P A OO 0O A

/46787 A2

y—
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 June 2001 (28.06.2001)

0T 1 O 0

(10) International Publication Number

WO 01/46787 A2

GO6F 1/00

(51) International Patent Classification”:

(21) International Application Number: PCT/US00/34981

(22) International Filing Date:
21 December 2000 (21.12.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/468,557 21 December 1999 (21.12.1999) US

(71) Applicant: QUALCOMM INCORPORATED [US/US];
5775 Morehouse Drive, San Diego, CA 92121-1714 (US).

(72) Inventors: ROSE, Gregory, G.; 6 Kingston Avenue,
Mortlake, NSW 2137 (AU). HAWKES, Philip; 2/6-8
Belmore Street, Burwood, NSW 2134 (AU).

(74) Agents: WADSWORTH, Philip, R. et al.; Qualcomm In-
corporated, 5775 Morehouse Drive, San Diego, CA 92121-
1714 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY,BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR,
LS,LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD OF AUTHENTICATING ANONYMOUS USERS WHILE REDUCING POTENTIAL FOR "MIDDLE-

MAN" FRAUD

(57) Abstract: A method of authenticating anonymous users while reducing potential for "middleman” fraud includes the step of
constructing a puzzle in response to information received from a software user. The puzzle includes the received information. The
puzzle is sent to the user by a software provider. The user solves the puzzle and returns the solution to the provider. The puzzle
includes a portion of a value derived from an encrypted "cookie" and an exponentiation of the derived value. The cookie includes

information about the user.

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981
1

METHOD OF AUTHENTICATING ANONYMOUS USERS WHILE
REDUCING POTENTIAL FOR “MIDDLEMAN"” FRAUD

BACKGROUND OF THE INVENTION

L Field of the Invention

The present invention pertains generally to the field of encryption, and
more particularly to methods for authenticating anonymous users that reduce
the potential for “middleman” fraud.

II. Background

Computer software is generally distributed over the Internet to end users
(i.e., consumers) by distribution agents, or “middlemen.” There are thus three
parties involved in the transaction. The first is the provider of software and
content (i.e., the author), who derives revenue from providing content to end
users and pays a small commission to distribution agents to promote and
distribute the software. The second is one of a number of distribution agents
who provides the software (which provides a mechanism to view the content,
as well as some value independent of the content, such as, e.g., electronic mail
functions) to the user. The middleman derives revenue from users who
receive content, so it is in his or her interest to distribute the software widely.
The third is the user, who gets the software for free in return for viewing the
content. The user gets no other remuneration, mainly because the users are
anonymous. The users are anonymous because tracking details are generally
not kept and the users have not been individually identified. Users might
volunteer information when requesting content, but such volunteered
information is generally used and discarded rather than being stored or tracked.
The parties are hereinafter referred to generally as the provider, the
middleman, and the user.

The middleman may use a device known as an Internet “cookie” to
obtain demographic information about users when the users connect to the
Internet and visit the appropriate website. For example, when a user connects
to certain Internet locations, the user’s computer connects through the Internet

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981

2

to a host computer operated by the middleman. The host sends a small data file
(the cookie) that is saved by the user’s computer. As the user and the host
communicate, some data is stored in the cookie. When the user disconnects,
the cookie remains in his or her computer. Subsequent data about the user’s
Internet use is stored in the cookie. The next time the user connects to the host,
the host reads the cookie for information about the user. The user’s
information may be compiled by the host operator and sold to Internet
marketers.

Because the wusers are anonymous, the middleman can commit
undetectable fraud on the provider simply by passing through more content.
This, in turn, can be accomplished either by requesting more content on behalf
of a real user, or by creating “fake” users. There are a number of well-known
statistical methods for tracking the rate of the content delivery to particular
users while keeping the details anonymous. Such statistical methods solve the
problem of middlemen committing fraud by requesting more content on behalf
of a real user. However, these methods are not directed to the situation in
which the middleman commits fraud by creating a significant number of fake
users. Thus, there is a need for a method of preventing software distribution
agents from impersonating a significant number of non-existent users to

commit fraud.

