a wide variety of different forms. In one exemplary embodiment, the insu-

lation piece 13610 is sized to fill the space between the supports 20. The insulation piece 13610 can be compressed, so that the insulation piece 13610 fits between the supports 20 and extends below the supports 20. In the exemplary embodiment illustrated by FIG. 134, the hook and loop fasteners 13420 engage one another between the supports 20 and between the upper face of the insulation piece 13610 and the lower face of the roof deck material 13610 to hold the insulation piece 13610 in place. The depth of the insulation piece 13610 is selected based on a desired R value for the insulation assembly.

[0693] In an exemplary embodiment, the hook and loop pieces or strips 13680, 13682, 13690, 13692 are connected to the supports 20, the roof deck material 24, and the insulation pieces 13610. The hook and loop pieces or strips 13680, 13682, 13690, 13692 can be connected to the supports 20, the roof deck material 24, and the insulation pieces 13610 in a wide variety of different ways. For example, the hook and loop pieces or strips 13680, 13682, 13690, 13692 can be connected to the supports 20, the roof deck material 24, and the insulation pieces 13610 by an adhesive, by fasteners, etc.

[0694] FIG. 137 illustrates installation of an insulation system 13700 with insulation pieces 13710, such as insulation batts or foam boards, that are secured to support members 20 and a vent member or material 1300 with hook and loop fasteners 13720 The hook and loop fasteners 13720 can take a wide variety of different forms. A hook piece or strip 13790 may be attached to the support 20, as illustrated, or may be attached to sides of the insulation pieces 13610. A loop piece or strip 13792 may be attached to sides of the insulation pieces 13610 as shown or may be attached to the support 20. A hook piece or strip 13780 may be attached to the vent member or material 1300, as illustrated, or may be attached to the top face of the insulation pieces 13610. A loop piece or strip 13782 may be attached to the top face of the insulation pieces 13710 as shown or may be attached to the vent member or material 1300. The hook and loop pieces 13780 and 13782 support the middle of the insulation pieces 13610 and prevent or substantially prevent sagging of the insulation pieces. In the illustrated embodiment, the hook and loop fasteners 13720 are configured to allow the insulation to be moved and positioned in one direction (i.e. toward the deck material 24), but substantially limit or prevent movement in another direction.

[0695] The insulation pieces 13710 can take a wide variety of different forms. In one exemplary embodiment, the insulation piece 13710 is sized to fill the space between the supports 20. The insulation piece 13710 can be compressed, so that the insulation piece 13710 fits between the supports 20 and extends below the supports 20. In the exemplary embodiment illustrated by FIG. 134, the hook and loop fasteners 13720 engage one another between the supports 20 and between the upper face of the insulation piece 13710 and the lower face of the roof deck material 13710 to hold the insulation piece 13710 in place. The depth of the insulation piece 13710 is selected based on a desired R value for the insulation assembly.

[0696] In an exemplary embodiment, the hook and loop pieces or strips 13780, 13782, 13790, 13792 are connected to the supports 20, the vent member or material 1300, and the insulation pieces 13710. The hook and loop pieces or strips 13780, 13782, 13790, 13792 can be connected to the supports 20, vent member or material 1300, and the insu-

lation pieces 13710 in a wide variety of different ways. For example, the hook and loop pieces or strips 13780, 13782, 13790, 13792 can be connected to the supports 20, the roof deck material 24, and the insulation pieces 13710 by an adhesive, by fasteners, etc.

[0697] FIG. 138 illustrates installation of an exemplary embodiment of an insulation support system illustrated by FIGS. 10A and 10B, pre-attached to roof sheathing 24 and installed from above support members 20 with the roof deck material. Generally, this method entails use of interconnecting, substantially rigid members and/or flexible material such as netting, for example, the netting 30 described in the embodiments illustrated by FIGS. 2A, 2B and 3-6 to form box-shaped insulation cavities. The interconnecting material may take a wide variety of different forms and may take a wide variety of different configurations. For example, rigid interconnecting material may comprise cardboard, plastic, and the like. The netting material 30 may comprise a plastic film, a mesh, combinations of plastic film and mesh, and the like. In one exemplary embodiment, the netting material may be a breathable material, a vapor barrier, a vapor retarder, and/or an air barrier material.

[0698] Referring first to FIG. 138, support members 20, roof deck material 24, and interconnecting portions 30 are illustrated. The interconnecting portions 30 are connected to the roof deck material 24 with one or more fasteners. After the roof deck material 24 is installed, the box-shaped insulation cavities can be formed as described with respect to FIGS. 10A and 10B and any of the insulation support embodiments described herein.

[0699] FIGS. 139 and 139A illustrate an exemplary embodiment of an insulation support system illustrated by FIGS. 10A and 10B, where the interconnecting portions 30 are connected together by hook and loop material 13900. In the example illustrated by FIG. 139, the interconnecting portions 30 each have an optional tab 31 with hook material 13931 spaced apart from an optional second tab 33 with loop material 13933. Alternatively, the optional first tab 31 can have the loop material and the optional second tab 33 can have the hook material. In one exemplary embodiment, the second tab 33 is omitted and loop material 13931 or hook material 13933 is connected to ends 1000 of the interconnecting portions 30 (See FIG. 79). In another exemplary embodiment, the first tab 31 is omitted. Loop material 13931 or hook material 13933 may be connected to the area where the interconnecting portions 30 are folded or bent (See FIG.

[0700] FIGS. 140 and 140A illustrate an exemplary embodiment of an insulation support system illustrated by FIGS. 10A and 10B, where the interconnecting portions 30 are connected together using two types of adhesives. In the example illustrated by FIG. 140, the interconnecting portions 30 each have an optional first tab 31 spaced apart from an optional second tab 33. In the illustrated embodiment, first and second adhesives 14000, 14002 are provided on the second tab 33. In another exemplary embodiment, the first and second adhesives 14000, 14002 are provided on the first tab 31. In another exemplary embodiment, the one of the adhesives 14000, 14002 is provided on the first tab 31 and the other adhesive is provided on the second tab 33. In one exemplary embodiment, the second tab 33 is omitted and the adhesive or adhesives are provided on the ends 1000 of the interconnecting portions 30 (See FIG. 79). In another exemplary embodiment, the first tab 31 is omitted and an adhesive or adhesives are provided in the area where the interconnecting portions 30 are folded or bent (See FIG. 79).

[0701] In one exemplary embodiment, the tabs 31, 33 and/or the adhesives 14000, 14002 are configured such that, insulation blown into the cavity applies a predominantly shear force to the adhesive connections, instead of peeling force. This can be done in a wide variety of different ways. For example, the tabs and/or the adhesives 14000, 14002 can be configured in the same or similar manner as described with respect to the hook and loop connection in FIGS. 189-196. That is, the hook and loop connections in FIGS. 189-196 can be replaced with adhesives 14000, 14002.

[0702] The first and second adhesives 14000, 14002 can take a wide variety of different forms. In one exemplary embodiment, the first adhesive 14000 provides a quick, temporary hold that allows the interconnecting portions 30 to be quickly fastened together. The second adhesive 14002 provides a strong bond that permanently holds the interconnecting portions together. For example, the first adhesive 14000 may be a pressure sensitive adhesive. The first and second tabs 31, 33 can be pressed together to activate the pressure sensitive adhesive and adhere the tabs 31, 33 together. The first and second tabs 31, 33 can be heated to activate the hot melt adhesive and strongly bond the tabs 31, 33 together.

[0703] FIGS. 141 and 142 illustrate installation of an exemplary embodiment of an insulation system 14100 that is installed from above support members 20 before installation of roof deck material 24. The insulation assembly 14100 includes a large insulation piece or roll 14110 that spans three or more support members 20. The insulation piece 14110 can take a wide variety of different forms. In one exemplary embodiment, the large insulation piece 14110 is a fiberglass insulation batt. The depth of the insulation piece 14110 is selected based on a desired R value for the insulation assembly.

[0704] Referring to FIG. 141, the insulation piece 14110 is placed across multiple supports 20 as indicated by arrows 14160. The roof deck material 24 is placed on top of the insulation piece 14110 as indicated by arrow 14162. Referring to FIG. 142, the roof deck material 24 is attached to the supports 20. Portions 14200 of the insulation piece 14110 are pressed into the space between the supports 20 by the roof deck material 24. Portions 14202 are compressed between the supports 20 and the roof deck material 24. The installation of the roof deck 24 secures the insulation piece **14110** in place, without requiring any separate attachment. [0705] In one exemplary embodiment, an interior side 14180 of the insulation piece 14110 includes an optional vapor retarder or vapor barrier material 14190. In one exemplary embodiment, the material 14190 is an air permeable and moisture impermeable material. For example, the material 14190 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application.

[0706] FIGS. 143 and 143A-143F illustrate installation of an exemplary embodiment of a batt-type roof insulation system 14300. The batt-type roof insulation system 14300 includes insulation batts 14310 that are installed between the support members 20 and extend the length of the support members 20 in the direction 143B. The batt-type roof insulation system 14310 also includes insulation batts 14312 that are installed on the support members 20 and the

insulation batts 14310 and extend across the support members 20 in the direction 143A.

[0707] The insulation batt 14310 can take a wide variety of different forms. The illustrated insulation batts 14310 include an optional mounting sheet 14340. In one exemplary embodiment, the insulation bat 14310 is a fiberglass insulation batt having a depth that is substantially the same as the depth of the supports 20. Referring to FIG. 143A, in one exemplary embodiment, an insulation batt 14310 is provided between each pair of supports 20. In one exemplary embodiment, the insulation batt 14310 has a width that substantially matches or is slightly larger than the distance between the supports 20, but the width of the insulation bat 14310 can be compressed to the distance between the supports 20.

