wo 2015/016994 A1 | I 01N OO OO0 00

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

5 February 2015 (05.02.2015)

WIPOIPCT

(10) International Publication Number

WO 2015/016994 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 21/72 (2013.01) GO6F 21/76 (2013.01)

International Application Number:
PCT/US2014/036675

International Filing Date:

2 May 2014 (02.05.2014)
Filing Language: English
Publication Language: English
Priority Data:
13/954,487 30 July 2013 (30.07.2013) Us
Applicant: BATTELLE MEMORIAL INSTITUTE

[US/US]; P.O. Box 999, K1-53, Richland, Washington
99352 (US).

Inventors: GRISWOLD, Richard L.; 5503 Kalakaua
Court, West Richland, Washington 99353 (US). NICK-
LESS, William K.; 1761 George Washington Way, Suite
171, Richland, Washington 99354 (US). CONRAD, Ryan

(74

(8D

(84)

C.; 2360 Morgan Court, West Richland, Washington
99353 (US).

Agent: GOKCEK, A.J.; P.O. Box 999, K1-53, Richland,
Washington 99352 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

[Continued on next page]

(54) Title: SYSTEM FOR PROCESSING AN ENCRYPTED INSTRUCTION STREAM IN HARDWARE

Figure 1

/ 100

110
Memory
/ 130
145 —— = Decryptor
e 140
D I
CPU

Core

(57) Abstract: A system and method of processing
an encrypted instruction stream in hardware is dis-
closed. Main memory stores the encrypted instruc-
tion stream and unencrypted data. A central pro-
cessing unit (CPU) is operatively coupled to the
main memory. A decryptor is operatively coupled to
the main memory and located within the CPU. The
decryptor decrypts the encrypted instruction stream
upon receipt of an instruction fetch signal from a
CPU core. Unencrypted data is passed through to
the CPU core without decryption upon receipt of a
data fetch signal.

WO 2015/016994 A1 |IIIWAT 00N VT 0 TR A A

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Published:

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, — before the expiration of the time limit for amending the

GW, KM, ML, MR, NE, SN, TD, TG). claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

WO 2015/016994 PCT/US2014/036675

SYSTEM FOR PROCESSING AN ENCRYPTED INSTRUCTION STREAM IN
HARDWARE

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

{6001] This invention claims priority to U.S. Patent Application Number 13/954,487,
filed July 30, 2013, entitled SYSTEM FOR PROCESSING AN ENCRYPTED INSTRUCTION

STREAM IN HARDWARE.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

[0002] The invention was made with Government support under Contract DE-AC05-
76RLO1830, awarded by the U.S. Departiment of Energy. The Government has certain rights

in the invention.

TECHNICAL FIELD
{6003] This invention relates to cyber security. More specifically, this invention relates
to instruction stream randomization by providing support in hardware for executing

encrypted code running in a central processing unit (CPU).

BACKGROUND OF THE INVENTION

[0004] Successful cyber attacks often leverage the fact that an instruction set architecture
of a target system is well known. Given knowledge of the instruction set architecture,
attackers can prepare malicious software, knowing with high confidence that it will run once

introduced into the target system via code-injection attacks or other attack vectors.

WO 2015/016994 5 PCT/US2014/036675

{0005] Instruction stream randomization (ISR} seeks to thwart these attacks by creating
unique, dynamic system architectures, thus denying attackers the asymmetric advantage of a
well-known target architecture by forcing them to expend considerable resources for each
system they wish to compromise. However, previous ISR research has been hampered by the
need for hardware emulators to implement the necessary changes to the CPU.

SUMMARY OF THE INVENTION

{00066] In accordance with one embodiment of the present invention, a system for
processing an encrypted instruction stream in hardware is disclosed. The system includes a
main memory for storing the encrypted instruction stream and unencrypted data. The system
also includes a CPU operatively coupled to the main memory via a unified instruction and
data bus. The system further includes a decryptor coupled to the unified instruction and data
bus. The decryptor decrypts the encrypted instruction stream upon receipt of an instruction
fetch signal from a CPU core, and the decryptor passes the unencrypted data through without
decryption upon receipt of a data fetch signal from the CPU core.

[0007] The system may further comprise a cache for receiving the decrypted instruction
stream from the decryptor, wherein the decryptor is coupled between the cache and the main
memory. In one embodiment, the cache is not directly accessible from instructions executing
on the CPU.