SUMMARY OF THE INVENTION

The present invention is directed to a method of preventing software
distribution agents from impersonating a significant number of non-existent
users to commit fraud. Accordingly, in one aspect of the invention, a method
for a provider of software to authenticate users of the software is provided. The
method advantageously includes the steps of constructing a puzzle in response
to information received from a user, the puzzle including the information;
sending the puzzle to the user; and returning a solution to the puzzle to the
provider.

In another aspect of the invention, an apparatus for enabling a provider
of software to authenticate users of the software is provided. The apparatus
advantageously includes means for constructing a puzzle in response to
information received from a user, the puzzle including the information;

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981

3

means for sending the puzzle to the user; and means for returning a solution to
the puzzle to the provider.

In another aspect of the invention, an apparatus for enabling a provider
of software to authenticate users of the software is provided. The apparatus
advantageously includes a processor; and a processor-readable storage medium
accessible by the processor and containing a set of instructions executable by the
processor to construct a puzzle in response to information received from a user,
the puzzle including the information, and send the puzzle to the user.

In another aspect of the invention, a method of preventing a person
from impersonating a plurality of users of software is provided. The method
advantageously includes the steps of constructing a plurality of puzzles, each
puzzle having a solution that includes information about a respective one of
the plurality of users, each puzzle requiring consumption of a resource to solve;
and sending each puzzle to a respective one of the plurality of users for

solution.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system in which information is exchanged
between a provider and a user.
FIG. 2 is a block diagram illustrating the fit of bits of an encrypted

“cookie” into an exponentiation operation of a “puzzle.”

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the embodiments described below, new users of a system are registered
in a way that uses up a scarce resource, so that an individual user will register
and not notice the cost, but any party, and in particular a middleman, would
incur significant costs in any attempt to misuse the system. In one
embodiment the significant resource is computation time. Other scarce
resources could be used, such as, e.g., storage space, network bandwidth, or user
attention span (i.e.,, requiring a user to interact for a period of time).
Computation time is preferred because it is essentially free to the user.
Generally the user’s personal computer is idle most of the time, the

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981

4

computation can be performed in a non-intrusive manner, and there is no
ongoing overhead once the computation is complete. The exact amount of
computation can be adjusted according to parameters such as the cost and
computing power of typical computers at the time, and the amounts involved
in potential fraud.

A system 100 in which a user 102 requests registration by communicating
to a provider 104 is illustrated in FIG. 1 in accordance with one embodiment. It
should be understood that the user 102 and the provider 104 refer to machines
used by the user and the provider, such as, e.g., personal computers or
handheld computing devices such as personal digital assistants or wireless
telephones for the user 102, up to large Web servers for the provider 104. In a
message 106 the user 102 sends demographic data to the provider 104. In other
embodiments the user 102 may send other data such as, e.g., user identity
instead of or along with the demographic data in the message 106. The message
106 to the provider 104 may or may not be in an encrypted format to protect
sensitive information about the user 102. The software on the user 102
includes some identifier of the middleman, which, in turn, is also included in
the message 106. The user 102 may also provide information to better target
content material subsequently. The data 106 provided by the user 102 will be
encoded by the provider 104 into the answer to a puzzle 108. The answer, ie.,
the decrypted puzzle 110, will be communicated back to the provider 104 by the
user 102 at a later time when the user 102 requests content.

In one embodiment the answer 110 to the puzzle 108 is constructed as
follows. The information 106 provided, and a random identifier (not shown)
of sufficient length to assume uniqueness, are placed in a buffer (also not
shown). A cryptographically secure hash function of the contents of the buffer
is computed. An exemplary secure hash function is the Secure Hash Standard
specified in Federal Information Processing Standard (FIPS) 180-1, produced by
the National Institute for Standards and Technology. The algorithm described
in the FIPS 180-1 document is hereafter referred to as the Secure Hash
Algorithm (SHA). The result of the hash function may be 160 bits in length. In
a particular embodiment, only the first sixty-four bits of the hash function are
used. In another embodiment the first eighty bits of the hash function are used.
The hash function is inserted into the buffer at the beginning of the buffer. The
entire buffer is then encrypted with a symmetric block cipher such as, e.g., the

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981

5

Data Encryption Standard (DES) algorithm (FIPS 46-2), using a key-held secret
(not shown) in the provider 104. In a particular embodiment, the triple-DES
(3DES) algorithm as specified in the draft text of FIPS 46-3 is used.

