

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 200133313 B2
(10) Patent No. 783422

(54) Title
C10 carbamoyloxy substituted taxanes as antitumor agents

(51)⁶ International Patent Classification(s)
C07D 409/12 C07D 305/14
A61K 031/335 C07D 407/12
A61P 035/00

(21) Application No: 200133313 (22) Application Date: 2001 .02 .02

(87) WIPO No: WO01/57033

(30) Priority Data

(31) Number (32) Date (33) Country
60/179793 2000 .02 .02 US

(43) Publication Date : 2001 .08 .14
(43) Publication Journal Date : 2001 .10 .25
(44) Accepted Journal Date : 2005 .10 .27

(71) Applicant(s)

Florida State University Research Foundation, Inc.

(72) Inventor(s)

Robert A. Holton, Weishuo Fang

(74) Agent/Attorney

E F Wellington and Co, 312 St Kilda Road, MELBOURNE VIC 3006

(56) Related Art

WO 1997/032578
WO 1996/013495
EP 524093

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
9 August 2001 (09.08.2001)

PCT

(10) International Publication Number
WO 01/57033 A1

(51) International Patent Classification: C07D 409/12, A61K 31/335, A61P 35/00, C07D 407/12, 305/14

(74) Agents: HEJLEK, Edward, J. et al.; Senniger, Powers, Leavitt & Roedel, 16th Floor, One Metropolitan Square, St. Louis, MO 63102 (US).

(21) International Application Number: PCT/US01/03633

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SL, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(22) International Filing Date: 2 February 2001 (02.02.2001)

(84) Designated States (regional): ARIPO patent (GH, GM, KR, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DB, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TO).

(25) Filing Language: English

Published:

(26) Publication Language: English

— with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(30) Priority Data: 60/179,793 2 February 2000 (02.02.2000) US

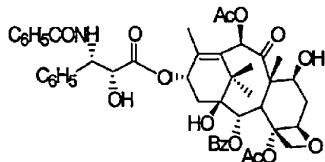
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC. (US/US); 100 Sliger Building, Mail Code 2763, Tallahassee, FL 32306-2763 (US).

(72) Inventors: HOLTON, Robert, A.; Florida State University Research Foundation, Inc., 100 Sliger Building, Mail Code 2763, Tallahassee, FL 32306-2763 (US). FANG, Weisuo; Florida State University Research Foundation, Inc., 100 Sliger Building, Mail Code 2763, Tallahassee, FL 32306-2763 (US).

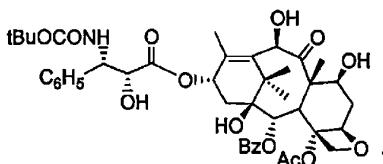
WO 01/57033 A1

(54) Title: C10 CARBAMOYLOXY SUBSTITUTED TAXANES AS ANTI TUMOR AGENTS


(57) Abstract: Taxanes having a carbamoyloxy substituent at C(10), a hydroxy substituent at C(7), and a range of C(2), C(9), C(14), and side chain substituents.

C10 CARBAMOXY SUBSTITUTED TAXANES AS ANTITUMOR AGENTS

BACKGROUND OF THE INVENTION


The present invention is directed to novel taxanes which have exceptional utility as antitumor agents.

- 5 The taxane family of terpenes, of which baccatin III and taxol are members, has been the subject of considerable interest in both the biological and chemical arts. Taxol itself is employed as a cancer chemotherapeutic agent and possesses a broad range of tumor-inhibiting activity. Taxol has a 2'R, 3'S configuration and the following structural formula:

- 10 wherein Ac is acetyl.

Colin et al. reported in U.S. Patent 4,814,470 that certain taxol analogs have an activity significantly greater than that of taxol. One of these analogs, commonly referred to as docetaxel, has the following structural formula:

15

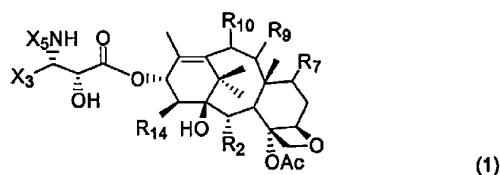
Although taxol and docetaxel are useful chemotherapeutic agents, there are limitations on their effectiveness, including limited efficacy against certain types of cancers and toxicity to subjects when administered at various doses. Accordingly, a need remains for additional chemotherapeutic agents with

- 20 improved efficacy and less toxicity.

SUMMARY OF THE INVENTION

Among the objects of the present invention, therefore, is the provision of taxanes which compare favorably to taxol and docetaxel with respect to efficacy as anti-tumor agents and with respect to toxicity. In general, these taxanes

- 5 possess a carbamoyloxy substituent at C-10, a hydroxy substituent at C-7 and a range of C-3' substituents.


Briefly, therefore, the present invention is directed to the taxane composition, per se, to pharmaceutical compositions comprising the taxane and a pharmaceutically acceptable carrier, and to methods of administration.

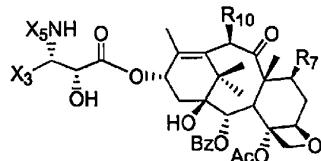
- 10 Other objects and features of this invention will be in part apparent and in part pointed out hereinafter.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In one embodiment of the present invention, the taxanes of the present invention correspond to structure (1):

15

wherein


- 20 R_2 is acyloxy;
 R_7 is hydroxy;
 R_9 is keto, hydroxy, or acyloxy;
 R_{10} is carbamoyloxy;
 R_{14} is hydrido or hydroxy;
- 25 X_3 is substituted or unsubstituted alkyl, alkenyl, alkynyl, phenyl or heterocyclo;
 X_5 is $-COX_{10}$, $-COOX_{10}$, or $-CONHX_{10}$;
 X_{10} is hydrocarbyl, substituted hydrocarbyl, or heterocyclo;
 Ac is acetyl; and
- 30 R_7 , R_9 , and R_{10} independently have the alpha or beta stereochemical configuration.

- In one embodiment, R_2 is an ester ($R_{2a}C(O)O-$), a carbamate ($R_{2a}R_{2b}NC(O)O-$), a carbonate ($R_{2a}OC(O)O-$), or a thiocarbamate ($R_{2a}SC(O)O-$) wherein R_{2a} and R_{2b} are independently hydrogen, hydrocarbyl, substituted hydrocarbyl or heterocyclo. In a preferred embodiment, R_2 is an ester (5) ($R_{2a}C(O)O-$), wherein R_{2a} is aryl or heteroaromatic. In another preferred embodiment, R_2 is an ester ($R_{2a}C(O)O-$), wherein R_{2a} is substituted or unsubstituted phenyl, furyl, thiienyl, or pyridyl. In one particularly preferred embodiment, R_2 is benzyloxy.
- While R_9 is keto in one embodiment of the present invention, in other 10 embodiments R_9 may have the alpha or beta stereochemical configuration, preferably the beta stereochemical configuration, and may be, for example, α - or β -hydroxy or α - or β -acyloxy. For example, when R_9 is acyloxy, it may be an ester (15) ($R_{9a}C(O)O-$), a carbamate ($R_{9a}R_{9b}NC(O)O-$), a carbonate ($R_{9a}OC(O)O-$), or a thiocarbamate ($R_{9a}SC(O)O-$) wherein R_{9a} and R_{9b} are independently hydrogen, hydrocarbyl, substituted hydrocarbyl or heterocyclo. If R_9 is an ester ($R_{9a}C(O)O-$), R_{9a} is substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted aryl or substituted or unsubstituted heteroaromatic. Still more preferably, R_9 is an ester ($R_{9a}C(O)O-$), wherein R_{9a} is substituted or 20 unsubstituted phenyl, substituted or unsubstituted furyl, substituted or unsubstituted thiienyl, or substituted or unsubstituted pyridyl. In one embodiment R_9 is ($R_{9a}C(O)O-$) wherein R_{9a} is methyl, ethyl, propyl (straight, branched or cyclic), butyl (straight, branched or cyclic), pentyl, (straight, branched or cyclic), or hexyl (straight, branched or cyclic). In another embodiment R_9 is ($R_{9a}C(O)O-$) 25 wherein R_{9a} is substituted methyl, substituted ethyl, substituted propyl (straight, branched or cyclic), substituted butyl (straight, branched or cyclic), substituted pentyl, (straight, branched or cyclic), or substituted hexyl (straight, branched or cyclic) wherein the substituent(s) is/are selected from the group consisting of heterocyclo, alkoxy, alkenoxy, alkynoxy, aryloxy, hydroxy, protected hydroxy, keto, acyloxy, nitro, amino, amido, thiol, ketal, acetal, ester and ether moieties, 30 but not phosphorous containing moieties.
- In one embodiment, R_{10} is $R_{10a}R_{10b}NCOO-$ wherein R_{10a} and R_{10b} are independently hydrogen, hydrocarbyl, substituted hydrocarbyl, or heterocyclo. Exemplary preferred R_{10} substituents include $R_{10a}R_{10b}NCOO-$ wherein (a) R_{10a} and R_{10b} are each hydrogen, (b) one of R_{10a} and R_{10b} is hydrogen and the other is 35 (i) substituted or unsubstituted C_1 to C_8 alkyl such as methyl, ethyl, or straight, branched or cyclic propyl, butyl, pentyl, or hexyl; (ii) substituted or unsubstituted

- C_2 to C_8 alkenyl such as ethenyl or straight, branched or cyclic propenyl, butenyl, pentenyl or hexenyl; (iii) substituted or unsubstituted C_2 to C_8 alkynyl such as ethynyl or straight or branched propynyl, butynyl, pentynyl, or hexynyl; (iv) substituted or unsubstituted phenyl, or (v) substituted or unsubstituted
- 5 heteroaromatic such as furyl, thienyl, or pyridyl, or (c) R_{10a} and R_{10b} are independently (i) substituted or unsubstituted C_1 to C_8 alkyl such as methyl, ethyl, or straight, branched or cyclic propyl, butyl, pentyl, or hexyl; (ii) substituted or unsubstituted C_2 to C_8 alkenyl such as ethenyl or straight, branched or cyclic propenyl, butenyl, pentenyl or hexenyl; (iii) substituted or unsubstituted C_2 to C_8
- 10 alkynyl such as ethynyl or straight or branched propynyl, butynyl, pentynyl, or hexynyl; (iv) substituted or unsubstituted phenyl, or (v) substituted or unsubstituted heteroaromatic such as furyl, thienyl, or pyridyl. The substituents may be those identified elsewhere herein for substituted hydrocarbyl. In one embodiment, preferred R_{10} substituents include $R_{10a}R_{10b}NCOO^-$ wherein one of
- 15 R_{10a} and R_{10b} is hydrogen and the other is methyl, ethyl, or straight, branched or cyclic propyl.
- Exemplary X_3 substituents include substituted or unsubstituted C_2 to C_8 alkyl, substituted or unsubstituted C_2 to C_8 alkenyl, substituted or unsubstituted C_2 to C_8 alkynyl, substituted or unsubstituted heteroaromatics containing 5 or 6 ring atoms, and substituted or unsubstituted phenyl. Exemplary preferred X_3 substituents include substituted or unsubstituted ethyl, propyl, butyl, cyclopropyl, cyclobutyl, cyclohexyl, isobutetyl, furyl, thienyl, and pyridyl.
- Exemplary X_5 substituents include $-COX_{10}$, $-COOX_{10}$ or $-CONHX_{10}$ wherein X_{10} is substituted or unsubstituted alkyl, alkenyl, phenyl or heteroaromatic.
- 20 25 Exemplary preferred X_5 substituents include $-COX_{10}$, $-COOX_{10}$ or $-CONHX_{10}$ wherein X_{10} is (i) substituted or unsubstituted C_1 to C_8 alkyl such as substituted or unsubstituted methyl, ethyl, propyl (straight, branched or cyclic), butyl (straight, branched or cyclic), pentyl (straight, branched or cyclic), or hexyl (straight, branched or cyclic); (ii) substituted or unsubstituted C_2 to C_8 alkenyl such as
- 30 substituted or unsubstituted ethenyl, propenyl (straight, branched or cyclic), butenyl (straight, branched or cyclic), pentenyl (straight, branched or cyclic) or hexenyl (straight, branched or cyclic); (iii) substituted or unsubstituted C_2 to C_8 alkynyl such as substituted or unsubstituted ethynyl, propynyl (straight or branched), butynyl (straight or branched), pentynyl (straight or branched), or
- 35 hexynyl (straight or branched); (iv) substituted or unsubstituted phenyl, or (v) substituted or unsubstituted heteroaromatic such as furyl, thienyl, or pyridyl.

wherein the substituent(s) is/are selected from the group consisting of heterocyclo, alkoxy, alkenoxy, alkynoxy, aryloxy, hydroxy, protected hydroxy, keto, acyloxy, nitro, amino, amido, thiol, ketal, acetal, ester and ether moieties, but not phosphorous containing moieties.