[0068] The system may further comprise a memory controller coupled between the cache
and the CPU core. The memory controller receives the decrypted stream and the unencrypted
data.

[0009] The system may further comprise a boot controller for initializing the CPU to start
executing the encrypted instruction stream immediately without requiring an unencrypted

software boot strapping routine.

WO 2015/016994 3 PCT/US2014/036675

[0018] In one embodiment, during the initialization the CPU reads a cryptographic key
from dedicated storage and a nonce value from a dedicated address in the instruction stream.
A key used by the decryptor is derived from, but not limited to, at least one of the foliowing:
the cryptographic key, the nonce, or a CPU counter. The cryptographic key can be contained
within an internal register of the decryptor.

[0011] In one embodiment, the key is derived using an Advanced Encryption Standard
(AES) algorithm with a 128-bit key length.

[0012] In one embodiment, the nonce is located at the beginning of the instruction
stream. The nonce can be generated anew each time the instruction stream is encrypted.

[0013] In one embodiment, the instruction stream is periodically re-encrypted at intervals
during operation of the CPU.

{0014] The CPU is, but not limited to, a MIPS CPU, an ARM-based CPU, or an x86
CPU, and may be implemented in a field-programmable gate array {(FPGA). Alternatively,
the CPU may be implemented in an application-specific integrated circuit {(ASIC).

[6015] In one embodiment, the decryptor uses an AES algorithm in counter mode (AES-
CTR) with a 128-bit key length. Other encryption standards and key lengths, such as a 196-
bit key length or 256-bit key length, may be used by the decryptor.

[0016] The main memory is, but not limited to, a random-access memory (RAM). The
RAM is, but not limited to, a synchronous dynamic RAM (SDRAM).

[6017] The decryptor can utilize a checksum or a hash value to detect an improperly
decrypted instruction stream.

[0618] The system can re-initialize the CPU to a predefined state when the improperly
decrypted instruction stream is detected. In one embodiment, the system sets a CPU program

counter to a non-sequential value when the improperly decrypted instruction stream is

detected.

WO 2015/016994 A PCT/US2014/036675

{0019] In another embodiment of the present invention, a system for processing an
encrypted instruction stream in hardware is disclosed. The system includes a main memory
for storing the encrypted instruction stream and unencrypted data. The system also includes a
CPU operatively coupled to the main memory via a separate instruction bus and data bus.
The system further includes a decryptor coupled to the instruction bus but not the data bus.
The decryptor decrypts the encrypted instruction stream upon receipt of an instruction via the
instruction bus.

[6020] In another embodiment of the present invention, a system for processing an
encrypted instruction stream in hardware is disclosed. The system includes a main memory
for storing the encrypted instruction stream and unencrypted data. The system also includes a
CPU operatively coupled to the main memory. The system further includes a decryptor
operatively coupled to the main memory and located within the CPU. The decryptor decrypts
the encrypted instruction stream upon receipt of an instruction fetch signal from a CPU core.
Unencrypted data is passed through to the CPU core without decryption upon receipt of a
data fetch signal.

[0021] In another embodiment of the present invention, a method of initializing a
decryptor is disclosed. The method includes pausing a CPU, wherein a program counter does
not increment, while a boot controller performs the following: reading a nonce value from a
first predetermined location; storing the nonce value in a first hardware register of the
decryptor; reading a cryptographic key from a second predetermined location; storing the
cryptographic key in a second hardware register of the decryptor; forming an initial counter
value from the nonce value; and sending the initial counter value to the decryptor, wherein

the CPU resumes operations after the decryptor initializes.

WO 2015/016994 5 PCT/US2014/036675

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] Figure 1 illustrates a block diagram of a system for processing an encrypted
instruction stream in hardware displaying a CPU operatively coupled to the main memory via
a separate instruction bus and data bus, with a decryptor coupled to the instruction bus but not
the data bus, in accordance with one embodiment of the present invention.

[8023] Figure 2 illustrates a block diagram of a system for processing an encrypted
instruction stream in hardware displaying a CPU operatively coupled to the main memory via
a decryptor that is coupled to a unified instruction and data bus, in accordance with one
embodiment of the present invention.

[0024] Figure 3 illustrates a block diagram for processing an encrypted instruction
stream, in accordance with one embodiment of the present invention.

[0025] Figure 4 illustrates a counter value that is 128 bits in length, with a 32-bit address
padded with 32 bits of zero.

[6026] Figure 5 illustrates a block diagram of the encryption and decryption process, with
the encryption performed off line, in accordance with one embodiment of the present
invention.

