

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2758847 A1 2010/10/21

(21) **2 758 847**

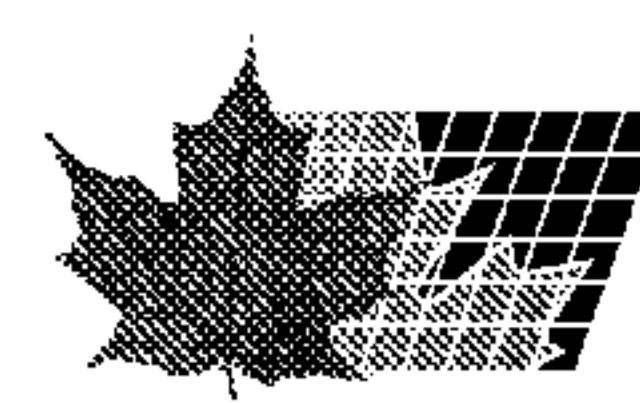
(12) **DEMANDE DE BREVET CANADIEN**
CANADIAN PATENT APPLICATION

(13) **A1**

(86) Date de dépôt PCT/PCT Filing Date: 2010/04/13
(87) Date publication PCT/PCT Publication Date: 2010/10/21
(85) Entrée phase nationale/National Entry: 2011/10/13
(86) N° demande PCT/PCT Application No.: US 2010/030862
(87) N° publication PCT/PCT Publication No.: 2010/120755
(30) Priorité/Priority: 2009/04/14 (US61/169,061)

(51) Cl.Int./Int.Cl. *A61K 9/48* (2006.01),
A61K 31/4245 (2006.01), *A61K 47/10* (2006.01)

(71) **Demandeur/Applicant:**
BRISTOL-MYERS SQUIBB COMPANY, US


(72) **Inventeurs/Inventors:**
CHANDRAN, SACHIN, US;
GANDHI, RAJESH BABULAL, US;
LEVONS, JAQUAN KALANI, US;
PERRONE, ROBERT KEVIN, US;
PRICE, CHRISTOPHER P., US;
RAGHAVAN, KRISHNASWAMY SRINIVAS, US;
ULLAH, ISMAT, US

(74) **Agent:** GOWLING LAFLEUR HENDERSON LLP

(54) Titre : COMPOSITIONS DE GELULES BIODISPONIBLES DE COMPOSE ALPHA-(N-SULFONAMIDO) ACETAMIDE AMORPHE
(54) Title: BIOAVAILABLE CAPSULE COMPOSITIONS OF AMORPHOUS ALPHA-(N-SULFONAMIDO)ACETAMIDE COMPOUND

(57) **Abrégé/Abstract:**

Pharmaceutical capsule compositions containing the active compound (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, and polyethylene glycol (PEG), Vitamin E polyethylene glycol succinate, polyvinylpyrrolidone (PVP) or copovidone (PVP-Polyvinyl acetate), with or without citric acid, are provided.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
21 October 2010 (21.10.2010)(10) International Publication Number
WO 2010/120755 A1(51) International Patent Classification:
A61K 9/48 (2006.01) *A61K 47/10* (2006.01)
A61K 31/4245 (2006.01)(74) Agents: **MINGO, Pamela, A.** et al.; Bristol-Myers Squibb Company, P.O. Box 4000, Princeton, New Jersey 08543-4000 (US).(21) International Application Number:
PCT/US2010/030862

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
13 April 2010 (13.04.2010)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/169,061 14 April 2009 (14.04.2009) US(71) Applicant (for all designated States except US): **BRISTOL-MYERS SQUIBB COMPANY** [US/US]; Route 206 and Province Line Road, Princeton, New Jersey 08543-4000 (US).(72) Inventors; and
(75) Inventors/Applicants (for US only): **CHANDRAN, Sachin** [IN/US]; c/o Bristol-Myers Squibb Company, 1 Squibb Drive, New Brunswick, New Jersey 08903 (US). **GANDHI, Rajesh, Babulal** [US/US]; c/o Bristol-Myers Squibb Company, 1 Squibb Drive, New Brunswick, New Jersey 08903 (US). **LEVONS, Jaquan, Kalani** [US/US]; c/o Bristol-Myers Squibb Company, 1 Squibb Drive, New Brunswick, New Jersey 08903 (US). **PERRONE, Robert, Kevin** [US/US]; c/o Bristol-Myers Squibb Company, 1 Squibb Drive, New Brunswick, New Jersey 08903 (US). **PRICE, Christopher, P.** [US/US]; 847 Sir Francis Drake Blvd., Kentfield, California 94904 (US). **RAGHAVAN, Krishnaswamy, Srinivas** [US/US]; c/o Bristol-Myers Squibb Company, 1 Squibb Drive, New Brunswick, New Jersey 08903 (US). **ULLAH, Ismat** [US/US]; 2 Mockingbird Court, Cranbury, New Jersey 08512 (US).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))

WO 2010/120755 A1

(54) Title: BIOAVAILABLE CAPSULE COMPOSITIONS OF AMORPHOUS ALPHA-(N-SULFONAMIDO)ACETAMIDE COMPOUND

(57) Abstract: Pharmaceutical capsule compositions containing the active compound (2R)-2-[[4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, and polyethylene glycol (PEG), Vitamin E polyethylene glycol succinate, polyvinylpyrrolidone (PVP) or copovidone (PVP-Polyvinyl acetate), with or without citric acid, are provided.

BIOAVAILABLE CAPSULE COMPOSITIONS OF AMORPHOUS ALPHA-(N-SULFONAMIDO)ACETAMIDE COMPOUND

CROSS-REFERENCE TO RELATED APPLICATIONS

5 This application claims the benefit of U.S. Provisional Application Serial Number 61/169,061 filed April 14, 2009.

FIELD OF THE INVENTION

The present invention relates to pharmaceutical formulations containing the
10 Beta amyloid peptide production inhibitor compound (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, and more particularly, to pharmaceutical capsule compositions containing (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide together with one
15 or more pharmaceutically acceptable polymers that are storage stable for extended periods and are orally bioavailable with good *in vivo* absorption.

BACKGROUND OF THE INVENTION

Alzheimer's disease (AD) is a progressive neurodegenerative disease which
20 begins with memory loss and progresses to include severe cognitive impairment, altered behavior, and decreased motor function (Grundman, M. et al., *Arch Neurol.*, 61:59-66 (2004); Walsh, D.M. et al., *Neuron*, 44:181-193 (2004)). It is the most common form of dementia and represents the third leading cause of death after cardiovascular disorders and cancer. The cost of AD is enormous and includes the
25 suffering of the patients and families and the lost productivity of patients and caregivers. No treatment that effectively prevents AD or reverses the clinical symptoms and underlying pathophysiology is currently available.