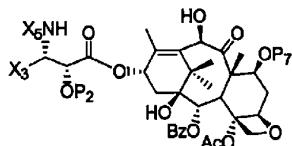
- 5 In one embodiment of the present invention, the taxanes of the present invention correspond to structure (2):

(2)

wherein

- 10 R_7 is hydroxy;
 R_{10} is carbamoyloxy;
 X_3 is substituted or unsubstituted alkyl, alkenyl, alkynyl, or heterocyclo, wherein alkyl comprises at least two carbon atoms;
 X_6 is $-COX_{10}$, $-COOX_{10}$, or $-CONHX_{10}$; and
 X_{10} is hydrocarbyl, substituted hydrocarbyl, or heterocyclo.
- 15 For example, in this preferred embodiment in which the taxane corresponds to structure (2), R_{10} may be $R_{10a}R_{10b}NCOO-$ wherein one of R_{10a} and R_{10b} is hydrogen and the other is (i) substituted or unsubstituted C_1 to C_8 alkyl such as methyl, ethyl, or straight, branched or cyclic propyl, butyl, pentyl, or hexyl; (ii) substituted or unsubstituted C_2 to C_8 alkenyl such as ethenyl or straight, branched or cyclic
- 20 propenyl, butenyl, pentenyl or hexenyl; (iii) substituted or unsubstituted C_2 to C_8 alkynyl such as ethynyl or straight or branched propynyl, butynyl, pentynyl, or hexynyl; (iv) phenyl or substituted phenyl such as nitro, alkoxy or halosubstituted phenyl, or (v) substituted or unsubstituted heteroaromatic such as furyl, thienyl, or pyridyl. The substituents may be those identified elsewhere herein for substituted
- 25 hydrocarbyl. In one embodiment, preferred R_{10} substituents include $R_{10a}R_{10b}NCOO-$ wherein one of R_{10a} and R_{10b} is hydrogen and the other is substituted or unsubstituted, preferably unsubstituted methyl, ethyl, or straight, branched or cyclic propyl. In another embodiment, preferred R_{10} substituents include $R_{10a}R_{10b}NCOO-$ wherein one of R_{10a} and R_{10b} is hydrogen and the other is substituted or unsubstituted phenyl or heterocyclo. While R_{10a} and R_{10b} are
- 30

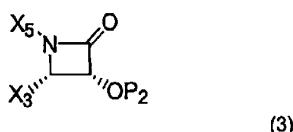
- selected from among these, in one embodiment X_3 is selected from substituted or unsubstituted alkyl, alkenyl, phenyl or heterocyclo, more preferably substituted or unsubstituted alkenyl, phenyl or heterocyclo, still more preferably substituted or unsubstituted phenyl or heterocyclo, and still more preferably heterocyclo such as
- 5 furyl, thienyl or pyridyl. While R_{10a} , R_{10b} , and X_3 are selected from among these, in one embodiment X_5 is selected from $-COX_{10}$ wherein X_{10} is phenyl, alkyl or heterocyclo, more preferably phenyl. Alternatively, while R_{10a} , R_{10b} , and X_3 are selected from among these, in one embodiment X_5 is selected from $-COX_{10}$ wherein X_{10} is phenyl, alkyl or heterocyclo, more preferably phenyl, or X_5 is
- 10 $-COOX_{10}$ wherein X_{10} is alkyl, preferably t-butyl. Among the more preferred embodiments, therefore, are taxanes corresponding to structure 2 in which (i) X_5 is $-COOX_{10}$ wherein X_{10} is tert-butyl or X_5 is $-COX_{10}$ wherein X_{10} is phenyl, (ii) X_3 is substituted or unsubstituted cycloalkyl, alkenyl, phenyl or heterocyclo, more preferably substituted or unsubstituted isobut enyl, phenyl, furyl, thienyl, or pyridyl,
- 15 still more preferably unsubstituted isobut enyl, furyl, thienyl or pyridyl, and (iii) R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen and the other is substituted or unsubstituted substituted or unsubstituted C_1 to C_8 alkyl, phenyl or heterocyclo.

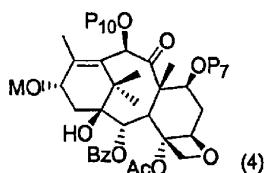

- Among the preferred embodiments, therefore, are taxanes corresponding
- 20 to structure 1 or 2 wherein R_{10} is $R_{10a}R_{10b}NCOO-$ wherein R_{10a} is methyl and R_{10b} is hydrido. In this embodiment, X_3 is preferably cycloalkyl, isobut enyl, phenyl, substituted phenyl such as p-nitrophenyl, or heterocyclo, more preferably heterocyclo, still more preferably furyl, thienyl or pyridyl; and X_5 is preferably benzoyl, alkoxy carbonyl, or heterocyclo carbonyl, more preferably benzoyl, t-
- 25 butoxycarbonyl or t-amyl oxycarbonyl. In one alternative of this embodiment, X_3 is heterocyclo; X_5 is benzoyl, alkoxy carbonyl, or heterocyclo carbonyl, more preferably benzoyl, t-butoxycarbonyl or t-amyl oxycarbonyl, still more preferably t-butoxycarbonyl; R_2 is benzoyl, R_9 is keto and R_{14} is hydrido. In another alternative of this embodiment, X_3 is heterocyclo; X_5 is benzoyl, alkoxy carbonyl, or
- 30 heterocyclo carbonyl, more preferably benzoyl, t-butoxycarbonyl or t-amyl oxycarbonyl, still more preferably t-butoxycarbonyl; R_2 is benzoyl, R_9 is keto and R_{14} is hydrido. In another alternative of this embodiment, X_3 is heterocyclo; X_5 is benzoyl, alkoxy carbonyl, or heterocyclo carbonyl, more preferably benzoyl, t-butoxycarbonyl or t-amyl oxycarbonyl, still more preferably t-butoxycarbonyl; R_2 is
- 35 benzoyl, R_9 is keto and R_{14} is hydroxy. In another alternative of this embodiment, X_3 is heterocyclo; X_5 is benzoyl, alkoxy carbonyl, or heterocyclo carbonyl, more

- preferably benzoyl, t-butoxycarbonyl or t-amyoxy carbonyl, still more preferably t-butoxycarbonyl; R₂ is benzoyl, R₉ is hydroxy and R₁₄ is hydroxy. In another alternative of this embodiment, X₃ is heterocyclo; X₅ is benzoyl, alkoxy carbonyl, or heterocyclocarbonyl, more preferably benzoyl, t-butoxycarbonyl or t-
- 5 amyloxy carbonyl, still more preferably t-butoxycarbonyl; R₂ is benzoyl, R₉ is hydroxy and R₁₄ is hydrido. In another alternative of this embodiment, X₃ is heterocyclo; X₅ is benzoyl, alkoxy carbonyl, or heterocyclocarbonyl, more preferably benzoyl, t-butoxycarbonyl or t-amyoxy carbonyl, still more preferably t-butoxycarbonyl; R₂ is benzoyl, R₉ is acyloxy and R₁₄ is hydroxy. In another
- 10 alternative of this embodiment, X₃ is heterocyclo; X₅ is benzoyl, alkoxy carbonyl, or heterocyclocarbonyl, more preferably benzoyl, t-butoxycarbonyl or t-
- 15 amyloxy carbonyl, still more preferably t-butoxycarbonyl; R₂ is benzoyl, R₉ is acyloxy and R₁₄ is hydrido. In each of the alternatives of this embodiment when the taxane has structure 1, R₇ and R₁₀ may each have the beta stereochemical configuration, R₇ may have the alpha stereochemical configuration while R₁₀ has the beta stereochemical configuration or R₇ may have the beta stereochemical configuration while R₁₀ has the alpha stereochemical configuration.

- Also among the preferred embodiments are taxanes corresponding to structure 1 or 2 wherein R₁₀ is R_{10a}R_{10b}NCOO- wherein R_{10a} is ethyl and R_{10b} is hydrido. In this embodiment, X₃ is preferably cycloalkyl, isobutanyl, phenyl, substituted phenyl such as p-nitrophenyl, or heterocyclo, more preferably heterocyclo, still more preferably furyl, thieryl or pyridyl; and X₅ is preferably benzoyl, alkoxy carbonyl, or heterocyclocarbonyl, more preferably benzoyl, t-
- 25 butoxycarbonyl or t-amyoxy carbonyl. In one alternative of this embodiment, X₃ is heterocyclo; X₅ is benzoyl, alkoxy carbonyl, or heterocyclocarbonyl, more preferably benzoyl, t-butoxycarbonyl or t-amyoxy carbonyl, still more preferably t-butoxycarbonyl; R₂ is benzoyl, R₉ is keto and R₁₄ is hydrido. In another alternative of this embodiment, X₃ is heterocyclo; X₅ is benzoyl, alkoxy carbonyl, or
- 30 heterocyclocarbonyl, more preferably benzoyl, t-butoxycarbonyl or t-
- 35 amyloxy carbonyl, still more preferably t-butoxycarbonyl; R₂ is benzoyl, R₉ is keto and R₁₄ is hydrido. In another alternative of this embodiment, X₃ is heterocyclo; X₅ is benzoyl, alkoxy carbonyl, or heterocyclocarbonyl, more preferably benzoyl, t-butoxycarbonyl or t-amyoxy carbonyl, still more preferably t-butoxycarbonyl; R₂ is benzoyl, R₉ is keto and R₁₄ is hydroxy. In another alternative of this embodiment, X₃ is heterocyclo; X₅ is benzoyl, alkoxy carbonyl, or heterocyclocarbonyl, more

- preferably benzoyl, t-butoxycarbonyl or t-amyoxy carbonyl, still more preferably t-butoxycarbonyl; R₂ is benzoyl, R₉ is hydroxy and R₁₄ is hydroxy. In another alternative of this embodiment, X₃ is heterocyclo; X₃ is benzoyl, alkoxy carbonyl, or heterocyclocarbonyl, more preferably benzoyl, t-butoxycarbonyl or t-
- 5 amyloxy carbonyl, still more preferably t-butoxycarbonyl; R₂ is benzoyl, R₉ is hydroxy and R₁₄ is hydrido. In another alternative of this embodiment, X₃ is heterocyclo; X₃ is benzoyl, alkoxy carbonyl, or heterocyclocarbonyl, more preferably benzoyl, t-butoxycarbonyl or t-amyoxy carbonyl, still more preferably t-butoxycarbonyl; R₂ is benzoyl, R₉ is acyloxy and R₁₄ is hydroxy. In another
- 10 alternative of this embodiment, X₃ is heterocyclo; X₃ is benzoyl, alkoxy carbonyl, or heterocyclocarbonyl, more preferably benzoyl, t-butoxycarbonyl or t-amyoxy carbonyl, still more preferably t-butoxycarbonyl; R₂ is benzoyl, R₉ is acyloxy and R₁₄ is hydrido. In each of the alternatives of this embodiment when the taxane has structure 1, R₇ and R₁₀ may each have the beta stereochemical
- 15 configuration, R₇ and R₁₀ may each have the alpha stereochemical configuration, R₇ may have the alpha stereochemical configuration while R₁₀ has the beta stereochemical configuration or R₇ may have the beta stereochemical configuration while R₁₀ has the alpha stereochemical configuration.

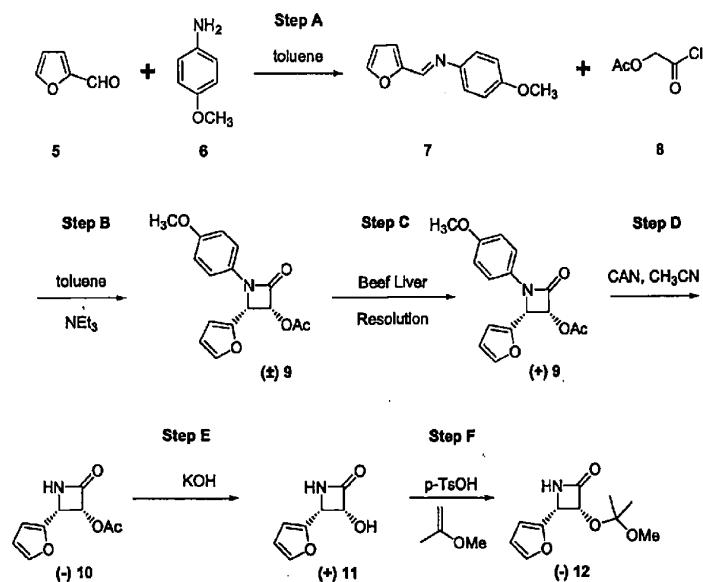

Taxanes having the general formula 1 may be obtained by carbamoylation
 20 of a suitably protected taxane intermediate having the structural formula:


wherein X₃ and X₆ are as previously defined, P₂ is a hydroxy protecting group, and P₇ is either hydrogen or a hydroxy protecting group, by reaction with an isocyanate or a carbamoyl chloride, followed by removal of the hydroxy protecting group(s).

The intermediate taxane may be obtained by treatment of a beta-lactam with an alkoxide having the taxane tetracyclic nucleus and a C-13 metallic oxide substituent to form compounds having a beta-amido ester substituent at C-13 (as described more fully in Holton U.S. Patent 5,466,834), followed by removal of

either the C(10) protecting group, or both the C(10) and C(7) protecting groups. The β -lactam has the formula (3):

wherein P_2 is a hydroxy protecting group and X_3 and X_5 are as previously defined
5 and the alkoxide has the formula (4):


wherein M is a metal or ammonium, and P_7 and P_{10} are hydroxy protecting groups.

- The alkoxide may be prepared from 10-deacetylbaaccatin III by protection of
10 the C-7 and C-10 hydroxyl groups (as described more fully in Holton et al., PCT
Patent Application WO 99/09021) followed by treatment with a metallic amide.
Derivatives of 10-deacetylbaaccatin III having alternative substituents at
15 C(2), C(9) and C(14) and processes for their preparation are known in the art.
Taxane derivatives having acyloxy substituents other than benzyloxy at C(2)
15 may be prepared, for example, as described in Holton et al., U.S. Patent No.
5,728,725 or Kingston et al., U.S. Patent No. 6,002,023. Taxanes having acyloxy
or hydroxy substituents at C(9) in place of keto may be prepared, for example as
described in Holton et al., U.S. Patent No. 6,011,056 or Gunawardana et al., U.S.
20 Patent No. 5,352,808. Taxanes having a beta hydroxy substituent at C(14) may
20 be prepared from naturally occurring 14-hydroxy-10-deacetylbaaccatin III.

Processes for the preparation and resolution of the β -lactam starting
material are generally well known. For example, the β -lactam may be prepared
as described in Holton, U.S. Patent No. 5,430,160 and the resulting enantiomeric
mixtures of β -lactams may be resolved by a stereoselective hydrolysis using a

lipase or enzyme as described, for example, in Patel, U.S. Patent No. 5,879,929 Patel U.S. Patent No. 5,567,614 or a liver homogenate as described, for example, in PCT Patent Application No. 00/41204. In a preferred embodiment in which the β -lactam is furyl substituted at the C(4) position, the β -lactam can be prepared as

5 illustrated in the following reaction scheme:

wherein Ac is acetyl, NEt₃ is triethylamine, CAN is ceric ammonium nitrate, and p-TsOH is p-toluenesulfonic acid. The beef liver resolution may be carried out, for example, by combining the enantiomeric β -lactam mixture with a beef liver

10 suspension (prepared, for example, by adding 20 g of frozen beef liver to a

blender and then adding a pH 8 buffer to make a total volume of 1 L).

Compounds of formula 1 of the instant invention are useful for inhibiting tumor growth in mammals including humans and are preferably administered in the form of a pharmaceutical composition comprising an effective antitumor amount of a compound of the instant invention in combination with at least one

pharmaceutically or pharmacologically acceptable carrier. The carrier, also known in the art as an excipient, vehicle, auxiliary, adjuvant, or diluent, is any substance which is pharmaceutically inert, confers a suitable consistency or form to the composition, and does not diminish the therapeutic efficacy of the antitumor compounds. The carrier is "pharmaceutically or pharmacologically acceptable" if it does not produce an adverse, allergic or other untoward reaction when administered to a mammal or human, as appropriate.

