
(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BE, BJ, CF, CG, CI, CM, CA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with declaration under Article 17(2)(a): without abstract; title not checked by the International Searching Authority

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SYSTEMS AND ASSOCIATED METHODS FOR NOTIFICATION OF PACKAGE DELIVERY SERVICES

(57) Abstract:
SYSTEMS AND ASSOCIATED METHODS FOR NOTIFICATION OF PACKAGE DELIVERY SERVICES

FIELD OF THE INVENTION

The present invention relates generally to notifying customers of available services for package delivery, and more particularly, to systems and associated methods for notifying customers of higher level services that are available to expedite the delivery of the customer's packages.

BACKGROUND OF THE INVENTION

In the field of package delivery, packages are routed from origins to destinations throughout the world according to the destination addresses that have been attached to the packages. Of course, the destination addresses are used so that the package delivery company knows where to deliver the packages. In addition to providing a destination address, the customer seeking to have his package delivered needs to specify the class or level of service. There are many levels of delivery service that are available besides standard ground delivery. For example, many package delivery companies provide multiple service levels that correspond to delivery windows in which the package will be delivered such as: one day, one day morning, two day, two day morning, or three day. These services vary in the speed of the guaranteed delivery of the package. Of course, the speed of delivery affects the cost that the customer would incur for having the package delivered. In addition to the speed of delivery, the distance that the package must travel to be delivered is also often a factor in the cost of the delivery.

With the vast array of service levels available to a customer and the variance in the distance that different packages travel, it is often difficult for a customer to readily make an informed decision as to which level of service that he would prefer. A typical customer may simply query a delivery company to determine how long it would take to have a package delivered by just a single service level such as standard ground delivery. To make this
query, the customer usually inputs information into a package delivery company's query system about the package's origin, typically an address or postal code (Zip Code™), and information about the package's destination address. The customer may not even be aware that a higher level of service is available. Sometimes one level of service may be more expensive for delivering a package because of the distances involved or some other factor and sometimes the cost difference between levels of service may be small.

Because of this variability, customers who routinely select one level of service, such as standard ground delivery, often are unaware that for only a little more money that they could obtain a higher level of service such as two day air delivery. Therefore, a need exists for systems and methods that notify customers of higher levels of service, when they are available, so that the customer may make an informed decision as to whether they might prefer a higher level of service.

SUMMARY OF THE INVENTION

The present invention provides systems and methods that notify customers of available higher levels of service that may only cost the customer a little more money yet provide the customer with a much preferred service. In accordance with the present invention, the delivery company may, after providing information to a customer on a first level of service, also provide the customer with notification of a higher level of service if it is available for delivery of the package.

Additionally, the customer may use a variety of communication devices to connect to the delivery company's query system such as by accessing a web site via an Internet connection. In addition, the customer may also access the delivery company's query system via many other types of communication devices such as wireless communication devices.

One preferred embodiment of the present invention is a method for providing notification of services available to a customer which comprises receiving a request from the customer for a first level of service, determining
automatically whether a higher level of service is available to the customer, and if so, notifying the customer of the higher level of service. Determining whether a higher level of service is available may be accomplished by determining a parameter for the first level of service and determining the parameter for the higher level of service and comparing the parameters for the first level of service and the higher level of service. This parameter may be how long a package takes to get delivered (often termed "time in transit") by each service level. This time parameter determination is often based on geographic indicia such as postal codes or geographic coordinates.

For one embodiment of the present invention, the higher level of service would be determined to be available if the time in transit for the higher level of service is less than the time in transit for the first level of service. Other embodiments may show a level of service is available if the package can be delivered within the service’s guaranteed timeframe regardless of the time in transit for the first level of service. These alternative embodiments may be guaranteeing a delivery window which may be considered a higher level of service because of the guarantee.

The customer may be notified via a wide variety of communication devices in accordance with a variety of different embodiments of the present invention. These variety of communication devices include wireless communication devices, hypertext markup language based Internet devices, one-way short message service devices, two-way short message service devices, Handheld Markup Language based devices, Web Markup Language based devices, Palm™ series devices, AT&T Pocket Net™ devices, Research in Motion Ltd. Blackberry™ devices, Wireless Application Protocol based devices, and non-Wireless Application Protocol based devices.

