/021458 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

13 March 2003 (13.03.2003) PCT WO 03/021458 Al
(51) International Patent Classification’: GO6F 15/00, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
17/00 GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(21) International Application Number: PCT/US02/26937 MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

(22) International Filing Date: 26 August 2002 (26.08.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/944,131 31 August 2001 (31.08.2001) US
(71) Applicant: TISCHER, Robert [US/US]; 6905 Valley

Brook Drive, Falls Church, VA 22042-4024 (US).

(74) Agent: WOODWARD, David, W.; Sidley Austin Brown
& Wood LLP, 1501 K Street, N.-W., Washington, DC 20005
(US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

SIL, SK, SL, T], TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Titlee METHOD AND SYSTEM FOR PRODUCING AN ORDERED COMPILATION OF INFORMATION WITH MULTI-
PLE AUTHORS CONTRIBUTING INFORMATION CONTEMPORANEOUSLY

(57) Abstract: A System and Method for producing a distributed document having an ordered compilation of information is pro-
vided. The system comprises multiple fragment editor executables (10b, 12b, 14b) that function cooperatively as one implemented
document type declaration (DTD). Each of the multiple fragment editor executables (10b, 12b, 14b) is a specific node implemen-
€7 tation of the DTD. The multiple fragment editor executables (10b, 12b, 14b) are distributed among multiple sites of the computer
network and operate in a peer-to-peer environment without need for a central server. The system allows multiple authors to edit the
distributed document contemporaneously while allowing each of the multiple authors to view edits made by others of the multiple
authors. In one embodiment of the system, each author of the multiple authors is assigned an entity type having associated therewith
corresponding executables (10b, 12b, 14b) that define the role an author can play in creating distributed document.



10

15

20

25

30

WO 03/021458

METHOD AND SYSTEM FOR PRODUCING AN ORDERED COMPILATION OF INFORMATION WITH MULTIPLE

AUTHORS CONTRIBUTING INFORMATION CONTEMPORANEOUSLY

1

BACKGROUND OF THE INVENTION

With the advent of the personal computer, the ability of individuals
to create documents has become a less burdensome task. There are a
number of character editor applications that exist on the market that enable
individuals to create documents, each of these products varying in their
abilities. These products primarily offer contextually based solutions.
Where these products suffer or lack a solution is the ability to generate a
document where multiple authors are needed or wanted to compile the
document. More specifically, these products do not allow multiple authors

to contribute to compiling a document contemporaneously.

In many instances, the ability to construct an electronic document
can be a time consuming task whether the process is accomplished by a
single author or by multiple authors. The latter proposition is exacerbated
by the limits of current technology. Many of the applications that exist
generate an electronic data file that forms the contextual basis for the
author's content. This file usually is resident on either a personal computer
hard-drive or on a server, which in this instance is made available to a
variety of individuals. For example, the typical business computer
environment invollves a communication network, which includes computer
workstations and servers that act to integrate the whole system. When a
document is first assembled, it is stored on the servers where any user
having access privileges can open the document and proceed with the

editing process.

Efforts by two or more users to work contemporaneously are met
with frustration when attempted on known systems. With the current
technology, one of the difficulties is that when a first user is actively
working on a file, the second user has difficulty working on the same file at

the same time. The second author trying to add his section to the document

PCT/US02/26937



10

15

20

25

30

WO 03/021458 PCT/US02/26937

at the same time as another author will encounter a number of different
scenarios. The first scenario is that they will be denied access to the file
because another user has opened the file and the system will only allow one
user at a time to have access. Another negative attribute of this particular
system is that as long as the first author has the file open, whether they are

working on it or not, nobody else can have access to the file.

Another scenario is that the second author is apprised by the system
that another user has the file open. This results in denial to the file or the
system will prompt the second author with a question of whether they want
a "ghost" copy of the file or not. If the second author decides to accept a
“ghost” copy and proceeds to make changes, the application will not allow
the “ghost” copy to be saved in lieu of the original file. Other techniques
for single document creation are more primitive in nature. A group of
authors can decide on creating their own section in a separate file, which
eventually would be merged into a single document. With current
technology, the creation process takes longer and is inherently more
complicated taking into account formatting problems that usually plague
the merging of various components even of existing formats but more so

with differing formats.

1.1 Related Art

1.1.1 Patents

1.1.1.1 US Patent 5,515,491

US Patent 5,515,491 discloses a collaborative data processing
system. The collaborative data processing system disclosed in US Patent
5,515,491 operates in a client server environment and attempts to achieve
its goal by allowing multiple users to share a common object. A particular
weakness of the system disclosed in US Patent 5,515,491 is that the system
lacks a computer tractable emulation of language context and therefore
cannot distinguish between language context and content. As such, the
disclosed system is reduced to dealing with characters and cursor

movements in which the smallest atomic element of change is the



10

15

20

25

WO 03/021458 PCT/US02/26937

character. For example, when the cursor of one user of the disclosed
system lands at the beginning of a word, the whole word becomes a
floating lock area. Since a word is an arbitrary natural language construct
and does not contribute directly to document structure, the implementation
loses sight of the goal of collaborative authoring, which is to simulate the

single author environment.

1.1.1.2 US Patent 6,047,288

US Patent 6,047,288 discloses a collaborative data processing
system. The collaborative data processing system disclosed in US Patent
6,047,288 operates in a client server environment and attempts to achieve
its goal by allowing multiple users to share a common object. The system
disclosed in US Patent 6,047,288 does have a sense of controlling
environmental attributes that allows users to check in and check out
portions of a shared object. However, the structure of the controlling
parameters is a constant across documents and consequently does not
express the linguistic context of the document. For example, the system
disclosed in US Patent 6,047,288 suggests a ‘session’ root node with sub-
nodes like ‘notifyOnStart’, ‘broadcast’, ‘title’ and so on. Given, for
example, a second document, the root node and sub-node identifiers would
be the same (‘session’, ‘notifyOnStart’, ...) except their values would be
different. The value of ‘session’ might, for example, be 3 instead of 2. In no
way can these sub-nodes be construed as being a grammar in the sense that

grammar is being used in the present invention.

Without a coherent linguistic grammar imposed as the context
across the set of contributing authors, the collaborative nature of the system
disclosed in 6,047,288 1s reduced to the content arbitrariness of a
document-oriented configuration management system whose pieces are
merely checked out and in again. Object part collaboration is not

synonymous with a multiply authored virtual document.



WO 03/021458 PCT/US02/26937
1.1.2 Collaborative Authoring Applications

1.1.2.1 Documentum
Documentum is a content management system. The guiding design
goal of content management systems is the any-to-any model plus
5 workflow. This indeed is a kind of document collaboration, but
collaboration goes no further than the file. Documentum has numerous
search facilities for handling content in files of any format, but suffers from

the client server model and file based system’s weaknesses.

1.1.2.2 Lotus Notes
10 Lotus Notes synchronizes client files on a periodic basis through an
agreed upon server. Lotus Notes is client server and file based and
consequently has no concept of distributed linguistic context like the
present invention does. Although Lotus Notes collaborates, it collaborates
on different entities than the present invention’s linguistic representative,

15 the node.

1.1.2.3 Structured Editors

1.1.2.3.1 Synthesizer Generator
The Synthesizer Generator is a structured editor tool first released in
1981. Synthesizer Generator deals with computer languages and not with
20 linguistically semantic context free grammars (see 4.1 “semantic context
free grammar”). The Synthesizer Generator has no collaborative

networking capability.

1.1.2.3.2 Griffon and Alliance
Griffon (Decouchant et al. 1993) and Alliance (Decouchant et al.,
25 1995 and Decouchant et al. 1996) each provide a distributed document
environment by implementing edit controls in the form of roles on various
parts of a document through the use of SGML. Document fragments are

acquired, and there is one master fragment per system. When a master



10

15

20

25

30

WO 03/021458 PCT/US02/26937

fragment is checked out, changed and checked back in again, fragment

slaves are notified and updated.

However, each of these systems is limited in that in each the set of
fragments is static throughout the authoring cycle, which is contrary to how
documents get written in practice. SGML's elements are not strictly tied to
either Griffon’s or Alliance’s notion of fragments. Consequently, Griffon
and Alliance are inefficient in their ability to maintain overall document
consistency. Furthermore, neither Griffon nor Alliance supports document
structure change after start (except perhaps by exporting and restarting)
because these programs rely on structures that can only be built at the start.
Neither Griffon nor Alliance has true peer-to-peer facilities for content
changes or for role and privilege storage and application. Griffon and
Alliance are generalized structured editors with persistence mechanisms,
which always forces centralization, at least in part, of the distributed

document. Roles and privileges are not tied to the document structure.

As can be seen, a multiple author document is difficult to assemble
according to known systems and methods. Current technology does not
allow for an efficient manner and, in some aspects, creates further distress
with its limitation and capabilities. Thus, there exists a need for an
application that allows more than one author to contribute to a document
contemporaneously while allowing the various authors, as well as observers

to the process, to view the changes or updates as completed.

2 SUMMARY OF THE INVENTION

In accordance with these and other needs, there is provided in
accordance with the present invention a method and system for producing a
distributed document having an ordered compilation of information. The
system comprises multiple fragment editor executables that function
cooperatively as one implemented document type declaration (DTD). Each
of the multiple fragment editor executables is a specific node
implementation of the DTD. The multiple fragment editor executables are

distributed among multiple sites of the computer network and operate in a



10

15

20

25

WO 03/021458 PCT/US02/26937

peer-to-peer environment without need for a central server. The system
allows multiple authors to edit the distributed document
contemporaneously while allowing each of the multiple authors to view

edits made by others of the multiple authors.

In one embodiment of the system, replicates of the complete

document reside at the multiple sites of the computer network.