A definitive diagnosis of AD for a demented patient requires a histopathological evaluation of the number and localization of neuritic plaques and
30 neurofibrillary tangles upon autopsy (Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. *Neurobiol. Aging*, 18:S1-S2 (1997)).

Similar alterations are observed in patients with Trisomy 21 (Down syndrome). Plaques primarily consist of β -amyloid (A β) peptides that are formed by a stepwise proteolytic cleavage of the amyloid precursor protein (APP) by β -site APP-cleaving enzyme (BACE), to generate the N-terminus, and γ -secretase, to generate the C-terminus (Selkoe, D.J., *Physiol. Rev.*, 81:741-766 (2001)). γ -Secretase is a transmembrane protein complex that includes Nicastrin, Aph-1, PEN-2, and either Presenilin-1 (PS-1) or Presenilin-2 (PS-2) (Wolfe, M.S. et al., *Science*, 305:1119-1123 (2004)). PS-1 and PS-2 are believed to contain the catalytic sites of γ -secretase.

A β 40 is the most abundant form of A β synthesized (80-90%), while A β 42 is most closely linked with AD pathogenesis. In particular, mutations in the APP, PS-1, and PS-2 genes that lead to rare, familial forms of AD implicate A β 42 aggregates as the primary toxic species (Selkoe, D.J., *Physiol. Rev.*, 81:741-766 (2001)). Current evidence suggests that oligomeric, protofibrillar and intracellular A β 42 play a significant role in the disease process (Cleary, J.P. et al., *Nat. Neurosci.*, 8:79-84 (2005)). Inhibitors of the enzymes that form A β 42, such as γ -secretase, represent potential disease-modifying therapeutics for the treatment of AD.

γ -Secretase cleaves multiple type I transmembrane proteins in addition to APP (Pollack, S.J. et al., *Curr. Opin. Investig. Drugs*, 6:35-47 (2005)). While the physiological significance of most of these cleavage events is unknown, genetic evidence indicates that γ -secretase cleavage of Notch is required for Notch signaling (Artavanis-Tsakonas, S. et al., *Science*, 284(5415):770-776 (1999); Kadesch, T., *Exp. Cell Res.*, 260(1):1-8 (2000)). In rodents dosed with γ -secretase inhibitors, drug-related toxicity has been identified in the gastrointestinal (GI) tract, thymus, and spleen (Searfoss, G.H. et al., *J. Biol. Chem.*, 278:46107-46116 (2003); Wong, G.T. et al., *J. Biol. Chem.*, 279:12876-12882 (2004); Milano, J. et al., *Toxicol. Sci.*, 82:341-358 (2004)). These toxicities are likely linked to inhibition of Notch signaling (Jensen, J. et al., *Nat. Genet.*, 24:36-44 (2000)).

The identification of mechanism-based toxicity raises the question of whether an acceptable therapeutic index can be achieved with γ -secretase inhibitors. Selective inhibition of A β formation over Notch processing, pharmacokinetics, drug

disposition and/or tissue-specific pharmacodynamics could impact therapeutic margin.

Evidence suggests that a reduction in brain A β levels by inhibition of γ -secretase may prevent the onset and progression of AD (Selkoe, D. *Physiol. Rev.*, 81:741-766 (2001); Wolfe, M., *J. Med. Chem.*, 44:2039-2060 (2001)). There are emerging data for the role of A β in other diseases, including mild cognitive impairment (MCI), Down syndrome, cerebral amyloid angiopathy (CAA), dementia with Lewy bodies (DLB), amyotrophic lateral sclerosis (ALS-D), inclusion body myositis (IBM), and age-related macular degeneration. Advantageously, compounds that inhibit γ -secretase and reduce production of A β could be used to treat these or other A β -dependent diseases.

Excess production and/or reduced clearance of A β causes CAA (Thal, D. et al., *J. Neuropath. Exp. Neuro.*, 61:282-293 (2001)). In these patients, vascular amyloid deposits cause degeneration of vessel walls and aneurysms that may be responsible for 10-15% of hemorrhagic strokes in elderly patients. As in AD, mutations in the gene encoding A β lead to an early onset form of CAA, referred to as cerebral hemorrhage with amyloidosis of the Dutch type, and mice expressing this mutant protein develop CAA that is similar to patients. Compounds that specifically target γ -secretase could reduce or prevent CAA.

DLB manifests with visual hallucinations, delusions, and parkinsonism. Interestingly, familial AD mutations that cause A β deposits can also cause Lewy bodies and DLB symptoms (Yokota, O. et al., *Acta Neuropathol. (Berl.)*, 104:637-648 (2002)). Further, sporadic DLB patients have A β deposits similar to those in AD (Deramecourt, V. et al., *J. Neuropathol. Exp. Neurol.*, 65:278-288 (2006)). Based on this data, A β likely drives Lewy body pathology in DLB and, therefore, γ -secretase inhibitors could reduce or prevent DLB.

Approximately 25% of ALS patients have significant dementia or aphasia (Hamilton, R.L. et al., *Acta Neuropathol. (Berl.)*, 107:515-522 (2004)). The majority (~60%) of these patients, designated ALS-D, contain ubiquitin-positive inclusions comprised primarily of the TDP-43 protein (Neumann, M. et al., *Science*, 314:130-133 (2006)). About 30% of the ALS-D patients have amyloid plaques consistent with

A β causing their dementia (Hamilton, R.L. et al., *Acta Neuropathol. (Berl.)*, 107:515-522 (2004)). These patients should be identifiable with amyloid imaging agents and potentially treatable with γ -secretase inhibitors.

IBM is a rare, age-related degenerative disease of skeletal muscle. The 5 appearance of A β deposits in IBM muscle and the recapitulation of several aspects of the disease by directing APP overexpression to muscle in transgenic mice support the role of A β in IBM (reviewed in Murphy, M.P. et al., *Neurology*, 66:S65-S68 (2006)). Compounds that specifically target γ -secretase could reduce or prevent IBM.

In age-related macular degeneration, A β was identified as one of several 10 components of drusen, extracellular deposits beneath the retinal pigment epithelium (RPE) (Anderson, D.H. et al., *Exp. Eye Res.*, 78:243-256 (2004)). A recent study has shown potential links between A β and macular degeneration in mice (Yoshida, T. et al., *J. Clin. Invest.*, 115:2793-2800 (2005)). Increases in A β deposition and 15 supranuclear cataracts have been found in AD patients (Goldstein, L.E. et al., *Lancet*, 361:1258-1265 (2003)). Compounds that specifically target γ -secretase could reduce or prevent age-related macular degeneration.

