

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
14 January 2010 (14.01.2010)

(10) International Publication Number
WO 2010/005578 A1

(51) International Patent Classification:
C03C 3/085 (2006.01) *C03C 21/00* (2006.01)
C03C 3/093 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2009/004011

(22) International Filing Date:
9 July 2009 (09.07.2009)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/079,995 11 July 2008 (11.07.2008) US

(71) Applicant (for all designated States except US): CORNING INCORPORATED [US/US]; 1 Riverfront Plaza, Corning, NY 14831 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ALLAN, Douglas, C. [US/US]; 147 West Fifth Street, Corning, NY 14830 (US). ELLISON, Adam, J. [US/US]; 57 Barr Lane, Painted Post, NY 14870 (US). GOMEZ, Sinue [VE/US]; 228 Upper Delevan Avenue, Corning, NY 14830 (US).

(74) Agent: SANTANDREA, Robert, P.; Corning Incorporated, Intellectual Property Department, SP-TI-3-1, Corning, NY 14831 (US).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: GLASS WITH COMPRESSIVE SURFACE FOR CONSUMER APPLICATIONS

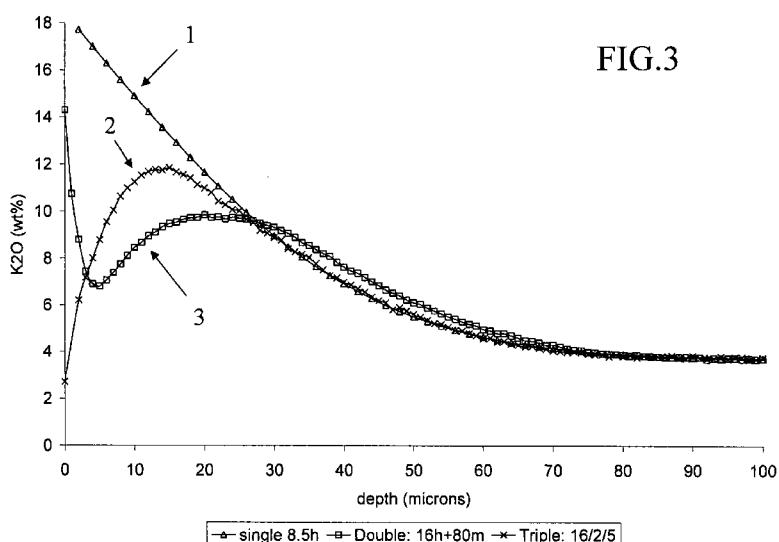


FIG.3

(57) Abstract: A strengthened glass that does not exhibit frangible behavior when subjected to impact or contact forces, and a method of strengthening a glass. The glass may be strengthened by subjecting it to multiple, successive, ion exchange treatments. The multiple ion exchange treatments provide a local compressive stress maximum at a depth of the strengthened layer and a second local maximum at or near the surface of the glass.

GLASS WITH COMPRESSIVE SURFACE FOR CONSUMER APPLICATIONS

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 61/079,995, filed July 11, 2008.

BACKGROUND

[0002] The present disclosure relates to a strengthened glass. More particularly, the disclosure relates to chemically strengthening glass by ion exchange. Even more particularly, the disclosure relates to chemically strengthening of glass by multiple ion exchange treatments.

[0003] Glasses may be chemically strengthened by an ion exchange process. In this process, metal ions that are present in a region at or near the surface of a glass are exchanged for larger metal ions, typically by immersion of the glass in a molten salt bath. The presence of the larger ions in the glass strengthens the glass by creating a compressive stress in a region near the surface. A tensile stress is induced within a central region of the glass to balance the compressive stress. If the tensile stress is excessive, the glass either becomes frangible – i.e., energetically fragments into a large number of small pieces – or crazes – i.e., cracks without the cracks penetrating the glass.

[0004] Chemically strengthened glasses have recently been identified for use in hand held devices, such as mobile phones, media players, and other devices, as well as other applications requiring transparency, high strength and abrasion resistance. For such applications, however, a glass that is either frangible or crazes upon impact is undesirable.

SUMMARY

[0005] A strengthened glass that does not exhibit frangible behavior when subjected to impact or contact forces, and a method of chemically strengthening a glass is provided. The glass is strengthened by subjecting it to multiple ion exchange

treatments. The multiple ion exchange treatments provide a local compressive stress maximum at a depth of the strengthened layer and a second local maximum at or near the surface of the glass.

[0006] Accordingly, one aspect of the disclosure is to provide a strengthened glass. The glass has an outer region under a compressive stress, the outer region extending from a surface of the glass to a depth of layer, and a central tensile region, the central tensile region being under an integrated central tension of less than or equal to a value in a range from about 2.8 MPa·cm up to about 3.2 MPa·cm.

[0007] A second aspect of the disclosure is to provide a method of making a glass that is substantially free of frangible behavior. The method comprises the steps of: providing the glass, the glass having a surface; and creating a compressive stress in an outer region to strengthen the glass, the outer region extending from the surface to a depth of layer, wherein the compressive stress creates an integrated central tension of less than or equal to a value in a range from about 2.8 MPa·cm up to about 3.2 MPa·cm in a central tensile region of the glass.

[0008] These and other aspects, advantages, and salient features of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIGURE 1 is a photograph showing glass sheets that are frangible and not frangible;

[0010] FIGURE 2 is a schematic representation of a glass sheet; and

[0011] FIGURE 3 is a plot of potassium oxide concentration as a function of depth for alkali aluminosilicate glass samples that have undergone single, double, and triple ion exchange.

DETAILED DESCRIPTION

[0012] In the following description, like reference characters designate like or corresponding parts throughout the several views shown in the figures. It is also understood that, unless otherwise specified, terms such as "top," "bottom," "outward," "inward," and the like are words of convenience and are not to be construed as limiting terms. In addition, whenever a group is described as comprising at least one of a group of elements and combinations thereof, it is understood that the group may comprise, consist essentially of, or consist of any number of those elements recited, either individually or in combination with each other. Similarly, whenever a group is described as consisting of at least one of a group of elements or combinations thereof, it is understood that the group may consist of any number of those elements recited, either individually or in combination with each other. Unless otherwise specified, a range of values, when recited, includes both the upper and lower limits of the range as well as any sub-ranges therebetween.