To everyone except the provider 104, the result of the encryption is
advantageously indistinguishable from random data. In particular, even if
some of the data is made public, no party can reconstruct the part that is not
exposed. When the provider 104 subsequently receives the encrypted item, the
provider 104 can be assured that it is exactly the data that the provider 104
created at an earlier time by decrypting it and verifying that the hash function
embedded in it agrees with the result of a new computation. The encrypted
buffer of data is commonly referred to as a “cookie” by those skilled in the art.

It should be understood that the cookie will be longer than a single
cipher block, so the encryption should be done in Cipher Block Chaining mode,
as described in FIPS. Cipher Block Chaining mode normally requires a random
Initialization Vector. However, the initialization vector can be set to a constant
zero value because the first block to be encrypted contains a hash value, which
is sufficient to thwart expected attacks.

The puzzle 108 is constructed from the cookie instead of transmitting the
cookie itself. The puzzle 108 is advantageously constructed such that a certain
(ie., expected) amount of computation is required to solve the puzzle 108 and
recover the cookie. Because the provider 104 has to perform this function for
many users, the provider 104 must be computationally efficient to construct the
puzzle 108 while also being intentionally inefficient to solve the puzzle 108.
This combined computational construction efficiency and solution inefficiency
can be accomplished with a novel use of known public-key cryptographic
methods.

For purposes of the following discussion, the cookie may be denoted C,
and additional parameters P and g are embedded in the software and hence
known to all participants. The parameter P is advantageously a large prime
number. The lower bound on the number of bits in P is constrained by the
desired computational complexity of the puzzle 108. In a particular
embodiment the number of bits in P is 1024. The parameter P advantageously
has the additional property that a parameter Q, which satisfies the equation Q =
(P-1)/2, is also prime. The parameter g is advantageously a generator of the
subgroup of order Q of the multiplicative group of integers modulo P. The

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981

6

parameters P, g, and Q are typical parameters used for the well-known Diffie-
Hellman key agreement protocol. If the cookie, C, is larger than Q, the user 102
will be given some of the cookie plainly, and a smaller part will be used to
construct the puzzle 108. It is generally assumed herein that |Cl < [QI.

The puzzle 108 is first constructed by computing Z = g* modulo P.
Currently, the best known method for computing K given Z (i.e., for solving
the Discrete Logarithm Problem) is computationally expensive, and with a
1024-bit length for P, is considered to be roughly equivalent to decrypting a
message using a block cipher with an unknown key of 128 bits. Such a
computation is too extensive for the user 102 to perform. Because the user 102
is supposed to be able to recover C, the provider 104 gives the user 102 most of
the answer 110. The puzzle 108 thus includes Z and a puzzle hint. The puzzle
hint includes most (but not all) of the information about C. The number of bits
of variability in the value transmitted determines the difficulty of the puzzle
108. The most efficient way for the user 102 to solve the puzzle 108 is to try out
guesses for the unknown information until the user 102 finds the guess that
yields the correct answer 110. Checking each guess requires computing the
modular exponentiation function for the candidate K.

It can be assumed that computing such a modular exponentiation takes
about 1/100" of a second (the actual time depends on the speed of the processor
(not shown) and the size of P). If it is desired that the computation take an
average of twelve hours of background processing time, approximately four
million (or 2%) trial candidates must be used. Because, on average, the solution
will be found about half way through the set of possibilities, the puzzle hint
should consist of all but twenty-three of the bits of the answer 110.

To ensure that the puzzle 108 cannot be solved in some manner
avoiding trial exponentiation, a one-way hash function may again be used.
Suppose (as is the case for the Secure Hash Standard) that the output of the
hash function H() is 160 bits in length. It is important to ensure that ICl is
somewhat larger than |H1/2 so IC| can be split into two parts. If necessary, C
can be padded before encryption to ensure that ICl is large enough. The result
of the hash function is used in part to obscure C and in part to vary the input to
the exponentiation operation. ‘

An intermediate result K is constructed from C in the following manner.
The cookie C is divided into two parts, L and R, such that [R| is eighty bits in

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981

7

length. A random number 7 is chosen in the range 0,...,N, where N determines
the average difficulty of the puzzle 108. In one embodiment N = 2*. Then K is
determined by the following equation: K=L || (R Il 0y) @ H(L| 7)), where Il
denotes a concatenation operation, @ denotes a bitwise Exclusive-Or (XOK)
operation, and 0O, denotes eighty zero-bits.