[0708] In an exemplary embodiment, the insulation bat 14310 is connected to the mounting sheet 14340. The insulation batt 14310 can be connected to the mounting sheet 14340 in a wide variety of different ways. For example, the insulation batt 14310 can be connected to the mounting sheet 14340 by an adhesive. The mounting sheet 14340 can take a wide variety of different forms and can be made from a wide variety of different materials. In one exemplary embodiment, the mounting sheet 14340 has a width that is wider than the width of the insulation batt 14310, such that mounting tabs 14342 are formed. The mounting tabs 14342 are attached to the bottom of the support members 20 to mount the insulation batt 14310 between the support members.

[0709] The mounting sheet 14340 may be made from an air and moisture permeable material.

[0710] For example, the mounting sheet 14340 may be an air and moisture permeable scrim, kraft material, or non-woven material. The mounting sheet may be any air and moisture permeable material, such as any of the air and moisture permeable materials disclosed in the present patent application.

[0711] Referring to FIGS. 143, and 143C-143F, insulation batts 14312 are secured on and below the roof deck support members 20 and the insulation batts 14310. The depth of the insulation batt 14312 is selected based on a desired R value for the insulation assembly. FIG. 143C is a sectional view of the assembly 14300, taken through one of the batts 14312. Referring to FIGS. 143 and 143D, insulation batts 14312 are positioned on each side of cross-members 23 (i.e. above and below the cross-members 23). Referring to FIGS. 143D and 143E, there may be a gap 14350 between insulation batts 14312 where the cross-members 23 are positioned. FIG. 143F is a sectional view of the assembly 14300, taken through the gap 14350. Referring to FIG. 143F, insulation pieces 14352 may be positioned in the gap 14350 and extend from one cross-member 23 to the next cross-member.

[0712] The insulation batts 14310, 14312 can take a wide variety of different forms. In one exemplary embodiment, the insulation batt 14310 is sized to fill the space between the supports 20. The insulation batts 14310 can be slightly larger and can be compressed, so that the insulation batt 14310 fits between the supports 20 and fills the volume between the supports 20. The insulation batts 14312 extend across or transverse to the supports 20. The insulation batts 14312 also fills the volume below the supports 20, including the area or pocket 52 directly below the supports in this configuration. [0713] In the exemplary embodiments illustrated by FIGS. 143 and 143A-143F an interior side 14380 of the insulation material 14312 includes an optional a vapor retarder or

vapor barrier material **14390**. In one exemplary embodiment, the material **14390** is an air permeable and moisture impermeable material. For example, the material **14390** may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application.

[0714] FIGS. 144A-144D illustrate an exemplary embodiment that is substantially the same as the embodiment illustrated by 143A-143F, except the material 14390 includes tabs 14392 that can be connected together to form a continuous vapor retarder or vapor barrier.

[0715] FIGS. 145A and 145B illustrate an exemplary embodiment that is substantially the same as the embodiment illustrated by 143A-143F, except one or more pins 14500 for holding the insulation batts 14310 and/or the insulation batts 14312 in place and/or for reducing or eliminating sag are included. The pins 14500 can take a wide variety of different forms. The pins can be any of the pins described in the present application. As shown in FIGS. 145A and 145B, the pins can extend through the insulation batt 14312 and be secured in the insulation batt 14310, in the support member 20, or in the roof deck material 24.

[0716] FIGS. 146A and 146B illustrate installation of an exemplary embodiment of a batt-type roof insulation system 14600. The batt-type roof insulation system 14600 includes insulation batts 14310 that are installed between the support members 20 and extend the length of the support members 20 in the direction 143B. The batt-type roof insulation system 14310 also includes insulation batts 14312 that are installed on the support members 20 and the insulation batts 14310 and extend across the support members 20 in the direction 143A. Some of the insulation batts 14312 include cuts 14620. The cuts 14620 allow the batts 14312 to closely surround the cross-members 23. As such, the space or gap 14350 is filled by the batts 14312, eliminating the need for the insulation pieces 14352. The cuts 14620 may be preformed in the batts 14612 or may be made in the batts 14612 during installation. The roofing insulation system 14600 is otherwise substantially the same as the roofing insulation system 14300.

[0717] FIGS. 147-149 illustrate an exemplary embodiment of an insulation support material 30 folded and packaged in a box 14700. FIG. 147 illustrates the insulation support of FIG. 10A. In FIG. 147, the optional tab 33 is not included, but can be included and the material 30 can be folded in substantially the same manner. In FIG. 148, the panel segment 34 is folded onto the span segment 36. Referring to FIG. 149, the folded insulation support material 30 is folded back and forth and placed in a box 14700. As such, a large amount of insulation support material 30 is packed in a small volume of the box 14700.

[0718] FIGS. 150-153 illustrate an exemplary embodiment of an insulation support material 30 folded and packaged in a box 15000. FIG. 150 illustrates the insulation support of FIG. 10A. In FIG. 150, the optional tab 33 is not included, but can be included and the material 30 can be folded in substantially the same manner. In FIG. 151, the panel segment 34 is folded onto the span segment 36. In FIG. 152 a portion of the span segment 36 is folded back onto itself, toward the panel segment 34. As such, the folded insulation support material has a substantially uniform thickness. Referring to FIG. 153, the folded insulation support material 30 is folded back and forth and placed in the box

15000. As such, a large amount of insulation support material 30 is packed in a small volume of the box 15000.

[0719] FIG. 154 illustrates and exemplary embodiment of a foldable insulation bat 15400. The foldable insulation batt 15400 includes insulation pieces 15410, optional facing material 15420, and connections 15430. The insulation pieces 15410 can take a wide variety of different forms. In one exemplary embodiment, the insulation pieces are pieces of fiberglass insulation batt material. In an alternate embodiment, the insulation pieces, such as polystyrene foam board pieces.

[0720] The optional facing material 15420 can take a wide variety of different forms. In one exemplary embodiment, the material 15420 is an air permeable and moisture impermeable material. For example, the material 15420 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application. In the example illustrated by FIG. 154, the material 15420 is applied to both faces of each of the insulation pieces 15410.

[0721] The connections 15430 connect the insulation pieces 15410 together on alternating sides 15460, 15462 of the insulation pieces. These alternating connections 15430 allow the foldable insulation batt 15400 to be unfolded from the stacked configuration illustrated by FIG. 154 to the flat or unfolded configuration illustrated by FIG. 156. The connections 15430 can take a wide variety of different forms. The connections 15430 can be tape, a material bonded to the facing material 15420, or be integrally formed from the facing material. In one exemplary embodiment, the material that the connections 15430 are made from is an air permeable and moisture impermeable material. For example, the material that the connections 15430 are made from may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present applica-

[0722] FIG. 155 illustrates an exemplary embodiment of a foldable insulation batt 15500. The foldable insulation batt 15500 includes encapsulated insulation pieces 15510 and connections 15530. The insulation pieces 15510 can take a wide variety of different forms. In one exemplary embodiment, the insulation pieces are pieces of fiberglass insulation batt material.

[0723] The encapsulation material 15520 can take a wide variety of different forms. In one exemplary embodiment, the material 15520 is an air permeable and moisture impermeable material. For example, the material 15520 may be a water vapor retarder material or a water vapor barrier material, such as any of the vapor retarder materials or vapor barrier materials disclosed in the present application. In one exemplary embodiment, the material 15520 is an air impermeable and moisture impermeable material.

[0724] The connections 15530 connect the insulation pieces 15510 together on alternating sides of the insulation pieces. These alternating connections 15530 allow the foldable insulation batt 15500 to be unfolded from the stacked configuration illustrated by FIG. 154 to the flat or unfolded configuration illustrated by FIG. 156. The connections 15530 can take a wide variety of different forms. The connections 15530 can be tape, a material bonded to the encapsulation material 15520, or be integrally formed from the encapsulation material.

[0725] Referring to FIG. 157, the foldable insulation batts 15400, 15500 are particularly useful in applications where space is tight and there are a lot of obstructions. One such application is in the truss-type roof illustrated by FIGS. 143 and 157. The foldable insulation batt 15400, 15500 can be provided into such a space (for example the attic of a truss-type roof) in the folded condition. The foldable insulation batt 15400, 15500 is then unfolded into position. For example, a foldable insulation batt 15400 or 15500 may be used as the insulation batts 14312 that extend across the supports 20 and have to fit around the cross-members 23. However, the foldable insulation batts 15400 or 15500 can be used in a wide variety of different applications.

[0726] FIG. 158 illustrates an exemplary embodiment where an air barrier material 15800 is applied to an inside surface 15802 of a gable end 1070. Typically, air barrier material is applied to the outside surface 15804 of the gable end 1070, over sheathing 24. The air barrier material 15800 may be any existing air barrier material and/or any of the air barrier materials disclosed by the present application. In the example illustrated by FIG. 158, the air barrier material 15800 is sized and shaped to fit the size and shape of the gable end. The air barrier material 15800 may be a single piece of material or may be multiple pieces as indicated by dashed lines 15810. The air barrier material 15800 may be cut to the size and shape of the gable end 1070 at the installation site or the air barrier material 15800 may be pre-cut offsite into one or more pieces that match the gable end and then be delivered to the installation site.

