(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges **Eigentum**

Internationales Büro

(43) Internationales Veröffentlichungsdatum 26. Mai 2016 (26.05.2016)

(10) Internationale Veröffentlichungsnummer WO 2016/079244 A1

(51) Internationale Patentklassifikation:

B32B 7/02 (2006.01) B32B 27/30 (2006.01) B32B 9/02 (2006.01) B32B 27/36 (2006.01)

B32B 9/04 (2006.01) **B65D 65/46** (2006.01)

B32B 27/08 (2006.01) B32B 27/18 (2006.01) B65D 30/08 (2006.01)

(21) Internationales Aktenzeichen: (22) Internationales Anmeldedatum:

PCT/EP2015/077112

19. November 2015 (19.11.2015)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

10 2014 017 015.2

19. November 2014 (19.11.2014)

DE

- (71) Anmelder: **BIO-TEC BIOLOGISCHE** NATURVERPACKUNGEN GMBH & CO. KG [DE/DE]; Werner-Heisenberg-Str. 32, 46446 Emmerich
- (72) Erfinder: HACKFORT, Ralf; 's Heerenberger Straße 99, 46446 Emmerich (DE). MATHAR, Johannes; De 7041 113, GP's-Heerenberg RÖRTHMANS, Frank; Unterstraße 17, 47661 Issum-Sevelen (DE). SCHMIDT, Harald; Spillingscher Weg 51, 46446 Emmerich (DE). HESS, Christoph; Markt 5, 46459 Rees (DE).

- (74) Anwalt: COHAUSZ & FLORACK; Bleichstraße 14, 40211 Düsseldorf (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, RU, TJ, TM), europäisches (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht (Artikel 21 Absatz 3)

(54) Title: BIODEGRADABLE MULTI-LAYER FILM

(54) Bezeichnung: BIOLOGISCH ABBAUBARE MEHRSCHICHTFOLIE

(57) Abstract: The invention relates to a multi-layer polymer film comprising at least one middle layer A, the polymer constituents of which are soluble in aqueous solution, and respectively at least one substantially water-impermeable covering layer B, C arranged above and below the at least one middle layer A, wherein the layers A, B and C each independently of one another contain at least one thermoplastic polymer and at least one of the covering layers B and C contains at least one polyhydroxyalkanoate. The invention further relates to methods for producing the multi-layer polymer film according to the invention and to the use thereof for the production of molded parts, films, or bags.

(57) Zusammenfassung: Dargestellt und beschrieben wird eine mehrschichtige Polymerfolie umfassend mindestens eine Mittelschicht A, deren polymere Bestandteile in wässriger Lösung löslich sind, und jeweils mindestens eine, oberhalb und unterhalb der mindestens einen Mittelschicht A angeordnete, im wesentlichen wasserundurchlässige Deckschicht B, C, wobei die Schichten A, B und C unabhängig voneinander jeweils mindestens ein thermoplastisches Polymer enthalten und mindestens eine der Deckschichten B und C mindestens ein Polyhydroxyalkanoat enthält. Dargestellt und beschrieben werden ferner Verfahren zur Herstellung der erfindungsgemäßen mehrschichtigen Polymerfolie sowie ihre Verwendung zur Herstellung von Formteilen, Folien oder Tüten.

Biologisch abbaubare Mehrschichtfolie

Die Erfindung betrifft eine mehrschichtige Polymerfolie sowie ein Verfahren zu ihrer Herstellung. Ferner betrifft die Erfindung die Verwendung der mehrschichtigen Polymerfolie zur Herstellung von Formteilen, Verpackungsfolien oder Tüten, insbesondere von Kunststoff-Tragetaschen. Die Erfindung betrifft schließlich auch Formteile, Folien und Tüten, die aus den erfindungsgemäßen mehrschichtigen Polymerfolien hergestellt sind.

Unter dem Gesichtspunkt der Schonung fossiler Resourcen, der Abfallentsorgung und Minderung der CO₂-Emissionen ist es wünschenswert, die weit verbreiteten herkömmlichen Kunststoffe auf Basis von fossilen Rohstoffquellen durch Kunststoffe zu ersetzen, die zumindest teilweise oder vollständig aus nachwachsenden Rohstoffen gewonnen werden können. Polymere, die zumindest teilweise oder vollständig auf nachwachsenden Rohstoffen basieren, werden auch "biobasierte" Polymere genannt.

15

20

10

5

Biologisch abbaubare Kunststoffe sind nicht zwangsläufig auch gleichzeitig biobasiert. So gibt es einige Kunststoffe aus fossilen, nicht nachwachsenden Ressourcen, die biologisch abbaubar sind. Die biologische Abbaubarkeit ist in der Regel nicht an die Rohstoffbasis gebunden, sondern hängt im Wesentlichen ab von der chemischen Struktur des Werkstoffs und seinem Vermögen, sich durch biologische Aktivität in natürlich vorkommende Stoffwechselendprodukte umzuwandeln.

In der Praxis haben sich Polymerzusammensetzungen auf Basis von Stärke und aromatisch-aliphatischen Copolyestern als biologisch abbaubare

25 Polymerzusammensetzungen mit hervorragenden mechanischen Eigenschaften bewährt.

Neben Stärke und Stärkederivaten sind auch Polyhydroxyalkanoate (PHA) vielversprechende biobasierte Ersatzmaterialien für Polymere, die fossilen Ursprungs sind. PHAs sind natürlich vorkommende lineare Polyester aus Hydroxysäuren, die von vielen Bakterien als Reservestoffe für Kohlenstoff und Energie gebildet werden und in Form von Granula im Zellinneren abgelagert werden. Aus dem Stand der Technik ist die industrielle biotechnologische PHA-Erzeugung unter Verwendung von natürlichen oder genetisch modifizierten Bakterienstämmen oder Pflanzen bekannt. Eine Übersicht zu den verschiedenen PHAs und ihrer Herstellung bietet das Kapitel "Polyhydroxyalkanoates" in "Handbook of Biodegradable Polymers", Seiten 219 bis 256, Verlag Rapra Technologies Limited, 2005.

Die Hauptanwendungen biologisch abbaubarer Polymerzusammensetzungen liegen im Verpackungs- und Cateringbereich. Daneben existieren Anwendungen in der Landwirtschaft und im Gartenbau sowie im Pharma- und Medizinbereich. Besonders relevant sind biologisch abbaubare Polymerzusammensetzungen für die Fertigung von Abfallsäcken, Tragetaschen, Einweggeschirr (Becher, Tassen, Teller, Besteck), Verpackungsfolien, Flaschen, Obst- und Gemüseschalen (so genannte Trays), Verpackungshilfsmitteln (Loose-fill-Chips), Mulchfolien, Blumentöpfen und dergleichen.

20

25

30

5

10

15

Gerade Tragetaschen und Verpackungsfolien stellen eine bedeutende

Verschmutzungsquelle für Gewässer und Meere dar. Da viele der heutzutage
eingesetzten Tragetaschen nicht biologisch abbaubar sind, nimmt die Verschmutzung
der Gewässer und Meere mit Kunststoffen immer mehr zu. Tragetaschen aus nicht
biologisch abbaubaren Kunststoffen stellen eine Gefahr für Gewässer- und
Meerestiere dar, da die Tiere sich in diesen Tragetaschen verfangen können und
dadurch in ihrer Mobilität stark eingeschränkt werden oder gar ersticken. In kleinere
Bestandteile zerlegte Tragetaschen stellen ebenfalls ein Problem dar, da diese
Bestandteile von den Tieren gefressen werden, von den Tieren aber nicht abgebaut
werden können.

Aber auch die bis jetzt eingesetzten Tragetaschen aus biologisch abbaubaren Kunststoffen lösen das Problem der Gewässer- und Meeresverschmutzung mit Kunststoffen noch nicht. Normalerweise werden die biologisch abbaubaren Kunststoffe für die Tragetaschen unter speziellen Bedingungen auf ihre Abbaubarkeit hin getestet, die in industriellen Kompostieranlagen herrschen. Unter anderem 5 herrschen dort Temperaturen von ca. 58°C, und es werden gezielt spezielle Mikroorganismen für den biologischen Abbau eingesetzt. Diese Bedingungen begünstigen den biologischen Abbau der Kunststoffe sehr stark. In Gewässern oder im Meer sind solche für den biologischen Abbau günstigen Bedingungen jedoch nicht 10 anzutreffen. Ein weiterer Unterschied besteht in der Verfügbarkeit von Sauerstoff. Während in industriellen Kompostieranlagen der Sauerstoffgehalt kontrolliert und für optimale Bedingungen eingestellt werden kann, kann vor allem im Meer in bestimmten Schichten ein Sauerstoffmangel vorliegen, der den biologischen Abbau stark verlangsamt. Daher bauen sich auch Tragetaschen aus biologisch abbaubaren 15 Kunststoffen in Gewässern oder Meeren nicht notwendigerweise so schnell ab, dass sie keine Gefahr für Gewässer- und Meerestiere darstellen.

Die Aufgabe, die sich aus dem voranstehend Geschilderten ergibt, besteht in zwei scheinbar gegenläufigen Aspekten. Zum einen soll eine Folie verfügbar sein, die günstig herzustellen ist, sich einfach verarbeiten lässt und für Tragetaschen und/oder Verpackungsfolien eine für den Gebrauch unter verschiedenen Witterungsbedingungen ausreichende Stabilität aufweist. Zum anderen sollen die Tragetasche und/oder die Verpackungsfolie keine Gefahr für Gewässer- und Meerestiere darstellen und sich daher in wässriger Lösung schnell zersetzen und/oder biologisch abbauen.

Dabei ist vorgesehen, dass derartige Folien der für sie vorgesehenen, geregelten Entsorgung, beispielsweise Kompostieranlagen, zugeführt werden. Im Falle von fehlgeleiteten Produkten aus derartigen Folien sollen sie nicht dauerhaft zu einer Verschmutzung von Gewässern und/oder Meeren beitragen.

30

Im Stand der Technik sind verschiedene Folien bekannt, die teilweise biologisch abbaubar sind.

So wird in der WO 2012/066436 A2 ein mehrlagiger Film beschrieben, der eine wasserlösliche Schicht und eine wasserundurchlässige Schicht enthält. Die wasserundurchlässige Schichten soll (in industriellen Anlagen) unter aeroben Bedingungen biologisch abbaubar sein, die wasserlösliche Schicht kann biologisch abbaubare Kunststoffe enthalten. Über die biologische Abbaubarkeit unter erschwerten Bedingungen, wie zum Beispiel unter anaeroben Bedingungen oder in wässriger Lösung, wird keine Aussage gemacht.

Die US 2007/0149708 A1 beschreibt ein polymeres Material, das durch gleichzeitiges Polymerisieren von wasserabsorbierenden Polymerpartikeln mit einem Monomer wie Styrol, Ethylen, Chloroethylen oder Vinylactetat erhalten wird.

15

20

10

5

Die US 8,227,059 B2 beschreibt einen zweilagigen Film für Exkrementbeutel, der ein Enzym enthält und aus einer wasserunlöslichen Schicht sowie einer sich in Wasser zersetzenden Schicht besteht. Die wasserunlösliche Schicht soll in Wasser durch das Enzym abgebaut werden. Über die mechanischen Eigenschaften des Films wird keine Aussage gemacht.

Den im Stand der Technik beschriebenen Lösungen ist der Nachteil gemein, dass entweder die mechanischen Eigenschaften im Gebrauch oder die Zersetzung und der biologische Abbau in wässriger Lösung unzureichend sind.