Another preferred embodiment of the present invention provides a method for providing notification of a higher level of service available to a user of package delivery services which comprises receiving a request for package delivery at a first level of service from the user, obtaining an origin
postal code for a package from the user, obtaining a destination postal code for the package from the user, determining time in transit for the package using the origin postal code and the destination postal code for the first level of service, determining whether a higher level of service provides less time in transit for the package, and if so, providing the user with notification of the higher level of service.

Another preferred embodiment of the present invention provides a method for obtaining notification of a higher level of service available for shipping a package which comprises requesting a first level of service for package delivery, providing an origin postal code for the package, providing a destination postal code for the package, and receiving notification of a higher level of service if it is available on a communication device.

Another preferred embodiment of the present invention is a system for providing notification of services available to a customer which includes a processor, a storage device in communication with the processor via a system bus, and a memory connected to the processor. The memory includes an operating system for storing a program to control the operation of the processor. Further, the processor is operative to: receive a request from the customer for a first level of service, determine automatically whether a higher level of service is available to the customer, and if so, notify the customer of the higher level of service.

Yet another embodiment of the present invention is a computer-readable storage medium encoded with processing instructions for implementing a method for providing notification of services available to a customer. These processing instructions direct a computer to perform the steps of: receiving a request from the customer for a first level of service, determining automatically whether a higher level of service is available to the customer, and if so, notifying the customer of the higher level of service.
BRIEF DESCRIPTION OF THE DRAWINGS

Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:

Figure 1 is a flowchart illustrating a method for notifying a customer of a higher level of service, if available, according to one embodiment of the present invention.

Figure 2 is a block diagram illustrating a method for notifying a customer of higher level of service, if available, according to one embodiment of the present invention.

Figure 3 illustrates a sample screen for a wireless web browser device that displays the results of the time in transit request along with a message notifying the user of available higher level services in accordance with an embodiment of the present invention.

Figure 4 illustrates a system of an embodiment of the present invention that notifies a customer of a higher level of available service.

DETAILED DESCRIPTION OF THE INVENTION

The present invention now will be described more fully hereinafter with reference to preferred embodiments of the invention. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.

Embodiments of the present invention provide systems and methods that notify customers of available higher levels of service that may only cost the customer a little more money yet provide the customer with a much preferred service. One embodiment of the present invention allows package delivery companies to automatically notify their customers about higher level of services when these services are available. This notification ability
would be particularly helpful when the customer is seeking information as to one level of service but would also find information as to higher levels of service helpful. This notification may include the cost for both levels of service or may just include the fact that a higher level of service is available.

An example of a preferred embodiment of the present invention is illustrated when a customer attempts to determine how long a package would take to be delivered for a particular level of service. This check is often termed "time in transit." In accordance with the present invention, the delivery company would determine if a higher level of service would also be available. One embodiment determines whether a higher level of service is available by comparing the time in transit for the first level of service with the time in transit for the higher level of service and determining that the higher level of service is available if the time in transit for the higher level of service is less than the time in transit for the first level of service.

The notification information would be returned to the customer along with the response to his inquiry as to the length of time for delivery at the requested service level. For instance, a typical customer often seeks to know how long it would take to have a package delivered by standard ground delivery. If the response is three days, then the customer may also find information such as that two day air delivery is also available helpful to his decision making. Alternative embodiments of the present invention also may provide the cost of such a higher level of service to the customer so that he may compare it with the cost for ground delivery.

A customer typically makes the above time query of the delivery company by connecting to the Internet and accessing the delivery company's web site that may serve as a front end to a typical query system. Examples of data query systems are well know to those of ordinary skill in the art. Of course, a delivery company's query system also typically may be accessed via a wide variety of communication devices.

Referring now to Figure 1, a general flowchart is provided that illustrates a method, in accordance with the present invention, for
automatically notifying a customer of higher level services if they are available. The process for notifying a customer of the availability of a higher level of service begins with first receiving a request from the customer for a first level of service as shown in Block 110. Typical requested levels of service include standard ground delivery. Next whether a higher level of service is available to the customer is automatically determined as illustrated by Block 120. This determination is made in accordance with the present invention and often uses information about the package's destination and origin to determine if a higher level of service is available.

An embodiment of the present invention determines whether a higher level of service is available by determining a parameter for the first level of service and determining the parameter for the higher level of service and comparing the parameters for the first level of service and the higher level of service. For example, this parameter may be how long a package takes to get delivered by each service level. This time parameter determination is often based on geographic indicia such as postal codes or geographic coordinates. For one embodiment, the higher level of service is available if the time in transit for the higher level of service is less than the time in transit for the first level of service.