Based on the role of Notch signaling in tumorigenesis, compounds which inhibit γ -secretase may also be useful as therapeutic agents for the treatment of cancer (Shih, I.-M., et al., *Cancer Res.*, 67:1879-1882 (2007)).

20 Compounds which inhibit gamma secretase may also be useful in treating conditions associated with loss of myelination, for example multiple sclerosis (Watkins, T.A. et al., *Neuron*, 60:555-569 (2008)).

25 A recent study by Georgetown University Medical Center researchers suggests that gamma-secretase inhibitors may prevent long-term damage from traumatic brain injury (Loane, D.J. et al., *Nat. Med.*, 1-3 (2009)).

Smith, et al. in International Application No. WO 00/50391, published August 31, 2000, disclose a series of sulfonamide compounds that can act to modulate 30 production of amyloid β protein as a means of treating a variety of diseases, especially Alzheimer's disease and other diseases relating to the deposition of amyloid.

Japanese Patent No.11343279, published December 14, 1999 discloses a series of sulfonamide derivatives which are TNF-alpha inhibitors useful for treating autoimmune diseases.

Parker et al. in International Application No. WO 03/053912, published July 5, 2003, disclose a series of α -(N-sulphonamido)acetamide derivatives as β -amyloid inhibitors which are useful for the treatment of Alzheimer's disease and other conditions associated with β -amyloid peptide.

It has now been further discovered that an α -(N-sulphonamido)acetamide compound known as (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide possesses unique attributes which make it useful for the treatment of Alzheimer's disease and other conditions associated with β -amyloid peptide. This compound is set forth and described in co-pending application with U.S. Patent Application Serial No. 12/249,180, filed October 10, 2008, the contents of which are incorporated herein in 15 their entirety.

Unfortunately, (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide has poor aqueous solubility that is often characterized as < 1 ug/mL at about room temperature. Moreover, there has been shown no appreciable improvement in bioavailability by 20 particle size reduction. In addition, solid dosage forms containing the drug compound in a crystalline form showed low oral bioavailability in dogs. Thus, it now appears that in order to provide optimal exposure of the API, a solid dosage form containing the active compound in a non-crystalline form should be provided.

What is therefore now needed in the art is one or more capsule formulations 25 containing the active compound (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, including pharmaceutically acceptable salts thereof, together with one or more pharmaceutically acceptable polymers. These formulations should preferably display enhanced bioavailability and reduced degradation properties.

SUMMARY OF THE INVENTION

In one embodiment, the present invention provides a pharmaceutical composition comprising (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, polyethylene glycol (PEG), Vitamin E polyethylene glycol succinate, one crystallization inhibitor member selected from the group consisting of polyvinylpyrrolidone (PVP) and copovidone (PVP-Polyvinyl acetate), and citric acid.

In a further embodiment, there is provided a pharmaceutical capsule containing the above composition. This pharmaceutical capsule is preferably a hard gel capsule.

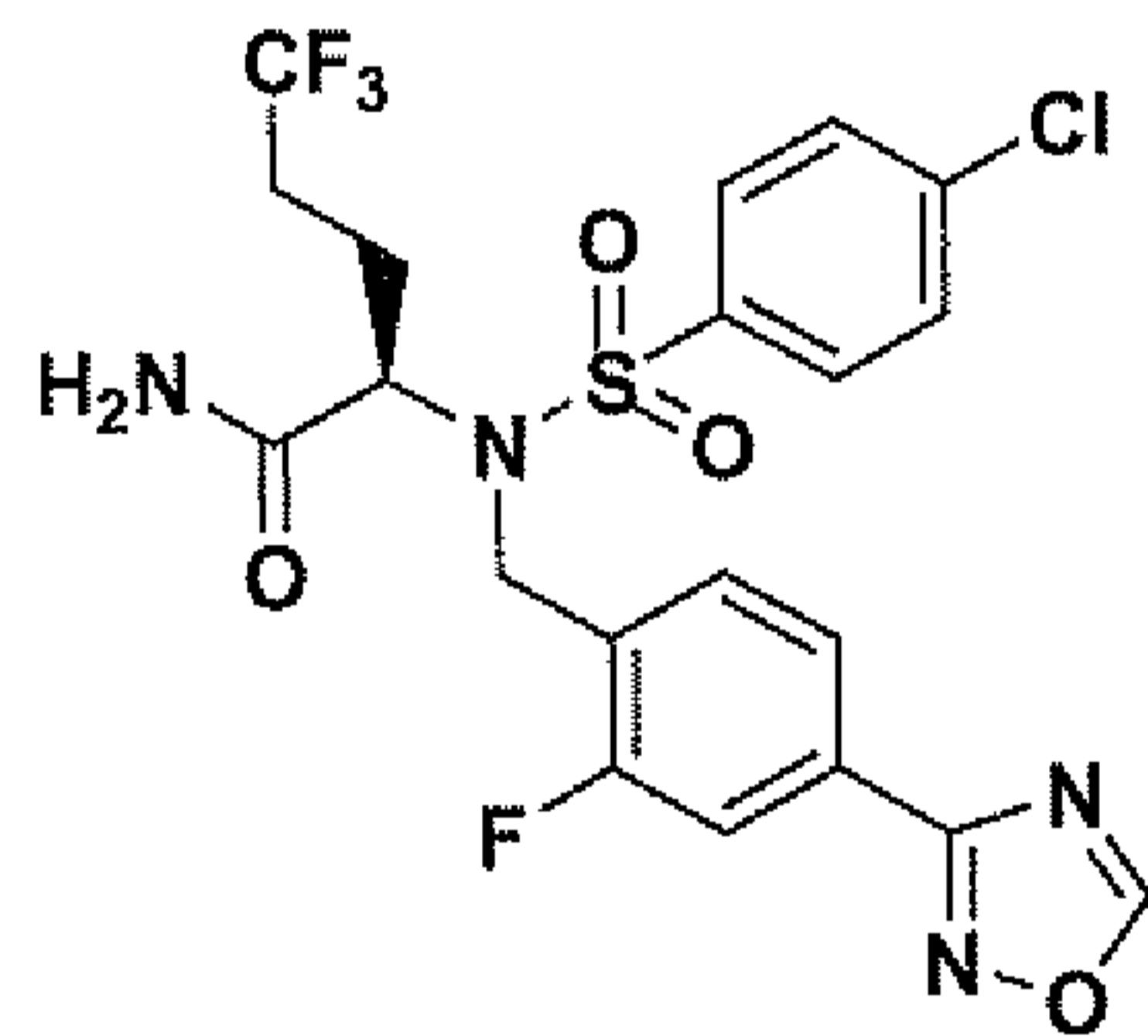
Also provided herein is a method of making a pharmaceutical composition which comprises dissolving (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide in a mixture of PEG, Vitamin E PEG succinate, a crystallization inhibitor member, and citric acid.