25

30

Ausgehend von dem zuvor beschriebenen Stand der Technik bestand eine Aufgabe der Erfindung darin, eine Folie bereit zu stellen, die günstig herzustellen ist. Ferner soll sich die Folie einfach verarbeiten lassen. Außerdem soll die Folie für Tragetaschen und/oder Folien eine für den Gebrauch unter verschiedenen Witterungsbedingungen ausreichende mechanische Stabilität aufweisen. Zudem soll eine Tragetasche und/oder Folie, die aus der Folie hergestellt wurde, keine Gefahr für Gewässer- und

Meerestiere darstellen. Dafür soll sich die Folie in wässriger Lösung vorzugsweise innerhalb weniger Tage in kleinere Bestandteile zersetzen. Die Bestandteile können sich dann über einen längeren Zeitraum biologisch abbauen, insbesondere vollständig biologisch abbauen.

5

25

30

Diese Aufgabe wird durch die in Anspruch 1 und 34 angegebene Polymerfolie, das in Anspruch 36 angegebene Verfahren, die in Anspruch 41 angegebene Verwendung, sowie die in Anspruch 42 angegebenen Erzeugnisse gelöst.

Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.

Die erfindungsgemäße mehrschichtige Polymerfolie umfasst mindestens eine

Mittelschicht A, deren polymere Bestandteile in wässriger Lösung löslich sind, und jeweils mindestens eine, oberhalb und unterhalb der mindestens einen Mittelschicht A angeordnete, im wesentlichen wasserundurchlässige Deckschicht B, C, wobei die Schichten A, B und C unabhängig voneinander jeweils mindestens ein thermoplastisches Polymer enthalten und mindestens eine der Deckschichten B und C mindestens ein Polyhydroxyalkanoat enthält.

Überraschend hat sich gezeigt, dass die Verwendung von Polyhydroxyalkanoaten in mindestens einer der Deckschichten dazu führt, dass sich die Polymerfolie in wässriger Lösung innerhalb weniger Tage in kleinere Bestandteile zersetzen kann. Wahrscheinlich entstehen zunächst in mindestens einer der Deckschichten Risse, durch welche vermutlich die wässrige Lösung die in wässriger Lösung löslichen Bestandteile der Mittelschicht angreifen kann. In der Folge zersetzt sich die Polymerfolie als Ganzes in kleinere Bestandteile. Ohne an eine wissenschaftliche Theorie gebunden sein zu wollen, erscheint sich diese überraschende Wirkung durch die Neigung von Polyhydroxyalkanoaten zur Nachkristallisation erklären zu lassen. Materialien, die Polyhydroxyalkanoate enthalten, werden dadurch üblicherweise nach

mehreren Tagen brüchig und spröde, weshalb geringe äußere Einflüsse zu Rissen in diesen Materialien führen können.

Nach der Zersetzung können die einzelnen Bestandteile biologisch abgebaut, insbesondere vollständig biologisch abgebaut werden.

5

10

15

25

30

Wenn hier oder an anderer Stelle von wässriger Lösung die Rede ist, so ist damit reines Wasser oder ein Gemisch gemeint, das Wasser enthält. In der wässrigen Lösung kann Wasser insbesondere in einer Menge von mindestens 50 Vol.%, insbesondere mindestens 90 Vol.%, oder mehr enthalten sein. Die wässrige Lösung kann ferner gelöste Bestandteile wie z.B. Salze enthalten. Beispiele für wässrige Lösungen sind neben destilliertem Wasser vor allem Süßwasser und Meerwasser.

Die Löslichkeit polymerer Bestandteile in wässriger Lösung kann beispielsweise bestimmt werden, indem der Massenverlust einer Probe der polymeren Bestandteile durch einfaches Wiegen bestimmt wird, nachdem die Probe einer definierten Menge einer wässrigen Lösung bei einer definierten Temperatur für eine definierte Zeit ausgesetzt war. Löslich im Sinne der Erfindung kann insbesondere bedeuten, dass ein Massenverlust von 100% festgestellt wird, wenn 1 g der Probe 50 mL einer wässrigen Lösung bei 100°C für 5 Minuten ausgesetzt wird. 20

Wenn hier oder an anderer Stelle von Zersetzen die Rede ist, so kann damit insbesondere der Zerfall der Ausgangsstruktur in Teile, insbesondere in kleinere Bestandteile, gemeint sein. Zersetzen im Sinne der Erfindung kann insbesondere auch Auflösen und die chemische oder biologische Zersetzung in kleinere Moleküle oder die Umwandlung in chemische oder biologische Abbauprodukte einschließen.

Die Wasserundurchlässigkeit kann beispielsweise nach DIN EN 20811:1992 bestimmt werden. Wasserundurchlässig im Sinne der Erfindung kann insbesondere bedeuten, dass die Schicht mindestens 20 mm, insbesondere mindestens 50 mm, mindestens 100 mm, mindestens 200 mm, mindestens 500 mm, mindestens 1000 mm oder

mindestens 1500 mm, Wassersäule standhält. Die Messung kann beispielsweise bei einer Schichtdicke von 20 μ m erfolgen.

In einer bevorzugten Ausführungsform der Erfindung ist das Polyhydroxyalkanoat in der erfindungsgemäßen Polymerfolie in mindestens einer der Deckschichten B und/oder C in einer Menge von mindestens 10 Gew.%, insbesondere mindestens 15 Gew.% oder mindestens 20 Gew.% enthalten, bezogen auf das Gesamtgewicht der jeweiligen Deckschicht. Bei einer Verwendung des Polyhydroxyalkanoats in diesen Mengen weist die resultierende Polymerfolie gute mechanische Eigenschaften auf und zersetzt sich in wenigen Tagen in wässriger Lösung.

Wenn hier von Polyhydroxyalkanoat die Rede ist, so sind damit Ester von Polyhydroxyfettsäuren gemeint, die Monomere mit einer Kettenlänge von mindestens 4 C-Atomen, insbesondere von 4 bis 18 C-Atomen oder von 4 bis 9 C-Atomen, enthalten. Polymilchsäure ist somit z.B. kein Polyhydroxyalkanoat im Sinne der Erfindung, Poly-3-hydroxybutyrat (PHB) oder Poly-4-hydroxybutyrat (P4HB) hingegen schon.

Erfindungsgemäß wird als Polyhydroxyalkanoat vorzugsweise ein

Polyhydroxyalkanoat eingesetzt, das sich wiederholende Monomereinheiten der
Formel (1) umfasst

25

5

10

15

wobei R eine Alkylgruppe der Formel C_nH_{2n+1} bedeutet und n eine Zahl von 1 bis 15, bevorzugt von 1 bis 6 ist.

Für viele Anwendungszwecke besonders geeignet ist es, wenn das jeweils mindestens
eine thermoplastische Polymer der Deckschichten B und/oder C der
erfindungsgemäßen Polymerfolie hydrolytisch zersetzbar ist. Auf diese Weise kann

sichergestellt werden, dass sich auch die polymeren Bestandteile der Polymerfolie in Wasser zersetzen können.

8

PCT/EP2015/077112

WO 2016/079244

Als besonders praktikabel hat es sich erwiesen, wenn in der erfindungsgemäßen

Polymerfolie das jeweils mindestens eine thermoplastische Polymer der

Deckschichten B und/oder C unabhängig voneinander ausgewählt ist aus der Gruppe
bestehend aus thermoplastische Stärke, stärkehaltige Thermoplaste, Polyvinylalkohol,
thermoplastischer Polyvinylalkohol, Polyvinylacetat, Poly(3-hydroxybutanoat),
Poly(3-hydroxyvalerat), Poly(3-hydroxyhexanoat), Poly(3-hydroxybutyrat-co-3hydroxyvalerat), Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat), Polymilchsäure,
Polycaprolacton, Polybutylensuccinat, Poly(butylenadipat-co-succinat), aromatisch-

aliphatischer Copolyester, Poly(butylenadipat-co-terephthalat), Poly(butylensebacat-

co-terephthalat) und Mischungen davon.

- Mindestens eine der Deckschichten B und/oder C der erfindungsgemäßen
 Polymerfolie kann gemäß einer vorteilhaften Ausführungsform der Erfindung 5 bis 70
 Gew.%, vorzugsweise 10 bis 70 Gew.%, vorzugsweise 20 bis 70 Gew.%, vorzugsweise
 20 bis 65 Gew.%, weiter bevorzugt 20 bis 60 Gew.%, besonders bevorzugt 30 bis 58
 Gew.%, noch bevorzugter 30 bis 55 Gew.%, am bevorzugtesten 30 bis 50 Gew.%
 aliphatisch-aromatischen Copolyester enthalten, jeweils bezogen auf das
 Gesamtgewicht der Deckschicht. Wenn hier von "aliphatisch-aromatischem
 Copolyester" die Rede ist, so sind damit auch Mischungen verschiedener aliphatischaromatischer Copolyester umfasst.
- Vorteilhafterweise umfasst mindestens eine der Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie aliphatisch-aromatische Copolyester, die gemäß EN 13432 biologisch abbaubar sind und/oder eine Glasübergangstemperatur (Tg) kleiner 0°C, insbesondere kleiner -4°C, weiter bevorzugt kleiner -10°C, noch weiter bevorzugt kleiner -20°C und am bevorzugtesten kleiner -30°C aufweisen. Vorzugsweise sind die in mindestens einer der Deckschichten der erfindungsgemäßen Polymerfolie

umfassten aliphatisch-aromatischen Copolyester, soweit vorhanden, ferner thermoplastisch.

Gemäß einer besonders bevorzugten Ausführungsform der Erfindung wird als
aliphatisch-aromatischer Copolyester, ein statistischer Copolyester auf Basis von
mindestens Adipinsäure und/oder Sebacinsäure und/oder Bernsteinsäure eingesetzt.
Weiter bevorzugt handelt es sich um einen Copolyester bzw. statistischen Copolyester
auf Basis von 1,4-Butandiol, Adipinsäure,und/oder Sebacinsäure und/oder
Bernsteinsäure und Terephthalsäure und/oder Terephthalsäurederivat (z. B.

Dimethylterephthalat DMT). Dieser kann insbesondere eine

Dimethylterephthalat DMT). Dieser kann insbesondere eine Glasübergangstemperatur (Tg) von -25 bis -40 °C, insbesondere -30 bis -35 °C, und/oder einen Schmelzbereich von 100 bis 120 °C, insbesondere 105 bis 115 °C, aufweisen.

Optimale Ergebnisse stellen sich ein, wenn in der erfindungsgemäßen Polymerfolie das Polyhydroxyalkanoat in mindestens einer der Deckschichten B und/oder C ausgewählt ist aus der Gruppe bestehend aus Poly(3-hydroxybutanoat), Poly(3-hydroxybutanoat), Poly(3-hydroxybutyrat-co-3-hydroxybutyrat-co-3-hydroxybutyrat-co-3-hydroxybutyrat-co-3-hydroxybutyrat-co-3-hydroxybutyrat-co-5-hydroxybutyrat-co-5-hydroxybutyrat-co-6-hydroxybu

Besonders bevorzugt ist es, wenn in der Polymerfolie das Polyhydroxyalkanoat in mindestens einer der Deckschichten B und/oder C ausgewählt ist aus der Gruppe bestehend aus Poly(3-hydroxybutyrat) (PHB),

$$\left\{ \begin{array}{c} 0 \\ \end{array} \right\}_{m}$$

PHB

und Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat)(PHBH)

25

WO 2016/079244 PCT/EP2015/077112

und Mischungen daraus.

5

10

15

20

25

Besonders gute Ergebnisse stellen sich ein, wenn das Verhältnis m:n in obiger Strukturformel von 95:5 bis 85:15 beträgt, insbesondere von 90:10 bis 88:12. Gemäß einer besonders bevorzugten Ausführungsform enthält das Polyhydroxyalkanoat PHBH oder besteht daraus. Praktische Versuche haben gezeigt, dass ein PHBH mit einem Molanteil 3-Hydroxyhexanoat von 5 bis 15 Mol%, vorzugsweise 7 bis 13 Mol% oder 10 bis 13 Mol%, jeweils bezogen auf die Gesamtmenge PHBH, sehr gute Ergebnisse liefert.