It should be noted that in the particular embodiment being described, the
result of a single hash function is advantageously split into two parts and used
for independent purposes. It would be readily apparent to one of skill in the art
that two independent hash functions could be used for these purposes.

The puzzle 108 then consists of the exponentiation result Z and all but
the last eighty bits of K. To recover C and solve the puzzle 108, the user 102
starts trying values of r, calculating H(L! I7), appending eighty bits of the result
to the given part of K, and checking whether the resulting ¢~ is equal to the
answer Z. When the correct r is found, the left eighty bits of the hash output
may be XORed with the partial K to recover C.

Hence, the above-described technique satisfies the requirements as stated.
The possible solutions of the discrete logarithm problem vary in 160 bits, far too
many for any form of precomputation to be useful. Eighty bits of C are obscured
until K can be verified by trial exponentiation. Eighty bits of K are not revealed
until they are derived from r. Because K depends on L, there is no way to
precompute the limited set of useful hash values. The range of the random
number r determines the average time to solve the puzzle 108 by trial and
error, while the above properties ensure that other shortcuts do not work.

It would be readily apparent to one of skill in the art that the puzzle 108
could also be solved by sending tries to the provider 104 and waiting for an
acknowledgment. The accompanying protocol should ensure that this is not
more efficient than performing the modular exponentiation (which, in
practice, will be satisfied).

Once the user 102 has solved the puzzle 108, the user 102 is in possession
of avalid cookie that contains enough information to subsequently convince
the provider 104 that the user 102 has registered. The cookie also carries any
ancillary data required by the provider 104 to determine the content.

It should be understood that some of the information in the initial
registration request 106 is potentially privacy-sensitive. Similarly, when the
cookie is returned to the provider 104 for subsequent content requests, an

10

15

20

25

30

WO 01/46787 PCT/US00/34981

8

eavesdropper could track the requests based on the cookie. Therefore, it is
desirable that the communication 106 from the user 102 to the provider 104 be
encrypted, and it is relatively easy to accomplish such an encryption using a
discrete-logarithm-based, public-key encryption algorithm such as, e.g., the
Diffie-Hellman algorithm. The public key of the provider 104 could be
embedded in the application, and the common P and g parameters could be
used. Nevertheless, it would be understood by those of skill in the art that the
message 106 from the user 102 to the provider 104 need not be encrypted, and
that in the event the communication 106 is encrypted, any public-key
encryption algorithm could be used.

In one embodiment an encrypted cookie is created and then decrypted,
and a puzzle is created from the encrypted cookie and then solved, as described
below and with reference to FIG. 2. In accordance with this particular
embodiment, the external environment is as follows. Certain data and
functionality are assumed to be present in the calling environment. In
particular, more functionality is required from the provider than from the user.

The primary common parameters of the puzzle system are P, which is
1024 bits in length and prime, and g, a generator whose value is two. The
prime, P, is given by 2/ - 2% - 1 + 2% * { [2®g] + 129093. The hexadecimal

value of P is the following:

FFFFFFFE FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
A637ED6B O0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411
7C4B1FE6 49286651 ECE65381 FFFFFFFF FFFFFFFE.

The following common functionality is advantageously used. Both the
user and the provider require access to an SHA-1 hash algorithm and a long
integer modular exponentiation function. The SHA-1 hash algorithm, which
is denoted H(.), advantageously produces 160-bit results from any input,
regardless of the length of the input. The long integer modular exponentiation
function implicitly references ¢ and P above, and efficiently calculates g*
modulo P for a given value x. Other long integer modular arithmetic

10

15

20

25

30

WO 01/46787 PCT/US00/34981

9

functions, such as, e.g., addition, multiplication, etc., may be used instead in the
implementation of the modular exponentiation functionality.

