wo 2016/118211 A1 |1 IO OO A A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
28 July 2016 (28.07.2016)

=
WIPO I PCT

\

(10) International Publication Number

WO 2016/118211 A1l

(51) International Patent Classification:
GO6F 3/06 (2006.01) HO4L 12/46 (2006.01)
HO4L 29/08 (2006.01) HO4L 29/06 (2006.01)

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(21) International Application Number: DO, DZ. EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT.
PCT/US2015/059328 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
5 November 2015 (05.11.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (uniess otherwise indicated, for every
14/603,920 23 January 2015 (23.01.2015) Us kind Of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(71) Applicant: KODIAK DATA, INC. [US/US]; 615 Milver- TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
ton Road, Los Altos, CA 94022 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
. DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(72) g«:’?{ljtg; SIKDAR, Som; 615 Milverton Road, Los Altos, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK.
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,

(74) Agents: FORD, Stephen, S. et al.; Schwabe, Williamson GW, KM, ML, MR, NE, SN, TD, TG).

& Wyatt, PC, 1211 SW 5th Avenue, Suite 1900, Portland,

OR 97204 (US).

[Continued on next page]

(54) Title: RESOURCE NODE INTERFACE PROTOCOL

- 106

DOCK

DOCK
CONFIGURATIO

RESOURCE NODE 100

RESOURCE
NODE
PROCESSING

REMOTE
DIBKS
Nttt

120

111

FLASH

\
|
‘
i
7777777 i
|
‘
‘
|

FIG. 1

(57) Abstract: A distributed storage system includes multiple resource
nodes each having associated storage media. The resource nodes are
configured to operate a first protocol between the resource nodes that
exchanges availability and performance information for storage ele-
ments in the associated storage media. The resource nodes also operate
a second protocol that dynamically distributes and redistributes data
between the different resource nodes based on the availability and per -
formance information for the storage elements. Relative distances may
be identified between the ditferent resource nodes and the second pro-
tocol may weight the availability and performance information based
on the relative distances. The second protocol also may identify types
of unshared use, shared use, and concurrent use for different portions
of the data and distribute the portions of the data to other resource
nodes based on the identified types of use.

WO 2016/118211 A1 WK 00TV 00 T A

Published:
— with international search report (Art. 21(3))

WO 2016/118211 PCT/US2015/059328

RESOURCE NODE INTERFACE PROTOCOL

The present application incorporates by reference U.S. Patent Application Ser. No.
14/533,214, filed November 5, 2014, Entitled: CONFIGURABLE DOCK STORAGE in its

entirety.
BACKGROUND

[0001] A block storage system uses protocols, such as small computer system interface
(SCSI) and advanced technology attachment (ATA), to access blocks of data. The block
storage system may use caching and/or tiering to more efficiently access the blocks of data.
The block storage system also may use a virtual addressing scheme for provisioning, de-
duplication, compression, caching, tiering, and/or providing resiliency of data stored on
different physical media through methods such as replication and migration. Virtual
addressing allows the user of the storage system to access blocks of data on the storage
system while allowing the storage system administrator to manage media count and types,

access methods, redundancy and data management features without the users’ knowledge.

[0002] A file storage system manages the data blocks and metadata associated with different
files. Files can have variable sizes and may include metadata identifying the associated data
blocks. A user of a file storage system may access files or portions of files whereas the
metadata is typically managed by and only accessed by the file storage system. The file
storage system may de-duplicate, compress, cache, tier and/or create snapshots of the file
data. An object storage system uses handles to put or get objects, usually in their entirety,
from object storage. Object storage systems can perform timeouts, scrubbing, caching and/or
checkpoints on the stored objects. The file storage system may operate on top of the block
storage system and the object storage system cither may operate on top of the block storage
system or operate on top of the file storage system. A user of an object storage system may
access objects whereas the underlying block or file storage is typically managed by and only

accessed by the block or file storage system.

[0003] Clients may access data differently and thus have different storage requirements. For

example, a first user may perform transactional operations that read and write data into

WO 2016/118211 PCT/US2015/059328

random storage locations. A second user may perform analytic operations that primarily read
large blocks of sequential data. In such a case, the performance of the first user may be
limited by the number of random operations of the storage system while the performance of

the second user may be limited by the bandwidth capability of the storage system.

[0004] For example, the first user may need to recover data after a hardware or software
failure. The storage administrator may configure a redundancy storage extension for the
storage system, such as redundant array of independent disks (RAID) that strips the same

data on multiple different disks.

[0005] The second analytic user may not need data redundancy. However, the redundancy
storage extension is used throughout the storage system regardless of which user accesses the
disks. Overall storage capacity is unnecessarily reduced since redundant backup data is

stored for all users.

[0006] In a further example, a first user requiring redundancy and a second user requiring
highest write performance both need access to the same data with some of that data accessed
concurrently by both users. If the required data exists upon the same virtual storage (the
same Logical Unit Number — LUN), the storage administrator will be required to configure
the entire LUN for the redundancy requirement of the first user which reduces the

performance for the second user.

[0007] The storage administrator also may configure a caching or tiering policy that uses
random access memory (RAM) and/or Flash memory to increase access rates for the random
read and write operations performed by the first user. The caching or tiering policy is
commonly applied to the entire storage system for all storage accesses by all users and
minimally to all users of the particular storage data. As an example, if a block storage system
enables caching for a particular disk (virtual or physical), said caching is enabled and

functions equivalently for all clients accessing said storage data.

[0008] The caching or tiering policy may increase data access speeds for the first user but
may provide little improvement for the large sequential read operations performed by the
second user. Applying the caching or tiering policy to all storage operations may actually
reduce storage performance. For example, data from large sequential read operations

performed by the second user may flush data from RAM or Flash memory currently being

WO 2016/118211 PCT/US2015/059328

cached or tiered for the first user. Additionally, read accesses from a non-benefitting user
will evict data within the cache to the likely detriment of the benefitting user, thereby

reducing performance for both users.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG. 1 depicts an example resource node.

[0010] FIG. 2 depicts an example resource node that uses a cluster interface for

communicating with other resource nodes.
[0011] FIG. 3 depicts an example cluster of resource nodes.

[0012] FIG. 4 depicts an example cluster interface and example cluster resource data in more

detail.
[0013] FIG. 5 depicts example cluster resource data in more detail.
[0014] FIG. 6 depicts example resource update messages.

[0015] FIG. 7 depicts another example scheme for transferring data and resource update

messages.
[0016] FIG. 8 depicts an example in-flight table and an example in-flight graph.

[0017] FIG. 9 depicts example graphs showing how storage complexity exponentially

increases due to different storage conditions.

[0018] FIG. 10 depicts example graphs showing how storage complexity increases sub-

linearly due to different storage conditions.

[0019] FIG. 11 depicts an example cluster data protocol.

[0020] FIG. 12 depicts an example process for distributing and redistributing data.
DETAILED DESCRIPTION

[0021] A distributed storage system includes multiple resource nodes each having associated

storage media. The resource nodes are configured to operate a first protocol between the

WO 2016/118211 PCT/US2015/059328

resource nodes that exchanges quantity and performance information for storage media
clements in the associated storage media. The resource nodes also operate a second protocol
that dynamically distributes and redistributes data from the local storage media among the
different resource nodes based on the quantity and performance information of the storage
media elements. Redistribution may occur on the basis of resource performance or other
factors identifiable by the resource nodes but not identifiable by any element accessing data
within a resource node. Because of this capability, a first resource node may provide access
to data located on storage media located within a second resource node in a manner that

indicates to the accessing element that the data is present within the first resource node.

[0022] The first protocol also may identify the relative distances between the different
resource nodes and the second protocol may weight the quantity and performance
information based on the relative distances. Distance information may be related to physical
location such as physical server, equipment rack, rack column or data center, to network
topology such as number of routing hops or bandwidth of routed links or other metrics

relevant to the architecture of the underlying hardware and software.