Polyhydroxyalkanoate im Sinne dieser Erfindung weisen insbesondere zahlenmittlere Molekulargewichte MW von 70 000 bis 1 000 000 g/mol, vorzugsweise von 100 000 bis 1 000 000 g/mol, vorzugsweise noch bevorzugt von 300 000 bis 600 000 g/mol und/oder Schmelzpunkte im Bereich von 100 bis 190 °C auf.

Die Herstellung von Polyhydroxyalkanoaten ist allgemein bekannt. Gemäß einer bevorzugten Ausführungsform der Erfindung wird das Polyhydroxyalkanoat in mindestens einer der Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie durch Mikroorganismen in einem Fermentationsprozess und/oder durch chemische Synthese hergestellt.

Vorzugsweise enthalten die Deckschichten B und C der erfindungsgemäßen Polymerfolie jeweils mindestens ein Polyhydroxyalkanoat.

Gemäß einer bevorzugten Ausführungsform der Erfindung ist das mindestens eine thermoplastische Polymer der Deckschichten B und/oder C in der

erfindungsgemäßen Polymerfolie das Polyhydroxyalkanoat. Derartige Deckschichten liefern gute Ergebnisse.

Gemäß einer Ausführungsform der Erfindung enthalten die Deckschichten B

und/oder C Stärke, Stärkederivat, destrukturierte Stärke und/oder thermoplastische
Stärke vorzugsweise in einer Menge von jeweils oder insgesamt weniger als 10

Gew.%, weiter bevorzugt weniger als 8 Gew.%, weiter bevorzugt weniger als 5 Gew.%,
weiter bevorzugt weniger als 3 Gew.%, noch weiter bevorzugt weniger als 1 Gew.%,
bezogen auf das Gesamtgewicht der jeweiligen Deckschicht. Vorteilhafterweise
enthalten die Deckschichten B und/oder C keine Stärke, Stärkederivat, destrukturierte
Stärke und/oder thermoplastische Stärke.

Für viele Anwendungszwecke ist es vorteilhaft, wenn die Deckschichten B und C in der erfindungsgemäßen Polymerfolie gemäß ASTM D6866 jeweils mindestens 40%, insbesondere mindestens 45% oder 50% biobasierten Kohlenstoff enthalten, bezogen auf die Gesamtmenge an Kohlenstoff der jeweiligen Deckschichten. Dies führt zusätzlich zu einer nachhaltigen Polymerfolie.

15

30

Praktische Versuche haben gezeigt, dass es vorteilhaft ist, wenn die Deckschichten B
und/oder C der erfindungsgemäßen Polymerfolie gemäß ISO 15985 und/oder gemäß
ISO 14855 zu jeweils mindestens 40%, insbesondere mindestens 45% oder
mindestens 50%, weiter bevorzugt mindestens 60%, weiter bevorzugt mindestens
70%, noch weiter bevorzugt mindestens 80%, weiter bevorzugt mindestens 90%, am
bevorzugtesten mindestens 95%, biologisch abbaubar sind. Derartige Folien zeigen
eine vorteilhafte biologische Abbaubarkeit.

Vorzugsweise ist die Mittelschicht A der erfindungsgemäßen Polymerfolie gemäß ISO 15985 und/oder gemäß ISO 14855 zu mindestens 40%, insbesondere mindestens 50%, bevorzugt mindestens 60%, weiter bevorzugt mindestens 70%, weiter bevorzugt mindestens 90%, am

bevorzugtesten mindestens 95%, biologisch abbaubar. Diese Folien liefern besonders gute Ergebnisse hinsichtlich ihrer biologischen Abbaubarkeit.

Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen Polymerfolie

5 sind die Deckschichten B und/oder C gemäß EN 13432 biologisch abbaubar,
insbesondere vollständig abbaubar. Vorteilhafterweise ist die Mittelschicht A der
erfindungsgemäßen Polymerfolie gemäß EN 13432 biologisch abbaubar,
insbesondere vollständig biologisch abbaubar. Optimale Ergebnisse werden erhalten,
wenn die erfindungsgemäße Polymerfolie gemäß EN 13432 biologisch abbaubar,
10 insbesondere vollständig biologisch abbaubar, ist. Dies eröffnet die Möglichkeit, die
Polymerfolie beispielsweise auch für Abfallsäcke, die in einer industriellen
Kompostieranlage abgebaut werden, einzusetzen.

Als das mindestens eine thermoplastische Polymer der Mittelschicht A können grundsätzlich die verschiedensten Substanzen eingesetzt werden. Zweckmäßig ist es insbesondere, wenn in der erfindungsgemäßen Polymerfolie das mindestens eine thermoplastische Polymer der Mittelschicht A ausgewählt ist aus der Gruppe bestehend aus thermoplastische Stärke, stärkehaltige Thermoplaste, Polyvinylalkohol, thermoplastischer Polyvinylalkohol, Polyvinylacetat, Polyethylenglykol,

Celluloseacetat, Ethylcellulose, Hydroxypropylcellulose,
 Hydroxypropylmethylcellulose, Poly(vinylpyrrolidon), Poly(3-hydroxybutanoat),
 Poly(3-hydroxyvalerat), Poly(3-hydroxyhexanoat), Poly(3-hydroxybutyrat-co-3-hydroxyvalerat), Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat), Polymilchsäure,
 Polycaprolacton, Polybutylensuccinat, Poly(butylenadipat-co-succinat), aromatischaliphatischer Copolyester, Poly(butylenadipat-co-terephthalat), Poly(butylensebacat-co-terephthalat) und Mischungen davon.

Weiter bevorzugt ist das mindestens eine thermoplastische Polymer der Mittelschicht A ausgewählt aus der Gruppe bestehend aus thermoplastische Stärke, stärkehaltige Thermoplaste, Polyvinylalkohol, thermoplastischer Polyvinylalkohol,

30

Polyethylenglykol, Celluloseacetat, Ethylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Poly(vinylpyrrolidon) und Mischungen davon.

Ist das mindestens eine thermoplastische Polymer der Mittelschicht A Celluloseacetat, so weist das Celluloseacetat vorteilhafterweise einen Substitutionsgrad von 0,6 bis 5 0,8, bevorzugt von 0,7, auf. Ist das mindestens eine thermoplastische Polymer der Mittelschicht A Ethylcellulose, so weist die Ethylcellulose vorteilhafterweise einen Substitutionsgrad von 1,0 bis 1,5 auf. Ist das mindestens eine thermoplastische Polymer der Mittelschicht A Hydroxypropylcellulose, so weist die 10 Hydroxypropylcellulose vorteilhafterweise einen Substitutionsgrad von 1,0 bis 4,0, insbesondere von 1,5 bis 3,0, auf. Ist das mindestens eine thermoplastische Polymer der Mittelschicht A Hydroxypropylmethylcellulose, so weist die Hydroxypropylmethylcellulose vorteilhafterweise einen Substitutionsgrad von 1,0 bis 3,0, insbesondere von 1,5 bis 2,0, auf. Dabei kann bei Hydroxypropylmethylcellulose entweder der Anteil an Methylgruppen oder der Anteil an Hydroxypropylgruppen 15 überwiegen. Unter dem Substitutionsgrad einer betrachteten chemischen Verbindung versteht der Fachmann insbesondere, wie viele Atome oder Atomgruppen einer Art X durch andere gleiche Atome oder Atomgruppierungen R in einem Molekül ersetzt

20 Ethylcellulose, Hydroxypropylcellulose und Hydroxypropylmethylcellulose versteht der Fachmann unter dem Substitutionsgrad insbesondere, wie viele der OH-Gruppen durch Acetat-, Ethoxy-, 2-Hydroxypropoxy- oder Methoxygruppen ersetzt wurden.

wurden. Im Zusammenhang mit Cellulosederivaten wie Celluloseacetat,

Gemäß einer weiteren Ausführungsform ist das mindestens eine thermoplastische
Polymer der Mittelschicht A ausgewählt aus der Gruppe bestehend aus
Polyvinylalkohol, thermoplastischer Polyvinylalkohol, Polyethylenglykol,
Celluloseacetat, Ethylcellulose, Hydroxypropylcellulose,
Hydroxypropylmethylcellulose, Poly(vinylpyrrolidon) und Mischungen davon.

Gemäß einer Ausführungsform enthält die Mittelschicht A vorzugsweise keine Stärke, Stärkederivat, destrukturierte Stärke und/oder thermoplastische Stärke.

Die erfindungsgemäße Polymerfolie kann vorteilhafterweise in mindestens einer der beiden Deckschichten B und/oder C und/oder in der Mittelschicht A Stärke enthalten. Erfindungsgemäß kann die Stärke native oder modifizierte Stärke umfassen.

- Vorzugsweise ist die zur Herstellung der erfindungsgemäßen Polymerfolie verwendete Stärke aus Kartoffel, Mais, Tapioka oder Reis gewonnen. Als modifizierte Stärke wird vorzugsweise Stärke eingesetzt, deren freie OH-Gruppen zumindest teilweise substituiert sind. In Frage kommt beispielsweise mit Ether und/oder Estergruppen modifizierte Stärke. Weitere Beispiele für geeignete modifizierte Stärke sind hydrophobierte oder hydrophilisierte Stärke, insbesondere z.B. Hydroxypropyl-Stärke oder Carboxymethylstärke.
 - Soweit vorhanden liegt die in der erfindungsgemäßen Polymerfolie enthaltene Stärke oder die modifizierte Stärke vorzugsweise in destrukturierter Form vor.
- Destrukturiert bedeutet dabei, dass die granuläre, kristalline Struktur von nativer Stärke vollständig oder zumindest weitestgehend zerstört worden ist. Dies lässt sich beispielsweise bei Betrachtung von Blendquerschnitten im Rasterelektronenmikroskop leicht feststellen. Alternativ kann die Stärkephase der Polymerfolie isoliert werden und unter einem Polarisationsmikroskop auf das Vorhandensein von kristallinen Bestandteilen hin untersucht werden. Destrukturierte Stärke ist vorzugsweise im Wesentlichen frei von kristallinen Bestandteilen.
 - Destrukturierte Stärke kann zweckmäßigerweise in Form von (ggf. vorgefertigter) thermoplastischer Stärke bzw. thermoplastisch verarbeitbarer Stärke (TPS) in der erfindungsgemäßen Polymerfolie vorliegen.

25

30

Thermoplastische Stärke ist allgemein bekannt und beispielsweise in den Druckschriften EP 0 397 819 B1, W0 91/16375 A1, EP 0 537 657 B1 und EP 0 702 698 B1 ausführlich beschrieben. Thermoplastische Stärke wird im Allgemeinen aus nativer Stärke wie zum Beispiel Kartoffelstärke hergestellt. Um native Stärke thermoplastisch verarbeitbar zu machen, werden ihr Plastifizierungsmittel

(Weichmacher) wie Sorbitol und/oder Glycerin hinzugefügt. Thermoplastische Stärke zeichnet sich durch einen geringen Wassergehalt aus, der vorzugweise weniger als 6 Gew %, bezogen auf das Gesamtgewicht der thermoplastischen Stärke, beträgt. Ferner zeichnet sich thermoplastische Stärke durch ihre vorzugsweise im Wesentlichen amorphe Struktur aus.

Vorzugsweise wird thermoplastische Stärke eingesetzt, die einen Wassergehalt von weniger 6 Gew.%, vorzugsweise weniger als 4 Gew.%, insbesondere weniger als 3 Gew.%, bezogen auf das Gesamtgewicht der thermoplastischen Stärke, aufweist.