[0013] Referring to the drawings in general, it will be understood that the illustrations are for the purpose of describing particular embodiments of the disclosure and are not intended to limit the disclosure or the appended claims thereto. The drawings are not necessarily to scale, and certain features and certain views of the drawings may be shown exaggerated in scale or in schematic in the interest of clarity and conciseness.

[0014] It is desirable that, upon impact, glasses used in consumer products, such as portable consumer electronic devices such as cover plates, display windows, and the like, not be frangible upon impact; i.e., the glass does not break into multiple (greater than two), small pieces (e.g., $\leq 1\text{mm}$) when impacted by an object or striking a solid surface with sufficient force to break the glass. It is also desirable that glasses used in such applications not "craze" upon impact; i.e., the glass cracks, but the cracks do not penetrate the thickness of the glass.

[0015] As used herein, the terms "frangible" and "frangibility" refers to the energetic fracture of a glass plate or sheet, when subjected to a point impact by an

object or a drop onto a solid surface with sufficient force to break the glass plate into multiple small pieces, with either multiple crack branching (i.e., greater than 5 multiple cracks branching from an initial crack) in the glass, ejection of pieces from their original location of at least two inches (about 5 cm), a fragmentation density of greater than about 5 fragments/cm² of the plate, or any combination of these three conditions. Conversely, a glass plate, when subjected to a point impact by an object or a drop onto a solid surface with sufficient force to break the glass plate, either does not break or breaks with less than five multiple cracks branching from an initial crack with pieces ejected less than two inches from their original location, the glass is deemed to be not frangible.

[0016] Examples of frangible and non-frangible behavior observed for 5 cm x 5 cm glass plates having a thickness of 0.5 mm are shown in FIG. 1. Glass plate **a** exhibits frangible behavior, as evidenced by the multiple small pieces that have been ejected more than two inches, and a large degree of crack branching from the initial crack to produce the small pieces. In contrast glass plates **b**, **c**, and **d** do not exhibit frangible behavior. In these instances, the glass plate breaks into a small number of large pieces that are not forcefully ejected 2 inches from their original location (“X” is the approximate center of glass plate **a** before fracture). Glass plate **b** has broken into two large pieces with no crack branching; glass plate **c** has broken into four pieces with two cracks branching from the initial crack; and glass plate **d** has broken into four pieces with two cracks branching from the initial crack.

[0017] What is desired is a direct link between the amount of compressive stress and its distribution through the near-surface region (i.e., within 10 μm of the surface) of the glass, the associated tensile stress through the center region of the glass, and the tendency of glass to become frangible under too much stress. Furthermore, since damage resistance tends to scale directly with the thickness of the layer under compression, a linkage between stress and frangibility, specifically for glasses with compressive layers typically having a depth (depth of layer) of 50 microns or more, is sought. In a particular embodiment, this linkage is sought for aluminosilicate glasses, such as those described in United States Patent Application 11/888,213, filed on July 31, 2007 by Adam James Ellison et al.; entitled “ Down-

Drawable, Chemically Strengthened Glass for Cover Plate," which claims priority from United States Provisional Patent Application 60/930,808, filed on May 22, 2007, and having the same title; United States Patent Application 12/277,573, filed on November 25, 2008, by Matthew John Dejneka et al., entitled "Glasses Having Improved Toughness and Scratch Resistance," which claims priority from United States Provisional Patent Application 61/004,677, filed on November 29, 2007, and having the same title; United States Patent Application 12/392,577, filed on February 25, 2009, by Matthew John Dejneka et al., entitled "Fining Agents for Silicate Glasses," which claims priority from United States Provisional Patent Application 61/067,130, filed on February 26, 2008, and having the same title; and United States Patent Application 12/393,241 filed February 26, 2009, by Matthew John Dejneka et al., entitled "Ion-Exchanged, Fast Cooled Glasses," which claims priority from United States Provisional Patent Application 61/067,732, filed on February 29, 2008, and having the same title. The contents the above-referenced patent applications are incorporated herein by reference in their entirety.

[0018] Described herein is a strengthened glass. In one embodiment, the glass is in the form of a plate, planar sheet, or a three-dimensional curved object or sheet having a thickness ranging from about 0.5 to 3 mm. A schematic representation of a cross-sectional view of a glass sheet is shown in FIG. 2. The glass 100 is subjected to a process in which there a compressive stress is created at or near the surface 110, and wherein the surface itself is under at least some compressive stress. In one embodiment, the compressive stress is at least 200 MPa. The depth of the layer ("depth-of-layer," or "DOL") 120 that is under compression is at least about 50 μ m.

[0019] The compressive stress near surface 110 induces a tensile stress in a central region 130 to balance the forces within the glass. The integrated central tension (ICT) is given by the integral of stress throughout the tensile portion of the stress profile. ICT is related to the full thickness of glass 100, the depth of the compressive stress layer ("depth of layer, or "DL"), and the shape or profile of the compressive stress layer. ICT is the average of the tensile stress multiplied by the length of the tensile stress region in a direction perpendicular to the surface, expressed herein in MPa·cm. By force balance, the integrated surface compression will be

precisely the same magnitude as the ICT, but have an opposite (minus) sign, since the overall integrated stress must be zero. In order for a glass to not be frangible when subjected to a point impact sufficient to cause the part to break, the integral of the volume of central region 130 under tension that is less than or equal to a value in a range from about 2.8 MPa·cm up to about 3.2 MPa·cm and, in some embodiments, is less than or equal to about 3.0 MPa·cm.

