

US 20180057594A1

(19) **United States**

(12) **Patent Application Publication** (10) **Pub. No.: US 2018/0057594 A1**
EVNIN (43) **Pub. Date:** **Mar. 1, 2018**

(54) **PSEUDOTYPED ONCOLYTIC VIRAL
DELIVERY OF THERAPEUTIC
POLYPEPTIDES**

(71) Applicant: **ONCORUS, INC.**, Cambridge, MA
(US)

(72) Inventor: **Luke EVNIN**, Cambridge, MA (US)

(21) Appl. No.: **15/720,696**

(22) Filed: **Sep. 29, 2017**

Related U.S. Application Data

(63) Continuation of application No. PCT/US2017/
040354, filed on Jun. 30, 2017.

(60) Provisional application No. 62/357,195, filed on Jun.
30, 2016.

Publication Classification

(51) **Int. Cl.**

C07K 16/28 (2006.01)
C12N 7/00 (2006.01)
C07K 16/30 (2006.01)

C07K 14/705 (2006.01)
C07K 14/725 (2006.01)
C12N 9/64 (2006.01)
A61K 35/768 (2006.01)

(52) **U.S. Cl.**
CPC **C07K 16/2818** (2013.01); **C07K 2319/30**
(2013.01); **C07K 16/3092** (2013.01); **C07K
14/70532** (2013.01); **C07K 14/7051** (2013.01);
C07K 14/70596 (2013.01); **C12N 9/6491**
(2013.01); **C07K 14/70503** (2013.01); **A61K
35/768** (2013.01); **C12N 2760/20243**
(2013.01); **C12N 2760/20232** (2013.01); **C07K
2317/31** (2013.01); **C12N 2710/16633**
(2013.01); **C12N 2710/16641** (2013.01); **C12N
7/00** (2013.01)

ABSTRACT

(57) Described herein are pseudotyped oncolytic viruses comprising nucleic acids encoding an engager molecule. In some embodiments, the pseudotyped oncolytic viruses comprises nucleic acids encoding an engager molecule and one or more therapeutic molecules. Pharmaceutical compositions containing the pseudotyped oncolytic virus and methods of treating cancer using the pseudotyped oncolytic viruses are further provided herein.

FIG. 1

CD19-CD3 BiTE (SEQ ID NO: 44)

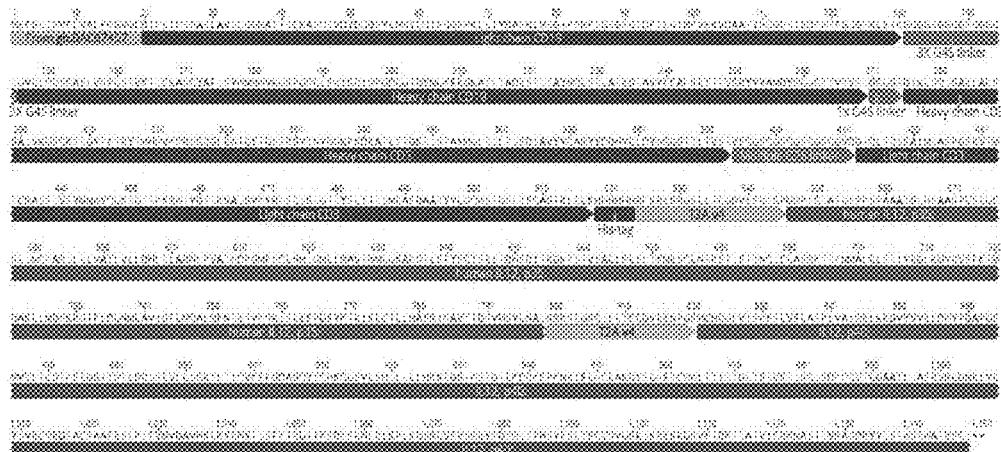

Signal peptide 1; SEQ ID NO: 2 Light chain CD3; SEQ ID NO: 20 1X G4S linker; SEQ ID NO: 6
Light chain CD19; SEQ ID NO: 16 Heavy chain CD3; SEQ ID NO: 22 G2S linker; SEQ ID NO: 10
Heavy chain CD19; SEQ ID NO: 18 3X G4S linker; SEQ ID NO: 8 His-tag; SEQ ID NO: 12

FIG. 2

CD19-CD3-IL15 BiTE (SEQ ID NO: 53)

FIG. 3

CD19-CD3-IL12 BiTE (SEQ ID NO: 54)

FIG. 4

CD19-CD3-CXCL10 BiTE (SEQ ID NO: 55)

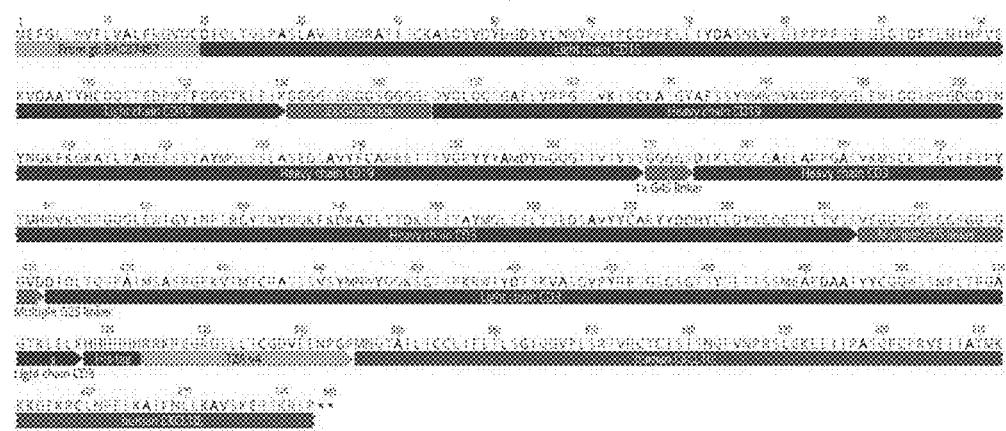


FIG. 5

SIRP1 α -CD3 (SL) BiTE (SEQ ID NO: 46)

Signal peptide 2: SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32

Light chain CD3: SEQ ID NO: 20
Heavy chain CD3: SEQ ID NO: 22

G2S linker: SEQ ID NO: 10
His-tag: SEQ ID NO: 12

FIG. 6

SIRP1 α -CD3 (LL) BiTE (SEQ ID NO: 48)

METDYLULVYLEVYPCGSSGEEELQITGPKSYLVAAGETATLRCCTEELAPVGRIDERSGAGEGPYLILY
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280
 290
 300
 310
 320
 330
 340
 350
 360
 370
 380
 390
 400
 410
 420
 430
 440
 450
 460
 470
 480
 490
 500
 510
 520
 530
 540
 550
 560
 570
 580
 590
 600
 610
 620
 630
 640
 650
 660
 670
 680
 690
 700
 710
 720
 730
 740
 750
 760
 770
 780
 790
 800
 810
 820
 830
 840
 850
 860
 870
 880
 890
 900
 910
 920
 930
 940
 950
 960
 970
 980
 990
 1000
 1010
 1020
 1030
 1040
 1050
 1060
 1070
 1080
 1090
 1100
 1110
 1120
 1130
 1140
 1150
 1160
 1170
 1180
 1190
 1200
 1210
 1220
 1230
 1240
 1250
 1260
 1270
 1280
 1290
 1300
 1310
 1320
 1330
 1340
 1350
 1360
 1370
 1380
 1390
 1400
 1410
 1420
 1430
 1440
 1450
 1460
 1470
 1480
 1490
 1500
 1510
 1520
 1530
 1540
 1550
 1560
 1570
 1580
 1590
 1600
 1610
 1620
 1630
 1640
 1650
 1660
 1670
 1680
 1690
 1700
 1710
 1720
 1730
 1740
 1750
 1760
 1770
 1780
 1790
 1800
 1810
 1820
 1830
 1840
 1850
 1860
 1870
 1880
 1890
 1900
 1910
 1920
 1930
 1940
 1950
 1960
 1970
 1980
 1990
 2000
 2010
 2020
 2030
 2040
 2050
 2060
 2070
 2080
 2090
 2100
 2110
 2120
 2130
 2140
 2150
 2160
 2170
 2180
 2190
 2200
 2210
 2220
 2230
 2240
 2250
 2260
 2270
 2280
 2290
 2300
 2310
 2320
 2330
 2340
 2350
 2360
 2370
 2380
 2390
 2400
 2410
 2420
 2430
 2440
 2450
 2460
 2470
 2480
 2490
 2500
 2510
 2520
 2530
 2540
 2550
 2560
 2570
 2580
 2590
 2600
 2610
 2620
 2630
 2640
 2650
 2660
 2670
 2680
 2690
 2700
 2710
 2720
 2730
 2740
 2750
 2760
 2770
 2780
 2790
 2800
 2810
 2820
 2830
 2840
 2850
 2860
 2870
 2880
 2890
 2900
 2910
 2920
 2930
 2940
 2950
 2960
 2970
 2980
 2990
 3000
 3010
 3020
 3030
 3040
 3050
 3060
 3070
 3080
 3090
 3100
 3110
 3120
 3130
 3140
 3150
 3160
 3170
 3180
 3190
 3200
 3210
 3220
 3230
 3240
 3250
 3260
 3270
 3280
 3290
 3300
 3310
 3320
 3330
 3340
 3350
 3360
 3370
 3380
 3390
 3400
 3410
 3420
 3430
 3440
 3450
 3460
 3470
 3480
 3490
 3500
 3510
 3520
 3530
 3540
 3550
 3560
 3570
 3580
 3590
 3600
 3610
 3620
 3630
 3640
 3650
 3660
 3670
 3680
 3690
 3700
 3710
 3720
 3730
 3740
 3750
 3760
 3770
 3780
 3790
 3800
 3810
 3820
 3830
 3840
 3850
 3860
 3870
 3880
 3890
 3900
 3910
 3920
 3930
 3940
 3950
 3960
 3970
 3980
 3990
 4000
 4010
 4020
 4030
 4040
 4050
 4060
 4070
 4080
 4090
 4100
 4110
 4120
 4130
 4140
 4150
 4160
 4170
 4180
 4190
 4200
 4210
 4220
 4230
 4240
 4250
 4260
 4270
 4280
 4290
 4300
 4310
 4320
 4330
 4340
 4350
 4360
 4370
 4380
 4390
 4400
 4410
 4420
 4430
 4440
 4450
 4460
 4470
 4480
 4490
 4500
 4510
 4520
 4530
 4540
 4550
 4560
 4570
 4580
 4590
 4600
 4610
 4620
 4630
 4640
 4650
 4660
 4670
 4680
 4690
 4700
 4710
 4720
 4730
 4740
 4750
 4760
 4770
 4780
 4790
 4800
 4810
 4820
 4830
 4840
 4850
 4860
 4870
 4880
 4890
 4900
 4910
 4920
 4930
 4940
 4950
 4960
 4970
 4980
 4990
 5000
 5010
 5020
 5030
 5040
 5050
 5060
 5070
 5080
 5090
 5100
 5110
 5120
 5130
 5140
 5150
 5160
 5170
 5180
 5190
 5200
 5210
 5220
 5230
 5240
 5250
 5260
 5270
 5280
 5290
 5300
 5310
 5320
 5330
 5340
 5350
 5360
 5370
 5380
 5390
 5400
 5410
 5420
 5430
 5440
 5450
 5460
 5470
 5480
 5490
 5500
 5510
 5520
 5530
 5540
 5550
 5560
 5570
 5580
 5590
 5600
 5610
 5620
 5630
 5640
 5650
 5660
 5670
 5680
 5690
 5700
 5710
 5720
 5730
 5740
 5750
 5760
 5770
 5780
 5790
 5800
 5810
 5820
 5830
 5840
 5850
 5860
 5870
 5880
 5890
 5900
 5910
 5920
 5930
 5940
 5950
 5960
 5970
 5980
 5990
 6000
 6010
 6020
 6030
 6040
 6050
 6060
 6070
 6080
 6090
 6100
 6110
 6120
 6130
 6140
 6150
 6160
 6170
 6180
 6190
 6200
 6210
 6220
 6230
 6240
 6250
 6260
 6270
 6280
 6290
 6300
 6310
 6320
 6330
 6340
 6350
 6360
 6370
 6380
 6390
 6400
 6410
 6420
 6430
 6440
 6450
 6460
 6470
 6480
 6490
 6500
 6510
 6520
 6530
 6540
 6550
 6560
 6570
 6580
 6590
 6600
 6610
 6620
 6630
 6640
 6650
 6660
 6670
 6680
 6690
 6700
 6710
 6720
 6730
 6740
 6750
 6760
 6770
 6780
 6790
 6800
 6810
 6820
 6830
 6840
 6850
 6860
 6870
 6880
 6890
 6900
 6910
 6920
 6930
 6940
 6950
 6960
 6970
 6980
 6990
 7000
 7010
 7020
 7030
 7040
 7050
 7060
 7070
 7080
 7090
 7100
 7110
 7120
 7130
 7140
 7150
 7160
 7170
 7180
 7190
 7200
 7210
 7220
 7230
 7240
 7250
 7260
 7270
 7280
 7290
 7300
 7310
 7320
 7330
 7340
 7350
 7360
 7370
 7380
 7390
 7400
 7410
 7420
 7430
 7440
 7450
 7460
 7470
 7480
 7490
 7500
 7510
 7520
 7530
 7540
 7550
 7560
 7570
 7580
 7590
 7600
 7610
 7620
 7630
 7640
 7650
 7660
 7670
 7680
 7690
 7700
 7710
 7720
 7730
 7740
 7750
 7760
 7770
 7780
 7790
 7800
 7810
 7820
 7830
 7840
 7850
 7860
 7870
 7880
 7890
 7900
 7910
 7920
 7930
 7940
 7950
 7960
 7970
 7980
 7990
 8000
 8010
 8020
 8030
 8040
 8050
 8060
 8070
 8080
 8090
 8100
 8110
 8120
 8130
 8140
 8150
 8160
 8170
 8180
 8190
 8200
 8210
 8220
 8230
 8240
 8250
 8260
 8270
 8280
 8290
 8300
 8310
 8320
 8330
 8340
 8350
 8360
 8370
 8380
 8390
 8400
 8410
 8420
 8430
 8440
 8450
 8460
 8470
 8480
 8490
 8500
 8510
 8520
 8530
 8540
 8550
 8560
 8570
 8580
 8590
 8600
 8610
 8620
 8630
 8640
 8650
 8660
 8670
 8680
 8690
 8700
 8710
 8720
 8730
 8740
 8750
 8760
 8770
 8780
 8790
 8800
 8810
 8820
 8830
 8840
 8850
 8860
 8870
 8880
 8890
 8900
 8910
 8920
 8930
 8940
 8950
 8960
 8970
 8980
 8990
 9000
 9010
 9020
 9030
 9040
 9050
 9060
 9070
 9080
 9090
 9100
 9110
 9120
 9130
 9140
 9150
 9160
 9170
 9180
 9190
 9200
 9210
 9220
 9230
 9240
 9250
 9260
 9270
 9280
 9290
 9300
 9310
 9320
 9330
 9340
 9350
 9360
 9370
 9380
 9390
 9400
 9410
 9420
 9430
 9440
 9450
 9460
 9470
 9480
 9490
 9500
 9510
 9520
 9530
 9540
 9550
 9560
 9570
 9580
 9590
 9600
 9610
 9620
 9630
 9640
 9650
 9660
 9670
 9680
 9690
 9700
 9710
 9720
 9730
 9740
 9750
 9760
 9770
 9780
 9790
 9800
 9810
 9820
 9830
 9840
 9850
 9860
 9870
 9880
 9890
 9900
 9910
 9920
 9930
 9940
 9950
 9960
 9970
 9980
 9990
 10000
 10010
 10020
 10030
 10040
 10050
 10060
 10070
 10080
 10090
 100100
 100200
 100300
 100400
 100500
 100600
 100700
 100800
 100900
 1001000
 1002000
 1003000
 1004000
 1005000
 1006000
 1007000
 1008000
 1009000
 10010000
 10020000
 10030000
 10040000
 10050000
 10060000
 10070000
 10080000
 10090000
 100100000
 100200000
 100300000
 100400000
 100500000
 100600000
 100700000
 100800000
 100900000
 1001000000
 1002000000
 1003000000
 1004000000
 1005000000
 1006000000
 1007000000
 1008000000
 1009000000
 10010000000
 10020000000
 10030000000
 10040000000
 10050000000
 10060000000
 10070000000
 10080000000
 10090000000
 100100000000
 100200000000
 100300000000
 100400000000
 100500000000
 100600000000
 100700000000
 100800000000
 100900000000
 1001000000000
 1002000000000
 1003000000000
 1004000000000
 1005000000000
 1006000000000
 1007000000000
 1008000000000
 1009000000000
 10010000000000
 10020000000000
 10030000000000
 10040000000000
 10050000000000
 10060000000000
 10070000000000
 10080000000000
 10090000000000
 100100000000000
 100200000000000
 100300000000000
 100400000000000
 100500000000000
 100600000000000
 100700000000000
 100800000000000
 100900000000000
 1001000000000000
 1002000000000000
 1003000000000000
 1004000000000000
 1005000000000000
 1006000000000000
 1007000000000000
 1008000000000000
 1009000000000000
 10010000000000000
 10020000000000000
 10030000000000000
 10040000000000000
 10050000000000000
 10060000000000000
 10070000000000000
 10080000000000000
 10090000000000000
 100100000000000000
 100200000000000000
 100300000000000000
 100400000000000000
 100500000000000000
 100600000000000000
 100700000000000000
 100800000000000000
 100900000000000000
 1001000000000000000
 1002000000000000000
 1003000000000000000
 1004000000000000000
 1005000000000000000
 1006000000000000000
 1007000000000000000
 1008000000000000000
 1009000000000000000
 10010000000000000000
 10020000000000000000
 10030000000000000000
 10040000000000000000
 10050000000000000000
 10060000000000000000
 10070000000000000000
 10080000000000000000
 10090000000000000000
 100100000000000000000
 100200000000000000000
 100300000000000000000
 100400000000000000000
 100500000000000000000
 100600000000000000000
 100700000000000000000
 100800000000000000000
 100900000000000000000
 1001000000000000000000
 1002000000000000000000
 1003000000000000000000
 1004000000000000000000
 1005000000000000000000
 1006000000000000000000
 1007000000000000000000
 1008000000000000000000
 1009000000000000000000
 10010000000000000000000
 10020000000000000000000
 10030000000000000000000
 10040000000000000000000
 10050000000000000000000
 10060000000000000000000
 10070000000000000000000
 10080000000000000000000
 10090000000000000000000
 100100000000000000000000
 100200000000000000000000
 100300000000000000000000
 100400000000000000000000
 100500000000000000000000
 100600000000000000000000
 100700000000000000000000
 100800000000000000000000
 100900000000000000000000
 1001000000000000000000000
 1002000000000000000000000
 1003000000000000000000000
 1004000000000000000000000
 1005000000000000000000000
 1006000000000000000000000
 1007000000000000000000000
 1008000000000000000000000
 1009000000000000000000000
 10010000000000000000000000
 10020000000000000000000000
 10030000000000000000000000
 10040000000000000000000000
 10050000000000000000000000
 10060000000000000000000000
 10070000000000000000000000
 10080000000000000000000000
 10090000000000000000000000
 100100000000000000000000000
 100200000000000000000000000
 100300000000000000000000000
 100400000000000000000000000
 100500000000000000000000000
 100600000000000000000000000
 100700000000000000000000000
 100800000000000000000000000
 100900000000000000000000000
 1001000000000000000000000000
 1002000000000000000000000000
 1003000000000000000000000000
 1004000000000000000000000000
 1005000000000000000000000000
 1006000000000000000000000000
 1007000000000000000000000000
 1008000000000000000000000000
 1009000000000000000000000000
 10010000000000000000000000000
 1002000000

Signal peptide 2: SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32

FIG. 7

SIRP1 α -CD3-IL15 (SL) BiTE (SEQ ID NO: 56)

Signal peptide 2: SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32
Heavy chain CD3: SEQ ID NO: 22

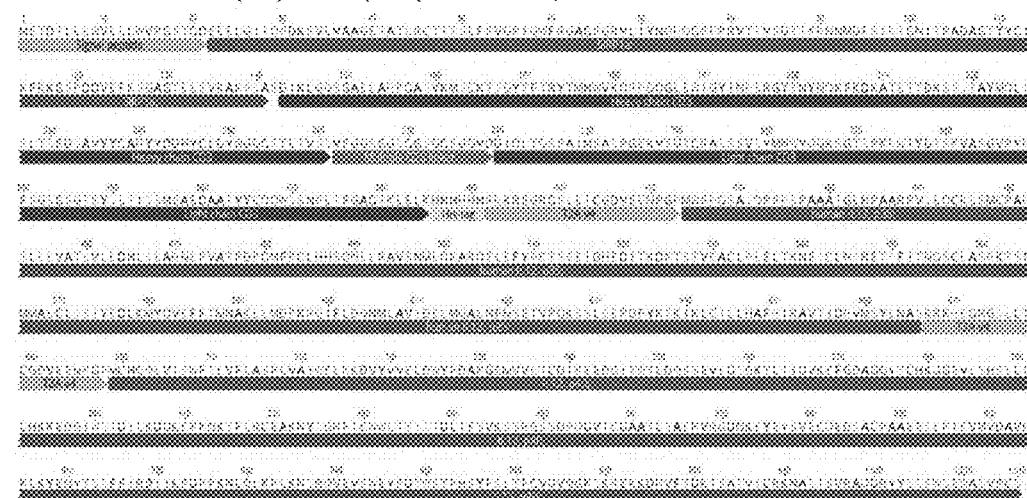
Light chain CD3: SEQ ID NO: 20
Multiple G2S linker: SEQ ID NO: 10
His-tag: SEQ ID NO: 12

T2A v4; SEQ ID NO: 14
Human IL15; SEQ ID NO: 24

FIG. 8

SIRP1 α -CD3-IL15 (LL) BiTE (SEQ ID NO: 57)

ME TOTALIS VILLE WYGGED DEESE LICEOK TULVAASE TATE ECTU ISLARVY GLOMPEAGROGVILY HODSNGE FPOVTTV
SOTIKENMNGD EIS IGGITIADASTI YTCIKEKFGEDDOVETSGACELLSYRAKPLAISCHGPIKLOGICASLLAHSVEMI
CPTGCGYEFER YMMNVP DPOGUGLICIGYIPIKGYTNYNKGKELOKATLITONSIETAYMILSALTEQD ALAVYCCAYYDHC
LGYCAGSTYVSYNGEPEGCGKCGKCGVDTYDOSPAIMSAIPLKSYTMAHAAASAVYVANITYDOKGTPKHNLYDYN
VAGSYNHFAGCAGLTYVSTLISIMIAAATYYCIONISNPLTGGASIKLELKXHNGHHSKESRPGHLYTCGYIENPQH
TUKPHNRTSISIPOCYLICLMMHETTAAGENYLTGTCAGLPLXTRADAVYVWEDLXKEDLXOMNIDATEYTAUINHBLCKY
ANKEFELLOVSYBLEGOATISDTCVNLILANLTSNSNYTESGKCECEBCTENIEKEFLOFVHIVYMFISI

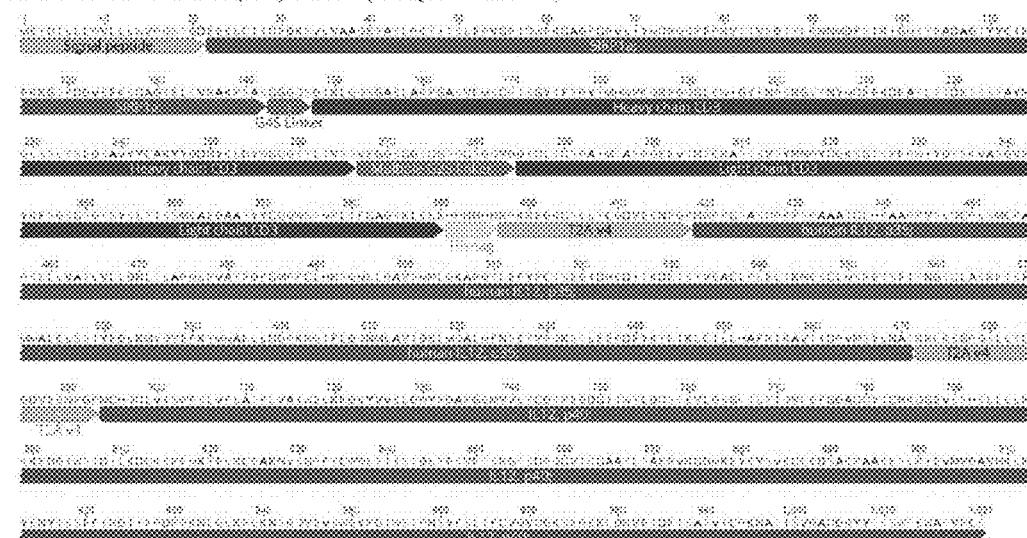

Signal peptide 2: SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32
G4S Linker: SEQ ID NO: 6

Light chain CD3: SEQ ID NO: 20
Heavy chain CD3: SEQ ID NO: 22
Multiple G2S linker: SEQ ID NO: 10

His-tag: SEQ ID NO: 12
Human IL15: SEQ ID NO: 24
T2A v4: SEQ ID NO: 14

FIG. 9

SIRP1 α -CD3-IL12 (SL) BiTE (SEQ ID NO: 58)


Signal peptide 2: SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32
Heavy chain CD3: SEQ ID NO: 22

Light chain CD3: SEQ ID NO: 20
Multiple G2S linker: SEQ ID NO: 10
His-tag: SEQ ID NO: 12

T2A v4: SEQ ID NO: 14
Human IL12, p35: SEQ ID NO: 28
IL12, p40: SEQ ID NO: 26

FIG. 10

SIRP1 α -CD3-IL12 (LL) BiTE (SEQ ID NO: 59)

Signal peptide 2: SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32
G4S Linker: SEQ ID NO: 6

Light chain CD3: SEQ ID NO: 20
Heavy chain CD3: SEQ ID NO: 22
Multiple G2S Linker: SEQ ID NO: 10

His-tag: SEQ ID NO: 12
Human IL12, p35: SEQ ID NO: 28
IL12, p40: SEQ ID NO: 26
T2A v4: SEQ ID NO: 14

FIG. 11

SIRP1 α -CD3-CXCL10 (SL) BiTE (SEQ ID NO: 60)

Signal peptide 2: SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32
Heavy chain CD3: SEQ ID NO:

Light chain CD3: SEQ ID NO: 20
Multiple G2S linker: SEQ ID NO:
His tag: SEQ ID NO: 12

T2A v4: SEQ ID NO: 14
Human CXCL10: SEQ ID NO: 30

FIG. 12

SIRPI α -CD3-CXCL10 (LL) BiTE (SEQ ID NO: 61)