10

5

Es wurde festgestellt, dass bei Verwendung von thermoplastisch verarbeitbarer Stärke mit den angegebenen Wassergehalten (< 6 Gew.%) ein verbessertes Fließverhalten im Extruder sowie eine verringerte Mikrobläschenbildung in der Schicht erzielt werden kann.

15

20

25

Thermoplastische Stärke ist beispielsweise erhältlich durch: (a) Mischen von Stärke und/oder einem Stärkederivat mit mindestens 15 Gew.% eines Weichmachers wie zum Beispiel Glycerin und/oder Sorbitol, (b) Zuführen von thermischer und/oder mechanischer Energie und (c) wenigstens teilweises Entfernen des natürlichen Wassergehalts der Stärke oder des Stärkederivats auf einen Wassergehalt von weniger 6 Gew.%.

Vorteilhafterweise kann mindestens eine der Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie 10 bis 50 Gew.%, bevorzugt 15 bis 50 Gew.%, vorzugsweise 20 bis 50 Gew.%, noch bevorzugt 20 bis 45 Gew.%, noch bevorzugter 25 bis 45 Gew.%, am bevorzugtesten 25 bis 40 Gew.%, bezogen auf das Gesamtgewicht der jeweiligen Deckschicht, destrukturierte Stärke enthalten. Wenn hier von "Stärke" die Rede ist, so sind damit auch Mischungen verschiedener Stärken mit umfasst.

In einer bevorzugten Ausführungsform kann die Mittelschicht A der erfindungsgemäßen Polymerfolie 20 bis 100 Gew.%, bevorzugt 30 bis 100 Gew.%,

vorzugsweise 40 bis 100 Gew.%, noch bevorzugt 50 bis 95 Gew.%, noch bevorzugter 60 bis 90 Gew.%, am bevorzugtesten 65 bis 80 Gew.%, bezogen auf das Gesamtgewicht der Mittelschicht A, destrukturierte Stärke enthalten. Wenn hier von "Stärke" die Rede ist, so sind damit auch Mischungen verschiedener Stärken mit umfasst.

5

Die erfindungsgemäße Polymerfolie kann vorteilhafterweise in mindestens einer der beiden Deckschichten B und/oder C und/oder in der Mittelschicht A Polyvinylalkohol enthalten. Polyvinylalkohol im Sinne der Erfindung enthält wenigstens zwei

Wiederholungseinheiten Vinylalkohol und kann ein Homopolymer oder ein Copolymer mit einem oder mehreren anderen Monomeren sein. Homopolymerer Polyvinylalkohol kann durch vollständige (100%) Hydrolyse von Polyvinylestern wie Polyvinylformat, Polyvinylacetat oder Polyvinylpropionat erhalten werden. Der Grad der Hydrolyse kann auch kleiner als 100% gewählt werden. Beispielsweise kann der Grad der Hydrolyse von 60% bis 99% oder von 70% bis 90% betragen. Auf diese Weise kann die Löslichkeit des Polyvinylalkohols in wässrigen Lösungen eingestellt werden.

Gemäß einer Ausführungsform der Erfindung enthält die Mittelschicht A, bezogen auf deren Gesamtgewicht, 40 bis 100 Gew.%, insbesondere 80 bis 100 Gew.%, Polyvinylalkohol, insbesondere thermoplastischen Polyvinylalkohol. Gemäß einer weiteren Ausführungsform der Erfindung besteht die Mittelschicht A im Wesentlichen aus Polyvinylalkohol, insbesondere thermoplastischem Polyvinylalkohol.

Vorteilhafterweise ist der Polyvinylalkohol ein thermoplastischer Polyvinylalkohol.

Ein besonders geeigneter thermoplastischer Polyvinylalkohol wird beispielsweise von der Firma Kuraray unter dem Handelsnamen Mowiflex TC 232 vertrieben.

Die erfindungsgemäße Polymerfolie kann in einer bevorzugten Ausführungsform ferner Weichmacher enthalten. Beispiele für Weichmacher sind Glycerin, Sorbitol, Arabinose, Lycose, Xylose, Glykose, Fructose, Mannose, Allose, Altrose, Galactose,

Gulose, lodose, Inosit, Sorbose, Talit und Monoethoxylat-, Monopropoxylat- und Monoacetat-Derivate hiervon sowie Ethylen, Ethylenglykol, Propylenglykol, Ethylendiglykol, Propylendiglykol, Ethylentriglykol, Propylentriglykol, Polyethylenglykol, Polypropylenglykol, 1,2-Propandiol, 1,3-Propandiol, 1,2-, 1,3-, 1,4
Butandiol, 1,5-Pentandiol, 1,6-, 1,5-Hexandiol, 1,2,6-, 1,3,5-Hexantriol, Neopentylglykol, Trimethilolpropan, Pentaerithritol, Sorbit und deren Acetat-, Ethoxylat- und Propoxylat-derivate. Die Weichmacher können bevorzugt in der erfindungsgemäßen Polymerfolie in einer der beiden oder beiden Deckschichten B und C und/oder in der Mittelschicht A enthalten sein. Weichmacher können beispielsweise als Bestandteil von thermoplastischer Stärke oder als Bestandteil von thermoplastischem Polyvinylalkohol enthalten sein.

Die Mittelschicht A der erfindungsgemäßen Polymerfolie kann vorteilhafterweise als weiteren Bestandteil ferner ein anhydridgruppenhaltiges und/oder epoxidgruppenhaltiges Polymer, wobei es sich vorzugsweise um ein epoxidgruppenhaltiges Copolymer handelt, enthalten. Als epoxidgruppenhaltige Polymere bzw. Copolymere kommen insbesondere solche in Frage, die ein zahlenmittleres Molekulargewicht MW von 1.000 bis 25.000 g/mol, insbesondere 3.000 bis 10.000 g/mol, aufweisen.

20

25

30

15

Vorzugsweise handelt es sich bei dem epoxidgruppen-haltigen Polymer um ein glycidyl(meth)acrylathaltiges Polymer. Ein geeignetes glycidyl(meth)acrylathaltiges Polymer ist beispielsweise ein Copolymer aus (a) Styrol und/oder Ethylen und/oder Methylmethacrylat und/oder Methylacrylat und (b) Glycidyl(meth)acrylat. Besonders gut geeignet als glycidyl(meth)acrylathaltiges Polymer ist ein Copolymer, das ausgewählt ist aus der Gruppe bestehend aus Styrol-Methylmethacrylat-Glycidylmethacrylat, Ethylen-Methylacrylat-Glycidylmethacrylat und Ethylen-Glycidylmethacrylat. Darin ist Glycidyl(meth)acrylat bevorzugt in einer Menge von 1 bis 60 Gew.%, insbesondere 5 bis 55 Gew.%, weiter bevorzugt 45 bis 52 Gew.%, bezogen auf die Gesamtzusammensetzung des glycidyl(meth)acrylathaltigen Polymers, enthalten.

WO 2016/079244 PCT/EP2015/077112

Als epoxidgruppenhaltige Polymere kommen ferner epoxidgruppenhaltige Copolymere auf Basis von Styrol, Ethylen, Acrylsäureester und/oder Methacrylsäureester in Frage.

5

Die Mittelschicht A der erfindungsgemäßen Polymerfolie kann vorzugsweise 0,01 bis 5 Gew.%, insbesondere 0,05 bis 3 Gew.%, noch bevorzugter 0,1 bis 2 Gew.% epoxidgruppenhaltiges Polymer, bezogen auf das Gesamtgewicht der Mittelschicht A, enthalten.

10

30

Vorteilhafterweise können die Deckschichten B und/oder C und/oder die Mittelschicht A unabhängig voneinander zusätzlich weitere Bestandteile enthalten. Beispiele für derartige weitere Bestandteile sind Dispergierhilfen wie z.B. Detergentien, Schmelzstabilisatoren, Verarbeitungshilfsmittel, Stabilisatoren, Antioxidationsmittel, Antiflammmittel, Antiblockmittel und/oder Füllstoffe. 15 Vorzugsweise können die Deckschichten B und/oder C und/oder die Mittelschicht A unabhängig voneinander zusätzlich weitere Polymere wie zum Beispiel Polyethylenglykol, Polyvinylalkohol, Chitin, Chitosan, Cellulose, Cellulosederivate, Polyester, Polydimethylaminoethylmethacrylat und Mischungen davon enthalten. Dabei kommen insbesondere solche Polymere in Frage, die ein zahlenmittleres 20 Molekulargewicht von 1.000 bis 80.000 g/mol, bevorzugt von 2.000 bis 50.000 g/mol, noch bevorzugt von 3.000 bis 30.000 g/mol aufweisen. Die Deckschichten B und/oder C und/oder die Mittelschicht A können vorzugsweise 0,1 Gew.% bis 10 Gew.%, insbesondere 0,05 Gew.% bis 5 Gew.%, noch bevorzugter 0,1 Gew.% bis 3 Gew.% dieser Polymere, bezogen auf das Gesamtgewicht der jeweiligen Deckschicht 25 und/oder der Mittelschicht, enthalten.

Die erfindungsgemäße Polymerfolie zeichnet sich durch gute mechanische Eigenschaften aus, die ihren Einsatz in Tragetaschen ermöglichen.

So weist die erfindungsgemäße Polymerfolie vorteilhafterweise im trockenen Zustand eine Reißdehnung in Extrusionsrichtung (MD, machine direction, Maschinenlaufrichtung) gemäß EN ISO 527 von 100% oder mehr, bevorzugt von 150% oder mehr, weiter bevorzugt 180% oder mehr, noch weiter bevorzugt 200% oder mehr, noch weiter bevorzugt 220% oder mehr, noch weiter bevorzugt 250% oder mehr, auf.

Weiterhin weist die erfindungsgemäße Polymerfolie vorzugsweise im trockenen Zustand eine Reißdehnung quer zur Extrusionsrichtung (TD) gemäß EN ISO 527 von 100 % oder mehr, bevorzugt von 150% oder mehr, weiter bevorzugt 180% oder mehr, noch weiter bevorzugt 200% oder mehr, noch weiter bevorzugt 220% oder mehr, noch weiter bevorzugt 250%, oder mehr, auf.

Zusätzlich zu den zuvor erwähnten Merkmalen kann die erfindungsgemäße

Polymerfolie im trockenen Zustand vorteilhafterweise auch einen spezifischen DartDrop Wert gemäß ASTM D1709 von mindestens 5 g/µm aufweisen.

In einer bevorzugten Ausführungsform weist die erfindungsgemäße Polymerfolie eine Zugfestigkeit in Extrusionsrichtung (MD) von mindestens 10 MPa, bevorzugt mindestens 15 MPa, weiter bevorzugt mindestens 20 MPa, gemäß EN ISO 527 auf.

Vorteilhafterweise weist die erfindungsgemäße Polymerfolie eine Zugfestigkeit quer zur Extrusionsrichtung (TD) von mindestens 10 MPa, bevorzugt mindestens 15 MPa, weiter bevorzugt mindestens 20 MPa, gemäß EN ISO 527 auf.

25

30

20

5

10

Die erfindungsgemäße Polymerfolie zeichnet sich durch ihren Zerfall sowie ihre biologische Abbaubarkeit in wässriger Lösung aus. Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen Polymerfolie zerfallen die Deckschichten B und/oder C unabhängig voneinander in wässriger Lösung innerhalb von höchstens 14 Tagen, insbesondere innerhalb von höchstens 10 Tagen oder höchstens 7 Tagen, in Teile mit einer Oberfläche von jeweils höchstens 60% der Gesamtoberfläche der

ursprünglichen Polymerfolie. Mit einer solchen Folie sind besonders gute Ergebnisse erzielt worden.