[0020] In one embodiment, the alkali aluminosilicate glass comprises, consists essentially of, or consists of: 60-70 mol% SiO₂; 6-14 mol% Al₂O₃; 0-15 mol% B₂O₃; 0-15 mol% Li₂O; 0-20 mol% Na₂O; 0-10 mol% K₂O; 0-8 mol% MgO; 0-10 mol% CaO; 0-5 mol% ZrO₂; 0-1 mol% SnO₂; 0-1 mol% CeO₂; less than 50 ppm As₂O₃; and less than 50 ppm Sb₂O₃; wherein 12 mol% \leq Li₂O + Na₂O + K₂O \leq 20 mol% and 0 mol% \leq MgO + CaO \leq 10 mol%. In another embodiment, the alkali aluminosilicate glass comprises, consists essentially of, or consists of: 64 mol% \leq SiO₂ \leq 68 mol%; 12 mol% \leq Na₂O \leq 16 mol%; 8 mol% \leq Al₂O₃ \leq 12 mol%; 0 mol% \leq B₂O₃ \leq 3 mol%; 2 mol% \leq K₂O \leq 5 mol%; 4 mol% \leq MgO \leq 6 mol%; and 0 mol% \leq CaO \leq 5 mol%, and wherein: 66 mol% \leq SiO₂ + B₂O₃ + CaO \leq 69 mol%; Na₂O + K₂O + B₂O₃ + MgO + CaO + SrO $>$ 10 mol%; 5 mol% \leq MgO + CaO + SrO \leq 8 mol%; (Na₂O + B₂O₃) - Al₂O₃ \leq 2 mol%; 2 mol% \leq Na₂O - Al₂O₃ \leq 6 mol%; and 4 mol% \leq (Na₂O + K₂O) - Al₂O₃ \leq 10 mol%. The alkali aluminosilicate glass is, in some embodiments, substantially free of lithium, whereas in other embodiments, the alkali aluminosilicate glass is substantially free of at least one of arsenic, antimony, and barium. In other embodiments, the alkali aluminosilicate glass is down-drawable by those techniques known in the art, such as, but not limited to, fusion-draw processes, slot-draw processes, and re-draw processes.

[0021] In one particular embodiment, the alkali aluminosilicate glass has the composition: 66.7 mol% SiO₂; 10.5 mol% Al₂O₃; 0.64 mol% B₂O₃; 13.8 mol% Na₂O; 2.06 mol% K₂O; 5.50 mol% MgO; 0.46 mol% CaO; 0.01 mol% ZrO₂; 0.34 mol% As₂O₃; and 0.007 mol% Fe₂O₃. In another particular embodiment, the alkali aluminosilicate glass has the composition: 66.4 mol% SiO₂; 10.3 mol% Al₂O₃; 0.60

mol% B₂O₃; 4.0 mol% Na₂O; 2.10 mol% K₂O; 5.76 mol% MgO; 0.58 mol% CaO; 0.01 mol% ZrO₂; 0.21 mol% SnO₂; and 0.007 mol% Fe₂O₃.

[0022] The process that is used to create the compressive stress at or near the surface 110 (i.e., within 10 μ m of the surface) of the glass extending to the depth of layer comprises a plurality of – or multiple – strengthening steps. The multiple strengthening steps are carried out in succession of – and separate from – each other. In another embodiment, at least one additional step, such as annealing, washing, preheating, or the like, may be carried out between successive strengthening steps. In a third embodiment, the strengthening steps include chemical strengthening steps known in the art, such as, but not limited to, ion exchange steps. In one embodiment, the strengthening steps are ion exchange steps in which the glass, which itself initially comprises alkali metal ions, is immersed in a series of salt baths containing alkali metal ions that are larger than those alkali metal ions present in the glass. In one embodiment, successive salt baths have compositions that are different from each other. Alternatively, successive salt baths can have essentially the same composition. As used herein, the terms “salt bath” and “bath” refer to such baths used for ion exchange, including, but not limited to, molten salt baths that are known in the art. The smaller ions in the surface region of the glass are exchanged for the larger ions in the bath. In one non-limiting example, sodium ions in the surface region of the glass are exchanged for potassium ions in the melt. A compressive stress is created in the surface of the glass region by the presence of larger ions that now occupy sites in the surface region. The presence of a compressive stress in the surface region gives rise to a corresponding tensile stress, or central tension, in a central or inner region of the glass to balance forces within the glass.

[0023] In a non-limiting example of multiple strengthening steps, a glass sheet is immersed for a first time period in a first salt bath that is at a first temperature. The first salt bath has a first composition (e.g., a combination of different salts or a single salt). At the end of the time period, the glass sheet is removed from the first salt bath. The glass plate is then immersed for a second time period in a second salt bath that is at a second temperature. The second salt bath has a composition that is different from the first salt bath. Between immersion in the first and second salt baths, the glass

sheet may be washed (to avoid cross-contamination of the baths), annealed, or preheated to avoid thermal shock during immersion in the second bath. While the above example describes the use of two ion exchange steps to strengthen the glass, it is understood that any number of such steps may be used to achieve a desired level or profile of compressive stress in the glass.

[0024] The processes described herein – and the glasses produced by the processes – possess several advantages. In order to achieve a glass that is not frangible, a combination of high surface compressive stress and integrated central tension that is immediately below the frangibility limit is preferred. Glasses that are subjected to ion exchange processes that apply a great deal of compressive stress at the surface must have comparatively shallow depth of layer or they will be frangible, whereas glasses subjected to an ion exchange process that produces a substantial depth of layer without becoming frangible have low compressive stress at the surface.

[0025] As long as the frangibility limit or threshold is not exceeded, the compressive stress profile near the surface may be complex. This provides a means to tailor the specific profile for a particular application, rather than rely on the typical single ion exchange profile that is most typical of commercially available ion exchanged glasses. The same frangibility limit applies regardless of whether a glass is annealed or drawn; i.e., a single metric applies regardless of the thermal history of the glass.

[0026] Both the distribution of alkali metal ions in an ion exchange process and higher temperature exposures during ion exchange or subsequent annealing steps that result in stress relaxation can be readily modeled by those methods known in the art. Since the resulting stress profile closely follows the alkali metal concentration profile, the upper limit on integrated central tension itself can be used as a constraint to map all acceptable ion exchange profiles.