The pharmaceutical compositions containing the antitumor compounds of the present invention may be formulated in any conventional manner. Proper formulation is dependent upon the route of administration chosen. The compositions of the invention can be formulated for any route of administration so long as the target tissue is available via that route. Suitable routes of administration include, but are not limited to, oral, parenteral (e.g., intravenous, intraarterial, subcutaneous, rectal, subcutaneous, intramuscular, intraorbital, intracapsular, intraspinal, intraperitoneal, or intrastemal), topical (nasal, transdermal, intraocular), intravesical, intrathecal, enteral, pulmonary, intralymphatic, intracavital, vaginal, transurethral, intradermal, aural, intramammary, buccal, orthotopic, intratracheal, intralesional, percutaneous, endoscopical, transmucosal, sublingual and intestinal administration.

Pharmaceutically acceptable carriers for use in the compositions of the present invention are well known to those of ordinary skill in the art and are selected based upon a number of factors: the particular antitumor compound used, and its concentration, stability and intended bioavailability; the disease, disorder or condition being treated with the composition; the subject, its age, size and general condition; and the route of administration. Suitable carriers are readily determined by one of ordinary skill in the art (see, for example, J. G. Nairn, in: Remington's Pharmaceutical Science (A. Gennaro, ed.), Mack Publishing Co., Easton, Pa., (1985), pp. 1492-1517, the contents of which are incorporated herein by reference).

The compositions are preferably formulated as tablets, dispersible powders, pills, capsules, gelcaps, caplets, gels, liposomes, granules, solutions, suspensions, emulsions, syrups, elixirs, troches, dragees, lozenges, or any other dosage form which can be administered orally. Techniques and compositions for making oral dosage forms useful in the present invention are described in the following references: 7 Modern Pharmaceutics, Chapters 9 and 10 (Banker & Rhodes, Editors, 1979); Lieberman et al., Pharmaceutical Dosage Forms: Tablets

(1981); and Ansel, Introduction to Pharmaceutical Dosage Forms 2nd Edition (1976).

- The compositions of the invention for oral administration comprise an effective antitumor amount of a compound of the invention in a pharmaceutically acceptable carrier. Suitable carriers for solid dosage forms include sugars, starches, and other conventional substances including lactose, talc, sucrose, gelatin, carboxymethylcellulose, agar, mannitol, sorbitol, calcium phosphate, calcium carbonate, sodium carbonate, kaolin, alginic acid, acacia, corn starch, potato starch, sodium saccharin, magnesium carbonate, tragacanth,
- 5 microcrystalline cellulose, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, and stearic acid. Further, such solid dosage forms may be uncoated or may be coated by known techniques; e.g., to delay disintegration and absorption.
- 10

The antitumor compounds of the present invention are also preferably formulated for parenteral administration, e.g., formulated for injection via intravenous, intraarterial, subcutaneous, rectal, subcutaneous, intramuscular, intraorbital, intracapsular, intraspinal, intraperitoneal, or intrasternal routes. The compositions of the invention for parenteral administration comprise an effective antitumor amount of the antitumor compound in a pharmaceutically acceptable carrier. Dosage forms suitable for parenteral administration include solutions, suspensions, dispersions, emulsions or any other dosage form which can be administered parenterally. Techniques and compositions for making parenteral dosage forms are known in the art.

Suitable carriers used in formulating liquid dosage forms for oral or parenteral administration include nonaqueous, pharmaceutically-acceptable polar solvents such as oils, alcohols, amides, esters, ethers, ketones, hydrocarbons and mixtures thereof, as well as water, saline solutions, dextrose solutions (e.g., DW5), electrolyte solutions, or any other aqueous, pharmaceutically acceptable liquid.

25

30 Suitable nonaqueous, pharmaceutically-acceptable polar solvents include, but are not limited to, alcohols (e.g., α -glycerol formal, β -glycerol formal, 1, 3-butyleneglycol, aliphatic or aromatic alcohols having 2-30 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, amyleneglycol, benzyl alcohol, glycerin (glycerol), glycol, hexylene glycol,

35 tetrahydrofurfuryl alcohol, lauryl alcohol, cetyl alcohol, or stearyl alcohol, fatty acid esters of fatty alcohols such as polyalkylene glycols (e.g., polypropylene glycol,

- polyethylene glycol), sorbitan, sucrose and cholesterol); amides (e.g., dimethylacetamide (DMA), benzyl benzoate DMA, dimethylformamide, N-(β -hydroxyethyl)-lactamide, N, N-dimethylacetamide, amides, 2-pyrrolidinone, 1-methyl-2-pyrrolidinone, or polyvinylpyrrolidone); esters (e.g., 1-methyl-2-pyrrolidinone, 2-pyrrolidinone, acetate esters such as monoacetin, diacetin, and triacetin, aliphatic or aromatic esters such as ethyl caprylate or octanoate, alkyl oleate, benzyl benzoate, benzyl acetate, dimethylsulfoxide (DMSO), esters of glycerin such as mono, di, or tri-glyceryl citrates or tartrates, ethyl benzoate, ethyl acetate, ethyl carbonate, ethyl lactate, ethyl oleate, fatty acid esters of sorbitan, fatty acid derived PEG esters, glyceryl monostearate, glyceride esters such as mono, di, or tri-glycerides, fatty acid esters such as isopropyl myristate, fatty acid derived PEG esters such as PEG-hydroxyoleate and PEG-hydroxystearate, N-methyl pyrrolidinone, pluronic 60, polyoxyethylene sorbitol oleic polyesters such as poly(ethoxylated)₃₀₋₆₀ sorbitol poly(oleate)₂₋₄, poly(oxyethylene)₁₅₋₂₀ monooleate, poly(oxyethylene)₁₅₋₂₀ mono 12-hydroxystearate, and poly(oxyethylene)₁₅₋₂₀ mono ricinoleate, polyoxyethylene sorbitan esters such as polyoxyethylene-sorbitan monooleate, polyoxyethylene-sorbitan monopalmitate, polyoxyethylene-sorbitan monolaurate, polyoxyethylene-sorbitan monostearate, and Polysorbate® 20, 40, 60 or 80 from ICI Americas, Wilmington, DE, polyvinylpyrrolidone, alkyleneoxy modified fatty acid esters such as polyoxyl 40 hydrogenated castor oil and polyoxyethylated castor oils (e.g., Cremophor® EL solution or Cremophor® RH 40 solution), saccharide fatty acid esters (i.e., the condensation product of a monosaccharide (e.g., pentoses such as ribose, ribulose, arabinose, xylose, lyxose and xylulose, hexoses such as glucose, fructose, galactose, mannose and sorbose, trioses, tetroses, heptoses, and octoses), disaccharide (e.g., sucrose, maltose, lactose and trehalose) or oligosaccharide or mixture thereof with a C₄-C₂₂ fatty acid(s)(e.g., saturated fatty acids such as caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid and stearic acid, and unsaturated fatty acids such as palmitoleic acid, oleic acid, elaidic acid, erucic acid and linoleic acid)), or steroidal esters); alkyl, aryl, or cyclic ethers having 2-30 carbon atoms (e.g., diethyl ether, tetrahydrofuran, dimethyl isosorbide, diethylene glycol monoethyl ether); glycofurof (tetrahydrofurfuryl alcohol polyethylene glycol ether); ketones having 3-30 carbon atoms (e.g., acetone, methyl ethyl ketone, methyl isobutyl ketone); aliphatic, cycloaliphatic or aromatic hydrocarbons having 4-30 carbon atoms (e.g., benzene, cyclohexane, dichloromethane, dioxolanes, hexane, n-decane, n-dodecane, n-hexane, sulfolane, tetramethylenesulfon,

- tetramethylenesulfoxide, toluene, dimethylsulfoxide (DMSO), or tetramethylenesulfoxide); oils of mineral, vegetable, animal, essential or synthetic origin (e.g., mineral oils such as aliphatic or wax-based hydrocarbons, aromatic hydrocarbons, mixed aliphatic and aromatic based hydrocarbons, and refined
- 5 paraffin oil, vegetable oils such as linseed, tung, safflower, soybean, castor, cottonseed, groundnut, rapeseed, coconut, palm, olive, corn, corn germ, sesame, persic and peanut oil and glycerides such as mono-, di- or triglycerides, animal oils such as fish, marine, sperm, cod-liver, halver, squalene, squalane, and shark liver oil, oleic oils, and polyoxyethylated castor oil); alkyl or aryl halides having 1-
- 10 30 carbon atoms and optionally more than one halogen substituent; methylene chloride; monoethanolamine; petroleum benzin; trolamine; omega-3 polyunsaturated fatty acids (e.g., alpha-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid, or docosahexaenoic acid); polyglycol ester of 12-hydroxystearic acid and polyethylene glycol (Solutol® HS-15, from BASF,
- 15 Ludwigshafen, Germany); polyoxyethylene glycerol; sodium laurate; sodium oleate; or sorbitan monooleate.

- Other pharmaceutically acceptable solvents for use in the invention are well known to those of ordinary skill in the art, and are identified in The Chemotherapy Source Book (Williams & Wilkens Publishing), The Handbook of Pharmaceutical Excipients, (American Pharmaceutical Association, Washington, D.C., and The Pharmaceutical Society of Great Britain, London, England, 1968), Modern Pharmaceutics, (G. Bunker et al., eds., 3d ed.)(Marcel Dekker, Inc., New York, New York, 1995), The Pharmacological Basis of Therapeutics, (Goodman & Gilman, McGraw Hill Publishing), Pharmaceutical Dosage Forms, (H. Lieberman et al., eds.,)(Marcel Dekker, Inc., New York, New York, 1980), Remington's Pharmaceutical Sciences (A. Gennaro, ed., 19th ed.)(Mack Publishing, Easton, PA, 1995), The United States Pharmacopeia 24, The National Formulary 19, (National Publishing, Philadelphia, PA, 2000), A.J. Spiegel et al., and Use of Nonaqueous Solvents in Parenteral Products, JOURNAL OF PHARMACEUTICAL SCIENCES, Vol. 52, No. 10, pp. 917-927 (1963).

- Preferred solvents include those known to stabilize the antitumor compounds, such as oils rich in triglycerides, for example, safflower oil, soybean oil or mixtures thereof, and alkyleneoxy modified fatty acid esters such as polyoxyl 40 hydrogenated castor oil and polyoxyethylated castor oils (e.g., 35 Cremophor® EL solution or Cremophor® RH 40 solution). Commercially available triglycerides include Intralipid® emulsified soybean oil (Kabi-Pharmacia

- Inc., Stockholm, Sweden), Nutralipid® emulsion (McGaw, Irvine, California), Liposyn® II 20% emulsion (a 20% fat emulsion solution containing 100 mg safflower oil, 100 mg soybean oil, 12 mg egg phosphatides, and 25 mg glycerin per ml of solution; Abbott Laboratories, Chicago, Illinois), Liposyn® III 2% emulsion (a 2% fat emulsion solution containing 100 mg safflower oil, 100 mg soybean oil, 12 mg egg phosphatides, and 25 mg glycerin per ml of solution; Abbott Laboratories, Chicago, Illinois), natural or synthetic glycerol derivatives containing the docosahexaenoyl group at levels between 25% and 100% by weight based on the total fatty acid content (Dhasco® (from Martek Biosciences Corp., Columbia, MD), DHA Maguro® (from Daito Enterprises, Los Angeles, CA), Soyacal®, and Travemulsion®. Ethanol is a preferred solvent for use in dissolving the antitumor compound to form solutions, emulsions, and the like. Additional minor components can be included in the compositions of the invention for a variety of purposes well known in the pharmaceutical industry.
- These components will for the most part impart properties which enhance retention of the antitumor compound at the site of administration, protect the stability of the composition, control the pH, facilitate processing of the antitumor compound into pharmaceutical formulations, and the like. Preferably, each of these components is individually present in less than about 15 weight % of the total composition, more preferably less than about 5 weight %, and most preferably less than about 0.5 weight % of the total composition. Some components, such as fillers or diluents, can constitute up to 90 wt.% of the total composition, as is well known in the formulation art. Such additives include cryoprotective agents for preventing reprecipitation of the taxane, surface active, wetting or emulsifying agents (e.g., lecithin, polysorbate-80, Tween® 80, pluronic 60, polyoxyethylene stearate), preservatives (e.g., ethyl-p-hydroxybenzoate), microbial preservatives (e.g., benzyl alcohol, phenol, m-cresol, chlorobutanol, sorbic acid, thimerosal and paraben), agents for adjusting pH or buffering agents (e.g., acids, bases, sodium acetate, sorbitan monolaurate), agents for adjusting osmolarity (e.g., glycerin), thickeners (e.g., aluminum monostearate, stearic acid, cetyl alcohol, stearyl alcohol, guar gum, methyl cellulose, hydroxypropylcellulose, tristearin, cetyl wax esters, polyethylene glycol), colorants, dyes, flow aids, non-volatile silicones (e.g., cyclomethicone), clays (e.g., bentonites), adhesives, bulking agents, flavorings, sweeteners, adsorbents, fillers (e.g., sugars such as lactose, sucrose, mannitol, or sorbitol, cellulose, or calcium phosphate), diluents (e.g., water, saline, electrolyte solutions), binders (e.g., starches such as maize

- starch, wheat starch, rice starch, or potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropyl methylcellulose, sodium carboxymethyl cellulose, polyvinylpyrrolidone, sugars, polymers, acacia), disintegrating agents (e.g., starches such as maize starch, wheat starch, rice starch, potato starch, or
- 5 carboxymethyl starch, cross-linked polyvinyl pyrrolidone, agar, alginic acid or a salt thereof such as sodium alginate, croscarmellose sodium or crospovidone), lubricants (e.g., silica, talc, stearic acid or salts thereof such as magnesium stearate, or polyethylene glycol), coating agents (e.g., concentrated sugar solutions including gum arabic, talc, polyvinyl pyrrolidone, carbopol gel,
- 10 polyethylene glycol, or titanium dioxide), and antioxidants (e.g., sodium metabisulfite, sodium bisulfite, sodium sulfite, dextrose, phenols, and thiophenols).