- Gemäß einer weiteren Ausführungsform der erfindungsgemäßen Polymerfolie

 zerfallen die Deckschichten B und/oder C unabhängig voneinander in wässriger
 Lösung innerhalb von höchstens 14 Tagen, insbesondere innerhalb von höchstens 10
 Tagen oder höchstens 7 Tagen, in Teile mit einer Oberfläche von jeweils höchstens
 100 cm².
- Vorteilhafterweise zerfallen die Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie innerhalb von höchstens 14 Tagen, insbesondere innerhalb von höchstens 10 Tagen oder höchstens 7 Tagen, in Teile, die so klein sind, dass sich Tiere nicht mehr damit strangulieren können.
- Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen Polymerfolie weist die Polymerfolie eine Gesamtdicke von 10 μm bis 80 μm, bevorzugt von 20 μm bis 60 μm, weiter bevorzugt von 20 μm bis 40 μm, noch weiter bevorzugt 20 μm bis 35 μm, noch weiter bevorzugt von 25 bis 35 μm, am bevorzugtesten von 30 μm, auf.
- Vorzugsweise macht die Mittelschicht A der erfindungsgemäßen Polymerfolie 30% bis 90%, bevorzugt 40% bis 85%, weiter bevorzugt 40% bis 80% und insbesondere 60% bis 80% der Gesamtdicke der Polymerfolie aus.
- Vorteilhafterweise machen die Deckschichten B und C der erfindungsgemäßen

 Polymerfolie zusammen 10% bis 70%, bevorzugt 15% bis 60%, weiter bevorzugt

 20% bis 60% und insbesondere 20% bis 40% der Gesamtdicke der Polymerfolie aus.

 Dabei können die Deckschichten B und C vorteilhafterweise im Wesentlichen dieselbe Dicke oder eine unterschiedliche Dicke aufweisen.
- 30 Die erfindungsgemäße Lehre kann nach einer weiteren Ausführungsform der Erfindung auch dadurch verwirklicht werden, dass die Deckschichten B und/oder C

der erfindungsgemäßen Polymerfolie unabhängig voneinander Stellen mit einer geringeren Widerstandfähigkeit gegen mechanische Einwirkungen und/oder gegen wässrige Lösungen aufweisen. Auf diese Art und Weise kann der Zerfall der Polymerfolie beschleunigt werden.

5

10

15

Gemäß einer bevorzugten Ausführungsform der Erfindung enthalten die Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie unabhängig voneinander ein wasserlösliches Polymer. Abhängig von der Art des wasserlöslichen Polymers und der Menge an wasserlöslichem Polymer kann die Zerfallsgeschwindigkeit der erfindungsgemäßen Polymerfolie beeinflusst werden. Bevorzugte wasserlösliche Polymere für diesen Zweck sind ausgewählt aus der Gruppe bestehend aus Stärke, thermoplastische Stärke, modifizierte Stärke, Polyvinylalkohol, thermoplastischer Polyvinylalkohol. Die wasserlöslichen Polymere können unabhängig voneinander in den Deckschichten B und/oder C in einer Menge von 0,1 Gew.% bis 40 Gew.%, bevorzugt von 0,1 Gew.% bis 30 Gew.%, weiter

bevorzugt von 0,1 Gew.% bis 25 Gew.%, weiter bevorzugt von 0,5 Gew.% bis 20

10 Gew.%, jeweils bezogen auf das Gesamtgewicht der jeweiligen Deckschicht,

Gew.%, insbesondere von 1 Gew.% bis 15 Gew.%, weiter bevorzugt von 1 Gew.% bis

20

enthalten sein.

Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung enthalten die Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie unabhängig voneinander ein oder mehrere Füllstoffe und/oder ein oder mehrere Zerfallsmittel. Abhängig von Art und Menge an Füllstoff und/oder Zerfallsmittel kann die Zerfallsgeschwindigkeit der erfindungsgemäßen Polymerfolie beeinflusst werden. Bevorzugte Füllstoffe für diesen Zweck sind ausgewählt aus der Gruppe bestehend aus Calciumcarbonat, Talkum, Kaolin, Dolomit, Glimmer, Kieselsäure und Mischungen davon. Zerfallsmittel sind dem Fachmann bekannt. Bevorzugte Zerfallsmittel für diesen Zweck sind ausgewählt aus der Gruppe bestehend aus

Natriumhydrogencarbonat, Alginsäure, Calciumalginat, Natriumalginat, mikrokristalline Cellulose, Natriumcarboxymethylcellulose, Stärke,

Natriumcarboxymethylstärke, Polyvinylpyrrolidon und Mischungen davon. Stärke kann nativ oder destrukturiert vorliegen. Die Füllstoffe können unabhängig voneinander in den Deckschichten B und/oder C in einer Menge von 0,1 Gew.% bis 30 Gew.%, bevorzugt von 0,1 Gew.% bis 25 Gew.%, weiter bevorzugt von 0,5 Gew.% bis 20 Gew.%, insbesondere von 1 Gew.% bis 15 Gew.%, weiter bevorzugt von 1 Gew.% bis 10 Gew.%, jeweils bezogen auf das Gesamtgewicht der jeweiligen Deckschicht, enthalten sein. Die Zerfallsmittel können unabhängig voneinander in den Deckschichten B und/oder C in einer Menge von 0,1 Gew.% bis 30 Gew.%, bevorzugt von 0,1 Gew.% bis 25 Gew.%, weiter bevorzugt von 0,5 Gew.% bis 20 Gew.%, insbesondere von 1 Gew.% bis 15 Gew.%, weiter bevorzugt von 1 Gew.% bis 10 Gew.%, jeweils bezogen auf das Gesamtgewicht der jeweiligen Deckschicht, enthalten sein.

Vorteilhafterweise weisen die Oberflächen der Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie unabhängig voneinander eine geriffelte Oberfläche auf. Auf diese Art und Weise wird der Zerfall zumindest einer der Deckschichten in wässriger Lösung begünstigt.

15

20

25

30

Gemäß einer weiteren Ausführungsform können die Deckschichten B und/oder C, insbesondere wenn sie einen Füllstoff und/oder ein Zerfallsmittel enthalten, gestreckt werden. Durch das Strecken können Mikroporen entstehen. Diese Mikroporen können die Deckschichten B und/oder C zum einen atmungsaktiv machen. Zum anderen können die Mikroporen den Zerfall in wässriger Lösung begünstigen. Gemäß einer weiteren Ausführungsform kann auch die Mehrschichtfolie zum Erzeugen der Mikroporen gestreckt werden.

Die mechanischen Eigenschaften der erfindungsgemäßen Polymerfolie hängen in entscheidender Weise von den mechanischen Eigenschaften der jeweiligen Einzelschichten (Mittelschicht A, Deckschichten B, C) ab. Für eine Eignung beispielsweise als Tragetasche im täglichen Gebrauch sind Mindestvoraussetzungen für die Einzelschichten erforderlich.

WO 2016/079244 PCT/EP2015/077112 23

In einer bevorzugten Ausführungsform weisen die Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie im trockenen Zustand jeweils einen spezifischen Dart-Drop Wert von mindestens 5 g/µm gemäß ASTM D1709 auf.

5

10

15

20

25

30

Die erfindungsgemäße Lehre kann nach einer weiteren Ausführungsform der Erfindung auch dadurch verwirklicht werden, dass die Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie unabhängig voneinander eine Zugfestigkeit in Extrusionsrichtung (MD) von mindestens 10 MPa, bevorzugt mindestens 150 MPa, weiter bevorzugt mindestens 20 MPa, gemäß EN ISO 527 aufweisen.

In einer bevorzugten Ausführungsform der Erfindung weisen die Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie unabhängig voneinander eine Zugfestigkeit quer zur Extrusionsrichtung (TD) von mindestens 10 MPa, bevorzugt mindestens 150 MPa, weiter bevorzugt mindestens 20 MPa, gemäß EN ISO 527 auf.

Vorteilhafterweise weisen die Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie unabhängig voneinander eine Reißdehnung in Extrusionsrichtung (MD) von mindestens 100%, bevorzugt mindestens 150%, weiter bevorzugt 180%, noch weiter bevorzugt mindestens 200%, gemäß EN ISO 527 auf.

Vorzugsweise weisen die Deckschichten B und/oder C der erfindungsgemäßen Polymerfolie unabhängig voneinander eine Reißdehnung quer zur Extrusionsrichtung (TD) von mindestens 100%, bevorzugt mindestens 150%, weiter bevorzugt mindestens 180%, noch weiter bevorzugt mindestens 200%, gemäß EN ISO 527 auf.

In einer weiteren Ausführungsform der Erfindung weist die Mittelschicht A der erfindungsgemäßen Polymerfolie eine Zugfestigkeit in Extrusionsrichtung (MD) von mindestens 10 MPa, bevorzugt mindestens 15 MPa, gemäß EN ISO 527 auf.

Vorteilhafterweise weist die Mittelschicht A der erfindungsgemäßen Polymerfolie eine Zugfestigkeit quer zur Extrusionsrichtung (MD) von mindestens 10 MPa, bevorzugt mindestens 15 MPa, gemäß EN ISO 527 auf.

- Vorzugsweise weist die Mittelschicht A der erfindungsgemäßen Polymerfolie eine Reißdehnung in Extrusionsrichtung (MD) von mindestens 100%, bevorzugt mindestens 150%, weiter bevorzugt mindestens 200%, gemäß EN ISO 527 auf.
- Gemäß einer bevorzugten Ausführungsform der Erfindung weist die Mittelschicht A

 der erfindungsgemäßen Polymerfolie eine Reißdehnung quer zur Extrusionsrichtung

 (TD) von mindestens 100%, bevorzugt mindestens 150%, weiter bevorzugt

 mindestens 200%, gemäß EN ISO 527 auf.
- In einer bevorzugten Ausführungsform der Erfindung sind die Deckschichten B und C
 der erfindungsgemäßen Polymerfolie identisch. Dies erlaubt eine besonders einfache
 Herstellung der erfindungsgemäßen Polymerfolie.
- Die erfindungsgemäße Lehre kann auch durch eine mehrschichtige Polymerfolie umfassend mindestens eine Mittelschicht A, deren polymere Bestandteile in wässriger Lösung löslich sind, und jeweils mindestens eine, oberhalb und unterhalb der mindestens einen Mittelschicht A angeordnete, im wesentlichen wasserundurchlässige Deckschicht B, C, wobei die Schichten A, B und C unabhängig voneinander jeweils mindestens ein thermoplastisches Polymer enthalten und wobei die Schicht A eine Zugfestigkeit gemäß EN ISO 527 von mindestens 15 MPa aufweist und die Schichten B und C jeweils eine Zugfestigkeit gemäß EN ISO 527 von mindestens 20 MPa aufweisen, erfüllt werden.
- In einer weiteren Ausführungsform der Erfindung sind zusätzlich zu der Mittelschicht A sowie den Deckschichten B und C eine oder mehrere weitere Schichten in der erfindungsgemäßen Polymerfolie enthalten. Derartige Schichten sind bevorzugt zwischen der Mittelschicht und einer Deckschicht angeordnet. Beispielsweise

kommen als weitere Schichten Klebeschichten, Haftvermittler oder Schichten, die die mechanischen Eigenschaften zusätzlich verbessern, in Frage. Als Beispiel für eine Mehrschichtfolie enthaltend Haftvermittler kann folgender Schichtaufbau angegeben werden: Schicht B – Haftvermittler – Schicht A – Haftvermittler – Schicht C.

PCT/EP2015/077112

5

Die Mehrschichtfolie kann insbesondere noch weitere Deckschichten B und/oder C umfassen. Möglich ist beispielsweise auch eine Mehrschichtfolie mit folgendem Schichtaufbau: Schicht B – Schicht B – Schicht A – Schicht C – Schicht C. Zwischen den einzelnen Schichten kann darüber hinaus ein Haftvermittler angeordnet sein.