15 In a further step, the resultant mixture is put into a pharmaceutical capsule.

In another embodiment of the invention, there is provided a pharmaceutical composition comprising (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, polyethylene glycol (PEG), Vitamin E polyethylene glycol succinate, one crystallization inhibitor member selected from the group consisting of polyvinylpyrrolidone (PVP) and copovidone (PVP-Polyvinyl acetate), and no citric acid. For this embodiment, there is also provided a pharmaceutical capsule containing the aforesaid composition. This pharmaceutical capsule is preferably a soft gel capsule.

Also provided herein is a method of making a pharmaceutical composition which comprises dissolving (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide in a mixture of PEG, Vitamin E PEG succinate, a crystallization inhibitor member, and no citric acid.

25 In a further step, the resultant mixture is put into a pharmaceutical capsule.


In a further embodiment of the invention there is provided a method of treating or delaying the onset of Alzheimer's disease, cerebral amyloid angiopathy, mild cognitive impairment and/or Down syndrome, as well as the treatment of head

trauma, traumatic brain injury, and/or dementia pugilistica, which comprises administering to a patient a therapeutically effective amount of a pharmaceutical capsule composition according to one or more of the embodiments herein described.

The present invention is directed to these, as well as other important ends,
5 hereinafter described.

DETAILED DESCRIPTION OF THE INVENTION

(2R)-2-[[[4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide having the Formula I, including
10 its pharmaceutically acceptable salts thereof, has now been found useful in inhibiting A β production in patients suffering from or susceptible to Alzheimer's disease (AD) or other disorders associated with β -amyloid peptide.

I

This compound has the chemical formula C₂₀H₁₇ClF₄N₄O₄S, and a molecular
15 weight of 520.88.

According to a first embodiment, there is provided a composition comprising about 0.1 to 20% of the active compound (2R)-2-[[[4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, together with up to about 90% of polyethylene glycol (PEG) as solubilizer, and up to 20 about 90% of Vitamin E polyethylene glycol succinate (TPGS) as co-solubilizer/surfactant, about 0.1 to 20% of a crystallization inhibitor member selected from the group consisting of polyvinylpyrrolidone (PVP) and copovidone (PVP-Polyvinyl acetate), and about 0.05 to 5% of citric acid as a stabilizer. (Unless otherwise stated, percentage (%) of components is provided on a weight/weight or 25 "w/w" basis). Preferably, there is provided a composition containing about 0.1 to

20% of the active compound, together with about 35 to 90% of PEG, about 2 to 60% of TPGS, about 0.1 to 20% of the crystallization inhibitor member, and about 0.05 to 5% of citric acid. Even more preferably, there is provided a composition containing about 0.1 to 10% of the active compound, together with about 50 to 85% of PEG, 5 about 5 to 40% of TPGS, about 1 to 10% of the crystallization inhibitor member, and about 0.05 to 1% of citric acid. These compositions are especially well adapted for use with hard gel capsules, hereinafter described.

It is preferred that the polyethylene glycol (PEG) component be PEG 1450. PEG 1450 has demonstrated enhanced solubilization of the active compound. It is 10 preferred over such compounds as PEG 3550, PEG 4000 and PEG 6000, etc. The active compound (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl] methyl] amino]-5,5,5-trifluoropentanamide has shown to have about 25 to 30% higher solubility in PEG 1450, as compared to PEG 3350 at about 60° C.

As stated above, Vitamin E Polyethylene Glycol Succinate (TPGS) is the 15 preferred co-solubilizer/surfactant for the active compound. In certain embodiments, the TPGS can also be present as the sole solubilizer/surfactant in the composition of the invention. Formulations containing TPGS have now been shown to provide superior resistance to precipitation of the water-insoluble active compound following aqueous dilution, compared to formulations containing other surfactants such as the 20 polyoxyethylene sorbitan monooleates (Polysorbates, e.g., Polysorbate 80). This property provides for increased oral absorption since the drug is not well absorbed orally from a crystalline state. In addition, as shown in Table IV hereinbelow, stability studies indicated formulations containing TPGS demonstrated superior 25 stability (*i.e.*, lower levels of the degradant compound formed from the active) as compared to counterpart formulations containing other surfactants such as the polyoxyethylene sorbitan monooleates (Polysorbates, e.g., Polysorbate 80) and the polyoxyethylene-polyoxypropylene glycol block copolymers (for example Polaxamer 407 or PLURONIC® F127).

The crystallization inhibitor member component of the composition is one 30 member selected from the group consisting of polyvinylpyrrolidone (PVP) and copovidone (PVP-Polyvinyl acetate). It is preferred that the crystallization inhibitor

by either PVP or PVP-Polyvinyl acetate. The water soluble polyvinylpyrrolidone (povidone) polymers and polyvinlyprrolidone-polyvinylacetate (copovidone) copolymers provide additional resistance to crystallization of the active drug compound during storage of the dosage forms and following aqueous dilution. The 5 average molecular weight of polyvinylpyrrolidones (povidones) used in the present formulations may be in the range of from about 2,000 to about 54,000, but preferably in the range from about 2,000 to about 30,000, to help ensure that a liquid fill is obtained. Preferred polyvinylpyrrolidones are sold under trademarks KOLLIDON® 12 PF, KOLLIDON® 17 PF, KOLLIDON® 25 and KOLLIDON® 30 by BASF 10 Corporation. The preferred average molecular weight of polyvinlyprrolidone-polyvinylacetate (copovidones) used in the formulations of the invention may be in the range of about 45,000 to 70,000, to help ensure that a liquid fill is obtained. The preferred polyvinlyprrolidone-polyvinylacetate (copovidone) is sold under the trademark KOLLIDON® VA64 by BASF Corporation. Alternative or additional 15 crystallization inhibitor members that may be included in the formulations include the water-soluble cellulose ether derivatives (for example : hydroxypropylcellulose, hydroxypropylmethylcellulose) and the like.

As stated, citric acid is the preferred stabilizer that may be included in the formulation. Other pharmaceutically acceptable stabilizers of the active compound 20 include various inorganic acids (for example : hydrochloric acid, and the like) or other organic mono-, di-, or tri-carboxylic acids (for example : acetic acid, ascorbic acid, methanesulfonic acid, succinic acid, tartaric acid, and the like) and various salts of these acids (for example sodium citrate, sodium succinate, sodium tartrate, and the like).

25 Other excipients such as pharmaceutical-grade fillers and binders available in the art may also be incorporated therein the composition, but this is optional. The formulations may optionally also contain a pharmaceutically acceptable antioxidant for stabilization of the dosage form. Examples include ascorbic acid, BHA, BHT, propyl gallate, Vitamin E, and the like.