[0727] Referring to FIGS. 158A and 158B, providing the air barrier material 15800 on the inside surface 15802 provides a flat, continuous surface for installation of insulation 15810 on the interior of the gable end. The insulation 15810 can take a wide variety of different forms. For example, the insulation 15810 can be fiberglass batts or foam boards. The insulation 15810 may be any existing insulation and/or any of the insulation materials disclosed by the present application. The insulation 15810 is sized and shaped to fit the size and shape of the gable end 1070. The insulation 15810 may be a single piece of material or may be multiple pieces. The insulation 15810 may be cut to the size and shape of the gable end 1070 at the installation site or the insulation 15810 may be pre-cut offsite into one or more pieces that match the gable end 1070 and then be delivered to the installation site. Any type of insulation may

[0728] Referring to FIG. 158A, in one exemplary embodiment, the air barrier 15800 is attached to the inside surface 15802 of the gable end 1070 over the webs 23 and support members 20. In the illustrated embodiment, the insulation 15810 separately installed over the air barrier 15800 and the inside surface 15802. The insulation 15810 may be installed over the air barrier material 15800 in a wide variety of different ways. For example, an adhesive may be used to connect the insulation 15810 to the air barrier material 15800 or fasteners may be used to connect the insulation 15810 to the gable end 1070.

[0729] In another exemplary embodiment, the insulation 15810 is pre-attached to the air barrier material 15800 and the insulation 15810 and the barrier material 15800 are attached to the inside surface 15802 of the gable end 1070 together. The insulation 15810 and pre-attached air barrier material 15800 may be attached to the gable end 1070 in a wide variety of different ways. For example, an adhesive

and/or fasteners may be used to connect the insulation **15810** and pre-attached air barrier material **15800** to the gable end **1070**.

[0730] FIGS. 159A-159C illustrate an exemplary embodiment of a method of forming an insulation cavity 15950 (FIG. 159C). The method creates a cavity that conforms to unusual or nonstandard dimensions of the roof deck 24. support members 20, and/or cross-members, as well as other obstacles. Referring to FIG. 159A, a sacrificial or removable material 15902 is applied to the underside of the roof deck 24, and around the support members 20 and/or crossmembers, and any other obstacles. The sacrificial or removable material 15902 can take a wide variety of different forms and is illustrated generically as bubbles. For example, the sacrificial or removable material 15902 may be balloons, such as helium balloons, one or more bladders, temporary foaming material, etc. Any material that is capable of registering a predetermined insulation cavity depth DC can be used as the sacrificial or removable material 15902.

[0731] Referring to FIG. 159B, once the insulation cavity depth DC is set by the sacrificial or removable material 15902, an insulation support material 15930 is provided on the sacrificial or removable material 15902. The insulation support material 15930 can be provided on the sacrificial or removable material 15902 in a wide variety of different ways. For example, the insulation support material 15930 may be a sprayed on material, a plaster-like material, or a paper mache-like material that is applied to the sacrificial or removable material 15902 in an unhardened or uncured state. The insulation support material 15930 hardens or cures to set the position and shape of the insulation support material. In another exemplary embodiment, netting material can be positioned on the sacrificial or removable material 15902 and secured in place by fasteners 15990 that attach the netting to the roof deck 24, the support members 20, the cross-members 23, and/or any other obstructions under the roof.

[0732] Referring to FIG. 159C, once the insulation support material 15930 is permanently shaped and/or secured in place, the sacrificial or removable material 15902 is removed or broken down. For example, when the sacrificial or removable material 15902 comprises one or more balloons, the balloons can be popped. When the sacrificial or removable material 15902 is a bladder, the bladder is deflated and withdrawn from the insulation cavity. The formed insulation cavity 15950 can be filled with insulation in any manner, including but not limited to, the ways of providing insulation in insulation cavities described by the present application.

[0733] FIGS. 160-164 illustrate an exemplary embodiment of a device 16000 that automatically moves insulation support material 30 to provide a pocket 52 (FIG. 164) under a support member 20 when the insulation cavity 50 is filled with insulation, such as loosefill insulation or expandable insulation. In the embodiment illustrated by FIGS. 160-164, the device 16000 is used with the insulation support system 9900 illustrated by FIG. 99. However, the device 16000 can be used with any of the insulation support systems shown or described in this patent application.

[0734] The device 16000 can take a wide variety of different forms. In the example illustrated by FIGS. 160-164, the device 16000 includes a first leg 16010. The length L1 of the first leg 16010 is the desired depth of the insulation cavity. In the illustrated embodiment, the first leg 16010 sets

the depth of a first insulation cavity 50a (see FIG. 162). The device 16000 includes a second leg 16020. The length L2 of the second leg 16020 corresponds to the width of the support member 20. In the illustrated embodiment, the second leg 16020 is disposed on top of the support 20. The device 16000 includes a third leg 16030. The length L3 of the third leg 16030 corresponds to the depth of the support member 20. In the illustrated embodiment, the third leg 16030 is disposed adjacent to the support 20 and extends from the top of the support 20 to the bottom of the support 20 in a second insulation cavity 50b. The device 16000 includes a fourth leg 16040. The length L4 of the fourth leg 16040 corresponds to the width of the support member 20. In the illustrated embodiment, the fourth leg 16040 is disposed in the second insulation cavity 50b, under the third leg 16030, prior to filling the second cavity 50b with insulation material. The device 16000 includes a fifth leg 16050. The length L5 of the fifth leg 16050 corresponds to the desired depth of the insulation cavity minus the depth of the support member 20. In the illustrated embodiment, the fifth leg 16050 sets the depth of a second insulation cavity 50b (see FIG. 164). In the illustrated embodiment, the fifth leg 16050 is disposed in the second insulation cavity 50b, under the fourth leg 16040, prior to filling the second cavity 50b with insulation mate-

[0735] In FIGS. 163 and 164, the roof deck material 24 has been placed over the insulation cavities 50. Referring to FIGS. 163 and 164, providing insulation 16300 in the covered cavity pushes the fourth leg 16040 and the fifth leg 16050 from the position illustrated by FIG. 163 to the position illustrated by FIG. 164. In the position illustrated by FIG. 164, the fourth leg 16040 and the fifth leg 16050 pull the insulation support material under the support 20 to provide the pocket 52. In the illustrated embodiment, the insulation 16300 is loosefill insulation. The force of the air used to supply the loosefill insulation into the cavity 50b and the loosefill insulation filling the cavity causes the fourth leg 16040 to wrap around the support 20 and the fifth leg 16050 to move against the first leg 16010. Other types of insulation can also cause the fourth leg 16040 and the fifth leg 16050 to move from the position illustrated by FIG. 163 to the position illustrated by FIG. 164. For example, expandable insulation batts, spray foam, etc. can be used to cause the fourth leg 16040 and the fifth leg 16050 to move from the position illustrated by FIG. 163 to the position illustrated by FIG. 164.

[0736] FIG. 165 illustrates an exemplary embodiment of a standoff 16500. The standoff 16500 can be used to connect insulation support material 30 (see FIG. 167) in an attic. In the illustrated embodiment, the standoff 16500 includes a support mounting portion 16510 connected to and spaced apart from a web mounting portion 16520. The support mounting portion 16510 can take a wide variety of different forms. The support mounting portion 16510 can have any configuration that facilitates mounting to a support 20, a web 23, or other structure of the roof. In the illustrated embodiment, the support mounting portion 16510 is channel shaped and is sized to fit over a support 20. The illustrated support mounting portion includes barbs 16512 that penetrate the support 20 to hold the standoff on the support 20.

[0737] Referring to FIGS. 165 and 165A, the web mounting portion 16520 can take a wide variety of different forms. In the example illustrated by FIG. 165, the web mounting portion 16520 is an eyelet. The eyelet is configured to

receive a web support wire 16600 (See FIG. 166). Referring to FIG. 166A, in one exemplary embodiment, the eyelet can be replaced with a fastener that allows for quick attachment of a wire 16600, without requiring an end 16610 of the wire to be threaded through an eyelet. For example, any portion along the length of the wire can be snapped into web mounting portion 16520 as indicated by arrows 16522. In one exemplary embodiment, the web mounting portion 16520 is a carabineer or other device that can be snapped onto a wire, along the length of the wire. In one exemplary embodiment, an insulation support system may include some standoffs 16500 with eyelets and some standoffs with web mounting portions 16520 that can be snapped onto a wire 16600.

[0738] Referring to FIGS. 166 and 167, in one exemplary embodiment of an insulation support system 16700, a plurality of standoffs 16500 are connected to support members 20. Web support wire 16600 is attached to the standoffs. The wires 16600 can run parallel to the supports 20, perpendicular to the supports 20, or any angle in between. Referring to FIGS. 167 and 167A, insulation material 30 is provided on or underneath the wires 16600 and is attached to the wires 16600. For example, the insulation support material 30 may be placed on the wires 16600 and wrapped around the wires, so tabs 16602 are formed beneath the wires (see FIG. 167A). The insulation support material 30 may be a spun bond fabric. The insulation material can be 24 inches wide or wider. Fasteners 16604, such as staples, secure the insulation support material 30 to the wires 16600.

[0739] FIGS. 168A-168C illustrate that the standoffs 16500 and wires 16600 can be used to form a wide variety of different insulation support configurations. FIG. 168A illustrates a relatively simple configuration where the wire is generally straight. FIG. 168B illustrates a more complicated configuration where the wire 16600 turns at significant angles in the standoffs. FIG. 168C illustrates that the standoffs 16500 and wires 16600 and be used to construct a web 16800 that supports insulation support material or insulation material itself. The insulation support material 30 and/or the insulation can be layed on top of the web that is formed in the FIG. 168C embodiment.

[0740] FIGS. 169A and 169B illustrate an exemplary embodiment of an insulation support system 16900 where separate cavities are formed by attaching the insulation support material to both the support members 20 and the wires 16600. In FIG. 169A, the insulation support material 30 is attached to the support members 20. In FIG. 169B, the insulation support material 30 is folded over a wire 16600, attached to one or more wires 16600, and optionally connected to one or more other support members 20. This process of attaching the insulation support material 30 to both the support members 20 and the wires 16600 can be repeated to construct multiple, discrete insulation cavities 50 below the support members 20.