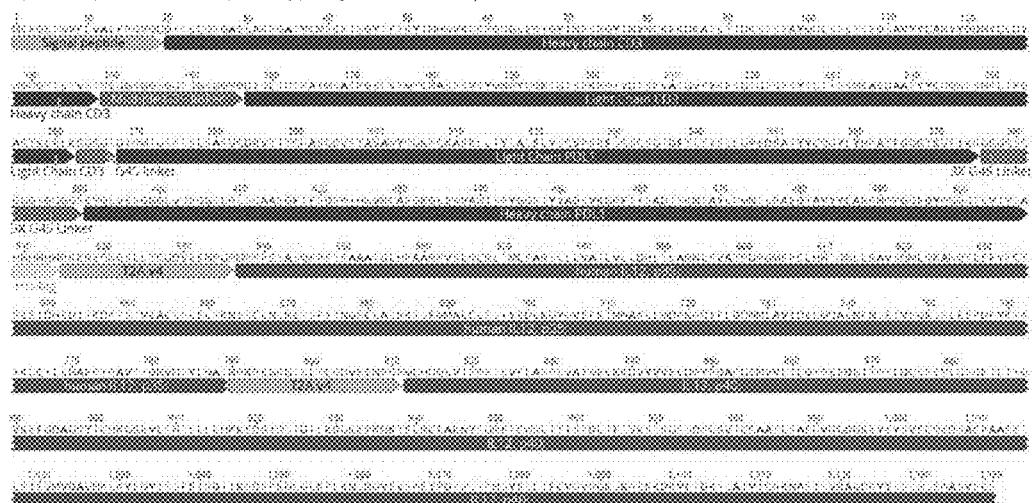
Signal peptide 2: SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32
G4S Linker: SEQ ID NO: 6

FIG. 13

PDL1-CD3 BiTE (SEQ ID NO: 50)

1 MEESLQEVVLYALFPGVYQGKIKLQKQGAEIARPGATVKECKYEGYFETAVTGYWVNSPQGMLPHECYINPGRY
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 120
 130
 140
 150
 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270
 280
 290
 300
 310
 320
 330
 340
 350
 360
 370
 380
 390
 400
 410
 420
 430
 440
 450
 460
 470
 480
 490
 500
 510
 520
 530
 540
 550
 560
 570
 580
 590
 600
 610
 620
 630
 640
 650
 660
 670
 680
 690
 700
 710
 720
 730
 740
 750
 760
 770
 780
 790
 800
 810
 820
 830
 840
 850
 860
 870
 880
 890
 900
 910
 920
 930
 940
 950
 960
 970
 980
 990
 1000
 1010
 1020
 1030
 1040
 1050
 1060
 1070
 1080
 1090
 1100
 1110
 1120
 1130
 1140
 1150
 1160
 1170
 1180
 1190
 1200
 1210
 1220
 1230
 1240
 1250
 1260
 1270
 1280
 1290
 1300
 1310
 1320
 1330
 1340
 1350
 1360
 1370
 1380
 1390
 1400
 1410
 1420
 1430
 1440
 1450
 1460
 1470
 1480
 1490
 1500
 1510
 1520
 1530
 1540
 1550
 1560
 1570
 1580
 1590
 1600
 1610
 1620
 1630
 1640
 1650
 1660
 1670
 1680
 1690
 1700
 1710
 1720
 1730
 1740
 1750
 1760
 1770
 1780
 1790
 1800
 1810
 1820
 1830
 1840
 1850
 1860
 1870
 1880
 1890
 1900
 1910
 1920
 1930
 1940
 1950
 1960
 1970
 1980
 1990
 2000
 2010
 2020
 2030
 2040
 2050
 2060
 2070
 2080
 2090
 2100
 2110
 2120
 2130
 2140
 2150
 2160
 2170
 2180
 2190
 2200
 2210
 2220
 2230
 2240
 2250
 2260
 2270
 2280
 2290
 2300
 2310
 2320
 2330
 2340
 2350
 2360
 2370
 2380
 2390
 2400
 2410
 2420
 2430
 2440
 2450
 2460
 2470
 2480
 2490
 2500
 2510
 2520
 2530
 2540
 2550
 2560
 2570
 2580
 2590
 2600
 2610
 2620
 2630
 2640
 2650
 2660
 2670
 2680
 2690
 2700
 2710
 2720
 2730
 2740
 2750
 2760
 2770
 2780
 2790
 2800
 2810
 2820
 2830
 2840
 2850
 2860
 2870
 2880
 2890
 2900
 2910
 2920
 2930
 2940
 2950
 2960
 2970
 2980
 2990
 3000
 3010
 3020
 3030
 3040
 3050
 3060
 3070
 3080
 3090
 3100
 3110
 3120
 3130
 3140
 3150
 3160
 3170
 3180
 3190
 3200
 3210
 3220
 3230
 3240
 3250
 3260
 3270
 3280
 3290
 3300
 3310
 3320
 3330
 3340
 3350
 3360
 3370
 3380
 3390
 3400
 3410
 3420
 3430
 3440
 3450
 3460
 3470
 3480
 3490
 3500
 3510
 3520
 3530
 3540
 3550
 3560
 3570
 3580
 3590
 3600
 3610
 3620
 3630
 3640
 3650
 3660
 3670
 3680
 3690
 3700
 3710
 3720
 3730
 3740
 3750
 3760
 3770
 3780
 3790
 3800
 3810
 3820
 3830
 3840
 3850
 3860
 3870
 3880
 3890
 3900
 3910
 3920
 3930
 3940
 3950
 3960
 3970
 3980
 3990
 4000
 4010
 4020
 4030
 4040
 4050
 4060
 4070
 4080
 4090
 4100
 4110
 4120
 4130
 4140
 4150
 4160
 4170
 4180
 4190
 4200
 4210
 4220
 4230
 4240
 4250
 4260
 4270
 4280
 4290
 4300
 4310
 4320
 4330
 4340
 4350
 4360
 4370
 4380
 4390
 4400
 4410
 4420
 4430
 4440
 4450
 4460
 4470
 4480
 4490
 4500
 4510
 4520
 4530
 4540
 4550
 4560
 4570
 4580
 4590
 4600
 4610
 4620
 4630
 4640
 4650
 4660
 4670
 4680
 4690
 4700
 4710
 4720
 4730
 4740
 4750
 4760
 4770
 4780
 4790
 4800
 4810
 4820
 4830
 4840
 4850
 4860
 4870
 4880
 4890
 4900
 4910
 4920
 4930
 4940
 4950
 4960
 4970
 4980
 4990
 5000
 5010
 5020
 5030
 5040
 5050
 5060
 5070
 5080
 5090
 5100
 5110
 5120
 5130
 5140
 5150
 5160
 5170
 5180
 5190
 5200
 5210
 5220
 5230
 5240
 5250
 5260
 5270
 5280
 5290
 5300
 5310
 5320
 5330
 5340
 5350
 5360
 5370
 5380
 5390
 5400
 5410
 5420
 5430
 5440
 5450
 5460
 5470
 5480
 5490
 5500
 5510
 5520
 5530
 5540
 5550
 5560
 5570
 5580
 5590
 5600
 5610
 5620
 5630
 5640
 5650
 5660
 5670
 5680
 5690
 5700
 5710
 5720
 5730
 5740
 5750
 5760
 5770
 5780
 5790
 5800
 5810
 5820
 5830
 5840
 5850
 5860
 5870
 5880
 5890
 5900
 5910
 5920
 5930
 5940
 5950
 5960
 5970
 5980
 5990
 6000
 6010
 6020
 6030
 6040
 6050
 6060
 6070
 6080
 6090
 6100
 6110
 6120
 6130
 6140
 6150
 6160
 6170
 6180
 6190
 6200
 6210
 6220
 6230
 6240
 6250
 6260
 6270
 6280
 6290
 6300
 6310
 6320
 6330
 6340
 6350
 6360
 6370
 6380
 6390
 6400
 6410
 6420
 6430
 6440
 6450
 6460
 6470
 6480
 6490
 6500
 6510
 6520
 6530
 6540
 6550
 6560
 6570
 6580
 6590
 6600
 6610
 6620
 6630
 6640
 6650
 6660
 6670
 6680
 6690
 6700
 6710
 6720
 6730
 6740
 6750
 6760
 6770
 6780
 6790
 6800
 6810
 6820
 6830
 6840
 6850
 6860
 6870
 6880
 6890
 6900
 6910
 6920
 6930
 6940
 6950
 6960
 6970
 6980
 6990
 7000
 7010
 7020
 7030
 7040
 7050
 7060
 7070
 7080
 7090
 7100
 7110
 7120
 7130
 7140
 7150
 7160
 7170
 7180
 7190
 7200
 7210
 7220
 7230
 7240
 7250
 7260
 7270
 7280
 7290
 7300
 7310
 7320
 7330
 7340
 7350
 7360
 7370
 7380
 7390
 7400
 7410
 7420
 7430
 7440
 7450
 7460
 7470
 7480
 7490
 7500
 7510
 7520
 7530
 7540
 7550
 7560
 7570
 7580
 7590
 7600
 7610
 7620
 7630
 7640
 7650
 7660
 7670
 7680
 7690
 7700
 7710
 7720
 7730
 7740
 7750
 7760
 7770
 7780
 7790
 7800
 7810
 7820
 7830
 7840
 7850
 7860
 7870
 7880
 7890
 7900
 7910
 7920
 7930
 7940
 7950
 7960
 7970
 7980
 7990
 8000
 8010
 8020
 8030
 8040
 8050
 8060
 8070
 8080
 8090
 8100
 8110
 8120
 8130
 8140
 8150
 8160
 8170
 8180
 8190
 8200
 8210
 8220
 8230
 8240
 8250
 8260
 8270
 8280
 8290
 8300
 8310
 8320
 8330
 8340
 8350
 8360
 8370
 8380
 8390
 8400
 8410
 8420
 8430
 8440
 8450
 8460
 8470
 8480
 8490
 8500
 8510
 8520
 8530
 8540
 8550
 8560
 8570
 8580
 8590
 8600
 8610
 8620
 8630
 8640
 8650
 8660
 8670
 8680
 8690
 8700
 8710
 8720
 8730
 8740
 8750
 8760
 8770
 8780
 8790
 8800
 8810
 8820
 8830
 8840
 8850
 8860
 8870
 8880
 8890
 8900
 8910
 8920
 8930
 8940
 8950
 8960
 8970
 8980
 8990
 9000
 9010
 9020
 9030
 9040
 9050
 9060
 9070
 9080
 9090
 9100
 9110
 9120
 9130
 9140
 9150
 9160
 9170
 9180
 9190
 9200
 9210
 9220
 9230
 9240
 9250
 9260
 9270
 9280
 9290
 9300
 9310
 9320
 9330
 9340
 9350
 9360
 9370
 9380
 9390
 9400
 9410
 9420
 9430
 9440
 9450
 9460
 9470
 9480
 9490
 9500
 9510
 9520
 9530
 9540
 9550
 9560
 9570
 9580
 9590
 9600
 9610
 9620
 9630
 9640
 9650
 9660
 9670
 9680
 9690
 9700
 9710
 9720
 9730
 9740
 9750
 9760
 9770
 9780
 9790
 9800
 9810
 9820
 9830
 9840
 9850
 9860
 9870
 9880
 9890
 9900
 9910
 9920
 9930
 9940
 9950
 9960
 9970
 9980
 9990
 10000
 10010
 10020
 10030
 10040
 10050
 10060
 10070
 10080
 10090
 100100
 100200
 100300
 100400
 100500
 100600
 100700
 100800
 100900
 1001000
 1002000
 1003000
 1004000
 1005000
 1006000
 1007000
 1008000
 1009000
 10010000
 10020000
 10030000
 10040000
 10050000
 10060000
 10070000
 10080000
 10090000
 100100000
 100200000
 100300000
 100400000
 100500000
 100600000
 100700000
 100800000
 100900000
 1001000000
 1002000000
 1003000000
 1004000000
 1005000000
 1006000000
 1007000000
 1008000000
 1009000000
 10010000000
 10020000000
 10030000000
 10040000000
 10050000000
 10060000000
 10070000000
 10080000000
 10090000000
 100100000000
 100200000000
 100300000000
 100400000000
 100500000000
 100600000000
 100700000000
 100800000000
 100900000000
 1001000000000
 1002000000000
 1003000000000
 1004000000000
 1005000000000
 1006000000000
 1007000000000
 1008000000000
 1009000000000
 10010000000000
 10020000000000
 10030000000000
 10040000000000
 10050000000000
 10060000000000
 10070000000000
 10080000000000
 10090000000000
 100100000000000
 100200000000000
 100300000000000
 100400000000000
 100500000000000
 100600000000000
 100700000000000
 100800000000000
 100900000000000
 1001000000000000
 1002000000000000
 1003000000000000
 1004000000000000
 1005000000000000
 1006000000000000
 1007000000000000
 1008000000000000
 1009000000000000
 10010000000000000
 10020000000000000
 10030000000000000
 10040000000000000
 10050000000000000
 10060000000000000
 10070000000000000
 10080000000000000
 10090000000000000
 100100000000000000
 100200000000000000
 100300000000000000
 100400000000000000
 100500000000000000
 100600000000000000
 100700000000000000
 100800000000000000
 100900000000000000
 1001000000000000000
 1002000000000000000
 1003000000000000000
 1004000000000000000
 1005000000000000000
 1006000000000000000
 1007000000000000000
 1008000000000000000
 1009000000000000000
 10010000000000000000
 10020000000000000000
 10030000000000000000
 10040000000000000000
 10050000000000000000
 10060000000000000000
 10070000000000000000
 10080000000000000000
 10090000000000000000
 100100000000000000000
 100200000000000000000
 100300000000000000000
 100400000000000000000
 100500000000000000000
 100600000000000000000
 100700000000000000000
 100800000000000000000
 100900000000000000000
 1001000000000000000000
 1002000000000000000000
 1003000000000000000000
 1004000000000000000000
 1005000000000000000000
 1006000000000000000000
 1007000000000000000000
 1008000000000000000000
 1009000000000000000000
 10010000000000000000000
 10020000000000000000000
 10030000000000000000000
 10040000000000000000000
 10050000000000000000000
 10060000000000000000000
 10070000000000000000000
 10080000000000000000000
 10090000000000000000000
 100100000000000000000000
 100200000000000000000000
 100300000000000000000000
 100400000000000000000000
 100500000000000000000000
 100600000000000000000000
 100700000000000000000000
 100800000000000000000000
 100900000000000000000000
 1001000000000000000000000
 1002000000000000000000000
 1003000000000000000000000
 1004000000000000000000000
 1005000000000000000000000
 1006000000000000000000000
 1007000000000000000000000
 1008000000000000000000000
 1009000000000000000000000
 10010000000000000000000000
 10020000000000000000000000
 10030000000000000000000000
 10040000000000000000000000
 10050000000000000000000000
 10060000000000000000000000
 10070000000000000000000000
 10080000000000000000000000
 10090000000000000000000000
 100100000000000000000000000
 100200000000000000000000000
 100300000000000000000000000
 100400000000000000000000000
 100500000000000000000000000
 100600000000000000000000000
 100700000000000000000000000
 100800000000000000000000000
 100900000000000000000000000
 1001000000000000000000000000
 1002000000000000000000000000
 1003000000000000000000000000
 1004000000000000000000000000
 1005000000000000000000000000
 1006000000000000000000000000
 1007000000000000000000000000
 1008000000000000000000000000
 100900000000000

Signal peptide 1: SEQ ID NO: 2
Multiple G28 linker: SEQ ID NO: 10
G4S linker: SEQ ID NO: 6
Light chain CD3: SEQ ID NO: 20
Heavy chain CD3: SEQ ID NO: 22
Light Chain PDL1: SEQ ID NO: 36
Reavy chain PDL1: SEQ ID NO: 38
3X G4S linker: SEQ ID NO: 8
His-tag: SEQ ID NO: 12


FIG. 14

PDL1-CD3-IL15 BiTE (SEQ ID NO: 62)

Signal peptide I: SEQ ID NO: 2
Multiple G2S linker: SEQ ID NO: 10
G4S linker: SEQ ID NO: 6
Light chain CD3: SEQ ID NO: 20
Heavy chain CD3: SEQ ID NO: 22
Light Chain PDL1: SEQ ID NO: 36
Heavy chain PDL1: SEQ ID NO: 38
Human IL15: SEQ ID NO: 24
3X G4S linker: SEQ ID NO: 8
His-tag: SEQ ID NO: 12
T2A v4: SEQ ID NO: 14

FIG. 15

PDL1-CD3-IL12 BiTE (SEQ ID NO: 63)

Signal peptide 1: SEQ ID NO: 2

Multiple G2S linker: SEQ ID NO: 10

G4S linker: SEQ ID NO: 6

3X G4S linker: SEQ ID NO: 8

Light chain CD3: SEQ ID NO: 20

Heavy chain CD3: SEQ ID NO: 22

IL12, p40: SEQ ID NO: 26

IL12, p35: SEQ ID NO: 28

Light Chain PDL1: SEQ ID NO: 36

Heavy chain PDL1: SEQ ID NO: 38

T2A v4: SEQ ID NO: 14

His-tag: SEQ ID NO: 12

FIG. 16

PDL1-CD3-CXCL10 BiTE (SEQ ID NO: 64)

Signal peptide 1: SEQ ID NO: 2

Multiple G2S linker: SEQ ID NO: 10

G4S linker: SEQ ID NO: 6

3X G4S linker: SEQ ID NO: 8

Light chain CD3: SEQ ID NO: 20

Heavy chain CD3: SEQ ID NO: 22

Light Chain PDL1: SEQ ID NO: 36

Heavy chain PDL1: SEQ ID NO: 38

Human CXCL10: SEQ ID NO: 30

His-tag: SEQ ID NO: 12

T2A v4: SEQ ID NO: 14

FIG. 17

PDL1-CD3-Fc BiTE (SEQ ID NO: 52)

Sequence diagram of PDL1-CD3-Fc BiTE (SEQ ID NO: 52). The sequence is shown in five horizontal lines with black and white boxes indicating structural elements. The sequence starts with a signal peptide (black box), followed by a multiple G2S linker (white box), then the light chain CD3 (black box), a 3X G4S linker (white box), the heavy chain CD3 (black box), a PD-L1 light chain Fv (black box), a PD-L1 heavy chain Fv (black box), and ends with a heavy chain Fc (black box) and a His-tag (black box).

Signal peptide 1: SEQ ID NO: 2

Multiple G2S linker: SEQ ID NO: 10

G4S linker: SEQ ID NO: 6

Light chain CD3: SEQ ID NO: 20

Heavy chain CD3: SEQ ID NO: 22

PD-L1 Light Chain Fv: SEQ ID NO: 36

3X G4S linker: SEQ ID NO: 8

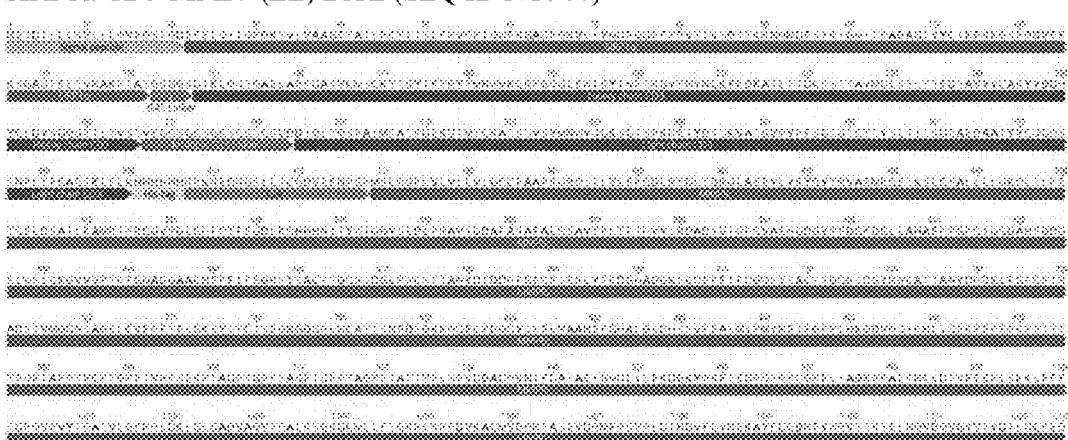

Heavy chain Fc: SEQ ID NO: 40

His-tag: SEQ ID NO: 12

PD-L1 Heavy chain Fv: SEQ ID NO: 38

FIG. 18A

SIRP1 α -CD3-MMP9 (SL) BiTE (SEQ ID NO: 65)


Signal peptide 2: SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32
Heavy chain CD3: SEQ ID NO: 22

Light chain CD3: SEQ ID NO: 20
Multiple G2S linker: SEQ ID NO: 10
His-tag: SEQ ID NO: 12

T2A v4: SEQ ID NO: 14
Human MMP9: SEQ ID NO: 34

FIG. 18B

SIRP1 α -CD3-MMP9 (LL) BiTE (SEQ ID NO: 66)

Signal peptide 2: SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32
G4S Linker: SEQ ID NO: 6

Light chain CD3: SEQ ID NO: 20
Heavy chain CD3: SEQ ID NO: 22
Multiple G2S linker: SEQ ID NO: 10