[0023] Each resource node may identify types of data usage for the virtual data storage
presented by the distributed storage system, such as unshared use, shared use, and concurrent
use for discrete ranges of that virtual data storage and distribute the portions of the data to
other resource nodes based on the identified types of use. The second protocol, identifying
the performance of the available storage media within other resource nodes, may be utilized
to calculate the optimal spreading of data based on the data usage for the virtual data storage

presented and other factors including availability and distance of the other resource nodes.

[0024] In one example, a first resource node identifies a LUN, presented as a virtual disk to
storage users, as having concurrent use within a specific range of LUN address space. If a
neighboring second resource node has more available high-performance Flash memory, the
appropriate media for highly concurrent data, than the first resource node, the first resource
node may transfer the data within that range of LUN address space to the second resource
node. In another example, the first resource node evaluates the expected performance that
would be achieved using the high-performance media within the second resource node using

the distance metric to the second resource node.

WO 2016/118211 PCT/US2015/059328

[0025] Existing storage systems may determine the constituent storage media for a specific
virtual data storage, e.g. a virtual disk or LUN. The resources of the storage system, which
may be distributed over multiple storage systems and enclosures, do not dynamically
reconfigure data placement or move data to other resources without the control of a
centralized storage system control process. It is this centralized storage system control
process that must monitor individual resources to determine where new data should be
placed. Furthermore, these resources typically have a fixed resiliency configuration for all

presented resources.

[0026] Centralized tracking of resource availability, configuration and performance detracts
from the performance of distributed storage systems. The present resource nodes act
independently and in real-time with respect to storage accesses to the distributed storage
system, perform the functions of dynamically moving data to and from other resource nodes
for purposes including optimizing performance, availability, and reacting to changes in the
overall media composition or usage of the data on this media by storage users. Whereas prior
storage systems virtualize disks (LUNSs) to the storage user, the resource nodes virtualize the
performance, resiliency and management features of discrete ranges of the data space of each
disk (LUN), thereby greatly reducing the computation requirements of the aforementioned

disk-level virtualization.

[0027] FIG. 1 shows a client 102 connected to a resource node 100. Client 102 may
comprise any device or application that writes and/or reads data to and from another device.
For example, client 102 may comprise one or more servers, server applications, database
applications, routers, switches, client computers, personal computers (PCs), Personal Digital
Assistants (PDA), smart phones, digital tablets, digital notebooks, or any other wired or

wireless computing device and/or software that accesses data.

[0028] In another example, client 102 may comprise a stand-alone appliance, device, or
blade. In another example, client 102 may be a processor or software application in a
personal computer or server that accesses resource node 100 over an internal or external data
bus. In yet another example, client 102 may comprise gateways or proxy devices providing
access to storage system 100 for one or more stand-alone appliances, devices or electronic

entities.

WO 2016/118211 PCT/US2015/059328

[0029] Resource node 100 may operate on a processing system, such as a storage server,
personal computer, etc. Resource node 100 may operate with other resource nodes on the
same storage server or may operate with other resource nodes 100 operating on other storage

SCIvers.

[0030] Storage media 112 may comprise any device that stores data accessed by another
device, application, software, client, or the like, or any combination thercof. For example,
storage media 112 may comprise one or more solid state device (SSD) chips or dies that

contain one or more random access memories (RAMs) 114 and/or Flash memories 116.

[0031] Storage media 112 also may include local storage disks 118 and/or remote storage
disks 120. Disks 118 and 120 may comprise rotating disk devices, integrated memory
devices, or the like, or any combination thercof. Remote disks 120 also may include cloud
storage including cloud storage application programming interfaces (APIs) to cloud storage

services.

[0032] Resource node 100 may exist locally within the same physical enclosure as client 102
or may exist externally in a chassis connected to client 102. Client 102 and the computing
device operating resource node 100 may be directly connected together, or connected to each
other through a network or fabric. In one example, client 102 and resource node 100 are

coupled to each other via wired or wireless connections 104.

[0033] Different communication protocols can be used over connection 104 between client
102 and resource node 100. Example protocols may include Fibre Channel Protocol (FCP),
Small Computer System Interface (SCSI), Advanced Technology Attachment (ATA) and
encapsulated protocols such as Fibre Channel over Ethernet (FCoE), Internet Small Computer
System Interface (ISCSI), Fibre Channel over Internet Protocol (FCIP), ATA over Ethernet
(AoE), Internet protocols, Ethernet protocols, or the like, or any combination thereof.
Protocols used between client 102 and resource node 100 also may include tunneled or
encapsulated protocols to allow communication over multiple physical interfaces such as

wired and wireless interfaces.

[0034] A dock 106 comprises any portal with memory for storing one or more dock

configurations 110. In one example, dock configuration 110 is an extensible markup

WO 2016/118211 PCT/US2015/059328

language (XML) file that defines a set of storage extensions that determine how resource

node 100 appears to client 102, or any other clients, that dock to resource node 100.

[0035] A storage administrator may create a file in dock 106 containing dock configuration
110. For example, the storage administrator may create a dock configuration 110 with a set
of storage extensions optimized for analytic clients. The storage administrator directs

resource node 100 to load dock configuration 110.

[0036] Resource node 100 is effectively docked as specified in dock configuration 110. For
example, loading dock configuration 110 may cause resource node 100 to open an IP address
on an ISCSI port for receiving ISCSI commands. Resource node 100 then uses dock
configuration 110 for any client 102 using the specified IP address. For example, client 102
may connect to resource node 100 via an Internet protocol (IP) address or port address that is
associated with dock configuration 110. Resource node processing 111 identifies client 102
as docked and performs storage operations that implement the storage extensions identified in

dock configuration 110.

[0037] In another example, dock configuration 110 may not specify a specific IP address or
port for dock configuration 110. Resource node 100 then may apply dock configuration 110
for all clients 102 regardless of which IP addresses are used for accessing resource node 100.
The address and port identifiers used in dock configuration 110 may vary depending on the

protocol used for connecting client 102 to resource node 100.

[0038] Dock configuration 110 provides client-based access to storage media 112 verses
conventional storage systems that are configured with a set of storage extensions
independently the clients accessing storage media 112. Resource node 100 more efficiently
accesses storage media 112 by implementing storage operations with RAM 114, Flash 116,
local disks 118, and remote disks 120 based on the dock configuration 110 associated with
client 102. Thus, resource node 100 may provide different storage extensions based on the

dock configuration 110 associated with client 102.

[0039] Additional details discussing how resource node 100 performs different storage
operations is described in co-pending U.S. Patent Application Ser. No. 14/533,214, filed
November 5, 2014, entitled: CONFIGURABLE DOCK STORAGE which has been

incorporated by reference in its entirety.

WO 2016/118211 PCT/US2015/059328

[0040] FIG. 2 shows an example of how a resource node 100A uses dock configurations
110A and 110B. The storage administrator docks resource node 100A by loading dock
configuration 110A and dock configuration 110B into resource node 100A via a dock
interface 178. For example, the storage administrator may use a personal computer to create
XML files that contain dock configurations 110A and 110B. The storage administrator then
loads dock configurations 110A and 110B on resource node 100A via dock interface 178.

[0041] Resource node 100A conducts a dock policy 184 for docking clients 102, undocking
clients 102, and performing storage operations based on storage extensions 136 and 142. A
processor generates an operation sequence 180A to implement storage extensions 136
associated with dock configuration 110A and generates an operation sequence 180B to

implement storage extensions 142 associated with dock configuration 110B.

[0042] Operation sequence 180A is used for processing storage requests received from client
102A. For example, operation sequence 180A may cache or tier data from read and write
operations in RAM 114 or Flash 116, provide redundancy for data writes, and use local disks

118 for storing data.

[0043] Operation sequence 180B is used for executing the storage requests received from
client 102B. For example, operation sequence 180B may not cache and tier data, but may
perform read aheads that read additional sequential blocks of data into RAM 114 and/or Flash
116. Operation sequence 180B also may selectively store data into remote disks 120 and/or

cloud storage 122.