[0027] Figure 6 is a graph of the test results generated by applying random instruction
streams to mimic improperly encrypted instruction streams that were fed into a process core
using the architecture as depicted in Figure 3. The test results show the percentage of

improperly encrypted instruction streams that halted after n instructions.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
{0028] The Present Invention includes systems and methods of processing an encrypted

instruction stream in hardware are disclosed. These systems and methods prevent the

WO 2015/016994 p PCT/US2014/036675

successful execution of code-injection attacks and, more broadly, the successful execution of

any malicious or unauthorized binary code on a system.

{0029] In one embodiment, the Present Invention also replaces the cryptographically
insecure methods with a cryptographically secure cipher, turning ISR into “instruction stream
encryption”. In another embodiment, the Present Invention also does away with slow and
vulnerable software infrastructures in favor of placing all of the components necessary to
support instruction stream encryption directly into hardware. This provides much faster

execution times and reduced attack surface, which increases system security.

{8630] The Present Invention can protect all code that executes on the system from the
very first instruction. In one embodiment, by having no unencrypted instructions the Present
Invention eliminates windows of opportunity for hackers. The Present Invention also does
not require a software infrastructure or helper modules to support the execution of the

encrypted instruction stream.

[0031] In one embodiment, an implementation of ISR in a soft-core CPU capable of
directly executing an Advanced Encryption Standard {AES) encrypted instruction stream is
disclosed which does not require an emulation layer or additional software components. This
provides a direct avenue for higher performance implementations in ASICs and custom
semiconductor fabrications. Implementation of this instruction stream encryption
complements existing security infrastructure and provides strong protection for high
assurance environments where there is a high probability of compromise. Design goals for
instruction stream encryption include, but are not limited to, high performance,

cryptographically secure encryption, and self-containment.

[0032] In some embodiments, the implementation is in hardware rather than relying on a

hardware emulation layer. The CPU may be implemented in a FPGA, which provides a

WO 2015/016994 7 PCT/US2014/036675

direct path to higher performance implementations in ASICs or custom semiconductor

fabrications.

[0033] AES in counter mode (AES-CTR) may be used for the encryption algorithm.
Implemented properly, AES-CTR provides high resilience against cryptanalysis and requires
only enough memory to store the encryption key and counter value. With a 128-bit key

length, this comes to 256 bits of storage for the key and counter value.

[0034] With a self-contained implementation, the CPU does not have to rely on other
software components, such as encrypting loaders, to initialize or manage the ISR subsystem.
Removing the need for such software components reduces the attack surface, because
software no longer needs access to the encryption key. By placing the encryption key outside

of software access, an attacker cannot coerce the system into divulging the encryption key.

[0035] Figure 1 illustrates a block diagram of a system 100 for processing an encrypted
instruction stream in hardware displaying a CPU 120 operatively coupled to the main
memory 110 via a separate instruction bus 140 and data bus 145, with a decryptori30
coupled to the instruction bus 140 but not the data bus 145, in accordance with one
embodiment of the present invention. The main memory 110 stores an encrypted instruction
stream and unencrypted data. The decryptor 130 decrypts the encrypted instruction stream

upon receipt of an instruction via the instruction bus 140.

[0036] Figure 2 illustrates a block diagram of a system 200 for processing an encrypted
instruction stream in hardware displaying a CPU 220 operatively coupled to the main
memory 210 via a decryptor 230 that is coupled to a unified instruction and data bus 250, in
accordance with one embodiment of the present invention. The decryptor 230 may receive
instructions and data from the main memory 210 via separate instruction and data buses 240

and 245, respectively.

WO 2015/016994 8 PCT/US2014/036675

{6037} In one embodiment, as mentioned above, the Present Invention uses AES in
counter mode for the encryption algorithm. An element that adds to the robustness of AES-
CTR is the use of a nonce, or “number used once”, wherein a counter value with the same
encryption key may be reused without compromising security. The counter value may be
generated by concatenating a 64-bit nonce with the address of the start of each block of
instructions as depicted in Figure 4. Because the counter value is, in this example, 128 bits in
length, the 32-bit address is padded with 32 bits of zeros. The 64-bit nonce is randomly
generated each time the software is encrypted for the device, thus ensuring that the same
counter value is never used twice with the same key. The counter value is encrypted with
each device’s unique key to create the cipher block to encrypt each block of instructions. A
128-bit key is used, in this embodiment, so each key stream block holds four fixed-sized 32-

bit instructions.