His-tag: SEQ ID NO: 12
T2A v4: SEQ ID NO: 14
Human MMP9: SEQ ID NO: 34

FIG. 19A

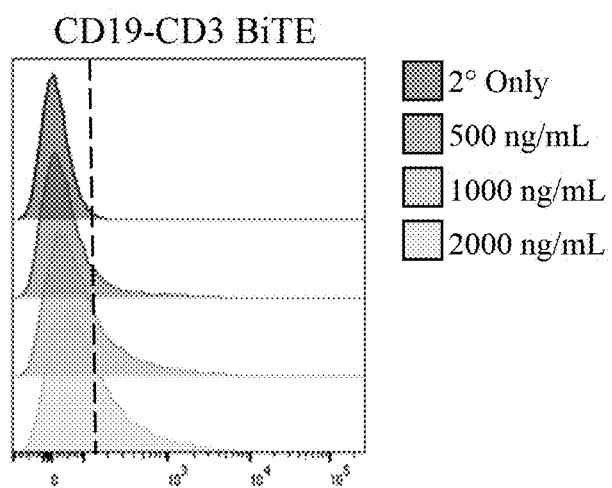


FIG. 19B

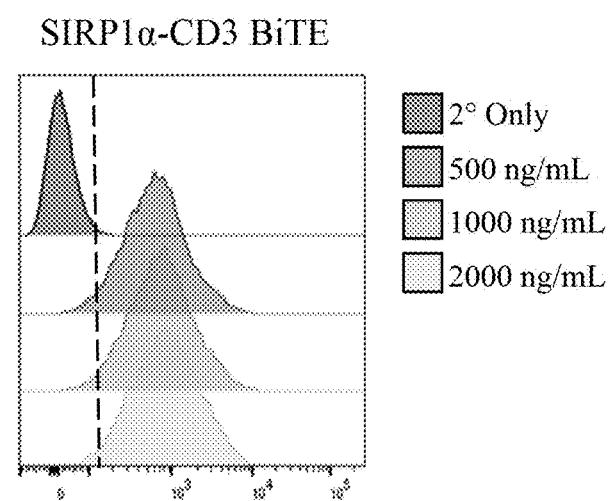


FIG. 19C

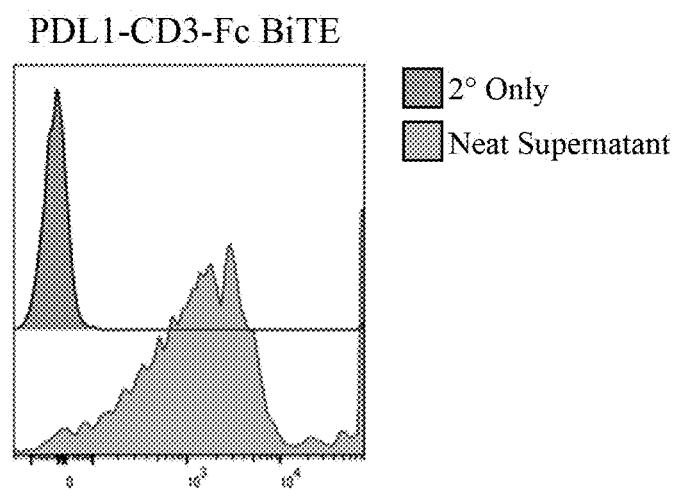


FIG. 20

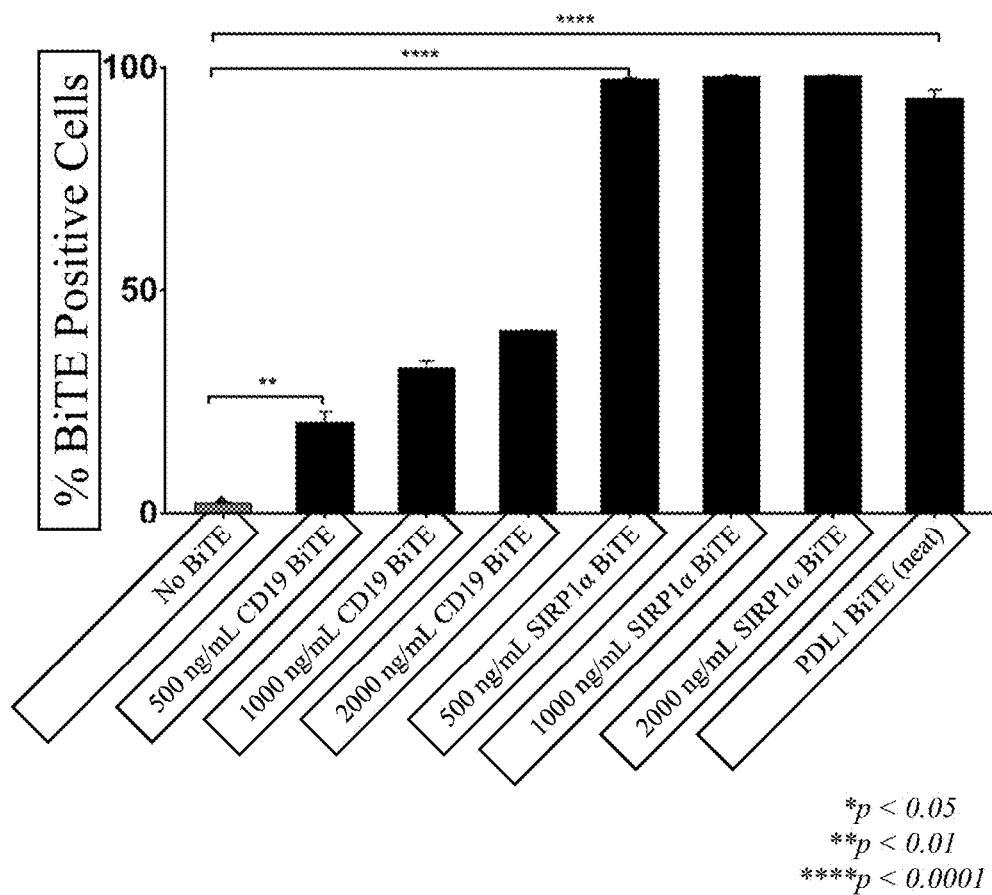


FIG. 21A

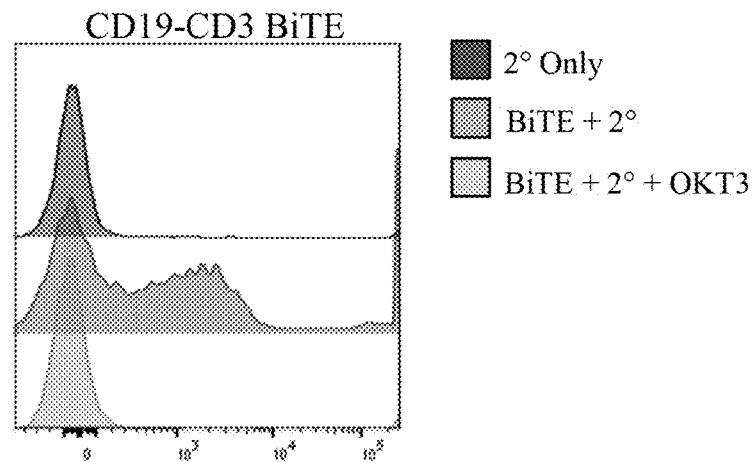


FIG. 21B

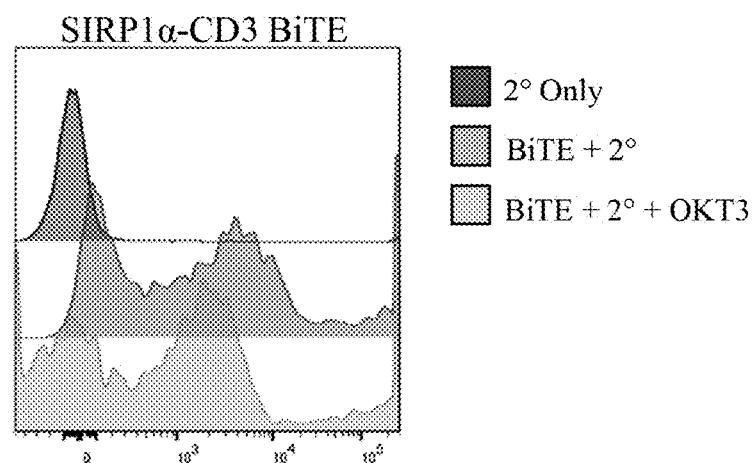


FIG. 21C

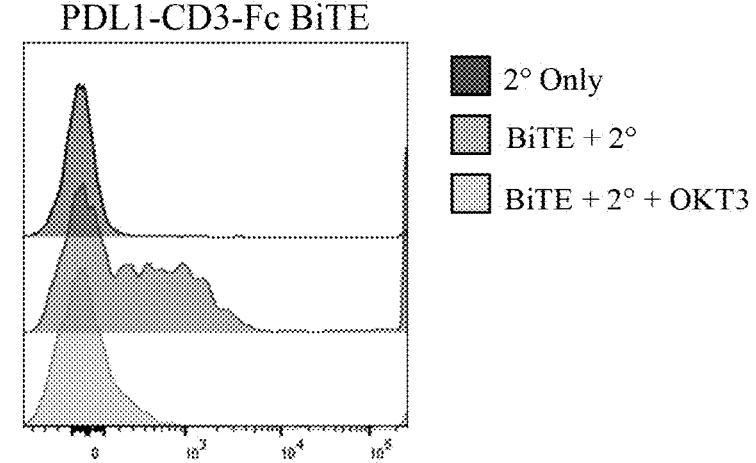


FIG. 22

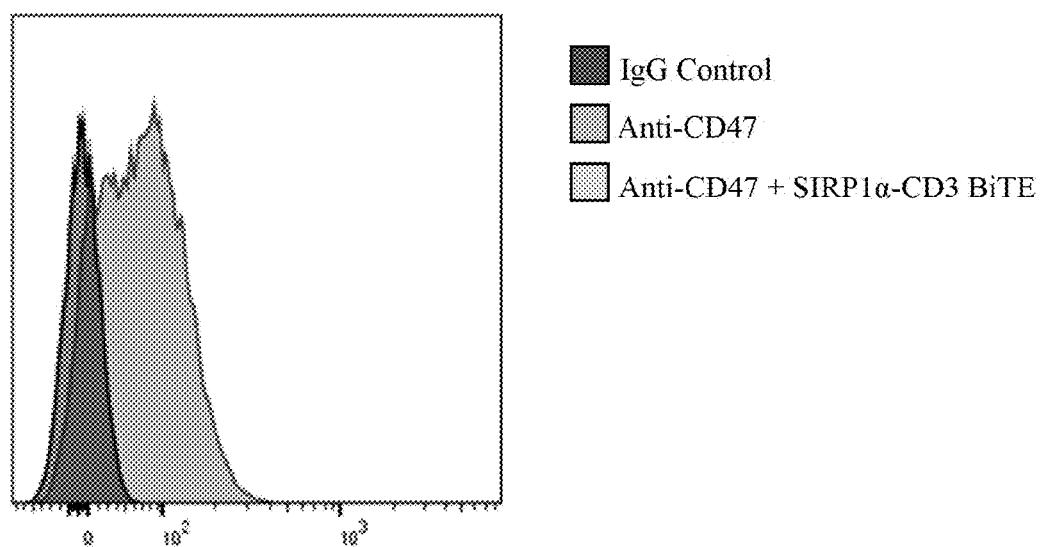


FIG. 23A

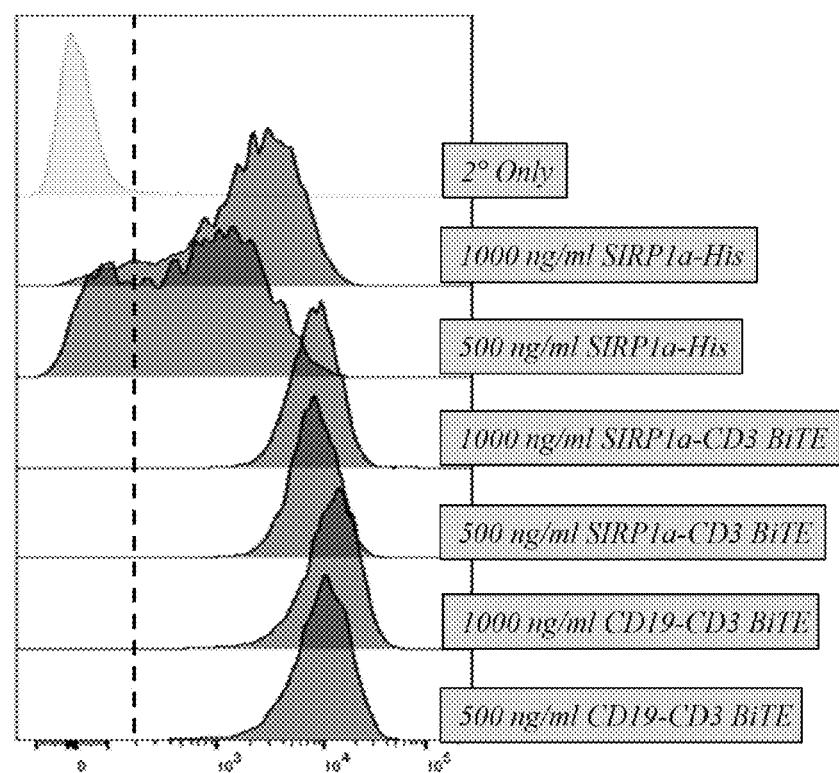


FIG. 23B

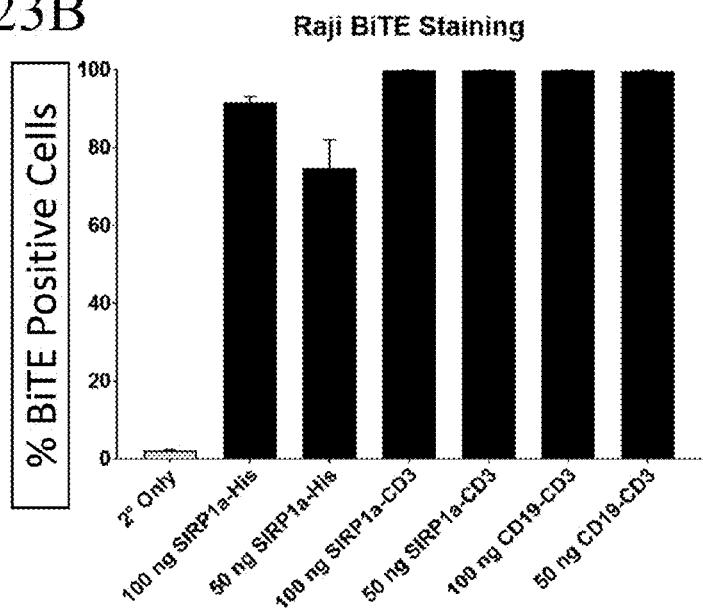


FIG. 24A

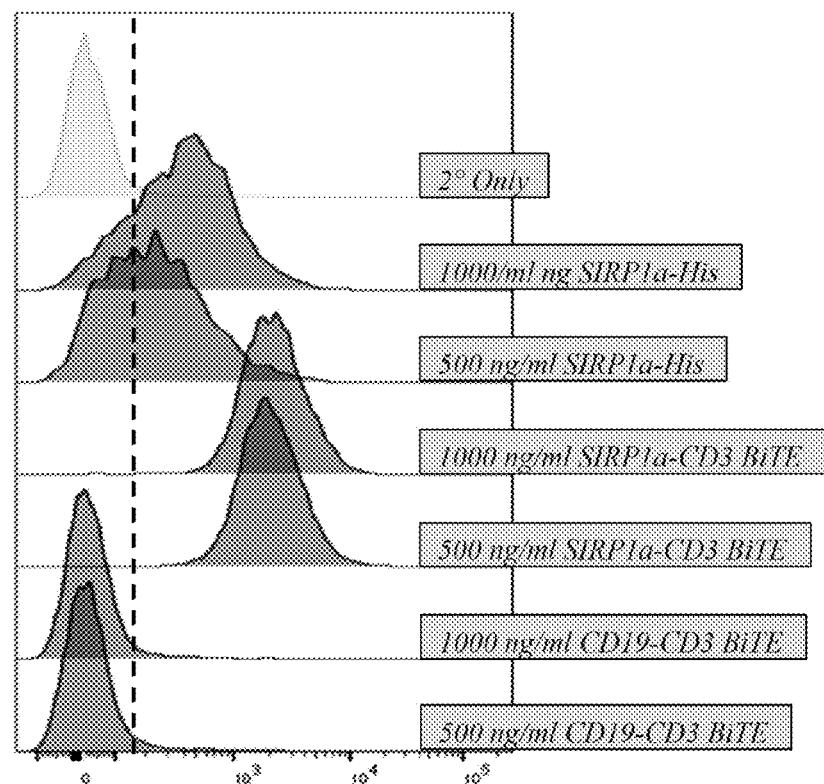


FIG. 24B

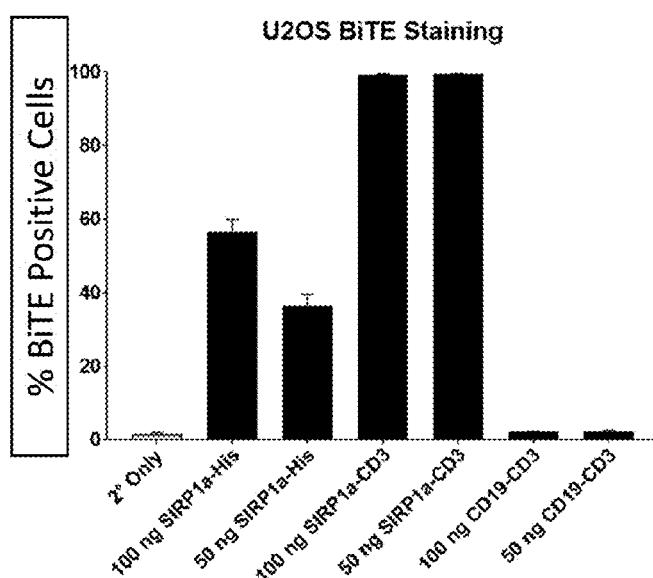


FIG. 25A

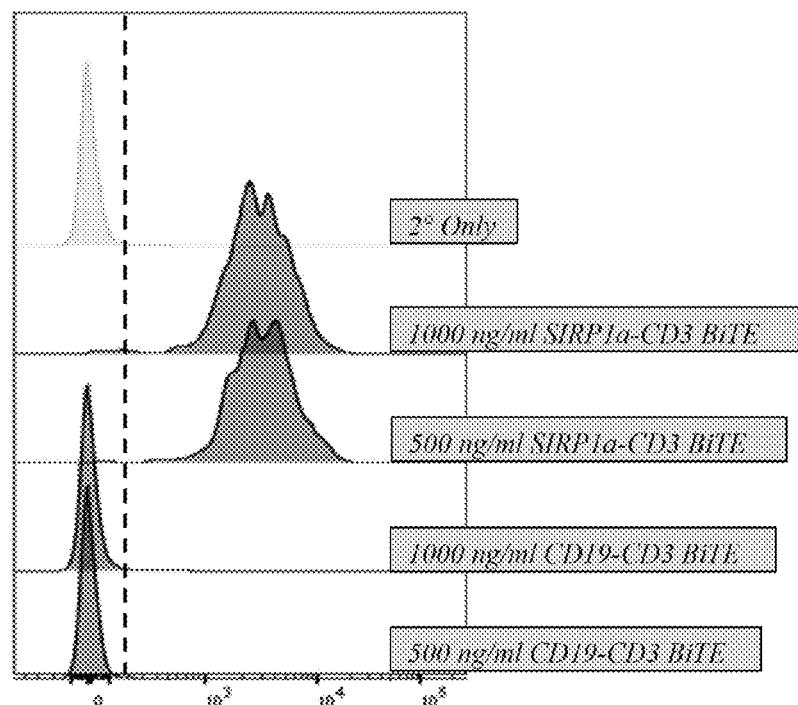


FIG. 25B

GBM30-luc BiTE Staining

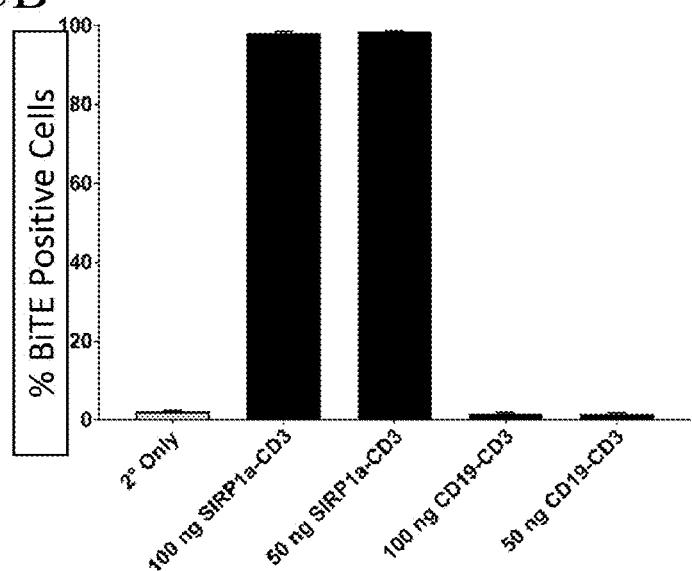


FIG. 26A

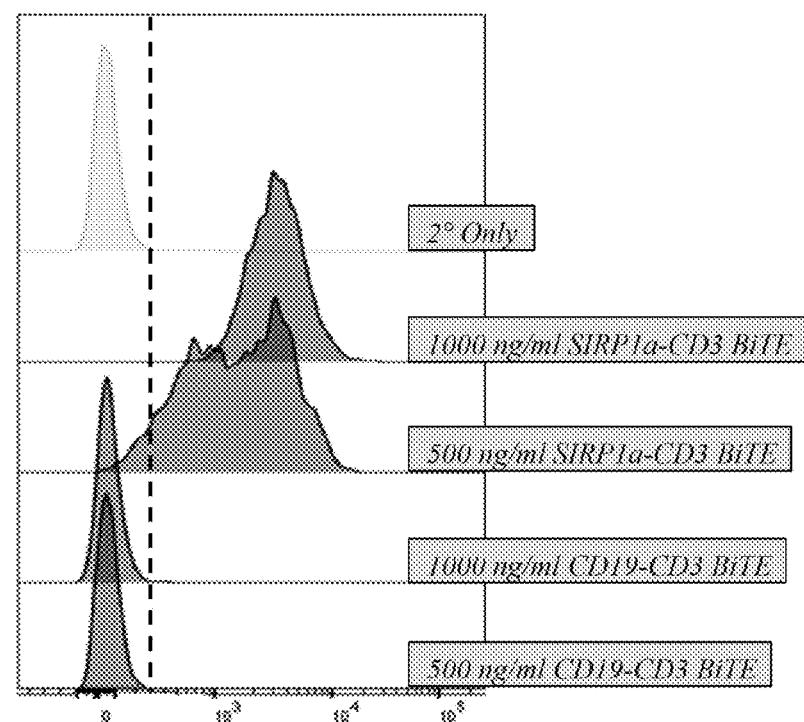


FIG. 26B

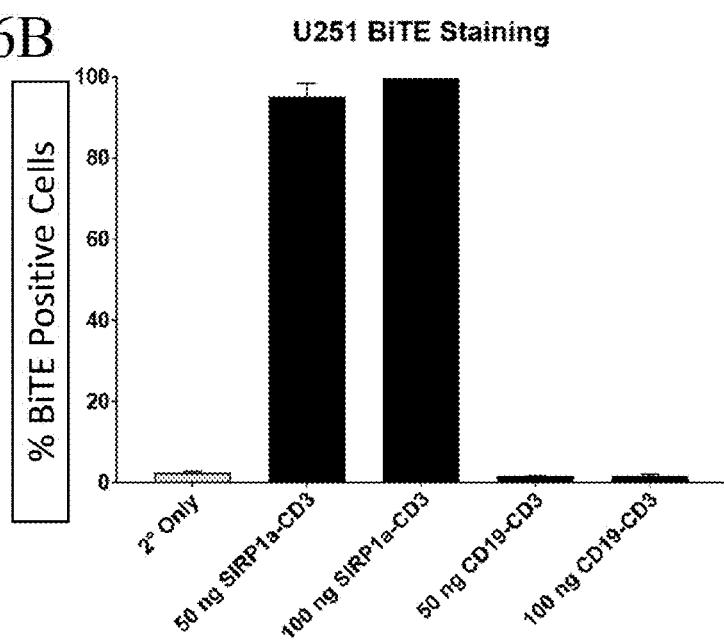


FIG. 27A

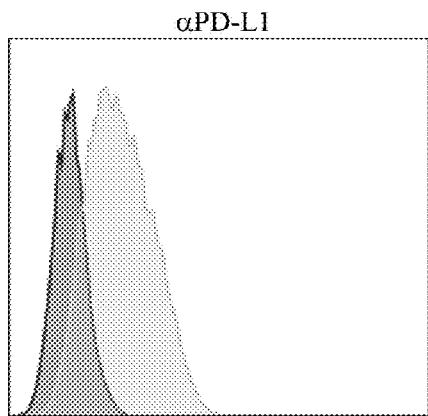


FIG. 27B

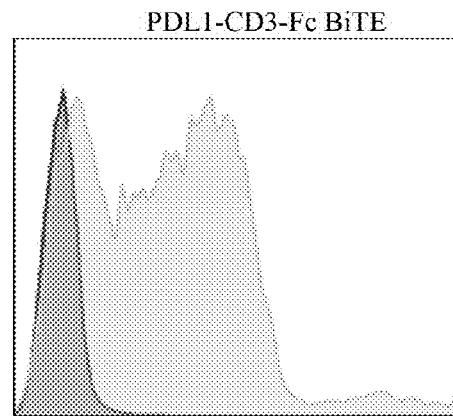


FIG. 27C

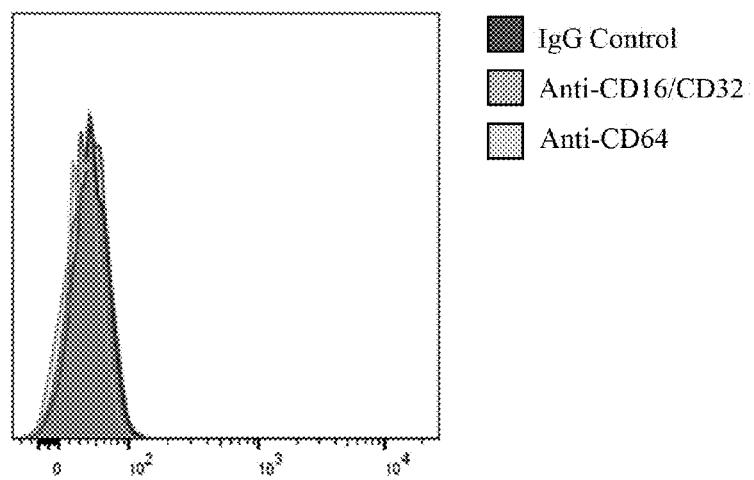


FIG. 28

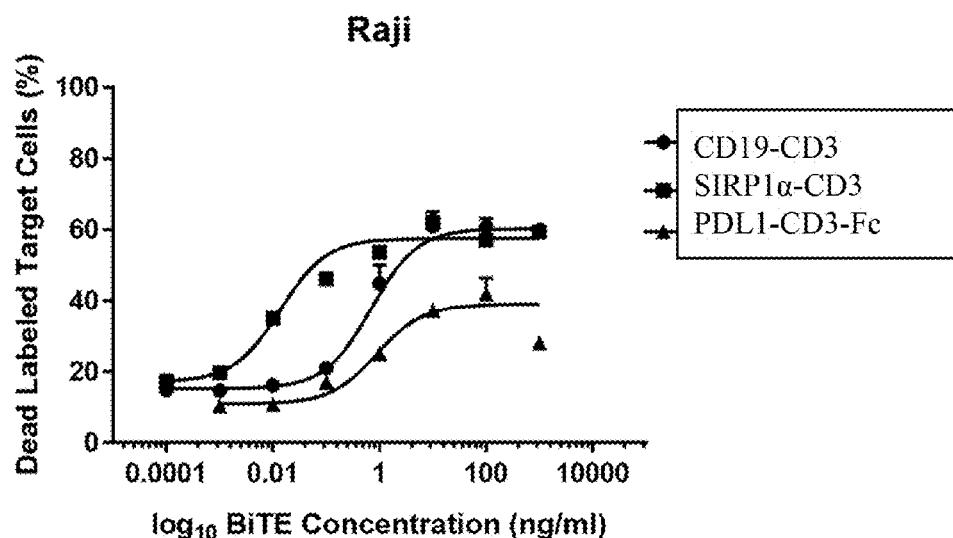


FIG. 29

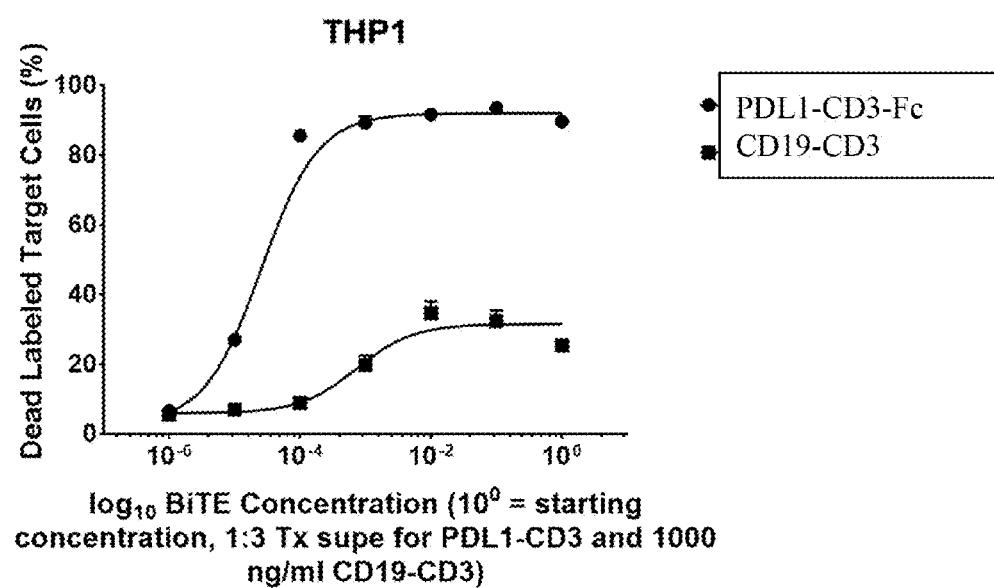


FIG. 30

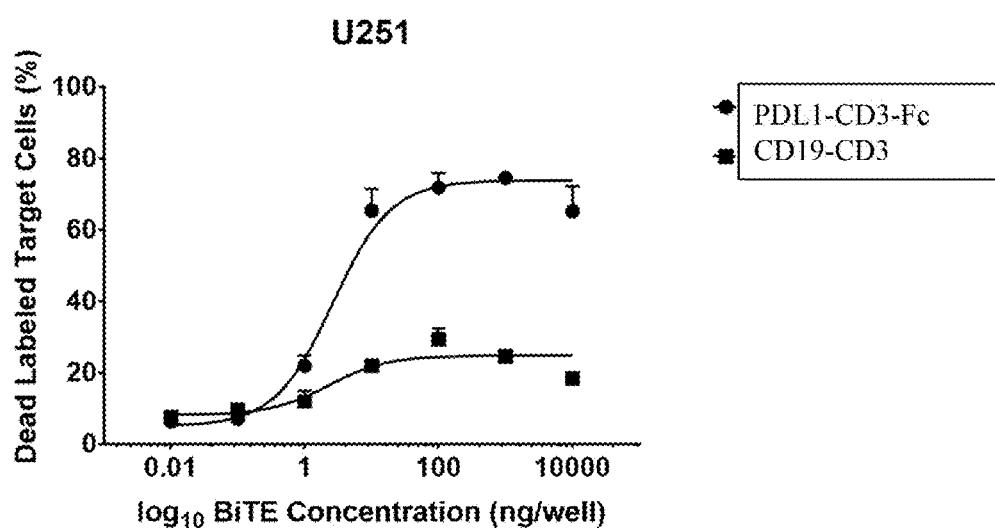
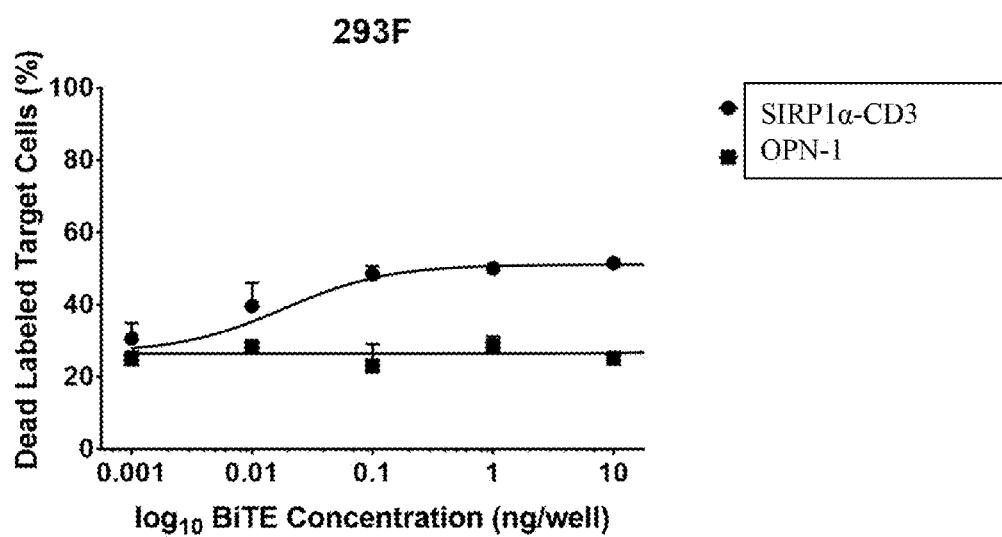
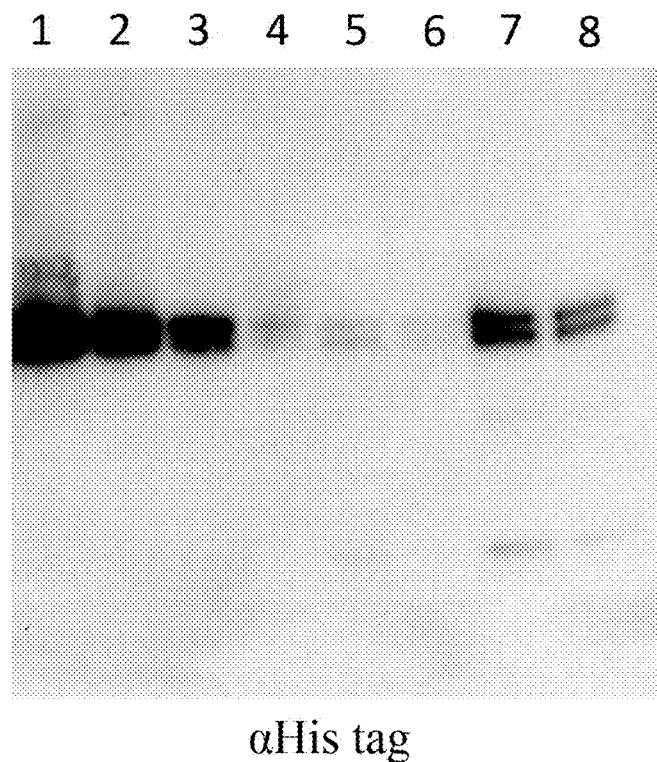
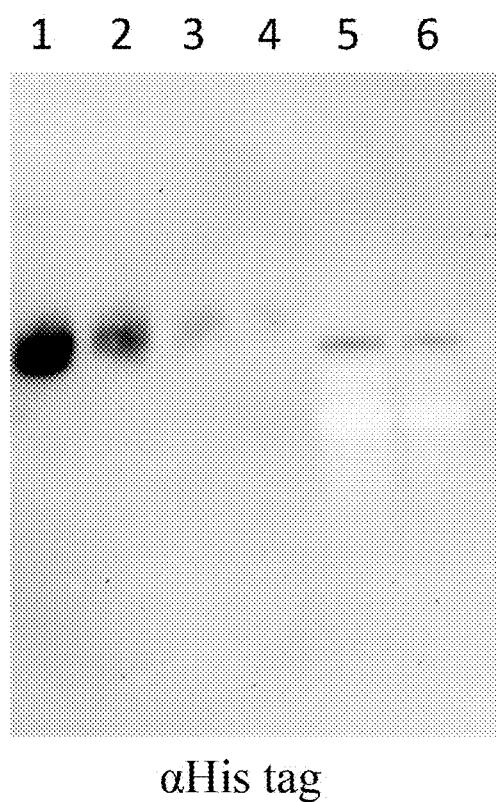


FIG. 31


FIG. 32

- 1: 100 ng ONCR085 (purified)
- 2: 50 ng ONCR085 (purified)
- 3: 25 ng ONCR085 (purified)
- 4: 12.5 ng ONCR085 (purified)
- 5: ONCR085 concentrated viral sup (10 µL)
- 6: ONCR085 concentrated viral sup (5 µL)
- 7: ONCR087 concentrated viral sup (10 µL)
- 8: ONCR087 concentrated viral sup (5 µL)

ONCR085 = SIRP1 α -CD3 BiTE-SL
ONCR087 = SIRP1 α -CD3 BiTE-LL

FIG. 33

- 1: 100 ng ONCR089 (purified)
- 2: 50 ng ONCR089 (purified)
- 3: 25 ng ONCR089 (purified)
- 4: 12.5 ng ONCR089 (purified)
- 5: ONCR089 concentrated viral sup (10 µL)