[0044] Storage access layer 186 includes any storage access protocols used for accessing
RAM 114, Flash 116, local disks 118, remote disks 120, and cloud storage 122. For example,
local storage, such as RAM 114, Flash 116, and local disks 118 may be accessed through a
driver as “devices” or locally available disks. Local storage such as RAM 114 and Flash 116
may additionally be accessed as memory by configuring storage media 112 to appear in a
processor memory map or as media accessible by a high-speed protocol such as NVMe or

RDMA.

[0045] Remote disks 120 or other remote storage may be accessed by protocols supported by

the remote storage system. Cloud storage 122 may be accessed using access methods

WO 2016/118211 PCT/US2015/059328

provided by the cloud provider which may include the same protocols used to access remote
disks 120.

[0046] Storage access layer 186 may dynamically add remote disks 120 and cloud storage
122 to resource node 100A based on storage extensions 136 and 142. Storage extensions 142
may not care if data is stored in local disks 118, remote disks 120, or cloud storage 122.
Storage access layer 186 may dynamically move data associated with client 102B into remote
disks 120 and/or cloud storage 122 based on current capacities in storage media 112. Thus,
resource node 100A may use different types of storage media 114, 116, 118, 120 and 122 on

a per client bases.

[0047] Storage access layer 186 may conduct some storage operations for implementing
storage extensions 136 and 142 on top of internal storage operations performed in storage
media 112. For example, storage access layer 186 may conduct a redundancy operation
based on storage extensions 136 that writes 1.5 blocks of data for every 1.0 block write
operation received from client 102A. This may prevent data loss during a connection outage

since the same data is recoverable from different physical disks.

[0048] Resource node 100A may not need to interact with the internal storage operations
performed within storage media 112 underneath storage access layer 186. Resource node
100A may only need to access available storage 112 and know storage capacity and storage

performance characteristics.

CLUSTER RESOURCE INTERFACE

[0049] Referring to FIGS. 2 and 3, resource nodes 100A-100D are connected together via
any known network connection protocol. In one example, two different clients 102A and
102C may connect to resource nodes 100A and 100C, respectively. Some of resource nodes
100 may be located in a same storage server and other resource nodes 100 may be located on

different storage servers.

[0050] Each resource node 100 may include a cluster interface 200 and cluster resource data
202. Cluster interface 200 may operate a first protocol between resource nodes 100A-100D
that exchanges quantity and performance information for storage elements in the associated

storage media 112. Cluster interface 200 also operates a second protocol that dynamically

-9.

WO 2016/118211 PCT/US2015/059328

distributes and redistributes data between different resource nodes 100A-100D based on the

availability, quantity, and performance information for the storage elements.

[0051] The first protocol may identify relative distances between the different resource nodes
100 and the second protocol may weight the availability, quantity, and performance
information based on the relative distances. The resource node may then identify types of
unshared use, shared use, and concurrent use for different portions of the data and utilize the
second protocol to distribute the portions of the data to other resource nodes 100 based on the

identified types of use.

[0052] FIG. 4 shows cluster interface 200 and cluster resource data 202 in more detail.
Cluster interface 200 includes two protocol layers. The first protocol layer comprises a
cluster access protocol 204 and the second protocol layer includes a cluster data protocol 206

and a cluster resource protocol 208 that run underneath cluster access protocol 204.

[0053] Cluster access protocol 204 establishes a reliable connection with other resource
nodes for routing messages and data. Cluster access protocol 204 may operate similar to a
transmission control protocol (TCP) ensuring successful data transfers. For example, cluster
access protocol 204 may perform packet resends, heartbeats, monitor bandwidth, and
rerouting for messages and data sent using cluster data protocol 206 and cluster resource
protocol 208. Cluster access protocol 204 may determine status information for the different

resource nodes maintained in a node status list 210.

[0054] In one example, cluster access protocol 204 may use a communication protocol such
as Node.JS for communicating with other server devices. Node IS is an open source, Cross-
platform runtime environment for server-side and networking applications. Of course,

resource nodes 100 also may use other communication protocols.

[0055] Cluster resource protocol 208 exchanges resource update messages between different
resource nodes 100 over cluster access protocol 204. The messages contain updates to cluster
resource data 202 that includes resource availability lists 212 and resource performance lists

214 for different resource nodes 100.

[0056] Node status list 210 identifies the status of resource nodes, such as available, read
only, or offline. Resource availability list 212 identifies quantities of different types of

storage available on resource nodes 100, such as amounts of available Flash, RAM and disk

-10-

WO 2016/118211 PCT/US2015/059328

storage. Resource performance list 214 identifies relative performance associated with the
different storage resources, such as normalized values associated with read and/or write

speeds.

[0057] Cluster data protocol 206 dynamically distributes data requests and associated data
between the different resource nodes 100. For example, resource node 100A may receive
storage requests and store associated data in storage media 112. Cluster data protocol 206
may distribute or redistribute the storage requests and associated data to other resource nodes

responsive to resource update messages containing cluster resource data 202,

[0058] For example, resource node 100A may receive storage requests from client 102A that
use different combinations of storage elements 114, 116, 118, 120, and/or 122 in storage
media 112. Cluster data protocol 206 may access cluster resource data 202 to determine the
availability of storage elements 114, 116, 118, 120, and/or 122 in storage media 112 and the
availability of storage elements in the storage media 112 of other resource nodes 100B-100D
in FIG. 3. Based on cluster resource data 202, resource node 100A may process the storage
operation in storage media 112 or distribute the storage requests and associated data to other
resource nodes. Client 102A may have no knowledge resource node 100A redistributed the
data and storage requests to other resource nodes. However, distributing data to other
resource nodes may provide more efficient storage operations both for client 102A and for

other clients docked to other resource nodes.

[0059] FIG. 5 shows cluster resource data 202 in more detail. Node status list 210A includes
resource node identifiers 211A, status values 211B, and distance values 211C. Resource
node identifiers 211A identify other resource nodes 100 located on any local area network
(LAN), wide area network (WAN), datacenter, etc. In this example, cluster resource protocol

208 identified five resource nodes A-E.

[0060] Status values 211B indicate an availability of resource nodes A-E. For example,
status values 211B may identify availability of resource node A-E as available, read only, or

off line.

[0061] Distance values 211C indicate a location of the resource node relative to resource
node 100A. For example, cluster access protocol 204 may identify resource nodes operating

within a same server as resource node A as “local”. Cluster access protocol 204 may identify

S11 -

WO 2016/118211 PCT/US2015/059328

other resource nodes operating on different servers but within a same datacenter or LAN as
“remote”. Cluster access protocol 204 may identify resource nodes operating outside of the
datacenter or LAN of resource node 100A, or operating within known cloud networks, as

“cloud.”

[0062] In another example, cluster access protocol 204 may identify resource nodes operating
on a same server as “local 1.” Cluster access protocol 204 may identify another resource
node operating on a different server but operating within a same rack as “local 2.” Cluster
access protocol 204 may identify a resource node located on a different adjacent rack as
“remote 1~ and may identify a resource node located in a different data center but connected
with the server containing resource node 100A over a dedicated fiber connection as “remote

2”7

[0063] Cluster access protocol 204 may generate distance value 211C based on Internet
Protocol (IP) addresses, port addresses, or any other network address, server address, or
device labeling associated with resource nodes 100. Of course, these are just examples and
cluster access protocol 204 may use other categories for status values 211B or for distance
value 211C. Cluster access protocol 204 is described as generating node status list 210A.
However, in other examples any of protocols 204, 206, or 208 may generate any of lists

201A, 212A, or 214A.

[0064] Resource availability list 212A may include quantity values 216 for different memory
categories 213. For example, resource availability list 212A may identify resource node A as
having 1 million (M) bytes of Flash 1, 100Mbytes of Flash 2, 25 Kbytes of RAM 1, 1 billion
(B) bytes of disk 1, and 250 Mbytes of disk 2.