In one embodiment of the system, an edit made by any one of the
multiple authors is propagated among the replicates residing at the multiple

sites of the computer network.

In one embodiment of the system, an edit made by any one of the
multiple authors is immediately propagated among the replicates residing at

the multiple sites of the computer network.

In one embodiment, an edit made by any one of the multiple authors
is delayed before being propagated among the replicates residing at the

multiple sites of the computer network.

In one embodiment, an edit made by any one of the multiple authors
is relayed to intervening personnel, and thus is delayed, before being
propagated among the replicates residing at the multiple sites of the

computer network.

In one embodiment, an edit made by any one of the multiple authors
is propagated as an atomic transaction among the replicates residing at the

multiple sites of the computer network.

In one embodiment, the replicates reside in computer memory at the

multiple sites of the computer network.

In one embodiment, the replicates are persisted by writing to

computer hard disks at the multiple sites of the computer network.

In one embodiment, each author of the multiple authors is assigned
an entity type having associated therewith corresponding executables that

define the role an author can play in creating distributed document.



10

15

20

25

30

WO 03/021458 PCT/US02/26937

In one embodiment, the roles that an author may play in creating the
distributed document include: root context author, context author, and

content author.

In one embodiment, a subscriber can view edits made by one or

more of the multiple authors.

The present invention operates in a peer-to-peer environment.
Furthermore, the present invention generates grammar-based executables
for any DTD (see 4.2 “document type declaration’), which is the basis for
cooperative authoring. Moreover, the present invention utilizes a computer
tractable emulation of language context to make explicit a common
document structure, and therefore can distinguish between language context
and content. In addition, since the present invention’s smallest element of
change is an indivisible semantic context free grammar entity, the present
invention knows that multiple changes in a document grammar element are

irrelevant before they are committed.

The present invention ties all activity to the grammar structure,
which itself is allowed to evolve throughout the life cycle of the document.
Of course, content created using the present invention changes with respect
to the current grammar's context nodes. Structural cues as implemented by
the present invention don't have to be symbolic and may be clear text and
are therefore indistinguishable from content text (this is a good thing).
Roles and privileges as implemented by the present invention are tied to the
grammar and occur as further descendent node creation (nodes may be
deleted or modified too). This makes every part of a document created
using the present invention, by definition, consistent with its inherent

grammar structure.

The present invention has no need for a centralized server nor does
it have need for hard disk persistance since populating a document occurs
from node relatives instead of from centralized storage. The present
invention's default mode is total document replication at each site. For the
present invention, only visual cues differentiate structural portions of the

document, which lends itself to natural writing behavior. A distributed



5

10

15

20

25

30

WO 03/021458 PCT/US02/26937

document created using the present invention is really a full set of grammar
node implementations each implemented for the express purpose of editing
that particular piece of the document as opposed to being many copies of

generalized structural editors.

Networking

An advantage of the invention is the ability to forward changes
accomplished by an author as they occur. Changes are pushed onto the
network to all the other document participants when an author signals the
change is complete. Content change completion occurs when the author
implicitly uses one of the user interface stylization cues or actions defined

when the user interface was defined (see 5.4.2.2 Design User Interface).

In one embodiment, context and content changes are always pushed
immediately to all other document participants making the bandwidth used
directly proportional to the amount of change taking place in the distributed
document at that moment. In another embodiment, context and content
changes are relayed through intervening personnel, also called workflow,

before reaching its destination.

Propagated context and content changes should not disrupt the
recipients when received and are concurrently added to the recipient’s
executing processes. The most severe recipient interruption is replacing the
recipient’s executable causing a re-population action. The invention
prescribes that, given implementation alternatives, the least disruptive
alternative to users be chosen in order to preserve single document editing

appearance.

Since change control is hierarchically distributed and content
change authority is mutually exclusive and exhaustive, race or deadlock

conditions cannot occur across the document instance’s network.

2.2 Document Replication

The invention provides an equivalent replica of the document at
each author node site and at each subscriber site. Each node contains a

similarly constructed document and therefore each node maintains the full



10

15

20

25

30

WO 03/021458 PCT/US02/26937

current version of the document by default. Since by design document
changes by authors cannot cause concurrency issues, change transactions
do not need to be causally sequential, and therefore may arrive and be

applied in any order at their destinations.

In order to maintain the replication invariant, each transaction must,
however, be atomic, thus insuring that the document instances in quiescent
state at each site are exact replicas. For a change message to be atomic, the
recipient’s executable must eventually acknowledge that it has received and
applied the change request. Although there 1s no time limit as to when a
change request may be applied, the request is not merely a connectionless
broadcast message that needs no acknowledgement. A document is only
quiescent if the root context author stops all authors from making changes

and all change messages have been successfully delivered.

2.3 Populating

In the site’s computer executable is code for populating its own
instance upon startup either at creation time or after shutdown. Since all
sites by default contain exact replicas, a donor site is chosen at random to
populate the newly started instance. The invention allows for any
population algorithm to be used as long as the algorithm isn’t 100%
dependent on disk storage, which by definition is always inconsistent with

the distributed virtual document.

2.4 Generalized Document

The present invention’s use of the term document is broader than

mere sequentially organized text.

Documents are written so a human mind can start perceiving and
understanding at the beginning of the document and continue this process
until the end of the document is reached. This is an inherently semantically

temporal process.

The presentation, however, of the instance of any author node or
subscriber may take any form as long as it maintains this semantically

temporal invariant. For example, instead of paragraphs, sections and words



5

10

15

20

25

30

WO 03/021458 PCT/US02/26937

as depicted in the FIG.7 illustration, animation clips could have been
developed, the result of which would be a motion picture presentation
format. The underlying semantic grammar (see 4.1 “semantic context free

grammar’’) would remain the same.

2.5 Natural Language Imitation

The goal of the present invention is to create a computer
environment that facilitates a document being authored cooperatively and
simultaneously by multiple authors without losing document integrity. This
process recapitulates the formation and evolution of natural language. This
formation and evolution process is one of complementary context and
content creation and change. The present invention emulates this natural
language creation process by organizing computer software and structuring
document cooperation along these same lines. Hence, context and content

creation are always separate activities.

Since natural language creation and change is the real world’s
multiply authored document, then the computer tractable representation of
this process, which is the present invention, is therefore the multiply

authored document using computer software.

2.6 Node Based, not File Based; Minimized False Invalidation

The file in a computer directory has a single name and content. If
someone changes any character in that file, it makes any copy of the file
invalid. Short of maintaining pointers to individual pieces or characters in
the file, there is no way of telling which piece of the document has
invalidated the entire file. Document systems and processors are all either
file based or concurrency controlled in order to maintain document
integrity, which imposes serious non-natural language interference in the
document creation process. Making a change anywhere in a file falsely

invalidates areas that have not been changed.

The present invention ties document integrity to the atomic
semantic node instead of to the file. Thus, when a change is made anywhere

in the content of a semantic node, only that atomic node becomes invalid

10



10

15

20

25

30

WO 03/021458 PCT/US02/26937

with respect to replicate nodes elsewhere. The overall result is a set of
mutually exclusive yet atomic semantic document work areas, whose
semantic sum is an entire coherent topic. When atomic nodes for a semantic
context have been predetermined as is the case in the present invention,

there is no false invalidation.

2.7 Average Writing Style Based; No Tags; Not WYSIWYG

Markup languages allow implicit document structure to become
computer processable. But structure and context are supposed to be
invisible when producing natural language content. Thus, the tag artifact by
its very presence is a hindrance. Current document applications usually
show these tags as trees that may be made visible when the author needs
orienting. Or sometimes, the current set of legal tags appear as drop-down
lists from which the author may choose. The problem is that these computer

control artifacts intrude on the authoring process.

The present invention calls for standard document artifacts to be
used as style representatives of unchangeable context, as differentiators of
context and content, and as indicators of movement from one semantic
node to another by an author. An example of downstream requirements
intruding on the authoring process is the WYSIWYG (what you see is what
you get) technology. Here single-user printing process’s requirements

impose themselves directly on the document creation process.

2.8 Distributed Persistence

A consequence of this invention is, since replicate documents exist
at each authoring or subscriber site, there is no need for the document to be
written to a hard disk, that is, persisted. Document sites are populated on
startup from a random set of sibling sites and the resulting mean time
between failures above just a few sites becomes greater than that for hard
disks. The hard disk becomes irrelevant. Of course, it is no problem to
persist the document since any site has the ability to export its running

application as a marked up instance.

11



10

15

20

25

30

WO 03/021458

PCT/US02/26937

2.9 Peer-to-Peer; Not Client Server

Replicate documents at each site means there is no central server
that can create a bottleneck. Information flow is entirely dictated by
semantic and cooperation needs and requirements. The present invention is
truly peer-to-peer because there is no need for data concurrency

impositions.

2.10 Markup for Authoring, not Data Collection and Dispersal

Markup today is used mainly for aggregating and syndication of
information that has been tagged with tags that resemble natural language,
like <vegetable>. The major deficiency in this approach is that it assumes
the data has already been created either by a single author or by a series of
single authors. In contrast, the present invention disseminates during the
creation process, which is a superset of the aggregation-syndication model
and covers real and complete document life cycle. The reason current
markup processes cannot include the authoring process is, there is no
functionality in the aggregation syndication model for the cooperation of
DTDs (see 4.2 “document type declaration”), which represent the linguistic
contexts of that which is being aggregated and syndicated. Therefore,
instance cooperation upon which aggregation and syndication is applied, is
a veritable cacophony of computer search processes. These disparate DTD
instances are therefore relegated to having to be search and mined, which

has little or nothing to do with the actual authoring process.