[0027] The model being used to obtain the ICT for various process conditions uses standard descriptions of diffusion and stress. A mutual diffusivity (i.e., an effective diffusivity related to motion of both potassium (K) and sodium (Na) in

opposite directions) is fitted from electron microprobe measurements of concentration profiles from known process conditions. These values follow an Arrhenius trend in reciprocal temperature, as is known in the art. The boundary conditions for the diffusion calculation are based on the salt bath composition and the starting composition of the glass. Given a diffusivity, a geometry for the glass plate thickness, and a salt bath composition, solution of the resulting one-dimensional diffusion equation proceeds along the lines given, for example, in "The Mathematics of Diffusion," 2nd ed., 1975, by J. Crank. The stress is then proportional to the concentration of K^+ ions in the glass after the processing steps are completed, as described, for example in, "Fundamentals of Inorganic Glasses," 2nd ed., 2006, by A. K. Varshneya. In order to obey force equilibrium, it is necessary to subtract a constant so that the resulting stress curve integrates to zero. At higher temperatures, the effects of stress relaxation in the glass begin to become important. Stress relaxation is included in the form of a stretched exponential with a stretching exponent and a temperature-dependent relaxation time that are fit to reproduce measured stresses for known process conditions. The use of stretched exponentials for stress relaxation in glass is known in the art, as seen, for example, in "Relaxation in Glass and Composites," 1992, by G. W. Scherer. The model has been tested by comparing its predicted concentration profiles with direct measurements of concentrations by electron microprobe, and comparison with direct measurements of compressive stress and depth-of-layer, when available.

[0028] Alkali aluminosilicate glass having the approximate composition, 66 mol% SiO_2 ; 14 mol% Na_2O ; 10 mol% Al_2O_3 ; 0.59 mol% B_2O_3 ; 2.45 mol% K_2O ; 5.7 mol% MgO ; 0.57 mol% CaO ; 0.18 mol% SnO_2 ; and 0.02 mol% ZrO_2 is a non-limiting example of aluminosilicate glasses that may be strengthened using the multiple ion exchange process described herein. The sodium in this glass can be exchanged with potassium, rubidium, or cesium to produce a region of high compressive stress near the surface and a region under central tension in the interior or central region of a glass part. Unless otherwise specified, it is understood that use of the terms "lithium," "sodium," "potassium," "cesium," and "rubidium" herein refers to the respective monovalent cations of these alkali metals. If rubidium and

cesium are used, they can then also be exchanged for potassium ions as well as for sodium ions in the glass. In one embodiment, some or all of the sodium and potassium are replaced by lithium in the glass. The lithium can be then be exchanged with sodium, potassium, rubidium, or cesium to obtain a high surface compressive stress and an interior volume under tension. In order to produce surface compressive stress (as opposed to tension), one or more of the ions in the glass must be replaced by an ion in the salt solution that has a higher atomic number, e.g., potassium replaces sodium in the glass, rubidium replaces potassium in the glass, sodium replaces lithium in the glass, etc.

[0029] In one embodiment, damage resistance may be improved by providing at least one compressive stress maximum or “peaks” below the surface while retaining high compressive stress at the surface. Ion exchange produces a graded alkali metal concentration profile. This profile has the effect of being a laminate, albeit without any internal interfaces between different glass portions. It is therefore expected that peaks in compressive stress introduced via ion exchange may offer benefits in situations where the glass is subjected to dropping or impact.

[0030] Stress profiles obtained for glasses using single (IX1 in Tables 1 and 2) and double ion exchange (IX2 in Tables 1 and 2) are listed in Table 1. Stress profiles obtained for glasses using double and triple ion exchange (IX3 in Table 2) are listed in Table 2. Experiments have been performed on glass samples (approximate composition: 66.18 mol% SiO₂; 14.00 mol% Na₂O; 10.29 mol% Al₂O₃; 0.59 mol% B₂O₃; 2.45 mol% K₂O; 5.71 mol% MgO; 0.57 mol% CaO; 0.18 mol% SnO₂; and 0.02 mol% ZrO₂) of different thicknesses (L in Tables 1 and 2) that were subjected to the indicated processes. Frangibility, as defined previously herein, has been assessed by breaking each sample (with the exception of examples 14 and 15, which were not tested) after completion of the strengthening process. Samples having an integrated compressive tension (ICT) of less than about 3 are not frangible, while those having ICT values of greater than about 3 are frangible. Inspection of the ICT values and frangibility results in Tables 1 and 2 shows that the transition from non-frangible to frangible behavior is not perfectly sharp, but occurs approximately in the region where ICT ranges from about 2.8 MPa·cm up to about 3.2 MPa·cm. Depth of layer

values (DOL, defined as the distance from the surface to the location at which the stress changes sign), CS (compressive stress at the surface) and ICT are obtained using model calculations that have been previously described herein. The tabulated values for DOL and CS are similar to measured values. In order to calculate ICT, however, it is necessary to use a diffusion/stress model to provide a detailed shape for the full stress profile. If instrumentation becomes available to measure the actual stress profile through the entire depth-of-layer, ICT may be computed directly from the stress profile without the need of a model. In either case, the ICT serves as means for predicting non-frangible behavior and/or frangible behavior.

Table 1. Stress profiles obtained for glasses using single and double ion exchange.

Example	L[cm]	IX1 time[hours]	IX1 T[°C]	IX1 Salt	Anneal time[min]	Anneal T[°C]	IX2 time	IX2 T[°C]	IX2 Salt	DOL[μm]	CS[MPa]	ICT[MPa*cm]
1	0.197	8.5	410	KNO ₃	n.a.	n.a.	n.a.	n.a.	n.a.	50	-793	2.6
2	0.197	7.5	410	KNO ₃	n.a.	n.a.	n.a.	n.a.	n.a.	47	-796	2.4
3	0.128	12	410	KNO ₃	n.a.	n.a.	n.a.	n.a.	n.a.	47	-773	2.9
4	0.158	12	410	KNO ₃	n.a.	n.a.	n.a.	n.a.	n.a.	56	-778	3
5	0.197	16	410	KNO ₃	n.a.	n.a.	n.a.	n.a.	n.a.	66	-770	3.4
6	0.197	12	410	KNO ₃	10	480	15	410	KNO ₃	60	-718	3
7	0.197	7.5	410	KNO ₃	45	480	15	410	KNO ₃	59	-649	2.5
8	0.197	16	430	KNO ₃	10	480	10	430	KNO ₃	82	-715	4.4
9	0.197	16	430	KNO ₃	10	480	30	430	KNO ₃	83	-735	4.4
10	0.197	16	430	KNO ₃	10	480	60	430	80/20*	87	-240	3.8

n.a. = not applicable; sample not subjected to this step.