30 In order to prepare the compositions hereinabove described, various preparation means available to the skilled artisan may be utilized. It is preferred that

the compound (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide be dissolved at elevated temperature in an admixture solution of the polyethylene glycol (PEG), Vitamin E polyethylene glycol succinate, crystallization inhibitor member, and citric acid using 5 apparatus and procedures available in the art.

In a further embodiment of the invention, there is provided another composition of the invention. According to this embodiment, there is provided 0.1 to 25% of the active compound (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, together with up to 10 about 90% of polyethylene glycol (PEG) as solubilizer, and up to about 90% of Vitamin E polyethylene glycol succinate (TPGS) as co-solubilizer/surfactant, about 0.1 to 20% of a crystallization inhibitor member selected from the group consisting of polyvinylpyrrolidone (PVP) and copovidone (PVP- Polyvinyl acetate), and no citric acid stabilizer. Preferably, there is provided a composition containing about 0.1 to 15 20% of the active compound, together with about 5 to 75% of PEG, about 5 to 75% of TPGS, about 0.1 to 20% of the crystallization inhibitor member, and no citric acid stabilizer. Even more preferably, there is provided a composition containing about 0.5 to 20% of the active compound, together with about 10 to 30% of PEG, about 45 to 75% of TPGS, about 1 to 10% of the crystallization inhibitor member, and no citric acid stabilizer. 20 These compositions are especially well adapted for use with soft gel capsules, hereinafter described.

In this embodiment, PEG 400 is the preferred solubilizing component due to superior solubilization of the active drug compound in this excipient and the preferred soft gelatin capsule processing parameters provided by lowering the melting 25 point range of the fill material compared to that obtained by other related potential solubilizers, *e.g.*, PEG 1450, PEG 3550, PEG 4000, PEG 6000, etc.

The co-solubilizer/surfactant TPGS component and the crystallization inhibitor member component are as previously described. In this embodiment, copovidone (PVP-polyvinyl acetate) may be especially useful as the crystallization 30 inhibitor member component.

As stated, there is no citric acid stabilizer in the composition according to this embodiment. However, the dosage forms may optionally include a pharmaceutically acceptable stabilizer of the active compound, including various inorganic acids (for example : hydrochloric acid, and the like) or other organic mono-, di-, or tri-
5 carboxylic acids (for example : acetic acid, ascorbic acid, methanesulfonic acid, citric acid, succinic acid, tartaric acid, and the like) and various salts of said acids (for example sodium citrate, sodium succinate, sodium tartrate, and the like).

The formulations according to this embodiment may optionally also contain a pharmaceutically acceptable antioxidant for stabilization of the dosage form.
10 Examples include ascorbic acid, BHA, BHT, propyl gallate, Vitamin E, and the like. The dosage forms may also contain glycerin and/or another suitable plasticizer for physical stability when encapsulated in a soft gelatin capsule.

In order to prepare the compositions according to the further embodiment hereinabove described, various preparation means available to the skilled artisan may
15 be utilized. It is preferred that the active compound (2R)-2-[[[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide be dissolved at elevated temperature in an admixture solution of the polyethylene glycol (PEG), Vitamin E polyethylene glycol succinate, and crystallization inhibitor member using apparatus and procedures available in the
20 art.

The compositions of the invention herein described according to the various embodiments may then be further adapted for oral administration in discrete units such as capsules. These capsules may be hard or soft. For instance, for oral administration in the form of a capsule, the compositions herein described containing
25 the active drug component may be utilized as is, or can be further combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, glycerin, water, and the like. The compositions of the invention may be encapsulated as liquid, semi-solid or solid matrices. Powders may be prepared, for example, by comminuting the composition of the invention, or the active compound, to a suitable
30 fine size and if desired, further mixing with a similarly comminuted pharmaceutical carrier such as an edible carbohydrate, as, for example, starch or mannitol.

Capsules are then made by filling formed gelatin sheaths or shells. In addition to gelatin, other materials for the capsule sheath or shell include hydroxypropyl methylcellulose (HPMC), cellulose, methylcellulose, starch, other materials, and combinations of any of the foregoing.

5 Other methods for preparing capsules (both hard and soft) available to the skilled artisan may also be utilized. Flavoring, preservative, dispersing, and coloring agent can also be present, if desired. Glidants and lubricants such as colloidal silica, talc, magnesium stearate, calcium stearate, or solid polyethylene glycol can be added to the mixture before the filling operation. A disintegrating or solubilizing agent such 10 as agar-agar, calcium carbonate, or sodium carbonate can also be added to improve the availability of the medicament when the capsule is ingested. Moreover, when desired or necessary, suitable additional binders, lubricants, disintegrating agents, and coloring agents can also be incorporated into the mixture. Suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural 15 and synthetic gums such as acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, and the like. Lubricants used in these dosage forms include sodium oleate, sodium chloride, and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, betonite, xanthan gum, and the like.

20 Two-piece capsules may be banded, *e.g.* with a gelatin-based solution for hard gelatin capsules, or an HPMC-based solution for HPMC capsules. By way of non-limiting example, pharmaceutical capsules containing about 5 mg., about 10 mg., about 20 mg. and about 50 mg., respectively, of the active compound (2R)-2-[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide may be made using the 25 compositions herein described. Other dosage units are within the scope hereof.

In particular, capsules containing (2R)-2-[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide have demonstrated good *in vitro* dissolution rates, and also good oral bioavailability 30 in dogs. Even more importantly, the compositions according to the various embodiments of the invention have demonstrated consistent and good bioavailability

in humans when delivered orally using the capsule mechanism. This enhanced bioavailability is unexpected based on the presence of significant drug precipitation observed during *in vitro* studies (see Table V, hereinafter set forth), and a lack of *in vitro* – *in vivo* correlation.

5 The capsule compositions of the invention containing (2R)-2-[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide are highly storage stable, demonstrating good long-term chemical and physical stability. This means that they exhibit little (less than about 5%) degradation for at least about 12 months, and preferably for at least about 24
10 months, when stored in a closed container under either approximately 25°C/60% relative humidity, or at approximately 30°C/65% relative humidity as well.