[0065] Resource performance list 214A may include different normalized storage
performance values 218. For example, disk 2 may have a slowest read/write speed and
assigned a performance value of 1X. Disk2 may have twice the storage access speed of
Diskl and assigned a performance value of 2X, Flash2 may have twenty times the storage

access speed as Disk1 and assigned a performance value of 20X, etc.

[0066] The names assigned to memory categories 213 may not directly correspond with the

associated physical storage elements. Resource categories 213 are variable and simply

-12-

WO 2016/118211 PCT/US2015/059328

indicate a particular storage resource with a particular quantity and performance. For
example, Flash 1 and Flash 2 are referred to as flash, but may include different amounts of
RAM, or other media resources, that vary quantity values 216 and/or performance values

218.

[0067] Memory categories 213 may include tiles or blocks of storage space from different
combinations of storage elements. For example, a tile may comprise a 1 Mbyte block of
storage space that includes a combination of storage space from one or more Flash storage
devices and storage space for one of more random access memory (RAM) storage devices.
Cluster resource protocol 208 may exchange cluster resource data 202 with other resource

nodes that indicates quantity values 216 and performance values 218 for the tiles.

[0068] Status values 211B and quantity 216 constitute the information utilized to determine
resource availability. The information within resource availability list 212A and resource
performance list 214A is known to other resource nodes. Resource node B (FIG. 3) may
evaluate the status is resource node A (shown as available in 211B) and the quantity of
available resource Flash 2 (shown as 100M in 216) and determine that selected data currently
on media within resource node B should be moved to resource node A. In making this
determination, resource node B may evaluate the distance to resource node A (remote since
211C, resource node A’s information, indicates B is remote from A) and weight the
performance expectation for resource Flash 2 (shown as 20x in 218) by some factor. Thus,
resource node B can evaluate whether it will be advantageous to overall performance to move
selected data to resource node A based on how that data is currently used in the system, the
expected performance of that data once moved and the resulting improved balance of

resource among all available resource nodes.

[0069] Each resource node A-E maintains associated lists 210, 212, and 214. In one
example, each resource node 100 may use cluster access protocol 204 and cluster resource
protocol 208 to periodically poll other resource nodes for the contents in node status list 210,
resource availability list 212 and/or resource performance list 214. In another example, each
resource node 100 may use cluster access protocol 204 and/or cluster resource protocol 208
to periodically push or send node status list 210, resource availability list 212 and/or resource

performance list 214 to other resource nodes.

-13 -

WO 2016/118211 PCT/US2015/059328

[0070] In yet another example, cluster access protocol 204 and/or cluster resource protocol
208 may send periodic resource update messages to other resource nodes that update node
status list 210, resource availability list 212, and resource performance list 214. In still yet
another example, cluster access protocol 204 and/or cluster resource protocol 208 may send
the resource update messages to other resource nodes based on monitored events, such as a

threshold percentage change in one of quantity values 216 or performance values 218.

[0071] FIG. 6 shows in more detail operations performed by cluster resource protocol 206.
As described above, cluster access protocol 204 may identify status values 211B and/or
distance values 211C. For explanation purposes, FIG. 6 refers only to cluster resource

protocol 206. However, cluster access protocol 204 also may exchange similar messages.

[0072] Resource nodes A and E may maintain node status lists (NSL) 210A and 210E,
respectively, identifying status values and relative distance values for all other resource
nodes. Resource nodes A and E also may each maintain resource availability lists 212A and
212E identifying the quantity values for resource nodes A and E, respectively. Resource
nodes A and E also each may maintain resource performance lists 214A and 214E identifying

the performance values for resource nodes A and E, respectively.

[0073] Resource node A may send resource update messages 220 to all other resource nodes
including in this example resource node E. Resource update messages 220 may contain the
values described above for node status list 210A, resource availability list 212A, and resource

performance list 214A associated with resource node A.

[0074] Resource node A may include a timer 222 that automatically sends resource update
messages 220 after preset timer windows 224A. For example, resource node A may send a
first resource update message 220A that contains updates to lists 210A, 212A, and 214A.
Resource node E may update the information in local lists 210E, 212A and 214A.

[0075] Resource node A may continue to monitor the information in lists 210A, 212A, and
214A during a next timer window 224B. After the expiration of timer window 224B,
resource node A sends another resource update message 220B to resource node E and all
other resource nodes that includes any new updates to the information in lists 210A, 212A,

and 214A.

-14-

WO 2016/118211 PCT/US2015/059328

[0076] In one example, resource node A may send update messages 220 when any of the
values in lists 210A, 212A, or 214A changes by some threshold amount. For example,
resource node A may send a resource update message 220 to resource node E when one of
the quantity values 216 in resource availability list 212A changes by more than 5 Kbytes.
Similarly, resource node A may send a resource update message 220 when one of status
values 211B, distance values 211C, or performance values 218 (FIG. 5) change by some

threshold amount.

[0077] FIG. 7 shows another example messaging scheme used by cluster resource protocol
206. In this example, resource node A may transfer data 228 to resource node E. For
example, a client may be docked with resource node A. The client may send data associated
with a storage operation to resource node A. Resource node A may transfer the data to

resource node E based on lists 210, 212, and 214.

[0078] During data transfer 228, resource node A may detect a trigger event 226 for sending
a resource update message to resource node E. For example, the quantity of Flash memory in
resource node A may fall by over 5%. Resource node A may delay sending resource update
message 220 to resource node E until completing data transfer 228. In one example, resource
node A may attach resource update message 220 to the end of data transfer 228. The delay
may prevent resource update message 220 from disrupting data transfer 228. For example,
packets used for resource update message 220 will not disrupt data packets used in data

transfer 228.

[0079] In one example, resource node A and E are located on a same server 1 and resource
nodes B, C, and D are located on remote servers. Cluster resource protocols 208 exchange
resource update messages 220 that populate lists 210, 212, and 214 on all resource nodes B-
D. Resource nodes A and E are on the same server and therefore may maintain one set of

access lists 210, 212, and 214 in a shared common memory.

[0080] In another example, resource update messages 220 may be forwarded to different
resource nodes 100 in a ring configuration. For example, resource node A may send resource
update messages 220 to resource node B. Resource node B may append local changes for
lists 210, 212, and 214 onto the list sent by resource node A. Resource node B then may

forward resource update message 220 on to resource node C, etc.

_15-

WO 2016/118211 PCT/US2015/059328

[0081] In another example, resource node 100A may receive a write operation from a client.
The write operation may identify a particular quantity of write data. The docking
configuration for the client also may require a particular storage performance level. For
example, the docking configuration may indicate a particular quality of service (QOS) or a
particular read rate. The docking configuration may also specify that copies of the data must
be kept in remote locations so the data will always be accessible regardless of an entire
datacenter being unavailable. For resource optimization, the docking configuration may
specify that caching is not to be used when reading the data as little data reuse is expected

temporally such as during weekly rollups of transactional information.

[0082] Resource node 100A checks local resource availability list 212A and resource
performance list 214A to determine if local storage media is available for servicing the
storage operation. If not, resource node 100A may check node status list 210A for other
available resource nodes 210. For example, the write operation may include SOMB of data
and the client sending the write operation may require 500X performance. Resource
availability list 212A and resource performance list 214A may indicate the storage media in

resource node 100A is insufficient to handle the write operation.

[0083] However, node status list 210A may indicate that resource nodes B and E are also
available for write operations. Resource node 100A may use one of the resource nodes B or
E best suited for the performance aspects of the write operation. If multiple resource nodes
B-E qualify, resource node 100A may try to evenly distribute data over storage media on the

different resource nodes.

[0084] For example, resource node 100A may determine from resource availability lists 212
and resource performance lists 214 that resource node B has the largest amount of available
500X RAM. Accordingly, resource node 100A may send the write operation to resource
node 100B. Resource nodes may use a cross product, lookup table, and/or decision algorithm

for selecting the resource nodes for handing off storage operations or transferring data.

[0085] In another example, resource node 100A may receive a clone or snapshot storage
operation from a system administrator. Cluster data protocol 206 may give higher priority to
distance values 211C in node status list 210A than performance values 218 (see FIG. 5).