[0741] FIGS. 170A and 170B illustrate that the support material 20 can include fasteners 17000, such as the illustrated hooks that engage the insulation support material 30. However, any type of fastener may be included on the insulation support material. For example, the insulation support material 30 may include both hook fastener material and loop fastener material. In the example illustrated by FIGS. 170A and 170B, the insulation support material 30 is folded back on itself over a wire 16600. The fastener 17000 engages the material 30 to secure the insulation support

material 30 on the wire 16600. The wire and standoff systems illustrated by FIGS. 165-169 allow insulation cavities to be formed that conform to the unusual or non-standard dimensions of a roof deck.

[0742] FIGS. 171-174 illustrate exemplary embodiments where the insulation support material 30 is pre-connected to elongated secondary support members 17120. The secondary support members 17120 can take a wide variety of different forms. The elongated secondary support members 17120 can be rigid or flexible. Examples of elongated secondary support members include, but are not limited to, a plank (See FIG. 171), a bracket 1720 (See FIG. 17), a chord, ribbon, rope, or tape 1730 (See FIG. 17) or other elongated member or support material. The elongated secondary support members 17120 can be attached to the insulation support material 30 in a wide variety of different ways. In one exemplary embodiment, elongated secondary support members 17120 can be connected to the insulation support material 30 by wrapping the insulation support material 30 around the elongated secondary support members 17120, with fasteners, such as hook and loop fasteners, double sided tape, clips or clamps, and/or adhesives, and the

[0743] Referring to FIG. 172, the elongated secondary support members 17120 and attached support material can be positioned to span multiple support members 20 (i.e. to form two or more insulation cavities 50 with one piece of insulation support material. The elongated secondary support members 17120 can be connected to the support members 20 and/or the webs 23 to secure the insulation support material 30 in position. The insulation support material 30 can be wrapped around the elongated secondary support members 17120, so that the insulation support material 30 is taut when the elongated secondary support members 17120 are secured to the support members 20 and/or the webs 23. The elongated secondary support members 17120 are illustrated as being in abutment with the support members 20. However, the elongated secondary support members 17120 can be spaced apart from the support members 20 to appropriately set the depth of the insulation cavities. This provides insulation cavities with a substantially flat insulation support surface 17300 created by the insulation support material. In the embodiment illustrated by FIG. 172, the insulation support material 30 creates an enclosure for loose fill fiberglass to be installed along the underside of roof deck sheathing 24 in unvented attic assemblies.

[0744] In one exemplary embodiment one or more dividers 17280 are provided that divide the large insulation enclosure into smaller insulation enclosures 17282. The divided smaller enclosures 17282 result in more uniform distribution of the insulation material 58. One divider 17280 is illustrated, but multiple dividers 17280 can be used. For example, dividers 17280 can be provided to divide the large enclosure into smaller enclosures 17282 having widths between four and six feet. The dividers 17280 can take a wide variety of different forms. For example, the dividers can be made from cardboard, plastic, etc.

[0745] Referring to FIG. 171, the elongated secondary support members 17120 and attached insulation support material 30 are inserted between webs 23 and upper ends of support members 20, and/or between webs 23 and lower ends of support members 20. The insulation support material 30 can be rolled up on one or both of the elongated secondary support members 17120 to make the insertion

between webs 23 and upper ends of support members 20, and/or between webs 23 and lower ends of support members 20 easier. The elongated secondary support members 17120 can be sized to span any number of spaced apart support members 20.

[0746] Referring to FIGS. 172 and 173, upon terminating the support material 30 on opposing ends, usually at the eave 1006 and ridge 1010, the enclosures that are created are filled with loose fill insulation 58. However, the truss webs 23 prevent a continuous sheet of support material 30 from being applied below an entire section of the roof deck 14. In the example illustrated by FIG. 172, the elongated secondary support members 17120 and the insulation support material 30 is applied in long sections that run horizontally, i.e. parallel to the eaves. This leaves a gap 17250 between the each section. If the gap 17250 is not bridged, the blown loose fill insulation 58 is not contained. In one exemplary embodiment, adjacent horizontally running sections of the support material 30 are spliced together. This splicing can be accomplished in a wide variety of different ways. In one exemplary embodiment, an insulation batt 17200 is placed into the gap between the two sections. In another exemplary embodiment, a panel, such as a cardboard panel is stapled to span and block the gap.

[0747] The insulation support material 30 illustrated by FIGS. 172 and 173, form insulation cavities 50, each having a substantially rectangular configuration. Referring to FIG. 173, in an exemplary embodiment, a distance DS from the sheathing panel to the support material 30 is substantially uniform. The insulation cavities 50 have insulation pockets located under support members 20. Loosefill insulation material 58 is distributed into the insulation cavities 50 until the insulation cavities 50 are filled.

[0748] FIGS. 172 and 173 illustrate use of the elongated secondary support members 17120 and pre-connected insulation support material 30 in a roof having a roof deck supported by trusses (See FIG. 1A). FIG. 174 illustrates that the elongated secondary support members 17120 and pre-connected insulation support material 30 can be used in a roof having a roof deck supported by rafters. The elongated secondary support members 17120 and pre-connected insulation support material 30 can be installed in the rafter-type roof, in the same manner as the truss-type roof. In the rafter-type roof, a single pair of elongated secondary support members 17120 and pre-connected insulation support material 30 can span from the peak of the roof to the eave of the roof

[0749] FIGS. 175-178 illustrate an exemplary embodiment where the insulation support material 30 is suspended from support members 20 with pins 17500 (See FIG. 177). In one exemplary method, the insulation support material 30 is attached by simply rolling out a sheet of the support material 30 to be attached in the same manner as a wall fabric or in the same manner as housewrap is installed.

[0750] Referring to FIG. 17500, the insulation support material 30 is unrolled and cut to the dimensions of the roof deck 14. The insulation support material 30 is optionally fastened in place with fasteners 17502 that pass through the insulation support material. For example, an installer fires staples or other fasteners through the insulation support material 30 into the front face of the support member 20, such as a truss chord. In another exemplary embodiment, the additional fasteners 17502 are omitted and the pins 17500

are driven through the insulation support material 30 into the front face of the support member 20, such as a truss chord. [0751] The pins 17500 can take a wide variety of different forms. In the exemplary embodiment illustrated by FIGS. 176 and 177, the pins 17500 include an elongated shank 17700, a shoulder 17702, a collar 17704, and a head 17706. In an exemplary embodiment, the shank 17700, shoulder 17702, collar 17704, and head 17706 are annular. The collar 17704 is configured to set a depth D176 of the pin 17500 and the collar 17704 is configured to support the insulation support material 30.

[0752] Referring to FIG. 176, the pins 17500 are driven through the insulation support material 30 into support members 20 in the illustrated embodiment. The shoulder 17702 sets the depth of penetration of the pin 17500 into the support member 20. This sets the depth of the insulation cavity.

[0753] Referring to FIG. 178, the insulation support material is pulled or otherwise forced in the direction indicated by arrow 17800. The force pulls/rips the insulation support material 30 over the optional staples or other fasteners 17502 and/or the shoulder 17702 of the pin 17500. The support material moves into engagement the collars 17704 of the pins 17500. The collars 17704 support the support material at the depth D176. This step can be accomplished either by manually pulling by hand or by simply filling the enclosure with insulation 58, such as loose fill insulation. In another exemplary embodiment, the insulation support material 30 can be provided with perforated circles, or complete holes, into which the fasteners or staples are applied. The perforated circles or holes ensure that the insulation support material 30 pulls over the fastener, such as the illustrated staples.

[0754] Splicing two sections of the support material enclosure can be accomplished in a wide variety of different ways. FIG. 178A illustrates an exemplary embodiment where two layers of support material 30 are connected together using fasteners 17860, such as staples or clothing tag fasteners. FIG. 178B illustrates that the support material sections do not need to be spliced together if the insulation material 30 is blown in the direction indicated by arrow 17862. The direction 17862 is over the top sheet of insulation support material and then over the bottom sheet. As such, the insulation 58 is not blown between the two sheets and splicing is not necessary.

[0755] Referring to FIGS. 175-178, a distance DS from the sheathing panel 24 to the insulation support material 30 is substantially uniform. Referring to FIG. 178, the insulation cavities 50 have insulation pockets 52 located under support members 20. Loosefill insulation material 58 is distributed into the insulation cavities 50 until the insulation cavities 50 are filled.

[0756] Referring to FIGS. 179-181, in one exemplary embodiment, the roof support members 20 are spaced apart and parallel to lower support members 17900. The lower support members 17900 can be included in a wide variety of different applications. Referring to FIG. 180, in one exemplary embodiment a truss is constructed with support members 20 that are spaced apart and parallel to lower support members 17900. The support members 20 are connected to the lower support members 17900 by spacers 17910. Referring to FIG. 181, a support assembly 18100 includes support members 20 that are spaced apart and parallel to lower support members 17900. The roof deck support assembly

18100 can be used to support the floor in a house or other building or can be used to support sheathing of a low or no slope roof.

[0757] The support members 20 that are spaced apart and parallel to lower support members 17900 can be used in a wide variety of different insulation systems, such as any of the insulation systems described in this patent application. FIGS. 182-184 illustrate one exemplary embodiment of an insulation system 18400 that uses support members 20 that are spaced apart and parallel to lower support members 17900. The insulation system 18400 includes insulation support components 18230. In the example illustrated by FIG. 182, the support components 18230 each include a first rigid or at least partially rigid side panel 18234, a second rigid or at least partially rigid side panel 18235, and a flexible insulation support or span portion 18236, such as netting. The netting 30 may be the netting described in the embodiments illustrated by FIGS. 2A, 2B and 3-6.