80/20 = 80% NaNO₃ and 20% KNO₃ by weight.

Table 2. Stress profiles obtained for glasses using double and triple ion exchange.

Example	L[cm]	IX1 time[hours]	IX1 T[°C]	IX1 Salt	IX2 time[min]	IX2 T[°C]	IX2 Salt	IX3 time	IX3 T[°C]	IX3 Salt	DOL[μm]	CS[MPa]	ICT[MPa*cm]	Frangible
11	0.197	18	410	KNO ₃	100	410	80/20	10	410	KNO ₃	73	-557	3.2	No
12	0.197	18	410	KNO ₃	100	410	80/20	40	410	KNO ₃	74	-602	3.3	Yes
13	0.197	18	410	KNO ₃	300	410	80/20	40	410	KNO ₃	81	-546	3	Yes
14	0.197	18	410	KNO ₃	100	410	NaNO ₃	n.a.	n.a.	n.a.	74	-172	3	Not tested
15	0.197	18	410	KNO ₃	200	410	NaNO ₃	n.a.	n.a.	n.a.	78	-134	2.7	Not tested

[0031] Ion exchange profiles obtained for samples that have undergone single, double, and triple ion exchange processes are plotted as a function of depth in FIG. 3. The ion exchange profiles represent the potassium concentration, as determined by electron microprobe analysis, as a function of depth in the glass samples. The ion exchange/potassium oxide profile obtained by single ion exchange for 8.5 hours in a pure KNO₃ bath at 410°C (1 in FIG. 3) is compared to two multiple ion exchange non-frangible profiles: double ion exchange (2 in FIG. 3) comprising 16 hours in a pure KNO₃ bath at 410°C, followed by 80 minutes in a pure NaNO₃ bath at 410°C; and triple ion exchange (3 in FIG. 3), comprising 16 hours in a pure KNO₃ bath at 410°C, followed by 3 hours in a pure NaNO₃ bath at 410°C, and then followed again by 20 minutes in a pure KNO₃ bath at 410°C (Example 10 in Table 3). The extra time that the glass is immersed in a pure KNO₃ salt bath produces a much deeper layer of compressive stress. Since so much stress is concentrated at the surface, the comparatively brief ion exchange in a pure NaNO₃ bath serves to reduce the integrated compressive stress and hence to lower the integrated central tension. If the central tension is sufficiently lowered, as in the triple ion exchange profile, then additional compressive stress can be added close to the surface in an additional ion

exchange step. This pattern can be repeated ad infinitum, producing multiple internal peaks if desired, and poses no risk to a downstream application so long as the integrated central tension remains less than or equal to a value in a range from about 2.8 MPa·cm up to about 3.2 MPa·cm and, in some embodiments, less than or equal to about 3.0 MPa·cm.

[0032] It will be appreciated by those skilled in the art that additional ion exchange steps or intermediate heat treatments may be used to adjust the integrated central tension to be below an upper limit that is in a range of about 3.2 to about 2.8 MPa·cm, and, in some embodiments, below about 3.0 MPa·cm. In addition, various mixtures of sodium and potassium salts in the bath may be used to keep the integrated central tension below the frangibility limit of a value in a range from about 2.8 MPa·cm up to about 3.2 MPa·cm, thus allowing a shallow layer of high compressive stress to be subsequently added, analogous to Example 4 described above. Similarly, the second step of a triple ion exchange may use a mixed salt bath (e.g., NaNO₃ and KNO₃) to relieve some of the compressive stress and provide a greater compressive stress maximum or “peak” within the compressive layer, with the proviso that this ion exchange does not exceed the frangibility limit – i.e., ICT has a value in a range from about 2.8 MPa·cm up to about 3.2 MPa·cm – and does not relieve as much compressive stress as would ion exchange in a bath containing only NaNO₃.

[0033] In addition, multiple compressive stress maxima or “peaks” at different depths may be achieved if desired. In those instances where the glass initially contains lithium rather than sodium or the salt bath contained rubidium or cesium rather than sodium or potassium, compressive stress distributions may be different than that obtained using a single, simple ion exchange.

[0034] While typical embodiments have been set forth for the purpose of illustration, the foregoing description should not be deemed to be a limitation on the scope of the disclosure or the appended claims. Other means, such as alternative chemical means or thermal tempering, for example, may be used to strengthen the glass. Moreover, different means of strengthening the glass may be used in combination with each other to achieve a desired level or profile of compressive

stress. In one alternative embodiment, metal ions, such as silver or the like, may be used instead of – or in combination with – alkali metal ions in the ion exchange process. Accordingly, various modifications, adaptations, and alternatives may occur to one skilled in the art without departing from the spirit and scope of this disclosure or the appended claims.

CLAIMS

1. A glass, the glass being strengthened and having an outer region under a compressive stress, the outer region extending from a surface of the glass to a depth of layer, and a central tensile region, the central tensile region being under an integrated central tension of less than or equal to a value in a range from about 2.8 MPa·cm up to about 3.2 MPa·cm.

2. The glass of Claim 1, wherein the glass is substantially free of frangible behavior when subjected to a point impact sufficient to break the glass.

3. The glass of Claim 1 or Claim 2, wherein the glass, when subjected to a point impact sufficient to break the glass, breaks with less than five multiple cracks branching from an initial crack with pieces ejected less than two inches from their original location.