In a preferred embodiment, a pharmaceutical composition of the invention comprises at least one nonaqueous, pharmaceutically acceptable solvent and an

15 antitumor compound having a solubility in ethanol of at least about 100, 200, 300, 400, 500, 600, 700 or 800 mg/ml. While not being bound to a particular theory, it is believed that the ethanol solubility of the antitumor compound may be directly related to its efficacy. The antitumor compound can also be capable of being crystallized from a solution. In other words, a crystalline antitumor compound,

20 such as compound 1393, can be dissolved in a solvent to form a solution and then recrystallized upon evaporation of the solvent without the formation of any amorphous antitumor compound. It is also preferred that the antitumor compound have an ID50 value (i.e., the drug concentration producing 50% inhibition of colony formation) of at least 4, 5, 6, 7, 8, 9, or 10 times less that of paclitaxel

25 when measured according to the protocol set forth in the working examples.

Dosage form administration by these routes may be continuous or intermittent, depending, for example, upon the patient's physiological condition, whether the purpose of the administration is therapeutic or prophylactic, and other factors known to and assessable by a skilled practitioner.

30 Dosage and regimens for the administration of the pharmaceutical compositions of the invention can be readily determined by those with ordinary skill in treating cancer. It is understood that the dosage of the antitumor compounds will be dependent upon the age, sex, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the

35 nature of the effect desired. For any mode of administration, the actual amount of antitumor compound delivered, as well as the dosing schedule necessary to

achieve the advantageous effects described herein, will also depend, in part, on such factors as the bioavailability of the antitumor compound, the disorder being treated, the desired therapeutic dose, and other factors that will be apparent to those of skill in the art. The dose administered to an animal, particularly a human,

5 In the context of the present invention should be sufficient to effect the desired therapeutic response in the animal over a reasonable period of time. Preferably, an effective amount of the antitumor compound, whether administered orally or by another route, is any amount which would result in a desired therapeutic response when administered by that route. Preferably, the compositions for oral

10 administration are prepared in such a way that a single dose in one or more oral preparations contains at least 20 mg of the antitumor compound per m^2 of patient body surface area, or at least 50, 100, 150, 200, 300, 400, or 500 mg of the antitumor compound per m^2 of patient body surface area, wherein the average body surface area for a human is 1.8 m^2 . Preferably, a single dose of a

15 composition for oral administration contains from about 20 to about 600 mg of the antitumor compound per m^2 of patient body surface area, more preferably from about 25 to about 400 mg/ m^2 even more preferably, from about 40 to about 300 mg/ m^2 , and even more preferably from about 50 to about 200 mg/ m^2 . Preferably, the compositions for parenteral administration are prepared in such a way that a

20 single dose contains at least 20 mg of the antitumor compound per m^2 of patient body surface area, or at least 40, 50, 100, 150, 200, 300, 400, or 500 mg of the antitumor compound per m^2 of patient body surface area. Preferably, a single dose in one or more parenteral preparations contains from about 20 to about 500 mg of the antitumor compound per m^2 of patient body surface area, more

25 preferably from about 40 to about 400 mg/ m^2 and even more preferably, from about 60 to about 350 mg/ m^2 . However, the dosage may vary depending on the dosing schedule which can be adjusted as necessary to achieve the desired therapeutic effect. It should be noted that the ranges of effective doses provided herein are not intended to limit the invention and represent preferred dose

30 ranges. The most preferred dosage will be tailored to the individual subject, as is understood and determinable by one of ordinary skill in the art without undue experimentation.

The concentration of the antitumor compound in a liquid pharmaceutical composition is preferably between about 0.01 mg and about 10 mg per ml of the

35 composition, more preferably between about 0.1 mg and about 7 mg per ml, even more preferably between about 0.5 mg and about 5 mg per ml, and most

preferably between about 1.5 mg and about 4 mg per ml. Relatively low concentrations are generally preferred because the antitumor compound is most soluble in the solution at low concentrations. The concentration of the antitumor compound in a solid pharmaceutical composition for oral administration is

- 5 preferably between about 5 weight % and about 50 weight %, based on the total weight of the composition, more preferably between about 8 weight % and about 40 weight %, and most preferably between about 10 weight % and about 30 weight %.

In one embodiment, solutions for oral administration are prepared by

- 10 dissolving an antitumor compound in any pharmaceutically acceptable solvent capable of dissolving the compound (e.g., ethanol or methylene chloride) to form a solution. An appropriate volume of a carrier which is a solution, such as Cremophor® EL solution, is added to the solution while stirring to form a pharmaceutically acceptable solution for oral administration to a patient. If
- 15 desired, such solutions can be formulated to contain a minimal amount of, or to be free of, ethanol, which is known in the art to cause adverse physiological effects when administered at certain concentrations in oral formulations.

In another embodiment, powders or tablets for oral administration are prepared by dissolving an antitumor compound in any pharmaceutically

- 20 acceptable solvent capable of dissolving the compound (e.g., ethanol or methylene chloride) to form a solution. The solvent can optionally be capable of evaporating when the solution is dried under vacuum. An additional carrier can be added to the solution prior to drying, such as Cremophor® EL solution. The resulting solution is dried under vacuum to form a glass. The glass is then mixed
- 25 with a binder to form a powder. The powder can be mixed with fillers or other conventional tabletting agents and processed to form a tablet for oral administration to a patient. The powder can also be added to any liquid carrier as described above to form a solution, emulsion, suspension or the like for oral administration.

- 30 Emulsions for parenteral administration can be prepared by dissolving an antitumor compound in any pharmaceutically acceptable solvent capable of dissolving the compound (e.g., ethanol or methylene chloride) to form a solution. An appropriate volume of a carrier which is an emulsion, such as Liposyn® II or Liposyn® III emulsion, is added to the solution while stirring to form a
- 35 pharmaceutically acceptable emulsion for parenteral administration to a patient. If desired, such emulsions can be formulated to contain a minimal amount of, or to

be free of, ethanol or Cremophor® solution, which are known in the art to cause adverse physiological effects when administered at certain concentrations in parenteral formulations.

Solutions for parenteral administration can be prepared by dissolving an

- 5 antitumor compound in any pharmaceutically acceptable solvent capable of dissolving the compound (e.g., ethanol or methylene chloride) to form a solution. An appropriate volume of a carrier which is a solution, such as Cremophor® solution, is added to the solution while stirring to form a pharmaceutically acceptable solution for parenteral administration to a patient. If desired, such
- 10 solutions can be formulated to contain a minimal amount of, or to be free of, ethanol or Cremophor® solution, which are known in the art to cause adverse physiological effects when administered at certain concentrations in parenteral formulations.

If desired, the emulsions or solutions described above for oral or parenteral

- 15 administration can be packaged in IV bags, vials or other conventional containers in concentrated form and diluted with any pharmaceutically acceptable liquid, such as saline, to form an acceptable taxane concentration prior to use as is known in the art.

Definitions

- 20 The terms "hydrocarbon" and "hydrocarbyl" as used herein describe organic compounds or radicals consisting exclusively of the elements carbon and hydrogen. These moieties include alkyl, alkenyl, alkynyl, and aryl moieties. These moieties also include alkyl, alkenyl, alkynyl, and aryl moieties substituted with other aliphatic or cyclic hydrocarbon groups, such as alkaryl, alkenaryl and alkynaryl. Unless otherwise indicated, these moieties preferably comprise 1 to 20 carbon atoms.
- 25

The "substituted hydrocarbyl" moieties described herein are hydrocarbyl moieties which are substituted with at least one atom other than carbon, including moieties in which a carbon chain atom is substituted with a hetero atom such as

- 30 nitrogen, oxygen, silicon, phosphorous, boron, sulfur, or a halogen atom. These substituents include halogen, heterocyclo, alkoxy, alkenoxy, alkynoxy, aryloxy, hydroxy, protected hydroxy, keto, acyl, acyloxy, nitro, amino, amido, nitro, cyano, thiol, ketals, acetals, esters and ethers.

Unless otherwise indicated, the alkyl groups described herein are

- 35 preferably lower alkyl containing from one to eight carbon atoms in the principal

chain and up to 20 carbon atoms. They may be straight or branched chain or cyclic and include methyl, ethyl, propyl, isopropyl, butyl, hexyl and the like.

Unless otherwise indicated, the alkenyl groups described herein are preferably lower alkenyl containing from two to eight carbon atoms in the principal chain and up to 20 carbon atoms. They may be straight or branched chain or cyclic and include ethenyl, propenyl, isopropenyl, butenyl, isobutenyl, hexenyl, and the like.

Unless otherwise indicated, the alkynyl groups described herein are preferably lower alkynyl containing from two to eight carbon atoms in the principal chain and up to 20 carbon atoms. They may be straight or branched chain and include ethynyl, propynyl, butynyl, isobutynyl, hexynyl, and the like.

The terms "aryl" or "ar" as used herein alone or as part of another group denote optionally substituted homocyclic aromatic groups, preferably monocyclic or bicyclic groups containing from 6 to 12 carbons in the ring portion, such as phenyl, biphenyl, naphthyl, substituted phenyl, substituted biphenyl or substituted naphthyl. Phenyl and substituted phenyl are the more preferred aryl.

The terms "halogen" or "halo" as used herein alone or as part of another group refer to chlorine, bromine, fluorine, and iodine.

The terms "heterocyclo" or "heterocyclic" as used herein alone or as part of another group denote optionally substituted, fully saturated or unsaturated, monocyclic or bicyclic, aromatic or nonaromatic groups having at least one heteroatom in at least one ring, and preferably 5 or 6 atoms in each ring. The heterocyclo group preferably has 1 or 2 oxygen atoms, 1 or 2 sulfur atoms, and/or 1 to 4 nitrogen atoms in the ring, and may be bonded to the remainder of the molecule through a carbon or heteroatom. Exemplary heterocyclo include heteroaromatics such as furyl, thienyl, pyridyl, oxazolyl, pyrrolyl, indolyl, quinolinyl, or isoquinolinyl and the like. Exemplary substituents include one or more of the following groups: hydrocarbyl, substituted hydrocarbyl, keto, hydroxy, protected hydroxy, acyl, acyloxy, alkoxy, alkenoxy, alkynoxy, aryloxy, halogen, amido, amino, nitro, cyano, thiol, ketals, acetals, esters and ethers.

The term "heteroaromatic" as used herein alone or as part of another group denote optionally substituted aromatic groups having at least one heteroatom in at least one ring, and preferably 5 or 6 atoms in each ring. The heteroaromatic group preferably has 1 or 2 oxygen atoms, 1 or 2 sulfur atoms, and/or 1 to 4 nitrogen atoms in the ring, and may be bonded to the remainder of the molecule through a carbon or heteroatom. Exemplary heteroaromatics

include furyl, thienyl, pyridyl, oxazolyl, pyrrolyl, indolyl, quinolinyl, or isoquinolinyl and the like. Exemplary substituents include one or more of the following groups: hydrocarbyl, substituted hydrocarbyl, keto, hydroxy, protected hydroxy, acyl, acyloxy, alkoxy, alkenoxy, alkynoxy, aryloxy, halogen, amido, amino, nitro, cyano, 5 thiol, ketals, acetals, esters and ethers.

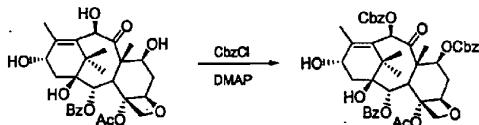
The term "acyl," as used herein alone or as part of another group, denotes the moiety formed by removal of the hydroxyl group from the group $-\text{COOH}$ of an organic carboxylic acid, e.g., RC(O)- , wherein R is R^1 , $\text{R}^1\text{O-}$, $\text{R}^1\text{R}^2\text{N-}$, or $\text{R}^1\text{S-}$, R^1 is hydrocarbyl, heterosubstituted hydrocarbyl, or heterocyclo and R^2 is hydrogen, 10 hydrocarbyl or substituted hydrocarbyl.

The term "acyloxy," as used herein alone or as part of another group, denotes an acyl group as described above bonded through an oxygen linkage ($-\text{O-}$), e.g., RC(O)O- wherein R is as defined in connection with the term "acyl."

Unless otherwise indicated, the alkoxy carbonyloxy moieties described 15 herein comprise lower hydrocarbon or substituted hydrocarbon or substituted hydrocarbon moieties.

Unless otherwise indicated, the carbamoyloxy moieties described herein are derivatives of carbamic acid in which one or both of the amine hydrogens is optionally replaced by a hydrocarbyl, substituted hydrocarbyl or heterocyclo 20 moiety.

The terms "hydroxyl protecting group" and "hydroxy protecting group" as used herein denote a group capable of protecting a free hydroxyl group ("protected hydroxyl") which, subsequent to the reaction for which protection is employed, may be removed without disturbing the remainder of the molecule. A 25 variety of protecting groups for the hydroxyl group and the synthesis thereof may be found in "Protective Groups in Organic Synthesis" by T. W. Greene, John Wiley and Sons, 1981, or Fieser & Fieser. Exemplary hydroxyl protecting groups include methoxymethyl, 1-ethoxyethyl, benzyloxymethyl, (.beta.-trimethylsilylethoxy)methyl, tetrahydropyranyl, 30 2,2,2-trichloroethoxycarbonyl, t-butyl(diphenyl)silyl, trialkylsilyl, trichloromethoxycarbonyl and 2,2,2-trichloroethoxymethyl.

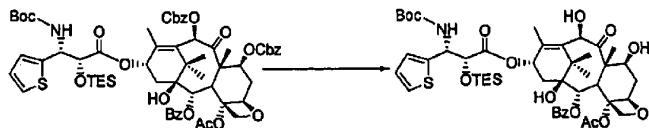

As used herein, "Ac" means acetyl; "Bz" means benzoyl; "Et" means ethyl; "Me" means methyl; "Ph" means phenyl; "iPr" means isopropyl; "tBu" and "t-Bu" means tert-butyl; "R" means lower alkyl unless otherwise defined; "py" means 35 pyridine or pyridyl; "TES" means triethylsilyl; "TMS" means trimethylsilyl; "LAH" means lithium aluminum hydride; "10-DAB" means 10-desacetyl baccatin III";

"amine protecting group" includes, but is not limited to, carbamates, for example, 2,2,2-trichloroethylcarbamate or tertbutylcarbamate; "protected hydroxy" means -OP wherein P is a hydroxy protecting group; "tBuOCO" and "Boc" mean tert-butoxycarbonyl; "tAmOCO" means tert-amyoxy carbonyl; "2-FuCO" means 2-furylcarbonyl; "2-ThCO" means 2-thienylcarbonyl; "2-PyCO" means 2-pyridylcarbonyl; "3-PyCO" means 3-pyridylcarbonyl; "4-PyCO" means 4-pyridylcarbonyl; "C₄H₉CO" means butenylcarbonyl; "EtOCO" means ethoxycarbonyl; "ibueCO" means isobut enylcarbonyl; "iBuCO" means isobutylcarbonyl; "iBuOCO" means isobutoxycarbonyl; "iPrOCO" means isopropylcarbonyl; "nPrOCO" means n-propylcarbonyl; "nPrCO" means n-propylcarbonyl; "ibue" means isobut enyl; "THF" means tetrahydrofuran; "DMAP" means 4-dimethylamino pyridine; "LHMDS" means Lithium HexamethylDiSilazanide.