Alternatively, for some embodiments of the present invention, the availability of higher levels of service could be determined directly by using the geographic indicia to lookup a predetermined pool of available service levels for delivery of packages between the given origin and destination of the package. For instance, if a user provides a origin postal code and a destination postal code, then a system could lookup what levels of service are available between those points which has been predetermined. Then the levels of service can be directly compared to determined which levels of service are higher than the requested service level.

Once the availability of the higher level of service has been determined, the package delivery company may then notify the customer of
the higher level of service, if available, as illustrated in Block 130. The customer may be notified of the higher level of service through any of a wide array of communication devices including wireless communication devices.

Referring now to Figure 2, a functional block diagram illustrating a method, according to one embodiment of the present invention, that allows a customer to query a package delivery company as to the time needed to deliver a package and also be notified of a higher level of service is illustrated. The process begins when a customer indicates to the package delivery company's query system that he wants to determine the time it would take to have a package delivered from one point to another as illustrated in Block 210. Again, this query is often termed checking the "time in transit" for the package. Such a query is usually for standard ground delivery where no delivery time is guaranteed. However, a customer could make this inquiry for any service that has a variable function of time based on an ascertainable parameter such as distance.

The time in transit for a package to be delivered is often a function of the distance that the package must travel. Thus information about the distance must be obtained which can be accomplished in many different ways. For instance, a customer can be prompted to enter the postal code of the origin address of the package as shown in Block 220 and prompted to enter the postal code for the destination address of the package as shown in Block 230. Knowing both postal codes, a system in accordance with the present invention may make a distance determination in a variety of ways well known to those of ordinary skill in the art. For instance, the system could simply use a two dimensional lookup table to return a distance that has been predetermined for that set of two inputted postal codes. Alternatively, the delivery system could store other geographic indicia for the postal codes such as geographic coordinates of the centroid of the area defined by the postal codes and perform a distance calculation using such calculation methods for distance as the great circle method.
Of course many other methods may be employed to determine
distance and thus how long it can be expected for delivery of the package
under the first level of service. Many types of geographic indicia may be
used to describe the location of package pick up and the location of delivery
so that a distance may be determined. For instance, the addresses may be
directly described by coordinates such as latitudes and longitudes in a
variety of datums as well known to those of ordinary skill in the art.

Other factors may also be used to better gauge the time in transit for a
package, if known, such as delays that may be associated with customs.

These delays can be added to the distance calculation to determine a time in
transit. Alternatively, the time in transit for some embodiments may be
determined directly by using a lookup table for the geographic indicia. For
instance, a two dimensional lookup table could use both the origin postal
code and destination postal code to lookup a predetermined time in transit.

Once a time in transit for the package has been determined, the results
can be displayed along with the availability of higher level services as
shown in Block 240. For example, if ground delivery service time is three
days or greater, then the customer may be notified that two day air service is
available. If ground service time is two days, then the customer may be
notified that overnight air service is available. After the results have been
displayed, the customer may be returned to a main menu or a variety of
submenus such as the menu Block 210 for selection of different or further
services depending upon the design of the delivery system.

This notification of available services may be communicated to a
customer via a wide array of communication devices. Usually, the
notification of available higher levels of service will be sent to the device
that the customer used to query the system as to delivery time for a package
for a first service level. However, for some embodiments of the present
invention this notification may be sent to any device associated with the
customer.
A variety of communication devices may be used to query a delivery company's system as to time in transit for a package and to receive notification of other available services in accordance with the present invention. These variety of devices include wireless web browser devices which rely on wireless web pages to prompt for input. These devices may be based on the WAP (Wireless Application Protocol) or non-WAP standards. WAP is a specification for a set of communication protocols to standardize the way that wireless devices, such as cellular telephones and radio transceivers, can be used for Internet access, including e-mail, the World Wide Web, newsgroups, and Internet Relay Chat.

One preferred embodiment uses WAP based Wireless web browser devices. A wireless web browser device may be used by a customer for making a time in transit query. The customer first accesses the delivery company's web site that supports WAP devices (or other protocols for differing embodiments) using his wireless web browser device. The customer may then select the time in transit function; as illustrated in Block 210 of Figure 2. The customer is then prompted to enter the origin postal code and prompted to enter the destination postal code. The delivery system may then determine the time in transit for a package and also determine if a higher level service is available. The results are then displayed on the web based browser device as shown in Figure 3.