[0038] In one embodiment, since software access to the system is not allowed, all
encryption must be done offline as depicted in Figure 5. This prevents attackers from

creating properly encrypted code on a device that is using ISR.

[0039] In one embodiment, the Present Invention uses the same key for encryption and
decryption, so the encryption key is stored on the device that uses ISR. Key storage and key
register are not software addressable. During initialization, the processor reads the
encryption key from dedicated storage and the nonce from, as one example, the first eight
bytes of memory. It uses the nonce and the program counter to create the counter value as

described previously. The nonce may be read from other locations.

[0040] One effect of disallowing software access to the system is that software has no
mechanism for switching the CPU between encrypted and unencrypted mode. Instead, the

CPU always operates in encrypted mode, starting with the first instruction it executes. This

WO 2015/016994 9 PCT/US2014/036675

prevents an attacker from forcing the CPU into unencrypted mode, since the CPU is
incapable of operating in unencrypted mode. The system provides a mechanism or the CPU
to get the three components needed to decrypt the instructions: the encryption key, the nonce,
and the current program counter value, without relying on software support. The encryption
key may be hard-coded into the soft-core processor image, but it could read from any
dedicated non-volatile storage. The nonce does not need to be protected as carefully as the
encryption key, so it can be stored at a known location in memory. In one embodiment, the

nonce is stored at address 0, before the start of bootloader code.

{0041} Figure 3 illustrates a block diagram of a system for processing an encrypted
instruction stream, in accordance with one embodiment of the present invention. In this
embodiment, the CPU of the system requires that no unencrypted instructions are executed,
and that no user data is decrypted. To ensure this, the decryptor (or decryptor interface) is
placed between the CPU and the main memory, SDRAM. In the embodiment of Figure 3,
the SDRAM stores the encrypted instruction stream and unencrypted data. The CPU
controller, which includes registers, muitiplexors, a program counter, and an arithmetic logic
unit, is operatively coupled to the main memory via a separate instruction bus and data bus.
The decryptor is coupled to the instruction bus but not the data bus. The Ethernet Controller
has no direct access to the CPU and other peripherals do not have the data width to execute

instructions.

[0042] In one embodiment, the decryptor reads a key from an internal register and builds
subkeys calculated for each round of encryption. The key is inaccessible by the user. The 64-
bit nonce is read and stored as a fixed upper half of the counter value. After these startup
routines, the CPU is enabled and the decryptor examines all data to determine if decryption is
necessary. The decryptor may decrypt the data if it is flagged as an instruction rather user

data and/or it is located in the instruction address space of memory. These conditions prevent

WO 2015/016994 10 PCT/US2014/036675

an attacker from executing unencrypted instructions from user data address space and catch

any exceptions in instruction address space.

[0043] To mitigate any decreased performance from run-time decryption, the system of
Figure 3 may include, but is not limited to, several additions: an unencrypted instruction
cache, a cipher block cache, and decryption clock multiplication. A direct mapped cache
stores unencrypted instructions, thus reducing the total number of decryptions necessary. The
cache is only addressable by the memory controller, which is not software/user accessible.
The decrypted cipher block cache allows the CPU to bypass the decryption phase for
sequential instructions. In one embodiment, for each decryption processed, four words are
decrypted, thus reducing the overall decryption time by approximately 75%. Decryption
clock multiplication reduces decryption latency. Since propagation delay through the
decryption core is less that of the CPU, the decryption clock can be run at higher frequencies

than the CPU clock.

[0044] The system may optionally use a dedicated hardware boot controller. An
implementation with limited local static RAM/PROM may utilize a boot controller to allow a
larger bootloader and simplify bootloader addressing. A boot controller that initializes main
memory and copies the encrypted bootloader code into the main memory was designed. The
CPU then begins executing the bootloader code, at which point a user can load more
encrypted code and unencrypted user data into the main memory via the UART interface.
This embodiment preserves the security features of the system and allows running from a

single memory peripheral.

Experimental Section

WO 2015/016994 1 PCT/US2014/036675

{6045] The following examples serve to illustrate embodiments and aspects of the present

invention and are not to be construed as limiting the scope thereof.