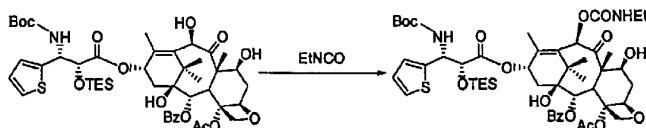

The following examples illustrate the invention.

15

Example 1

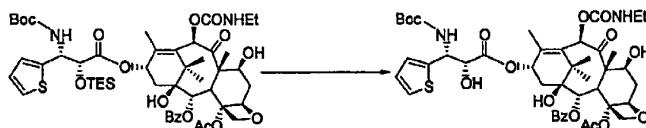


7,10-(*b/s*)-carbobenzyloxy-10-deacetyl baccatin III. To a solution of 10-DAB (1.14 g, 2.11 mmol) in 20 mL of methylene chloride was added DMAP (6.20 g, 50.6 mmol) and benzyl chloroformate (1.8 mL, 12.7 mmol) slowly under a nitrogen atmosphere. The mixture was heated to 40-45 °C, kept at this temperature for 2 h, and an additional 1.8 mL (12.7 mmol) of benzyl chloroformate was added. Heating at 40-45 °C was continued for an additional 6 h, the mixture was diluted with 200 mL of CH₂Cl₂ and washed three times first with 1N HCl and then with saturated sodium bicarbonate solution. The combined washings were extracted three times with 30 mL of CH₂Cl₂, the organic layers were combined, washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. Chromatography of the residue on silica gel eluting with CH₂Cl₂/EtOAc gave 1.48 g (86%) of 7,10-(*b/s*)-carbobenzyloxy-10-deacetyl baccatin III.


7,10-(bis)-carbobenzyloxy-3'-desphenyl-3'-(2-thienyl)-2'-O-triethylsilyl docetaxel. To a solution of 425 mg (0.523 mmol) of 7,10-(bis)-carbobenzyloxy-10-deacetyl baccatin III in THF (4.5 mL) at -45 °C under a nitrogen atmosphere was added 0.80 mL of a solution of LHMDS (0.98 M) in THF dropwise. The

- 5 mixture was kept at -45 °C for 1 h prior to addition of a solution of 341 mg (0.889 mmol) of *cis*-N-fbutoxycarbonyl-3'-triethylsilyloxy-4-(2-thienyl)azetidin-2-one in 2 mL of THF. The mixture was allowed to warm to 0 °C, and after 2 h was poured into 20 mL of saturated ammonium chloride solution. The aqueous layer was extracted three times with 50 mL of EtOAc/Hexanes (1:1) and the organic layers
- 10 were combined, washed with brine, dried over Na₂SO₄ and concentrated. Chromatography of the residue on silica gel eluting with EtOAc/Hexanes gave 576 mg (92%) of 7,10-(bis)-carbobenzyloxy-3'-desphenyl-3'-(2-thienyl)-2'-O-triethylsilyl docetaxel.

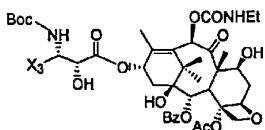
3'-Desphenyl-3'-(2-thienyl)-2'-O-triethylsilyl docetaxel. A suspension of 550


- 15 mg of 7,10-(bis)-carbobenzyloxy-3'-desphenyl-3'-(2-thienyl)-2'-O-triethylsilyl docetaxel and 50 mg of 10% Pd/C in 30 mL of EtOH and 10 mL of EtOAc was stirred under a hydrogen atmosphere for 2 h at room temperature. The slurry was filtered through a pad of celite 545 which was then washed with EtOAc. The washings were concentrated and the residue was purified by column
- 20 chromatography on silica gel using EtOAc/Hexanes as eluent to give 405 mg (95%) of 3'-desphenyl-3'-(2-thienyl)-2'-O-triethylsilyl docetaxel.

3'-Desphenyl-3'-(2-thienyl)-2'-O-triethylsilyl-10-N-ethylcarbamoyl docetaxel.

To a slurry of 3'-desphenyl-3'-(2-thienyl)-2'-O-triethylsilyl docetaxel (201 mg, 0.217 mmol) and CuCl (43.0 mg, 0.434 mmol) in THF (3.5 mL) at -15 °C under a nitrogen atmosphere was added a solution of 51.5 mL (0.651 mmol) of ethyl isocyanate in 1.9 mL of THF. The mixture was warmed to 0 °C and after 1.4 h 5mL of saturated aqueous sodium bicarbonate solution and 20 mL of ethyl acetate were added. The water layer was extracted three times with 50 mL of EtOAc/Hexanes (1:1). The organic layers were combined, dried over Na₂SO₄ and evaporated to give 218 mg of a residue which was used directly without purification.

10

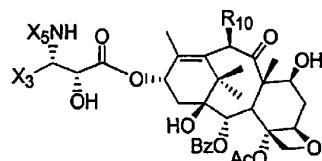


3'-Desphenyl-3'-(2-thienyl)-10-N-ethylcarbamoyl docetaxel (2722). To a solution of the 218 mg of 3'-desphenyl-3'-(2-thienyl)-2'-O-triethylsilyl-10-N-

15 ethylcarbamoyl docetaxel obtained above in 6 mL of pyridine and 12 mL of CH₃CN at 0 °C was added 1.0 mL of 49% aqueous HF. The mixture was warmed to room temperature and after 2.5 h 50 mL of EtOAc was added. The mixture was washed with saturated aqueous sodium bicarbonate solution and brine, dried over sodium sulfate, and concentrated under reduced pressure. Chromatography
20 of the residue on silica gel using CH₂Cl₂/MeOH as eluent gave 169 mg (88% for 2 steps) of 3'-desphenyl-3'-(2-thienyl)-10-N-ethylcarbamoyl docetaxel (2722).

Example 2

The procedures described in Example 1 were repeated, but other suitably protected β -lactams and acylating agents were substituted for the β -lactam and acylating agent of Example 1 to prepare the series of compounds having the 5 combination of substituents identified in the following table. The following table also includes characterization data for certain of these compounds, along with characterization data for the compound (2722) prepared in Example 1.

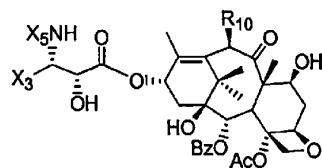


	No.	X_3	m.p. (°C)	$[\alpha]_D(\text{CHCl}_3)$	Elemental Analysis
10	2600	2-pyridyl	173-175	-71.4 (c 0.22)	Found: C, 60.70; H, 6.69 (Calcd. for $\text{C}_{45}\text{H}_{57}\text{N}_3\text{O}_{15}\cdot 0.5\text{H}_2\text{O}$: C, 60.79; H, 6.58)
	2618	3-pyridyl	183-185	-61.0 (c 0.20)	Found: C, 58.96; H, 6.51 (Calcd. for $\text{C}_{46}\text{H}_{59}\text{N}_3\text{O}_{15}\cdot 2\text{H}_2\text{O}$: C, 59.00; H, 6.69)
	2622	3-thienyl	173-175	-68.1 (c 0.19)	Found: C, 58.40; H, 6.42 (Calcd. for $\text{C}_{44}\text{H}_{56}\text{N}_2\text{O}_{15}\cdot \text{S}\cdot \text{H}_2\text{O}$: C, 58.47; H, 6.47)
	2633	<i>t</i> -propyl	170-172	-75.7 (c 0.22)	Found: C, 60.10; H, 7.15 (Calcd. for $\text{C}_{45}\text{H}_{60}\text{N}_2\text{O}_{15}\cdot \text{H}_2\text{O}$: C, 59.84; H, 7.24)
	2686	<i>t</i> -butenyl	167-169	-106.7 (c 0.17)	Found: C, 61.12; H, 7.10 (Calcd. for $\text{C}_{46}\text{H}_{60}\text{N}_2\text{O}_{15}\cdot 0.5\text{H}_2\text{O}$: C, 61.02; H, 7.10)
	2692	4-pyridyl	203-205	-69.7 (c 0.18)	Found: C, 60.19; H, 6.61 (Calcd. for $\text{C}_{45}\text{H}_{57}\text{N}_3\text{O}_{15}\cdot \text{H}_2\text{O}$: C, 60.13; H, 6.62)
	2700	2-furyl	169-171	-73.6 (c 0.22)	Found: C, 60.59; H, 6.58 (Calcd. for $\text{C}_{44}\text{H}_{59}\text{N}_2\text{O}_{15}$: C, 60.82; H, 6.50)
	2717	3-furyl	165-167	-53.8 (c 0.23)	Found: C, 60.07; H, 6.48 (Calcd. for $\text{C}_{44}\text{H}_{56}\text{N}_2\text{O}_{15}\cdot 0.5\text{H}_2\text{O}$: C, 60.14; H, 6.54)

2722	2-thienyl	166-168	-52.2 (c 0.25)	Found: C, 58.28; H, 6.32 (Calcd. for C ₄₄ H ₅₆ N ₂ O ₁₅ S·H ₂ O: C, 58.47; H, 6.47)
2733	cyclobutyl	168-170	-73.9 (c 0.23)	Found: C, 60.96; H, 7.02 (Calcd. for C ₄₄ H ₅₆ N ₂ O ₁₅ ·0.5H ₂ O: C, 61.02; H, 7.10)
2757	cyclopropyl	168-170	-91.7 (c 0.23)	Found: C, 60.07; H, 6.86 (Calcd. for C ₄₃ H ₅₄ N ₂ O ₁₅ ·H ₂ O: C, 59.98; H, 7.02)

Example 3

5 The procedures described in Example 1 were repeated, but other suitably protected β -lactams and were substituted for the *cis*-N-*fbutoxycarbonyl*-3-triethylsilyloxy-4-(2-thienyl)azetidin-2-one of Example 1 to prepare the series of compounds corresponding to structure 14 and having the combination of substituents identified in the following table.


10

(14)

Compound	X ₆	X ₃	R ₁₀
2640	tBuOCO-	phenyl	EtNHCOO-
2743	tBuOCO-	p-nitrophenyl	EtNHCOO-
6015	tC ₃ H ₅ CO-	2-furyl	3,4diFPhNHCOO-
5 6024	tC ₃ H ₅ CO-	2-furyl	PhNHCOO-
6072	tC ₃ H ₅ CO-	2-furyl	EtNHCOO-

Example 4

Following the processes described in Example 1 and elsewhere herein, the following specific taxanes having structural formula 14 and the combinations of substituents identified in the following table may be prepared, wherein R₁₀ is as previously defined including wherein R₁₀ is R_{10a}R_{10b}NCOO- and (a) R_{10a} and R_{10b} are each hydrogen, (b) one of R_{10a} and R_{10b} is hydrogen and the other is (i) substituted or unsubstituted C₁ to C₈ alkyl such as methyl, ethyl, or straight, branched or cyclic propyl, butyl, pentyl, or hexyl; (ii) substituted or unsubstituted C₃ to C₈ alkenyl such as ethenyl or straight, branched or cyclic propenyl, butenyl, pentenyl or hexenyl; (iii) substituted or unsubstituted C₃ to C₈ alkynyl such as ethynyl or straight or branched propynyl, butynyl, pentynyl, or hexynyl; (iv) substituted or unsubstituted phenyl, or (v) substituted or unsubstituted heteroaromatic such as furyl, thiienyl, or pyridyl, or (c) R_{10a} and R_{10b} are independently (i) substituted or unsubstituted C₁ to C₈ alkyl such as methyl, ethyl, or straight, branched or cyclic propyl, butyl, pentyl, or hexyl; (ii) substituted or unsubstituted C₂ to C₈ alkenyl such as ethenyl or straight, branched or cyclic propenyl, butenyl, pentenyl or hexenyl; (iii) substituted or unsubstituted C₂ to C₈ alkynyl such as ethynyl or straight or branched propynyl, butynyl, pentynyl, or hexynyl; (iv) substituted or unsubstituted phenyl, or (v) substituted or unsubstituted heteroaromatic such as furyl, thiienyl, or pyridyl. For example, R₁₀ may be R_{10a}R_{10b}NCOO- wherein one of R_{10a} and R_{10b} is hydrogen and the other is methyl, ethyl, or straight, branched or cyclic propyl. The substituents may be those identified elsewhere herein for substituted hydrocarbyl.