Typically the snapshot data is put in the more available resource. However, snapshot

-16-

WO 2016/118211 PCT/US2015/059328

performance may need to be at least as high as the original data. The snapshot data also may
affect data locking and latency. Cluster data protocol 206 then may select local resource
node E over resource node B to reduce latency even if resource node B includes larger

available amounts of storage resources with acceptable performance values 218.

[0086] Thus, cluster access protocol 204 and cluster resource protocol 208 provide every
resource node 100 with the state of every other resource node 100. The resource nodes 100
may handle storage operations locally or send the storage operations to other resource nodes
based on status and distance value in node status list 210, quantity values in resource

availability lists 212, and performance values in resource performance lists 214.

BALANCING DATA
[0087] Referring to FIG. 8, a storage system 240 may store a first version of data 240A on a
first virtual logical unit number (LUN) X and store a snapshot 240B of the data on a second
LUN Y. An administrator may create more than one snapshot of data 242 for use with
different clients. For example, the administrator may need to create 1000 snapshots of

operating system data for operating locally with 1000 different clients.

[0088] Storage system 240 would then need to manage state information 244 for 1000
versions of data 242. Storage system 240 may use an in-flight table 246 or in-flight graph
248 to track the status of different address ranges within the different snapshots 242. For
example, storage system 240 may need to track each generation (GEN) or version of data 242
for each different address range A1-AS5 and track states for each of the different address

ranges, such as write in progress (WIP) state.

[0089] Referring to FIGS. 8 and 9, the complexity of managing in-flight table 246 or in-flight
graph 248 may increase exponentially. For example, graph 250A shows that complexity of
table 246 or graph 248 may increase exponentially with the number of clients accessing the
data. Graph 250B shows that complexity may increase exponentially with the number of
LUNSs storing different versions of the data. Graph 250C shows complexity of managing
table 246 or graph 248 may increase exponentially with the usage amount of the same

address space referred to as concurrency.

-17 -

WO 2016/118211 PCT/US2015/059328

[0090] For example, more clients, more LUNSs, and/or more concurrency may require storage
system 240 to monitor and maintain more states for a larger number of address ranges within
a larger amount of data. The different address ranges and the different states tracked by table
246 or graph 248 may increase exponentially with the number LUNSs storing copies of the

data, the amount of data, or the amount of clients accessing the data.

[0091] The time required to access data in the storage system may increase exponentially in
conjunction with the exponential increase in table or graph complexity. For example, each
storage operation may place a lock on in-flight table 256 or in-flight graph 248 while
identifying the status of an associated address range and completing the associated storage
operation. Splitting in-flight table 246 or in-flight tree 248 in FIG. 8 down the middle still
may not solve the complexity problem described above since the increased usage still may be

associated with one particular half of table 246 or 248.

[0092] Referring to FIG. 10, the cluster interface described above provides a sub-linear
relationship between storage scaling and storage operation complexity. Each of graphs 252A,
252B, and 252C represent similar increases in clients, data replications, and address space

concurrently as previously represented in graphs 250A, 250B, and 250C in FIG. 9.

[0093] The cluster data protocol solves problems with exponentially increasing storage
complexity by dynamically identifying different types of data utilization and redistributing
the data based on the type of utilization to other resource nodes. The cluster data protocol
reduces the normal exponential increases in storage complexity to sub-linear increases in
complexity. Accordingly, the resource nodes can scale to handle more clients, data

replications, and concurrency without excessive reductions in storage performance.

[0094] The cluster data protocol also uses cluster resource data 202 (FIG. 5) to optimally
distribute data to the most appropriate storage media. The cluster data protocol may
dynamically and continuously distribute data to different resource nodes without any client

knowledge.

[0095] FIG. 11 shows an example of how the resource nodes maintain sublinear storage
complexity. In this example, a resource node cluster 260 includes resource nodes 100A-100E

each having associated storage media 112A-112E, respectively.

-18-

WO 2016/118211 PCT/US2015/059328

[0096] In this example, resource nodes 100 distinguish between three different types of data.
Unshared data 262 may include data that is only used by a single client or relatively few
clients. For example, unshared data may include local documents typically stored and
accessed by one user. Cluster data protocol 206 may have the most flexibility storing
unshared data 262 in different storage locations. Shared data 264 may include documents,
database tables, and/or objects primarily read by multiple clients possibly at the same time.
For example, web pages may be read by large number of clients but may only be edited or

written by a few number of clients.

[0097] Concurrent data 266 may include any data that is read and modified relatively
frequently by multiple clients. For example, concurrent data 266 may include inventory data
that is frequently read and then modified based on customer orders. However, the rolled up
transaction logs for the inventory data may only be accessed by a few clients and treated by

resource nodes 100 as unshared data 262.

[0098] Resource node 100A may consider data when first written into storage media 112A as
unshared data 262. For example, client | may initially write data into a first address range of
storage media 112A. Resource node 100A may change the classification of unshared data
262 to shared data 264 when multiple clients start reading the data from that particular
address range in storage media 112A. Resource node 100A may change the classification of
unshared data 262 or shared data 264 to concurrent data 264 when multiple clients start

reading and modifying the data in a same address range of storage media 112A.

[0099] Cluster data protocol 206 may automatically distribute, redistribute, and balance the
different types of data 262, 264, and 266 to different storage media 112A-112E associated
with resource nodes 100A-100E, respectively. The balanced data increases overall storage
efficiency and enables resource node cluster 260 to maintain sub-linear storage complexity

for increased storage utilization.

-19-

WO 2016/118211 PCT/US2015/059328

[0100] For example, during an initial usage state 270, resource node 100A may receive
shared data 264 A and concurrent data 266A from client 1. Resource node 100B may receive
unshared data 262B, shared data 264B, and concurrent data 266B from client 2. Storage
media 112A in resource node 110A may contain a relatively small amount of shared data
262A and a relatively large amount of concurrent data 266A. Storage media 112B associated
with resource node 110B may store relatively even amounts of unshared data 262B, shared
data 264B, and concurrent data 266B.

[0101] During a first expansion stage 272, resource node 100A may receive unshared data
262A from client 1. Cluster data protocol 206A in resource node 100A may distribute some
of shared data 264A in storage media 112A to storage media 112C in resource node 100C.
Cluster data protocol 206A in resource node 100A also may transfer some of concurrent data
266A in storage media 112A to storage media 112C in resource node 100C. Storage media
112A now stores relatively even amounts of unshared data 262A, shared data 264A, and
concurrent data 266A. Storage media 112A, 112B, and 112C also now store relatively even

amounts of concurrent data 266.

[0102] In expansion stage 272, storage media 112A and 112B each include unshared data
262 for clients 1 and 2, respectively. Unshared data 262 is typically not used by other clients.
Therefore, cluster data protocols 206A and 206B may be less likely to distribute unshared

data 262 in storage media 112A and 112B, respectively, to other resource nodes.

[0103] Shared data 264A is typically read and not modified. Therefore, cluster data protocol
206A may store shared data 264A in a storage media, such as storage media 112C, with a
large amount of available Flash memory. Concurrent data 266A is typically read and
modified and typically adds more storage complexity. Therefore, cluster data protocols 206
may try to redistribute concurrent data 266A among storage media in resource nodes, such as

storage media 112C, with are large amounts of available RAM memory.

[0104] A second expansion 274 distributes shared data 264 and concurrent data 266 over all
five storage media 112A-112E. For example, cluster data protocol 206A may transfer some
of concurrent data 266A to storage media 112E, cluster data protocol 206B may transfer
shared data 264B to storage media 112D, and cluster data protocol 206C may redistribute

some of concurrent data 266C to storage media 112D. However, cluster data protocols 206A

-20-

WO 2016/118211 PCT/US2015/059328

and 206B may retain all of unshared data 262A and 262B for clients 1 and 2 on associated

storage media 112A and 112B, respectively.