2.11 No Generalized Structured Editor; No Bottleneck Server

The present invention is not a generalized editor but rather a suite of
generated complementary fragment editor executables per document.
Multiple fragment editor executables are created that function
cooperatively as one implemented DTD (see 4.2 “document type
declaration” and 4.30 “fragment editor executable™). Each fragment editor
executable is in effect a streamlined specific node implementation of the
DTD. The difference in efficiency using any kind of measurement is large.
Also, since the present invention operates peer-to-peer with a replicate of

the complete document at each site, the resulting authoring environment for

12



WO 03/021458 PCT/US02/26937

the present invention automatically attains the goal of single author look
and feel, which is not possible with the client server model which only
presents to the author the node or nodes checked out for the editing task at
hand. The more nodes checked out in the client server approach, the longer
5 other authors will have to wait to make their changes. Even if the current

client server document technology were extended to allow read-only check
out to facilitate single author look and feel, there would be no inherent way
for the read-only portions to be updated. Although it is possible to use
callback to update clients in the client server model, it is an extremely

10 intensive programming approach and merely would serve to make further

disjoint the activities involved in seamless collaborative authoring.

The present invention insures that there is a constantly evolving
exhaustive and mutually exclusive set of authors that cooperatively own
and develop the virtual document. This is only theoretically possible using

15 traditional database privileges. Privileges, ownership and execution
behaviors of nodes in the client server document model are separate
activities, whereas these characteristics in the present invention are

indivisible as is necessary for virtual document integrity.

The present invention’s peer-to-peer model has lead to an efficient
20 collaborative document authoring application without the need for a

bottleneck server.

Further object features and advantages of the invention will become

apparent from the detailed description that follows.

3 BRIEF DESCRIPTION OF THE DRAWINGS

25 The foregoing aspects and many of the attendant advantages of this
invention will be more readily appreciated as the same becomes better
understood by reference to the following detailed description, when taken

in conjunction with the accompanying drawings, wherein:

FIG.1 is a graphical representation of the generation of root context

30 authors.

13



WO 03/021458 PCT/US02/26937
FIG.2 is a hierarchy view of the present invention in regards to
context author creating two sub-nodes.
FIG.3 is diagrammatic view of the FIG 2 in running state.

FIG.4 is a hierarchy view of the present invention in regards to a

subordinate context author further creating two sub-nodes.
FIG.5 is diagrammatic view of the FIG 4 in running state.

FIG.6 is a view of a representative framework dialog for assigning

nodes of the invention;

FIG.7 is a screen view of a node’s executable of invention in

running state.

FIG.8 is ascreen view of FIG.7 exported as a regular SGML

instance without presentation.

4 DEFINITIONS

41 “semantic context free grammar”

15

20

25

30

As used herein and in the claims, the phrase “semantic context free
grammar” is a term in linguistics, “semantic grammar”, combined with a
term in computer science, “context free grammar”, or CFG. The two term’s
constituents are analogous. CFGs consist of non-terminals defined by
productions, which are further defined by terminals. Therefore the
following is a complete grammar from the computer science perspective
(capital letters represent non-terminals and small letters represent

terminals):

A:BcDe

B:b

D:d

Semantic grammars in linguistics are evolving natural language
structures, sometimes called paradigms, held alive by practicing members
of defining groups of linguistically competent humans. Examples of
explicit standardized semantic grammars are the transaction sets and

messages of EDI (electronic data interchange). Another example is the

14



WO 03/021458 PCT/US02/26937

Merck Manual (see 5.6 “Document Evolution Illustration”). This particular
semantic grammar is defined presumably by a set of authorized medical
doctors, and whose structure can be implemented on a computer using

standard computer science parsing techniques.

5 The present invention equates a semantic grammar’s node with a
CFG’s non-terminal and implements semantic grammars on computers in a
way that allows the semantic non-terminals to behave as the present
invention’s context authors (see 4.17 “context author’’) and terminals to
behave as the present invention’s content authors (see 4.18 “content

10 author”) in order to collaborate on creating linguistic content without

undermining the creative expression process.

4.2 “document type declaration”

As used herein and in the claims, the phrase “document type
declaration” (DTD) refers to ISO 8879 standard’s rules for producing
15 document syntaxes. These document syntaxes have the potential of being
human readable and therefore able to make natural language sense to the
document creator. ISO 8879 insures that the produced document syntaxes
are computer tractable thus guaranteeing a tie between natural language and

its representation as context in a computer.

20 4.3 “ordered compilation of information”

As used herein and in the claims, the phrase “ordered compilation
of information” refers to written text or animations sequenced in such a
way as to impart coherent knowledge to a temporally perceiving literate

human attempting to understand the sequence from beginning to end.

25 4.4 *“context”

As used herein and in the claims, the term “context’ refers to the a
priori environment within which written or spoken natural language content
is produced. Although there are many parts to natural language
environment context, ISO 8879 highlights the semantic hierarchy is being

30 its most relevant representative. The DTD makes natural language context

15



WO 03/021458 PCT/US02/26937

explicit and therefore computer tractable. Linguistic context is always
constant when content is being produced or modified. Thus, in the instance

fragment:

<MerckManual>The Merck Manual first appeared in 1899 as a
5 slender 262-page text titled Merck's Manual of the
Materia Medica.
<HeartFailure>
A common syndrome that may be caused by many
different etiologies whose clinical manifestations
10 reflect a fundamental abnormality -- a decrease in
the myocardial contractile state such that cardiac
output (CO) is inadequate for the body's needs.
</HeartFailure>
</MerckManual>

15
the <MerckManual>,</MerckManual> </HeartFailure>, and

</HeartFailure> pieces are representation of linguistic context set in some
semantic hierarchy, where the second pair is semantically subordinate to the

first pair.

20 4.5 “content”

As used herein and in the claims, the term “content” is exemplified

by the text in between the markup pairs in the “context” definition above.

4.6 ‘“instance tag”

As used herein and in the claims, the phrase “instance tag” is the
25 computer tractable expression of context and is exemplified by the
<MerckManual>,</MerckManual>, </HeartFailure>, and </HeartFailure>
pieces in context definition above. An “instance tag” refers exclusively to
an SGML instance of a DTD (see 4.2 “document type declaration”),

specifically the start and optionally end tag surrounding content.

30 4.7 “transaction”

As used herein and in the claims, the term “transaction” refers to the
exercise of a change request message protocol from an author to recipient.
This protocol includes making the request, handling acknowledgements and

eventually committing the results as irreversible.

16



WO 03/021458 PCT/US02/26937

4.8
5
10
4.9
410
15
4.11
20
4.12
25
413

“atomic transaction”

As used herein and in the claims, the phrase “atomic transaction”
refers to a transaction in which, if any of the protocol parts are not carried
out properly and thus leading to inconsistent document replicas at the
various sites, then actions are taken to repair the offending recipient.
Receiving an acknowledgement from a recipient does not necessarily mean
the change has been applied, but rather that the recipient application
promises to either apply the change eventually or resolve the change
otherwise. This allows for any number of workflow scenarios that involve

multiple hop delivery of messages.

“subscriber site”

As used herein and in the claims, the phrase “subscriber site” refers

to the computer that is executing a particular subscriber application.

“document section”

As used herein and in the claims, the phrase “document section”
refers to a particular node’s visual representation of stylized context and

content.

“recordation”

As used herein and in the claims, the phrase “recordation” refers to
a particular editor type site’s address lists of recipients to which content and

administrative change requests are sent when they occur.

“entity type”
As used herein and in the claims, the phrase “entity type” refers to
the roles individuals equipped with their corresponding executables can

play in creating a multiply authored document.

“editor type”

As used herein and in the claims, the phrase “editor type” refers to
authors whose executables allow them to at least make content changes in

the document.

17



WO 03/021458 PCT/US02/26937

4.14 “subscriber type”

As used herein and in the claims, the phrase “subscriber type” refers
to document participants whose executables allow them to at least view the

document.

5 4.5 “root context generator”

As used herein and in the claims, the phrase “root context
generator” refers to software that can create and deploy initial root context
authors. The root context generator is the present invention’s fragment

editor generator (see 4.31 “fragment editor generator executable”).

10 4.16 “root context author”

As used herein and in the claims, the phrase “root context author”
refers to an editor type executable that represents the upper most node in a

document’s semantic hierarchy.

4.17 ‘“‘context author”

15 As used herein and in the claims, the phrase “context author” refers
to an editor type executable that is semantically subordinate to the root
context author and optionally subordinate to other context authors, and who

has the capability to change document context as well as content.

418 “content author”

20 As used herein and in the claims, the phrase “content author” refers
to an editor type executable that is semantically subordinate to the root
context author and optionally other context authors, who has no subordinate

child nodes, and who has the capability to change document content.

4.19 “subscriber”

25 As used herein and in the claims, the phrase “subscriber” refers to a
non-editor type executable that has no semantic node associated with it.
Subscriber types can be created by editor types as well as by other

subscribers if permitted.

18



WO 03/021458 PCT/US02/26937

4.20

5
4.21

10
4.22

15
4.23
4.24

20

25
4.25

“node”

As used herein and in the claims, the term “node” refers to an
SGML element that is a single natural language identifier representing a
linguistic semantic category, and also refers to an executable that was
created specifically to perform operations that are specific to and consistent
with the semantic category it represents. A node is therefore a duality of
representation and operation (see 2.6 “Node Based, not File Based,;

Minimized False Invalidation”)

“target node”

As used herein and in the claims, the phrase “target node” refers to
a node executable created by an existing context author or root context

author.

“sub-node”

As used herein and in the claims, the phrase “sub-node” refers to a

node whose semantic content is subordinate to the current node.

“descendent node”

As used herein and in the claims, the phrase “descendent node”

refers to and is interchangeable with a sub-node.

“replicate view node”

As used herein and in the claims, the phrase “replicate view node”
refers to a node that is exactly the same as a semantic node with the same
identifier at another site in the same document. Each editor type site’s
executable is an implementation of the node it owns, but which also
contains replicates of the other nodes it doesn’t own or can change, which

therefore are for viewing.