The following provider-side-only parameters and functionality are
advantageously employed. In addition to the above-described common
functionality requirements, the provider additionally requires the ability to
create and verify cookies in a cryptographically secure manner. To do this, the
provider requires the following items: (1) the 3DES encryption algorithm; (2)
an authentication key Ka; (3) a key Kp used to encrypt cookies; and (4) a source
of high-quality secret pseudo-random numbers. In one embodiment the
authentication key Ka is 128 bits in length. It should be understood that
encryption algorithms other than the 3DES encryption algorithm may be
employed. In the embodiment in which the 3DES encryption algorithm is
used, the key Kp for encrypting cookies should advantageously be 112 bits in
length.

In accordance with this particular embodiment, an encrypted cookie may
be created as follows. In the specific embodiment described, the cookie is a byte
buffer. The maximum length of the input cookie is assumed to be limited by
the 1024-bit length of the prime P plus eighty bits that will eventually be
appended. The cookie is padded with one or more octets to be a multiple of
eight octets, and has eight octets of authentication information prepended.
With the eighty additional bits that are appended, the length of the cookie must |
remain less than 1023 bits. Therefore, in this particular embodiment, the input
cookie must be at most 101 octets, or 808 bits, in length. It would be understood
by those of skill in the art that longer cookies can be handled with slight
modifications if required. The cookie should advantageously have a
minimum length of eight octets. The following pseudo-code parameters may
be applied to encrypt a cookie in accordance with this specific embodiment:

void encryptCookie(
const unsigned char *cookie,
int cookieLength,
unsigned char *encryptedCookie

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981

10

In the above pseudo-code parameters, the parameter cookie points to a buffer
with cookieLength (at most 101) octets of information. The parameter
encryptedCookie points to a buffer with at least ((cookieLength + 16) & 0xF8)
octets of space available, which will be overwritten with the result. The global
information used includes the parameters Ka and Kp.

The following method steps may be used to encrypt a cookie in
accordance with this'specific embodiment. First, the SHA hash H(Ka, cookie) is
calculated and then truncated to eight octets. The truncated hash is then copied
into a file called encryptedCookie. Second, a file called cookie is appended into
the encryptedCookie file. Third, the number of octets of padding required, 1 <=
n <= 8, is calculated, and then the number of octets that contain the value n are
appended. This third method step can be unambiguously reversed. Fourth, the
encryptedCookie file is encrypted using the 3DES encryption algorithm with the
key Kp in Cipher Block Chaining (CBC) mode and an Initialization Vector of
zero.

In accordance with this particular embodiment, an encrypted cookie may

be decrypted by using the following pseudo-code parameters:

int decryptCookie(
const unsigned char *encryptedCookie,
int cookieLength,
unsigned char *cookie

);

In the above pseudo-code parameters, the file encryptedCookie points to a
buffer with cookieLength (at most 112) octets of information. The file cookie
points to a buffer with at least (cookieLength - 8) octets of space available, which
will be overwritten with the result. The return value is the length of the
decrypted cookie if the authentication succeeds. Otherwise, the return value is
zero. The global information used includes the parameters Ka and Kp.

The following method steps may be used to decrypt an encrypted cookie
in accordance with this specific embodiment. First, a file called
encryptedCookie is copied into a temporary buffer and then decrypted using the
3DES encryption algorithm with the key Kp in CBC mode and an Initialisation
Vector of zero. Second, the SHA hash H(Ka, buffer+8) is calculated after

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981
11

removing padding. The SHA hash is then truncated to eight octets. Third, the
eight-octet output is compared with the first eight octets of the buffer. The
value zero is returned if the two compared sets of eight octets are unequal.
Fourth, if the comparison is equal, the temporary buffer plus eight octets is
copied to the cookie file, and the unpadded length of the cookie file is returned.

In accordance with this particular embodiment, a puzzle may be created
from an encrypted cookie as illustrated in FIG. 2. An encrypted cookie 200 is
conceptually partitioned into left (L) and right (R) components. The right
component is eighty bits in length. A random number generator 202 pseudo-
randomly selects a number in the range from zero to 2%. The encrypted cookie
200 is copied into a 1024-bit buffer 204 and padded on the left with zeros 206 and
padded on the right with ten octets of zeros (eighty zero bits). A 160-bit, SHA
hash function 208 is performed on the concatenation of the left component of
the encrypted cookie 200 and the random number selected by the random
number generator 202. The result of the hash function 208, which is twenty
octets in length, is bitwise XORed into the rightmost twenty octets of the buffer
204, modifying the rightmost ten octets of the encrypted cookie 200 and ten
octets of zeros. The buffer 204 is exponentiated to produce an exponentiated
result Z. The exponentiated result Z is sent to the user, or client, in the puzzle
210, which includes the result Z and all but the rightmost eighty bits of the
buffer 204, which are discarded.