(14)

	X₅	X₃	R₁₀
5	tBuOCO	2-furyl	R _{10a} R _{10b} NCOO-
	tBuOCO	3-furyl	R _{10a} R _{10b} NCOO-
	tBuOCO	2-thienyl	R _{10a} R _{10b} NCOO-
	tBuOCO	3-thienyl	R _{10a} R _{10b} NCOO-
	tBuOCO	2-pyridyl	R _{10a} R _{10b} NCOO-
	tBuOCO	3-pyridyl	R _{10a} R _{10b} NCOO-
	tBuOCO	4-pyridyl	R _{10a} R _{10b} NCOO-
10	tBuOCO	isobutenyl	R _{10a} R _{10b} NCOO-
	tBuOCO	isopropyl	R _{10a} R _{10b} NCOO-
	tBuOCO	cyclopropyl	R _{10a} R _{10b} NCOO-
	tBuOCO	cyclobutyl	R _{10a} R _{10b} NCOO-
	tBuOCO	cyclopentyl	R _{10a} R _{10b} NCOO-
	tBuOCO	phenyl	R _{10a} R _{10b} NCOO-
	benzoyl	2-furyl	R _{10a} R _{10b} NCOO-
15	benzoyl	3-furyl	R _{10a} R _{10b} NCOO-
	benzoyl	2-thienyl	R _{10a} R _{10b} NCOO-
	benzoyl	3-thienyl	R _{10a} R _{10b} NCOO-
	benzoyl	2-pyridyl	R _{10a} R _{10b} NCOO-
	benzoyl	3-pyridyl	R _{10a} R _{10b} NCOO-
	benzoyl	4-pyridyl	R _{10a} R _{10b} NCOO-
	benzoyl	isobutenyl	R _{10a} R _{10b} NCOO-
20	benzoyl	isopropyl	R _{10a} R _{10b} NCOO-

	benzoyl	cyclopropyl	$R_{10a}R_{10b}NCOO-$
	benzoyl	cyclobutyl	$R_{10a}R_{10b}NCOO-$
	benzoyl	cyclopentyl	$R_{10a}R_{10b}NCOO-$
	benzoyl	phenyl	$R_{10a}R_{10b}NCOO-$
5	2-FuCO-	2-furyl	$R_{10a}R_{10b}NCOO-$
	2-FuCO-	3-furyl	$R_{10a}R_{10b}NCOO-$
	2-FuCO-	2-thienyl	$R_{10a}R_{10b}NCOO-$
	2-FuCO-	3-thienyl	$R_{10a}R_{10b}NCOO-$
	2-FuCO-	2-pyridyl	$R_{10a}R_{10b}NCOO-$
10	2-FuCO-	3-pyridyl	$R_{10a}R_{10b}NCOO-$
	2-FuCO-	4-pyridyl	$R_{10a}R_{10b}NCOO-$
	2-FuCO-	isobut enyl	$R_{10a}R_{10b}NCOO-$
	2-FuCO-	isopropyl	$R_{10a}R_{10b}NCOO-$
	2-FuCO-	cyclopropyl	$R_{10a}R_{10b}NCOO-$
15	2-FuCO-	cyclobutyl	$R_{10a}R_{10b}NCOO-$
	2-FuCO-	cyclopentyl	$R_{10a}R_{10b}NCOO-$
	2-FuCO-	phenyl	$R_{10a}R_{10b}NCOO-$
	2-ThCO-	2-furyl	$R_{10a}R_{10b}NCOO-$
	2-ThCO-	3-furyl	$R_{10a}R_{10b}NCOO-$
20	2-ThCO-	2-thienyl	$R_{10a}R_{10b}NCOO-$
	2-ThCO-	3-thienyl	$R_{10a}R_{10b}NCOO-$
	2-ThCO-	2-pyridyl	$R_{10a}R_{10b}NCOO-$
	2-ThCO-	3-pyridyl	$R_{10a}R_{10b}NCOO-$
	2-ThCO-	4-pyridyl	$R_{10a}R_{10b}NCOO-$
25	2-ThCO-	isobut enyl	$R_{10a}R_{10b}NCOO-$
	2-ThCO-	isopropyl	$R_{10a}R_{10b}NCOO-$
	2-ThCO-	cyclopropyl	$R_{10a}R_{10b}NCOO-$
	2-ThCO-	cyclobutyl	$R_{10a}R_{10b}NCOO-$
	2-ThCO-	cyclopentyl	$R_{10a}R_{10b}NCOO-$
30	2-ThCO-	phenyl	$R_{10a}R_{10b}NCOO-$
	2-PyCO-	2-furyl	$R_{10a}R_{10b}NCOO-$

	2-PyCO-	3-furyl	$R_{10a}R_{10b}NCOO-$
	2-PyCO-	2-thienyl	$R_{10a}R_{10b}NCOO-$
	2-PyCO-	3-thienyl	$R_{10a}R_{10b}NCOO-$
	2-PyCO-	2-pyridyl	$R_{10a}R_{10b}NCOO-$
5	2-PyCO-	3-pyridyl	$R_{10a}R_{10b}NCOO-$
	2-PyCO-	4-pyridyl	$R_{10a}R_{10b}NCOO-$
	2-PyCO-	isobut enyl	$R_{10a}R_{10b}NCOO-$
	2-PyCO-	isopropyl	$R_{10a}R_{10b}NCOO-$
	2-PyCO-	cyclopropyl	$R_{10a}R_{10b}NCOO-$
10	2-PyCO-	cyclobutyl	$R_{10a}R_{10b}NCOO-$
	2-PyCO-	cyclopentyl	$R_{10a}R_{10b}NCOO-$
	2-PyCO-	phenyl	$R_{10a}R_{10b}NCOO-$
	3-PyCO-	2-furyl	$R_{10a}R_{10b}NCOO-$
	3-PyCO-	3-furyl	$R_{10a}R_{10b}NCOO-$
15	3-PyCO-	2-thienyl	$R_{10a}R_{10b}NCOO-$
	3-PyCO-	3-thienyl	$R_{10a}R_{10b}NCOO-$
	3-PyCO-	2-pyridyl	$R_{10a}R_{10b}NCOO-$
	3-PyCO-	3-pyridyl	$R_{10a}R_{10b}NCOO-$
	3-PyCO-	4-pyridyl	$R_{10a}R_{10b}NCOO-$
20	3-PyCO-	isobut enyl	$R_{10a}R_{10b}NCOO-$
	3-PyCO-	isopropyl	$R_{10a}R_{10b}NCOO-$
	3-PyCO-	cyclopropyl	$R_{10a}R_{10b}NCOO-$
	3-PyCO-	cyclobutyl	$R_{10a}R_{10b}NCOO-$
	3-PyCO-	cyclopentyl	$R_{10a}R_{10b}NCOO-$
25	3-PyCO-	phenyl	$R_{10a}R_{10b}NCOO-$
	4-PyCO-	2-furyl	$R_{10a}R_{10b}NCOO-$
	4-PyCO-	3-furyl	$R_{10a}R_{10b}NCOO-$
	4-PyCO-	2-thienyl	$R_{10a}R_{10b}NCOO-$
	4-PyCO-	3-thienyl	$R_{10a}R_{10b}NCOO-$
30	4-PyCO-	2-pyridyl	$R_{10a}R_{10b}NCOO-$
	4-PyCO-	3-pyridyl	$R_{10a}R_{10b}NCOO-$

	4-PyCO-	4-pyridyl	R _{10a} R _{10b} NCOO-
	4-PyCO-	isobut enyl	R _{10a} R _{10b} NCOO-
	4-PyCO-	isopropyl	R _{10a} R _{10b} NCOO-
	4-PyCO-	cyclopropyl	R _{10a} R _{10b} NCOO-
5	4-PyCO-	cyclobutyl	R _{10a} R _{10b} NCOO-
	4-PyCO-	cyclopentyl	R _{10a} R _{10b} NCOO-
	4-PyCO-	phenyl	R _{10a} R _{10b} NCOO-
	C ₄ H ₇ CO-	2-furyl	R _{10a} R _{10b} NCOO-
	C ₄ H ₇ CO-	3-furyl	R _{10a} R _{10b} NCOO-
	C ₄ H ₇ CO-	2-thienyl	R _{10a} R _{10b} NCOO-
10	C ₄ H ₇ CO-	3-thienyl	R _{10a} R _{10b} NCOO-
	C ₄ H ₇ CO-	2-pyridyl	R _{10a} R _{10b} NCOO-
	C ₄ H ₇ CO-	3-pyridyl	R _{10a} R _{10b} NCOO-
	C ₄ H ₇ CO-	4-pyridyl	R _{10a} R _{10b} NCOO-
	C ₄ H ₇ CO-	isobut enyl	R _{10a} R _{10b} NCOO-
	C ₄ H ₇ CO-	isopropyl	R _{10a} R _{10b} NCOO-
15	C ₄ H ₇ CO-	cyclopropyl	R _{10a} R _{10b} NCOO-
	C ₄ H ₇ CO-	cyclobutyl	R _{10a} R _{10b} NCOO-
	C ₄ H ₇ CO-	cyclopentyl	R _{10a} R _{10b} NCOO-
	C ₄ H ₇ CO-	phenyl	R _{10a} R _{10b} NCOO-
	EtOCO-	2-furyl	R _{10a} R _{10b} NCOO-
	EtOCO-	3-furyl	R _{10a} R _{10b} NCOO-
20	EtOCO-	2-thienyl	R _{10a} R _{10b} NCOO-
	EtOCO-	3-thienyl	R _{10a} R _{10b} NCOO-
	EtOCO-	2-pyridyl	R _{10a} R _{10b} NCOO-
	EtOCO-	3-pyridyl	R _{10a} R _{10b} NCOO-
	EtOCO-	4-pyridyl	R _{10a} R _{10b} NCOO-
	EtOCO-	isobut enyl	R _{10a} R _{10b} NCOO-
25	EtOCO-	isopropyl	R _{10a} R _{10b} NCOO-
	EtOCO-	cyclopropyl	R _{10a} R _{10b} NCOO-
	EtOCO-	cyclobutyl	R _{10a} R _{10b} NCOO-
	EtOCO-	cyclopentyl	R _{10a} R _{10b} NCOO-
	EtOCO-	phenyl	R _{10a} R _{10b} NCOO-
	EtOCO-	2-furyl	R _{10a} R _{10b} NCOO-
30	EtOCO-	3-furyl	R _{10a} R _{10b} NCOO-
	EtOCO-	2-thienyl	R _{10a} R _{10b} NCOO-
	EtOCO-	3-thienyl	R _{10a} R _{10b} NCOO-
	EtOCO-	2-pyridyl	R _{10a} R _{10b} NCOO-
	EtOCO-	3-pyridyl	R _{10a} R _{10b} NCOO-
	EtOCO-	4-pyridyl	R _{10a} R _{10b} NCOO-

	EtOCO-	cyclopentyl	R _{10a} R _{10b} NCOO-
	EtOCO-	phenyl	R _{10a} R _{10b} NCOO-
	ibueCO-	2-furyl	R _{10a} R _{10b} NCOO-
	ibueCO-	3-furyl	R _{10a} R _{10b} NCOO-
5	ibueCO-	2-thienyl	R _{10a} R _{10b} NCOO-
	ibueCO-	3-thienyl	R _{10a} R _{10b} NCOO-
	ibueCO-	2-pyridyl	R _{10a} R _{10b} NCOO-
	ibueCO-	3-pyridyl	R _{10a} R _{10b} NCOO-
	ibueCO-	4-pyridyl	R _{10a} R _{10b} NCOO-
10	ibueCO-	isobut enyl	R _{10a} R _{10b} NCOO-
	ibueCO-	isopropyl	R _{10a} R _{10b} NCOO-
	ibueCO-	cyclopropyl	R _{10a} R _{10b} NCOO-
	ibueCO-	cyclobutyl	R _{10a} R _{10b} NCOO-
	ibueCO-	cyclopentyl	R _{10a} R _{10b} NCOO-
15	ibueCO-	phenyl	R _{10a} R _{10b} NCOO-
	iBuCO-	2-furyl	R _{10a} R _{10b} NCOO-
	iBuCO-	3-furyl	R _{10a} R _{10b} NCOO-
	iBuCO-	2-thienyl	R _{10a} R _{10b} NCOO-
	iBuCO-	3-thienyl	R _{10a} R _{10b} NCOO-
20	iBuCO-	2-pyridyl	R _{10a} R _{10b} NCOO-
	iBuCO-	3-pyridyl	R _{10a} R _{10b} NCOO-
	iBuCO-	4-pyridyl	R _{10a} R _{10b} NCOO-
	iBuCO-	isobut enyl	R _{10a} R _{10b} NCOO-
	iBuCO-	isopropyl	R _{10a} R _{10b} NCOO-
25	iBuCO-	cyclopropyl	R _{10a} R _{10b} NCOO-
	iBuCO-	cyclobutyl	R _{10a} R _{10b} NCOO-
	iBuCO-	cyclopentyl	R _{10a} R _{10b} NCOO-
	iBuCO-	phenyl	R _{10a} R _{10b} NCOO-
	iBuOCO-	2-furyl	R _{10a} R _{10b} NCOO-
30	iBuOCO-	3-furyl	R _{10a} R _{10b} NCOO-
	iBuOCO-	2-thienyl	R _{10a} R _{10b} NCOO-

	iBuOCO-	3-thienyl	R _{10a} R _{10b} NCOO-
	iBuOCO-	2-pyridyl	R _{10a} R _{10b} NCOO-
	iBuOCO-	3-pyridyl	R _{10a} R _{10b} NCOO-
	iBuOCO-	4-pyridyl	R _{10a} R _{10b} NCOO-
5	iBuOCO-	isobut enyl	R _{10a} R _{10b} NCOO-
	iBuOCO-	isopropyl	R _{10a} R _{10b} NCOO-
	iBuOCO-	cyclopropyl	R _{10a} R _{10b} NCOO-
	iBuOCO-	cyclobutyl	R _{10a} R _{10b} NCOO-
	iBuOCO-	cyclopentyl	R _{10a} R _{10b} NCOO-
	iBuOCO-	phenyl	R _{10a} R _{10b} NCOO-
10	iPrOCO-	2-furyl	R _{10a} R _{10b} NCOO-
	iPrOCO-	3-furyl	R _{10a} R _{10b} NCOO-
	iPrOCO-	2-thienyl	R _{10a} R _{10b} NCOO-
	iPrOCO-	3-thienyl	R _{10a} R _{10b} NCOO-
	iPrOCO-	2-pyridyl	R _{10a} R _{10b} NCOO-
	iPrOCO-	3-pyridyl	R _{10a} R _{10b} NCOO-
15	iPrOCO-	4-pyridyl	R _{10a} R _{10b} NCOO-
	iPrOCO-	isobut enyl	R _{10a} R _{10b} NCOO-
	iPrOCO-	isopropyl	R _{10a} R _{10b} NCOO-
	iPrOCO-	cyclopropyl	R _{10a} R _{10b} NCOO-
	iPrOCO-	cyclobutyl	R _{10a} R _{10b} NCOO-
	iPrOCO-	cyclopentyl	R _{10a} R _{10b} NCOO-
20	iPrOCO-	phenyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	2-furyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	3-furyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	2-thienyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	3-thienyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	2-pyridyl	R _{10a} R _{10b} NCOO-
25	nPrOCO-	3-pyridyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	4-pyridyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	isobut enyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	isopropyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	cyclopropyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	cyclobutyl	R _{10a} R _{10b} NCOO-
30	nPrOCO-	cyclopentyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	phenyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	2-furyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	3-furyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	2-thienyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	3-thienyl	R _{10a} R _{10b} NCOO-

	nPrOCO-	isopropyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	cyclopropyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	cyclobutyl	R _{10a} R _{10b} NCOO-
	nPrOCO-	cyclopentyl	R _{10a} R _{10b} NCOO-
5	nPrOCO-	phenyl	R _{10a} R _{10b} NCOO-
	nPrCO-	2-furyl	R _{10a} R _{10b} NCOO-
	nPrCO-	3-furyl	R _{10a} R _{10b} NCOO-
	nPrCO-	2-thienyl	R _{10a} R _{10b} NCOO-
	nPrCO-	3-thienyl	R _{10a} R _{10b} NCOO-
10	nPrCO-	2-pyridyl	R _{10a} R _{10b} NCOO-
	nPrCO-	3-pyridyl	R _{10a} R _{10b} NCOO-
	nPrCO-	4-pyridyl	R _{10a} R _{10b} NCOO-
	nPrCO-	isobutenyl	R _{10a} R _{10b} NCOO-
	nPrCO-	isopropyl	R _{10a} R _{10b} NCOO-
15	nPrCO-	cyclopropyl	R _{10a} R _{10b} NCOO-
	nPrCO-	cyclobutyl	R _{10a} R _{10b} NCOO-
	nPrCO-	cyclopentyl	R _{10a} R _{10b} NCOO-
	nPrCO-	phenyl	R _{10a} R _{10b} NCOO-