In a further embodiment of the invention there is provided a method of treating or delaying the onset of Alzheimer's disease, cerebral amyloid angiopathy, mild cognitive impairment and/or Down syndrome, as well as the treatment of head
15 trauma, traumatic brain injury, and/or dementia pugilistica, which comprises administering to a patient a therapeutically effective amount of a pharmaceutical capsule composition according to one or more of the embodiments hereinabove described. There is also provided a method of treating Alzheimer's disease in a patient, comprising administering to the patient a therapeutically effective amount of
20 a pharmaceutical capsule composition according to one or more of the embodiments hereinabove described. Further provided is a method of inhibiting the functioning of a γ -secretase enzyme comprising contacting the γ -secretase enzyme with an effective amount of a pharmaceutical capsule composition according to one or more of the embodiments hereinabove described. Also provided is a method of inhibiting the
25 production of β -amyloid peptide in a patient, comprising contacting a γ -secretase enzyme in the patient with an effective amount of a pharmaceutical capsule composition according to one or more of the embodiments hereinabove described. Further, a method of inhibiting the production of β -amyloid peptide in a patient comprises administering to the patient a therapeutically effective amount of a
30 pharmaceutical capsule composition according to one or more of the embodiments hereinabove described. The term "therapeutically effective amount" means the total

amount of the active component of the method that is sufficient to show a patient benefit, *i.e.*, symptomatic or disease modifying treatment. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the 5 active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

EXAMPLES

The following examples illustrate various preferred aspects of the invention, 10 but should not be construed as limiting the scope thereof.

EXAMPLE 1

Table I

15 Formulation #1 : Hard Gelatin Capsule

Ingredient	Function	Percent (w/w)	Working Example		
			Amounts (mg)	Size #2 Capsule	Size #1 Capsule
Active Compound	Active	8.0%	25.0	37.5	50.0
Polyethylene Glycol 1450	Solubilizer	81.9%	255.9375	383.906	511.875
Vitamin E Polyethylene Glycol Succinate (TPGS)	Solubilizer and Surfactant for Precipitation Inhibition	5.0%	15.625	23.44	31.25
Povidone (Polyvinylpyrrolidone) K12	Crystallization Inhibitor	5.0%	15.625	23.44	31.25
Citric Acid Anhydrous	pH Modifier for Stabilization	0.1%	0.3125	0.468	0.625
	Total	100.0%	312.5	468.75	625.0

Manufacturing Process for Formulation #1 Hard Gelatin Capsule

1. Add PEG 1450 to batching vessel and mix at elevated temperature (e.g., 65°C) to melt and give a solution.
2. Melt and transfer TPGS to batching vessel and mix at elevated temperature (e.g., 65°C) to give a solution.
- 5 3. Add Citric Acid Anhydrous to batching vessel and mix at elevated temperature (e.g., 65°C) to dissolve and give a solution.
4. Add Povidone (PVP) K12 to the batching vessel and mix at elevated temperature (e.g., 65°C) to dissolve to give a solution.
- 10 5. Add active compound to the batching vessel and mix at elevated temperature (e.g., 65°C) to dissolve and give a solution.
6. Fill appropriate amount of solution at elevated temperature (e.g., 65°C) into capsules.
7. Band the capsules with gelatin.

15

EXAMPLE 2

Table II
Formulation #2 : Hard Gelatin Capsule

Ingredient	Function	Percent (w/w)	Working Example		
			Size #2 Capsule	Size #1 Capsule	Size #0 Capsule
Active Compound	Active	8.0%	25.0	37.5	50.0
Polyethylene Glycol 1450	Solubilizer	53.7%	167.8125	251.72	335.625
Vitamin E Polyethylene Glycol Succinate (TPGS)	Solubilizer and Surfactant for Precipitation Inhibition	33.2%	103.75	155.625	207.5
Copovidone (PVP VA64 : Polyvinylpyrrolidone-Vinyl acetate)	Crystallization Inhibitor	5.0%	15.625	23.44	31.25
Citric Acid Anhydrous	pH Modifier for Stabilization	0.1%	0.3125	0.468	0.625

Ingredient	Function	Percent (w/w)	Working Example		
			Amounts (mg)		
			Size #2 Capsule	Size #1 Capsule	Size #0 Capsule
	Total	100.0%	312.5	468.75	625.0

Manufacturing Process for Formulation #2 Hard Gelatin Capsule

1. Add PEG 1450 to the batching vessel and mix at elevated temperature (e.g., 65°C) to melt and give a solution.
- 5 2. Melt and transfer TPGS to the batching vessel and mix at elevated temperature (e.g., 65°C) to give a solution.
3. Add Citric Acid Anhydrous to the batching vessel and mix at elevated temperature (e.g., 65°C) to dissolve and give a solution.
4. Add Copovidone (PVP VA64) to the batching vessel and mix at elevated temperature (e.g., 65°C) to dissolve to give a solution.
- 10 5. Add active compound to the batching vessel and mix at elevated temperature (e.g., 65°C) to dissolve and give a solution.
6. Fill appropriate amount of solution at elevated temperature (e.g., 65°C) into capsules.
- 15 7. Band the capsules with gelatin.

EXAMPLE 3

Table III

20 Formulation #3 : Soft Gelatin Capsule

Ingredient	Function	Percent (w/w)	Working Example		
			Amounts (mg)		
			Size #6 Capsule	Size #10 Capsule	Size #12 Capsule
Active Compound	Active	15.0%	50.0	75.0	100.0
Polyethylene Glycol 400	Solubilizer	20.0%	66.7	100.0	133.4

Ingredient	Function	Working Example			
		Percent (w/w)	Amounts (mg)		
			Size #6 Capsule	Size #10 Capsule	Size #12 Capsule
Vitamin E	Solubilizer and Surfactant	60.0%	200.1	300.0	400.2
Polyethylene Glycol Succinate (TPGS)	for Precipitation Inhibition				
Copovidone (PVP VA64 : Polyvinylpyrrolidone- Vinyl acetate)	Crystallization Inhibitor	5.0%	16.675	25.0	33.4
	Total	100.0%	333.5	500.0	667.0

Manufacturing Process for Formulation #3 Soft Gelatin Capsule

1. Add PEG 400 and Copovidone (PVP VA64) to the batching vessel and mix at elevated temperature (e.g., 35-40°C) to give a solution.
- 5 2. Melt and transfer TPGS to the batching vessel and mix at elevated temperature (e.g., 35-40°C) to give a solution.
3. Add active compound to the batching vessel and mix at elevated temperature (e.g., 35-40°C) to dissolve and give a solution.
6. Transfer the gelatin solution and formulation fill solution into the encapsulator and encapsulate an appropriate amount of formulation fill solution s at elevated temperature (e.g., 35-40°C) into soft gelatin capsules.
- 10 7. Dry the capsules.
8. Perform a finish wash of the capsules.