[06046] In order to provide proof of concept, the ISR CPU system of Figure 3 was
implemented on a Spartan 3E Starter Board using the open-source Plasma soft-core CPU.
This development board contains a low-grade Xilinx FPGA and basic user peripherals
supported by Plasma such as UART, SRAM, DDR, and Ethernet. The CPU was interfaced
with a basic decryption core, the Avalon AES ECB-core, by adding a small finite state
machine (FSM) to coordinate memory fetches, cache checks/misses, and data decryption.
Performance optimizations and a hardware boot controller were added to ensure scamless
startup and normal operations. The Plasma system includes the source code for the processor
as well as an emulator and a small real-time operating system (RTOS) with a network stack

and web server.

[0047] A simple benchmark was chosen for performance testing. The Plasma RTOS
comes with a HT TP server, which was configured to serve the same image in three different
formats: as a 41,733 byte GIF, an 11,088 byte JPEG, and a 3,444 byte PNG. The test
program downloads the image 100 times in each format, while measuring the elapsed time.
This team ensures that the decryptor is exercised and its performance factors into the
measurements, since the 4kB decrypted instruction cache is not large enough to hold all of
the code used in handling the network traffic and HTTP requests. Elapsed time for running
on the processor without encryption was 308.64s, while elapsed time with encryption enabled

was 323.91s, or an increase of 4.95% in run time.

[0048] A simulation was run to determine how many instructions, on average, the
processor would execute from an improperly encrypted instruction stream before halting.

Since AES-CTR does not validate the integrity of the encrypted instruction stream, the

WO 2015/016994 12 PCT/US2014/036675

encryption engine passes the results of the decryption to the processor core to execute
regardless of whether the instruction stream was properly encrypted. However, when the
incoming instruction stream is not properly encrypted, the resulting instruction stream will
contain invalid instructions or memory accesses. 500,000 random instruction streams were
generated to mimic improperly encrypted instruction streams, and fed them into the processor
core, The test results are given in Table 1 below and shown graphically in Figure 6. Almost
64% of the time the system halted on the first instruction. Over 99% of the time, the CPU
encountered an illegal instruction or other malformed instruction that caused an exception or
interrupt within seven instructions. In no instance did it run for more than 18 instructions
without experiencing an exception or interrupt, unless the invalid instruction stream placed

the system in a hard loop.

WO 2015/016994 PCT/US2014/036675

13
Table 1
Instructions Individual Tests Cumulative
Before
Halting Count Percent Count Percent
1 318488 63.70% 318488 63.70%
2 34138 6.83% 352626 70.53%
3 83243 16.65% 435869 87.17%
4 17209 3.44% 453078 90.62%
5 24339 4.87% 477417 95.48%
6 10511 2.10% 487928 97.59%
7 8473 1.69% 496401 899.28%
3 1301 0.26% 497702 99.54%
9 1140 0.23% 498842 99.77%
i0 782 0.16% 499624 99.92%
il 43 0.01% 439667 99.93%
12 278 0.06% 499945 99.99%
1 3 0.00% 4389953 99.99%
14 5 0.00% 499958 99.99%
i5 3 0.00% 499961 99.99%
16 1 0.00% 489962 99.,99%
17 1 0.00% 499863 99.99%
18 1 0.00% 499964 99.98%
Hard loop 36 0.01% 5000060 100.00%

[6649] As this example showed, the system can efficiently execute a fully encrypted

instruction stream and successfully block improperly encrypted code.

[0050] As discussed above, the AES-CTR algorithm does not provide verification of the
decrypted results. Instead, the system relies on the statistical probability that the improperly
encrypted instruction stream will contain an invalid instruction or memory access. The
results above show that 99% of the time, the system will halt within seven instructions.
However, the system is not guaranteed to encounter a malformed or illegal instruction that
causes an exception or interrupt, and about 0.01% of the time it will instead go into a hard

loop.

[0051] In one embodiment, switching to another encryption algorithm which provides

both integrity and confidentiality, such as AES in Galois Counter Mode (AES-GCM), would

WO 2015/016994 14 PCT/US2014/036675

allow the hardware to detect an improperly encrypted instruction prior to execution. The
system could then distinguish between illegal instruction and addressing errors, and
improperly encrypted instruction stream errors and then respond in a controlled, deterministic
manner. For example, if an incorrect encryption key is detected, such as via a decryption
error message, the system can take one or more protective actions. These protective actions
include, but are not limited to, the following: resetting to a known “good” code, raising an

interrupt, alerting operators, or dropping the instructicn frame.