[0758] The support components 18230 may take a wide variety of different forms and may take a wide variety of different configurations. In the illustrated embodiment, the span portion 18236 is connected to a middle portion 18250 of the side panel 18234 and to an end 18252 of the side panel 18235. In another exemplary embodiment, the side panel 18235 has the same width as the side panel 18234 and the span portion 18236 is connected to a middle portion of the side panel 18235.

[0759] The side panels 18234 and 18235 and the span portion 18236 may be made from a wide variety of different materials. For example, the side panel 18234 may comprise cardboard, plastic, foam board and the like. The span portion 1936 may comprise a plastic film, a mesh, combinations of plastic film and mesh, and the like. In one exemplary embodiment, the span portion 18236 material may be a breathable material, a vapor barrier, a vapor retarder, and/or an air barrier material.

[0760] Referring to FIG. 183, the side panel segment 18234 of an support component 18230 is positioned adjacent to a support member 20 and a lower support member 17900 in abutment with sheathing panel 24, and fastened to the support member 20 and/or the lower support member 17900. The abutment of the side panel segment 18234 with the sheathing panel 24 sets the depth the insulation cavity. The side panel segment 18235 is positioned adjacent to a lower support member 17900 and fastened to the lower support member 17900, below the support member 20. In an exemplary embodiment where the side panel segment 18235 has the same width as the side panel segment 18234, the side panel segment 18235 can be placed in abutment with the sheathing panel 24 to set the depth of the insulation cavity. In this embodiment, the side panel segment 18235 would include openings to allow insulation to pass through the side panel segment 18235 into the pocket 52 below the support member 20. The span segments 18236 span from the side panel segments 18234 to the side panel segments 18235, thereby forming insulation cavities.

[0761] In one exemplary embodiment, side panel segments 18234 are continuous (i.e. like the FIG. 20 embodiment) and have a length that corresponds to the length of the support members 20, such that the supports side panel segments 18234 extend substantially from the eave 1006 of the roof to the ridge 1010 of the roof. In another exemplary embodiment, the side panel segments 18234 have a length that is much shorter than the length L1 of the support

members 20 (i.e. like the FIG. 21 embodiment). In this embodiment, discrete, spaced apart side panel segments 18234 are attached to the span segment 18236 with gaps in-between. In another exemplary embodiment, the side panel segments 18234 have rigid portions with lengths that are much shorter than the length of the support members 20 and flexible portions in between the rigid portions (i.e. like the FIG. 22 embodiment). In one exemplary embodiment, the flexible portions do not substantially restrict airflow, so that air that blows the loosefill insulation 58 into the cavity 50 can escape the cavity.

[0762] In one exemplary embodiment, side panel segments 18235 are continuous (i.e. like the FIG. 20 embodiment) and have a length that corresponds to the length of the support members 20, such that the supports side panel segments 18235 extend substantially from the eave 1006 of the roof to the ridge 1010 of the roof. In another exemplary embodiment, the side panel segments 18234 have a length that is much shorter than the length L1 of the support members 20 (i.e. like the FIG. 21 embodiment). In this embodiment, discrete, spaced apart side panel segments 18234 are attached to the span segment 18236 with gaps in-between. In another exemplary embodiment, the side panel segments 18234 have rigid portions with lengths that are much shorter than the length of the support members 20 and flexible portions in between the rigid portions (i.e. like the FIG. 22 embodiment). In one exemplary embodiment, the flexible portions do not substantially restrict airflow, so that air that blows the loosefill insulation 58 into the cavity 50 can escape the cavity.

[0763] Referring to FIG. 183, insulation pockets 52 are formed as a portion of insulation cavities 50 and located under support members 20. In the embodiment where gaps are formed between discrete, spaced apart side panel segments 18234, distribution of loosefill material 58 into one cavity 50 causes the loosefill material 58 to pass into another cavity through the gaps. This allows multiple cavities 50 to be filled at once by inserting the loosefill supply hose into a single cavity. Distributing loosefill insulation material (not shown) into the insulation cavities results in loosefill insulation material filling the insulation pockets. As the filled insulation pockets are located below the support members, the filled insulation pockets are configured to insulate the support members.

[0764] FIG. 185 illustrates an exemplary embodiments of an insulation support systems 18500. In the exemplary embodiment illustrated by FIG. 185, a cavity is formed below multiple pairs of support members 20 by attaching the insulation support material to both the support member 20 and the lower support members 17900. In an exemplary embodiment, the position of the lower support member 17900 is selected to set the appropriate depth D185 of the insulation cavity 50. The insulation support material 30 is attached to the support members 20 and folded over lower support members 17900, attached to one or more lower support members 17900, and optionally connected to one or more other support members 20. This process of attaching the insulation support material 30 to both the support members 20 and lower support members 17900 can be repeated to construct multiple, insulation cavities 50 below the support members 20.

[0765] FIG. 186 illustrates an exemplary embodiment of an insulation support systems 18600. In the exemplary embodiment illustrated by FIG. 186, discrete cavities are

formed below multiple pairs of support members 20 by attaching the insulation support material to both the support member 20 and the lower support members 17900. The insulation support material 30 is attached to the support members 20 and folded over lower support members 17900, attached to one or more lower support members 17900, and connected to the next support member 20. This process of attaching the insulation support material 30 to both the support members 20 and lower support members 17900 can be repeated to construct multiple, discrete insulation cavities 50 below the support members 20.

[0766] FIGS. 187 and 188 illustrate that a peeling force (arrow 18800) is applied to the hook and loop material 13900 when the cavity 50 is filled with loosefill insulation 58. FIGS. 189-196 illustrate exemplary embodiments where the hook and loop material 13900 is configured such that a shear force (arrows 19200) is applied to the hook and loop material 13900, instead of the peeling force. (18800) when the cavity is filled with loosefill insulation.

[0767] In the exemplary embodiment illustrated by FIGS. 189-192, the interconnecting portions 30 are connected together by hook and loop material 13900. In the example illustrated by FIGS. 189-192, the interconnecting portions 30 each have an optional tab 18930 with hook material 13931 spaced apart from a optional second tab 18933 with loop material 13933. In another exemplary embodiment, the hook material 13931 is provided on the tab 18933 and the loop material 13933 is provided on the tab 18930.

[0768] In an exemplary embodiment, the tab 18933 is configured such that the loop material 13933 (or hook material 13931) is on the side of the material 30 that faces away from the cavity 50 (i.e. on the downward facing side 18920). This positioning can be accomplished in a variety of different ways. In the example illustrated by FIG. 190, the tab 18933 is connected to the remainder of the insulation support material 30 by stitches 19010 or another fastener, such as a clothing tag fastener or a stapler. In another exemplary embodiment, the loop material 18933 is simply attached to the bottom side 18920 of the material 30 and the material is folded to the position illustrated by FIG. 190 for attachment to the hook material 13931 (or loop material 13933).

[0769] Referring to FIGS. 190-192, the hook and loop material 13900 is brought into engagement to connect adjacent interconnecting portions 30 together and form the cavities 50. Referring to FIG. 192, when the loosefill insulation 58 is provided in the cavities 50, the tabs 18933 fold down. The force 19200 applied by the loosefill insulation 58 acts on the hook and loop material 13900 in shear, instead of in peel. In one exemplary embodiment, the strength of the connection of the hook and loop material 13933 in shear is greater than the strength of the connection of the hook and loop material in peel. As such, the configuration of the hook and loop material 13900 in the FIG. 189-192 embodiment provides a stronger connection between the interconnected portions 30 than the otherwise identical connection shown in FIG. 187.

[0770] The loop material 13933 may be omitted and the material 30 itself may be configured to perform the function of the loop material in any of the embodiments of the present application. For example, the material 30 may be looped, or rough, or have an open weave, or is an open non-woven fabric, or is otherwise configured such that the hook material

13931 connects to the material 30 itself, like it would connect to a separate loop material.

[0771] In the exemplary embodiment illustrated by FIGS. 193-196, the interconnecting portions 30 are connected together by hook and loop material 13900. In the example illustrated by FIGS. 193-196, the interconnecting portions 30 each have an optional tab 18930 with hook material 13931 spaced apart from an end portion of the material 30 with loop material 18933. In another exemplary embodiment, the hook material 13931 is provided on the end portion of the material 30 and the loop material 13933 is provided on the tab 18930. In an exemplary embodiment, the tab 18930 is configured such that the hook material 13931 (or loop material 13933) will face downward away from the cavity **50**, when the cavity is filled with insulation. This positioning can be accomplished in a variety of different ways. In the example illustrated by FIG. 193, the tab 18930 is connected to the remainder of the insulation support material 30 by stitches 19410 or other fasteners. In another exemplary embodiment, the hook material 13931 is simply attached to the side 19450 the material 30, at the position indicated by arrow 19460.

[0772] Referring to FIGS. 194-196, the hook and loop material 13900 is brought into engagement to connect adjacent interconnecting portions 30 together and form the cavities 50. Referring to FIG. 192, when the loosefill insulation 58 is provided in the cavities 50, the tabs 18931 fold down. The force 19200 applied by the loosefill insulation 58 acts on the hook and loop material 13900 in shear, instead of in peel. In one exemplary embodiment, the strength of the connection of the hook and loop material 13933 in shear is greater than the strength of the connection of the hook and loop material in peel. As such, the configuration of the hook and loop material 13900 in the FIG. 193-196 embodiment provides a stronger connection between the interconnected portions 30 than the otherwise identical connection shown in FIG. 187. By providing a stronger connection with the same hook and loop material, the amount of hook and loop material 13900 can be reduced.