10

15

20

Vorteilhafterweise sind die Deckschichten B, C sowie weitere eventuell vorhandene Deckschichten durch Extrusion hergestellt. Insbesondere sind die Deckschichten B, C sowie weitere eventuell vorhandene Deckschichten vorzugsweise nicht durch Auftragen einer Lösung enthaltend die Zusammensetzung der jeweiligen Deckschichten auf ein Substrat hergestellt.

Die Erfindung stellt ferner Verfahren bereit, mit denen es möglich ist, eine mehrschichtige Polymerfolie mindestens umfassend eine Mittelschicht A, deren polymere Bestandteile sich in wässriger Lösung auflösen, und jeweils mindestens eine oberhalb und unterhalb der Mittelschicht angeordnete, im wesentlichen wasserundurchlässige Deckschicht B, C, wobei die Schichten A, B und C unabhängig voneinander jeweils mindestens ein thermoplastisches Polymer enthalten und mindestens eine der Deckschichten B und C mindestens ein Polyhydroxyalkanoat enthält, zu erhalten.

25

Grundsätzlich umfassen die erfindungsgemäßen Verfahren die folgenden Schritte, wobei die einzelnen Schritte gleichzeitig oder nacheinander und in beliebiger Reihenfolge und Häufigkeit durchgeführt werden können:

30

a. Bereitstellen einer Polymerzusammensetzung der ersten Deckschicht, die mindestens ein Polyhydroxyalkanoat enthält,

WO 2016/079244 PCT/EP2015/077112 26

- b. Formen der ersten Deckschicht,
- Bereitstellen mindestens eines thermoplastischen Polymers der Mittelschicht,
- d. Formen einer Mittelschicht,
- e. Bereitstellen einer Polymerzusammensetzung der zweiten Deckschicht,
- f. Formen der zweiten Deckschicht.

Bevorzugt werden die Verfahrensschritte in der oben angegebenen Reihenfolge durchgeführt.

10

5

Unter Polymerzusammensetzung im Sinne der Erfindung wird jedes Material verstanden, das mindestens ein Polymer umfasst, insbesondere können ein, zwei oder mehrere Polymere darin umfasst sein.

Gemäß einer weiteren Ausführungsform beinhaltet das Verfahren das zumindest teilweise flächige Verbinden der einzelnen Schichten.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden die Schritte b., d. und f. gleichzeitig durchgeführt.

20

Aus ökonomischen und verfahrenstechnischen Gründen hat es sich als vorteilhaft erwiesen, wenn das erfindungsgemäße Verfahren einen Coextrusionschritt umfasst. Dies erlaubt eine schnelle und kostengünstige Verfahrensweise.

- In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens umfasst das Verfahren einen Kaschierungsschritt. Dies erlaubt eine höhere Flexibilität und es können so sehr einfach zusätzliche Schichten in die Polymerfolie eingebaut werden.
 - Vorteilhafterweise wird im erfindungsgemäßen Verfahren der
- 30 Polymerzusammensetzung in Schritt e. mindestens ein Polyhydroxyalkanoat zugesetzt.

Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens umfasst das Verfahren einen Schritt, in dem die Deckschichten B und/oder C und/oder die hergestellte Mehrschichtfolie gestreckt wird. Dadurch können Mikroporen in den Schichten, insbesondere in den Deckschichten B und/oder C erzeugt werden. Gemäß einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens umfasst das Verfahren einen Schritt, in dem die Mehrschichtfolie gestreckt wird.

Die erfindungsgemäßen mehrschichtigen Polymerfolien eignen sich für die verschiedensten Zwecke. Insbesondere eignen sich die Polymerfolien zur Herstellung von Formteilen, Folien oder Tüten. Aufgrund des Zerfalls und der biologischen Abbaubarkeit in wässrigen Lösungen eignen sich die erfindungsgemäßen Polymerfolien besonders gut zur Herstellung von Tüten, insbesondere von Kunststoff-Tragetaschen.

15

20

5

Gegenstand der Erfindung sind schließlich auch Erzeugnisse, die mit den erfindungsgemäßen mehrschichtigen Polymerfolien hergestellt oder herstellbar sind. In Betracht kommen insbesondere Formteile, Folien oder Tüten, beispielsweise Abfallsäcke, Tragetaschen, Einweggeschirr (z.B. Becher, Tassen, Teller und Besteck), Verpackungsfolien, Flaschen, Obst- und Gemüseschalen (so genannte Trays), Verpackungshilfsmittel (Loose-fill-Chips), Mulchfolien und Blumentöpfe.

Das Prinzip der Erfindung soll im Folgenden an Beispielen näher erläutert werden.

Für die Vergleichs- und Ausführungsbeispiele wurden folgende Materialien
verwendet: Polymilchsäure, PLA (INGEO 2003D, NATUREWORKS);
Poly(butylenadipat-co-terephthalat), PBAT (ECOFLEX F Blend C 1201, BASF);
Poly(butylensebacat-co-terephthalat), PBST (ECOFLEX FS Blend A 1100, BASF);
Poly(butylensuccinat-co-adipat), PBSA (GS Pla AD 92 WN, Mitsubishi);
Polycaprolacton, PCL (Capa 6800, Perstorp); Thermoplastische Stärke, TPS

(BIOPLAST TPS, Biotec); Poly(hydroxybutyrat-co-hexanoat), PHBH (AONILEX X 151 A,

KANEKA); native Kartoffelstärke (EMSLANDSTÄRKE SUPERIOR); Polyvinylalkohol, PVOH (Mowiflex TC 232 Kuraray); Glycerin (OLEON); Sorbitol (CARGILL).

Beispiel 1 (Vergleichsbeispiel):

5

Mit einem Zweiwellenextruder (Gleichläufer) des Typs Werner & Pfleiderer (COPERION) ZSK 70, Schneckendurchmesser 70 mm, L/D = 36, wurde folgendes Polymerblend A compoundiert (dosierte Anteile in Massenprozent):

10 Tab. 1: Rezeptur A

	A
PBAT	57,4
Stärke	42,6

Dabei wurden folgende Compoundierparameter eingehalten:

Tab.2: Temperaturprofil ZSK 70

Zone	Zone	Zone	Zone	Zone	Zone	Zone	Zone	Zone	Zone	Zone	
1	2	3	4	5	6	7	8	9	10	11	Düse
25 °C	190°C	190°C	190°C	170 °C	170 °C	170°C	170 °C	155 °C	100 °C	150 °C	140°C

15

Schmelzetemperatur bei Düsenaustritt: 163 °C

205 min-1 Drehzahl:

Durchsatz: 400 kg/h

aktiv (Vakuum, Zone 9) Entgasung:

20 Wassergehalt: kleiner 1 Gew.%

(gemessen nach dem Austritt aus dem Extruder)

Weiterhin wurde mit einem Einwellenextruder des Typs COLLIN 30 (DR. COLLIN), Schneckendurchmesser 30 mm, L/D = 33, thermoplastische Stärke (TPS) mit folgender Rezeptur compoundiert (dosierte Anteile in Massenprozent):

Tab. 3: Rezeptur TPS

	TPS
Glycerin	20
Sorbitol	10
Stärke	70

Granulat A wurde anschließend mit einem Einwellenextruder des Typs COLLIN 30
 (DR. COLLIN), Schneckendurchmesser 30 mm, L/D = 33, aufgeschmolzen und zusammen mit der thermoplastischen Stärke TPS, welche ebenfalls in einem Einwellenextruder des Typs COLLIN 30 (DR. COLLIN), Schneckendurchmesser 30 mm, L/D = 33, aufgeschmolzen wurde, in einem Coextrusionsschritt zu einer dreischichtigen Folie verarbeitet, wobei die Mittelschicht aus TPS und die
 Deckschichten aus Zusammensetzung A bestand. Die mechanischen Eigenschaften der dreischichtigen Folie sowie die Zersetzbarkeit der Deckschichten in kleinere Teile und

Für die Untersuchung der Haltbarkeit der dreischichtigen Folie in Wasser wurden Proben der Folie in Diarahmen eingespannt und in natürlichem Meerwasser eingelegt.

Die Folie wurde zudem mechanisch beansprucht. Die Zersetzung der Folie wurde visuell begutachtet.

Die Ergebnisse dieser Untersuchung sind in der nachfolgenden Tabelle zusammengefasst.

die Löslichkeit der Mittelschicht in Wasser wurden untersucht.

Tab.4: Mechanische Eigenschaften der dreischichtigen Folie und Zersetzbarkeit/Löslichkeit in Wasser

Dicke	Dicke	Spezifischer	Zugfest	_	i	iß-	Zersetz-	Löslich-
Deck-	Mittel-	Dart Drop	[MPa]		dehnung		barkeit	keit
schichten	schicht	[g/µm]	EN ISO 527		[%]		Deck-	Mittel-
(jeweils)	[µm]	ASTM D			EN IS	SO.	schichten	schicht
[µm]		1709			527			
			MD	TD	MD	TD		
10	10	8	10,7	7,6	475	230	Keine	Mittel-
							Zersetzung	schicht
							nach 14	wegen
							Tagen	intakter
					ļ		111	Deck-
								schichten
}								nach 14
-								Tagen
								intakt

Wie der Tabelle zu entnehmen ist, weist die resultierende Folie zum einen eine
 Zugfestigkeit auf, die für die Anforderungen an eine Tüte unzureichend sind.
 Weiterhin war nach 14 Tagen keine Zersetzung der Deckschichten zu erkennen,
 weshalb die Folie auch nach 14 Tagen noch intakt war.

Beispiel 2:

Mit einem Zweiwellenextruder (Gleichläufer) des Typs Werner & Pfleiderer (COPERION) ZSK 40, Schneckendurchmesser 40 mm, L/D = 42, wurde folgende Rezeptur B compoundiert (dosierte Anteile in Massenprozent):

Tab. 5: Rezeptur

	В
PBAT	44,6
РНВН	19,8
Stärke	20,5
PVOH	10
PLA	5,1

Dabei wurden folgende Compoundierparameter eingehalten:

Tab.6: Temperaturprofil ZSK 40

Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Zone 7	Zone 8	Düse
25 °C	150 °C	150 °C	140 °C	130 °C				

31

5

15

20

25

Schmelzetemperatur bei Düsenaustritt: 133 °C

Drehzahl: 140 min⁻¹

Durchsatz: 40 kg/h

Entgasung: aktiv (Vakuum, Zone 7)

10 Wassergehalt: kleiner 1 Gew.%

(gemessen nach dem Austritt aus dem Extruder)

Granulat B wurde anschließend mit einem Einwellenextruder des Typs *COLLIN 30* (*DR. COLLIN*), Schneckendurchmesser 30 mm, L/D = 33, aufgeschmolzen und zusammen mit PVOH, welches ebenfalls in einem Einwellenextruder des Typs *COLLIN 30* (*DR. COLLIN*), Schneckendurchmesser 30 mm, L/D = 33, aufgeschmolzen wurde, in einem Coextrusionsschritt zu einer dreischichtigen Folie verarbeitet, wobei die Mittelschicht aus PVOH und die Deckschichten aus Zusammensetzung B bestand. Die mechanischen Eigenschaften der dreischichtigen Folie sowie die Zersetzbarkeit der Deckschichten in kleinere Teile und die Löslichkeit der Mittelschicht in Wasser wurden untersucht.

Für die Untersuchung der Haltbarkeit der dreischichtigen Folie in Wasser wurden Proben der Folie in Diarahmen eingespannt und in natürliches Meerwasser eingelegt. Zudem wurde die Folie mechanisch beansprucht. Die Zersetzung der Folie wurde visuell begutachtet.

Die Ergebnisse dieser Untersuchung sind in der nachfolgenden Tabelle zusammengefasst.