“context author node”

As used herein and in the claims, the phrase “context author node”

refers to the deployed executable owned and used by its context author.

19



WO 03/021458 PCT/US02/26937

4.26 “content author node”

As used herein and in the claims, the phrase “content author node”

refers to the deployed executable owned and used by its content author.

4.27 “conventional writing behaviors”

As used herein and in the claims, the phrase “conventional writing
behaviors” includes the abilities to indent, outline, summarize, illustrate,
partition text into coherent sequential paragraphs, sections and chapters, as
well as the abilities to choose and utilize common structural visual cues that
signal document structure, such cues including but not limited to visual
textual cues such as indenting, numbering, shading, coloring, bold, italics

and underline.

4.28 “structured editor”

As used herein and in the claims, the phrase “structured editor”
refers to a word processor that uses a DTD instead of the individual

character to guide the user in the editing process.

4.29 “generalized structured editor”

As used herein and in the claims, the phrase “generalized structured
editor” refers to a structured editor that has the ability to accept, compile
and utilize a large variety of structures, the most popular of which is the
ability to use any kind of DTD (see 4.2 “document type declaration”). The
present invention does not employ a commercial generalized structured
editor, but rather is a suite of cooperating complementary fragment editors
(see 4.30 “fragment editor executable”) per document each fragment of

which is generated as needed.

4.30 “fragment editor executable”

As used herein and in the claims, the phrase “fragment editor
executable” refers to the executable for operating on a particular DTD

node.

20



10

15

20

25

30

WO 03/021458 PCT/US02/26937

4.31 “fragment editor generator executable”

As used herein and in the claims, the phrase "fragment editor
generator” refers to executable code that can create fragment editor
executables (see 4.30 “fragment editor executable”) for operating on

particular DTD nodes.

4.32 “repository”

Repositories are any kind of database that has a markup language
superstructure. The reason the industry chose the word repository instead of
just database is, the purpose of databases is to guarantee the integrity of the
internal data. Although repositories are able to signify that markup
components and elements have been checked out of the database, it cannot
guarantee their consistency with respect to the rest of the internal database
information. Updates in repositories are carried out at the client, whereas,
updates in databases are carried out on the server. The name repository
signifies this difference, which makes its utility more like a software

configuration management system.

5 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A preferred embodiment of the present invention is a syntax-
directed application comprising a root context generator and a root context
author, and optionally comprising one or more selected from the group
consisting of a context author, a content author and a subscriber. With all
components running in tandem, the application functions as a distributed
language-based word processor. The invention allows each author to work
on his or her section of the document while viewing concurrently the

changes of other authors working on the same virtual document.

The Role of SGML

All linguistic expression, whether expressed by speakers, readers or
writers, is produced within an implicit linguistic context. With the advent of
ISO 8879 Standard Generalized Markup Language (SGML) standard in

1986, linguistic expression on the computer has become a non-proprietary

21



10

15

20

25

30

WO 03/021458 PCT/US02/26937

process. Using SGML, the implicit semantic structure of any natural
language expression or compilation may be expressed through the syntax of
a Document Type Declaration (DTD). The DTD transforms the linguistic
context of language expression or compilation into an explicit form that is

computer-tractable.

SGML is a generic set of keywords, naming syntax, occurrence and
connector terms structured in such a way that the document structure
designer uses them to express literally any real world set of natural
language semantic notions in a notation that computers can process. The
DTD is the computer-processable coherent expression of such language.

SGML can produce an infinite number of DTDs.

In a preferred embodiment of the invention, multiple authors
cooperatively comprise a single SGML DTD. This common DTD is not a
tangible computer object or shared memory anywhere, but is rather the sum
of the effect of the deployed editor type executables. The sum of the
deployed nodes is equal to the implementation of a single DTD. This single
DTD defines the context in which each author works. Because a single
virtual DTD is cooperatively used, with the exception of styling, the
context remains identical at each authoring site. Depending on their ability
types, authors cooperatively expand and grow the virtual DTD until the
semantic area is deemed exhausted by the authors and privilege grantors.
When all context and content creation privileges have been revoked for all

nodes, the virtual distributed document is deemed complete.

The present invention implements the DTD prescription for a group
of document writers, enabling each of them to simultaneously produce
changes in content on a mutually exclusive and exhaustive basis with
respect to the DTD all the while viewing text content and context from the
whole document simultaneously. The invention connects the underlying
grammatical structure invisibly to the author's conventional writing
behaviors by tying currently accepted text styles to the grammar at the time
when the executable document is created. DTD instance tags are therefore

never visible to the author or subscriber, but rather context meaning is

22



WO 03/021458 PCT/US02/26937

redirected through styling cues. This process of context styling is analogous

to what occurs for natural language documents.

5.2 Entity Types

A preferred embodiment of present invention comprises five entity
types each with differing capabilities. The five entity types are (1) root
context generator, (2) root context author, (3) context author, and (4)
content author and (5) subscriber. The types are causally related. Each type
has capabilities, privileges and supplementary code behaviors that are
predefined at creation time, but that are modifiable at runtime. These entity
types are further classed into two overall types: editor type and subscriber
type. The root context author, context authors and content authors are all
editor types. All editor types are assigned nodes, and all editor types are
capable of editing document content. The root context author and context
authors are capable of creating and modifying context by creating or
changing sub-nodes as well. A subscriber type, unlike all editor types, is
not assigned a particular node and is therefore a non-editor type.
Subscribers are considered third parties and thus are only able to witness

the evolution of the document.

For each root node topic the invention is accomplished by a
collection of editors and non-editors all of whom are privy to the creation

of the document.

5.3 Document Parts and Capabilities
5.3.1 The Document

5.3.1.1 Viewing

All types have the ability to view the document sections. A section
is a node’s visual representation of stylized context and content. It is
possible with the invention for a node to grant to any and all of its
descendent nodes access to none of the document or the whole document,

or any portion thereof.

23



10

15

20

25

30

WO 03/021458

5.3.1.2 Context and Content Editing

All editor types have the ability to edit content of their node.
Content refers to text material between SGML instance start and end tags.
There is one and only one author per DTD node who may edit content.
Regarding all context portions of the document, all entity types are supplied
with read-only privileges. The stylized expression of context always occurs
only at node creation time. Consequently, no node recipient may alter the
context cues of the received node. Likewise in natural language, context
exists prior to the exercise of producing language content. Only the root
context author can set the initial style of the context representation portions
of the document. Subordinate context authors may modify the initial style
only within permitted bounds, and their modifications are limited to newly

created sub-nodes.

5.4 The Node

The node and its semantic relationships to its parent and children
represent language context. The DTD keeps these relationships straight all

the while allowing the representation to be computer tractable.

A node is the computer address of the author and it is a semantic
element identifiable in the DTD. A node comprises executable code that
embodies the abilities with which it was created. Upon creation of a new
node, every previous node and subscriber is apprised of the new node that
has been added to the document. This apprising results in the addition of
the new node’s section within all document instances. The apprising
operation modifies all recipient’s operation so that the new node can
continue the apprising process as further changes occur. Subsequent
changes to the new node’s content affect only the corresponding new node

in a recipient’s document.

5.4.1 New Node Creation

5.4.1.1 Semantic Child Nodes

The root context author and context authors have the capability of

creating and assigning new semantically descendent portions of the

24

PCT/US02/26937



10

15

20

25

30

WO 03/021458

document to new authors. Node creation is the atomic act of semantically
further differentiating the creator’s node, creating the executable code for
the new node and forwarding the code to the target author. The new author
is granted reading and writing privileges for the content of that new node.
Each creation and assignment results either in the creation of a context
author or the creation of a content author. At any time during runtime,
context authors can create new semantically subordinate context authors

and content authors. Content authors do not have this ability.

Any author node or subscriber has the innate ability to create
another subscriber, although this privilege may be revoked at runtime or the
ability simply may not be provided at code creation time. A subscriber does

not own a particular node.

It is only possible to create a node in the document whose content is

alterable by one and only one author.

5.4.1.2 Node Ownership and Administration

An author may own and operate more than one node. He may also
administrate directly any sub-node or alternatively grant or revoke

privileges for subordinate nodes to carry out some or all of his tasks.

Any implementation algorithm employing supplementary code may
be utilized for effecting authoring control over particular occurrences of
multiply occurring content groups (“content groups” is an SGML term) or
elements as SGML occurrence indicators may permit, that is, *, + and ?, as
long as the algorithm doesn’t compromise the node owner’s basic

ownership rights.

5.4.2 Steps to Create a New Node

In a preferred embodiment, there are five steps involved in creating

new nodes.

5.4.2.1 Select Semantic Sub-node

Selecting a new sub-node is the same process that occurs when

selecting a new node using a DTD editor.

25

PCT/US02/26937



10

15

20

25

30

WO 03/021458 PCT/US02/26937

5.4.2.2 Design User Interface

With the new node named and placed properly in the DTD tree, a
user interface for the new node is created. The user interface enables the
authors to orient themselves visually with respect to the context of the
entire document, and it enables authors to enter content edits in the

assigned content area of the document.

The user interface’s visual structural cues for the new node should
complement the rest of the document. Creating the user interface involves
selection of visual structural cues from within the privileges and parameters
inherited from ancestral nodes. This selection process results in executable
code in the target source. Other ownership and network connection

information is collected.

At creation time for both context and content document parts, user
visual cue and action preferences for indicating beginnings and endings of
document parts or indicating completion of edit changes to a document
part, are extracted from the creator using standard dialog sessions.
Regarding completing change of content, this signaling process is part of
the user interface stylization and follows normal document writing cues
that indicate the author is leaving or entering a changed area. Since change
of context does not occur at run time, there are no actions but only visual

cues that serve to orient the user with respect to the document structure.