In accordance with one embodiment, the following pseudo-code

structure may be used to create a puzzle from an encrypted cookie:

struct puzzle {

int difficulty;
int cookieLength;
unsigned char answer[128];

unsigned char encryptedCookie[cookieLength];

void makePuzzle(
unsigned char *encryptedCookie,
int cookieLength,
int difficulty,

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981
12

struct puzzle *p

);

The input difficulty determines the size of the random number used, which in
turn influences the expected number of trial exponentiations that need to be
done to solve the puzzle. If difficulty is, for example, twenty, then on average
219 hash calculations and trial exponentiations will need to be done by the user
to break the puzzle. The input encrypted cookie has length cookieLen gth. This
function returns after filling in the structure pointed to by p. The
encryptedCookie in the structure is different from the input encrypted cookie,
and will therefore fail to authenticate.

The encrypted cookie is conceptually split into two parts L and R, so that
R is ten octets (eighty bits) long. A random number r is generated in the range
0..24%_1 The encrypted cookie is then copied into a 1024-bit temporary buffer
K, which is padded on the left with zeros, and padded with ten octets of zeros at
the right end. A hash function of L, r is performed to produce a value h, which
is twenty octets long. The value h is XORed into the last twenty octets of the
buffer, modifying the last ten octets of the original encrypted cookie and the
other ten octets of zeros. The temporary buffer K is treated as a 1024-bit integer
and exponentiated to produce Z according to the following equation: Z = 'e
mod P. The pseudo-code structure is filled in by pointing to the appropriate
fields according to the following pseudo-code steps:

p->difficulty = difficulty;

p->cookieLength = cookieLength;
p->answer = Z;

p->encryptedCookie = the middle part of K.

In accordance with one embodiment, a puzzle may be solved by calling a
software routine denoted solvePuzzle. The puzzle solution function must be
called repeatedly to actually solve the puzzle. Each call performs one trial
exponentiation. The calling program is advantageously given the
responsibility for functions such as, e.g., creating background threads, saving
the intermediate state periodically, etc., as would be understood by those skilled
in the art. The following pseudo-code structure completely defines the state of

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981

13

the search process, and is the information that needs to be saved and restored to

continue:

struct puzzlestate f
struct puzzlep;
int upto;

unsigned char intermediate[128];

int solvePuzzle(struct puzzlestate *s);

The solvePuzzle routine should return a value of one when the solvePuzzle
routine has found the solution to the puzzle, in which case the
encryptedCookie field of the puzzlestate structure will contain a valid encrypted
cookie. While still searching, the solvePuzzle routine should return a value of
zero. In the "impossible" case that the solvePuzzle routine has not found the
valid encrypted cookie before searching the entire range, the solvePuzzle
routine should return a value of negative one. Such a result could only occur
in the case in which the transmission of the puzzle gets corrupted or there is a
bug in the program at either the user end or the provider end.

It should be pointed out that before calling solvePuzzle for the first time,
the user should copy the puzzle received from the provider into the above-
shown puzzlestate structure. Also before calling solvePuzzle for the first time,
the user should set the field upto to zero.

It should also be noted that it would be understood by those of skill in
the art that various alternative methods could be used to solve the puzzle and
verify the correctness of the cookie. One such method is the use of keyed
message authentication codes.

It is important that the method used to solve the puzzle be efficient.
Even though the goal is to use computer time, it is important that the time
used should be unavoidable, and not subject to simple optimization. For this
reason, the first call to solvePuzzle must calculate an intermediate result and
save the result to avoid subsequent computation (which is certainly what
someone who wanted to break the system would do). Because g™ == g’¢?, it is
possible to break the puzzle guess up into fixed and variable parts, and compute

10

15

20

25

30

35

WO 01/46787 PCT/US00/34981

14

the exponentiation only on the smaller, variable part. In fact, by dividing
(multiplying by the inverse) the answer by the fixed part, it is necessary only to
exponentiate the 160-bit variable part and then compare to check whether the
problem is solved.