Tab.7: Mechanische Eigenschaften der dreischichtigen Folie und Zersetzbarkeit/Löslichkeit in Wasser

Dicke	Dicke	Spezifischer	Zugfestigkeit		Re	iß-	Zersetz-	Löslich-		
Deck-	Mittel-	Dart Drop	[MPa]		[MPa] dehnı		dehnung		barkeit	keit
schichten	schicht	[g/µm]	EN ISO 527		N ISO 527 [%]		Deck-	Mittel-		
(jeweils)	[µm]	ASTM D			EN ISO		schichten	schicht		
[µm]		1709			527					
			MD	TD	MD	TD				
10	10	25,4	37,0	40,3	281	234	Kleinere	Voll-		
					ĺ		Teile	ständige		
					ŀ	[nach 7	Auflösung		
				ļ			Tagen	nach 7		
								Tagen		

Die Tabelle zeigt für diese Folie deutlich gesteigerte Werte für die Zugfestigkeit sowie gute Werte für die Reißdehnung, die sie zum Beispiel für eine Tüte geeignet machen. Weiterhin wurde beobachtet, dass beide Deckschichten nach wenigen Tagen anfingen, in kleinere Teile zu zerfallen, was die Mittelschicht freilegte, deren polymere Bestandteile sich in wässriger Lösung auflösten.

10 Beispiele 3 bis 15

15

Mit einer 5-Schicht Blasfolienanlage des Typs *Biotem 10 15 (Dr. Collin)*, mit Schneckendurchmessern von 20 mm, L/D = 25, für die äußeren vier Schichten und einem Schneckendurchmesser von 25 mm, L/D = 25, für die innere Schicht wurden Mehrschichtfolien hergestellt. Dabei wurden für die Deckschichten die folgenden Rezepturen in den Extrudern compoundiert (dosierte Anteile in Massenprozent):

Tab. 8: Rezepturen für die Deckschichten

	С	D	Е	F	G	Н	J
PHBH	84	72	63	26	30	58	75
PBAT	16	15	21	41	42	26	10
PBST	-	13	-	-	-	-	-
Stärke	-	-	15	30	28	15	-
PLA	-	-	1	3	-	1	-
PCL	-	-	-	-	-	-	15

Fortsetzung Tab. 8

10

	K	L	М	N	0
РНВН	70	30	70	31	95
PBAT	17	42	-	-	-
PBSA	13	-	-	-	_
Stärke		28	-	-	-
PLA	-	-	30	69	-
PCL	-		-	-	5

Für Mehrschichtfolien, bei denen für die Deckschichten die Rezeptur L verwendet wurde, wurde TPS (siehe Beispiel 1) für die Mittelschicht verwendet. Für

Mehrschichtfolien, bei denen für die Deckschichten die Rezepturen C bis K, M bis O sowie reines PHBH verwendet wurden, wurde PVOH für die Mittelschicht verwendet. Somit ergaben sich folgende Kombinationen für die Mehrschichtfolien:

Tab. 9: Kombinationen der Rezepturen der Deckschichten mit den verschiedenen Mittelschichten

Mehrschichtfolie Nr.	Deckschichten	Mittelschicht
I	РНВН	PVOH
II	Rezeptur C	PVOH
III	Rezeptur D	PVOH
IV	Rezeptur E	PVOH
V	Rezeptur F	PVOH
VI	Rezeptur G	PVOH
VII	Rezeptur H	PVOH
VIII	Rezeptur J	PVOH
IX	Rezeptur K	PVOH
X	Rezeptur L	TPS
XI	Rezeptur M	PVOH
XII	Rezeptur N	PVOH
XIII	Rezeptur O	PVOH

Es wurden folgende Verarbeitungsparameter eingehalten:

Tab. 10: Temperaturprofil Biotem 1015

Deckschicht	Extruder	Zone 1	Zone 2	Zone 3	Zone 4	Flansch 1	Düse
РНВН,	Deck-	25°C	160°C	165°C	165°C	165°C	170°C
Rezepturen	schichten						
C, D, G, J, K,	Mittel-	25°C	185°C	185°C	185°C	185°C	175°C
0	schicht						
Rezepturen	Deck-	25°C	180°C	180°C	180°C	180°C	175°C
E, F, H	schichten						1
	Mittel-	25°C	185°C	185°C	185°C	185°C	175°C
	schicht					1	
Rezeptur L	Deck-	25°C	160°C	165°C	165°C	165°C	170°C
	schichten						
	Mittel-	25°C	165°C	165°C	165°C	165°C	165°C
	schicht						
Rezepturen	Deck-	25°C	180°C	185°C	185°C	185°C	185°C
M, N	schichten						
	Mittel-	25°C	185°C	185°C	185°C	185°C	175°C
	schicht						

5

Drehzahl: 55-90 min⁻¹

Ringdüse: Durchmesser 60 mm

Ringspalt: 1,20 mm

Aufblasverhältnis: ca. 1:3.

10

Es wurden Folien mit einer Gesamtdicke von 20 bis 35 μm hergestellt. Die Mehrschichtfolien hatten den Aufbau Deckschicht – Deckschicht – Mittelschicht – Deckschicht – Deckschicht. Die einzelnen Schichten hatten dabei ein Verhältnis Deckschicht:Deckschicht:Mittelschicht:Deckschicht von 1:1:2-4:1:1.

Die Folien wurden anschließend für mindestens 72 Stunden gelagert, bevor die mechanischen Eigenschaften untersucht wurden.

Tab. 11: Mechanische Eigenschaften der Mehrschichtfolien

5

Folie	Spezifischer Dart Drop [g/µm]	Drop [g/μm] [MPa] EN ISO 527		Reiß-dehnung [%] EN ISO 527		
	ASTM D 1709	MD	TD	MD	TD	
I	6	35	37	190	410	
II	7	27	25	320	450	
III	8	23	24	457	530	
IV	8	24	26	418	491	
V	11	37	40	281	234	
VI	10	28	30	405	436	
VII	5	37	28	216	228	
VIII	9	22	24	480	562	
IX	6	32	31	310	378	
X	7	11	10	513	444	
XI	5	47	49	209	220	
XII	5	52	55	123	147	
XIII	7	26	28	280	452	

Die Tabelle zeigt, dass sich die Folien I bis IX und XI bis XIII aufgrund ihrer

mechanischen Eigenschaften insbesondere für Plastik-Tragetaschen eignen. Ebenso wurde beobachtet, dass die Folien I bis XIII in Diarahmen eingespannt, in natürlichem Meerwasser eingelegt und mechanisch beansprucht nach mehreren Tagen in Wasser in kleinere Teile zerfielen. Dabei löste sich die Mittelschicht auf und die Deckschichten zerfielen in kleinere Teile.

Patentansprüche

- 1. Mehrschichtige Polymerfolie umfassend mindestens eine Mittelschicht A, deren polymere Bestandteile in wässriger Lösung löslich sind, und jeweils mindestens eine, oberhalb und unterhalb der mindestens einen Mittelschicht A angeordnete, im wesentlichen wasserundurchlässige Deckschicht B, C, wobei die Schichten A, B und C unabhängig voneinander jeweils mindestens ein thermoplastisches Polymer enthalten und mindestens eine der Deckschichten B und C mindestens ein Polyhydroxyalkanoat enthält.
- 2. Polymerfolie gemäß Anspruch 1, **dadurch gekennzeichnet, dass** das Polyhydroxyalkanoat in mindestens einer der Deckschichten B und C in einer Menge von mindestens 10 Gew.%, insbesondere mindestens 15 Gew.% oder 20 Gew.%, bezogen auf das Gesamtgewicht der jeweiligen Deckschicht, enthalten ist.
- 3. Polymerfolie gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das jeweils mindestens eine thermoplastische Polymer der Deckschichten B und C hydrolytisch zersetzbar ist.
- Polymerfolie gemäß einem der vorstehenden Ansprüche, dadurch
 gekennzeichnet, dass das jeweils mindestens eine thermoplastische Polymer der Deckschichten B und C unabhängig voneinander ausgewählt ist aus der Gruppe bestehend aus thermoplastische Stärke, stärkehaltige Thermoplaste, Polyvinylalkohol, thermoplastischer Polyvinylalkohol, Polyvinylacetat, Poly(3-hydroxybutanoat), Poly(3-hydroxyvalerat), Poly(3-hydroxyhexanoat), Poly(3-hydroxybutyrat-co-3-hydroxybutyrat-co-3-hydroxyvalerat), Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat), Polymilchsäure, Polycaprolacton, Polybutylensuccinat, Poly(butylenadipat-co-succinat), aromatisch-aliphatischer Copolyester, Poly(butylenadipat-co-terephthalat), Poly(butylensebacat-co-terephthalat) und Mischungen davon.

5. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet**, **dass** das Polyhydroxyalkanoat in mindestens einer der Deckschichten B und C ausgewählt ist aus der Gruppe bestehend aus Poly(3-hydroxybutanoat), Poly(3-hydroxyvalerat), Poly(3-hydroxyhexanoat), Poly(3-hydroxybutyrat-co-3-hydroxyvalerat), Poly(3-hydroxybutyrat-co-3-hydroxyhexanoat) und Mischungen davon.

5

15

20

25

- Polymerfolie gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Polyhydroxyalkanoat in mindestens einer der
 Deckschichten B und C durch Mikroorganismen in einem Fermentationsprozess und/oder durch chemische Synthese hergestellt wurde.
 - 7. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Deckschichten B und C jeweils mindestens ein Polyhydroxyalkanoat enthalten.
 - 8. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** das mindestens eine thermoplastische Polymer der
 Deckschichten B und/oder C das Polyhydroxyalkanoat ist.
 - 9. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Deckschichten B und/oder C gemäß ASTM D6866
 jeweils mindestens 40%, insbesondere mindestens 45% oder 50% biobasierten
 Kohlenstoff enthalten, bezogen auf die Gesamtmenge an Kohlenstoff der jeweiligen
 Deckschichten.
 - 10. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Deckschichten B und/oder C gemäß ISO 15985
 und/oder gemäß ISO 14855 zu jeweils mindestens 40%, insbesondere mindestens
 45% oder mindestens 50%, mindestens 60%, mindestens 80%, mindestens 90%

oder mindestens 95% biologisch abbaubar sind.

5

20

25

30

- 11. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Mittelschicht A gemäß ISO 15985 und/oder gemäß ISO 14855 zu mindestens 40%, mindestens 50%, mindestens 60%, mindestens 70%, mindestens 80%, mindestens 90% oder mindestens 95% biologisch abbaubar ist.
- Polymerfolie gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine thermoplastische Polymer der
 Mittelschicht A ausgewählt ist aus der Gruppe bestehend aus thermoplastische Stärke, stärkehaltige Thermoplaste, Polyvinylalkohol, thermoplastischer Polyvinylalkohol, Polyvinylacetat, Polyethylenglykol, Celluloseacetat, Ethylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Poly(vinylpyrrolidon), Poly(3-hydroxybutanoat), Poly(3-hydroxyvalerat), Poly(3-hydroxybutyrat-co-3-hydroxyvalerat), Poly(3-hydroxybutyrat-co-3-hydroxyvalerat), Poly(3-hydroxybutyrat-co-3-hydroxybutyrat-co-3-hydroxybutyrat-co-, Polybutylensuccinat, Poly(butylenadipat-co-succinat), aromatisch-aliphatischer Copolyester, Poly(butylenadipat-co-terephthalat), Poly(butylensebacat-co-terephthalat) und Mischungen davon.

13. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Polymerfolie im trockenen Zustand eine Reißdehnung in Extrusionsrichtung (MD) gemäß EN ISO 527 von 100% oder mehr, insbesondere von 150% oder mehr, 180% oder mehr, 200% oder mehr, 220% oder mehr oder 250% oder mehr, aufweist.

14. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Polymerfolie im trockenen Zustand eine Reißdehnung
quer zur Extrusionsrichtung (TD) gemäß EN ISO 527 von 100 % oder mehr,
insbesondere von 150% oder mehr, 180% oder mehr, 200% oder mehr, 220%

oder mehr oder 250% oder mehr, aufweist.