- 6: ONCR089 concentrated viral sup (5 µL)

ONCR089 = PDL1-Fc-CD3

FIG. 34A

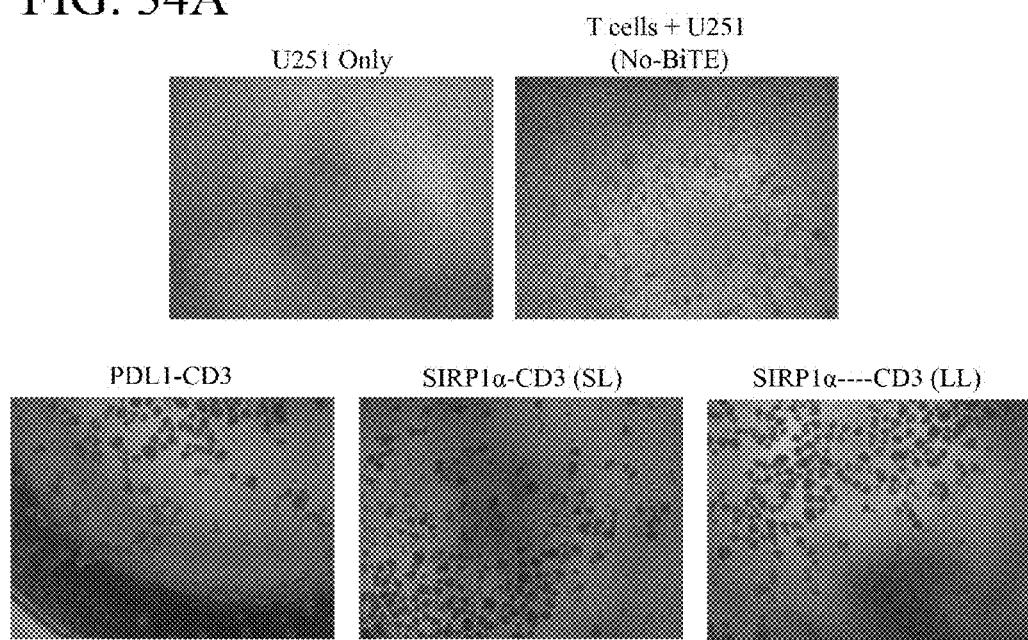


FIG. 34B
Virally Produced BiTE Killing of U251 Cells

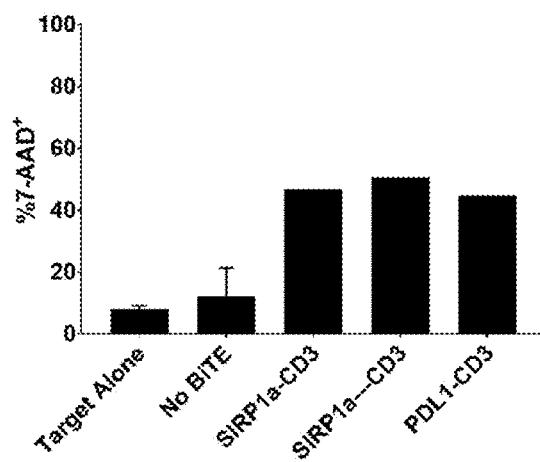


FIG. 35

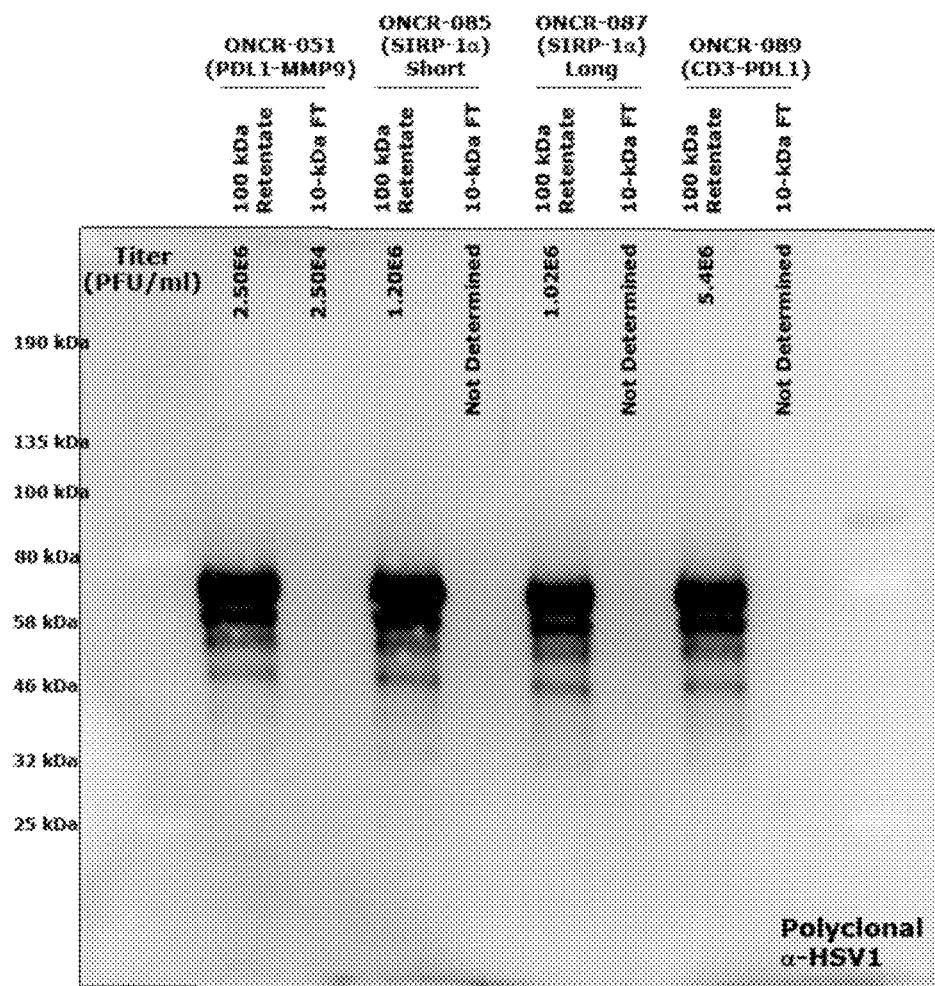


FIG. 36

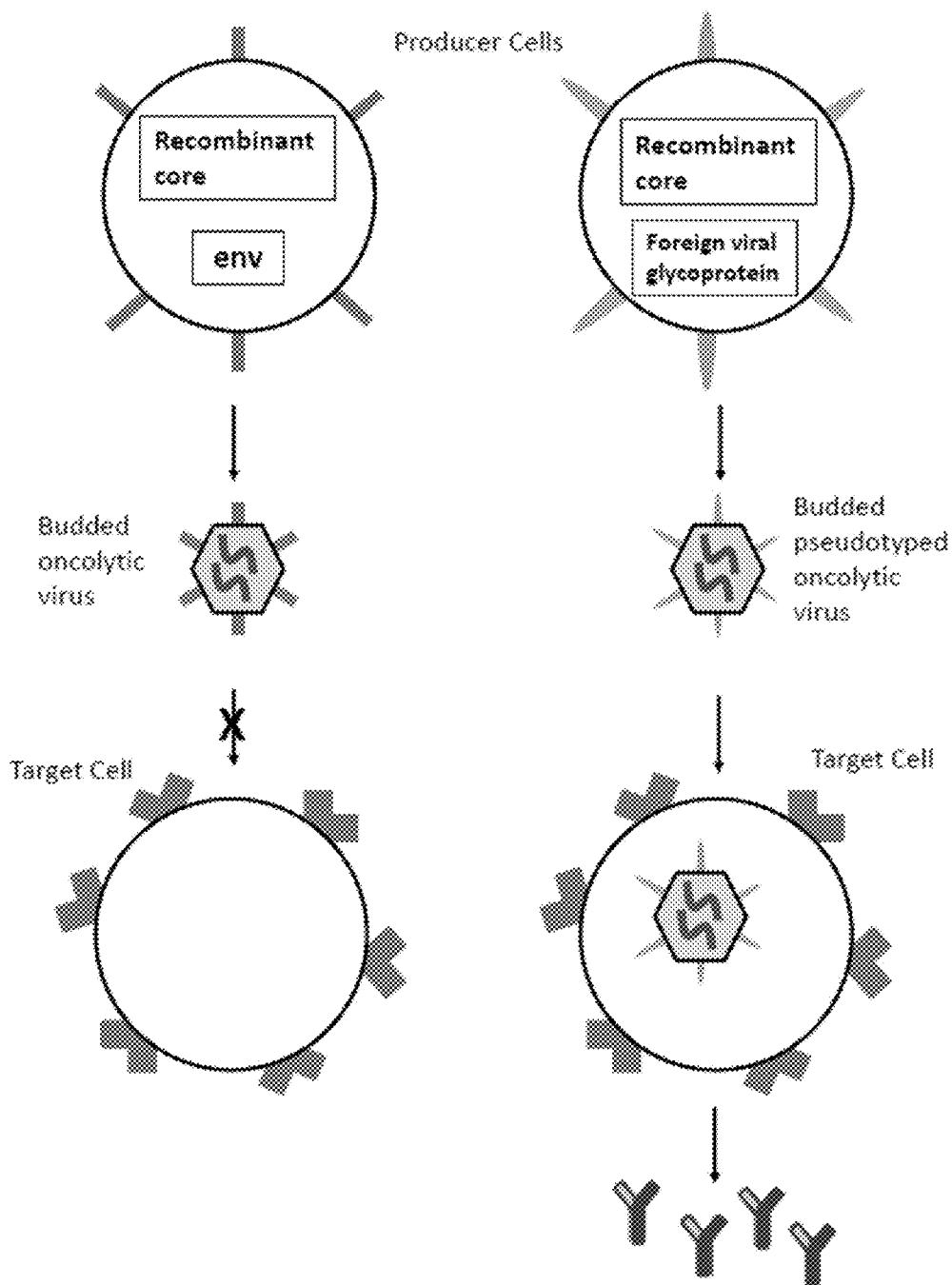
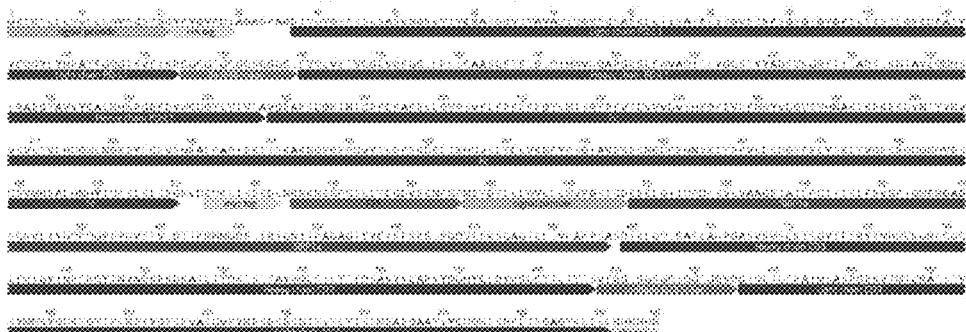
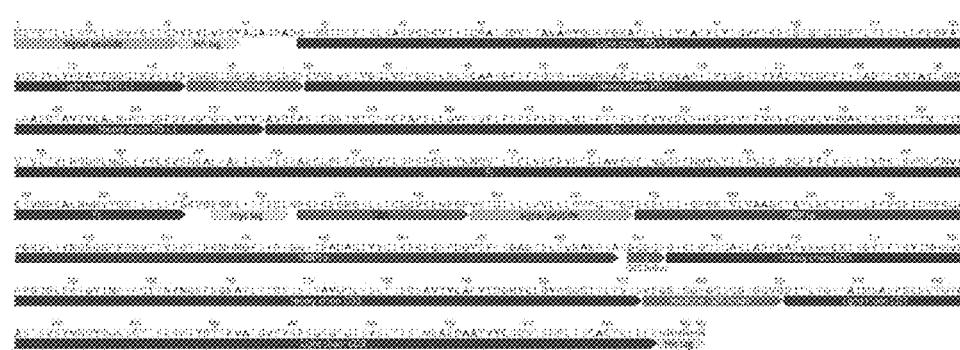



FIG. 37

SIRP1 α -CD3-PDL1-Fc (SL) (SEQ ID NO: 68)


Signal peptide : SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32
Heavy chain CD3: SEQ ID NO: 22

Light chain CD3: SEQ ID NO: 20
Multiple G2S linker: SEQ ID NO: 10
His-tag: SEQ ID NO: 12
3X G4S linker: SEQ ID NO: 8

T2A v4: SEQ ID NO: 14
Light chain anti-PDL1: SEQ ID NO: 36
Heavy chain anti-PDL1: SEQ ID NO: 38
IgG1 Fc: SEQ ID NO: 40

FIG. 38

SIRP1 α -CD3-PDL1-Fc (LL) (SEQ ID NO: 70)

Signal peptide: SEQ ID NO: 4
SIRP1 α : SEQ ID NO: 32
Heavy chain CD3: SEQ ID NO: 22
Light chain CD3: SEQ ID NO: 20

Multiple G2S linker: SEQ ID NO: 10
His-tag: SEQ ID NO: 12
G4S linker: SEQ ID NO: 6
3x G4S linker: SEQ ID NO: 8

T2A v4: SEQ ID NO: 14
Light chain anti-PDL1: SEQ ID NO: 36
Heavy chain anti-PDL1: SEQ ID NO: 38
IgG1 Fc: SEQ ID NO: 40

FIG. 39

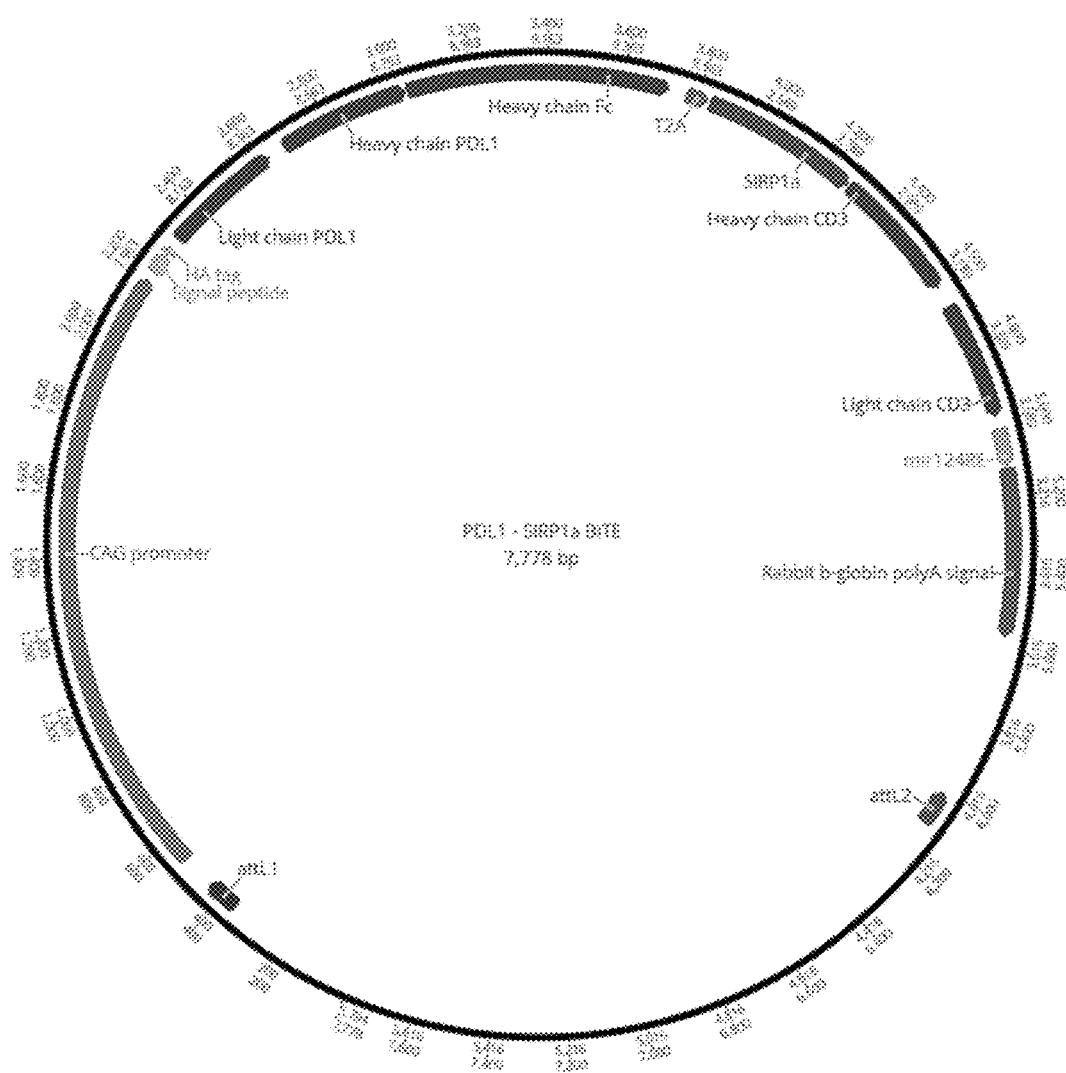


FIG. 40A

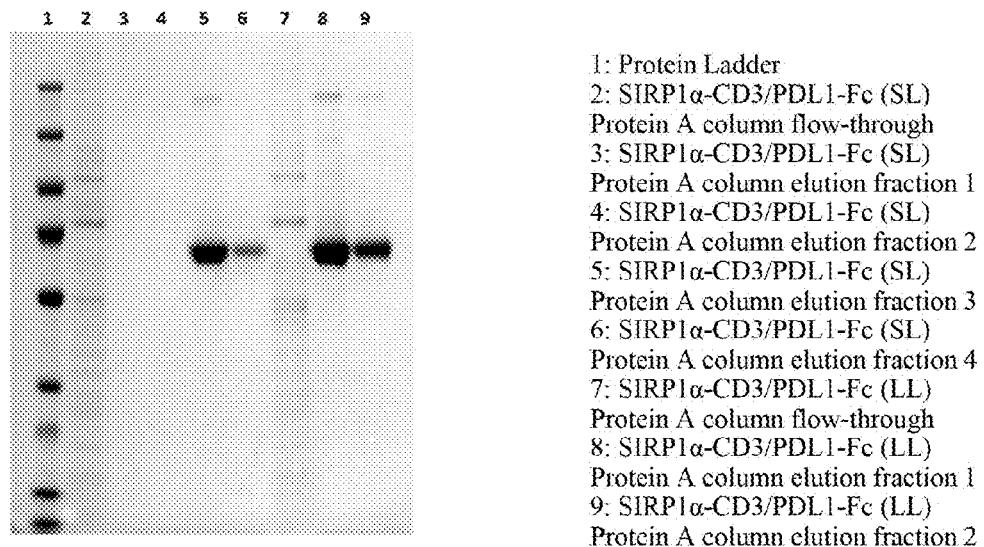
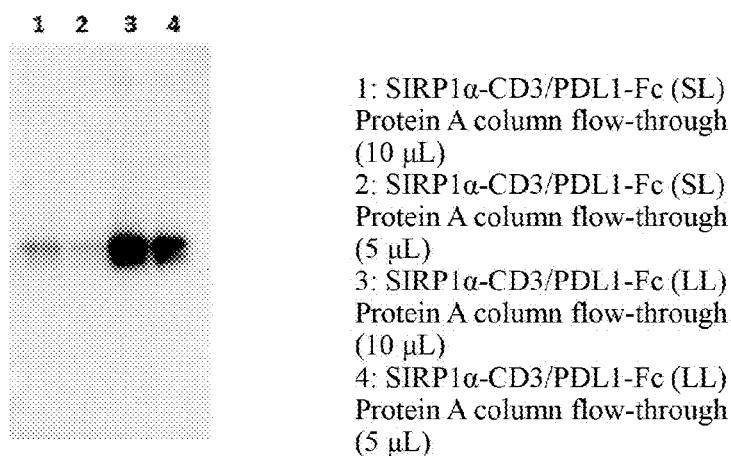



FIG. 40B

α His tag western blot

FIG. 41A

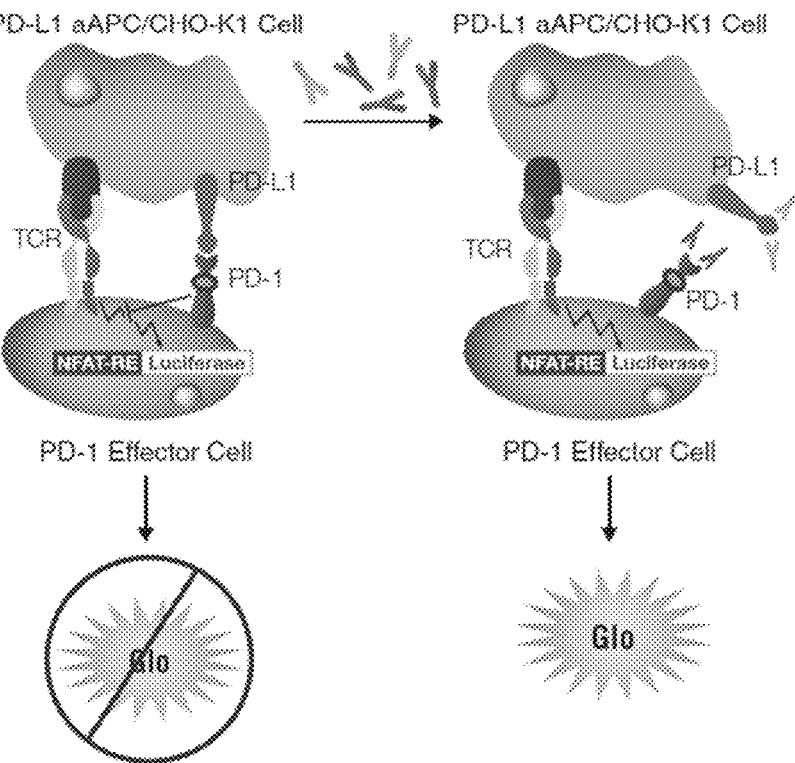


FIG. 41B

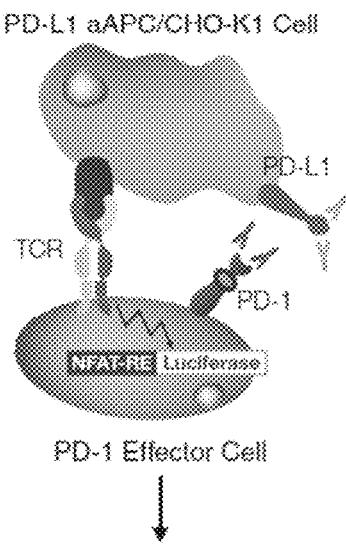
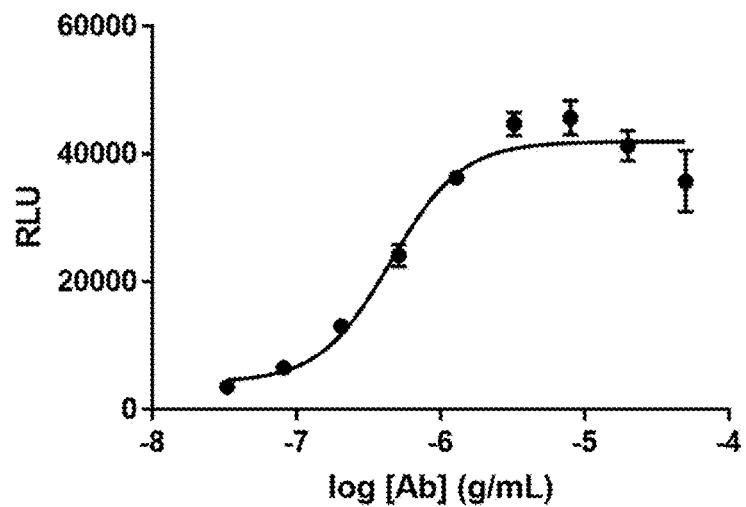



FIG. 41C

α PD-L1

PSEUDOTYPED ONCOLYTIC VIRAL DELIVERY OF THERAPEUTIC POLYPEPTIDES

REFERENCE TO RELATED APPLICATIONS

[0001] This is a continuation application of and claims priority under 35 U.S.C. 111(a) to International PCT Application No. PCT/US2017/040354, filed Jun. 30, 2017, which claims priority to U.S. Provisional Application No. 62/357, 195, filed Jun. 30, 2016, each of which are incorporated herein by reference in their entireties.

