(12) 发明专利

(10) 授权公告号 CN 103831627 B
(45) 授权公告日 2016.03.30

(21) 申请号 201410078163.1
(22) 申请日 2014.03.05

(73) 专利权人 山西太钢不锈钢股份有限公司
地址 030003 山西省太原市尖草坪区尖草坪街 2 号

(72) 发明人 杨东 王树胜 孙猛林

(74) 专利代理机构 太原市科瑞达专利代理有限公司 14101
代理人 江淑兰

(51) Int. Cl.
B23P 23/04(2006.01)
B21B 1/24(2006.01)

(56) 对比文件
CN 1291922 A, 2001.04.18,
CN 101165223 A, 2008.04.23,
CN 102744277 A, 2012.10.24,
KR 20040058813 A, 2004.07.05,
CN 101121873 A, 2008.02.13,
JP H05161901 A, 1993.06.29,

(54) 发明名称
一种降低冷轧镍系不锈钢光亮板表面粗糙度的方法

(57) 摘要
本发明涉及一种降低冷轧镍系不锈钢光亮板表面粗糙度的方法，设计一种新的工艺，通过对带钢抛丸机钢丸的选择、浸酸时间、轧制时变形度及锌基的使用以及平整延伸率等参数的控制来降低成品带钢表面的粗糙度。不用增加任何设备，仅从工艺方面改进，就能有效降低镍系不锈钢光亮板表面粗糙度到 0.05 μm 以下。
1. 一种降低冷轧镍系不锈钢光亮板表面粗度的方法，包括原料退火，破鳞，带钢抛丸，酸洗，轧制，成品光亮退火，平整，纵切切边，包装工艺，其特征在于：

（1）带钢抛丸：
抛丸机用钢砂代替钢丸，并且添加新钢砂时从第一台抛丸机添加，随后的其它抛丸机使用棱角衰减后的钢砂；

（2）酸洗：
酸洗液包括：H₂SO₄ 浓度为 230±20g/L，HNO₃ 浓度 130±20g/L，H₂O₂ 浓度 15±5g/L；且带钢在酸洗液中停留时间不超过 70s；

（3）轧制：
① 轧制总变形率不低于 70%，轧制总变形率（%）=100%×（原料厚度 - 成品厚度）/ 原料厚度
② 工作辊使用：轧制工作辊先使用粗磨辊，再使用精磨辊，且成品前及成品道次限制轧制速度，成品前及成品道次的轧制速度 ≤ 200 米 / 分；所述轧制工艺中使用的粗磨辊的粗度为 0.5 μm，成品前及成品道次使用粗度为 0.10 μm 的精磨辊；

（4）平整：
平整延伸率达到 1.5% 以上；
所述平整延伸率 （%）=100%×（平整前厚度 - 平整后厚度）/ 平整前厚度。

2. 根据权利要求 1 所述的降低冷轧镍系不锈钢光亮板表面粗度的方法，其特征在于：所述（4）平整工艺中使用粗糙度为 0.02 μm 的平整辊。
一种降低冷轧镍系不锈钢光亮板表面粗糙度的方法

技术领域

【0001】 本发明涉及一种降低冷轧镍系不锈钢光亮板表面粗糙度的方法，属于冷轧钢板技术领域。

背景技术

【0002】 冷轧不锈钢光亮板（俗称镜面板）常被用作高等级装饰面板，因此，对其表面粗糙度要求非常高，一般要求在 0.05 μm 以下。如果表面粗糙度高，带钢表面会发白，达不到镜面效果，影响用户使用。
【0003】 不锈钢镍系冷轧光亮板工艺流程为：原料退火→破鳞→抛丸→酸洗→轧制→成品光亮退火→平整→纵切边→包装。其中影响带钢表面粗糙度的关键工序是：带钢抛丸、酸洗、轧制以及平整。