Referring specifically now to Figure 3, the time in transit results 310 for this illustrative example are displayed on the wireless web browser device's output screen. The time in transit results 310 show that it would take two business days for the package to be delivered to the destination postal code from the origin postal code. In accordance with the present invention, the customer is also notified of a higher level of service 320 which is also displayed on the screen of the wireless web browser device.

Besides the type of communication devices illustrated above, a wide variety of other wireless and traditional landline end-user communication
devices are supported by the systems and methods of the present invention and may be used by the customer including one-way short message service (SMS) devices, two-way SMS devices, Handheld Markup Language ("HDM") based devices, Web Markup Language ("WML") based devices, Palm™ series devices including PALM VII™ devices, AT&T Pocket Net™ devices, Research in Motion Ltd.™ ("RIM") Pagers or other web-enabled pagers, Wireless Application Protocol ("WAP") based devices and non-WAP web enabled handheld devices. A simple example of a wireless communication device that may be categorized in many of the above types of devices depending upon its designed functionality is a traditional wireless handset i.e., a cell phone. A cell phone may be a one-way SMS device by connecting with the appropriate telephone access number for one-way SMS devices. A cell phone may also be used both to transmit input information to a tracking system using voice or the touchpad as well as to receive voice responses from the tracking system.

Other explanatory supported devices, besides the above illustrated wireless web browser device, that may be used in accordance with one embodiment of the present invention, include one-way SMS devices and two-way SMS devices. As well known to one of ordinary skill in the art, one-way SMS systems provide text capabilities in one direction while two-way SMS systems have two-way text capabilities. Note, however, that the concept of the invention is not limited to one particular communication architecture or protocol but addresses the broader concept of notifying customers of higher levels of service available independent of the communication devices that the customers may use.

One-way SMS based systems require users to call an access number and follow voice prompts to enter requests. A user using a one-way SMS device first dials an access number such as a toll free telephone number or local telephone number and follows prompts using an Interactive Voice Response ("IVR") System. If the user is not identified by caller ID, the user may be prompted to enter his telephone number and an alphanumeric
security code. The user may then select the time in transit function from an initial menu. Voice prompts will then request the user to enter geographic indicia such as postal codes for the origin of the package and its destination. The customer uses the touch tone entry of the phone and is provided with the time in transit results and the availability of higher levels of service.

Two-way SMS devices require users to send a message that obeys a specific format to enter requests. Two-way SMS messages often have the desired task followed by the request parameters. For determining time in transit the format may be "TT" concatenated with the origin postal code and the destination postal code; for example: TT 30328 93430. The resultant text message will be returned as shown above with the time in transit and a notification of a higher level of service if available. For this embodiment, the output may be a screen display on the two-way SMS communication device.

As will be appreciated by one of ordinary skill in the art, the present invention may be embodied as a method, a data processing system, or a computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product on a computer-readable storage medium having computer-readable program code means embodied in the storage medium. Any suitable computer readable storage medium may be utilized including hard disks, CD-ROMs, optical storage devices, or magnetic storage devices.

The present invention may be implemented by computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create means for implementing the present invention.
These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means which implement the present invention. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the present invention.

Referring now to Figure 4, a system 400 that notifies a customer of a higher level of service in accordance with an embodiment of the present invention is illustrated. The system includes a processor 410 that is communicatively connected to a storage device 420 via a system bus 430. The system 400 also includes a memory 440 which is also connected to the processor 410. The memory 440 includes an operating system 450 for storing a program to control the operation of the processor 410. The storage device 420 may contain such information as the lookup table for distances and directly whether faster service is available that can be accessed by processor 410. The processor 410 is operative to receive a request from the customer for a first level of service, determine automatically whether a higher level of service is available to the customer, and if so, notify the customer of the higher level of service. This system 400 may be interconnected with the delivery company's query system so that the processor 410 may access shared information such as postal codes. Further, this system 400 may be connected to a user interface 470 (such as one of the above communication devices) via the system bus 430 to obtain needed input, such as postal codes, via one or more of the communication devices described above and provide output results.
Figure 4 only illustrates an example of a system that may be used to implement the methods of the present invention. As well known to those of ordinary skill in the art, the system of Figure 4 may be implemented in a variety of fashions including integrating the system with the delivery company's existing query system.

Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
THAT WHICH IS CLAIMED:

1. A method for providing notification of services available to a customer, comprising:
 receiving a request from the customer for a first level of service;
 determining automatically whether a higher level of service is available to the customer; and if so,
 notifying the customer of the higher level of service.