[6052] The embodiments described above have broad uses such as, but not limited to, the
energy sector, critical infrastructure, security, and areas that involve network enabled
embedded devices. In the embedded systems space, one specific application would be for
smart grid meters which allow access to the electrical grid infrastructure, and in some cases

devices in customers’ homes, from a computer network.

[8053] The present invention has been described in terms of specific embodiments
incorporating details to facilitate the understanding of the principles of construction and
operation of the invention. As such, references herein to specific embodiments and details
thereof are not intended to limit the scope of the claims appended hereto. It will be apparent
to those skilled in the art that modifications can be made in the embodiments chosen for

illustration without departing from the spirit and scope of the invention.

WO 2015/016994 r PCT/US2014/036675

CLAIMS

We claim:

1. A system for processing an encrypted instruction stream in hardware comprising:
a. amain memory for storing the encrypted instruction stream and unencrypted data;
b. a central processing unit (CPU) operatively coupled to the main memory via a

unified instruction and data bus; and

e

a decryptor coupled to the unified instruction and data bus, wherein the decryptor

decrypts the encrypted instruction stream upon receipt of an instruction fetch

signal from a CPU core and wherein the decryptor passes the unencrypted data

through without decryption upon receipt of a data fetch signal from the CPU core.

2. The system of Claim 1 further comprising a cache for receiving the decrypted instruction
stream from the decryptor, wherein the decryptor is coupled between the cache and the
main memory.

3. The system of Claim 2 wherein the cache is not directly accessible from instructions
executing on the CPU.

4. The system of Claim 2 further comprising a memory controller coupled between the
cache and the CPU core, wherein the memory controller receives the decrypted stream
and the unencrypted data.

5. The system of Claim 1 further comprising a boot controller for initializing the CPU to
start executing the encrypted instruction stream immediately without requiring an
unencrypted software boot strapping routing.

6. The system of Claim 5 wherein during the initialization the CPU reads a cryptographic
key from dedicated storage and a nonce value from a dedicated address in the instruction

stream,

WO 2015/016994 PCT/US2014/036675

7.

10.

11.

12.

3.

15.

16.

17.

18.

19.

16

The system of Claim 6 wherein a key used by the decryptor is derived from at least one of
the following: the cryptographic key, the nonce, and a CPU program counter.

The system of Claim 6 wherein the nonce is located at the beginning of the instruction
stream.

The system of Claim 8 wherein the nonce is generated anew each time the instruction
stream is encrypted.

The system of Claim 6 wherein the cryptographic key is contained within an internal
register of the decryptor.

The system of Claim 10 wherein the internal register is not software or user accessible.
The system of Claim | wherein the instruction stream is periodically re-encrypted at
intervals during operation of the CPU.

The system of Claim 1 wherein the CPU is implemented in a field-programmable gate

array (FPGA).

. The system of Claim 1 wherein the CPU is at least one of the following: a MIPS CPU, an

ARM-based CPU, and an x86 CPU.

The system of Claim 1 wherein the decryptor uses an Advanced Encryption Standard
(AES) algorithm in counter mode (AES-CTR) with a 128-bit key length.

The system of Claim 1 wherein the main memory is a random-access memory.

The system of Claim 16 wherein the random-access memory is a synchronous dynamic
random-access memory (SDRAM).

The system of Claim 1 wherein the decryptor utilizes a checksum or a hash value to
detect an improperly decrypted instruction stream.

The system of Claim 18 wherein the system re-initializes the CPU to a predefined state

when the improperly decrypted instruction stream is detected.

WO 2015/016994 17 PCT/US2014/036675

20. The system of Claim 18 wherein the system sets a CPU program counter to a non-
sequential value when the improperly decrypted instruction stream is detected.

21. A system for processing an encrypted instruction stream in hardware comprising:

a. amain memory for storing the encrypted instruction stream and unencrypted data;

b. acentral processing unit (CPU) operatively coupled to the main memory via a
separate instruction bus and data bus; and

¢. adecryptor coupled to the instruction bus but not the data bus, wherein the
decryptor decrypts the encrypted instruction stream upon receipt of an instruction
via the instruction bus.

22. The system of Claim 21 further comprising a cache for receiving the decrypted
instruction stream from the decryptor, wherein the decryptor is coupled between the
cache and the main memory.

23. The system of Claim 22 wherein the cache is not directly accessible from instructions
executing on the CPU.

24. The system of Claim 22 further comprising a memory controller coupled between the
cache and the CPU core, wherein the memory controller receives the decrypted stream
and the unencrypted data.