New context authors have the ability to design user interfaces for
any new sub-nodes they may create. New content authors do not have this

ability.

5.4.2.3 Choice of Privileges and Supplementary Behaviors

Beyond the innate capabilities of the node type being created, the
node creator may grant any set of privileges or endow it with any
capabilities that were inherited at its creation time. This set of privileges
and capabilities may be altered or revoked or modified at runtime by its

ancestor nodes.

26



WO 03/021458 PCT/US02/26937

New context authors have the ability to set privileges and bequeath
behaviors to new sub-nodes they may create. New content authors do not

have this ability.

5.4.2.4 Node Deployment

5 Context author nodes are able to deploy the new executable code to
the new author’s computer. Furthermore, subsequently created context
author nodes contain the ability to deploy executables that they may create
to any new sub-nodes they may create. Content authors do not have this

capability.

10 5.4.2.5 Updating Authors and Subscribers

The final step is updating the current authors and subscribers with
the new section in the document that this node represents. Without
acknowledgement that all these steps have successfully taken place, none of
the new code will be activated and rollback to the previous document state

15 must take place.

5.4.3 Included Standard Capabilities

5.4.3.1 Displaying Context and Content Change

A newly added node executable includes by default the ability to
receive the content changes from any and all other nodes. This applies to

20 all editor types and subscribers.

5.4.3.2 Propagating Content Changes

A newly created author node includes by default the ability to push
content changes to the list of all node authors and subscribers. This applies

to editor types.

25 5.4.3.3 Accept New Addresses

A newly created editor node includes by default the ability to accept

and add to its distribution list, subsequently added author addresses to

27



WO 03/021458 PCT/US02/26937

which the newly created editor node will send changes. This applies to

editor types.

5.5 Incremental Document Growth

The present invention embodies two separate but simultaneous
5 growth and change paths, which parallels the way natural language
behaves. One path is simultaneous context change and the other is
simultaneous content change. Change in general encompasses creation,
modification, deletion, granting and revoking document parts and
characteristics. Context authors simultaneously create new and alter sub-

10 nodes, and context and content authors create and alter content.

5.5.1 Root Context Generator

In a preferred embodiment, the first step of the invention is to create
executable computer code for the root context author. A topic is selected
for the root node, context stylization is set to default parameters, and an

15 executable is generated and deployed to the target root context author.

5.5.2 Root Context Author

In a preferred embodiment, there is only one root context author per
document, who oversees and controls the creation of the initial document.
DTD change control is eventually hierarchically distributed to all context
20 authors, or it may be kept centrally at the root context author, or control
may be hierarchically distributed to any degree in between. The root
context author may create any number of semantically and privilege-wise

subordinate node executables.

The root context author modifies the default context stylization and
25 even the root node name if desired. Any privileges and behaviors that are
deemed necessary for the authors to successfully write the distributed
document are added to the executable. After being configured for a
particular sub-node during the sub-node creation process, it is this set of
privileges and behaviors that sub-node executables are endowed with when

30 they get created.

28



WO 03/021458 PCT/US02/26937

5.5.3 Context Author

In a preferred embodiment, the context author may only further
configure context stylization, privileges and software behaviors for the sub-
nodes that it creates. Context authors may create any number of

5 semantically and privilege-wise subordinate node executables.

Context authors may create or edit content any number of times.

5.5.4 Content Authors

Content authors may create or edit content any number of times.

5.5.5 Subscribers

10 Subscribers view the document as it evolves.

5.6 Document Evolution lllustration

FIG.1 is a graphical representation of the generation of a root
context author at time zero. In this instance, the root context generator (8)
generates a root context author to begin the document generation process.

15 (10) points to one of four root context author executables it has generated.

5.6.1 Node Executable Interaction

FIG.2 is a hierarchy view of the present invention illustrating time
one in this illustration document’s life. For generality’s sake shapes have
been substituted for named nodes. A thick node border denotes a context

20 author node and a thin border a content author node. Since subscribers do

not own nodes, they have not been included in order to reduce complexity.

In FIG.2 context node 10a has created content author sub-node 12a
and a context author sub-node 14a. Between time zero and time one, two

context changes have occurred.

25 FIG.3 illustrates FIG.2 in running state with the created nodes
deployed as executables 10b, 12b and 14b. Each author executable contains
all three nodes. Three content changes have occurred since time one

resulting in 6 content messages to the other executables at their sites.

29



10

15

20

25

30

WO 03/021458 PCT/US02/26937

FIG.4 is a hierarchy view of the illustration document at time two.
Between time one and time two, context author 14b has further

differentiated its node 14a into two content author sub-nodes 16a and 18a.

FIG.S illustrates FIG.4 in running state with the created nodes
deployed as executables 10b, 12b, 14b, 16b and 18b. Each author
executable now contains all five nodes. Each author has made one content
change since time two resulting in 20 content messages to the other

executables at their sites.

5.6.2 Context Node Executable Generation

FIG.6 is a diagrammatic view of the present invention for
illustration purposes. The root context author MerckManual (30) has
already created sub-nodes Cardiovascular (32) and Pulmonary (34).
PatientApproach (48) and PulmonaryTests (50) nodes were created either
by MerckManual (30) or Pulmonary (34). Cardiovascular (32) or
MerckManual (30) has already created ExerciseHeart (40) and
AortaBranches (42) and is in the process of entering configuration
information into dialog box (54). After completion, HeartPericardium’s

(38) executable is created.

For illustration purposes, dialog box (54) shows three pieces of
information being requested. (56) asks for the text literal that is to replace
the node start tag. (58) asks for the author's name and their net address (59)
(i.e. IP address, network address).

FIG.7 is an example of an author’s document seen at runtime. The
node name is Cardiovascular (32) whose literal read-only context
representation is “Diseases of the Heart and Pericardium” (72) and whose
content (66) is read-writable as indicated by the cursor (68). Other content
areas, (60), (62) and (64) are read-only since they are not owned by this

node.

Four node contexts and contents are visible on the screen. Five
styling cues are used to indicate in conventional document manner the

structure of the DTD and therewith, the document. Indentation indicates

30



10

15

20

25

30

WO 03/021458 PCT/US02/26937

ancestral position in the DTD tree. The numerical decimals (74) visual cue
also shows the implied hierarchy. Bold letters, shading behind the text and
read-only privileges work together to indicate which text portions are the
tag literals ((70), (72), (74) and (76)), which were associated with the node
tag at creation time. Different text shading and read-only privileges indicate
and direct the author as to which areas are not their content areas (60), (62)
and (64). (70)’s “CARDIOVASCULAR DISORDERS” therefore
represents the instance tag <MerckManual>. The end tag literal has been
omitted which is legal SGML since the beginning of “1.1.1 Diseases of the

Heart and Pericardium”(72) indicated the termination of node element (70).

FIG.8 (80) shows FIG.7 after being exported as a regular SGML

instance without tag literals or other presentation artifacts.

5.7 Method for Producing Ordered Compilation of Information

The beginning step of the method is to create executable computer
code that has the ability to create root context authors. In a preferred

embodiment, there is one root context author per document.

The executable code of the root context generator has the ability to
create root context editor types, wherein said root context generator has at
least the following abilities: (1) the ability to create root node associated
executable code for root context authors; and (2) the ability to distribute
said executable code through a communication medium to target root

context authors.

This root context author is the uppermost semantic node in the
document and is of editor type. The executable computer code underlying
the root context author includes computer code that has at least the
following abilities: (3) the ability to maintain and update a recordation or
list of each node added to the document; (4) the ability to generate an initial
user interface that can receive and display the context and content changes
of a document from all the other current and eventual nodes in the
document; (5) the ability to propagate content changes from its own node to
all other replicate view nodes in the distributed document; (6) the ability to

create executable code for semantically subordinate nodes, wherein the

31



10

15

20

25

30

WO 03/021458 PCT/US02/26937

node type is selected from a group consisting of context author and content
author; (7) the ability to distribute the resulting executable code through a
communication medium to the targeted author; (8) the ability to create
executable code for a subscriber; (9) the ability to distribute the resulting
subscriber executable code through a communication medium to the
targeted subscriber; (10)the ability to create, configure and supervise
descendent node user interfaces, descendent node privileges and descendent
node supplementary computer code; and (11) the ability to populate the
document at startup. Subordinate nodes can inherit said abilities that can be
granted and revoked by super-ordinate nodes both at creation time and at
execute time. The user interface enables the author to enter content edits in

an assigned area of the document.

Another step is the creation of executable code for a context author.
The executable computer code underlying the context author includes
computer code that has at least the following abilities: (12) the ability to
maintain and update a recordation or list of each node added to the
document; (13) the ability to display a user interface that can receive and
display the context and content changes of a document from all the other
current and eventual nodes in the document; (14) the ability to propagate
content changes from its own node to all other replicate view nodes in the
distributed document; (15) the ability to respond to administrative requests;
(16) the ability to create executable code for semantically subordinate
nodes, wherein the node type is selected from a group consisting of context
author and content author; (17) the ability to distribute the resulting
executable code through a communication medium to the targeted author;
(18) the ability to create executable code for a subscriber; (19) the ability to
distribute the resulting subscriber executable code through a
communication medium to the targeted subscriber; (20) the ability to
create, configure and supervise descendent node user interfaces, descendent
node privileges and descendent node supplementary computer code; and
(21) the ability to populate the document at startup. Subordinate nodes can

inherit those abilities that can be granted and revoked by super-ordinate

32



10

15

20

25

30

WO 03/021458 PCT/US02/26937

nodes both at creation time and at execute time. The user interface enables

the author to enter content edits in an assigned area of the document.