Example 5

- 20 Following the processes described in Example 1 and elsewhere herein, the following specific taxanes having structural formula 15 may be prepared, wherein R₇ is hydroxy and R₁₀ in each of the series (that is, each of series "A" through "K") is as previously defined, including wherein R₁₀ is R_{10a}R_{10b}NCOO- and one of R_{10a} and R_{10b} is hydrogen and the other is (i) substituted or unsubstituted C₁ to C₈ alkyl such as methyl, ethyl, or straight, branched or cyclic propyl, butyl, pentyl, or hexyl; (ii) substituted or unsubstituted C₂ to C₈ alkenyl such as ethenyl or straight, branched or cyclic propenyl, butenyl, pentenyl or hexenyl; (iii) substituted or unsubstituted C₂ to C₈ alkynyl such as ethynyl or straight or branched propynyl, butynyl, pentynyl, or hexynyl; (iv) phenyl or substituted phenyl such as nitro, alkoxy or halosubstituted phenyl, or (v) substituted or unsubstituted heteroaromatic such as furyl, thiienyl, or pyridyl. The substituents may be those
- 25
- 30

identified elsewhere herein for substituted hydrocarbyl. In one embodiment, preferred R_{10} substituents include $R_{10a}R_{10b}NCOO-$ wherein one of R_{10a} and R_{10b} is hydrogen and the other is methyl, ethyl, or straight, branched or cyclic propyl. In another embodiment, preferred R_{10} substituents include $R_{10a}R_{10b}NCOO-$ wherein one of R_{10a} and R_{10b} is hydrogen and the other is substituted methyl, ethyl, or straight, branched or cyclic propyl.

5 In the "A" series of compounds, X_{10} is as otherwise as defined herein. Preferably, heterocyclo is substituted or unsubstituted furyl, thienyl, or pyridyl, X_{10} is substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl (e.g., 10 tert-butyl), and R_7 and R_{10} each have the beta stereochemical configuration.

In the "B" series of compounds, X_{10} and R_{2a} are as otherwise as defined herein. Preferably, heterocyclo is preferably substituted or unsubstituted furyl, thienyl, or pyridyl, X_{10} is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl (e.g., tert-butyl), R_{2a} is preferably substituted or 15 unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl, and R_7 and R_{10} each have the beta stereochemical configuration.

In the "C" series of compounds, X_{10} and R_{2a} are as otherwise as defined 20 herein. Preferably, heterocyclo is preferably substituted or unsubstituted furyl, thienyl, or pyridyl, X_{10} is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl (e.g., tert-butyl), R_{2a} is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl, and R_7 , R_8 and R_{10} each have the beta stereochemical configuration.

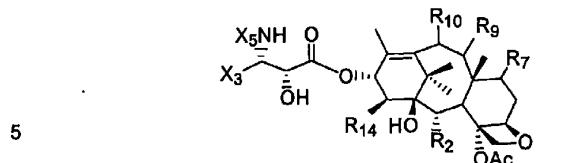
In the "D" and "E" series of compounds, X_{10} is as otherwise as defined 25 herein. Preferably, heterocyclo is preferably substituted or unsubstituted furyl, thienyl, or pyridyl, X_{10} is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl (e.g., tert-butyl), and R_7 , R_8 (series D only) and R_{10} each have the beta stereochemical configuration.

In the "F" series of compounds, X_{10} , R_{2a} and R_{2a} are as otherwise as 30 defined herein. Preferably, heterocyclo is preferably substituted or unsubstituted furyl, thienyl, or pyridyl, X_{10} is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl (e.g., tert-butyl), R_{2a} is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl, and R_7 , R_8 and R_{10} each have the beta stereochemical configuration.

In the "G" series of compounds, X_{10} and R_{2a} are as otherwise as defined 35 herein. Preferably, heterocyclo is preferably substituted or unsubstituted furyl, thienyl, or pyridyl, X_{10} is preferably substituted or unsubstituted furyl, thienyl,

pyridyl, phenyl, or lower alkyl (e.g., tert-butyl), R_{2a} is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl, and R₇, R₉ and R₁₀ each have the beta stereochemical configuration.

In the "H" series of compounds, X₁₀ is as otherwise as defined herein.


- 5 Preferably, heterocyclo is preferably substituted or unsubstituted furyl, thienyl, or pyridyl, X₁₀ is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl (e.g., tert-butyl), R_{2a} is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl, and R₇ and R₁₀ each have the beta stereochemical configuration.

- 10 In the "I" series of compounds, X₁₀ and R_{2a} are as otherwise as defined herein. Preferably, heterocyclo is preferably substituted or unsubstituted furyl, thienyl, or pyridyl, X₁₀ is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl (e.g., tert-butyl), R_{2a} is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl, and R₇ and R₁₀ each have the beta stereochemical configuration.

- 15 In the "J" series of compounds, X₁₀ and R_{2a} are as otherwise as defined herein. Preferably, heterocyclo is preferably substituted or unsubstituted furyl, thienyl, or pyridyl, X₁₀ is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl (e.g., tert-butyl), R_{2a} is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl, and R₇, R₉ and R₁₀ each have the beta stereochemical configuration.

- 20 In the "K" series of compounds, X₁₀, R_{2a} and R_{2a} are as otherwise as defined herein. Preferably, heterocyclo is preferably substituted or unsubstituted furyl, thienyl, or pyridyl, X₁₀ is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl (e.g., tert-butyl), R_{2a} is preferably substituted or unsubstituted furyl, thienyl, pyridyl, phenyl, or lower alkyl, and R₇, R₉ and R₁₀ each have the beta stereochemical configuration.

- 25 Any substituents of each of X₃, X₅, R₂, R₇, and R₉ may be hydrocarbyl or any of the heteroatom containing substituents selected from the group consisting of heterocyclo, alkoxy, alkenoxy, alkynoxy, aryloxy, hydroxy, protected hydroxy, keto, acyloxy, nitro, amino, amido, thiol, ketal, acetal, ester and ether moieties, but not phosphorous containing moieties.

(15)

Series	X ₅	X ₃	R ₁₀	R ₂	R ₉	R ₁₄
10	A1 -COOX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	H
	A2 -COX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	H
	A3 -CONHX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	H
	A4 -COOX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	H
	A5 -COX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	H
15	A6 -CONHX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	H
	A7 -COOX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	H
	A8 -COX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	H
	A9 -CONHX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	H
	A10 -COOX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	H

A11	$-\text{COX}_{10}$	optionally substituted C_2 to C_8 alkynyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{C}_6\text{H}_5\text{COO}-$	O	H	
A12	$-\text{CONHX}_{10}$	optionally substituted C_2 to C_8 alkynyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{C}_6\text{H}_5\text{COO}-$	O	H	
B1	$-\text{COOX}_{10}$	heterocyclo	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{R}_{2a}\text{COO}-$	O	H	
B2	$-\text{COX}_{10}$	heterocyclo	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{R}_{2a}\text{COO}-$	O	H	
5	B3	$-\text{CONHX}_{10}$	heterocyclo	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{R}_{2a}\text{COO}-$	O	H
B4	$-\text{COOX}_{10}$	optionally substituted C_2 to C_8 alkyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{R}_{2a}\text{COO}-$	O	H	
B5	$-\text{COX}_{10}$	optionally substituted C_2 to C_8 alkyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{R}_{2a}\text{COO}-$	O	H	
B6	$-\text{CONHX}_{10}$	optionally substituted C_2 to C_8 alkyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{R}_{2a}\text{COO}-$	O	H	
B7	$-\text{COOX}_{10}$	optionally substituted C_2 to C_8 alkenyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{R}_{2a}\text{COO}-$	O	H	
10	B8	$-\text{COX}_{10}$	optionally substituted C_2 to C_8 alkenyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{R}_{2a}\text{COO}-$	O	H
B9	$-\text{CONHX}_{10}$	optionally substituted C_2 to C_8 alkenyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{R}_{2a}\text{COO}-$	O	H	
B10	$-\text{COOX}_{10}$	optionally substituted C_2 to C_8 alkynyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{R}_{2a}\text{COO}-$	O	H	
B11	$-\text{COX}_{10}$	optionally substituted C_2 to C_8 alkynyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO}-$	$\text{R}_{2a}\text{COO}-$	O	H	

	B12	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	O	H
	C1	-COOX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
	C2	-COX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
	C3	-CONHX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
5	C4	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
	C5	-COX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
	C6	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
	C7	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
	C8	-COX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
10	C9	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
	C10	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
	C11	-COX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
	C12	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	R _{2a} COO-	H
15	D1	-COOX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H
	D2	-COX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H

	D3	-CONHX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H
	D4	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H
	D5	-COX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H
	D6	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H
5	D7	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H
	D8	-COX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H
	D9	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H
	D10	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H
	D11	-COX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H
10	D12	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	H
	E1	-COOX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH
	E2	-COX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH
	E3	-CONHX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH
	E4	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH
15	E5	-COX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH

	E6	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH
	E7	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH
	E8	-COX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH
	E9	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH
5	E10	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH
	E11	-COX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH
	E12	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	O	OH
	F1	-COOX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{9a} COO-	H
	F2	-COX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{9a} COO-	H
10	F3	-CONHX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{9a} COO-	H
	F4	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{9a} COO-	H
	F5	-COX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{9a} COO-	H
	F6	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{9a} COO-	H
	F7	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{9a} COO-	H

	F8	-COX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	H
	F9	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	H
	F10	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	H
	F11	-COX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	H
5	F12	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	H
	G1	-COOX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H
	G2	-COX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H
	G3	-CONHX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H
	G4	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H
10	G5	-COX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H
	G6	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H
	G7	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H
	G8	-COX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H

G9	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H	
G10	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H	
G11	-COX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H	
G12	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	H	
5	H1	-COOX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH
	H2	-COX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH
	H3	-CONHX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH
	H4	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH
	H5	-COX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH
10	H6	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH
	H7	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH
	H8	-COX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH
	H9	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH

	H10	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH
	H11	-COX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH
	H12	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	C ₆ H ₅ COO-	OH	OH
5	I1	-COOX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	O	OH
	I2	-COX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	O	OH
	I3	-CONHX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	O	OH
	I4	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	O	OH
	I5	-COX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	O	OH
	I6	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	O	OH
10	I7	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	O	OH
	I8	-COX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	O	OH
	I9	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	O	OH
	I10	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	O	OH

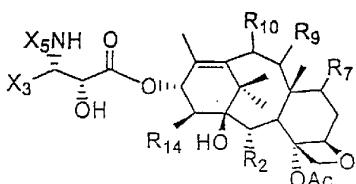
I11	$-\text{COX}_{10}$	optionally substituted C_2 to C_8 alkynyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	O	OH	
I12	$-\text{CONHX}_{10}$	optionally substituted C_2 to C_8 alkynyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	O	OH	
J1	$-\text{COOX}_{10}$	heterocyclo	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	OH	OH	
J2	$-\text{COX}_{10}$	heterocyclo	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	OH	OH	
5	J3	$-\text{CONHX}_{10}$	heterocyclo	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	OH	OH
J4	$-\text{COOX}_{10}$	optionally substituted C_2 to C_8 alkyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	OH	OH	
J5	$-\text{COX}_{10}$	optionally substituted C_2 to C_8 alkyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	OH	OH	
J6	$-\text{CONHX}_{10}$	optionally substituted C_2 to C_8 alkyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	OH	OH	
J7	$-\text{COOX}_{10}$	optionally substituted C_2 to C_8 alkenyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	OH	OH	
10	J8	$-\text{COX}_{10}$	optionally substituted C_2 to C_8 alkenyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	OH	OH
J9	$-\text{CONHX}_{10}$	optionally substituted C_2 to C_8 alkenyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	OH	OH	
J10	$-\text{COOX}_{10}$	optionally substituted C_2 to C_8 alkynyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	OH	OH	
J11	$-\text{COX}_{10}$	optionally substituted C_2 to C_8 alkynyl	$\text{R}_{10a}\text{R}_{10b}\text{NCOO-}$	$\text{R}_{2a}\text{COO-}$	OH	OH	

J12	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	OH	OH	
K1	-COOX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH	
K2	-COX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH	
K3	-CONHX ₁₀	heterocyclo	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH	
5	K4	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH
K5	-COX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH	
K6	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH	
K7	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH	
K8	-COX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH	
10	K9	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkenyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH
K10	-COOX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH	
K11	-COX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH	
K12	-CONHX ₁₀	optionally substituted C ₂ to C ₈ alkynyl	R _{10a} R _{10b} NCOO-	R _{2a} COO-	R _{2a} COO-	OH	

Example 6*In Vitro* cytotoxicity measured by the cell colony formation assay

Four hundred cells (HCT116) were plated in 60 mm Petri dishes containing 2.7 mL of medium (modified McCoy's 5a medium containing 10% fetal bovine serum and 100 units/mL penicillin and 100 g/mL streptomycin). The cells were incubated in a CO₂ incubator at 37 °C for 5 h for attachment to the bottom of Petri dishes. The compounds identified in Example 2 were made up fresh in medium at ten times the final concentration, and then 0.3 mL of this stock solution was added to the 2.7 mL of medium in the dish. The cells were then incubated with drugs for 72 h at 37 °C. At the end of incubation the drug-containing media were decanted, the dishes were rinsed with 4 mL of Hank's Balance Salt Solution (HBSS), 5 mL of fresh medium was added, and the dishes were returned to the incubator for colony formation. The cell colonies were counted using a colony counter after incubation for 7 days. Cell survival was calculated and the values of ID50 (the drug concentration producing 50% inhibition of colony formation) were determined for each tested compound.