25. The system of Claim 21 further comprising a boot controller for initializing the CPU to
start executing the encrypted instruction stream immediately without requiring an
unencrypted software boot strapping routing.

26. The system of Claim 25 wherein during the initialization the CPU reads a cryptographic
key from dedicated storage and a nonce value from a dedicated address in the instruction
stream.

27. The system of Claim 26 wherein a key used by the decryptor is derived from at least one

of the following: the cryptographic key, the nonce value, and a CPU program counter.

WO 2015/016994 PCT/US2014/036675

28

29.

30.

31

33.

34,

35.

36.

37.

38.

39.

40.

41

18

. The system of Claim 26 wherein the nonce value is located at the beginning of the
instruction stream.

The system of Claim 28 wherein the nonce value is generated anew each time the
instruction stream is encrypted.

The system of Claim 26 wherein the cryptographic key is contained within an internal
register of the decryptor.

The system of Claim 30 wherein the internal register is not software or user accessible.
. The system of Claim 21 wherein the instruction stream is periodically re-encrypted at
intervals during operation of the CPU.

The system of Claim 21 wherein the CPU is implemented in a ficld-programmable gate
array (FPGA).

The system of Claim 21 wherein the CPU is at least one of the following: a MIPS CPU,
an ARM-based CPU, and an x86 CPU.

The system of Claim 21 wherein the decryptor is a 128-bit Advanced Encryption
Standard {AES) decryptor.

The system of Claim 21 wherein the main memory is a random-access memory.

The system of Claim 36 wherein the random-access memory is a synchronous dynamic
random-access memory (SDRAM}.

The system of Claim 21 wherein the decryptor utilizes a checksum or a hash value to
detect an improperly decrypted instruction stream.

The system of Claim 38 wherein the system re-initializes the CPU to a predefined state
when the improperly decrypted instruction stream is detected.

The system of Claim 38 wherein the system sets a CPU program counter to a non-
sequential value when the improperly decrypted instruction is detected.

. A system for processing an encrypted instruction stream in hardware, comprising:

WO 2015/016994 PCT/US2014/036675

42.

43.

44,

19

a. amain memory for storing the encrypted instruction stream and unencrypted data;
b. a central processing unit (CPU) operatively coupled to the main memory; and
¢. adecryptor operatively coupled to the main memory and located within the CPU,
wherein the decryptor decrypts the encrypted instruction stream upon receipt of an
instruction fetch signal from a CPU core, and wherein unencrypted data is passed
through to the CPU core without decryption upon receipt of a data fetch signal.
The system of Claim 41 further comprising a unified instruction and data bus coupled
between the decryptor and the CPU core, wherein the decryptor decrypts the encrypted
instruction stream upon receipt of an instruction fetch signal from the CPU core and
passes the unencrypted data through without decryption upon receipt of a data fetch
signal from the CPU core.
The system of 41 further comprising a data bus coupled between the CPU core and the
main memory and an instruction bus coupled between the CPU core and the main
memory via the decryptor, the decryptor being coupled to the instruction bus but not the
data bus, wherein the decryptor decrypts the encrypted instruction stream upon receipt of
an instruction via the instruction bus.
A method of initializing a decryptor comprising: pausing a CPU, wherein a program
counter does not increment, while a boot controller performs the following:
a. reading a nonce value from a first predetermined location;
b. storing the nonce value in a first hardware register of the decryptor;
c. reading a cryptographic key from a second predetermined location;
“d. storing the cryptographic key in a second hardware register of the decryptor;
e. forming an initial counter value from the nonce value; and
f. sending the initial counter value to the decryptor, wherein the CPU resumes

operations after the decryptor initializes.

WO 2015/016994 PCT/US2014/036675
1/5

%//~1OO

116—\\\

Memory
145 ———— Decryptor
e 140
D I
CPU
Core ~~— 120

Figure 1

WO 2015/016994

2/5

210
_\

PCT/US2014/036675

/ 200

Memory

245

D

240

Decryptor

I/ 230

<— 250

CPU
Core

S~ 220

Figure 2

WO 2015/016994 PCT/US2014/036675

3/5
Encrypted
SORAM SDRAM
896K ~ User Data 128K - Instruction
Unencrypted Encrypted

oo e

Ethemet |
4 Controller

T
2 Cache ;
21 KB ;
B s Wi
By b dlecrypledi o S
2] =

3

Memaory
Controller

:

CPU Controller

UART
~{ Controller

CPU Pause

3

BN e A N

>

Registers PG

Multiplexors | ALU

Modified Plasma CPU

Figure 3

WO 2015/016994 PCT/US2014/036675
4/5

~ Nonce Zer@w ' Address
. osfes 54!53 | ~3zf 31000

Figure 4

Source pi ; :

'Decrypied .
Instruction
| Stream

md;f;ed cPU

CcPU
| Pzgehne b e

Figure 5

WO 2015/016994 PCT/US2014/036675
5/5

70%

60%

50%

40%

30%

20%

10%

0% [: | : . -
1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 18

Figure 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/036675

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/72 GO6F21/76
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 20117296202 Al (HENRY G GLENN [US] ET 1-4,
AL) 1 December 2011 (2011-12-01) 22-24,
41,44
Y abstract; figures 1-2, 8, 27 5-21,
paragraph [0004] - paragraph [0007] 25-40,
paragraph [0040] - paragraphs [0053], 42,43
[0070] - [0072]
Y US 4 465 901 A (BEST ROBERT M [US]) 5,14-21,
14 August 1984 (1984-08-14) 25,34-40
column 3 - column 9; figures 8-9
Y US 2010/246814 Al (OLSON CHRISTOPHER H 5-21,
[US] ET AL) 30 September 2010 (2010-09-30) 25-40,
42,43
paragraph [0007] - paragraphs [0009],
[0077], [0238]; figure 10
- / -

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

22 December 2014

Date of mailing of the international search report

09/01/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Ghani, Hamza

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/036675

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

PETER T BREUER ET AL: "A Fully Homomorphic
Crypto-Processor Design",

27 February 2013 (2013-02-27), ENGINEERING
SECURE SOFTWARE AND SYSTEMS, SPRINGER
BERLIN HEIDELBERG, BERLIN, HEIDELBERG,
PAGE(S) 123 - 138, XP047032785,

ISBN: 978-3-642-36562-1

the whole document

WO 2008/054456 A2 (LUNA INNOVATIONS INC
[US]; VIRGINIA TECH INTELL PROP [US]; GRAF
JONATH) 8 May 2008 (2008-05-08)

paragraph [0005] - paragraph [0015]

KC G S ET AL: "Countering code-injection
attacks with instruction-set
randomization",

PROCEEDINGS OF THE 10TH ACM CONFERENCE ON
COMPUTER AND COMMUNICATIONS SECURITY; [ACM
CONFERENCE ON COMPUTER AND COMMUNICATIONS
SECURITY], WASHINGTON D.C., USA,

vol. CONF. 10, 1 January 2003 (2003-01-01)
, pages 272-280, XP002333430,

DOI: 10.1145/948109.948146

ISBN: 978-1-58113-738-5

the whole document

Ana Nora Sovarel ET AL: "Where's the
FEEB? The Effectiveness of Instruction Set
Randomization",

14th USENIX Security symposium,

31 July 2005 (2005-07-31), XP055159765,
Retrieved from the Internet:
URL:https://www.usenix.org/legacy/events/s
ec05/tech/full_papers/sovarel/sovarel.pdf?
CFID=464936044&CFTOKEN=31104110

[retrieved on 2014-12-19]

the whole document

21,41

41,44

21,44

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/036675
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2011296202 Al 01-12-2011 CN 103645885 A 19-03-2014
CN 103699832 A 02-04-2014
CN 103699833 A 02-04-2014
CN 103713883 A 09-04-2014
CN 103761070 A 30-04-2014
CN 103839001 A 04-06-2014
TW 201419142 A 16-05-2014
TW 201426537 A 01-07-2014
TW 201426538 A 01-07-2014
TW 201426539 A 01-07-2014
TW 201426540 A 01-07-2014
TW 201426541 A 01-07-2014
US 2011296202 Al 01-12-2011
US 2011296203 Al 01-12-2011
US 2011296204 Al 01-12-2011
US 2011296205 Al 01-12-2011
US 2011296206 Al 01-12-2011
US 2012096282 Al 19-04-2012
US 2014195820 Al 10-07-2014
US 2014195821 Al 10-07-2014
US 2014195822 Al 10-07-2014
US 2014195823 Al 10-07-2014

US 4465901 A 14-08-1984 NONE

US 2010246814 Al 30-09-2010 NONE

WO 2008054456 A2 08-05-2008 US 2010122095 Al 13-05-2010
WO 2008054456 A2 08-05-2008

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report
	Page 29 - wo-search-report