In accordance with this particular embodiment, the puzzle may be solved
by performing the following steps: First, if the upto field is zero, the
intermediate field is initialized. The initialization procedure is performed by
splitting the encryptedCookie field into left and right parts (L and R) such that R
is ten octets long, and then calculating the multiplicative inverse of (L*2"*) and
multiplying by the answer field to get the resultant value for the intermediate
field. Second, a hash function is performed on the L and upto fields, and a 160-
bit result is formed from R and the rightmost ten octets of the hash. Third, the
160-bit result is exponentiated to produce an exponentiation result. Fourth, the
exponentiation result is compared to the value in the intermediate field. If the
compared values are different, the upto field is incremented and a value of zero
is returned. (Or, if the value of the upto field is greater than or equal to 2%/
(i.e., something has gone wrong), a value of negative one is returned.) Fifth,
otherwise (i.e., if the compared values in the fourth step are the same), the
leftmost eighty bits of the hash of L and upto are XORed into the rightmost bits
of the encryptedCookie field (which is now correct), and a value of one is
returned, indicating success.

Thus, a novel and improved method of authenticating anonymous
users while reducing potential for “middleman” fraud has been described.
Those of skill in the art would understand that the various illustrative logical
blocks, modules, circuits, and algorithm steps described in connection with the
embodiments disclosed herein may be implemented as electronic hardware,
computer software, or combinations of both. ~The various illustrative
components, blocks, modules, circuits, and steps have been described generally
in terms of their functionality. Whether the functionality is implemented as
hardware or software depends upon the particular application and design
constraints imposed on the overall system. Skilled artisans recognize the
interchangeability of hardware and software under these circumstances, and
how best to implement the described functionality for each particular
application. As examples, the various illustrative logical blocks, modules,
circuits, and algorithm steps described in connection with the embodiments

10

15

20

WO 01/46787 PCT/US00/34981

15

disclosed herein may be implemented or performed with a digital signal
processor (DSP), an application specific integrated circuit (ASIC), discrete gate or
transistor logic, discrete hardware components such as, e.g., registers and FIFO,
a processor executing a set of firmware instructions, any conventional
programmable software module and a processor, or any combination thereof.
The processor may advantageously be a microprocessor, but in the alternative,
the processor may be any conventional processor, controller, microcontroller,
or state machine. The software module could reside in RAM memory, flash
memory, ROM memory, registers, hard disk, a removable disk, a CD-ROM, or
any other form of storage medium known in the art. Those of skill would
further appreciate that the data, instructions, commands, information, signals,
bits, symbols, and chips that may be referenced throughout the above
description ~are advantageously represented by voltages, currents,
electromagnetic waves, magnetic fields or particles, optical fields or particles, or
any combination thereof.

Preferred embodiments of the present invention have thus been shown
and described. It would be apparent to one of ordinary skill in the art, however,
that numerous alterations may be made to the embodiments herein disclosed
without departing from the spirit or scope of the invention. Therefore, the
present invention is not to be limited except in accordance with the following

claims.

What is claimed is:

W

WO 01/46787 PCT/US00/34981
16

CLAIMS

1. A method for a provider of software to authenticate users of the
software, comprising the steps of:
constructing a puzzle in response to information received from a
user, the puzzle including the information;
sending the puzzle to the user; and
returning a solution to the puzzle to the provider.

2. The method of claim 1, wherein the information comprises

demographic information about the user.

3. The method of claim 1, wherein the information comprises an

identity of the user.

4. The method of claim 1, wherein the constructing step comprises
the steps of deriving a value from the information to produce a derived value,
exponentiating the derived value to produce an exponentiated value, and

combining the exponentiated value with a portion of the derived value.

5. The method of claim 4, further comprising the steps of storing the
information and a random number, performing a hash function on the
information and the random number to generate a first hash result, and
encrypting the first hash result, wherein the deriving step comprises the steps
of partitioning the encrypted hash result into first and second components,
performing a hash function on a concatenation of the first component and the
random number to generate a second hash result, appending a plurality of zero
values to the second component to produce a lengthened second component,
performing an exclusive-OR operation between the lengthened second

10

12

4

WO 01/46787 PCT/US00/34981

17

component and the second hash result to generate an exclusive-OR result, and
concatenating the first component and the exclusive-OR result to produce the

value.