15

20

EXAMPLE 4

Table IV

Formation of the Degradation Product in Solutions of Prototype

5 Solubilized Capsule Formulations of the Active Compound

Formulation	Percent Degradation Compound After 7 Days at 65°C
85.0% PEG 1450 / 5.0% TPGS / 10.0% Active Compound	0.14%
85.0% PEG 1450 / 5.0% Polysorbate 80 / 10.0% Active Compound	0.44%
85.0% PEG 1450 / 5.0% PLURONIC® F127 / 10.0% Active Compound	0.42%

EXAMPLE 5

Table V

10 Crash-Resistance Studies on Active Compound Solubilized

Hard Gelatin Capsule Formulations

- Capsule placed in 125 mL pH 4.5 acetate buffer at 37°C with stirring at 100-rpm.
- Aliquots filtered at 30, 60 and 120 minutes.
- 15 • Concentration of Active Compound quantified in each filtrate by HPLC.

Formulation	Percent of Theory (400 mcg/mL) Active Compound Dissolved		
	30 min.	60 min.	120 min.
82.2% PEG 1450 / 5.0% TPGS / 5% PVP K12 / 0.1% Citric Acid 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule : 50 mg Strength	10.8	2.7	2.2
87.2% TPGS / 5.0% PVP K12 / 0.1% Citric Acid 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule : 50 mg Strength	39.1	42.8	40.4

Formulation	Percent of Theory (400 mcg/mL)		
	Active Compound Dissolved		
	30 min.	60 min.	120 min.
54.0% PEG 1450 / 33.2% TPGS / 5% PVP K12 / 0.1% Citric Acid 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule : 50 mg Strength	47.7	21.8	14.2
87.2% TPGS / 5.0% PVP VA64 / 0.1% Citric Acid 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule : 50 mg Strength	47.7	88.1	92.8
53.7% PEG 1450 / 33.2% TPGS / 5% PVP VA64 / 0.1% Citric Acid 8.0% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule (HGC) : 50 mg Strength	77.6	86.8	20.4

EXAMPLE 6

Table VI
Solubility of ACTIVE COMPOUND Solubilized
5 Capsule Formulations in FaSSIF* at 37°C

Formulation	ACTIVE COMPOUND Concentration (μ g/mL)				
	5 Min.	15 Min.	30 Min.	60 Min.	24 Hr.
ACTIVE COMPOUND Drug Substance	2.5	3.8	4.6	6.0	7.7
8.0% ACTIVE COMPOUND in PEG 400	85.8	11.0	9.2	8.7	12.3
82.2% PEG 1450 / 5.0% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	122.9	148.8	13.2	12.4	14.0
87.2% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	292.7	471.4	349.4	313.9	228.6
54.0% PEG 1450 / 33.2% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	268.1	286.2	98.3	70.5	39.8
87.2% TPGS / 5.0% PVP VA64 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	347.7	555.2	634.3	650.3	211.4
60.0% TPGS / 20.0% PEG 400 / 5.0% PVP K30 / 15.0% ACTIVE COMPOUND Soft Gelatin Capsule Formulation	248.6	181.2	78.6	70.0	60.5
60.0% TPGS / 20.0% PEG 400 / 5.0% PVP VA64 / 15.0% ACTIVE COMPOUND Soft Gelatin Capsule Formulation	394.9	372.5	379.4	172.2	68.2

* Fasted State Simulated Intestinal Fluid : Sodium Taurocholate (3mM) / Lecithin (0.75 mM) / Sodium Hydroxide (0.174 g) / Sodium Phosphate Monobasic (1.977 g) / Sodium Chloride (3.093 g) / Purified Water (qs to 500 mL) : pH 6.5, osmolarity ~ 270 mOsmol/kg

5

EXAMPLE 7

10

Table VII
Solubility of ACTIVE COMPOUND Solubilized
Capsule Formulations in FeSSIF* at 37°C

Formulation	ACTIVE COMPOUND Concentration (μ g/mL)				
	5 Min.	15 Min.	30 Min.	60 Min.	24 Hr.
ACTIVE COMPOUND Drug Substance	9.7	11.5	13.3	15.3	22.4
8.0% ACTIVE COMPOUND in PEG 400	311.7	19.1	18.7	16.3	22.4
82.2% PEG 1450 / 5.0% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	5.6	23.9	19.9	20.9	24.1
87.2% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	378.1	485.9	214.0	187.1	151.0
54.0% PEG 1450 / 33.2% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	170.2	409.6	90.0	51.3	56.8
87.2% TPGS / 5.0% PVP VA64 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	247.6	530.3	601.4	620.8	135.0

Formulation	ACTIVE COMPOUND Concentration (μ g/mL)				
	5 Min.	15 Min.	30 Min.	60 Min.	24 Hr.
60.0% TPGS / 20.0% PEG 400 / 5.0% PVP K30 / 15.0% ACTIVE COMPOUND Soft Gelatin Capsule Formulation	409.1	423.8	64.7	50.6	45.9
60.0% TPGS / 20.0% PEG 400 / 5.0% PVP VA64 / 15.0% ACTIVE COMPOUND Soft Gelatin Capsule Formulation	527.1	549.6	427.6	106.2	50.0

* Fed State Simulated Intestinal Fluid : Sodium Taurocholate (15 mM) / Lecithin (3.75 mM) / Sodium Hydroxide (4.04 g) / Glacial Acetic Acid (8.65 g) / Sodium Chloride (11.874 g) / Purified Water (qs to 1000 mL) : pH 5.0, osmolarity ~ 670 mOsmol/kg.

5

EXAMPLE 8

10 Table VIII
Solubility of ACTIVE COMPOUND Solubilized
Capsule Formulations in SGF* at 37°C

Formulation	ACTIVE COMPOUND Concentration (μ g/mL)				
	5 Min.	15 Min.	30 Min.	60 Min.	24 Hr.
ACTIVE COMPOUND Drug Substance	0.0	4.6	1.6	1.0	1.0
8.0% ACTIVE COMPOUND in PEG 400	13.7	11.4	14.2	2.3	1.1
82.2% PEG 1450 / 5.0% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	98.5	127.0	17.3	14.0	19.1
87.2% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	273.4	484.9	453.8	295.5	253.8

Formulation	ACTIVE COMPOUND Concentration (μ g/mL)				
	5 Min.	15 Min.	30 Min.	60 Min.	24 Hr.
54.0% PEG 1450 / 33.2% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	69.9	190.5	231.5	122.5	100.7
87.2% TPGS / 5.0% PVP VA64 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	267.8	522.2	680.4	699.6	612.7
60.0% TPGS / 20.0% PEG 400 / 5.0% PVP K30 / 15.0% ACTIVE COMPOUND Soft Gel Capsule Formulation	106.0	183.2	96.6	67.2	91.7
60.0% TPGS / 20.0% PEG 400 / 5.0% PVP VA64 / 15.0% ACTIVE COMPOUND Soft Gelatin Capsule Formulation	263.6	321.7	348.3	401.8	133.0