[0105] Distributing concurrent data 266 over more storage media 112 further reduces storage
complexity on each resource node 100 within the more efficient above reference sub-linear
region. Distributing shared data 264 to storage media 112C, 112D, and 112E may prevent
conflicts with unshared data 262A and 262B on storage media 112A and 112B, respectively.

[0106] Cluster data protocol 206 may identify changes in unshared data 262, shared data 264,
and concurrent data 266 for different address blocks of data, such as 4 kbytes. Cluster data
protocol 206 then may distribute the 4 kbytes data blocks to other storage media 112 based on

the amount, types, and performance of available storage media.

[0107] Cluster data protocol 206 may transfer data to different resource nodes 100 based on
many different factors. Cluster data protocol 206 also may distribute data based on quantity
values 216 in resource availability list 212 and performance values 218 in resource
performance list 214 (FIG. 5). For example, storage media 112B for resource node 100B and
storage media 112D for resource node 100D may each currently use 5% of available Flash.
A next resource update message 220 (FIG. 7) may indicate the Flash memory in storage
media 112B is performing slower than the Flash memory in storage media 112D.
Accordingly, cluster data protocol 206B in resource node 100B may transfer shared data

264B from storage media 112B to storage media 112D in resource node 100D.

[0108] If performance of Flash in storage media 112D starts to substantially decrease, cluster
data protocol 206D in resource node 100D may redistribute portions of the shared data 264B
received from resource node 100B to other resource nodes. Cluster data protocol 206 can use
a hysteresis scheme to delay premature data transfers. For example, cluster data protocol 206
may delay transferring data after detecting a trigger event for some predetermined time
period. Cluster data protocol 206 then transfers the data if the trigger event is maintained

during the predetermined time period. Otherwise the transfer is aborted.

[0109] Resource node 100A may not inform client 1 when data is distributed to other
resource nodes 100 or may not notify client 1 that other resource nodes 100 even exist.
Resource node 100A may track which address ranges of data in storage media 112A are

transferred to other resource nodes and then send storage operations for those address ranges

201 -

WO 2016/118211 PCT/US2015/059328

to the associated resource nodes 100B-100E.

[0110] FIG. 12 depicts an example process for distributing data between different resource
nodes. In operation 270A, the resource nodes exchange messages that contain cluster
resource information. For example, the messages may contain any of the status values,

distance values, quantity values, or performance values described above.

[0111] In operation 270B, one of the resource nodes may receive a storage request, such as a
write operation. In operation 270C, the resource node may select a first resource node for
storing data for the write operation. For example, the resource node may select the residing
storage media or select storage media on another resource node for storing the data. The
resource node may select the first resource node based the type of unshared, shared, or
concurrent data associated with the storage request; and/or the status, distance, quantity, or

performance of storage media in the resource nodes.

[0112] In operation 270D, the first resource node detects a redistribution event. For example,
the cluster resource information for the first resource node may indicate a reduction in
quantity or performance for a particular type of storage media. In another example, the first
resource node may identify a particular threshold amount of unshared data, shared data, or

concurrent data in the associated storage media.

[0113] In operation 270D, the first resource selects a second resource node for redistributing
the data based on any of the factors described above in operation 270C. For example, based
on an increase in concurrent data or based on a reduction in performance or quantity of RAM,
the first resource node may select a second resource node with more available RAM. If two
resource nodes have equivalent amounts of RAM and other storage media, the first resource

node may select the resource node with more local distance value.

[0114] Thus, distributing data as described above maintains a relatively low storage
complexity level on each resource node. The lower complexity prevents exponential
increases in storage processing and associated storage access times caused by increased data

usage.

-22 -

WO 2016/118211 PCT/US2015/059328

Digital processors, software and memory nomenclature

[0115] The processing and/or computing devices described in this application, including both
virtual and/or physical devices, include a storage media configured to hold remote client data

and include an interface configured to accept remote client storage commands.

[0116] As explained above, embodiments of this disclosure may be implemented in a digital
computing system, for example a CPU or similar processor. More specifically, the term
“digital computing system,” can mean any system that includes at least one digital processor
and associated memory, wherein the digital processor can execute instructions or “code”

stored in that memory. (The memory may store data as well.)

[0117] A digital processor includes but is not limited to a microprocessor, multi-core
processor, Digital Signal Processor (DSP), Graphics Processing Unit (GPU), processor array,
network processor, etc. A digital processor (or many of them) may be embedded into an
integrated circuit. In other arrangements, one or more processors may be deployed on a
circuit board (motherboard, daughter board, rack blade, etc.). Embodiments of the present
disclosure may be variously implemented in a variety of systems such as those just mentioned
and others that may be developed in the future. In a presently preferred embodiment, the

disclosed methods may be implemented in software stored in memory, further defined below.

[0118] Digital memory, further explained below, may be integrated together with a
processor, for example Random Access Memory (RAM) or Flash memory embedded in an
integrated circuit Central Processing Unit (CPU), network processor or the like. In other
examples, the memory comprises a physically separate device, such as an external disk drive,
storage array, or portable Flash device. In such cases, the memory becomes “associated”
with the digital processor when the two are operatively coupled together, or in
communication with each other, for example by an I/O port, network connection, etc. such
that the processor can read a file stored on the memory. Associated memory may be “read
only” by design (ROM) or by virtue of permission settings, or not. Other examples include
but are not limited to WORM, EPROM, EEPROM, Flash, etc. Those technologies often are
implemented in solid state semiconductor devices. Other memories may comprise moving

parts, such a conventional rotating disk drive. All such memories are “machine readable” in

_03-

WO 2016/118211 PCT/US2015/059328

that they are readable by a compatible digital processor. Many interfaces and protocols for
data transfers (data here includes software) between processors and memory are well known,

standardized and documented elsewhere, so they are not enumerated here.

Storage of Computer Programs

[0119] As noted, some embodiments may be implemented or embodied in computer software
(also known as a “computer program” or “code”; we use these terms interchangeably).
Programs, or code, are most useful when stored in a digital memory that can be read by one
or more digital processors. The term “computer-readable storage medium” (or alternatively,
“machine-readable storage medium”) includes all of the foregoing types of memory, as well
as new technologies that may arise in the future, as long as they are capable of storing digital
information in the nature of a computer program or other data, at least temporarily, in such a
manner that the stored information can be “read” by an appropriate digital processor. The
term “computer-readable” is not intended to limit the phrase to the historical usage of
“computer” to imply a complete mainframe, mini-computer, desktop or even laptop
computer. Rather, the term refers to a storage medium readable by a digital processor or any
digital computing system as broadly defined above. Such media may be any available media
that is locally and/or remotely accessible by a computer or processor, and it includes both

volatile and non-volatile media, removable and non-removable media, embedded or discrete.

[0120] Having described and illustrated a particular example system, it should be apparent
that other systems may be modified in arrangement and detail without departing from the
principles described above. Claim is made to all modifications and variations coming within

the spirit and scope of the following claims.

_04 -

WO 2016/118211 PCT/US2015/059328

Claims

1. A method, comprising:
using, by a resource node, a cluster resource protocol to exchange cluster resource
information indicating a quantity and a performance for storage media associated with
multiple resource nodes;
receiving, by the resource node, a storage request from a client to write data;
selecting, by the resource node, a first one of the resource nodes for storing the data
responsive to the cluster resource information;
distributing, by the resource node, the data to the first one of the resource nodes; and
redistributing, by the selected first one of the resource nodes, at least some of the data

to a second one of the resource nodes responsive to the cluster resource information.

2. The method according to claim 1, further comprising:

receiving, by the resource node, dock configurations identifying reconfigurable sets of
storage extensions;

identifying, by the resource node, one of the dock configurations associated with the
client;

generating, by the resource node, storage operations for implementing the storage
extensions for the identified dock configurations; and

using, by the resource node, the storage operations for executing the storage request.

3. The method of claim 1, further comprising:

exchanging, by the resource node, node status lists with the other resource nodes that
identify an availability of the storage media associated with resource nodes for servicing the
storage request; and

selecting, by the resource node, the first one of the resource nodes for servicing the

storage request based on the availability of the storage media.
4. The method of claim 1, further comprising:

exchanging, by the resource node, node status lists with the other resource nodes that

identify network distances between the resource nodes; and

-25-

WO 2016/118211 PCT/US2015/059328

identifying, by the resource node, the first one of the resource nodes for servicing the

storage request based on the network distances.