2. The method of Claim 1 wherein the step of determining automatically whether a higher level of service is available comprises determining a parameter for the first level of service and determining the parameter for the higher level of service and comparing the parameters for the first level of service and the higher level of service.

3. The method of Claim 2 wherein the step of determining a parameter for the first level of service and determining the parameter for the higher level of service comprises determining a parameter for the first level of service and determining the parameter for the higher level of service based on geographic indicia.

4. The method of Claim 3 wherein the geographic indicia comprises geographic coordinates.

5. The method of Claim 4 wherein the geographic coordinates comprises latitude and longitude coordinates.
6. The method of Claim 3 wherein the step of determining a parameter for the first level of service and determining the parameter for the higher level of service using geographic indicia comprises determining a parameter for the first level of service and determining the parameter for the higher level of service based on postal codes.

7. The method of Claim 6 wherein the step of determining a parameter for the first level of service and determining the parameter for the higher level of service comprises determining time in transit for the package for the first level of service and determining time in transit for the package for the higher level of service based on the postal codes.

8. The method of Claim 7 wherein the step of comparing the parameters for the first level of service and the higher level of service to determine availability comprises comparing the time in transit for the first level of service with the time in transit for the higher level of service and determining that the higher level of service is available if the time in transit for the higher level of service is less than the time in transit for the first level of service.

9. The method of Claim 1 wherein the step of determining automatically whether a higher level of service is available comprises comparing time in transit for the first level of service with time in transit for the higher level of service and determining that the higher level of service is available if the time in transit for the higher level of service is less than the time in transit for the first level of service.

10. The method of Claim 9 wherein the time in transit for the first level of service and the time in transit for the higher level of service is determined based on postal codes corresponding to the originating location and destination of a package.
11. The method of Claim 1 wherein the step of notifying the customer of the higher level of service comprises communicating the higher level of service to the user via at least one communication device associated with the user.

12. The method of Claim 11 wherein communicating the higher level of service to the user via at least one communication device associated with the user comprises communicating the higher level of service to the user via at least one wireless communication device associated with the user.

13. The method of Claim 11 wherein communicating the higher level of service to the user via at least one communication device associated with the user comprises communicating the higher level of service to the user via a hypertext markup language based Internet device associated with the user.

14. The method of Claim 11 wherein communicating the higher level of service to the user via at least one communication device associated with the user comprises communicating the higher level of service to the user via a one-way short message service device associated with the user.

15. The method of Claim 11 wherein communicating the higher level of service to the user via at least one communication device associated with the user comprises communicating the higher level of service to the user via a two-way short message service device associated with the user.
16. The method of Claim 11 wherein communicating the higher level of service to the user via at least one communication device associated with the user comprises communicating the higher level of service to the user via a Handheld Markup Language based device associated with the user.

17. The method of Claim 11 wherein communicating the higher level of service to the user via at least one communication device associated with the user comprises communicating the higher level of service to the user via a Web Markup Language based device associated with the user.

18. The method of Claim 11 wherein communicating the higher level of service to the user via at least one communication device associated with the user comprises communicating the higher level of service to the user via a Palm™ series device associated with the user.

19. The method of Claim 11 wherein communicating the higher level of service to the user via at least one communication device associated with the user comprises communicating the higher level of service to the user via a AT&T Pocket Net™ device associated with the user.

20. The method of Claim 11 wherein communicating the higher level of service to the user via at least one communication device associated with the user comprises communicating the higher level of service to the user via a Research in Motion Ltd. Blackberry™ device associated with the user.
21. The method of Claim 11 wherein communicating the higher level of service to the user via at least one communication device associated with the user comprises communicating the higher level of service to the user via a Wireless Application Protocol based device associated with the user.

22. The method of Claim 11 wherein communicating the higher level of service to the user via at least one communication device associated with the user comprises communicating the higher level of service to the user via a non-Wireless Application Protocol based device associated with the user.

23. A method for providing notification of a higher level of service available to a user of package delivery services, comprising:

 receiving a request for package delivery at a first level of service from the user;
 obtaining an origin postal code for a package from the user;
 obtaining a destination postal code for the package from the user;
 determining time in transit for the package using the origin postal code and the destination postal code for the first level of service;
 determining whether a higher level of service provides less time in transit for the package; and if so,
 providing the user with notification of the higher level of service.