4. The glass of any of the preceding claims, wherein the outer region has a depth of layer of at least 50 μm .

5. The glass of any of the preceding claims, wherein the compressive stress is at least about 200 MPa.

6. The glass of any of the preceding claims, wherein the glass is an alkali aluminosilicate glass.

7. The glass of Claim 6, wherein the alkali aluminosilicate glass comprises: $64 \text{ mol\%} \leq \text{SiO}_2 \leq 68 \text{ mol\%}$; $12 \text{ mol\%} \leq \text{Na}_2\text{O} \leq 16 \text{ mol\%}$; $8 \text{ mol\%} \leq \text{Al}_2\text{O}_3 \leq 12 \text{ mol\%}$; $0 \text{ mol\%} \leq \text{B}_2\text{O}_3 \leq 3 \text{ mol\%}$; $2 \text{ mol\%} \leq \text{K}_2\text{O} \leq 5 \text{ mol\%}$; $4 \text{ mol\%} \leq \text{MgO} \leq 6 \text{ mol\%}$; and $0 \text{ mol\%} \leq \text{CaO} \leq 5 \text{ mol\%}$, and wherein: $66 \text{ mol\%} \leq \text{SiO}_2 + \text{B}_2\text{O}_3 + \text{CaO} \leq 69 \text{ mol\%}$; $\text{Na}_2\text{O} + \text{K}_2\text{O} + \text{B}_2\text{O}_3 + \text{MgO} + \text{CaO} + \text{SrO} > 10 \text{ mol\%}$; $5 \text{ mol\%} \leq \text{MgO} + \text{CaO} + \text{SrO} \leq 8 \text{ mol\%}$; $(\text{Na}_2\text{O} + \text{B}_2\text{O}_3) - \text{Al}_2\text{O}_3 \leq 2 \text{ mol\%}$; $2 \text{ mol\%} \leq \text{Na}_2\text{O} - \text{Al}_2\text{O}_3 \leq 6 \text{ mol\%}$; and $4 \text{ mol\%} \leq (\text{Na}_2\text{O} + \text{K}_2\text{O}) - \text{Al}_2\text{O}_3 \leq 10 \text{ mol\%}$.

8. The glass of Claim 6, wherein the alkali aluminosilicate glass comprises: 60-70 mol% SiO₂; 6-14 mol% Al₂O₃; 0-15 mol% B₂O₃; 0-15 mol% Li₂O;

0-20 mol% Na₂O; 0-10 mol% K₂O; 0-8 mol% MgO; 0-10 mol% CaO; 0-5 mol% ZrO₂; 0-1 mol% SnO₂; 0-1 mol% CeO₂; less than 50 ppm As₂O₃; and less than 50 ppm Sb₂O₃; wherein 12 mol% \leq Li₂O + Na₂O + K₂O \leq 20 mol% and 0 mol% \leq MgO + CaO \leq 10 mol%.

9. The glass of Claim 6, wherein the glass has a liquidus viscosity of at least 130 kilopoise.

10. The glass of any of the preceding claims, wherein the glass is one of a planar sheet and a three-dimensional curved sheet.

11. The glass of any of the preceding claims, wherein the glass is one of a cover plate and a display window in an electronic device.

12. The glass of any of the preceding claims, wherein the glass has a thickness in a range from about 0.5 mm up to about 5 mm.

13. The glass of any of the preceding claims, wherein the glass is chemically strengthened by successive immersion in a plurality of ion exchange baths.

14. The glass of any of the preceding claims, wherein the surface region comprises a plurality of ions of a first alkali metal ion and a plurality of ions of a second alkali metal, wherein each of the ions of the first alkali metal has a first ionic radius and each of the ions of the second alkali metal has a second ionic radius, wherein the first alkali metal is different from the second alkali metal, and wherein the second ionic radius is greater than the first ionic radius.

15. The glass of Claim 14, wherein the surface region has been ion exchanged.

16. The glass of any of the preceding claims, wherein the glass has a compressive stress within 10 μ m of the surface.

17. A method of strengthening a glass, the method comprising the steps of:

a. providing the glass, the glass having a surface;

b. creating a compressive stress in an outer region to strengthen the glass, the outer region extending from the surface to a depth of layer, wherein the compressive stress creates an integrated central tension of less than or equal to a value in a range from about 2.8 MPa·cm up to about 3.2 MPa·cm in a central tensile region of the glass.