* Simulated Gastric Fluid : Sodium Chloride (2.0 g) / Purified Pepsin (3.2 g, activity of 800 to 2500 units per mg of protein) / Hydrochloric Acid (7.0) / Purified Water (qs to 1000 mL)

5

EXAMPLE 9

Table IX
Bioavailability of ACTIVE COMPOUND Solubilized
Capsule Formulations in Dogs

Formulation	Absolute Bioavailability
Micronized Suspension	5%
Nanosuspension	10%

Formulation	Absolute Bioavailability
82.2% PEG 1450 / 5.0% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	~ 45-60%
87.2% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	~ 45-60%
54.0% PEG 1450 / 33.2% TPGS / 5.0% PVP K12 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	~ 45-60%
87.2% TPGS / 5.0% PVP VA64 / 0.1% Citric Acid / 7.7% ACTIVE COMPOUND Size #0 Hard Gelatin Capsule Formulation : 50 mg Strength	~ 45-60%
60.0% TPGS / 20.0% PEG 400 / 5.0% PVP VA64 / 15.0% ACTIVE COMPOUND Soft Gelatin Capsule Formulation : 75 mg Strength	~ 45-60%

The foregoing description is merely illustrative and should not be understood to limit the scope or underlying principles of the invention in any way. Indeed, various modifications of the invention, in addition to those shown and described herein, will become apparent to those skilled in the art from the following examples and the foregoing description. Such modifications are also intended to fall within the scope of the appended claims.

CLAIMS

WHAT IS CLAIMED IS:

5 1. A pharmaceutical composition comprising about 0.1 to 20% of (2R)-2-[[[4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, up to about 90% of polyethylene glycol (PEG), up to about 90% of Vitamin E polyethylene glycol succinate (TPGS), about 0.1 to 20% of a crystallization inhibitor member selected from the group consisting of

10 polyvinylpyrrolidone (PVP) and copovidone (PVP-Polyvinyl acetate); and about 0.05 to 5% of citric acid.

2. The pharmaceutical composition of claim 1, comprising about 0.1 to 20% of (2R)-2-[[[4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, about 35 to 90% of PEG, about 2 to 90% of TPGS, about 0.1 to 20% of said crystallization inhibitor member; and about 0.05 to 1% of citric acid.

15 3. The pharmaceutical composition of claim 2, comprising about 0.1 to 10% of (2R)-2-[[[4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, about 50 to 85% of PEG, about 5 to 40% of TPGS, about 1 to 10% of said crystallization inhibitor member; and about 0.05 to 1% of citric acid.

20 4. The pharmaceutical composition of claim 3, comprising about 8% of (2R)-2-[[[4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, about 81.9% of PEG, about 5% of TPGS, about 5% of said crystallization inhibitor member; and about 0.1% of citric acid.

5. The pharmaceutical composition of claim 3, comprising about 8% of (2R)-2-[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, about 53.7% of PEG, about 33.2% of TPGS, about 5% of said crystallization inhibitor member; and about 0.1% of citric acid.

5

6. The pharmaceutical composition of claim 3, wherein said PEG is PEG 1450.

7. The pharmaceutical composition of claim 4, wherein said crystallization inhibitor member is PVP.

10

8. The pharmaceutical composition of claim 5, wherein said crystallization inhibitor member is copovidone.

9. A pharmaceutical capsule containing the composition of claim 3.

15

10. The pharmaceutical capsule of claim 9, wherein said capsule is comprised of gelatin.

11. The pharmaceutical capsule of claim 10, wherein said capsule is a hard gelatin 20 capsule.

12. The pharmaceutical composition of claim 1, wherein said (2R)-2-[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide is solubilized in said PEG, said TPGS, said crystallization 25 inhibitor member and said citric acid.

13. A pharmaceutical composition comprising about 0.1 to 25% of (2R)-2-[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, up to about 90% of polyethylene glycol (PEG), up to 30 about 90% of Vitamin E polyethylene glycol succinate (TPGS), and about 0.1 to 20% of a crystallization inhibitor member selected from the group consisting of

polyvinylpyrrolidone (PVP) and copovidone (PVP-Polyvinyl acetate); wherein said composition does not contain citric acid.

14. The pharmaceutical composition of claim 13, comprising about 0.1 to 20% of (2R)-2-[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, about 5 to 75% of PEG, about 5 to 75% of TPGS, and about 0.1 to 20% of said crystallization inhibitor member.
15. The pharmaceutical composition of claim 14, comprising about 0.5 to 20% of (2R)-2-[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, about 10 to 30% of PEG, about 45 to 75% of TPGS, and about 1 to 10% of said crystallization inhibitor member.
16. The pharmaceutical composition of claim 15, comprising about 15% of (2R)-2-[(4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide, about 20% of PEG, about 60% of TPGS, and about 5% of said crystallization inhibitor member.
17. The pharmaceutical composition of claim 15, wherein said crystallization inhibitor member is copovidone.
18. The pharmaceutical composition of claim 16, wherein said crystallization inhibitor member is copovidone.
- 25 19. The pharmaceutical composition of claim 15, wherein said PEG is PEG 400.
20. The pharmaceutical composition of claim 16, wherein said PEG is PEG 400.
21. A pharmaceutical capsule containing the composition of claim 15.

22. The pharmaceutical capsule of claim 21, wherein said capsule is comprised of gelatin.

23. The pharmaceutical capsule of claim 22, wherein said capsule is a soft gelatin
5 capsule.

24. The capsule of claim 23, wherein said capsule and said composition are storage stable for at least about 12 months.

10 25. The capsule of claim 24, wherein said capsule and said composition are storage stable for at least about 12 months.

26. The capsule of claim 11, wherein said capsule and said composition are storage stable for at least about 12 months.

15

27. The capsule of claim 26, wherein said capsule and said composition are storage stable for at least about 24 months.

28. A method of making a pharmaceutical composition which comprises
20 dissolving (2R)-2-[[[4-chlorophenyl)sulfonyl][[2-fluoro-4-(1,2,4-oxadiazol-3-yl)phenyl]methyl]amino]-5,5,5-trifluoropentanamide in a mixture of PEG, TPGS, and one crystallization inhibitor member selected from the group consisting of PVP and copovidone.

25 29. The method of claim 28, further comprising the step of adding said composition to a pharmaceutical capsule.

30. A method of treating or delaying the onset of Alzheimer's disease, cerebral amyloid angiopathy, mild cognitive impairment and/or Down syndrome, as well as
30 the treatment of head trauma, traumatic brain injury, and/or dementia pugilistica,

which comprises administering to a patient a therapeutically effective amount of a pharmaceutical capsule containing the composition of claim 1 or claim 13.