5. The method of claim 1, further comprising:

exchanging, by the resource node, resource quantity lists with the other resource
nodes that identify quantities of available types of memory in the associated storage media;
and

identifying, by the resource node, the first one of the resource nodes for servicing the

storage request based on the quantities of the available types of memory.

6. The method of claim 5, further comprising:

exchanging, by the resource node, resource performance lists with the other resource
nodes that identify storage access performance for the available types of memory in the
storage media; and

identifying, by the resource node, the first one of the resource nodes for servicing the

storage request based on the storage access performance of the different types of memory.

7. The method of claim 1, further comprising:

receiving, by the resource node, a snapshot storage operation from the client; and
identifying, by the resource node, the first one of the resource nodes for servicing the

snapshot storage operation based on availability, network distance, quantity of storage

devices, and performance of storage devices indicated in the cluster resource information for

the storage media associated with the resource nodes.

8. The method of claim 1, further comprising:

identifying, by the first one of the resource nodes, types of utilization for different
portions of the data; and

redistributing, by the first one of the resource nodes, the different portions of the data

to the second one of the resource nodes based on the utilization.

9. The method of claim 1, further comprising:
identifying, by the first one of the resource nodes, a first type of unshared utilization

for a first portion of the data;

_26-

WO 2016/118211 PCT/US2015/059328

identifying, by the first one of the resource nodes, a second type of shared utilization
for a second portion of the data;

identifying, by the first one of the resource nodes, a third type of concurrent
utilization for a third portion of the data; and

redistributing, by the first one of the resource nodes, the first, second, and/or third
portion of data to the second one of the resource nodes based on the cluster resource

information associated with the second one of the resource nodes.

10. The method of claim 1 further comprising;:

identifying, by the resource node, in the cluster resource information a number of the
tiles in the storage media associated with the different resource nodes, wherein the tiles
comprise blocks of storage space; and

identifying, by the resource node, the first one of the resource nodes for servicing the
storage request based on the number and performance of the tiles in the storage media

associated with the different resource nodes.

11. The method of claim 10, wherein the tiles comprise portions of different storage

media.

12. An apparatus, comprising:

an interface configured to receive cluster resource information identifying quantity
and performance values associated with different resource nodes and further configured to
receive a storage request from a client;

storage media configured to store data associated with the storage request; and

a processor configured to:

select a first one of the resource nodes for storing the data associated with the storage
request responsive to types of data usage in the first resource node and the cluster resource
information associated with the different resource nodes, wherein the first resource node is
configured to redistribute at least some of the data to a second one of the resource nodes
responsive to the changes in the types of data usage in the first resource node and changes in

the cluster resource information associated with the different resource nodes.

_27 -

WO 2016/118211 PCT/US2015/059328

13. The apparatus of claim 12, wherein the first resource node is further configured to:
identify a concurrent read and write usage for a first portion of the data; and
redistribute at least some of the first portion of the data to the second resource node

based on the concurrent read and write usage.

14. The apparatus of claim 13, wherein the first resource node is further configured to:
identify from the cluster resource information the second resource node or a third
resource node with a highest quantity of available random access memory; and
redistribute at least some of the data to the second resource node or third resource

node with the highest quantity of available random access memory.

15. The apparatus of claim 14, wherein the first resource node is further configured to:
identify a shared read usage for a second portion of the data; and
identify from the cluster resource information one of the second resource node or
third resource node with a highest quantity of available Flash memory; and
redistribute at least some of the second portion of the data to the second resource node

or third resource node with the highest quantity of available Flash memory.

16. The apparatus of claim 15, wherein the first resource node is further configured to:
identify an unshared usage for a third portion of the data; and

maintain the third portion of the data in the first resource node.

17. The apparatus of claim 12, wherein:

the first resource node is configured to receive resource messages from the second
resource node indicating a distance of the second resource node from the first resource node;
and

redistribute different portions of the data to the second resource node based on the

distance of the second resource node from the first resource node.

18. The apparatus of claim 17, wherein:
the cluster resource information identifies the quantity values and performance values
for different types of storage elements in the first and second resource nodes, the quantity

values indicate an amount of available memory in the storage elements in the first and second

_08-

WO 2016/118211 PCT/US2015/059328

resource nodes, and the performance values indicate relative storage access rates for the
storage elements in the first and second resource nodes; and

the processor is configured to transfer different portions of the data to the first and
second resource nodes based on the amount of the available memory and the relative storage

access rates.

19. The apparatus of claim 12 wherein the processor is further configured to:

identify tiles within the storage media, wherein the tiles comprise blocks of storage
space; and

identify a number and performance of the tiles associated with the different resource

nodes in the cluster resource information.

20. The apparatus of claim 16, wherein the tiles comprise portions of different storage
media.
21. A distributed storage system, comprising:

multiple resource nodes each having associated storage media, wherein the resource
nodes are configured to:

operate a first protocol that exchanges messages between the resource nodes that
identify availability and performance information for storage elements in the associated
storage media; and

operate a second protocol that distributes and redistributes data between the different
resource nodes based on the availability and performance information for the storage

elements.

22. The distributed storage system of claim 21, wherein the first protocol also identifies
relative distances between the different resource nodes and the second protocol weights the

availability and performance information based on the relative distances.

23. The distributed storage system of claim 21, wherein the second protocol is further
configured to:
identify types of unshared use, shared use, and concurrent use for different portions of

the data; and

-29 .-

WO 2016/118211 PCT/US2015/059328

distribute and redistribute the different portions of the data to the different resource

nodes based on the identified types of use.

24. The distributed storage system of claim 21, wherein the resource nodes are further
configured to:

receive dock configurations identifying reconfigurable sets of storage extensions for
the resource nodes;

receive storage requests from clients;

identify the dock configurations associated with the clients;

generate storage operations for implementing the storage extensions for the identified
dock configurations; and

use the storage operations for executing the storage requests.

-30-

WO 2016/118211 PCT/US2015/059328
1/12
w02
N CLIENT
&
104 DOCK /108
* |
DOCK -
CONFIGURATION
¥
RESOURCE NODE 100
¥
i RESOURGE
- NODE
PROCESSING
STORAGE MEDIA 112
el
- RAM —
185 LOCAL REMOT
Sl FLASH DISKS DISKS
{\‘ |
118 120

FiG. 1

PCT/US2015/059328

WO 2016/118211

2/12

2L VIOZW 3OVYOLS

D o N
JOVHOLS | oisIg
anoo BEIGEN I
Pty 9bL AJOWIN PLL N
A A HSY14

S6H00Y JOVHOLS

\

707 YAV I0NN0STH HILSNID | 08l

FONIN0ES NOLLVYEJLO

IONINDES NOILYYIdO

00T F0VAHILINIYZLENTO

ey 9eL
781 A0 MO0 SNOISNILXT IOVHOLS SNOISNIIXS JOVNH0OLS
YOOL ICAON IDNUN0SIY ;
% 7
- IOV4EILNI ¥00a Z NI L ANTND
\ 4 & / /
8il azoL — vzl
% ¥ "
1 OLENOD DLENOD
aoli 2 MO00 L3000

WO 2016/118211 PCT/US2015/059328
3/12
CLIENT CLIENT
102A 1028
3 i
¥
RESOURCE NODE 100A
: & 3
N e
\\ CLIENT
N | 102C
/,,/ \ 4
5 Ry
RESOURCE NODE | . RESOURCE NODE
100B 100C