	Compound	IN VITRO ID 50 (nm) HCT116
	taxol	2.1
	docetaxel	0.6
20	2600	<1
	2616	27
	2622	<1
	2633	<10
	2686	<1
25	2692	<1
	2700	<1
	2717	<1
	2722	<1
	2733	<10
30	2757	<1


2640	<1
2743	<1
6015	<10
6024	<1
6072	<1

With reference to the use of the word(s) "comprise" or "comprises" or "comprising" in the foregoing description and/or in the following claims, unless the context requires otherwise, those words are used on the basis and clear understanding that they are to be interpreted inclusively, rather than exclusively, and that each of those words is to be so interpreted in construing the foregoing description and/or the following claims.

3
3
B
B
B
B
B

The claims defining the invention are as follows:

1. A taxane having the formula:

wherein

R₂ is acyloxy;

R₇ is hydroxy;

R₉ is keto, hydroxy, or acyloxy;

R_{10} is $R_{10a}R_{10b}NCOO^-$, one of R_{10a} and R_{10b} is hydrogen and the other is hydrocarbyl, substituted hydrocarbyl or heterocyclo;

R_{14} is hydrido or hydroxy;

X₃ is heterocyclo;

X_5 is $-\text{COX}_{10}$, $-\text{COOX}_{10}$ or $-\text{CONHX}_{10}$;

X_{10} is hydrocarbyl, substituted hydrocarbyl, or heterocyclo; and

Ac is acetyl.

2. The taxane of claim 1 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, or 4-pyridyl.

3. The taxane of claim 1 or 2 wherein X_3 is furyl or thiienyl.

4. The taxane of claim 2 wherein X_3 is 2-furyl.

5. The taxane of claim 2 wherein X_3 is 2-thienyl.

6. The tax rate of any one of claims 1 to 5 wherein

6. The taxane of any one of claims 1 to 5 wherein X_5 is -COX_{10} and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl,

3-pyridyl, 4-pyridyl, C₁ - C₈ alkyl, C₂ - C₈ alkenyl, or C₂ - C₈ alkynyl or X₅ is -COOX₁₀ and X₁₀ is substituted or unsubstituted C₁ - C₈ alkyl, C₂ - C₈ alkenyl, or C₂ - C₈ alkynyl.

7. The taxane of any one of claims 1 to 5 wherein X₅ is -COX₁₀ and X₁₀ is phenyl, or X₅ is -COOX₁₀ and X₁₀ is t-butyl.

8. The taxane of any one of claims 1 to 5 wherein X₅ is -COOX₁₀ and X₁₀ is t-butyl.

9. The taxane of any one of claims 1 to 8 wherein R₁₄ is hydrido.

10. The taxane of any one of claims 1 to 9 wherein R₂ is benzyloxy.

11. The taxane of any one of claims 1 to 10 wherein R₉ is keto.

12. The taxane of any one of claims 1 to 8 wherein R₁₄ is hydrido and R₉ is keto.

13. The taxane of any one of claims 1 to 8 wherein R₂ is benzyloxy and R₉ is keto.

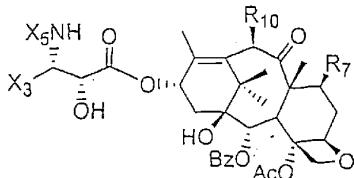
14. The taxane of any one of claims 1 to 8 wherein R₁₄ is hydrido and R₂ is benzyloxy.

15. The taxane of any one of claims 1 to 8 wherein R₁₄ is hydrido, R₉ is keto, and R₂ is benzyloxy.

16. The taxane of any one of claims 1 to 15 wherein R₁₀ is R_{10a}R_{10b}NCOO-, one of R_{10a} and R_{10b} is hydrogen and the other is substituted or unsubstituted C₂ - C₈ alkyl, phenyl, furyl, thienyl or pyridyl.

17. The taxane of claim 15 wherein X₃ is substituted or unsubstituted furyl, R₁₀ is R_{10a}R_{10b}NCOO-, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is methyl, ethyl, or straight, branched or cyclic propyl, and X₅ is -COX₁₀ wherein X₁₀ is phenyl, or X₅ is -COOX₁₀ wherein X₁₀ is t-butyl.

18. The taxane of claim 15 wherein X_3 is substituted or unsubstituted thienyl, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is methyl, ethyl or straight, branched or cyclic propyl, and X_5 is $-COX_{10}$ wherein X_{10} is phenyl, or X_5 is $-COOX_{10}$ wherein X_{10} is t-butyl.


19. The taxane of claim 15 wherein X_3 is substituted or unsubstituted pyridyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is methyl, ethyl or straight, branched or cyclic propyl, and X_5 is $-COX_{10}$ wherein X_{10} is phenyl, or X_5 is $-COOX_{10}$ wherein X_{10} is t-butyl.

20. The taxane of claim 15 wherein X_3 is substituted or unsubstituted pyridyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is substituted or unsubstituted phenyl or heterocyclo, and X_5 is $-COX_{10}$ wherein X_{10} is phenyl, or X_5 is $-COOX_{10}$ wherein X_{10} is t-butyl.

21. The taxane of claim 15 wherein X_3 is 3-furyl or 3-thienyl, one of R_{10a} and R_{10b} is hydrogen, R_{10} is $R_{10a}R_{10b}NCOO-$, the other of R_{10a} and R_{10b} is methyl, ethyl or straight, branched or cyclic propyl, and X_5 is $-COX_{10}$ wherein X_{10} is phenyl, or X_5 is $-COOX_{10}$ wherein X_{10} is t-butyl.

22. The taxane of claim 15 wherein X_3 is 2-furyl or 2-thienyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is methyl, ethyl or straight, branched or cyclic propyl, and X_5 is $-COOX_{10}$ and X_{10} is t-butyl.

23. A taxane having the formula:

R_7 is hydroxy;

R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen and the other is substituted or unsubstituted phenyl or heterocyclo;

X_3 is substituted or unsubstituted alkyl, alkenyl, or alkynyl, or heterocyclo, wherein alkyl comprises at least two carbon atoms;

X_5 is $-COX_{10}$, $-COOX_{10}$ or $-CONHX_{10}$;

X_{10} is hydrocarbyl, substituted hydrocarbyl or heterocyclo;

Ac is acetyl; and

Bz is benzoyl.

24. The taxane of claim 23 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, $C_2 - C_8$ alkyl, $C_2 - C_8$ alkenyl, or $C_2 - C_8$ alkynyl.

25. The taxane of claim 23 or 24 wherein X_3 is furyl or thienyl.

26. The taxane of claim 23 or 24 wherein X_3 is cycloalkyl.

27. The taxane of claim 23 or 24 wherein X_3 is isobut enyl.

28. The taxane of any one of claims 23 to 27 wherein X_5 is $-COX_{10}$ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, $C_1 - C_8$ alkyl, $C_2 - C_8$ alkenyl, or $C_2 - C_8$ alkynyl or X_5 is $-COOX_{10}$ and X_{10} is substituted or unsubstituted $C_1 - C_8$ alkyl, $C_2 - C_8$ alkenyl, or $C_2 - C_8$ alkynyl.

29. The taxane of any one of claims 23 to 27 wherein X_5 is $-COX_{10}$ and X_{10} is phenyl, or X_5 is $-COOX_{10}$ and X_{10} is t-butyl.

30. The taxane of any one of claims 23 to 29 wherein R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen and the other is phenyl, furyl, thienyl or pyridyl.

31. The taxane of claim 23 wherein X_3 is furyl or thienyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is phenyl, or heterocyclo, and X_5 is $-COX_{10}$ wherein X_{10} is phenyl, or X_5 is $-COOX_{10}$ wherein X_{10} is t-butyl.

32. The taxane of claim 23 wherein X_3 is substituted or unsubstituted furyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is substituted or unsubstituted phenyl or heterocyclo, and X_5 is $-COX_{10}$ wherein X_{10} is phenyl, or X_5 is $-COOX_{10}$ wherein X_{10} is t-butyl.

33. The taxane of claim 23 wherein X_3 is substituted or unsubstituted thienyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is substituted or unsubstituted phenyl or heterocyclo, and X_5 is $-COX_{10}$ wherein X_{10} is phenyl, or X_5 is $-COOX_{10}$ wherein X_{10} is t-butyl.

34. The taxane of claim 23 wherein X_3 is alkyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is phenyl or heterocyclo and X_5 is $-COX_{10}$ wherein X_{10} is phenyl, or X_5 is $-COOX_{10}$ wherein X_{10} is t-butyl.

35. The taxane of claim 23 wherein X_3 is 2-furyl or 2-thienyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is substituted or unsubstituted phenyl or heterocyclo, X_5 is $-COOX_{10}$ and X_{10} is t-butyl.

36. The taxane of claim 23 wherein X_3 is cycloalkyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is substituted or unsubstituted phenyl or heterocyclo, X_5 is $-COOX_{10}$ and X_{10} is t-butyl.

37. A pharmaceutical composition comprising the taxane of any one of claims 1 to 22 and at least one pharmaceutically acceptable carrier.

38. The pharmaceutical composition of claim 37 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, or 4-pyridyl.

39. The pharmaceutical composition of claim 37 or 38 wherein X_5 is $-COX_{10}$ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, $C_1 - C_8$ alkyl, $C_2 - C_8$ alkenyl, or $C_2 - C_8$ alkynyl, or X_5 is $-COOX_{10}$ and X_{10} is substituted or unsubstituted $C_1 - C_8$ alkyl, $C_2 - C_8$ alkenyl, or $C_2 - C_8$ alkynyl.

40. The pharmaceutical composition of claim 37 or 38 wherein X_5 is $-COX_{10}$ and X_{10} is phenyl, or X_5 is $-COOX_{10}$ and X_{10} is t-butyl.

41. The pharmaceutical composition of any one of claims 37 to 40 wherein R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is substituted or unsubstituted $C_1 - C_8$ alkyl, phenyl or heterocyclo.

42. The pharmaceutical composition of any one of claims 37 to 40 wherein X_3 is furyl or thieryl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is $C_1 - C_8$ alkyl, phenyl or heterocyclo, and X_5 is $-COX_{10}$ and X_{10} is phenyl, or X_5 is $-COOX_{10}$ and X_{10} is t-butyl.

43. A pharmaceutical composition comprising the taxane of any one of claims 23 to 36 and at least one pharmaceutically acceptable carrier.

44. The pharmaceutical composition of claim 43 wherein X_3 is cycloalkyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is phenyl or heterocyclo, and X_5 is $-COX_{10}$ wherein X_{10} is phenyl, or X_5 is $-COOX_{10}$ wherein X_{10} is t-butyl.

45. The pharmaceutical composition of claim 43 wherein X_3 is isobutenyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is phenyl or heterocyclo, and X_5 is $-COX_{10}$ wherein X_{10} is phenyl, or X_5 is $-COOX_{10}$ wherein X_{10} is t-butyl.

46. The pharmaceutical composition of claim 43 wherein X_3 is alkyl, R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is phenyl or heterocyclo, and X_5 is $-COX_{10}$ wherein X_{10} is phenyl, or X_5 is $-COOX_{10}$ wherein X_{10} is t-butyl.

47. A pharmaceutical composition comprising the taxane of claim 25 and at least one pharmaceutically acceptable carrier.

48. A composition for oral administration comprising the taxane of any one of claims 1 to 22 and at least one pharmaceutically acceptable carrier.

49. The composition of claim 48 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, or 4-pyridyl.

50. The composition of claim 48 or 49 wherein X_5 is $-COX_{10}$ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, $C_1 - C_8$ alkyl, $C_2 - C_8$ alkenyl, or $C_2 - C_8$ alkynyl or X_5 is $-COOX_{10}$ and X_{10} is substituted or unsubstituted $C_1 - C_8$ alkyl, $C_2 - C_8$ alkenyl, or $C_2 - C_8$ alkynyl.

51. The composition of claim 48 or 49 wherein X_5 is $-COX_{10}$ and X_{10} is phenyl, or X_5 is $-COOX_{10}$ and X_{10} is t-butyl.

52. The composition of any one of claims 48 to 51 wherein R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is substituted or unsubstituted $C_1 - C_8$ alkyl, phenyl or heterocyclo.

53. A composition for oral administration comprising the taxane of any one of claims 23 to 36 and at least one pharmaceutically acceptable carrier.

54. A composition for oral administration comprising the taxane of claim 25 and at least one pharmaceutically acceptable carrier.

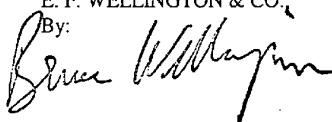
55. A method of inhibiting tumor growth in a mammal, said method comprising orally administering a therapeutically effective amount of a pharmaceutical composition comprising the taxane of any one of claims 1 to 22 and at least one pharmaceutically acceptable carrier.

56. The method of claim 55 wherein X_3 is 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, or 4-pyridyl.

57. The method of claim 55 or 56 wherein X_5 is $-COX_{10}$ and X_{10} is substituted or unsubstituted phenyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, $C_1 - C_8$ alkyl, $C_2 - C_8$ alkenyl, or $C_2 - C_8$ alkynyl or X_5 is $-COOX_{10}$ and X_{10} is substituted or unsubstituted $C_1 - C_8$ alkyl, $C_2 - C_8$ alkenyl, or $C_2 - C_8$ alkynyl.

58. The method of claim 55 or 56 wherein X_5 is $-COX_{10}$ and X_{10} is phenyl, or X_5 is $-COOX_{10}$ and X_{10} is t-butyl.

59. The method of any one of claims 55 to 58 wherein R_{10} is $R_{10a}R_{10b}NCOO-$, one of R_{10a} and R_{10b} is hydrogen, the other of R_{10a} and R_{10b} is substituted or unsubstituted C_1-C_8 alkyl, phenyl or heterocyclo.


60. A method of inhibiting tumor growth in a mammal, said method comprising orally administering a therapeutically effective amount of a pharmaceutical composition comprising the taxane of any one of claims 23 to 36 and at least one pharmaceutically acceptable carrier.

61. A method of inhibiting tumor growth in a mammal, said method comprising orally administering a therapeutically effective amount of a pharmaceutical composition comprising the taxane of claim 25 and at least one pharmaceutically acceptable carrier.

DATED this 8 day of August 2005

FLORIDA STATE UNIVERSITY
RESEARCH FOUNDATION, INC.,
By its Patent Attorneys,
E. F. WELLINGTON & CO.

By:

(Bruce Wellington)

B
R
A
B

B
R
A
B

BW 5276