DESCRIPTION OF THE TEXT FILED SUBMITTED ELECTRONICALLY

[0002] The contents of the text filed submitted electronically herewith are incorporated herein by reference in their entirety: A computer readable format copy of the Sequence Listing (file name: ONCR_004_03US_ST25.txt; date recorded: Sep. 29, 2017; file size: 193 kilobytes).

BACKGROUND OF THE INVENTION

[0003] Patients with certain hematologic and solid tumors remain in need of new therapies. The use of bispecific antibodies to direct cytotoxic T cells to tumor cells, and chimeric antigen receptors (CARs) to engineer antigen specificity onto an immune effector cell are being demonstrated to provide a therapeutic benefit. Also, oncolytic virus technologies are useful additions to the current standard of care of solid tumors, expected to have a safety profile and the ability to infect, replicate in, and lyse tumor cells. However, the antitumor efficacy of the bispecific antibodies, CARs and oncolytic virus are suboptimal, demonstrating the continued need for further advances of oncology, antibodies, and oncolytic virus therapy.

SUMMARY OF THE INVENTION

[0004] In some embodiments, the present invention provides a pseudotyped oncolytic virus comprising a recombinant nucleic acid comprising (i) a first nucleic acid sequence encoding an engager polypeptide, wherein the engager polypeptide comprises an activation domain specific for an antigen expressed on an effector cell and an antigen recognition domain specific for a cell-surface antigen expressed on a target cell. In some embodiments, the antigen recognition domain specifically binds to a tumor antigen. In some embodiments, tumor antigen is selected from Table 2.

[0005] In some embodiments, the present invention provides a pseudotyped oncolytic virus comprising a recombinant nucleic acid comprising (i) a first nucleic acid sequence encoding an engager polypeptide, wherein the engager polypeptide comprises an activation domain specific for an antigen expressed on an effector cell and a therapeutic molecule domain that binds to an inhibitory antigen expressed on a cell surface. In some embodiments, the therapeutic molecule domain specifically binds to PD1, PDL1, or CD47. In some embodiments, the recombinant nucleic acid further comprises a second nucleic acid sequence encoding a therapeutic polypeptide. In some embodiments, the therapeutic polypeptide is an immune modulator polypeptide. In some embodiments, the immune modulator polypeptide is selected from a cytokine, a

costimulatory molecule, an immune checkpoint polypeptide, an anti-angiogenesis factor, a matrix metalloprotease (MMP), or a nucleic acid.

[0006] In some embodiments, the immune checkpoint polypeptide comprises (i) an inhibitor of PD-1, PDL-1, CTLA-4, LAG3, TIM3, neuropilin, or CCR4; (ii) an agonist of GITR, OX-40, or CD28; or (iii) a combination of (i) and (ii). In some embodiments, the immune checkpoint polypeptide comprises an MMP, wherein the MMP is MMP9. In some embodiments, the immune checkpoint polypeptide comprises a cytokine, wherein the cytokine is selected from IL-15, IL-12, and CXCL10.

[0007] In some embodiments, the effector cell engaged by the engager molecules herein is a T cell, an NKT cell, an NK cell, or a macrophage. In some embodiments, the activation domain of the effector molecule specifically binds to CD3, CD4, CD5, CD8, CD16, CD28, CD40, CD134, CD137, or NKG2D.

[0008] In some embodiments, the recombinant nucleic acid provides herein are multicistronic sequences. In some embodiments, the multicistronic sequence is a bicistronic sequence or a tricistronic sequence. In some embodiments, the multicistronic sequence comprises a picomavirus-2a-like sequence, and wherein the first and second nucleic acid sequences are expressed from a single promoter sequence present in the recombinant nucleic acid.

[0009] In some embodiments, the present invention provides a pseudotyped oncolytic virus comprising a recombinant nucleic acid sequence comprising (i) a first nucleic acid sequence encoding an engager polypeptide, wherein the engager polypeptide comprises an activation domain specific for an antigen expressed on an effector cell and an antigen recognition domain specific for a tumor cell antigen expressed on a target cell, wherein the antigen expressed on the effector cell is CD3, and wherein the tumor cell antigen is CD19. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 44. In some embodiments, the recombinant nucleic acid sequence comprises SEQ ID NO: 43. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-12. In such embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 54. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-15. In such embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 53. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is CXCL10. In such embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 55. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is MMP9.

[0010] In some embodiments, the present invention provides a pseudotyped oncolytic virus comprising a recombinant nucleic acid sequence comprising (i) a first nucleic acid

sequence encoding an engager polypeptide, wherein the engager polypeptide comprises an activation domain specific for an antigen expressed on an effector cell and an therapeutic molecule domain specific for an inhibitory antigen, wherein the antigen expressed on the effector cell is CD3, and wherein the inhibitory antigen is PDL1. In some embodiments, the recombinant nucleic acid sequence comprises a nucleic acid sequence encoding a polypeptide sequence that is at least 90% identical to SEQ ID NO: 50. In some embodiments, the recombinant nucleic acid sequence comprises SEQ ID NO: 49. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-12. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 63. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-15. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 62. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is CXCL10. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 64. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is MMP9. In some embodiments, the engager molecule further comprises a third binding domain. In some embodiments, the third binding domain comprises an immunoglobulin Fc domain. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 52. In some embodiments, the recombinant nucleic acid sequence comprises SEQ ID NO: 51.

[0011] In some embodiments, the present invention provides a pseudotyped oncolytic virus comprising a recombinant nucleic acid sequence comprising (i) a first nucleic acid sequence encoding an engager polypeptide, wherein the engager polypeptide comprises an activation domain specific for an antigen expressed on an effector cell and an therapeutic molecule domain specific for an inhibitory antigen, wherein the antigen expressed on the effector cell is CD3, and wherein the inhibitory antigen is SIRP1 α . In some embodiments, the recombinant nucleic acid sequence comprises a nucleic acid sequence encoding a polypeptide sequence that is at least 90% identical to SEQ ID NO: 46 or 48. In some embodiments, the recombinant nucleic acid sequence comprises SEQ ID NO: 45 or 47. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-12. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 58 or 59. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is IL-15. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least

90% identical to SEQ ID NO: 56 or 57. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is CXCL10. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 60 or 61. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is MMP9. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 65 or 66. In some embodiments, the recombinant nucleic acid sequence further comprises (ii) a second nucleic acid sequence encoding a therapeutic molecule, wherein the therapeutic molecule is an anti-PDL1 scFv linked to an IgG1 Fc domain. In some embodiments, the recombinant nucleic acid sequence encodes a polypeptide sequence that is at least 90% identical to SEQ ID NO: 68 or 70. In some embodiments, the recombinant nucleic acid sequence comprises SEQ ID NO: 67 or 69.

[0012] In some embodiments, the pseudotyped oncolytic viruses of the present invention are selected from adenovirus, herpes simplex virus 1 (HSV1), myxoma virus, reovirus, poliovirus, vesicular stomatitis virus (VSV), measles virus (MV), lassa virus (LASV), or Newcastle disease virus (NDV). In some embodiments, the pseudotyped oncolytic virus comprises a reduced neurotropism activity and/or neurotoxicity activity in a human subject as compared to a reference virus. In some embodiments, the reference virus is i) a non-pseudotyped oncolytic virus, or ii) a vaccinia virus. In some embodiments, the pseudotyped oncolytic virus is an attenuated oncolytic virus. In some embodiments, the virus is not a vaccinia virus.

[0013] In some embodiments, the pseudotyped oncolytic viruses of the present invention comprise a single recombinant nucleic acid. In some embodiments, the pseudotyped oncolytic viruses comprise a plurality of recombinant nucleic acids. In some embodiments, the oncolytic virus selectively infects a target cell. In some embodiments, the target cell is a tumor cell and wherein the oncolytic virus is capable of selectively replicating within the tumor cell.

[0014] In some embodiments, the engager polypeptide is a bipartite polypeptide and is comprised of an antibody, an antibody domain, a human immunoglobulin heavy chain variable domain, a dual-variable-domain antibody (DVD-Ig), a Tandab, a diabody, a flexibody, a dock-and-lock antibody, a Scorpion polypeptide, a single chain variable fragment (scFv), a BiTE, a DuoBody, an Fc-engineered IgG, an Fcab, a Mab2, or DART polypeptide.

[0015] In some embodiments, the present invention provides a pharmaceutical composition comprising any of the pseudotyped oncolytic viruses described herein. In some embodiments, the pseudotyped oncolytic virus induces an immune response. In some embodiments, immune response is selectively cytotoxic to a target cell. In some embodiments, the target cell is a solid tumor cell or a hematologic cancer cell. In some embodiments, the target cell expresses one or more tumor antigens. In some embodiments, the one or more tumor antigens are selected from Table 2.

[0016] In some embodiments, the present invention provides a method of treating a cancer in a subject in need thereof, comprising administering a therapeutically effective

amount of an oncolytic virus described herein or a pharmaceutical composition described herein. In some embodiments, the method further comprises administering one or more additional therapies to the subject in need thereof. In some embodiments, the one or more additional therapies comprise surgery, radiation, chemotherapy, immunotherapy, hormone therapy, or a combination thereof.

[0017] In some embodiments, the present invention provides a method of treating one or more tumors in a subject in need thereof comprising administering a therapeutically effective amount of an oncolytic virus described herein or a pharmaceutical composition described herein to a patient, wherein the one or more tumors express a tumor antigen.

[0018] In some embodiments, the present invention provides a method of selecting a patient for treatment comprising (a) determining the expression of a tumor antigen on one or more tumor cells derived from the patient; and (b) administering an oncolytic virus described herein or a pharmaceutical composition described herein if the tumor cells obtained from the patient express the one or more tumor antigens. In some embodiments, the one or more tumor antigens are selected from Table 2. In some embodiments, the present invention provides a method of delivering an engager polypeptide and a therapeutic polypeptide to a tumor site comprising administering to a patient in need thereof an oncolytic virus described herein or a pharmaceutical composition described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 illustrates an amino acid sequence of a CD19-CD3 bipartite polypeptide comprising a first single chain variable fragment (scFv) directed against CD19 linked to a second scFv directed against CD3.

[0020] FIG. 2 illustrates an amino acid sequence of a CD19-CD3-IL15 construct encoded by a bicistronic gene. The first gene encodes a bipartite polypeptide comprising a first scFv directed against CD19 linked to a second scFv directed against CD3. A second gene encoding IL-15 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.

[0021] FIG. 3 illustrates an amino acid sequence of a CD19-CD3-IL12 construct encoded by a multicistronic gene. The first gene encodes a bipartite polypeptide comprising a first scFv directed against CD19 linked to a second scFv directed against CD3. A second gene encoding the p35 subunit of IL-12 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker and a third gene encoding the p40 subunit of IL-12 is linked by a T2A self-cleaving polypeptide linker.

[0022] FIG. 4 illustrates an amino acid sequence of a CD19-CD3-CXCL10 construct encoded by a bicistronic gene. The first gene encodes a bipartite polypeptide comprising a first scFv directed against CD19 linked to a second scFv directed against CD3. A second gene encoding CXCL10 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.

[0023] FIG. 5 illustrates an amino acid sequence of a SIRP1 α -CD3 bipartite polypeptide comprising a first protein comprising the first 120 amino acids of SIRP1 α linked by a single amino acid linker to an scFv directed against CD3.

[0024] FIG. 6 illustrates an amino acid sequence of a SIRP1 α -CD3-LL bipartite polypeptide comprising a first

protein comprising the first 120 amino acids of SIRP1 α linked by a G4S motif linker to an scFv directed against CD3.

[0025] FIG. 7 illustrates an amino acid sequence of a SIRP1 α -CD3-IL15 construct encoded by a bicistronic gene. The first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 α linked by a single amino acid linker to an scFv directed against CD3. A second gene encoding IL-15 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.

[0026] FIG. 8 illustrates an amino acid sequence of a SIRP1 α -CD3-IL5-LL construct encoded by a bicistronic gene. The first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 α linked by a G4S motif linker to an scFv directed against CD3. A second gene encoding IL-15 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.

[0027] FIG. 9 illustrates an amino acid sequence of a SIRP1 α -CD3-IL12 construct encoded by a multicistronic gene. The first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 α linked by a single amino acid linker to an scFv directed against CD3. A second gene encoding the p35 subunit of IL-12 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker and a third gene encoding the p40 subunit of IL-12 is linked by a T2A self-cleaving polypeptide linker.

[0028] FIG. 10 illustrates an amino acid sequence of a SIRP1 α -CD3-IL2-LL construct encoded by a multicistronic gene. The first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 α linked by a G4S motif linker to an scFv directed against CD3. A second gene encoding the p35 subunit of IL-12 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker and a third gene encoding the p40 subunit of IL-12 is linked by a T2A self-cleaving polypeptide linker.

[0029] FIG. 11 illustrates an amino acid sequence of a SIRP1 α -CD3-CXCL10 construct encoded by a bicistronic gene. The first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 α linked by a single amino acid linker to an scFv directed against CD3. A second gene encoding CXCL10 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.

[0030] FIG. 12 illustrates an amino acid sequence of a SIRP1 α -CD3-CXCL10-LL construct encoded by a bicistronic gene. The first gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 α linked by a G4S motif linker to an scFv directed against CD3. A second gene encoding CXCL10 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.

[0031] FIG. 13 illustrates an amino acid sequence of a PDL1-CD3 bipartite polypeptide comprising a first scFv directed against PDL1 linked to a second scFv directed against CD3.

[0032] FIG. 14 illustrates an amino acid sequence of a PDL1-CD3-IL15 construct encoded by a bicistronic gene. The first gene encodes a bipartite polypeptide comprising a first scFv directed against PDL1 linked to a second scFv directed against CD3. A second gene encoding IL-15 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.

[0033] FIG. 15 illustrates an amino acid sequence of a PDL1-CD3-IL12 construct encoded by a multicistronic gene. The first gene encodes a bipartite polypeptide comprising a first scFv directed against PDL1 linked to a second

scFv directed against CD3. A second gene encoding the p35 subunit of IL-12 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker and a third gene encoding the p40 subunit of IL-12 is linked by a T2A self-cleaving polypeptide linker.

[0034] FIG. 16 illustrates an amino acid sequence of a PDL1-CD3-CXCL10 construct encoded by a bicistronic gene. The first gene encodes a bipartite polypeptide comprising a first scFv directed against PDL1 linked to a second scFv directed against CD3. A second gene encoding CXCL10 is linked to the bipartite gene sequence by a T2A self-cleaving polypeptide linker.

[0035] FIG. 17 illustrates an amino acid sequence of a PDL1-CD3-Fc tripartite polypeptide comprising a first scFv directed against CD3, linked by a G4S motif linker to a second scFv directed against PDL1, which is in turn linked to the CH2-CH3 domain of human IgG1 by an IgG1 hinge.

[0036] FIG. 18A-FIG. 18B illustrate an amino acid sequence of a SIRP1 α -CD3-MMP9-SL construct encoded by a bicistronic gene (FIG. 18A) and an amino acid sequence of a SIRP1 α -CD3-MMP9-LL construct encoded by a bicistronic gene (FIG. 18B).

[0037] FIG. 19A-19C illustrate the binding of CD19-CD3 BiTE constructs (FIG. 19A), SIRP1 α -CD3 BiTE constructs (FIG. 19B), and PDL1-CD3-Fc tripartite T cell engagers (FIG. 19C) CD3 $^+$ T cells.

[0038] FIG. 20 illustrates the quantification of the T cell engager construct binding shown in FIG. 19.

[0039] FIG. 21A-FIG. 21C illustrate the CD3-specific binding of CD19-CD3 BiTE constructs (FIG. 21A), SIRP1 α -CD3 BiTE constructs (FIG. 21B), and PDL1-CD3-Fc tripartite T cell engagers (FIG. 21C) through the use of an anti-CD3 antibody, OKT3.

[0040] FIG. 22 illustrates the specificity of the CD47-binding SIRP1 α arm of a SIRP1 α -CD3 BiTE construct.

[0041] FIG. 23A-FIG. 23B illustrate the binding of CD19-CD3 and SIRP1 α -CD3 BiTE constructs (FIG. 23A) to Raji cells (CD19 $^+$ CD47 $^+$). % binding is quantified in FIG. 23B.

[0042] FIG. 24A-FIG. 24B illustrate the binding of CD19-CD3 and SIRP1 α -CD3 BiTE constructs (FIG. 24A) to U2OS cells (CD19 $^+$ CD47 $^+$). % binding is quantified in FIG. 24B.

[0043] FIG. 25A-FIG. 25B illustrate the binding of CD19-CD3 and SIRP1 α -CD3 BiTE constructs (FIG. 25A) to GBM30-luc cells (CD19 $^+$ CD47 $^+$). % binding is quantified in FIG. 25B.

[0044] FIG. 26A-FIG. 26B illustrate the binding of CD19-CD3 and SIRP1 α -CD3 BiTE constructs (FIG. 26A) to U251 cells (CD19 $^+$ CD47 $^+$). % binding is quantified in FIG. 26B.

[0045] FIG. 27A-FIG. 27C illustrate the binding of PDL1-Fc-CD3 tripartite T cell engagers to U251 cells. The binding of the PDL1-Fc-CD3 constructs (FIG. 27B) is compared to the binding of an anti-PDL antibody (FIG. 27A). Binding was not mediated by Fc γ Rs, as U251 cells do not express Fc γ RI, Fc γ RII, or Fc γ RIII (FIG. 27C).

[0046] FIG. 28 illustrates CD19-CD3 BiTE, SIRP1 α -CD3 BiTE, and PDL1-CD3-Fc tripartite T cell engager-mediated T cell-dependent cytotoxicity (TDCC) of Raji cells.

[0047] FIG. 29 illustrates CD19-CD3 BiTE and PDL1-CD3-Fc tripartite T cell engager-mediated TDCC of THP1 cells.

[0048] FIG. 30 illustrates CD19-CD3 BiTE and PDL1-CD3-Fc tripartite T cell engager-mediated TDCC of U251 cells.

[0049] FIG. 31 illustrates SIRP1 α -CD3 BiTE-mediated TDCC of 293F cells compared to an osteopontin-fusion control construct.

[0050] FIG. 32 illustrates expression of SIRP1 α -CD3 BiTE constructs from oncolytic-HSV vectors. Expression of SIRP1 α -CD3 BiTE constructs with short linkers (Lanes 1-4 and ONCR085 in lanes 5-6, shown in FIG. 5) and SIRP1 α -CD3 BiTE constructs with long linkers (ONCR087 in lanes 7-8, shown in FIG. 6) are shown.

[0051] FIG. 33 illustrates expression of PDL1-CD3-Fc BiTE constructs from oncolytic-HSV vectors. Purified PDL1-CD3-Fc BiTE protein is shown in lanes 1-4. Concentrated viral supernatants are shown in lanes 5-6.

[0052] FIG. 34A-FIG. 34B illustrate TDCC of U251 cells by virally produced SIRP1 α -CD3, SIRP1 α -CD3-LL, and PDL1-CD3-Fc BiTE constructs. Photographs of U251 cell cultures after incubation with the indicated BiTE constructs and CD8 $^+$ T cells are shown in FIG. 34A. Activity of virally produced BiTE constructs, measured by % of cell killing and quantified by flow cytometry, is shown in FIG. 34B.

[0053] FIG. 35 illustrates that Amicon ultrafiltration effectively removes virus from samples, as determined by Western blotting with polyclonal anti-HSV antibody, and indicated that BiTE-killing is due to the BiTE and not viral infection.

[0054] FIG. 36 illustrates a cartoon representation of the production of a pseudotyped oncolytic virus and a recombinant oncolytic virus and infection of a target cell by the respective pseudotyped oncolytic virus and the recombinant oncolytic virus.

[0055] FIG. 37 illustrates an amino acid sequence of a SIRP1 α -CD3-PDL1-Fc (SL) construct encoded by a bicistronic gene wherein the first gene encodes an anti-PDL1 scFv linked to an IgG1 Fc domain and the second gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 α linked by a single amino acid linker to an scFv directed against CD3.

[0056] FIG. 38 illustrates an amino acid sequence of a SIRP1 α -CD3-PDL1-Fc (LL) construct encoded by a bicistronic gene wherein the first gene encodes an anti-PDL1 scFv linked to an IgG1 Fc domain and the second gene encodes a bipartite polypeptide comprising the first 120 amino acids of SIRP1 α linked by a G4S motif linker to an scFv directed against CD3.

[0057] FIG. 39 illustrates a schematic of a SIRP1 α -CD3-PDL1-Fc expression plasmid. Two plasmid constructs, one for SIRP1 α -CD3-PDL1-Fc (SL) and one for SIRP1 α -CD3-PDL1-Fc (LL) were generated.

[0058] FIG. 40A-FIG. 40B illustrate purification of the SIRP1 α -CD3 BiTE (SL), SIRP1 α -CD3 BiTE (LL), and the anti-PDL1-Fc compounds from supernatants of transfected 293 T cells. FIG. 40A shows purification of anti-PDL1-Fc compounds assessed by Coomassie. FIG. 40B illustrates purification of SIRP1 α -CD3 BiTE compounds as assessed by Western Blot using an anti-His detection antibody.

[0059] FIG. 41A-FIG. 41C show results of a PD1/PDL1 blockade assay. A schematic of the assay is shown in FIG. 41A-FIG. 41B. The results of the PD1/PDL1 blockade assay using the anti-PDL1-Fc compound produced from 293 cells transfected are shown in FIG. 41C.

**DETAILED DESCRIPTION OF THE
INVENTION**

[0060] The present disclosure provides novel engineered oncolytic viruses, in particular pseudotyped oncolytic viruses that produce multipartite polypeptides and/or other therapeutic polypeptides for the treatment of cancer including solid tumors (e.g., advanced solid tumors) and hematologic malignancies. In some embodiments, the oncolytic virus is engineered by pseudotyping or other recombinant technology in order to modulate the tropism of the virus to result in a viral infection specific for tumor cells and/or surrounding tumor stroma and/or for other beneficial purposes as provided herein. In some embodiments, the multipartite and/or therapeutic polypeptides produced by the oncolytic viruses described herein mediate or enhance the anti-tumor effects of the oncolytic viruses, such as by effector-cell mediated lysis of target cells (e.g., tumor cells). The oncolytic viruses described herein may have multiple (e.g. dual) modes of action, including effector cell-mediated cytolysis of target cells as a result of the expression of multipartite polypeptides, and viral-mediated destruction of target cells. The present disclosure further provides therapeutic compositions comprising the engineered oncolytic viruses and methods of use in the treatment of solid tumors and hematologic malignancies.

Overview

[0061] In some embodiments, the present invention provides pseudotyped oncolytic viruses, compositions thereof, and methods of use for the treatment of cancer. The pseudotyped oncolytic viruses provided herein comprise recombinant nucleic acids that encode engager polypeptides and/or other therapeutic molecules (e.g., therapeutic polypeptides). Typically, the engager polypeptides function as effector cell engagers and generally comprise a first domain directed against an activation molecule expressed on an effector cell (e.g., an activation domain or an engager domain) and a second domain directed against a target cell antigen (e.g., an antigen recognition domain) or other cell-surface molecule (e.g., a therapeutic molecule domain). Also provided are bipartite, tripartite or multipartite polypeptides (e.g., comprising one or multiple engager domains, one or multiple antigen recognition domains, or one or multiple therapeutic molecule domains, and optionally one or multiple other functional domains).

[0062] Also provided are methods of treating cancer, comprising the step of delivering to human subject in need thereof a therapeutically effective amount of the oncolytic viruses or pharmaceutical compositions thereof provided herein. Such methods optionally include the step of delivering to the human subject an additional cancer therapy, such as surgery, radiation, chemotherapy, immunotherapy, hormone therapy, or a combination thereof.