% «

N

N
N
« . &

RESCURCE NCDE
100D

FiG. 3

PCT/US2015/059328

WO 2016/118211

4/12

A

LS HONVIARIOAH3d 304HN05EY

AT A

1

¥ "Old
o \ammsﬂsf Zii VIQIW 39vH0LS
JOVHOLS | SHMSIG | m
anoio | 3LOW3 T b

LS ALIMEYHYAY 30AN0STA

0Lz

\

1

981 85300V A0VH0ILS

18 SNiIVLAS 300N

207 YAV(Q 3THN0SEY Y3180

w8l

|

80T

1020104Hd
ATHENOSIH
[ERENER

@QN //
1000104 007 FOVANIING | ¥t
Yivd HIALSMTO , ASTIOd MO00
HILEMIO |

AONANDHES NOLLYHELO

ati ™

i

SNOISNZLXE JOVH0OLS

TOD0LO¥ 88300V €L

E:
%

YOOI 3AON d04HN053

&
¥

1 AOYAATLN
#2040

h

SHHINOD
pelele

i

bANZNO

]
/

k4t e

0LL

PCT/US2015/059328

WO 2016/118211

5/12

5 old

YPLE YUE
¥ ¥
8LE - 91z - €T
X1 NOSZ Z4sid
xZ a1 T4sig
X305 AGZ Tuiey
X7 INOOT L Yseld
x05 WT T yseld
IUBULIOLIRY Azpuen W 2PON
{2207 sjgepieay 32PON
pNos SUN HO J3PON
FI0WaY Ajug pesy I33PON
oY 2jgejieny H=PON
jE307 SHge{eAY Y 3PON
IIULISIO 3151 T JWEN SPON
Q:N\\ m:N\.\ <$m\\

Yz

)

i

1S
SIUBULIOMSY B33UN0SaY

56
ALIgBIBAY 234N053Y

M z0z7 -

% “,

o B1E(

A

151 SNIBIS SPON

3IN0SIY
volz | 4eIsnD

10201044 10201044
22IN053Y 2180
1315ND JIEND

ChEISENH
FEM Ty

i \
00 —

\ 807

|00010Ud 55300y 4215N)

7
7

vow

Y001 JCON J20HN08EY

PCT/US2015/059328

WO 2016/118211

6/12

A90¢€
1O00LO¥d
FATANOSTY

HALEN10

ETAY AR 2

Yiid Tddd

Yke v

30LE I8N

cod HAWLE

3 00N
AMN0OSEY

3001

3 D4
A&.\Jll — — — — — _—
IDYSSIN
JIVadN IDHEN0STIY
5022
i ——
IDYSSIN
JLVa4N 30EN0STH
a0ze -
&w? wwwww — — ———— — —
IDVSSTN
FLYO4N F0HN0STH

/
/

voze

ovée
MOCONIM B
HAWILL

!
!
!
|
fo<c§

qyid
MOTNIM B
HEWLL

B

Yyeo
MOONIM ——
AL

R

Yo0e
HO00LOHd
3oENOSTY

H3LENT0

AL IV

Yiié idy

Yeld v

WOLZ 1SN

¥ ACOON
AMNOSEY

/

oo

PCT/US2015/059328

WO 2016/118211

7/12

VRNSIE

027 —.

3802)
IC00L0HEd JOVESEN
A0UNOSIY ALYO4N F0HN083Y

HILSATD .
““““““““““““““““““ - e
312 e
ETAY AR 2
ggz -
Yiid Tddd HAASNYHL VIVD
Yke v
B, S
30LE I8N
cod HAWLE
3 JCON 0zz .
F0UNOSTY W ,
\, - HOVESEN HLVOdN 20HN0SHEY
3001 | [
P o T -
Qodt 3IAON 3001 JAON
ATHNOSE 3oENOSTY

o0z
1000 L0H
JOUNOSTY
HILSMTID
—— ErarE
—— 7L T
QITENOD
vivd
A YrLE Tdy
W YZLZ v
07z WIDORIL -
S WO0LZ TSN
_Nmmmmﬁx
¥ FIAON
FONNOSEY
7 vooL -
»
8001 ICUON
3OMNOSIY

PCT/US2015/059328

8/12

8 "Gid

pyz UOIIBULICHUY

WO 2016/118211

3ieig
Axuspuads(
T N39 | 6618-76T8 {5V
£ N3ID | 660779607 (bY o S
A X
dIM | LVOT-PZ0T (Y
S —
TNID | TET-00T TV N
- NI v NAT
dif] STT-00T {1V gevz 1 ojeniia (T fenuia
sduey N N
SIBIS SSappy
o oz ajgel ove
Qwﬂ\mmmmm Cmm: Qwﬁmmmnm ﬁm:
7 poYIsiN
Per 1 PO g 1w RS

PCT/US2015/059328

WO 2016/118211

9/12

AJUSLINDUC)
aoeds ssaippy

2057 —

Amxaidwon

6 "9Oid

SNITT10ysdeus

10 BUOIT JO JBGUINY

4
J

g06g —

Apxeidwion

SIUBID JO IDGUINN

"

vosZ —

Apxeidwion

PCT/US2015/059328
10/12

WO 2016/118211

AJUBLINJUOYD
aoeds ssauppy

Auxaiduwion

0L i

SNIT I0ysdeug

10 3UO[D JO IBQUINN SIUBYD JO J9GUINN

4

4
9757 —

4

Amxeidwo)

Wese

’

Alpepduwion

PCT/US2015/059328

WO 2016/118211

11/12

eied fA? éﬂf

LE Ol

<©©N //,

99z
e18(] §
poieis &
oz —
e1e(]
pPoIBYSUQ |
207

-89

w29z -,

0i7
| 3%z asoz
| 100010ud | OO0
| viva 1va
| B3N | HALSND
JPON SPON
32UN053Y 33IN0S3Y
3001 aool—

280z
IOD0LTHA
Yiva
HALSMO

SPON
224N053Y

D001

uoisuedxy
pUODaS
uoisuedx3
yzip 34l
azil L AR
R, ¢ fararfarfarx
P Wﬁ // N agesn
=S TAINNNN ,f ; U
ar9e- HE9Z vz -wyor
8902 YO0Z
G030.L0Ud WOO01I0HA
WiY3 VivQa
HALSNTD HALSMIO
2pON gt spoN |
qo01] °P .
FAINOSIY BTINOSHY
Z D T =siD
»

092

WO 2016/118211

12/12

EXCHANGE CLUSTER RESQURCE
INFORMATION BETWEEN
RESQURCE NODES

¥

RECEIVE STORAGE REQUEST

k

SELECT FIRST RESQURCE NODE FOR
DISTRIBUTING STORAGE REQUEST
DATA BASED ON CLUSTER
RESOURCE INFORMATION

IBDENTIFY REDISTRIBUTION EVENT
IN FIRST RESOURCE NODE

k

SELECT SECOND RESOQURCE
NODE FOR REDISTRIBUTING AT
LEAST SOME OF DATABASED ON
CLUSTER RESOURCE DATA

FiG. 12

PCT/US2015/059328

270k

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/059328

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F3/06 HO4L29/08
ADD.

HO4L12/46

HO4L29/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F HOA4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

the whole document

2 November 2006 (2006-11-02)
claims 1-10

paragraphs [0040] - [0047]
figure 1

A EP 1 717 688 Al (HITACHI LTD [JP])

A US 2006/212719 Al (MIYAWAKI TOUI [JP] ET
AL) 21 September 2006 (2006-09-21)

A US 2002/129216 Al (COLLINS KEVIN [US]) 1-24
12 September 2002 (2002-09-12)

1,12,21

1,12,21

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

23 February 2016

Date of mailing of the international search report

08/03/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

De Ceulaer, Bart

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/059328
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2002129216 Al 12-09-2002 US 2002129216 Al 12-09-2002
US 2003172146 Al 11-09-2003
EP 1717688 Al 02-11-2006 EP 1717688 Al 02-11-2006
JP 4690765 B2 01-06-2011
JP 2006309318 A 09-11-2006
US 2006242377 Al 26-10-2006
US 2006212719 Al 21-09-2006 JP 4588500 B2 01-12-2010
JP 2006259976 A 28-09-2006
US 2006212719 Al 21-09-2006

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - wo-search-report
	Page 46 - wo-search-report