[0773] In one exemplary embodiment, the connection of the hook and loop material 13900 is configured to control the amount of weight inside the insulation cavity 50. For example, a hook and loop material 13900 can be selected and positioned, such that the hook and loop connection opens after a predetermined threshold weight is reached in the insulation cavity. For example, the hook and loop material 13900 can be configured to support the weight of fiberglass loosefill insulation, but open if a weight that is significantly higher that the fiberglass loosefill insulation is in the cavity. For example, the hook and loop material 13900 can be configured to open if the weight supported by the material 30 is greater than 150%, greater than 200%, of greater than 250% of the weight of the expected weight of the fiberglass loosefill insulation. Cellulose insulation is approximately 2.7 times heavier than fiberglass loosefill insulation. If the hook and loop material 13900 is configured to open at 150%, 200%, or 250% of the expected weight of loosefill insulation, the hook and loop connection will open if cellulose insulation is used instead of fiberglass loosefill insulation.

[0774] FIGS. 197 and 198 illustrate that any of the insulation support materials described in this application may be provided on a roll. FIG. 198 illustrates the material of FIG.

10A folded and rolled. FIG. 197 illustrates a material similar to the material illustrated by FIG. 10A, except the tab 33 is omitted, folded and rolled.

[0775] FIGS. 199-209 illustrate exemplary embodiments of insulation support material that include projections 19910 and holes 19920. The projections 19910 are forced through the holes 19920 to make connections between pieces of insulation support material. The projections 19910 can take a wide variety of different forms. FIGS. 199, 202, and 203 illustrate a few examples, but any configuration can be used. In the example illustrated by FIG. 199, the projection 19910 includes a sharp tip 19921 and enlarged base 19922. For example, the projection 19910 may have a conical shape. The base 19922 is spaced apart from the material 30 by a portion 19924 that is narrower than the base 19922.

[0776] In the example illustrated by FIG. 202, the projection 19910 includes a sharp tip 19921 and enlarged base 19922. For example, the projection 19910 may have a conical shape with a ring 20226. The ring 20226 may flex downward to facilitate insertion, but be configured to not flex upward to prevent removal of the projection 19910. The base 19922 is spaced apart from the material 30 by a portion 19924 that is narrower than the base 19922.

[0777] In the example illustrated by FIG. 203, the projection 19910 comprises a ball 20320. The ball 20320 is spaced apart from the material 30 by a portion 19924 that is narrower than the base 20320.

[0778] The holes 19920 can take a wide variety of different forms. For example, the holes 19920 may be may comprise openings between strands of a fabric, such as a woven or non-woven material. The holes 19920 may be discretely formed and may be sized to allow the projection 19910 to be forced through, but prevent the projection from being pulled back out of the hole.

[0779] FIGS. 199-201 illustrate forcing the projections 19910 through the holes 19920 to make connections between pieces of insulation support material. In the illustrated example, the sharp tip 19920 penetrates the material 30 until the enlarged base 19922 passed through the fabric. The enlarged base 19922 prevents the projection 19910 from being pulled back through the support material 30.

[0780] FIGS. 204-207 illustrate use of the material 30 of FIGS. 197 and 198 with mating projections 19910 and holes 19920 to form insulation cavities 50. In the example illustrated by FIG. 204, the interconnecting portions 30 each have an optional tab 31 with projections 19910 spaced apart from an optional second tab 33 with holes 19920. Alternatively, the optional first tab 31 can have the holes 19920 and the optional second tab 33 can have the projections 19910. In one exemplary embodiment, the second tab 33 is omitted and projections 19910 or holes 19920 are provided on ends 1000 of the interconnecting portions 30. In another exemplary embodiment, the first tab 31 is omitted. Projections 19910 or holes 19920 may be connected to the area where the interconnecting portions 30 are folded or bent.

[0781] Referring to FIGS. 206 and 207, the projections 19910 are forced through the holes 19920 as indicated by arrow 20600 to connect the two insulation support materials together. The projections 19910 can be forced through the holes 19920 in a wide variety of different ways. FIG. 208 illustrates that the tabs 31, 33 can be pressed together as indicated by arrows 20800 to force the projections 19910 through the holes 19920 and thereby connect the tabs 31, 33 (or tab and end portion) together. For example, the tabs 31,

33 can be pressed together with a person's fingers or a clamp 20810. FIG. 209 illustrates that the projections 19910 may be pulled through the holes 19920 and thereby connect the tabs 31, 33 (or tab and end portion) together. For example, a vacuum 20900 can be applied through the holes 19920 to pull the projections 19910 on the tab 31 through the holes 19920.

[0782] In one exemplary embodiment, the fasteners of the FIG. 199-209 embodiments are arranged such that a shear force is applied to the connection by the blown-in insulation, instead of a peel force. For example, when the tabs 31, 33 are connected together, the tabs and/or connectors are configured such that, insulation blown into the cavity applies a predominantly shear force to the adhesive connection, instead of peeling force. This can be done in a wide variety of different ways. For example, the tabs and/or the projection/hole connectors can be configured in the same or similar manner as described with respect to the hook and loop connection in FIGS. 189-196. That is, the hook and loop connections in FIGS. 189-196 can be replaced with the projection/hole connectors of FIGS. 199-209.

[0783] FIG. 210 is a sectional view of a building structure 10, such as a house, showing a truss. In the example illustrated by FIG. 210, an adhesive 21000 is applied to the supports 20 of the truss at the peak 21010 and each of the eaves 21012. However, the adhesive 21000 can be provided at any location on the supports 20 and/or the chords 23. The adhesive 21000 can be replaced with another type of fastening system, such as a hook and loop fastening system.

[0784] Referring to FIG. 211, the adhesive 21000 can be applied in a wide variety of different ways. In the example Illustrated by FIG. 211, the adhesive is applied with an elongated applicator 21100. The elongated applicator 21100 can take a wide variety of different forms. The elongated applicator 21100 can be a spray can mounted to a pole or the elongated applicator may comprise a hose that delivers adhesive 21000 from a supply on the ground to the application sites. The adhesive 21000 can also be applied by a worker on a ladder, without the elongated applicator. Further, the adhesive 21000 can be pre-applied to the insulation support material 30, instead of or in addition to the supports.

[0785] Referring to FIG. 212, after the adhesive 21000 is applied, the insulation support material 30 is positioned on the truss. The adhesive 21000 holds the insulation support material 30 in place. The insulation support material 30 can be positioned in a wide variety of different ways. In the example illustrated by FIG. 212, the insulation support material 30 is provided on a roll 21210. The insulation support material 30 is unrolled and positioned at the ridge and the two eaves. The adhesive 21000 holds the insulation support material 30 in place. Referring to FIG. 213, the insulation support material 30 is optionally secured to the truss by fasteners 21300, such as staples. In another exemplary embodiment, the adhesive 21000 is sufficient to permanently connect the insulation support material to the truss, and the fasteners 21300 are omitted.

[0786] Referring to FIG. 214, the insulation support material 30 is cut to separate the insulation support material 30 that is attached to the truss from the roll. This cutting may be done before or after the insulation support material 30 is held in place by the adhesive 21000. The insulation support material 30 may have any of the configurations illustrated by the present application. Separate insulation support material pieces 30 applied to the trusses as illustrated by FIGS.

210-214 may be connected together to provide insulation cavities 50 below the roof deck 24.

[0787] FIGS. 215-218 illustrate an exemplary embodiment of a system 21500 for routing and installing insulation support material 30 from a floor 21560 in a room below an attic 21562 to the attic 21562. The system 21500 allows a single worker in the attic to install insulation support material 30. The insulation support material 30 can have any of the configurations disclosed in the present application. The illustrated system 21500 includes a supply 21502 of insulation support material 30 and one or more turning devices 21510. The supply 21502 may be a roll of the insulation material 30 or the insulation material 30 may be fan-folded into a box (See FIG. 219). The illustrated supply 21502 is disposed outside of the attic 21562, making it easier for the worker to install the insulation support material 30 in the attic.

[0788] Referring to FIG. 215, the insulation support material 30 is routed from the supply 21500 to the first turning device 21510 as indicated by arrows 21530. The turning device 21510 may take a wide variety of different forms. The turning device 21510 may be any device capable of turning the material from the direction indicated by arrows 21530 to the direction indicated by arrows 21532. In the illustrated embodiment, the turning device 21510 comprises a ring that is attached to a support member 20 and/or cross-member 23. However, the turning device may have any shape or configuration.

[0789] Still referring to FIG. 215, the insulation support material 30 is routed from the first turning device 21510 to the second turning device as indicated by arrows 21532. The insulation support material 30 is routed from the second turning device 21510 to the area between a first truss 21550a and a second truss 21550b as indicated by arrows 21533 where the material 30 is installed in any of the manners described by this patent application.

[0790] Referring to FIG. 216, after an appropriate amount of material 30 is supplied to the area between the first truss 21550a and the second truss 21550b, the material is routed from the second turning device 21510 to the area between the second truss 21550b and a third truss 21550c as indicated by arrows 21534 where the material 30 is installed.

[0791] Referring to FIG. 217, after an appropriate amount of material 30 is supplied to the area between the second truss 21550b and the third truss 21550c, the material is removed from the second turning device. The material is routed from the first turning device 21510 to the area between the third truss 21550c and a fourth truss 21550d as indicated by arrow 21536 where the material 30 is installed. [0792] Referring to FIG. 218, after an appropriate amount of material 30 is supplied to the area between the third truss 21550c and the fourth truss 21550d, the material is routed from the first turning device 21510 to the area between the fourth truss 21550d and a fifth truss 21550e as indicated by arrow 21538 where the material 30 is installed. In this manner, the insulation material 30 is neatly supplied to and installed between each of the pairs of spaced apart support members.