24. A method for obtaining notification of a higher level of service available for shipping a package, comprising:

 requesting a first level of service for package delivery;
 providing an origin postal code for the package;
 providing a destination postal code for the package; and
 receiving notification of a higher level of service if it is available on a communication device.
25. The method of Claim 24 wherein the step of receiving notification of the higher level of service available on a communication device comprises receiving notification of the higher level of service available on a wireless communication device.

26. A system for providing notification of services available to a customer, comprising:
 a processor;
 a storage device in communication with the processor via a system bus; and
 a memory connected to the processor, the memory including an operating system for storing a program to control the operation of the processor, wherein the processor is operative to:
 receive a request from the customer for a first level of service;
 determine automatically whether a higher level of service is available to the customer; and if so,
 notify the customer of the higher level of service.

27. A computer-readable storage medium encoded with processing instructions for implementing a method for providing notification of services available to a customer, said processing instructions directing a computer to perform the steps of:
 receiving a request from the customer for a first level of service;
 determining automatically whether a higher level of service is available to the customer; and if so,
 notifying the customer of the higher level of service.
START

Receiving a request from a customer for a first level of service → 110

Determining automatically whether a higher level of service is available, and if so → 120

Notifying the customer of higher level of service → 130

END

Figure 1
Time in Transit Screen Flow

USER SELECTS
- Main
- **TIME IN TRANSIT QUERY**

Origin Postal Code
- OK | Prev

Destination Postal Code
- OK | Prev

Transit Time
- Ground Transit Time, plus a plug for Premium Services
- Prev | Main

FIGURE 2
Time In Transit Results

FIGURE 3
PATENT COOPERATION TREATY

PCT

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT
(PCT Article 17(2)(a), Rules 13ter.1(c) and Rule 39)

<table>
<thead>
<tr>
<th>Applicant's or agent's file reference</th>
<th>IMPORTANT DECLARATION</th>
<th>Date of mailing(day/month/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18360/239347</td>
<td></td>
<td>07/12/2001</td>
</tr>
</tbody>
</table>

International application No.
PCT/US 01/29901

International filing date(day/month/year) 24/09/2001
(Earliest) Priority date(day/month/year) 25/09/2000

International Patent Classification (IPC) or both national classification and IPC
OCSF17/60

Applicant
UNITED PARCEL SERVICE OF AMERICA, INC.

This International Searching Authority hereby declares, according to Article 17(2)(a), that no international search report will be established on the international application for the reasons indicated below:

1. [x] The subject matter of the international application relates to:
 a. [] scientific theories.
 b. [] mathematical theories
 c. [] plant varieties.
 d. [] animal varieties.
 e. [] essentially biological processes for the production of plants and animals, other than microbiological processes and the products of such processes.
 f. [x] schemes, rules or methods of doing business.
 g. [] schemes, rules or methods of performing purely mental acts.
 h. [] schemes, rules or methods of playing games.
 i. [] methods for treatment of the human body by surgery or therapy.
 j. [x] methods for treatment of the animal body by surgery or therapy.
 k. [] diagnostic methods practised on the human or animal body.
 l. [] mere presentations of information.
 m. [] computer programs for which this International Searching Authority is not equipped to search prior art.

2. [] The failure of the following parts of the international application to comply with prescribed requirements prevents a meaningful search from being carried out:
 a. the description
 b. the claims
 c. the drawings

3. [x] The failure of the nucleotide and/or amino acid sequence listing to comply with the standard provided for in Annex C of the Administrative Instructions prevents a meaningful search from being carried out:
 a. the written form has not been furnished or does not comply with the standard.
 b. the computer readable form has not been furnished or does not comply with the standard.

4. Further comments:

Name and mailing address of the International Searching Authority
European Patent Office, P.3, 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 851 epo nl,
Fax: (+31-70) 340-3318

Authorized officer
Lucia Van Pinxteren

Form PCT/ISA/205 (July 1998)
The claims relate to subject matter for which no search is required according to Rule 39 PCT. Given that the claims are formulated in terms of such subject matter or merely specify commonplace features relating to its technological implementation, the search examiner could not establish any technical problem which might potentially have required an inventive step to overcome. Hence it was not possible to carry out a meaningful search into the state of the art (Art. 17(2)(a)(i) and (ii) PCT; see Guidelines Part B Chapter VIII, 1-6).

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.5), should the problems which led to the Article 17(2) declaration be overcome.