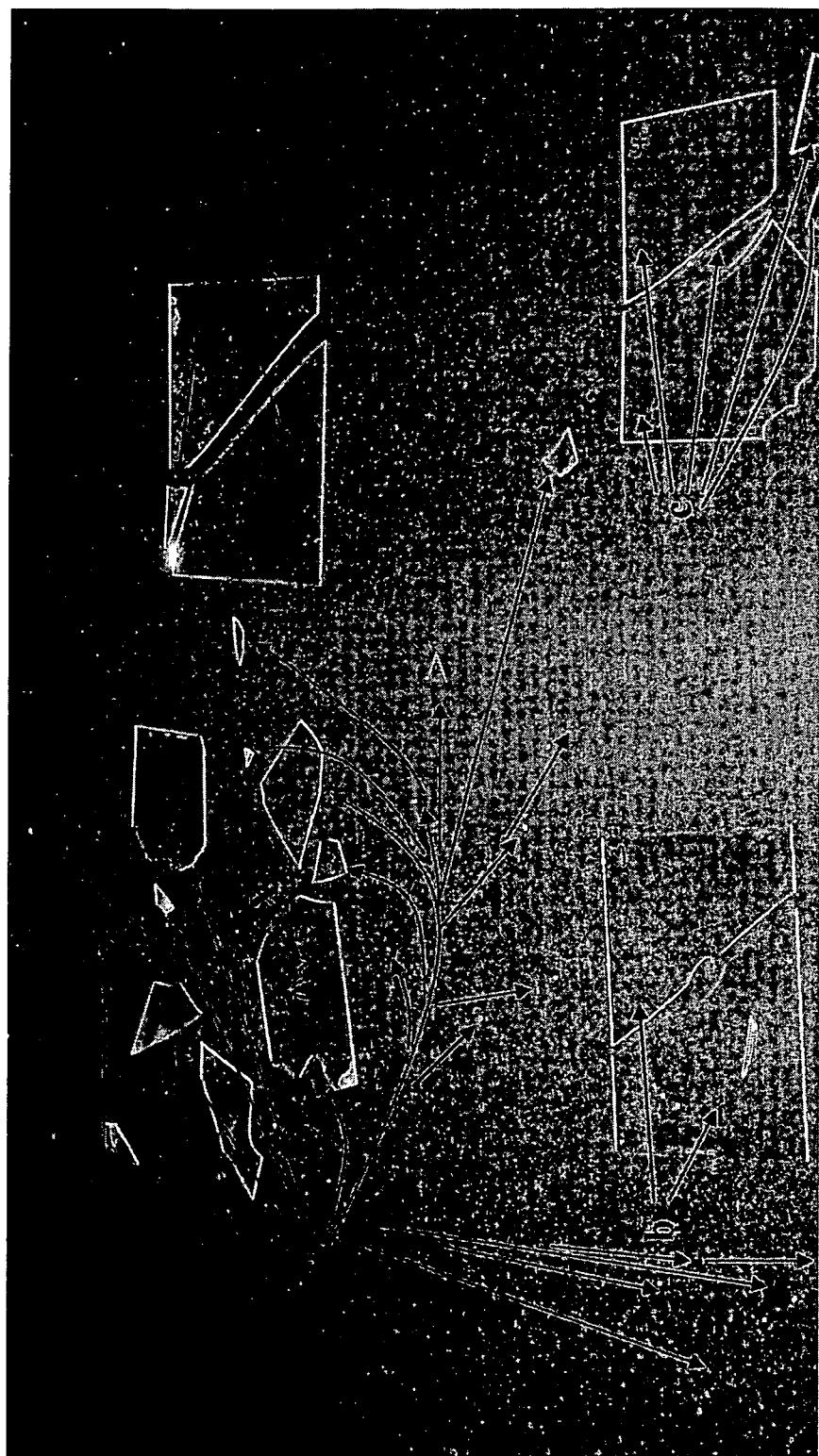
18. The method of Claim 17, wherein the step of creating a compressive stress in the surface region comprises successively immersing at least a portion of the glass in a plurality of ion exchange baths.

19. The method of Claim 18, wherein the successive ion exchange baths have compositions that are different from each other.

20. The method of Claim 18, further comprising annealing the glass between successive immersions of the glass in the plurality of ion exchange baths.

21. The method of Claim 18, wherein the step of immersing at least a portion of the glass in a plurality of ion exchange baths comprises immersing the glass in a first ion exchange bath comprising a salt of a first metal followed by immersing the glass in a second ion exchange bath comprising a salt of a second metal, wherein the first metal is different from the second metal.

22. The method of Claim 21, wherein the first metal and second metal are alkali metals.


23. The method of Claim 18, wherein each of the plurality of ion exchange baths comprises at least one alkali metal salt.

24. The method of Claim 17 or Claim 18, wherein the glass is an alkali aluminosilicate glass.

25. The method of Claim 17 or Claim 18, wherein the glass, when strengthened, is substantially free of frangible behavior.