Definitions

[0063] As used herein, the singular forms “a,” “an,” or “the” include plural references unless the context clearly dictates otherwise.

[0064] Throughout this specification, unless the context requires otherwise, the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element or integer or group of

elements or integers but not the exclusion of any other element or integer or group of elements or integers.

[0065] As used in this application, the terms “about” and “approximately” are used as equivalents. Any numerals used in this application with or without about/approximately are meant to cover any normal fluctuations appreciated by one of ordinary skill in the relevant art. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 30%, 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).

[0066] As used herein the specification, “subject” or “subjects” or “individuals” include, but are not limited to, mammals such as humans or non-human mammals, including domesticated, agricultural or wild, animals, as well as birds, and aquatic animals. In some embodiments, subjects are livestock such as cattle, sheep, goats, cows, swine, and the like; poultry such as chickens, ducks, geese, turkeys, and the like; and domesticated animals such as dogs and cats. In some embodiments (e.g., particularly in research contexts) subjects are rodents (e.g., mice, rats, hamsters), rabbits, primates, or swine such as inbred pigs and the like. In particular embodiments, the subject is a human. “Patients” are subjects suffering from or at risk of developing a disease, disorder, or condition or otherwise in need of the compositions and methods provided herein. None of the terms require or are limited to situations characterized by the supervision (e.g. constant or intermittent) of a health care worker (e.g. a doctor, a registered nurse, a nurse practitioner, a physician’s assistant, an orderly or a hospice worker).

[0067] As used herein, “treating” or “treatment” refers to any indicia of success in the treatment or amelioration of a disease or condition, particularly cancer. Treating or treatment may be performed in vitro and/or in vivo, and may comprise delivering an oncolytic virus, or composition thereof, described herein to a patient or subject in need thereof. In some embodiments, treating includes, for example, reducing, delaying or alleviating the severity of one or more symptoms of the disease or condition, and/or reducing the frequency with which symptoms of a disease, defect, disorder, or adverse condition are experienced by a subject or patient. Herein, “treat or prevent” is used herein to refer to a method that results in some level of treatment or amelioration of the disease or condition, and contemplates a range of results directed to that end, including but not restricted to prevention of the condition entirely.

[0068] As used herein, “preventing” refers to the prevention of a disease or condition, e.g., tumor formation, in a patient or subject and may also be referred to as “prophylactic treatment.” Prevention of disease development can refer to complete prevention of the symptoms of disease, a delay in disease onset, or a lessening of the severity of the symptoms in a subsequently developed disease. As a non-limiting illustrative example, if an individual at risk of developing a tumor or other form of cancer is treated with the methods of the present invention and does not later develop the tumor or other form of cancer, then the disease has been prevented, at least over a period of time, in that individual.

[0069] The terms “therapeutically effective amount” and “therapeutically effective dose” are used interchangeably

herein and refer to the amount of an oncolytic virus or composition thereof that is sufficient to provide a beneficial effect or to otherwise reduce a detrimental non-beneficial event (e.g. an amount or dose sufficient to treat a disease). The exact amount or dose of an oncolytic virus comprised within a therapeutically effective amount or therapeutically effective dose will depend on variety of factors including: the purpose of the treatment; the weight, sex, age, and general health of the subject or patient; the route of administration; the timing of administrations; and the nature of the disease to be treated. The therapeutically effective amount for a given subject or patient is ascertainable by one skilled in the art using known techniques (see, e.g. Lieberman, *Pharmaceutical Dosage Forms* (vols. 1-3, 1992); Lloyd, *The Art, Science and Technology of Pharmaceutical Compounding* (1999); and Pickar, *Dosage Calculations* (1999)).

[0070] “Pseudotype” refers to a virus particle, wherein a portion of the virus particle (e.g., the envelope or capsid) comprises heterologous proteins, such as viral proteins derived from a heterologous virus or non-viral proteins. Non-viral proteins may include antibodies and antigen-binding fragments thereof. Preferably, a pseudotyped virus is capable of i) altered tropism relative to non-pseudotyped virus, and/or ii) reduction or elimination of a non-beneficial effect. For example, in some embodiments a pseudotyped virus demonstrates reduced toxicity or reduced infection of non-tumor cells or non-tumor tissue as compared to a non-pseudotyped virus.

[0071] The term “targeting moiety” refers herein to a heterologous protein linked to a virus particle that is capable of binding to a protein on the cell surface of a selected cell type in order to direct interaction between the virus particle and the selected cell type. The targeting moiety may be covalently or non-covalently linked and is generally linked to an envelope protein, e.g., E1, E2, or E3. Representative targeting moieties include antibodies, antigen binding fragments thereof, and receptor ligands. A viral “envelope” protein, or “Env” protein, refers to any polypeptide sequence that resides on the surface lipid bilayer of a virion and whose function is to mediate the adsorption to and the penetration of host cells susceptible to infection.

[0072] The term “vector” is used herein to refer to a nucleic acid molecule capable transferring or transporting another nucleic acid molecule. The transferred nucleic acid is generally linked to, e.g., inserted into, the vector nucleic acid molecule. A vector may include sequences that direct autonomous replication in a cell, or may include sequences sufficient to allow integration into host cell DNA. In some embodiments, the vector is a virus (i.e., a viral vector or oncolytic viral vector) and the transferred nucleic acid sequence is a recombinant nucleic acid sequence encoding an engager molecule and/or a therapeutic molecule. A viral vector may sometimes be referred to as a “recombinant virus” or a “virus.” The terms “oncolytic virus” and “oncolytic vector” are used interchangeably herein.

[0073] “Nucleic acid genome” or “viral genome” refers to the nucleic acid component of a virus particle, which encodes the genome of the virus particle including any proteins required for replication and/or integration of the genome. In some embodiments, a viral genome acts as a viral vector and may comprise a heterologous gene operably linked to a promoter. The promoter may be either native or heterologous to the gene and may be viral or non-viral in origin. The viral genomes described herein may be based on

any virus, may be an RNA or DNA genome, and may be either single stranded or double stranded. Preferably, the nucleic acid genome is from the family Rhabdoviridae.

[0074] “Retroviral vectors,” as used herein, refer to viral vectors based on viruses of the Retroviridae family. In their wild-type (WT) form, retroviral vectors typically contain a nucleic acid genome. Provided herein are pseudotyped retroviral vectors that also comprise a heterologous gene, such as a recombinant nucleic acid sequence described herein.

[0075] The term “antibody fragment or derivative thereof” includes polypeptide sequences containing at least one CDR and capable of specifically binding to a target antigen. The term further relates to single chain antibodies, or fragments thereof, synthetic antibodies, antibody fragments, such as a Camel Ig, Ig NAR, Fab fragments, Fab' fragments, F(ab)2 fragments, F(ab)3 fragments, Fv, single chain Fv antibody (“scFv”), bis-scFv, (scFv)2, minibody, diabody, triabody, tetrabody, disulfide stabilized Fv protein (“dsFv”), and single-domain antibody (sdAb, nanobody), etc., or a chemically modified derivative of any of these. In some embodiments, antibodies or their corresponding immunoglobulin chain(s) are further modified by using, for example, amino acid deletion(s), insertion(s), substitution(s), addition(s), and/or recombination(s) and/or any other modification(s) (e.g. posttranslational and chemical modifications, such as glycosylation and phosphorylation), either alone or in combination. Methods for introducing such modifications in the DNA sequence underlying the amino acid sequence of an immunoglobulin chain are well known to the person skilled in the art.

[0076] The term “single-chain” as used in accordance with the present disclosure refers to the covalent linkage of two or more polypeptide sequences, preferably in the form of a co-linear amino acid sequence encoded by a single nucleic acid molecule.

[0077] The terms “binding to” and “interacting with” are used interchangeably herein and refer to the interaction of at least two “antigen-interaction-sites” with each other. An “antigen-interaction-site” refers to a motif of a polypeptide (e.g., an antibody or antigen binding fragment thereof) capable of specific interaction with an antigen or a group of antigens. The binding/interaction is also understood to define a “specific interaction” or “specific binding.”

[0078] The terms “specific binding” or “specific interaction” refer to an antigen-interaction-site that is capable of specifically interacting with and/or binding to at least two amino acids of a target molecule as defined herein. The term relates to the ability of the antigen-interaction-site to discriminate between the specific regions (e.g. epitopes) of the target molecules defined herein such that it does not, or essentially does not, cross-react with polypeptides of similar structures. In some embodiments, the epitopes are linear. In some embodiments, the epitopes are conformational epitopes, a structural epitope, or a discontinuous epitope consisting of two regions of the human target molecules or parts thereof. In context of this disclosure, a conformational epitope is defined by two or more discrete amino acid sequences separated in the primary sequence which come together on the surface of the folded protein. Specificity and/or cross-reactivity of a panel of antigen bindings construct under investigation can be tested, for example, by assessing binding of the panel of the constructs to the polypeptide of interest as well as to a number of more or less (structurally and/or functionally) closely related polypep-

tides under conventional conditions (see, e.g., Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, 1988 and *Using Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory Press, 1999). Only those constructs that bind to the polypeptide/protein of interest and do not, or essentially do not, bind to any of the other polypeptides are considered specific for the polypeptide/protein of interest. Examples of specific interactions of an antigen-interaction-site with a specific antigen include the interaction of ligands which induce a signal upon binding to its specific receptor, the specificity of a ligand for its receptor, such as cytokines that bind to specific cytokine receptors, and the binding of an antigen binding site of an antibody to an antigenic epitope, among others.

[0079] In some instances, the specific interaction of the antigen-interaction-site with a specific antigen results in the initiation of a signal, e.g. due to the induction of a change of the conformation of the antigen, oligomerization of the antigen, etc. In some embodiments, specific binding encompasses a “key-lock-principle.” Therefore in some embodiments, specific motifs in the amino acid sequence of the antigen-interaction-site interact with specific motifs in the antigen and bind to each other as a result of their primary, secondary or tertiary structure, or as the result of secondary modifications of said structure. In some embodiments, the specific interaction of the antigen-interaction-site with its specific antigen results in a simple binding of the site to the antigen.

Oncolytic Viruses

[0080] Oncolytic viruses are able to infect, replicate in, and lyse tumor cells, and are further capable of spreading to other tumor cells in successive rounds of replication. While past oncolytic virus therapy has shown promise in preclinical models and clinical studies, anti-tumor efficacy of these oncolytic virus, such as vaccinia, has been suboptimal. For example, these viruses demonstrated limited viral spread throughout the tumor and/or limited activation of anti-tumor T cell responses within the tumor. Therefore, the present disclosure provides an oncolytic virus that 1) facilitates tumor infiltration and activation of effector cells (e.g., T cells), and 2) effectively lyses tumor cells that are not infected the virus (also known as by-stander killing).

[0081] In some embodiments, provided are viral vectors which have advantages including one or more of the following properties:

- [0082] (i) the vectors are oncolytic and have a particularly high oncolytic activity compared to other previously described oncolytic viral vectors;
- [0083] (ii) the vectors replicate preferentially in tumor cells and have a particularly high replication capability compared to other oncolytic viral vectors;
- [0084] (iii) the vectors infect actively dividing cells as well as resting cells;
- [0085] (iv) the vectors induce a strong innate, humoral, and cellular immune response;
- [0086] (v) the vectors replicate purely cytoplasmatically, i.e., as RNA viruses they cannot integrate into the host cell genome or recombine into replication-competent viruses;
- [0087] (vi) the vectors are easy to package; and/or
- [0088] (vii) the native viral glycoprotein is interchangeable with a foreign envelope protein.

[0089] Some embodiments of the invention relate to recombinant vesicular stomatitis viruses (VSV) and VSV vectors. The VSV genome includes five genes, l, m, n, p and g, which encode the proteins L, M, N, P and G and are essential for the reproduction of the virus. N is a nucleoprotein which packages the VSV genomic RNA. The VSV genome is replicated as RNA-protein complex and L and P together form a polymerase complex which replicates the VSV genome and transcribes the VSV mRNA. M is a matrix protein which provides structural support between the lipid envelope and nucleocapsid and is important for particle sprouting at the cell membrane. G is the envelope protein which is incorporated in the viral envelope and is essential for the infectivity and tropism of the virus.

Pseudotyped Oncolytic Viruses

[0090] In some embodiments, the present invention provides oncolytic viruses that are capable of being pseudotyped or otherwise engineered. “Pseudotyped viruses” refer to viruses in which one or more of the viral coat proteins (e.g., envelope proteins) have been replaced or modified. In some embodiments, a pseudotyped virus is capable of infecting a cell or tissue type that the corresponding non-pseudotyped virus is not capable of infecting. In some embodiments, a pseudotyped virus is capable of preferentially infecting a cell or tissue type compared to a non-pseudotyped virus.

[0091] In general, viruses have natural host cell populations that they infect most efficiently. For example, retroviruses have limited natural host cell ranges, while adenoviruses and adeno-associated viruses are able to efficiently infect a relatively broader range of host cells, although some cell types are refractory to infection by these viruses. The proteins on the surface of a virus (e.g., envelope proteins or capsid proteins) mediate attachment to and entry into a susceptible host cell and thereby determine the tropism of the virus, i.e., the ability of a particular virus to infect a particular cell or tissue type. In some embodiments, the oncolytic viruses described herein comprise a single types of protein on the surface of the virus. For example, retroviruses and adeno-associated viruses have a single protein coating their membrane. In some embodiments, the oncolytic viruses described herein comprise more than one type of protein on the surface of the virus. For example, adenoviruses are coated with both an envelope protein and fibers that extend away from the surface of the virus.

[0092] The proteins on the surface of the virus can bind to cell-surface molecules such as heparin sulfate, thereby localizing the virus to the surface of the potential host cell. The proteins on the surface of the virus can also mediate interactions between the virus and specific protein receptors expressed on a host cell that induce structural changes in the viral protein in order to mediate viral entry. Alternatively, interactions between the proteins on the surface of the virus and cell receptors can facilitate viral internalization into endosomes, wherein acidification of the endosomal lumen induces refolding of the viral coat. In either case, viral entry into potential host cells requires a favorable interaction between at least one molecule on the surface of the virus and at least one molecule on the surface of the cell.

[0093] In some embodiments, the oncolytic viruses described herein comprise a viral coat (e.g., a viral envelop or viral capsid), wherein the proteins present on the surface of the viral coat (e.g., viral envelop proteins or viral capsid

proteins) modulate recognition of a potential target cell for viral entry. In some instances, this process of determining a potential target cell for entry by a virus is referred to as host tropism. In some embodiments, the host tropism is cellular tropism, wherein viral recognition of a receptor occurs at a cellular level, or tissue tropism, wherein viral recognition of cellular receptors occurs at a tissue level. In some instances, the viral coat of a virus recognizes receptors present on a single type of cell. In other instances, the viral coat of a virus recognizes receptors present on multiple cell types (e.g., 2, 3, 4, 5, 6 or more different cell types). In some instances, the viral coat of a virus recognizes cellular receptors present on a single type of tissue. In other instances, the viral coat of a virus recognizes cellular receptors present on multiple tissue types (e.g., 2, 3, 4, 5, 6 or more different tissue types).

[0094] In some embodiments, the oncolytic viruses described herein comprise a viral coat that has been modified to incorporate surface proteins from a different virus in order to facilitate viral entry to a particular cell or tissue type. Such oncolytic viruses are referred to herein as pseudotyped oncolytic viruses. In some embodiments, a pseudotyped oncolytic viruses comprises a viral coat wherein the viral coat of a first virus is exchanged with a viral coat of second, wherein the viral coat of the second virus is allows the pseudotyped oncolytic virus to infect a particular cell or tissue type. In some embodiments, the viral coat comprises a viral envelope. In some instances, the viral envelope comprises a phospholipid bilayer and proteins such as proteins obtained from a host membrane. In some embodiments, the viral envelope further comprises glycoproteins for recognition and attachment to a receptor expressed by a host cell. In some embodiments, the viral coat comprises a capsid. In some instances, the capsid is assembled from oligomeric protein subunits termed protomers. In some embodiments, the capsid is assembled from one type of protomer or protein, or is assembled from two, three, four, or more types of protomers or proteins.

[0095] In some embodiments, it is advantageous to limit or expand the range of cells susceptible to transduction by an oncolytic virus for the purpose of oncolytic therapy. To this end, many viruses have been developed in which the endogenous viral coat proteins (e.g., viral envelope or capsid proteins) proteins have been replaced by viral coat proteins from other viruses or by chimeric proteins. In some embodiments, the chimeric proteins are comprised of parts of a viral protein necessary for incorporation into the virion, as well proteins or nucleic acids designed to interact with specific host cell proteins, such as a targeting moiety.

[0096] In some embodiments, the pseudotyped oncolytic viruses described herein are pseudotyped in order to limit or control the viral tropism (i.e., to reduce the number of cell or tissue types that the pseudotyped oncolytic virus is capable of infecting). Most strategies adopted to limit tropism have used chimeric viral coat proteins (e.g., envelope proteins) linked antibody fragments. These viruses show great promise for the development of oncolytic therapies. In some embodiments, the pseudotyped oncolytic viruses described herein are pseudotyped in order to expand the viral tropism (i.e., to increase the number of cell or tissue types that the pseudotyped oncolytic virus is capable of infecting). One mechanism for expanding the cellular tropism of viruses (e.g., enveloped viruses) is through the formation of phenotypically mixed particles or pseudotypes, a process that commonly occurs during viral assembly in

cells infected with two or more viruses. For example, human immunodeficiency virus type 1 (HIV-1). HIV1 infects cells that express CCR4 with an appropriate co-receptor. However, HIV1 forms pseudotypes by the incorporation of heterologous glycoproteins (GPs) through phenotypic mixing, such that the virus can infect cells that do not express the CD4 receptor and/or an appropriate co-receptor, thereby expanding the tropism of the virus. Several studies have demonstrated that wild type HIV-1 produced in cells infected with xenotropic murine leukemia virus (MLV), amphotropic MLV, or herpes simplex virus gives rise to phenotypically mixed virions with an expanded host range, indicating that pseudotyped virions had been produced. Phenotypic mixing of viral GPs has also been shown to occur between HIV-1 and VSV in coinfecting cell cultures. These early observations were key to the subsequent design of HIV-1-based lentiviral vectors bearing heterologous GPs.

[0097] There is an ever-growing list of alternative GPs for pseudotyping lentiviruses, each with specific advantages and disadvantages. The widespread use of VSV G-proteins (VSV-G) to pseudotype lentiviruses has made this GP in effect the standard against which the usefulness of other viral GPs to form pseudotypes are compared. Additional non-limiting examples of lentivirus pseudotypes include pseudotypes bearing lyssavirus-derived GPs, pseudotyped lentiviruses bearing lymphocytic choriomeningitis virus GPs, lentivirus pseudotypes bearing alphavirus GPs (e.g., lentiviral vectors pseudotyped with the RRV and SFV GPs, lentiviral vectors pseudotyped with sindbis virus GPs), pseudotypes bearing filovirus GPs, and lentiviral vector pseudotypes containing the baculovirus GP64.

[0098] In some embodiments, the engineered (e.g., pseudotyped) viruses are capable of binding to a tumor and/or tumor cell, typically by binding to a protein, lipid, or carbohydrate expressed on a tumor cell. In such embodiments, the engineered viruses described herein may comprise a targeting moiety that directs the virus to a particular host cell. In some instances, any cell surface biological material known in the art or yet to be identified that is differentially expressed or otherwise present on a particular cell or tissue type (e.g., a tumor or tumor cell, or tumor associated stroma or stromal cell) may be used as a potential target for the oncolytic viruses the present invention. In particular embodiments, the cell surface material is a protein. In some embodiments, the targeting moiety binds cell surface antigens indicative of a disease, such as a cancer (e.g., breast, lung, ovarian, prostate, colon, lymphoma, leukemia, melanoma, and others); an autoimmune disease (e.g. myasthenia gravis, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, diabetes mellitus, and others); an infectious disease, including infection by HIV, HCV, HBV, CMV, and HPV; and a genetic disease including sickle cell anemia, cystic fibrosis, Tay-Sachs, J3-thalassemia, neurofibromatosis, polycystic kidney disease, hemophilia, etc. In certain embodiments, the targeting moiety targets a cell surface antigen specific to a particular cell or tissue type, e.g., cell-surface antigens present in neural, lung, kidney, muscle, vascular, thyroid, ocular, breast, ovarian, testis, or prostate tissue.

[0099] Exemplary antigens and cell surface molecules for targeting include, e.g. P-glycoprotein, Her2/Neu, erythropoietin (EPO), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGF-R), cadherin, carcinoembryonic antigen (CEA), CD4, CD8, CD19,

CD20, CD33, CD34, CD45, CD117 (c-kit), CD133, HLA-A, HLA-B, HLA-C, chemokine receptor 5 (CCR5), stem cell marker ABCG2 transporter, ovarian cancer antigen CA125, immunoglobulins, integrins, prostate specific antigen (PSA), prostate stem cell antigen (PSCA), dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegron (DC-SIGN), thyroglobulin, granulocyte-macrophage colony stimulating factor (GM-CSF), myogenic differentiation promoting factor-1 (MyoD-1), Leu-7 (CD57), LeuM-1, cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67 (Ki-67), viral envelope proteins, HIV gp120, transferrin receptor, etc. Additional antigens and cell surface molecules for targeting are shown in Table 2.

[0100] In some embodiments, the pseudotyped oncolytic viruses provided herein are capable of selectively entering, replicating in, and/or lysing tumor cells. Such an embodiment is illustrated in FIG. 36, wherein the pseudotyped oncolytic virus gains entry to the target cell due to the incorporation of viral glycoproteins derived from a different (i.e., heterologous) virus that allow for entry of the pseudotyped oncolytic virus into the target cell. In contrast, the non-pseudotyped oncolytic virus is unable to gain entry into the target cell due to the non-permissive nature of the envelope proteins. In some instances, the ability of a pseudotyped oncolytic virus to selectively enter, replicate in, and/or lyse a tumor cells is due to a reduced or otherwise ineffective cellular interferon (IFN) response. In some embodiments, the pseudotyped oncolytic viruses produce an engager molecule and/or a therapeutic molecule, such as an immune modulating polypeptide, that interferes or impairs the cellular IFN response, thereby enhancing the replication of the pseudotyped or engineered virus.

[0101] The pseudotyped oncolytic viruses described herein may be derived from a variety of viruses, non-limiting examples of which include vaccinia virus, adenovirus, herpes simplex virus 1 (HSV1), myxoma virus, reovirus, poliovirus, vesicular stomatitis virus (VSV), measles virus (MV), lassa virus (LASV) and Newcastle disease virus (NDV). In some embodiments, the pseudotyped oncolytic viruses described herein can infect substantially any cell type. An exemplary lentivirus for use in oncolytic therapy is Simian immunodeficiency virus coated with the envelope proteins, G-protein (GP), from VSV. In some instances, this virus is referred to as VSV G-pseudotyped lentivirus, and is known to infect an almost universal set of cells.

[0102] In some embodiments, the pseudotyped oncolytic viruses of the present invention are VSV viruses pseudotyped against healthy brain cells, i.e., neurons and exhibit considerably reduced toxicity. Since neurotropism is a dose-limiting factor in all applications of oncolytic VSV, the use of the vector according to some embodiments of the present invention is that they are used for all tumors types of solid tumors.

[0103] In some embodiments, the pseudotyped VSV vectors have one or more key attributes including: (i) the VSV is not cell-toxic; (ii) the vectors are concentrated by ultracentrifugation without loss of infectivity; and (iii) the vectors show a tropism for tumor cells, whereas neurons and other non-tumor cells are infected inefficiently. To increase the safety during the use of replicable viruses in therapeutic uses, some embodiments of the present invention provide a vector system which ensures that replication, oncolysis and the production of VSV viruses takes place only in cells

which are infected by at least two replication-deficient, mutually complementing vectors.

[0104] In some embodiments, the genetic material (e.g., the viral coat protein or the core genetic material) for generating a pseudotyped oncolytic virus is obtained from a DNA virus, an RNA virus, or from both virus types. In some embodiments, a DNA virus is a single-stranded (ss) DNA virus, a double-stranded (ds) DNA virus, or a DNA virus that contains both ss and ds DNA regions. In some embodiments, an RNA virus is a single-stranded (ss) RNA virus or a double-stranded (ds) RNA virus. In some embodiments, an ssRNA virus is further classified into a positive-sense RNA virus or a negative-sense RNA virus.

[0105] In some instances, the genetic material for generating a pseudotyped oncolytic virus is obtained from a dsDNA virus of any one of the following families: Myoviridae, Podoviridae, Siphoviridae, Alloherpesviridae, Herpesviridae, Malacoherpesviridae, Lipothrixviridae, Ravidiridae, Adenoviridae, Ampullaviridae, Ascoviridae, Asfaviridae, Baculoviridae, Bicaudaviridae, Clavaviridae, Corticoviridae, Fuselloviridae, Globuloviridae, Guttaviridae, Hytrosaviridae, Iridoviridae, Marseilleviridae, Mimiviridae, Nimaviridae, Pandoraviridae, Papillomaviridae, Phycodnaviridae, Plasmaviridae, Polydnnaviruses, Polyomaviridae, Poxviridae, Sphaerolipoviridae, or Tectiviridae.

[0106] In some cases, the genetic material for generating a pseudotyped oncolytic virus is obtained from a ssDNA virus of any one of the following families: Anelloviridae, Bacillariodnaviridae, Bidnaviridae, Circoviridae, Geminiviridae, Inoviridae, Microviridae, Nanoviridae, Parvoviridae, or Spiraviridae.

[0107] In some embodiments, the genetic material for generating a pseudotyped oncolytic virus is obtained from a DNA virus that contains both ssDNA and dsDNA regions. In some cases, the DNA virus is from the group pleolipoviruses. In some cases, the pleolipoviruses include *Halorubrum hispanicum* pleomorphic virus 1, *Halogeometricum* pleomorphic virus 1, *Halorubrum* pleomorphic virus 1, *Halorubrum* pleomorphic virus 2, *Halorubrum* pleomorphic virus 3, or *Halorubrum* pleomorphic virus 6.

[0108] In some cases, the genetic material for generating a pseudotyped oncolytic virus is obtained from a dsRNA virus of any one of the following families: Birnaviridae, Chrysoviridae, Cystoviridae, Endornaviridae, Hypoviridae, Megavirnaviridae, Partitiviridae, Picobirnaviridae, Reoviridae, Rotavirus or Totiviridae.

[0109] In some instances, the genetic material for generating a pseudotyped oncolytic virus is obtained from a positive-sense ssRNA virus of any one of the following families: Alphaflexiviridae, Alphatetraviridae, Alvemaviridae, Arteriviridae, Astroviridae, Bamaviridae, Betaflexiviridae, Bromoviridae, Caliciviridae, Carmotetraviridae, Clossteroviridae, Coronaviridae, Dicistroviridae, Flaviviridae, Gammaflexiviridae, Iflavirus, Leviviridae, Luteoviridae, Marnaviridae, Mesoniviridae, Namaviridae, Nodaviridae, Permutotetraviridae, Picornaviridae, Potyviridae, Roniviridae, Secoviridae, Togaviridae, Tombusviridae, Tymoviridae, or Virgaviridae.