6. The method of claim 4, wherein the exponentiating step
comprises the steps of raising a generator to a power, the power being the
derived value, dividing the generator raised to the power of the derived value
by a prime number, and obtaining the remainder of the division operation.

7. An apparatus for enabling a provider of software to authenticate

users of the software, comprising:
means for constructing a puzzle in response to information

received from a user, the puzzle including the information;
means for sending the puzzle to the user; and
means for returning a solution to the puzzle to the provider.

8. The apparatus of claim 7, wherein the information comprises

demographic information about the user.

9. The apparatus of claim 7, wherein the information comprises an

identity of the user.

10. The apparatus of claim 7, wherein the means for constructing a
puzzle comprises means for deriving a value from the information to produce
a derived value, means for exponentiating the derived value to produce an
exponentiated value, and means for combining the exponentiated value with a

portion of the derived value.

11. The apparatus of claim 10, further comprising means for storing
the information and a random number, means for performing a hash function

on the information and the random number to generate a first hash result, and

10

12

(@)

WO 01/46787 PCT/US00/34981

18

means for encrypting the first hash result, wherein the means for deriving
means for partitioning the encrypted hash result into first and second
components, performing a hash function on a concatenation of the first
component and the random number to generate a second hash result,
appending a plurality of zero values to the second component to produce a
lengthened second component, performing an exclusive-OR operation between
the lengthened second component and the second hash result to generate an
exclusive-OR result, and concatenating the first component and the exclusive-

OR result to produce the value.

12. The apparatus of claim 10, wherein the means for exponentiating
comprises means for raising a generator to a power, the power being the
derived value, means for dividing the generator raised to the power of the
derived value by a prime number, and means for obtaining the remainder of

the division operation.

13. An apparatus for enabling a provider of software to authenticate
users of the software, comprising;:
a processor; and
a processor-readable storage medium accessible by the processor
and containing a set of instructions executable by the processor to construct a
puzzle in response to information received from a user, the puzzle including

the information, and send the puzzle to the user.
14. The apparatus of claim 13, wherein the information comprises

demographic information about the user.

15. The apparatus of claim 13, wherein the information comprises an

identity of the user.

16. The apparatus of claim 13, wherein the puzzle is constructed by

deriving a value from the information to produce a derived value,

10

12

WO 01/46787 PCT/US00/34981

19
exponentiating the derived value to produce an exponentiated value, and

combining the exponentiated value with a portion of the derived value.

17. The apparatus of claim 16, wherein the set of instructions is
further executable by the processor to store the information and a random
number, perform a hash function on the information and the random number
to generate a first hash result, and encrypt the first hash result, wherein the
derived value is derived by partitioning the encrypted hash result into first and
second components, performing a hash function on a concatenation of the first
component and the random number to generate a second hash result,
appending a plurality of zero values to the second component to produce a
lengthened second component, performing an exclusive-OR operation between
the lengthened second component and the second hash result to generate an
exclusive-OR result, and concatenating the first component and the exclusive-

OR result to produce the value.

18. The apparatus of claim 16, wherein the exponentiated value is
exponentiated by raising a generator to a power, the power being the derived
value, dividing the generator raised to the power of the derived value by a

prime number, and obtaining the remainder of the division operation.

19. A method of preventing a person from impersonating a plurality
of users of software, comprising the steps of:
constructing a plurality of puzzles, each puzzle having a solution
that includes information about a respective one of the plurality of users, each
puzzle requiring consumption of a resource to solve; and
sending each puzzle to a respective one of the plurality of users for

solution.

20. The method of claim 19, wherein the resource is computer

processing time.

WO 01/46787 PCT/US00/34981
1/1

104 MIDDLEMAN, 102
p DEMOGRAPHIC DATA
06
PUZZLE N
NMo8
PROVIDER USER
DECRYPTED PUZZLE,
AD REQUEST 110
< —P
M
100
FIG. 1
200 202
ENCRYPTED COOKIE RANDOM |
SHA
206 208\ ¢ XOR
0 160-BIT{HASH
Y (204 y XOR Y

L]
I
I

EXPONENTIATE THIS TO :GET ANSWER

N

v 210 DISCARD
SEND TO CLIENT

: L R

A

FIG. 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