As can be seen, the root context author and the context authors
share many of the same characteristics. However, while a document may
have multiple context authors, in a preferred embodiment, a document only
has one root context author. Furthermore, in a preferred embodiment, root
context authors create their own initial user interfaces and sets of
supplementary code while a context author can at most only modify
inherited capabilities. Additionally, in a preferred embodiment, context
authors respond to administrative commands, while root context authors
reside at the top of the semantic hierarchy, and thus do not respond to such

administrative commands.

In a preferred embodiment, creation of a subordinate editor type by
a context author or the root context author is the first step in a method to
create context change. Once a subordinate editor type has been created,
editor type authors can perform all other steps of the method to create

context change in any order and at any time.

Another step in the method of the invention is the creating of
executable computer code for a content author. Content authors are always
leaf nodes in the semantic hierarchy because they do not have the ability to
create further subordinate nodes. Leaf nodes have no children nodes
subordinate to them. The executable computer code underlying the content
author includes computer code that has at least the following abilities: (22)
the ability to maintain and update a recordation or list of each node added
to the document; (23) the ability to display a user interface that can receive
and display the context and content changes of a document from all the
other current and eventual nodes in the document; (24) the ability to
propagate content changes from its own node to all other replicate view
nodes in the distributed document; (25) the ability to respond to
administrative requests; (26)the ability to create executable code for a
subscriber; (27) the ability to distribute through a communication medium

the resulting subscriber executable code to the targeted subscriber; and (28)

33



10

15

20

25

30

WO 03/021458

the ability to populate the document at startup. The user interface enables

the author to enter content edits in an assigned area of the document.

Any editor type can perform the step of the method to create and

propagate content change at any time and in any order.

Another step in the method of the invention is the creating of
executable computer code for subscribers. Subscribers are not associated
with any node and they do not have the ability to create further subordinate
nodes. The executable computer code underlying the subscriber includes
computer code that has at least the following abilities: (29) the ability to
display a user interface that can receive and display the context and content
changes of a document from all the other current and eventual nodes in the
document; (30) the ability to respond to administrative requests; and (31)
the ability to populate the document at startup.

Any document participant, including editor types or subscribers
who have the proper privileges, can perform the step of the method to

create subscribers at any time.

The step in the method for populating the document must
necessarily be the first act of any site’s executable code. After populating a
site’s document, it is referred to as being consistent. The only other time a
document replica is not consistent is during change transmission times or if
supplementary work flow type code deliberately delays or redirects change
messages before they reach their destination. A quiescent document of this

invention is a document all of whose change messages have been delivered.

5.8 System for Producing Ordered Compilation of Information

The system comprises executable computer code that has the ability
to create root context authors. In a preferred embodiment, there is one root

context author per document.

The executable code of the root context generator has the ability to
create root context editor types, wherein said root context generator has at
least the following abilities: (1) the ability to create root node associated

executable code for root context authors; and (2) the ability to distribute

34

PCT/US02/26937



10

15

20

25

30

WO 03/021458 PCT/US02/26937

said executable code through a communication medium to target root

context authors.

This root context author is the uppermost semantic node in the
document and is of editor type. The executable computer code underlying
the root context author includes computer code that has at least the
following abilities: (3) the ability to maintain and update a recordation or
list of each node added to the document; (4) the ability to generate an initial
user interface that can receive and display the context and content changes
of a document from all the other current and eventual nodes in the
document; (5) the ability to propagate content changes from its own node to
all other replicate view nodes in the distributed document; (6) the ability to
create executable code for semantically subordinate nodes, wherein the
node type is selected from a group consisting of context author and content
author; (7) the ability to distribute the resulting executable code through a
communication medium to the targeted author; (8) the ability to create
executable code for a subscriber; (9) the ability to distribute the resulting
subscriber executable code through a communication medium to the
targeted subscriber; (10) the ability to create, configure and supervise
descendent node user interfaces, descendent node privileges and descendent
node supplementary computer code; and (11) the ability to populate the
document at startup. Subordinate nodes can inherit said abilities that can be
granted and revoked by super-ordinate nodes both at creation time and at
execute time. The user interface enables the author to enter content edits in

an assigned area of the document.

In a preferred embodiment the system further comprises executable
code for a context author. The executable computer code underlying the
context author includes computer code that has at least the following
abilities: (12) the ability to maintain and update a recordation or list of each
node added to the document; (13) the ability to display a user interface that
can receive and display the context and content changes of a document
from all the other current and eventual nodes in the document; (14) the
ability to propagate content changes from its own node to all other replicate

view nodes in the distributed document; (15) the ability to respond to

35



10

15

20

25

30

WO 03/021458 PCT/US02/26937

administrative requests; (16) the ability to create executable code for
semantically subordinate nodes, wherein the node type is selected from a
group consisting of context author and content author; (17) the ability to
distribute the resulting executable code through a communication medium
to the targeted author; (18) the ability to create executable code for a
subscriber; (19) the ability to distribute the resulting subscriber executable
code through a communication medium to the targeted subscriber; (20) the
ability to create, configure and supervise descendent node user interfaces,
descendent node privileges and descendent node supplementary computer
code; and (21) the ability to populate the document at startup. Subordinate
nodes can inherit those abilities that can be granted and revoked by super-
ordinate nodes both at creation time and at execute time. The user interface
enables the author to enter content edits in an assigned area of the

document.

As can be seen, the root context author and the context authors
share many of the same characteristics. However, while a document may
have multiple context authors, in a preferred embodiment, a document only
has one root context author. Furthermore, in a preferred embodiment, root
context authors create their own initial user interfaces and sets of
supplementary code while a context author can at most only modify
inherited capabilities. Additionally, in a preferred embodiment, context
authors respond to administrative commands, while root context authors
reside at the top of the semantic hierarchy, and thus do not respond to such

administrative commands.

In a preferred embodiment, the system creates context change by
first creating subordinate editor type by a context author or the root context
author. Once a subordinate editor type has been created, editor type authors

create context change in any order and at any time.

In a preferred embodiment the system is capable of creating
executable computer code for a content author. Content authors are always
leaf nodes in the semantic hierarchy because they do not have the ability to
create further subordinate nodes. Leaf nodes have no children nodes

subordinate to them. The executable computer code underlying the content

36



10

15

20

25

30

WO 03/021458 PCT/US02/26937

author includes computer code that has at least the following abilities: (22)
the ability to maintain and update a recordation or list of each node added
to the document; (23) the ability to display a user interface that can receive
and display the context and content changes of a document from all the
other current and eventual nodes in the document; (24) the ability to
propagate content changes from its own node to all other replicate view
nodes in the distributed document; (25) the ability to respond to
administrative requests; (26) the ability to create executable code for a
subscriber; (27) the ability to distribute through a communication medium
the resulting subscriber executable code to the targeted subscriber; and (28)
the ability to populate the document at startup. The user interface enables

the author to enter content edits in an assigned area of the document.

Any editor type can create and propagate content change at any time

and in any order.

In a preferred embodiment the system is capable of creating
executable computer code for subscribers. Subscribers are not associated
with any node and they do not have the ability to create further subordinate
nodes. The executable computer code underlying the subscriber includes
computer code that has at least the following abilities: (29) the ability to
display a user interface that can receive and display the context and content
changes of a document from all the other current and eventual nodes in the
document; (30) the ability to respond to administrative requests; and (31)

the ability to populate the document at startup.

Any document participant, including editor types or subscribers

who have the proper privileges, can create subscribers at any time.

In a preferred embodiment of the system, populating the document
must necessarily be the first act of any site’s executable code. After
populating a site’s document, it is referred to as being consistent. The only
other time a document replica is not consistent is during change
transmission times or if supplementary work flow type code deliberately

delays or redirects change messages before they reach their destination. A

37



WO 03/021458 PCT/US02/26937

quiescent document of this invention is a document all of whose change

messages have been delivered.

As is understood by a person skilled in the art, the purpose of the
foregoing illustration is for clarifying the present invention rather than
limiting of the present invention. It is intended to demonstrate various
concepts included within the spirit and scope of the appended claims, the
scope of which should be accorded the broadest interpretation so as to

encompass all such renditions of similar structure.

38



10

15

20

25

WO 03/021458

PCT/US02/26937

WHAT IS CLAIMED IS:

A system for producing a distributed document having an ordered
compilation of information, the system comprising multiple fragment
editor executables that function cooperatively as one implemented
document type declaration (DTD) wherein said multiple fragment editor
executables are distributed among multiple sites of a computer network
and operate in a peer-to-peer environment without need for a central
server, the system allowing multiple authors to edit the distributed
document contemporaneously while allowing each of the multiple

authors to view edits made by others of the multiple authors.

The system of claim 1, wherein replicates of the complete document

reside at the multiple sites of the computer network.

The system of claim 2, wherein an edit made by any one of the multiple
authors is propagated among the replicates residing at the multiple sites

of the computer network.

The system of claim 3, wherein an edit made by any one of the multiple
authors is immediately propagated among the replicates residing at the

multiple sites of the computer network.

The system of claim 3, wherein an edit made by any one of the multiple
authors is delayed before being propagated among the replicates residing

at the multiple sites of the computer network.

The system of claim 5, wherein an edit made by any one of the multiple
authors is relayed to intervening personnel, and thus is delayed, before
being propagated among the replicates residing at the multiple sites of

the computer network.

The system of claim 2, wherein an edit made by any one of the multiple
authors is propagated as an atomic transaction among the replicates

residing at the multiple sites of the computer network.

39



10

15

20

25

WO 03/021458

10.

11.

12.

13.

14.

15.

PCT/US02/26937

The system of claim 2, wherein the replicates reside in computer

memory at the multiple sites of the computer network.

The system of claim 8, wherein the replicates are persisted by writing to

computer hard disks at the multiple sites of the computer network.

The system of claim 1, wherein each author of the multiple authors is
assigned an entity type having associated therewith corresponding
executables that define the role an author can play in creating distributed

document.