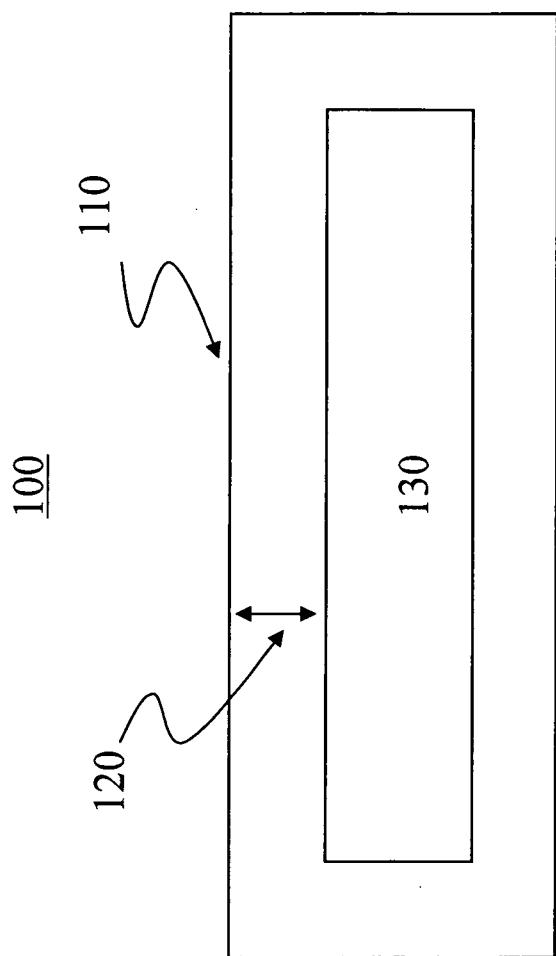

1/3

FIG. 1

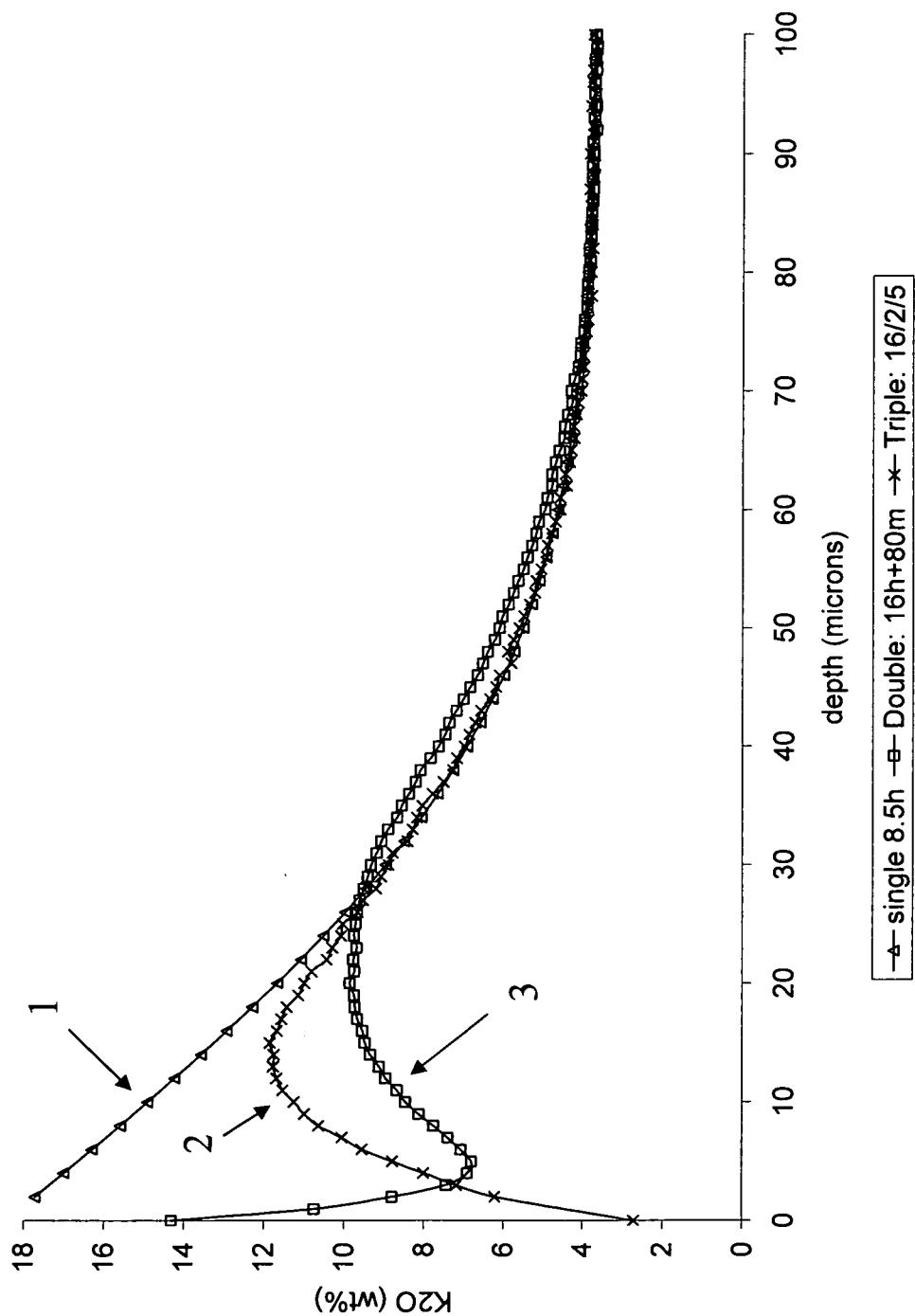

2/3

FIG. 2

3/3

FIG.3

INTERNATIONAL SEARCH REPORT

International application No
PCT/US2009/004011

A. CLASSIFICATION OF SUBJECT MATTER
INV. C03C3/085 C03C3/093 C03C21/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C03C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 3 524 737 A (DOYLE CHARLES W ET AL) 18 August 1970 (1970-08-18)	1-12, 14-17
Y	abstract column 4; example 1; table I claim 1	13,18-25
X	US 3 752 729 A (MOCHEL E) 14 August 1973 (1973-08-14)	1-12, 14-17
Y	abstract example 8; table I	13,18-25
X	US 4 119 760 A (RINEHART DALE W) 10 October 1978 (1978-10-10)	1-12, 14-17
Y	abstract column 3, lines 25-35; example 1 column 5, lines 40-50 claim 1	13,18-25
		-/-

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

19 October 2009

Date of mailing of the international search report

28/10/2009

Name and mailing address of the ISA/

European Patent Office, P.B. 5618 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Mertins, Frédéric

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2009/004011

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 1 038 845 A (CENTRAL GLASS CO LTD [JP]) 27 September 2000 (2000-09-27)	1-12, 14-17
Y	abstract page 6, paragraph 38 page 10; examples B-1; table 3 claim 1	13,18-25
X	US 4 156 755 A (RINEHART DALE W [US]) 29 May 1979 (1979-05-29)	1-12, 14-17
Y	abstract column 3, lines 35-41 column 6; example 5; table I	13,18-25
Y	GB 1 346 747 A (SAINT GOBAIN) 13 February 1974 (1974-02-13) abstract claims 1-7	13,18-25
Y	US 3 410 673 A (MARUSAK FRANCIS J) 12 November 1968 (1968-11-12) abstract column 3, lines 32-43 claim 1	13,18-25
Y	GB 1 342 674 A (TECHNISCHES GLAS VEB K) 3 January 1974 (1974-01-03) abstract claims 1-7	13,18-25

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2009/004011

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 3524737	A	18-08-1970	BE DE ES FR GB	716046 A 1771427 A1 354347 A1 1570118 A 1212123 A		02-12-1968 16-12-1971 01-11-1969 06-06-1969 11-11-1970
US 3752729	A	14-08-1973	GB	1171527 A		19-11-1969
US 4119760	A	10-10-1978		NONE		
EP 1038845	A	27-09-2000	DE DE US	60006176 D1 60006176 T2 6436859 B1		04-12-2003 22-04-2004 20-08-2002
US 4156755	A	29-05-1979		NONE		
GB 1346747	A	13-02-1974	BE DE ES FR IT LU NL NO SE	786855 A1 2237226 A1 405225 A1 2146955 A1 963431 B 65810 A1 7210423 A 128488 B 378099 B		29-01-1973 08-02-1973 16-07-1975 09-03-1973 10-01-1974 31-01-1973 30-01-1973 26-11-1973 18-08-1975
US 3410673	A	12-11-1968	BE CA DE GB NL NL	658981 A 926624 A1 1496099 A1 1076894 A 135450 C 6501168 A		28-07-1965 22-05-1973 17-07-1969 26-07-1967 02-08-1965
GB 1342674	A	03-01-1974	DD DE FR	88633 A 2114074 A1 2143517 A1		05-10-1972 09-02-1973