[0110] In some cases, the genetic material for generating a pseudotyped oncolytic virus is obtained from a negative-sense ssRNA virus of any one of the following families: Bornaviridae, Filoviridae, Paramyxoviridae, Rhabdoviridae, Nyamiviridae, Arenaviridae, Bunyaviridae, Ophioviridae, or Orthomyxoviridae.

[0111] In some instances, the genetic material for generating a pseudotyped oncolytic virus is obtained from oncolytic DNA viruses that comprise capsid symmetry that is isocahedral or complex. In some cases, isosahedral oncolytic DNA viruses are naked or comprise an envelope. Exemplary families of oncolytic DNA viruses include the Adenoviridae (for example, Adenovirus, having a genome size of 36-38 kb), Herpesviridae (for example, HSV1, having a genome size of 120-200 kb), and Poxviridae (for example, Vaccinia virus and myxoma virus, having a genome size of 130-280 kb).

[0112] In some cases, the genetic material for generating a pseudotyped oncolytic virus is obtained from oncolytic RNA viruses include those having icosahedral or helical capsid symmetry. In some cases, icosahedral oncolytic viruses are naked without envelope and include Reoviridae (for example, Reovirus, having a genome of 22-27 kb) and Picornaviridae (for example, Poliovirus, having a genome size of 7.2-8.4 kb). In other cases, helical oncolytic RNA viruses are enveloped and include Rhabdoviridae (for example, VSV, having genome size of 13-16 kb) and Paramyxoviridae (for example MV and NDV, having genome sizes of 16-20 kb).

[0113] In some instances, the genetic material for generating a pseudotyped oncolytic virus is obtained from a virus such as Abelson leukemia virus, Abelson murine leukemia virus, Abelson's virus, Acute laryngotracheobronchitis virus, Adelaide River virus, Adeno associated virus group, Adenovirus, African horse sickness virus, African swine fever virus, AIDS virus, Aleutian mink disease parvovirus, Alpharetrovirus, Alphavirus, ALV related virus, Amapari virus, Aphthovirus, Aquareovirus, Arbovirus, Arbovirus C, arbovirus group A, arbovirus group B, Arenavirus group, Argentine hemorrhagic fever virus, Argentine hemorrhagic fever virus, Arterivirus, Astrovirus, Ateline herpesvirus group, Aujeszky's disease virus, Aura virus, Ausdak disease virus, Australian bat lyssavirus, Aviadenovirus, avian erythroblastosis virus, avian infectious bronchitis virus, avian leukemia virus, avian leukosis virus, avian lymphomatosis virus, avian myeloblastosis virus, avian paramyxovirus, avian pneumoencephalitis virus, avian reticuloendotheliosis virus, avian sarcoma virus, avian type C retrovirus group, Avihepatnavirus, Avipoxvirus, B virus, B19 virus, Babanki virus, baboon herpesvirus, baculovirus, Barnah Forest virus, Bebaru virus, Berrimah virus, Betaretrovirus, Birnavirus, Bittner virus, BK virus, Black Creek Canal virus, bluetongue virus, Bolivian hemorrhagic fever virus, Boma disease virus, border disease of sheep virus, borna virus, bovine alphaherpesvirus 1, bovine alphaherpesvirus 2, bovine coronavirus, bovine ephemeral fever virus, bovine immunodeficiency virus, bovine leukemia virus, bovine leukosis virus, bovine mammillitis virus, bovine papillomavirus, bovine papular stomatitis virus, bovine parvovirus, bovine syncytial virus, bovine type C oncovirus, bovine viral diarrhea virus, Buggy Creek virus, bullet shaped virus group, Bunyarnwera virus supergroup, Bunyavirus, Burkitt's lymphoma virus, Bwamba Fever, CA virus, Calicivirus, California encephalitis virus, camelpox virus, canarypox virus, canid herpesvirus, canine coronavirus, canine distemper virus, canine herpesvirus, canine minute virus, canine parvovirus, Cano Delgadito virus, caprine arthritis virus, caprine encephalitis virus, Caprine Herpes Virus, Capripox virus, Cardiovirus, caviid herpesvirus 1, Cercopithecine herpesvirus 1, cercopithecine herpesvirus 1,

Cercopithecine herpesvirus 2, Chandipura virus, Changuinola virus, channel catfish virus, Charleville virus, chickenpox virus, Chikungunya virus, chimpanzee herpesvirus, chub reovirus, chum salmon virus, Cocal virus, Coho salmon reovirus, coital exanthema virus, Colorado tick fever virus, Coltivirus, Columbia SK virus, common cold virus, contagious eethyma virus, contagious pustular dermatitis virus, Coronavirus, Corriparta virus, coryza virus, cowpox virus, coxsackie virus, CPV (cytoplasmic polyhedrosis virus), cricket paralysis virus, Crimean-Congo hemorrhagic fever virus, croup associated virus, Cryptovirus, Cypovirus, Cytomegalovirus, cytomegalovirus group, cytoplasmic polyhedrosis virus, deer papillomavirus, deltaretrovirus, dengue virus, Densovirus, Dependovirus, Dhori virus, diploma virus, *Drosophila* C virus, duck hepatitis B virus, duck hepatitis virus 1, duck hepatitis virus 2, duovirus, Duvenhage virus, Deformed wing virus DWV, eastern equine encephalitis virus, eastern equine encephalomyelitis virus, EB virus, Ebola virus, Ebola-like virus, echo virus, echovirus, echovirus 10, echovirus 28, echovirus 9, ectromelia virus, EEE virus, EIA virus, EIA virus, encephalitis virus, encephalomyocarditis group virus, encephalomyocarditis virus, Enterovirus, enzyme elevating virus, enzyme elevating virus (LDH), epidemic hemorrhagic fever virus, epizootic hemorrhagic disease virus, Epstein-Barr virus, equid alphaherpesvirus 1, equid alphaherpesvirus 4, equid herpesvirus 2, equine abortion virus, equine arteritis virus, equine encephalosis virus, equine infectious anemia virus, equine morbillivirus, equine rhinopneumonitis virus, equine rhinovirus, Eubenango virus, European elk papillomavirus, European swine fever virus, Everglades virus, Eyach virus, felid herpesvirus 1, feline calicivirus, feline fibrosarcoma virus, feline herpesvirus, feline immunodeficiency virus, feline infectious peritonitis virus, feline leukemia/sarcoma virus, feline leukemia virus, feline panleukopenia virus, feline parvovirus, feline sarcoma virus, feline syncytial virus, Filovirus, Flanders virus, Flavivirus, foot and mouth disease virus, Fort Morgan virus, Four Corners hantavirus, fowl adenovirus 1, fowipox virus, Friend virus, Gammaretrovirus, GB hepatitis virus, GB virus, German measles virus, Getah virus, gibbon ape leukemia virus, glandular fever virus, goatpox virus, golden shiner virus, Gonometra virus, goose parvovirus, granulosis virus, Gross' virus, ground squirrel hepatitis B virus, group A arbovirus, Guanarito virus, guinea pig cytomegalovirus, guinea pig type C virus, Hantaan virus, Hantavirus, hard clam reovirus, hare fibroma virus, HCMV (human cytomegalovirus), hemadsorption virus 2, hemagglutinating virus of Japan, hemorrhagic fever virus, hendra virus, Henipaviruses, Hepadnavirus, hepatitis A virus, hepatitis B virus group, hepatitis C virus, hepatitis D virus, hepatitis delta virus, hepatitis E virus, hepatitis F virus, hepatitis G virus, hepatitis nonA nonB virus, hepatitis virus, hepatitis virus (nonhuman), hepatoencephalomyelitis reovirus 3, Hepatovirus, heron hepatitis B virus, herpes B virus, herpes simplex virus, herpes simplex virus 1, herpes simplex virus 2, herpesvirus, herpesvirus 7, Herpesvirus atelles, Herpesvirus *hominis*, Herpesvirus infection, Herpesvirus saimiri, Herpesvirus suis, Herpesvirus varicellae, Highlands J virus, Hirame rhabdovirus, hog cholera virus, human adenovirus 2, human alphaherpesvirus 1, human alphaherpesvirus 2, human alphaherpesvirus 3, human B lymphotropic virus, human betaherpesvirus 5, human coronavirus, human cytomegalovirus group, human foamy virus, human gammaherpesvirus 4, human gammaherpesvirus 6,

human hepatitis A virus, human herpesvirus 1 group, human herpesvirus 2 group, human herpesvirus 3 group, human herpesvirus 4 group, human herpesvirus 6, human herpesvirus 8, human immunodeficiency virus, human immunodeficiency virus 1, human immunodeficiency virus 2, human papillomavirus, human T cell leukemia virus, human T cell leukemia virus 1, human T cell leukemia virus 11, human T cell leukemia virus III, human T cell lymphoma virus 1, human T cell lymphoma virus II, human T cell lymphotropic virus type 1, human T cell lymphotropic virus type 2, human T lymphotropic virus 1, human T lymphotropic virus II, human T lymphotropic virus III, Ichnovirus, infantile gastroenteritis virus, infectious bovine rhinotracheitis virus, infectious haematopoietic necrosis virus, infectious pancreatic necrosis virus, influenza virus A, influenza virus B, influenza virus C, influenza virus D, influenza virus pr8, insect iridescent virus, insect virus, iridovirus, Japanese B virus, Japanese encephalitis virus, JC virus, Junin virus, Kaposi's sarcoma-associated herpesvirus, Kemerovo virus, Kilham's rat virus, Klamath virus, Kolongo virus, Korean hemorrhagic fever virus, kumba virus, Kysanur forest disease virus, Kyzylagach virus, La Crosse virus, lactic dehydrogenase elevating virus, lactic dehydrogenase virus, Lagos bat virus, Langur virus, lapine parvovirus, Lassa fever virus, Lassa virus, latent rat virus, LCM virus, Leaky virus, Lentivirus, Leporipoxvirus, leukemia virus, leukovirus, lumpy skin disease virus, lymphadenopathy associated virus, Lymphocryptovirus, lymphocytic choriomeningitis virus, lymphoproliferative virus group, Machupo virus, mad itch virus, mammalian type B oncovirus group, mammalian type B retroviruses, mammalian type C retrovirus group, mammalian type D retroviruses, mammary tumor virus, Mapuera virus, Marburg virus, Marburg-like virus, Mason Pfizer monkey virus, Mastadenovirus, Mayaro virus, ME virus, measles virus, Menangle virus, Mengo virus, Mengovirus, Middleburg virus, milkers nodule virus, mink enteritis virus, minute virus of mice, MLV related virus, MM virus, Mokola virus, Molluscipoxvirus, Molluscum contagiosum virus, monkey B virus, monkeypox virus, Mononegavirales, Morbillivirus, Mount Elgon bat virus, mouse cytomegalovirus, mouse encephalomyelitis virus, mouse hepatitis virus, mouse K virus, mouse leukemia virus, mouse mammary tumor virus, mouse minute virus, mouse pneumonia virus, mouse poliomyelitis virus, mouse polyomavirus, mouse sarcoma virus, mousepox virus, Mozambique virus, Mucambo virus, mucosal disease virus, mumps virus, murid betaherpesvirus 1, murid cytomegalovirus 2, murine cytomegalovirus group, murine encephalomyelitis virus, murine hepatitis virus, murine leukemia virus, murine nodule inducing virus, murine polyomavirus, murine sarcoma virus, Muromegalovirus, Murray Valley encephalitis virus, myxoma virus, Myxovirus, Myxovirus multiforme, Myxovirus parotiditis, Nairobi sheep disease virus, Nairovirus, Nanirnavirus, Nariva virus, Ndumo virus, Neethling virus, Nelson Bay virus, neurotropic virus, New World Arenavirus, newborn pneumonitis virus, Newcastle disease virus, Nipah virus, noncytopathogenic virus, Norwalk virus, nuclear polyhedrosis virus (NPV), nipple neck virus, O'nyong'nyong virus, Ockelbo virus, oncogenic virus, oncogenic viruslike particle, oncornavirus, Orbivirus, Orf virus, Oropouche virus, Orthohepadnavirus, Orthomyxovirus, Orthopoxvirus, Orthoreovirus, Orungo, ovine papillomavirus, ovine catarrhal fever virus, owl monkey herpesvirus, Palyam virus, Papillomavirus, Papillomavirus sylvilagi,

Papovavirus, parainfluenza virus, parainfluenza virus type 1, parainfluenza virus type 2, parainfluenza virus type 3, parainfluenza virus type 4, Paramyxovirus, Parapoxvirus, paravaccinia virus, Parvovirus, Parvovirus B19, parvovirus group, Pestivirus, Phlebovirus, phocine distemper virus, Picornavirus, Picornavirus, pig cytomegalovirus-pigeonpox virus, Piry virus, Pixuna virus, pneumonia virus of mice, Pneumovirus, poliomyelitis virus, poliovirus, Polydnavirus, polyhedral virus, polyoma virus, Polyomavirus, Polyomavirus *bovis*, Polyomavirus cercopitheci, Polyomavirus *hominis* 2, Polyomavirus maccacae 1, Polyomavirus *muris* 1, Polyomavirus *muris* 2, Polyomavirus papionis 1, Polyomavirus papionis 2, Polyomavirus sylvilagi, Pongine herpesvirus 1, porcine epidemic diarrhea virus, porcine hemagglutinating encephalomyelitis virus, porcine parvovirus, porcine transmissible gastroenteritis virus, porcine type C virus, pox virus, poxvirus, poxvirus variolae, Prospect Hill virus, Proivirus, pseudocowpox virus, pseudorabies virus, psittacinepox virus, quailpox virus, rabbit fibroma virus, rabbit kidney vacuolating virus, rabbit papillomavirus, rabies virus, raccoon parvovirus, raccoonpox virus, Ranikbet virus, rat cytomegalovirus, rat parvovirus, rat virus, Rauscher's virus, recombinant vaccinia virus, recombinant virus, reovirus, reovirus 1, reovirus 2, reovirus 3, reptilian type C virus, respiratory infection virus, respiratory syncytial virus, respiratory virus, reticuloendotheliosis virus, Rhabdovirus, Rhabdovirus carpia, Rhadinovirus, Rhinovirus, Rhizidiovirus, Rift Valley fever virus, Riley's virus, rinderpest virus, RNA tumor virus, Ross River virus, Rotavirus, rougeole virus, Rous sarcoma virus, rubella virus, rubeola virus, Rubivirus, Russian autumn encephalitis virus, SA 11 simian virus, SA2 virus, Sabia virus, Sagiyama virus, Saimiriine herpesvirus 1, salivary gland virus, sandfly fever virus group, Sandjimba virus, SARS virus, SDAV (sialodacryoadenitis virus), sealpox virus, Semliki Forest Virus, Seoul virus, sheeppox virus, Shope fibroma virus, Shope papilloma virus, simian foamy virus, simian hepatitis A virus, simian human immunodeficiency virus, simian immunodeficiency virus, simian parainfluenza virus, simian T cell lymphotropic virus, simian virus, simian virus 40, Simplexvirus, Sin Nombre virus, Sindbis virus, smallpox virus, South American hemorrhagic fever viruses, sparrowpox virus, Spumavirus, squirrel fibroma virus, squirrel monkey retrovirus, SSV 1 virus group, STLV (simian T lymphotropic virus) type I, STLV (simian T lymphotropic virus) type II, STLV (simian T lymphotropic virus) type III, stomatitis papulosa virus, submaxillary virus, suid alphaherpesvirus 1, suid herpesvirus 2, Suipoxvirus, swamp fever virus, swinepox virus, Swiss mouse leukemia virus, TAC virus, Tacaribe complex virus, Tacaribe virus, Tanapox virus, Taterapox virus, Tench reovirus, Theiler's encephalomyelitis virus, Theiler's virus, Thogoto virus, Thottapalayam virus, Tick borne encephalitis virus, Tioman virus, Togavirus, Torovirus, tumor virus, Tupaia virus, turkey rhinotracheitis virus, turkeypox virus, type C retroviruses, type D oncovirus, type D retrovirus group, ulcerative disease rhabdovirus, Una virus, Uukuniemi virus group, vaccinia virus, vacuolating virus, varicella zoster virus, Varicellovirus, Varicola virus, variola major virus, variola virus, Vasin Gishu disease virus, VEE virus, Venezuelan equine encephalitis virus, Venezuelan equine encephalomyelitis virus, Venezuelan hemorrhagic fever virus, vesicular stomatitis virus, Vesiculovirus, Vilyuisk virus, viper retrovirus, viral haemorrhagic septicemia virus, Visna Maedi virus, Visna virus, volepox virus,

VSV (vesicular stomatitis virus), Wallal virus, Warrego virus, wart virus, WEE virus, West Nile virus, western equine encephalitis virus, western equine encephalomyelitis virus, Whataroa virus, Winter Vomiting Virus, woodchuck hepatitis B virus, woolly monkey sarcoma virus, wound rumor virus, WRSV virus, Yaba monkey tumor virus, Yaba virus, Yatapoxvirus, yellow fever virus, and the Yug Bogdanovac virus.

Methods of Producing Pseudotyped Oncolytic Viruses

[0114] In some instances, a pseudotyped oncolytic virus described herein is generated using methods well known in the art. In some instances, the methods involve one or more transfection steps and one or more infection steps. In some instances, a cell line such as a mammalian cell line, an insect cell line, or a plant cell line is infected with a pseudotyped oncolytic virus described herein to produce one or more viruses. Exemplary mammalian cell lines include: 293A cell line, 293FT cell line, 293F cells, 293 H cells, CHO DG44 cells, CHO-S cells, CHO-K1 cells, Expi293FTM cells, Flp-IntTM T-RExTM 293 cell line, Flp-IntTM-293 cell line, Flp-IntTM-3T3 cell line, Flp-InTM-BHK cell line, Flp-InTM-CHO cell line, Flp-InTM-CV-1 cell line, Flp-InTM-Jurkat cell line, FreeStyleTM 293-F cells, FreeStyleTM CHO-S cells, Grip-TiteTM 293 MSR cell line, GS-CHO cell line, HepaRGTM cells, T-RExTM Jurkat cell line, Per.C6 cells, T-RExTM-293 cell line, T-RExTM-CHO cell line, T-RExTM-HeLa cell line, 3T6, A549, A9, AtT-20, BALB/3T3, BHK-21, BHL-100, BT, Caco-2, Chang, Clone 9, Clone M-3, COS-1, COS-3, COS-7, CRFK, CV-1, D-17, Daudi, GH1, GH3, H9, HaK, HCT-15, HEp-2, HL-60, HT-1080, HT-29, HUVEC, I-10, IM-9, JEG-2, Jensen, K-562, KB, KG-1, L2, LLC-WRC 256, McCoy, MCF7, VERO, WI-38, WISH, XC, or Y-1. Exemplary insect cell lines include *Drosophila* S2 cells, Sf9 cells, Sf21 cells, High FiveTM cells, or expresSF+® cells. Exemplary plant cell lines include algae cells such as for example *Phaeocystis pouchetii*.

[0115] Any method known to one skilled in the art is used for large scale production of recombinant oncolytic vectors and vector constructs, such as pseudotyped oncolytic vectors. For example, master and working seed stocks can be prepared under GMP conditions in qualified primary CEFs or by other methods. In some instances, cells are plated on large surface area flasks, grown to near confluence, and infected at selected MOI. The produced virus can then be purified. In some cases, cells are harvested and intracellular virus is released by mechanical disruption. In some embodiments, cell debris is removed by large-pore depth filtration and/or host cell DNA is digested with an endonuclease. In some cases, virus particles are subsequently purified and concentrated by tangential-flow filtration, followed by diafiltration. The resulting concentrated virus can be formulated by dilution with a buffer containing one or more stabilizers, filled into vials, and lyophilized. Compositions and formulations can be stored for later use. In some embodiments, a lyophilized virus is reconstituted by addition of one or more diluents.

Engager Molecules

[0116] In some embodiments, the oncolytic viral vectors provided herein are pseudotyped oncolytic viruses that are further engineered to include a polynucleotide sequence that encodes an engager molecule, e.g., an engager polypeptide.

The engager molecules of the present invention comprise at least two domains each capable of binding to a different cell surface molecule. In some embodiments, engager polypeptides comprise an antigen recognition domain and an activation domain that recognize particular cell surface proteins (e.g., cell-surface receptors or ligands) expressed by target and effector cells, respectively. As used herein, an “antigen recognition domain” is a polypeptide that binds one or more molecules present on the cell surface of a target cell (e.g., a tumor antigen), and an “activation domain” is a polypeptide that binds to one or more molecules present on the cell surface of an effector cell (e.g., an activation molecule). An activation domain may also be referred to as an “engager domain.”

[0117] In some embodiments, engager polypeptides comprise a therapeutic molecule domain and an activation domain. A therapeutic molecule domain is a polypeptide that binds to a particular cell surface protein expressed on an effector cell (e.g., cell-surface receptors or ligands) and that is distinct from the cell surface protein recognized by the activation domain. In particular embodiments, the therapeutic molecule domain binds to a cell surface protein that is a negative regulator of effector cell function (e.g., an immune checkpoint molecule or other inhibitory molecule). Exemplary cell-surface antigen for targeting by a therapeutic domain include CD47, PD1, PDL1, CTLA4, TIM2, LAG3, BTLA, KIR, TIGIT, OX40, FITR, CD27, SLAMF7, and CD200.

[0118] In some embodiments, binding of an activation domain to a molecule present on the surface of the effector cell results in activation of the effector cell. In certain embodiments, binding of an activation domain to a molecule on an effector cell and binding of an antigen recognition domain to a molecule present on a target cell brings the effector cell in close proximity to the target cell and thereby facilitates the destruction of the target cell by the effector cell. In certain embodiments, binding of an activation domain to an activation molecule on an effector cell and binding of a therapeutic molecule domain to an inhibitory molecule present on an effector cell enhances the activation of the effector cell and thereby facilitates the destruction of one or more bystander target cells by the effector cell.

[0119] In certain embodiments, the engager molecule is a protein, e.g., an engineered protein. In some embodiments, the engager molecule is a bipartite polypeptide. In some embodiments, the engager molecule is a tripartite or multipartite polypeptide. In such embodiments, the engager molecule may comprise one or more activation domains and/or antigen recognition domains, or other domains, including one or more co-stimulatory domains, one or more dimerization or trimerization domains, or other domain capable of binding a molecule expressed on the cell surface. Alternatively, the one or more additional domains are optionally present on a separate polypeptide. In some embodiments, the engager molecule comprises an antibody or antibody fragment. In some embodiments, the engager molecule is a trifunctional antibody, an Fab₂, a bi-specific scFv such as a bi-specific T-cell engager (BiTE), a bivalent minibody, a bispecific diabody, a DuoBody, or an Mab2. In certain embodiments, the engager molecule is a bipartite T cell engager (BiTE) or a tripartite T cell engager (TiTE).

[0120] In some embodiments, the activation domain, the antigen recognition domain, and/or the therapeutic molecule domain of the engager molecule comprises an antibody or an

antigen-binding fragment thereof, e.g., a single chain variable fragment (scFv), a monoclonal antibody, Fv, Fab, minibody, diabody. In some embodiments, the activation domain, the antigen recognition domain, and/or the therapeutic molecule domain of the engager molecule comprises a ligand, a peptide, a peptide that recognize and interacts with a soluble TCR, or combinations thereof. In some embodiments, these antibody-derived fragments or derivatives may be modified by chemical, biochemical, or molecular biological methods. Corresponding methods are known in the art and described, inter alia, in laboratory manuals (see Sambrook et al.; Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press, 2nd edition 1989 and 3rd edition 2001; Gerhardt et al.; Methods for General and Molecular Bacteriology; ASM Press, 1994; Lefkovits; Immunology Methods Manual: The Comprehensive Sourcebook of Techniques; Academic Press, 1997; Golemis; Protein-Protein Interactions: A Molecular Cloning Manual; Cold Spring Harbor Laboratory Press, 2002). In some instances, the polypeptides, antibodies, or antigen-binding fragments thereof used in the construction of the engager molecules described herein are humanized or deimmunized constructs. Methods for the humanization and/or deimmunization of polypeptides and, in particular, antibody constructs are known to the person skilled in the art.

[0121] In some embodiments, for any of the engagers described herein, the respective domains are in any order from N-terminus to C-terminus. For example, in some embodiments, the engager molecule may comprise an N-terminal activation domain and a C-terminal antigen recognition domain. In some embodiments, the engager molecule may comprise an N-terminal antigen recognition domain and a C-terminal activation domain. In some embodiments, the engager molecule may comprise an N-terminal activation domain and a C-terminal therapeutic molecule domain. In some embodiments, the engager molecule may comprise an N-terminal therapeutic molecule domain and a C-terminal activation domain. In certain embodiments, T-cells are modified to secrete engager molecules that have an antigen recognition domain or therapeutic molecule domain N-terminal to an activation domain.

[0122] In particular embodiments, two or more of the domains of an engager molecule are linked by a linker. In some instances, the linker is of any suitable length, and such a parameter is routinely optimized in the art. For example, linkers are of a length and sequence sufficient to ensure that each of the first and second domains can, independently from one another, retain their differential binding specificities. The term “peptide linker” refers to an amino acid sequence by which the amino acid sequences of a first domain (e.g., an activation domain) and a second domain (e.g., an antigen recognition domain or therapeutic molecule domain) of a defined construct are linked together. In some instance, one technical feature of such peptide linker is that said peptide linker does not comprise any polymerization activity and/or does not promote formation of secondary structures. Such peptide linkers are known in the art and described, for example, in Dall'Acqua et al. (Biochem. (1998) 37, 9266-9273); Cheadle et al. (Mol Immunol (1992) 29, 21-30); and Raag and Whitlow (FASEB (1995) 9(1), 73-80). In some embodiments, the peptide linkers of the present invention comprise less than 5 amino acids, less than 4 amino acids, less than 3 amino acids, less than 2 amino acids, or 1 amino acid. In some embodiments, the peptide

linker is a single amino acid linker. In such embodiments, the single amino acid is typically a glycine (Gly). In some embodiments, peptide linkers that also do not promote any secondary structures are preferred. Methods for preparing fused, operatively-linked constructs and their expression in mammalian or bacterial cells are well-known in the art (See e.g., International PCT Publication No. WO 99/54440; Ausubel, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N.Y. 1989 and 1994; and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001).