[0793] FIG. 219 illustrates an exemplary embodiment where the insulation support material 30 is fan-folded in a box 21900. Referring to FIG. 219A, in one exemplary embodiment the top of the box 21900 is provided with flaps 21910 that are longer than the height H219 of the box 21900. The flaps 21910, when folded down, extend past the bottom

21920 of the box. The flaps 21910 may be fastened with notches, fasteners, etc. in the folded down position. In this position, the flaps 21910 can be placed over the lower members 21940 of the trusses to maintain the position of the box in the attic, while the material 30 is being installed.

[0794] In one exemplary embodiment, each folded section 21930 corresponds to a common measurement of length. For example, each section may be six inches wide, 12 inches wide, 18 inches wide, etc. As such, the installer can quickly measure an appropriate length of the insulation support material 30 by grabbing the corresponding number of sections 21930. For example, if twenty feet of the insulation support material are needed to span from an eave, to the peak, to an eave of a roof, the installer can grab the appropriate number of sections 21930. In this example, if each section 21930 is one foot long, an installer could grab the twenty sections pointed to by arrows 21920 from the box 21900, instead of measuring twenty feet of material.

[0795] Referring to FIGS. 220 and 221, a variety of different aids may be provided to assist in the counting of the sections 21930. In the example illustrated by FIG. 224, a fastener 22000, such as an easily removable or breakable staple or a clothing tag fastener, is used to bundle a predetermined number of sections 21920 together. For example, if twenty feet of the insulation support material is needed to span from an eave, to the peak, to an eave of a roof, the installer can grab an appropriate bundle 22002 of sections 21930. In this example, if each bundle 22002 of twenty section 219200 is twenty feet long, an installer could grab the top twenty section bundle 22002 from the box 21900, instead of measuring twenty feet of material. The installer breaks the one or more fasteners 22000 as needed to install the insulation support material 30. The installer may choose to temporarily leave one or more of the fasteners 2000 in-tact, while installing the material of other bundles, to keep the material compact and out of the way.

[0796] In the example illustrated by FIG. 221, color coding 22500 is used to group a predetermined number of sections 21920 together. For example, if twenty feet of the insulation support material are needed to span from an eave, to the peak, to an eave of a roof, the installer can grab an appropriate color coded group 22102 of sections 21910. In this example, if each color coded group of twenty sections 21910 is twenty feet long, an installer could grab the twenty section color coded group 22102 from the box 21900, instead of measuring twenty feet of material.

[0797] FIGS. 222-225 illustrate installation of the insulation support material 30 supplied in the manner described with respect to FIGS. 215-218 and/or 219-221. With the material supplied in the manners illustrated by FIGS. 215-218 and/or 219-221 the installation work in the attic can be decoupled from the work at the eave. That is, two workers do not have to work on the same bay or cavity 50 at the same time. The worker that does the eave portion of the installation can perform his installation tasks after the worker that installs the material 30 above the eave area. Or, a single worker can install all of the material in all of the bays in the attic and then come down and perform the installation tasks in the eave area.

[0798] Referring to FIG. 222, a worker 22200 obtains an appropriate amount of insulation support material 30 for the bay he is working on in the manner described with respect to FIGS. 215-218 and/or 219-221. The worker finds the center 22210 of the material 30. If the material is folded as

illustrated, the center 22210 can be easily found by counting the sections 21930 and placing the same number of sections on each side. The worker 22200 then attaches the center 22210 of the material 30 to the truss at the ridge.

[0799] Referring to FIG. 223, once the material 30 is attached at the ridge, the worker 22200 can attach the material to the truss along the support 20. In the example illustrated by FIG. 223, the worker 22200 does not attach the material 30 to the truss in the eave area 22300. Referring to FIG. 224, a second worker 22400 attaches the material to the truss along the support 20 in the eave area 22300. In another embodiment, a second worker is not available and the worker 22200 can come back and attach the material to the truss along the support 20 in the eave area 22300. In the example illustrated by FIG. 224, the worker 22200 is attaching one piece of insulation support material 30 to another piece of insulation support material to form an insulation cavity, while the other worker 22400 attaches the material to the truss along the support 20 in the eave area 22300. Or, the worker 22200 could attach material 30 in another bay while the worker 22400 attaches the material to the truss along the support 20 in the eave area 22300. FIG. 225 illustrates the worker 22200 installing the insulation support material 30 on a second side 22510 of the attic, while the worker 22400 attaches one piece of insulation support material 30 to another piece of insulation support material to form an insulation cavity. FIGS. 222-225 illustrate that the work in the attic can be decoupled from the work below the attic on the eave area.

[0800] FIG. 226 illustrates an exemplary embodiment of

an air barrier layer 1034 that is applied above the sheathing panels 24 (See FIG. 1G) to air seal the roof deck. The air barrier layer 1034 may take a wide variety of different forms. The air barrier layer 1034 may be an underlayment disposed between the sheathing panels 24 (See FIG. 1G) and shingles (not shown). In the example illustrated by FIG. 226, the underlayment may includes a plurality of overlapping sealant strips 22600. In the illustrated embodiment, a portion 22602 of the sealant strip 22600 is exposed. This portion 22602 allows for easy visual inspection of the roof deck before installation of the shingles to confirm that a sealing air barrier layer or underlayment has been installed. The portion 22602 can take a wide variety of different forms. For example, the portion can be an extension of the sealant strip that comprises sealant or a portion of the sealant strip that is not sealant (i.e. a plastic or other material that is easy to see). [0801] FIG. 227 illustrates an exemplary embodiment of an air barrier layer 1034 that is applied above the sheathing panels 24 (See FIG. 1G) to air seal the roof deck. The air barrier layer 1034 may take a wide variety of different forms. The air barrier layer 1034 may be an underlayment disposed between the sheathing panels 24 (See FIG. 1G) and shingles. In the example illustrated by FIG. 227, the underlayment comprises a sheet 22700 that does not include any sealant. For example, the sheet 22700 may be tar paper, polymer underlayment, and the like that do not include a sealant that seals the sheets together. Instead, the sheets 22700 are held to the sheathing panels 24 (See FIG. 1G) with closely spaced fasteners 22720, such as nails, or cap screws or nails, etc. By closely spacing the fasteners 22720, the overlapping sheets 22700 substantially inhibit air from passing through the overlapping area 22750 to thereby provide an air barrier to the roof deck. In one exemplary embodiment, the spacing

between the fasteners is less than two inches, such as less

than one inch. The exposed fasteners 22720 allow for easy visual inspection of the roof deck before installation of the shingles to confirm that the fasteners 22720 have been installed in a sealing manner.

[0802] FIG. 228 illustrates proper placement of a fastener 22800, such as a staple, during installation of the insulation support material 30 of FIGS. 10A and 10B. The illustrated insulation material 30 includes a span portion 36 that includes a tab 31 and a tab 33 (either a discreet tab or the end of the span portion 36 is simply folded). In the illustrated embodiment, the fastener 22800 is applied at the intersection 22810 of the tab 31 and the span portion 36. The fastener 22800 is also applied at the intersection of the span portion 36 and the tab 36 (if included) or a predetermine distance D228 from the end 22860 span portion 36 if a fastener 22800 is not included. This fastener positioning provides the substantially flat span portion illustrated by FIG. 228.

[0803] FIG. 229 illustrates another placement of the fastener 22800, such as a staple, during installation of the insulation support material 30 of FIGS. 10A and 10B. In the illustrated example, the fastener 22800 is applied at an end 22910 of the tab 31. The fastener 22800 is also applied at an end of the tab 33 (if included) or at the end 22860 of the span portion 36 (if a tab 36 is not included). This fastener positioning provides a span portion 36 that droops as indicated by arrow 22913 and forms a "belly." The resulting insulation cavity 50 has a depth D229 at the droop that is greater than the example illustrated by FIG. 228. The amount of insulation material 58 required to fill the cavity 50 illustrated by FIG. 229 is greater than the amount of insulation material required to fill the insulation cavity 50 illustrated by FIG. 228. The filled insulation cavity 50 illustrated by FIG. 229 has a higher insulation R value than the embodiment illustrated by FIG. 228, due to the additional insulation and depth.

[0804] FIGS. 230A and 230B illustrate an exemplary embodiment an insulation support system that is similar to the embodiments of FIGS. 10A, and 10B, except the interconnecting portions 23030 of the insulation support material are configured to form insulation cavities that span a greater distance, such as three support members 20. In the illustrated embodiment, each interconnecting portion 23030 includes one side panel segment 23034 and two span segments 23036. The interconnecting material 23030 may take a wide variety of different forms and may take a wide variety of different configurations. For example, the interconnecting material 23030 may be rigid and/or flexible. Rigid interconnecting material may comprise cardboard, plastic, and the like. Flexible material may be a plastic film, a mesh, combinations of plastic film and mesh, and the like. In one exemplary embodiment, the interconnecting material 23030 may comprise a breathable material, a vapor barrier, a vapor retarder, and/or an air barrier material.

[0805] The interconnecting portion 23030 can be made in a wide variety of different ways. In the example illustrated by FIGS. 231A and 231B, the interconnecting portion 23030 is made by placing the two span segments 23036 on opposite sides of the side panel segment 23034 and attaching the three layers together along a line 23102. The span segments 23036 can be attached to the side panel segment 23034 in a wide variety of different ways. The span segments 23036 can be attached to the side panel segment 23034 by stitching as illustrated, by heat bonding, by adhesive bonding, with

mechanical fasteners, etc. Any manner of attaching the span segments 23036 to the side panel segment 23034 can be used.