The system of claim 10, wherein the roles that an author may play in
creating the distributed document include: root context author, context

author, and content author.

The system of claim 1, wherein a subscriber can view edits made by one

or more of the multiple authors.

The system of claim 1, wherein the ordered compilation is an SGML

document.

The system of claim 13, wherein the ordered compilation is an SGML

document selected from the group consisting of XML and HTML.

The system of claim 1, the system comprising:

(a) executable computer code for a root context author generator

comprising:

(1) computer code for creating root node associated
executable code for at least one root context author

wherein said root context author is editor type;

(2) computer code for distribution through a communication

medium to said root context author said executable code;

40



10

15

20

25

WO 03/021458

PCT/US02/26937

(b)  executable computer code for said root context author

comprising:

3)

4)

)

©)

(M

®)

®

(10)

computer code for maintaining and updating a

recordation of each node added to a document;

computer code for creating an initial user interface
wherein said user interface receives and displays the
content of said document from other nodes and said
interface enables said root context author to enter content

edits in an assigned area of said document;

computer code for propagating content changes from said
root context author to all other replicate view nodes at

author and subscriber sites;

computer code for creating root node associated
executable code for at least one target node wherein the
type of said target node is selected from the group
consisting of a context author and a content author
wherein said context author can administrate and is editor

type and said content author is editor type;

computer code for distributing through a communication
medium to said target node said root node associated

executable code;

computer code for creating subscriber executable code
for at least one target subscriber wherein said target

subscriber is not editor type;

computer code for distributing through a communication
medium to said target subscriber said subscriber

executable code;

computer code for said administration wherein said

administration comprises the ongoing granting and

41



10

15

20

25

WO 03/021458

©

(11

PCT/US02/26937

revoking of descendent node privileges, the ongoing
configuration of descendent node user interfaces, and the
ongoing configuration of descendent node supplementary

computer code;

code for populating said document at startup;

executable code for said context author wherein said context

author comprises:

(12)

(13)

(14)

(15)

(16)

(17)

computer code for maintaining and updating a

recordation of each node added to a document;

computer code for a user interface wherein said user
interface receives and displays the content of said
document and said interface enables said context author
to enter content edits in the assigned area of said

document;

computer code for propagating content changes from its
own node to all other replicate view nodes at author and

subscriber sites;

computer code for responding to an administrative

request;

computer code for creating node associated executable
code for at least one target node wherein said target node
is selected from the group consisting of a context author
and a content author wherein said context author can
administrate and is editor type and said content author is

editor type;

computer code for distributing through a communication
medium to said target node said associated executable

code;

42



10

15

20

25

WO 03/021458

(d

PCT/US02/26937

(18) computer code for creating subscriber executable code
for at least one target subscriber wherein said target

subscriber is not editor type;

(19) computer code for distributing through a communication
medium to said target subscriber said subscriber

executable code;

(20) computer code for said administration wherein said
administration comprises the ongoing granting and
revoking of descendent node privileges, the ongoing
configuration of descendent node user interfaces, and the
ongoing configuration of descendent node supplementary

computer code;
(21) computer code for populating said document at startup;

executable code for said content author wherein said content

author comprises:

(22) computer code for maintaining and updating a

recordation of each node added to a document;

(23) computer code for a user interface wherein said user
interface receives and displays the content of said
document and said interface enables said content author
to enter content edits in the assigned area of said

document;

(24) computer code for propagating content changes from its
own node to all other replicate view nodes at author and

subscriber sites;

(25) computer code for responding to an administrative

request;

43



10

15

20

25

WO 03/021458

16.

17.

18.

19.

PCT/US02/26937

(26) computer code for creating subscriber executable code
for at least one target subscriber wherein said target

subscriber is not editor type;

(27) computer code for distributing through a communication
medium to said target subscriber said subscriber

executable code;
(28) computer code for populating said document at startup;

(e) executable code for said subscriber wherein said subscriber

comprises:

(29) computer code for a user interface wherein said user
interface receives and displays the content of said

document;

(30) computer code for responding to an administrative

request;
(31) computer code for populating said document at startup.

The system of claim 15, wherein the ordered compilation is an SGML

document.

The system of claim 15, wherein the ordered compilation is an SGML

document selected from the group consisting of XML and HTML.

The system of claim 15, wherein the nodes produced by said root
context author and said context author are semantically valid elements

within a document type declaration.

A system for producing an ordered compilation of information in a

computer network environment, the system comprising;:

(a) executable computer code for a root context author generator

comprising:

44



10

15

20

25

WO 03/021458 PCT/US02/26937

(1) computer code for creating root node associated
executable code for at least one root context author

wherein said root context author is editor type;

(2) computer code for distribution through a communication

medium to said root context author said executable code;

(b) executable computer code for said root context author

comprising:

(3) computer code for maintaining and updating a

recordation of each node added to a document;

(4) computer code for creating an initial user interface
wherein said user interface receives and displays the
content of said document from other nodes and said
interface enables said root context author to enter content

edits in an assigned area of said document;

(5) computer code for propagating content changes from said
root context author to all other replicate view nodes at

author and subscriber sites;

(6) computer code for creating root node associated
executable code for at least one target node wherein the
type of said target node is selected from the group
consisting of a context author and a content author
wherein said context author can administrate and is editor

type and said content author is editor type;

(7) computer code for distributing through a communication
medium to said target node said root node associated

executable code;

(8) computer code for creating subscriber executable code
for at least one target subscriber wherein said target

subscriber is not editor type;

45



10

15

20

25

WO 03/021458

(©

®

(10)

(1n

PCT/US02/26937

computer code for distributing through a communication
medium to said target subscriber said subscriber

executable code;

computer code for said administration wherein said
administration comprises the ongoing granting and
revoking of descendent node privileges, the ongoing
configuration of descendent node user interfaces, and the
ongoing configuration of descendent node supplementary

computer code;

code for populating said document at startup;

executable code for said context author wherein said context

author comprises:

(12)

(13)

(14)

(15)

(16)

computer code for maintaining and updating a

recordation of each node added to a document;

computer code for a user interface wherein said user
interface receives and displays the content of said
document and said interface enables said context author
to enter content edits in the assigned area of said

document;

computer code for propagating content changes from its
own node to all other replicate view nodes at author and

subscriber sites;

computer code for responding to an administrative

request;

computer code for creating node associated executable
code for at least one target node wherein said target node
1s selected from the group consisting of a context author

and a content author wherein said context author can

46



10

15

20

25

WO 03/021458

(d)

(17)

(18)

(19)

(20)

21

PCT/US02/26937

administrate and is editor type and said content author is

editor type;

computer code for distributing through a communication
medium to said target node said associated executable

code;

computer code for creating subscriber executable code
for at least one target subscriber wherein said target

subscriber is not editor type;

computer code for distributing through a communication
medium to said target subscriber said subscriber

executable code;

computer code for said administration wherein said
administration comprises the ongoing granting and
revoking of descendent node privileges, the ongoing
configuration of descendent node user interfaces, and the
ongoing configuration of descendent node supplementary

computer code;

computer code for populating said document at startup;

executable code for said content author wherein said content

author comprises:

(22)

(23)

computer code for maintaining and updating a

recordation of each node added to a document;

computer code for a user interface wherein said user
interface receives and displays the content of said
document and said interface enables said content author
to enter content edits in the assigned area of said

document;

47



10

15

20

25

WO 03/021458

20.

21.

22.

(e)

(24)

(25)

(26)

@7

(28)

PCT/US02/26937

computer code for propagating content changes from its
own node to all other replicate view nodes at author and

subscriber sites;

computer code for responding to an administrative

request;

computer code for creating subscriber executable code
for at least one target subscriber wherein said target

subscriber is not editor type;

computer code for distributing through a communication
medium to said target subscriber said subscriber

executable code;

computer code for populating said document at startup;

executable code for said subscriber wherein said subscriber

comprises:

(29)

(30)

€2))

document.

computer code for a user interface wherein said user
interface receives and displays the content of said

document;

computer code for responding to an administrative

request;

computer code for populating said document at startup.

A system as in Claim 19, wherein the ordered compilation is an SGML

A system as in Claim 20, wherein the ordered compilation is an SGML

document selected from the group consisting of XML and HTML.

A system as in Claim 19, wherein the nodes produced by said root
context author and said context author are semantically valid elements

within a document type declaration.