发明内容

【0004】 为了克服上述不足，本发明旨在提供一种降低冷轧镍系不锈钢光亮板表面粗糙度的方法，设计一种新的工艺，从几个方面入手，降低带钢表面粗糙度。
【0005】 本发明提供的一种降低冷轧镍系不锈钢光亮板表面粗糙度的方法，包括原料退火、破鳞、带钢抛丸、酸洗、轧制、成品光亮退火、平整、纵切边、包装工艺，其特征在于：具体包括以下步骤：
【0006】（1）带钢抛丸；
【0007】 抛丸机用钢砂代替钢丸，并且添加新钢砂时从第一台抛丸机添加；
【0008】 钢砂呈棱形，不但可降低除鳞后带钢表面的粗糙度，而且有助于去除不锈钢表面的氧化铁皮。但负面影响是棱形的尖角在带钢表面会留下小坑，影响表面质量。因此，添加新钢砂时，一定要从第一台抛丸机添加，随后的其它抛丸机使用棱角衰减后的磨料，这样，既能提高氧化铁皮的去除能力，又能降低表面粗糙度。
【0009】（2）酸洗：
【0010】 酸洗液为：H₂SO₄ 浓度 230±20g/L；HNO₃ 浓度 130±20g/L；HF 浓度 15±5g/L；保证带钢在酸液中停留时间不超过 70s；
【0011】 带钢在酸溶液中停留时间过长，其在酸溶液作用下，表面逐渐变成粗糙麻面，增加带钢表面的粗糙度。
【0012】（3）轧制：
【0013】 ① 轧制总变形率不低于 70%；轧制总变形率 (%) =100%×（原料厚度－成品厚度）/ 原料厚度。
【0014】 随着轧制总变形率的增加，带钢表面粗糙度逐渐降低，但当达到 86% 以上后，这种降低就不太明显。
【0015】 ② 工作辊使用：先使用 0.5 μm 的粗磨辊，成品前及成品道次使用 0.10 μm 的精磨辊，并且成品前及成品道次限制轧制速度，不大于 200 米 / 分。
说明书

先使用 0.5 μm 的粗磨针，主要目的是将带钢表面粗糙的凸起充分压碎，并使带钢表面色泽均匀。成品前及成品道次限速主要是降低轧制时产生的变形热，有利于带钢表面质量。

平整：
平整延伸率必须达到 1.5% 以上。
所述平整延伸率 (%) = 100% × (平整前厚度 - 平整后厚度) / 平整前厚度。
平整前必须保证平整延伸率达到 1.5% 以上，才能达到所要求的表面粗糙度。

本发明的有益效果：
本发明通过对带钢抛丸机钢丸的选择、酸洗时间、酸洗时间等参数的控制来降低成品带钢表面的粗糙度。不用增加任何设备，只需工艺方面改进，就能有效降低镍系不锈钢光亮板表面粗糙度到 0.05 μm 以下。

具体实施方式

实施例 1：以带钢宽度 1240mm，原料厚度 2.0mm，成品厚度 0.4mm 为例
通过设置以下参数：
（1）抛丸：抛丸机使用抛丸机，且只在第一台抛丸机上添加，然后的其他抛丸机使用棱角衰退后的磨料。
（2）酸洗：酸液种类及浓度为：H_{2}SO_{4}，浓度 240g/L；HNO_{3}，浓度 130g/L；HF，浓度 13g/L；酸洗时间为 63s；
（3）轧制：
轧制总变形率 = 100% × (原料厚度 - 成品厚度) / 原料厚度
= 100% × (2.0 - 0.4) / 2.0 = 80%
成品前及成品完成轧制速度为 200m/min；
工作辊粗磨度成品及成品前 0.1 μm，其他道次 0.5 μm；
（4）平整：平整延伸率为 1.58%，通过调整平整压力及张力实现。
本实施例所得的成品光亮板粗糙度为 0.026 μm。
实施例 2：以带钢宽度 1535mm，原料厚度 3.0mm，成品厚度 0.8mm 为例
本实施例中设成以下参数：
（1）抛丸：抛丸机使用抛丸机，且只在第一台抛丸机上添加，然后的其他抛丸机使用棱角衰退后的磨料。
（2）酸洗：酸液种类及浓度为：H_{2}SO_{4}，浓度 230g/L；HNO_{3}，浓度 140g/L；HF，浓度 15g/L；酸洗时间为 67s；
（3）轧制：
轧制总变形率 = 100% × (原料厚度 - 成品厚度) / 原料厚度
= 100% × (3.0 - 0.8) / 3.0 = 73.3%；
成品前及成品完成轧制速度为 200m/min；
工作辊粗磨度成品及成品前 0.1 μm，其他道次 0.5 μm；
(4) 平整:平整延伸率为1.86%,通过调整平整压力及张力实现。

本实施例所得的成品光亮板粗糙度为0.021μm。