[0806] FIGS. 230A and 230B illustrate, support members 20 and sheathing panel 24 of a building structure, such as a roof. The support members 20 and sheathing panel 24 are the same as, or similar to, support members 20 and sheathing panel 24 shown and described above. However, in other embodiments, support members 20 and sheathing panel 24 can have other configurations. A side panel segment 23034 of each interconnection portion 23030 is positioned adjacent to a face 42 of every other support member 20 and fastened to every other support member 20 with one or more fasteners 67. However, as noted above, the interconnecting portion 23030 can be connected to any portion of the support member 20 and/or to the roof sheathing 24.

[0807] After two adjacent interconnecting portions 23030 have been fastened to two support members 20 as shown in FIG. 230A, a larger, double size gap G230 is formed between each pair of interconnecting portions 23030. Each interconnecting portion 23030 includes two span segments 23036. One of the span segments 23036 of each of the two spaced apart interconnecting portions 23030 are rotated upward and connected together as indicated by arrows 23099. Referring to FIG. 230B, the two span segments 23036 are attached together with any desired fastener 23098, such as staples. In a repetitive manner, the span segments 23036 of adjacent interconnecting portions 23030 are connected together to form insulation cavities 50 below the support members 20 and the sheathing panels 24.

[0808] As mentioned above, the interconnecting portions 23030 or parts of the interconnecting portions shown in FIGS. 230A and 230B, are formed from a rigid material structural cardboard material. The rigid material, such as structural cardboard material is configured to retain the box-like cross-sectional shape of the insulation cavity after the loosefill insulation material is distributed into the formed insulation cavities. In other embodiments, the interconnecting portions 23030 or parts of the interconnecting portions can be formed from other materials, such as the non-limiting example of reinforced fiberglass or polymeric-based materials sufficient to form a box-shaped insulation cavity. In still other embodiments, the interconnecting portions 23030 or parts of the interconnecting portions can be formed from flexible materials, such as for example, netting as described above. In some exemplary embodiments, the interconnecting portions 23030 are made from more than one different material. For example, the span segments 23036 may be made from a flexible material and the side panel segments 23034 may be made from a rigid material. As another example, the span segments 23036 may be made from an air barrier material, a vapor barrier material, and/or a vapor retarder material, while the side panel segments 23034 are made from a breathable material, an open netting, or a mesh. [0809] Referring again to FIG. 230B, insulation cavities

[0809] Referring again to FIG. 230B, insulation cavities 23050 have a depth D230. The depth D230 is defined as the total of the depth D232 of the support members 20 and the widths W239 of the side panel segment 23034 that extends below the support members 20. The widths W239 are adjustable such as to result in different depths D230 of the insulation cavities.

[0810] As further shown in FIG. 230B, insulation pockets 23052 are formed under both support members 20 that are within the insulation cavity 50. Distributing loosefill insu-

lation material (not shown) into the insulation cavities results in loosefill insulation material filling the insulation pockets. As the filled insulation pockets 23052 are located below the support members, the filled insulation pockets are configured to insulate the support members 20.

[0811] Referring again to FIGS. 230A and 230B, the insulation system provides the same advantages as previously discussed, namely, a uniform thickness of the loosefill insulation material, the depth of the insulation cavities can be adjusted to provide different depths of the loosefill insulation material and insulation pockets positioned below the support members are filled with loosefill insulation material.

[0812] While some of the embodiments illustrated in the present application have been described above as utilizing loosefill insulation material to fill insulation cavities, it is within the contemplation of this invention that other insulative materials could be used within the formed insulation cavities. Non-limiting examples of other insulative materials that can be used include insulation in the form of batts, rigid board insulation and insulation nodules formed from batts and rigid board insulation.

[0813] It is also within the contemplation of this invention that the various embodiments of the insulation support materials discussed above include markings and/or indicia to aid an installer. Non-limiting examples of markings and/or indicia include positioning lines, stapling locations, and branding indications.

[0814] Any of the components of any of the insulation support systems disclosed in the present application are made from a transparent material to allow for easier installation and to allow viewing of loosefill insulation filling. In one exemplary embodiment, the insulation support material 30 includes a transparent vapor retarder, for example, a vapor retarder having a permeability 1 perm or greater than 1 perm.

[0815] While some of the embodiments described in the present patent application, have been described as using individual sections of netting to form insulation cavities between adjacent support members, it should be appreciated that sections of netting can be configured to span more than one insulation cavity. For example, the netting could span adjacent insulation cavities or the netting could any desired number of adjacent insulation cavities.

[0816] While some of the embodiments of the insulation cavities illustrated in this application have been illustrated and described as being filled with loosefill insulation material, it is within the contemplation of this invention that the insulation cavities can be configured with one or more channels configured as conduits configured to provide fresh air to the attic and/or the area in the attic where the insulation is disposed and/or enclosed by insulation support material. In certain configurations, the channels are simply spaces, void of loosefill insulation, within the insulation cavities. In other embodiments, the conduits can include structures or mechanisms, such as for example vents or fans, to facilitate the provision of fresh air. For example, any of the embodiments of the present application, either vented or unvented, can be provided with one or more vents and/or fans for exhausting moisture from the insulated space. For example, FIG. 232 illustrates an exemplary embodiment of an insulation system 23200 where insulation material 50 is provided below the roof deck 24, between the supports 20. The insulation 50 can be any of the insulation materials and can be provided in any of the configurations below the roof deck 24 and between the supports 20 described in the present application. A fan 23202 and/or a vent manifold 23204 is provided in the insulation space 23206. In one exemplary embodiment, the insulation space 23206 is sealed or substantially sealed from uninsulated interior space 23210 in the attic area 23212. The fan 23202 and/or manifold 23204 vent moisture from the insulation space. The fan 23202 and/or manifold 23204 can take a wide variety of different forms. Any fan or manifold capable of venting moisture from the insulation space can be used. Humid air is less dense than dry and rises to the top of the insulation space 23206. In the illustrated embodiment, the illustrated manifold 23204 is positioned at a top region 23208 of the insulation space 23206. The fan 23202 pulls air from the insulation space 23206 through the manifold 23204 and exhausts moisture as indicated by arrow 23220. The example illustrated by FIG. 232 is one of the many different configurations of fan(s) and/or manifolds that can be used. For example, one or more fans 23202 without elongated manifolds may be placed at or near the ridge of the roof. As another example, one or more fans 23202 may be provided to force moisture out and insulated area below a vented roof deck, such as the roof decks illustrated by FIGS. 45A, 45B, and/or 46 described above. Any fan configuration can be used.

[0817] While the embodiments illustrated in this application illustrate the formation of box-shaped insulation cavities by fastening nettings, brackets and rigid members to support members, it should be appreciated that the boxed netting insulation system can be practiced by fastening nettings, brackets and rigid members to other structural members or framing members, such as for example roof decks, other faces of the support members or web members forming a truss system.

[0818] Several exemplary embodiments of insulation support systems and insulation systems are disclosed by this application. Insulation systems and insulation support systems in accordance with the present invention may include any combination or sub combination of the features disclosed by the present application.

1-20. (canceled)

21. An insulation system comprising:

wooden structural members that are spaced apart;

sheathing panels disposed on top of the wooden structural members;

insulation support wires connected to the wooden structural members;

insulation batts disposed between the wooden structural members and on the insulation support wires;

wherein portions of the insulation batts are disposed directly under bottommost surfaces of the wooden structural members.

- 22. The insulation system of claim 21 wherein the insulation batts are compressed to fit between the wooden structural members.
- 23. The insulation system of claim 21 wherein the insulation bats engage the sheathing panels.
- **24**. The insulation system of claim **21** wherein the insulation support wires are connected directly to the wooden structural members.
- 25. The insulation system of claim 21 wherein the insulation support wires are connected to the wooden structural members by standoffs.

- **26.** The insulation system of claim **21** wherein the insulation support wires run parallel to the wooden structural members.
- **27**. The insulation system of claim **21** wherein the insulation support wires run perpendicular to the wooden structural members.
- 28. The insulation system of claim 21 wherein the insulation support wires run at different angles relative to the wooden structural members to form a wire insulation support web.
 - 29. An insulation system comprising:
 - wooden structural members that are spaced apart;
 - sheathing panels disposed on top of the wooden structural members:
 - insulation batts disposed between the wooden structural members;
 - pins extending through the insulation batts that secure the insulation batts to the sheathing panel.
- **30**. The insulation system of claim **29** wherein portions of the insulation batts are disposed directly under bottommost surfaces of the wooden structural members.
- 31. The insulation system of claim 29 wherein the pins are made from a flexible material.
- **32**. The insulation system of claim **29** wherein the insulation batts are compressed to fit between the wooden structural members.
- 33. The insulation system of claim 29 wherein the insulation batts engage the sheathing panels.

- 34. An insulation system comprising:
- spaced apart wooden trusses, wherein each spaced apart wooden truss comprises a pair of truss chords that are connected together at an angle by a plurality of wooden truss webs;
- sheathing panels disposed on top of the spaced apart wooden trusses;
- a plurality of support members attached to the truss webs below the truss chords;
- insulation supported by the support members.
- 35. The insulation system of claim 34 further comprising insulation support material attached to the support members and loosefill insulation disposed on the insulation support material directly below the truss chords.
- **36**. The insulation system of claim **34** further wherein the insulation comprises insulation batts disposed on the support members and portions of the insulation batts are disposed directly below the truss chords.
- 37. The insulation system of claim 34 wherein the insulation batts engage the sheathing panels.
- **38**. The insulation system of claim **34** wherein the plurality of support members are parallel to the truss chords.
- **39**. The insulation system of claim **34** wherein the plurality of support members are attached to sides of the truss webs.
- **40**. The insulation system of claim **34** wherein the plurality of support members are attached to ends of the truss webs.

* * * * *