5

- 15. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Polymerfolie im trockenen Zustand einen spezifischen
 Dart-Drop Wert gemäß ASTM D1709 von mindestens 5 g/μm aufweist.
- 16. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet**, **dass** die Deckschichten B und/oder C unabhängig voneinander in wässriger Lösung innerhalb von höchstens 14 Tagen, insbesondere innerhalb von höchstens 10 Tagen oder höchstens 7 Tagen, in Teile mit einer Oberfläche von jeweils höchstens 60% der Gesamtoberfläche der ursprünglichen Polymerfolie zerfallen.
- 17. Polymerfolie gemäß einem der vorstehenden Ansprüche, dadurch
 15 gekennzeichnet, dass die Deckschichten B und/oder C unabhängig voneinander in wässriger Lösung innerhalb von höchstens 14 Tagen, insbesondere innerhalb von höchstens 10 Tagen oder höchstens 7 Tagen, in Teile mit einer Oberfläche von jeweils höchstens 100 cm² zerfallen.
- 20 18. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Polymerfolie eine Gesamtdicke von 10 μm bis 80 μm, insbesondere von 20 μm bis 60 μm, 20 μm bis 40 μm, 20 μm bis 35 μm oder 25 bis 35 μm, aufweist.
- 25 19. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Mittelschicht A der Polymerfolie 30% bis 90%,
 insbesondere 40% bis 85%, 40% bis 80% oder 60% bis 80%, der Gesamtdicke der
 Polymerfolie ausmacht.
- 30 20. Polymerfolie gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Deckschichten B und C der Polymerfolie zusammen

10% bis 70%, insbesondere 15% bis 60%, 20% bis 60% oder 20% bis 40%, der Gesamtdicke der Polymerfolie ausmachen.

- Polymerfolie gemäß einem der vorstehenden Ansprüche, dadurch
 gekennzeichnet, dass die Deckschichten B und/oder C unabhängig voneinander
 Stellen mit einer geringeren Widerstandfähigkeit gegen mechanische
 Einwirkungen und/oder gegen wässrige Lösungen aufweisen.
- Polymerfolie gemäß einem der vorstehenden Ansprüche, dadurch
 gekennzeichnet, dass die Deckschichten B und/oder C unabhängig voneinander ein wasserlösliches Polymer enthalten.
 - 23. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet**, **dass** die Oberflächen der Deckschichten B und/oder C unabhängig voneinander eine geriffelte Oberfläche aufweisen.

15

20

25

- 24. Polymerfolie gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Deckschichten B und/oder C im trockenen Zustand jeweils einen spezifischen Dart-Drop Wert von mindestens 5 g/μm gemäß ASTM D1709 aufweisen.
- 25. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet**, **dass** die Deckschichten B und/oder C unabhängig voneinander eine Zugfestigkeit in Extrusionsrichtung (MD) von mindestens 10 MPa, insbesondere mindestens 15 MPa oder mindestens 20 MPa, gemäß EN ISO 527 aufweisen.
- 26. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Deckschichten B und/oder C unabhängig voneinander
 eine Zugfestigkeit quer zur Extrusionsrichtung (TD) von mindestens 10 MPa,
 insbesondere mindestens 15 MPa oder mindestens 20 MPa, gemäß EN ISO 527

aufweisen.

- 27. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Deckschichten B und/oder C unabhängig voneinander eine Reißdehnung in Extrusionsrichtung (MD) von mindestens 100%, insbesondere mindestens 150%, mindestens 180% oder mindestens 200%, gemäß EN ISO 527 aufweisen.
- 28. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Deckschichten B und/oder C unabhängig voneinander eine Reißdehnung quer zur Extrusionsrichtung (TD) von mindestens 100%, insbesondere mindestens 150%, mindestens 180% oder mindestens 200%, gemäß EN ISO 527 aufweisen.
- Polymerfolie gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Mittelschicht A eine Zugfestigkeit in Extrusionsrichtung (MD) von mindestens 10 MPa, insbesondere mindestens 15 MPa, gemäß EN ISO 527 aufweist.
- 20 30. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Mittelschicht A eine Zugfestigkeit quer zur

 Extrusionsrichtung (TD) von mindestens 10 MPa, insbesondere mindestens 15

 MPa, gemäß EN ISO 527 aufweist.
- 25 31. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Mittelschicht A eine Reißdehnung in

 Extrusionsrichtung (MD) von mindestens 100%, insbesondere mindestens 150%,
 oder mindestens 200%, gemäß EN ISO 527 aufweist.
- 30 32. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Mittelschicht A eine Reißdehnung quer zur

5

10

15

Extrusionsrichtung (TD) von mindestens 100%, insbesondere mindestens 150%, oder mindestens 200%, gemäß EN ISO 527 aufweist.

- 33. Polymerfolie gemäß einem der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Deckschichten B und C identisch sind.
- 34. Mehrschichtige Polymerfolie umfassend mindestens eine Mittelschicht A, deren polymere Bestandteile in wässriger Lösung löslich sind, und jeweils mindestens eine, oberhalb und unterhalb der mindestens einen Mittelschicht A angeordnete, im wesentlichen wasserundurchlässige Deckschicht B, C, wobei die Schichten A, B und C unabhängig voneinander jeweils mindestens ein thermoplastisches Polymer enthalten, dadurch gekennzeichnet, dass die Schicht A eine Zugfestigkeit gemäß EN ISO 527 von mindestens 15 MPa aufweist und die Schichten B und C jeweils eine Zugfestigkeit gemäß EN ISO 527 von mindestens 20 MPa aufweisen.

35. Polymerfolie gemäß Anspruch 34, **dadurch gekennzeichnet, dass** die Polymerfolie durch mindestens ein weiteres Merkmal der Ansprüche 1 bis 33 definiert ist.

- 20 36. Verfahren zur Herstellung einer mehrschichtigen Polymerfolie mindestens umfassend eine Mittelschicht A, deren polymere Bestandteile sich in wässriger Lösung auflösen, und jeweils mindestens eine oberhalb und unterhalb der Mittelschicht angeordnete, im wesentlichen wasserundurchlässige Deckschicht B, C, wobei die Schichten A, B und C unabhängig voneinander jeweils mindestens ein thermoplastisches Polymer enthalten und mindestens eine der Deckschichten B und C mindestens ein Polyhydroxyalkanoat enthält, umfassend:
 - a. Bereitstellen einer Polymerzusammensetzung der ersten Deckschicht, die mindestens ein Polyhydroxyalkanoat enthält,
 - b. Formen der ersten Deckschicht,
- 30 c. Bereitstellen mindestens eines thermoplastischen Polymers der Mittelschicht,

43

PCT/EP2015/077112

d. Formen einer Mittelschicht,

WO 2016/079244

10

20

- e. Bereitstellen einer Polymerzusammensetzung der zweiten Deckschicht,
- f. Formen der zweiten Deckschicht.
- 5 37. Verfahren gemäß Anspruch 36, **dadurch gekennzeichnet, dass** die Schritte b., d. und f. gleichzeitig durchgeführt werden.
 - 38. Verfahren gemäß einem der Ansprüche 36 oder 37, **dadurch gekennzeichnet, dass** das Verfahren einen Coextrusionsschritt umfasst.

39. Verfahren gemäß Anspruch 36, **dadurch gekennzeichnet, dass** das Verfahren einen Kaschierungsschritt umfasst.

- 40. Verfahren gemäß einem der Ansprüche 36 bis 39, dadurch gekennzeichnet, dass
 der Polymerzusammensetzung in Schritt e. mindestens ein Polyhydroxyalkanoat zugesetzt wird.
 - 41. Verwendung einer Polymerfolie gemäß einem der Ansprüche 1 bis 35 zur Herstellung von Formteilen, Folien oder Tüten.
 - 42. Formteil, Folie oder Tüte, hergestellt aus einer mehrschichtigen Polymerfolie gemäß einem der Ansprüche 1 bis 35.

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2015/077112

A. CLASSIFICATION OF SUBJECT MATTER
INV. B32B7/02 B32B9/02 B32B9/04 B32B27/08 B32B27/18
B32B27/30 B32B27/36 B65D65/46 B65D30/08

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B32B B65D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT	

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2009/049667 A1 (BIOTEC BIOLOG NATURVERPACK [DE]; SCHMIDT HARALD [DE]; HESS CHRISTOPH [) 23 April 2009 (2009-04-23) page 3, line 9 - page 5, line 2 page 7, line 1 - line 11 page 17, line 25 - page 19, line 28 examples 2,3,5,7 claims; figure 1	1-12, 18-42

Х	Further documents are listed in the	continuation of Box C.
---	-------------------------------------	------------------------

X See patent family annex.

- * Special categories of cited documents :
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search

10 February 2016

18/02/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016 Authorized officer

Mazet, Jean-François

Date of mailing of the international search report

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2015/077112

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2015/077112

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 2009049667 A1	23-04-2009	NONE	
WO 2012066436 A2	24-05-2012	AU 2011330844 A1 CL 2013001398 A1 CN 103221013 A EP 2640333 A2 KR 20130132807 A RU 2013126038 A US 2012130331 A1 WO 2012066436 A2	02-05-2013 04-10-2013 24-07-2013 25-09-2013 05-12-2013 27-12-2014 24-05-2012
DE 202010005911 U1	27-06-2011	NONE	

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP2015/077112

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES INV. B32B7/02 B32B9/02

B32B27/30

B32B27/36

B32B9/04 B32B27/08 B65D30/08 B65D65/46

B32B27/18

ADD.

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

B32B B65D

Recherchierte, aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 2009/049667 A1 (BIOTEC BIOLOG NATURVERPACK [DE]; SCHMIDT HARALD [DE]; HESS CHRISTOPH [) 23. April 2009 (2009-04-23) Seite 3, Zeile 9 - Seite 5, Zeile 2 Seite 7, Zeile 1 - Zeile 11 Seite 17, Zeile 25 - Seite 19, Zeile 28 Beispiele 2,3,5,7 Ansprüche; Abbildung 1	1-12, 18-42

X	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	Х	Siehe Anhang Patentfamilie
---	---	---	----------------------------

- Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" frühere Anmeldung oder Patent, die bzw. das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung,
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 10. Februar 2016 18/02/2016

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Mazet, Jean-François

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP2015/077112

0 /5- :	TURES ALOWEOCRATICOLIANOCOCUERE UNITEDIACEN	-	
C. (Fortset	zung) ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	nden Teile	Betr. Anspruch Nr.
X	WO 2012/066436 A2 (KIMBERLY CLARK CO [US]; WANG JAMES H [US]; SHI BO [US]; LORTSCHER PETE) 24. Mai 2012 (2012-05-24) in der Anmeldung erwähnt Seite 8, Zeile 18 - Zeile 27 Seite 18, Zeile 2 - Seite 19, Zeile 55 Seite 20, Zeile 19 - Seite 21, Zeile 12 Seite 22, Zeile 26 - Zeile 30 Ansprüche 1,18,20		1-42
A	DE 20 2010 005911 U1 (HUHTAMAKI FORCHHEIM [DE]) 27. Juni 2011 (2011-06-27) Ansprüche		1-42

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP2015/077112

Im Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 2009049667 A:	23-04-2009	KEINE	
WO 2012066436 AZ	24-05-2012	AU 2011330844 A1 CL 2013001398 A1 CN 103221013 A EP 2640333 A2 KR 20130132807 A RU 2013126038 A US 2012130331 A1 WO 2012066436 A2	02-05-2013 04-10-2013 24-07-2013 25-09-2013 05-12-2013 27-12-2014 24-05-2012 24-05-2012
DE 202010005911 U	27-06-2011	KEINE	