48



WO 03/021458 PCT/US02/26937

23. A method for producing an ordered compilation of information in a

computer network environment, the method comprising:

(a) creating executable computer code for a root context author

generator comprising:

5 (1) computer code for creating root node associated
executable code for at least one root context author

wherein said root context author is editor type;

(2) computer code for distribution through a communication

medium to said root context author said executable code;

10 (b) creating executable computer code for said root context author

comprising:

(3) computer code for maintaining and updating a

recordation of each node added to a document;

(4) computer code for creating an initial user interface
15 wherein said user interface receives and displays the
content of said document from other nodes and said
interface enables said root context author to enter content

edits in an assigned area of said document;

(5) computer code for propagating content changes from said
20 root context author to all other replicate view nodes at

author and subscriber sites;

(6) computer code for creating root node associated
executable code for at least one target node wherein the
type of said target node is selected from the group

25 consisting of a context author and a content author
wherein said context author can administrate and 1s editor

type and said content author is editor type;

49



10

15

20

25

WO 03/021458

(7

®)

®

(10)

(11)

PCT/US02/26937

computer code for distributing through a communication
medium to said target node said root node associated

executable code;

computer code for creating subscriber executable code
for at least one target subscriber wherein said target

subscriber is not editor type;

computer code for distributing through a communication
medium to said target subscriber said subscriber

executable code;

computer code for said administration wherein said
administration comprises the ongoing granting and
revoking of descendent node privileges, the ongoing
configuration of descendent node user interfaces, and the
ongoing configuration of descendent node supplementary

computer code;

code for populating said document at startup;

(c) creating executable code for said context author wherein said

context author comprises:

(12)

(13)

(14)

computer code for maintaining and updating a

recordation of each node added to a document;

computer code for a user interface wherein said user
interface receives and displays the content of said
document and said interface enables said context author
to enter content edits in the assigned area of said

document;

computer code for propagating content changes from said
context author to all other replicate view nodes at author

and subscriber sites;

50



10

15

20

25

WO 03/021458

(15)

(16)

(17)

(18)

(19)

(20)

21)

(22)

PCT/US02/26937

computer code for responding to an administrative

request,

computer code for creating node associated executable
code for at least one target node wherein said target node
is selected from the group consisting of a context author
and a content author wherein said context author can
administrate and is editor type and said content author is

editor type;

computer code for distributing through a communication
medium to said target node said associated executable

code;

computer code for creating subscriber executable code
for at least one target subscriber wherein said target

subscriber is not editor type;

computer code for distributing through a communication
medium to said target subscriber said subscriber

executable code;

computer code for said administration wherein said
administration comprises the ongoing granting and
revoking of descendent node privileges, the ongoing
configuration of descendent node user interfaces, and the
ongoing configuration of descendent node supplementary

computer code;

computer code for populating said document at startup;

creating executable code for said content author wherein said

content author comprises:

computer code for maintaining and updating a

recordation of each node added to a document;

51



WO 03/021458 PCT/US02/26937

(23) computer code for a user interface wherein said user
interface receives and displays the content of said
document and said interface enables said content author
to enter content edits in the assigned area of said

5 document;

(24) computer code for propagating content changes from said
content author to all other replicate view nodes at author

and subscriber sites;

(25) computer code for responding to an administrative

10 request;

(26) computer code for creating subscriber executable code
for at least one target subscriber wherein said target

subscriber is not editor type;

(27) computer code for distributing through a communication
15 medium to said target subscriber said subscriber

executable code;
(28) computer code for populating said document at startup;

(e) creating executable code for said subscriber wherein said

subscriber comprises:

20 (29) computer code for a user interface wherein said user
interface receives and displays the content of said

document;

(30) computer code for responding to an administrative

request;
25 (31) computer code for populating said document at startup.

24. A method as in Claim 23, wherein the ordered compilation is an SGML

document.

52



WO 03/021458 PCT/US02/26937

25. A method as in Claim 24, wherein the ordered compilation is an SGML
document selected from the group consisting of XML and HTML.

26. A method as in Claim 23, wherein the nodes produced by said root
context author and said context author are semantically valid elements

within a document type declaration.

53



PCT/US02/26937
1/8

WO 03/021458

['OId

\“x\...x , u

01



WO 03/021458 PCT/US02/26937
2/8

14a

10a

FIG.2

[
(o]
-—



WO 03/021458

<
o
-

14b

o
P
#

It s,

14a

7
A7

3/8

14a

PCT/US02/26937

12a

FIG.3

12b

~12a

10b



WO 03/021458 PCT/US02/26937
4/8

18a

10a
FIG.4




PCT/US02/26937

WO 03/021458

5/8

. $'DId

e8I

avl

qcl

By




PCT/US02/26937

WO 03/021458

6/8

SIniELee ¢ o

fe

aps

npadoide

: .
-t

nd ¢

190

R G R S TR N oo

gl = "oniseiegsnonoeiul L

UM

R

@




PCT/US02/26937

WO 03/021458

7/8

LD

¥9

3AUp boﬁﬂcg Passaidap e 10 ‘sMO[[aq 1S3YI [eUIOUqe
ue ‘aseastp Lreuounnd 1suyur 03 anp aq Lews jeyy uorsuapadAy £1spre Lreuownd

79—} 'spasus, 1 5] ; . N\ o/

3uranpoid s3un| 3y} Jo UONIUNJEW 03 Lrepuodas Juawadreua (AY) Femowmuaa S
areuowmg 103 “TTT'T
'$paau s Apoq ayy 103 agenbapewt st (OD) ndino Jerpred Jey} Yans ajels AMIenuod

N|

[erpre30AW 3y} Wt 9SAIITP B -- ANRULIOUQR [eJUSUREPUN] € 1933 SUONEISTUEW
Jeona asoym S3IBO[ONI JUAIMP Auew £q pasned aq Lewl jety) IWOIPULS UOWWOI Y

89

09—

UIMIPIEILIS pue WA a1 Jo saseasiq T TT |

‘sauogeroqe] reraads pue ‘sfes-x 15ayd ‘O ‘sudis fearsyd L
- “AJ0IsIy 9y} WO UORBULIOTUL JO SISAYIUAS & U0 spuadap sisouSerp eomd JeMaseaotprel) ”
. SHATHOSIT AVTNISVAOIQIVD TT—— 04

B . cmEomz__memE_._._ _.l_lull._—D_N._m—
..7 @l B0

AR dpH MaIA " WP - - ORIV
z:uhuz .oz.ofadmwh

n .E.::c. Ew_cou _g:w

empre 3esH TTTT —— p/
| pwe s3wpug [eonmo YL —88 1 o9



PCT/US02/26937

WO 03/021458

8/8

8 'Ol

*BTWSYIST
01 BurpesaT sayaueIq IofBw S2T JO I0 BAIOB 3Yld JO UOTIANNIASHO IO UOTIBUIOT WsAInsus
02 BurpesT TTes 2T3I08 31 JO SS3auyean UT ATNS3I AW BII0B 3Yl JO UOTIABUMRT IUT
<S3Y2UBIAGLIIOY>
<AIB3H3ISTIAA3IXT />
*378I JTTO(RI3W PISTBI Y2 YIATH PIABTII0SSE UOTIALZITIAN pus a1odsusil
20 I0F PI3U PISLIIIUT Y3 S2AIITIII ISIDIIX3d 07 3suodsS3aI IBTNISBAOTIPIBI 3IYL
<1IB3YISTIIIXT>
<umiIpIsatTIadliiesH/>
pue sBUIPUTT TBITUITD SYL
<3TBUOUTNIIOD />
*IATIP Aa0QBTTIAU3A pPIssaadap B 10 ‘Sn0TTIC 2S3YD Tewaoucs ue ‘aseasip
Axsuournd STSUTIAUT 02 3P ag Avu 1yl uorsu=1aadAy Aasiae Axsuowtnd HBursmpoxd
shunT aya JO uoTIdUNITEM 031 ATePuosIas JuawabisTud (AY) IBTNITIIUBA AUDTY
<3TBeuUoOmMINRgIOD>
<aanTreJiaesH />
‘gpaau s,Apog
aya 103 2avnbapvur ST (0)) Indano 2vIPIABD 2eYa YINS 318IS 3TTAVBAIUOD TBIPIBIOAW
3Y3 UT 3583II3P B —— AjrTBUlIcudqe Teiusawspuny v 193T7I21 SUOTIBIASIITUBM TBIATUTITR
Isoyn SITHOTOTIAD IUIAITIIIP Auew AQ pasned aq Aew LYY SWOIPUAS UOCUIMOD Y
<3INTivIAIIBIY>
<UmIpIBITI3JdIAITEIH>
<IBTNISBAOTIPIBI>
<TenuBi2I3>

@ [C[E[E[7 W [k [E=[a:
. diaH jewioj Vasu| ‘MalA -1p3. a4,
PEAPIOM - dxajenue Wyo1 | |

08



INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/26937

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GOGF 15/00, 17/00
USCL 707/500, 530

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 707/500, 530

Minimum documentation searched (classification system followed by classification symbols)

IEEE

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

2, lines 30-54, column 4, lines 52-61, column 9, lines 35-67.

Y US 5,146,552 A (CASSORLA et al) 08 September 1992 (08.09.1992), column 2, lines 15- 1-26
54,

Y US 5,671,428 A (MURANAGA et al) 23 September 1997 (23.09.1997), column 1, lines 5- 1-26
11, lines 36-45, column 2, lines 39-46, column 3, lines 36-45, column 8, lines 4-34,

Y US 5,907,837 A (FERREL et al) 25 May 1999 (25.05.1999), column 1, line 62 - column 1-26
2, line 8, column 9, lines 8-25, lines 35-45, column 19, lines 53-66.

Y US 6,088,702 A (PLANTZ et al) 11 July 2000 (11.07.2000), column 1, lines 10-26, column 1-26

D Further documents are listed in the continuation of Box C.

[

See patent family annex.

* Special categories of cited documents:

“A"  document defining the general state of the art which is not considered to be
of particular relevance

“E" earlier application or patent published on or after the international filing date

“L"  document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“O"  document referring (o an oral disclosure, use, exhibition or other means

“P"  document published prior to the international filing date but later than the
priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

“y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

01 October 2002 (01.10.2002)

Date of mailing of the international search report

21 NOv 2002

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No.

Authorized officer

Fr1
Heather Herndon (/] BN A
’ﬁ,«//«v.z 4 ///505..“{7
Telephone No. (703¥ 305-4700

Form PCT/ISA/210 (second sheet) (July 1998)




PCT/US02/26937
INTERNATIONAL SEARCH REPORT

Continuation of Item 4 of the first sheet:
Title does not meet the requirements of PCT Rule 4.3 because it contains more than 17 words.

NEW TITLE

"METHOD AND SYSTEM FOR PRODUCING AN ORDERED COMPILATION OF INFORMATION WITH MULTIPLE
AUTHORS CONTRIBUTING INFORMATION CONTEMPORANEQUSLY"

Continuation of B, FIELDS SEARCHED Item 3:
EAST
search terms: publishing, publication, authors, collaborative, replication, DTD

Form PCT/ISA/210 (second sheet) (July 1998)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