[0123] In some embodiments, the engager molecule is a single chain bi-specific antibody construct. The term “single chain bispecific antibody construct” refers to a construct comprising two antibody-derived binding domains. One of the binding domains comprises variable regions (or parts thereof) of both heavy chain (VH) and light chain (VL) of an antibody or antigen binding fragments or derivatives thereof, capable of specifically binding to/interacting with an activation molecule expressed on an effector cell (e.g., CD3). The second binding domain comprises variable regions (or parts thereof) of both heavy chain (VH) and light chain (VL) of an antibody or antigen binding fragments or derivatives thereof, capable of specifically binding to/interacting with a target antigen expressed on a target cell (e.g., CD19) or an antigen expressed by and effector cell (e.g., an inhibitor molecule). In particular embodiments, each of the two antibody or antigen binding fragments or derivatives comprise at least one complementary determining region (CDR), particularly a CDR3. In some embodiments, the single chain bi-specific antibody construct is a bispecific scFv or diabody.

[0124] In specific embodiments, the single chain bispecific antibody construct is a single chain bispecific scFv. An scFv in general contains a VH and VL domain connected by a linker peptide. In some embodiments, a single chain bispecific scFv is comprised of a signal peptide to allow for secretion from cells, followed by two scFvs connected by one or more linker peptides (Lx, Ly, Lz). Bispecific single chain molecules are known in the art and are described in International PCT Publication No. WO 99/54440; Mack, J. Immunol. (1997), 158, 3965-3970; Mack, PNAS, (1995), 92, 7021-7025; Kufer, Cancer Immunol. Immunother., (1997), 45, 193-197; Loftier, Blood, (2000), 95, 6, 2098-2103; and Bruhl, J. Immunol., (2001), 166, 2420-2426.

[0125] In some embodiments, the molecular format of the polynucleotide encoding a single chain bi-specific scFv polypeptide comprises nucleic acid sequence encoding a signal peptide (such as the signal sequences of SEQ ID NO: 2 and 4) followed by two or more antibody-derived regions (e.g., a first scFv and a second scFv). Each antibody-derived region (e.g., scFv) comprises one VH and one VL chain. In specific embodiments, the two or more antibody-derived regions are scFvs and are linked by a peptide linker to form a single chain bi-specific scFv construct. In some embodiments, the bi-specific scFv is a tandem bi-scFv or a diabody. Bispecific scFvs can be arranged in different formats including the following: VHO-Lx-V_{La}-Ly-V_H-Lz-ViJ3, V_{La}-Lx-V_{Ha}-Ly-VH-Lz-ViJ3, V_{La}-Lx-V_H-Ly-VL-Lz-VH, V_H-Lx-V_{La}-Ly-VL-Lz-VH, V_H-Lx-VL-Ly-VH-Lz-V_{La}, V_{La}-Lx-VL-Ly-VH-Lz-V_H, VH-Lx-VH-Ly-VL-Lz-VLa, VLa-Lx-

VH -Ly-VL-Lz- V_H , VH -Lx- $V_{L\alpha}$ -Ly- V_H -Lz-VL, VL-Lx- $V_{L\alpha}$ -Ly- V_H -Lz-VH, V_H -Lx-VH-Ly-VLa-Lz-VL, VL-Lx-VH-Ly-VLa-Lz- V_H .

[0126] In some embodiments, the engager molecule comprises multiple (e.g., 2, 3, 4, 5 or more) antigen binding domains to allow targeting of multiple antigens. In some embodiments, the engager molecule comprises multiple (e.g., 2, 3, 4, 5 or more) activation domains to activate effector cells. In some embodiments, the engager molecule comprises multiple (e.g., 2, 3, 4, 5 or more) therapeutic molecule domains to activate effector cells.

[0127] In specific embodiments of the disclosure, the engager molecule comprises additional domains for the isolation and/or preparation of recombinantly produced constructs, such as a tag or a label. The tag or label may be a short peptide sequence, such as a histidine tag (SEQ ID NO: 12), or may be a tag or label that is capable of being imaged, such as fluorescent or radioactive label.

[0128] In particular embodiments, the engager molecules of the present invention specifically bind to/interact with a particular conformational/structural epitope(s) of a target antigen expressed on a target cell and an activation molecule expressed on an effector cell (e.g., an activation domain that specifically binds to one of the two regions of the human CD3 complex, or parts thereof). In particular embodiments, the engager molecules of the present invention specifically bind to/interact with a particular conformational/structural epitope(s) of an activation molecule expressed on an effector cell and a different cell-surface protein expressed on an effector cell. Accordingly, specificity in some instances is determined experimentally by methods known in the art and methods as disclosed and described herein. Such methods comprise, but are not limited to Western blots, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), radioimmunoprecipitation (RIP), electrochemiluminescence (ECL), immunoradiometric assay (IRMA), enzyme immunoassay (EIA), and peptide scans.

Activation Molecules and Target Cell Antigens

[0129] In some embodiments, binding of the activation domain of an engager molecule to an activation molecule on the cell surface of an effector cell results in activation of the effector cell. As used herein, the term “effector cell” refers to any mammalian cell type that is capable of facilitating the death of a target cell. In particular embodiments, the effector cells of the present invention are immune cells, such as a T cell, a B cell, an innate lymphocyte, a natural killer (NK) cell, a natural killer T cell (NKT), a granulocyte (e.g., a neutrophil, basophil, mast cell, or eosinophil), a macrophage, a monocyte, or a dendritic cell. Exemplary effector cell types include T cells, NK cells, NKT cells, and macrophages.

[0130] In some embodiments, activation of an effector cell may result in one or more of the following: (i) increased proliferation of the effector cell; (ii) changes in the expression or activity of one or more cell surface proteins of the effector cell; (iii) change in expression or activity of one or more intracellular proteins expressed by the effector cell; (iv) changes in the amount or nature of factors produced and/or secreted by the effector cell, such as cytokines, chemokines or reactive oxygen species; (v) changes in the morphology of the effector cell; (vi) changes in the chemot-

actic potential of the effector cell, such as through increased or decreased expression of one or more chemokine receptors; (vii) changes in the functional activity of the effector cell, such as increased cytolytic activity and/or increased phagocytic activity. Activation of an effector cell, or population of effector cells, can be determined by any means known in the art. For example, changes in proliferation, protein expression, production, or secretion can be determined by flow cytometry, Western blot, ELISA, immunohistochemistry, immunoprecipitation, or immunofluorescence and changes in cell morphology can be determined by numerous types of microscopy known in the art.

[0131] The skilled artisan will recognize that the nature of the activating molecule may vary according to the nature of the effector cell, although different groups of effector cells may share expression of certain types of activation molecules. For example, T cells express different surface receptors, i.e. different activating receptors, than NK cells or macrophages. As an illustrative example, CD3 is an activating receptor expressed by T-cells that is not expressed by NK cells or macrophages, whereas CD1, CD16, NKG2D, and/or NKP30 are activating receptors expressed by NK cells that are not expressed by T cells. Therefore, in some instances, engager molecules that activate T-cells have a different activation domain than engager molecules that activate NK cells, macrophages, NKT cells, or other types of effector cells. Exemplary activation molecules are described below and shown in Table 1.

[0132] In some embodiments, the effector cell is a T cell and the activation domain of the engager molecule binds to an activation molecule expressed by the T cell. The T-cell repertoire is comprised of numerous sub-types of T cell, including NKT cells, cytotoxic T cells (Tc or CTL), memory T cells, helper T cells (e.g., Th1, Th2, Th17, Th9, and/or Th22 cells), suppressor T cells (e.g., regulator T cells (Tregs)), mucosal-associated invariant T cells, and $\gamma\delta$ T cells. In some instances, one or more surface receptors expressed by one T cell subtype are not expressed by another T cell subtype. In some instances, one or more surface receptors expressed by one T cell subtype are expressed by at least one other T cell subtype. In some instances, one or more surface receptors expressed by one T cell subtype are generally expressed by all, or most, T cell subtypes. For example, CD3 is a signaling component of the T cell receptor (TCR) complex and is expressed in multiple T cell subtypes. Exemplary activation molecules expressed by T cells (e.g., NKT, Tc, memory T cells, or helper T cell), include, but are not limited to one or more components of CD3, (e.g., CD3 γ , CD3 δ , CD3 ϵ or CD3 ζ), CD2, CD4, CD5, CD6, CD7, CD8, CD25, CD27, CD28, CD30, CD38, CD40, CD57, CD69, CD70, CD73, CD81, CD82, CD134, CD137, CD152, or CD278. In some embodiments, the effector cell is an NKT-cell. In such embodiments, the activation molecule includes, but is not limited to, CD3 or an invariant TCR.

[0133] In some embodiments, the effector cell is an NK cell and the activation domain of the engager molecule binds to an activation molecule expressed by the NK cell. Exemplary activation molecules expressed by NK cells include, but are not limited to, CD116, CD94/NKG2 (e.g., NKG2D), NKP30, NKP44, NKP46, or killer activation receptors (KARs).

TABLE 1

Exemplary Activation Molecules	
T cell Activation Molecules	NKT cell Activation Molecules
CD3 or components thereof (e.g., CD3 γ , CD3 δ , CD3 ϵ or CD3 ξ)	CD3
CD2	invariant TCR
CD4	NK Cell Activation Molecules
CD5	CD16
CD6	CD94/NKG2 (e.g., NKG2D)
CD7	NKp30
CD8	NKp44
CD16	NKp46
CD25	KARs
CD27	
CD28	
CD30	
CD38	
CD40	
CD57	
CD69	
CD70	
CD73	
CD81	
CD82	
CD134	
CD137	
CD152	
CD278	

[0134] In some embodiments, binding of an engager molecule to a target cell and an effector cell (e.g., binding of an activation domain to a molecule on an effector cell and binding of an antigen recognition domain to a molecule present on a target cell) brings the effector cell in close proximity to the target cell and thereby facilitates the destruction of the target cell by the effector cell. As used herein, the term “target cell” refers to a mammalian cell that should be killed, attacked, destroyed, and/or controlled. In particular, target cells are cells that are in some way altered compared to a normal cell of the same cell type, such as a cancerous cell, a bacterially-infected cell, a virally-infected cell, a fungally-infected cell, and/or an autoimmune cell. In particular embodiments, the target cells of the present invention are cancerous cells (e.g., tumor cells). Destruction (i.e., death) of a target cell can be determined by any means known in the art, such as flow cytometry (e.g., by AnnexinV, propidium iodide, or other means), cell counts, and/or microscopy to determine the cellular morphology of the target cells.

[0135] In some embodiments, the antigen recognition domain of an engager molecule brings a target cell (e.g., tumor cell) into the vicinity of an effector cell via interaction between the antigen recognition domain and surface antigens expressed by the target cell (e.g., target cell antigens). In some embodiments, the target-cell antigen is a tumor antigen. In some embodiments, a tumor antigen is a tumor-specific antigen (TSA), and is expressed only by tumor cells. In some embodiments, the target cell antigen is a tumor-associated antigen (TAA), and is expressed by tumor cells and one or more types of normal cells or non-tumor cells. In some cases, TSA is also present in one or more types of normal cells or non-tumor cells, but is predominantly expressed by tumor cells. In some instances, a tumor antigen

(e.g., TSA or TAA) is present in one cancer type. In some instances, a tumor antigen is present in multiple cancer types. In one embodiment, a tumor antigen is expressed on a blood cancer cell. In another embodiment, a tumor antigen is expressed on a cell of a solid tumor. In some embodiments, the solid tumor is a glioblastoma, a non-small cell lung cancer, a lung cancer other than a non-small cell lung cancer, breast cancer, prostate cancer, pancreatic cancer, liver cancer, colon cancer, stomach cancer, a cancer of the spleen, skin cancer, a brain cancer other than a glioblastoma, a kidney cancer, a thyroid cancer, or the like. In more specific embodiments, a tumor antigen is expressed by a tumor cell in an individual.

[0136] Exemplary tumor antigens (e.g., TSAs or TAAs) include, but are not limited to, alphafetoprotein (AFP), carcinoembryonic antigen (CEA), CA-125, epithelial tumor antigen (ETA), tyrosinase, CD10 (also known as neprilysin, membrane metallo-endopeptidase (MME), neutral endopeptidase (NEP), or common acute lymphoblastic leukemia antigen (CALLA)), CD15, CD19, CD20, CD21, CD22, CD30, CD33, CD38, CD44, CD44v6, CD44v7/8, CD70, CD123, CD138, CD171, ras, p53, v-raf murine sarcoma viral oncogene homolog B1 (BRAF), calcium binding tyrosine-(Y)-phosphorylation regulated (CABYR), cysteine-rich secretory protein 3 (CRISP3), CSAG family, member 2 (CSAG2), cancer/testis antigen 2 (CTAG2), dihydrofolate reductase (DHFR), ferritin, heavy polypeptide 1; testis-specific expression (FTHL17), G antigen 1 (GAGEL), lactate dehydrogenase C (LDHC), melanoma antigen family A (MAGEA) 1, MAGEA3, MAGEA4, (melanoma antigen family B, 6) MAGEB6, mitogen-activated protein kinase 1 (MAPK1), MHC Class I polypeptide-related sequence A (MICA), mucin (MUC) 1, cell surface associated (MUC1), MUC16, NLR family, pyrin domain containing 4 (NLRP4), New York esophageal squamous cell carcinoma 1 (NY-ESO-1), PDZ binding kinase (PB), preferentially expressed antigen in melanoma (PRAME), sex determining region Y-box (SOX)-2, SOX 10, SOX 11, sperm protein associated with the nucleus, X-linked, family member A1 (SPANXA1), synovial sarcoma, X (SSX) breakpoint 2 (SSX2), SSX4, SSX5, testis specific, 10 (TSGA10), testis-specific serine kinase 6 (TSSK6), tubby like protein (TULP2), X antigen family, member 2 (XAGE2), zinc finger protein 165 (ZNF165), absent in melanoma 2 (AIM2), BMI1 polycomb ring finger oncogene (BMI1), cyclooxygenase-2 (COX-2), tyrosine related protein (TRP)-1, TRP-2, glycoprotein 100 (GP100), epidermal growth factor receptor variant II (EGFRvIII), enhancer of zeste homolog 2 (FZH2), human LI cell adhesion molecule (LICAM), Livin, multidrug resistance protein 3 (MRP-3), Nestin, oligodendrocyte transcription factor (OLIG2), antigen recognized by T cells (ART)-1, ART4, squamous cell carcinoma antigen recognized by T cells (SART)-1, SART2, SART3, B-cyclin, β -catenin, glioma-associated oncogene homolog 1 (Gli1), caveolin-1 (Cav-1), cathepsin B, cluster of differentiation (CD)-74, epithelial calcium-dependent adhesion (E-cadherin), EPH receptor A2 (EphA2), EphA2/epithelial kinase (EphA2/Eck), fos-related antigen 1 (Fra-1/Fosl 1), Ganglioside/GD2, GD3, acetylglucosaminyltransferase-V (GnT-V, β 1,6-N), human epidermal growth factor receptor 2 (Her2/Neu), nuclear proliferation-associated antigen of antibody Ki67 (Ki67), human Ku heterodimer proteins subunits (u70/80), interleukin-13 receptor subunit alpha-2 (IL-13Ra2), melanoma antigen recognized by T cells (MART-1), prospero

homeobox protein 1 (PROX1), prostate stem cell antigen (PSCA), Survivin, urokinase-type plasminogen activator receptor (UPAR), Wilms' tumor protein 1 (WT-1), Folate receptor a, Glypican-3, 5T4, 8119, α , β , integrin, B7-H3, B7-H6, CAIX, CA9, CSPG4, EGP2, EGP40, EpCAM, ERBB3, ERBB4, ErbB3/4, FAP, FAR, FBP, fetal AchR, HLA-A1, HLA-A2, IL-1Ra, KDR, Lambda, Lewis-Y, MCSP, Mesothelin, NCAM, NKG2D ligands, PSC1, PSMA, ROR1, TAG72, TEM1, TEM8, VEGRR2, HMW-MAA, VEGF, VEGF receptors, P-glycoprotein, erythropoietin (EPO), cadherin, CD4, CD8, CD45, CD117 (c-kit), CD133, HLA-A, HLA-B, HLA-C, chemokine receptor 5 (CCR5), stem cell marker ABCG2 transporter, immunoglobulins, integrins, prostate specific antigen (PSA), prostate stem cell antigen (PSCA), dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrand (DC-SIGN), thyroglobulin, granulocyte-macrophage colony stimulating factor (GM-CSF), myogenic differentiation promoting factor-1 (MyoD-1), Leu-7 (CD57), LeuM-1, cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67 (Ki-67), viral envelope proteins, HIV gp120, and transferrin receptor. Other exemplary tumor antigens are antigens that are present in the extracellular matrix of tumors, such as oncofetal variants of fibronectin, tenascin, or necrotic regions of tumors.

TABLE 2

Exemplary Target Cell Antigens Antigen
5T4
8H9
ABCG2 transporter
AFP
AIM2
ART1
ART4
B7-H3
B7-H6
B-cyclin
BMI1
BRAF
CA9
CABYR
CAIX
cathepsin B
Cav-1
CCR5
CD10
CD117
CD123
CD133
CD138
CD15
CD171
CD19
CD20
CD21
CD22
CD30
CD33
CD38
CD4
CD44
CD44v6
CD44v7/8
CD45
CD70
CD74
CD8
CEA
COX-2

TABLE 2-continued

Exemplary Target Cell Antigens Antigen
CRISP3
CSAG2
CSPG4
CTAG2
DC-SIGN
DHFR
E-cadherin
EGFR
FGFRvIII
EGP2
EGP40
EPCAM
EphA2
EphA2/Eck
ERBB3
ErbB3/4
ERBB4
erythropoietin (EPO)
ETA
EZH2
FAP
FAR
FBP
fetal AchR
Folate Receptor a
Fra-1/Fos1 1
FTHL17
GAGE1
GD2
GD3
Gli1
Glypican-3
GnT-V, β 1, 6-N
GP100
Her2/Neu
HIV sp120
HLA A
HLA B
HLA C
HLA-A2
HLA-A1
HMW-MAA
IL-13Ra2
IL-1Ra
kappa light chain
KDR
Ki67
Lambda
LDHC
Leu-7 (CD57)
LeuM-1
Lewis-Y
LICAM
Livin
MAGEA1
MAGEA3
MAGEA4
MAGEB6
MAPK1
MART-1
MCSP
Mesothelin
MICA
MRP-3
MUC1
MUC16 or CA125
MyoD1
NCAM
necrotic regions of tumors
Nestin
NKG2D ligands
NLRP4
NY-ESO-1
OLIG2

TABLE 2-continued

Exemplary Target Cell Antigens	Antigen
oncofetal variants of fibronectin	
p53	
PB	
P-glycoprotein	
PRAME	
PROX1	
PSA	
PSC1	
PSCA	
PSCA	
PSMA	
Ras	
ROR1	
SART1	
SART2	
SART3	
SOX10	
SOX11	
SOX2	
SPANXA1	
SSX2	
SSX4	
SSX5	
Survivin	
TAG72	
TEM1	
TEM8	
tenascin	
thyroglobulin	
transferrin receptor	
TRP-1	
TRP-2	
TSGA10	
TSSK6	
TULP2	
tyrosinase	
u70/80	
UPAR	
VEGF	
VEGF Receptors	
VEGRR2	
WT-1	
XAGE2	
ZNF165	
$\alpha_5\beta_6$ integrin	
β -catenin	

[0137] In certain embodiments, the antigen recognition domain of an engager molecule specifically binds a tumor-associated antigen (TAA) or a tumor-specific antigen (TSA). In certain embodiments, the antigen recognition domain comprises an antibody or an antibody fragment or an antigen-binding fragment or portion thereof, such as for example, a monoclonal antibody, Fv, a scFv, Fab, minibody, or diabody that is specific for a TAA or TSA. In certain embodiments, the antigen recognition domain of the engager is an scFv that is specific for a TAA or TSA. In a specific embodiment, the TAA or TSA is expressed on a cancer cell. In one embodiment, the TAA or TSA is expressed on a blood cancer cell. In another embodiment, the TAA or TSA is expressed on a cell of a solid tumor. In more specific embodiments, the solid tumor is a glioblastoma, a non-small cell lung cancer, a lung cancer other than a non-small cell lung cancer, breast cancer, prostate cancer, pancreatic cancer, liver cancer, colon cancer, stomach cancer, a cancer of the spleen, skin cancer, a brain cancer other than a glioblastoma, a kidney cancer, a thyroid cancer, or the like. In more specific embodiments, the TAA or TSA is expressed by a tumor cell in an individual. In some embodiments, the

antigen-recognition domain of the engager molecule is specific for one or more target cell antigens shown in Table 2.

EphA2

[0138] In some embodiments, EphA2 is referred to as EPH receptor A2 (ephrin type-A receptor 2; EPHA2; ARCC2; CTPA; CTPP1; or ECK), which is a protein that in humans is encoded by the EPHA2 gene in the ephrin receptor subfamily of the protein-tyrosine kinase family. Receptors in this subfamily generally comprise a single kinase domain and an extracellular region comprising a Cys-rich domain and 2 fibronectin type III repeats; embodiments of the antibodies of the disclosure target any of these domains. An exemplary human EphA2 nucleic sequence is in GenBank® Accession No. NM_004431, and an exemplary human EphA2 polypeptide sequence is in GenBank® Accession No. NP_004422, both of which sequences are incorporated herein in their entirety. An exemplary human EphA2 nucleic sequence is in GenBank® Accession No. NM_004448.2, and an exemplary human EphA2 polypeptide sequence is in GenBank® Accession No. NP_004439, both of which sequences are incorporated herein in their entirety.

[0139] The Eph family, the largest group among tyrosine kinase receptor families, is comprised of the EphA (EphA1-10) or EphB (EphB1-6) subclasses of receptors classified as per their sequence homologies and their binding affinity for their ligands, Ephrins (Eph receptor interacting protein). The human EphA2 gene is located on chromosome 1, encodes a receptor tyrosine kinase of 976 amino acids with an apparent molecular weight of 130 kDa and has a 90% amino acid sequence homology to the mouse EphA2. The Eph family contains an extracellular conserved N-terminal ligand-binding domain followed by a cysteine-rich domain with an epidermal growth factor-like motif and two fibronectin type-III repeats. The extracellular motif is followed by a membrane spanning region and a cytoplasmic region that encompasses a juxtamembrane region, a tyrosine kinase domain, a sterile alpha motif (SAM), and a post synaptic domain (disc large and zona occludens protein (PDZ) domain-binding motif). EphA2 shows 25-35% sequence homologies with other Eph receptors, and the tyrosine residues are conserved within the juxtamembrane and kinase domain.

[0140] EphA2 mRNA expression is observed in the skin, bone marrow, thymus, uterus, testis, prostate, urinary bladder, kidney, small intestine, colon, spleen, liver, lung and brain. EphA2 expression in the colon, skin, kidney and lung was over ten-fold relative to the bone marrow. EphA2 is also expressed during gastrulation in the ectodermal cells and early embryogenesis in the developing hind brain. In the skin, EphA2 is present in keratinocytes of epidermis and hair follicles but not in dermal cells (fibroblasts, vascular cells and inflammatory cells). EphA2 is also expressed in proliferating mammary glands in female mice at puberty and differentially expressed during the estrous cycle. Besides its expression in embryo and in normal adult tissues, EphA2 is overexpressed in several cancers, such as breast cancer, gastric cancer, melanoma, ovarian cancer, lung cancer, gliomas, urinary bladder cancer, prostate cancer, esophageal, renal, colon and vulvar cancers. In particular, a high level of EphA2 is detected in malignant cancer-derived cell lines and advanced forms of cancer. In light of the EphA2 overexpression in pre-clinical models and clinical specimens of

many different types of cancer, the increased level of EphA2 expression is informative in both the prediction of cancer outcomes and in the clinical management of cancer. The differential expression of EphA2 in normal cells compared to cancer cells also signifies its importance as a therapeutic target.

HER2

[0141] In some embodiments, HER2 is referred to as human Epidermal Growth Factor Receptor 2 (Neu, ErbB-2, CD340, or pi 85), which is a protein that in humans is encoded by the ERBB2 gene in the epidermal growth factor receptor (EFR/ErbB) family. HER2 contains an extracellular ligand binding domain, a transmembrane domain, and an intracellular domain that interacts with a multitude of signaling molecules. HER2 is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Dimerization of the receptor results in the autophosphorylation of tyrosine residues within the cytoplasmic domain of the receptors and initiates a variety of signaling pathways leading to cell proliferation and tumorigenesis. Amplification or overexpression of HER2 occurs in approximately 15-30% of breast cancers and 10-30% of gastric/gastroesophageal cancers and serves as a prognostic and predictive biomarker. HER2 overexpression has also been seen in other cancers like ovary, endometrium, bladder, lung, colon, and head and neck. HER2 is overexpressed in 15-30% of invasive breast cancers, which has both prognostic and predictive implications. Overexpression of HER2 protein, determined using IHC was found in 23% and gene amplification determined using FISH in 27% of 200 resected tumors in a gastric cancer study. HER2 overexpression is directly correlated with poorer outcome in gastric cancer. In a study of 260 gastric cancers, HER2 overexpression was an independent negative prognostic factor and HER2 staining intensity was correlated with tumor size, serosal invasion, and lymph node metastases. Other studies also confirmed the negative impact of HER2 overexpression in gastric cancer. HER2 overexpression is reported in 0-83% of esophageal cancers, with a tendency towards higher rates of positivity in adenocarcinoma (10-83%) compared to squamous cell carcinomas (0-56%). Overexpression of HER2 is seen in 20-30% patients with ovarian cancer. In endometrial serous carcinoma, the reported rates of HER2 overexpression range between 14% and 80% with HER2 amplification (by fluorescence in situ hybridization [FISH]) ranging from 21% to 47%. Embodiments of the antibodies of the disclosure target the extracellular ligand binding domain.

Disialoganglioside GD12

[0142] Disialoganglioside GD2 is a sialic acid-containing glycosphingolipid expressed primarily on the cell surface. The function of this carbohydrate antigen is not completely understood; however, it is thought to play an important role in the attachment of tumor cells to extracellular matrix proteins. GD2 expression in normal fetal and adult tissues is primarily restricted to the central nervous system, peripheral nerves, and skin melanocytes, although GD2 expression has been described in the stromal component of some normal tissues and white pulp of the spleen. In malignant cells, GD2 is uniformly expressed in neuroblastomas and most melanomas and to a variable degree in a variety of other tumors, including bone and soft-tissue sarcomas, small cell lung

cancer, and brain tumors. GD2 is present and concentrated on cell surfaces, with the two hydrocarbon chains of the ceramide moiety embedded in the plasma membrane and the oligosaccharides located on the extracellular surface, where they present points of recognition for extracellular molecules or surfaces of neighboring cells. Because of the relatively tumor-selective expression combined with its presence on the cell surface, GD2 is an attractive target for tumor-specific antibody therapy. Embodiments of the antibodies of the disclosure target the extracellular domain.

Therapeutic Molecules

[0143] In some embodiments, the pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and one or more additional nucleic acid sequences that encode one or more therapeutic molecules. As used herein, a “therapeutic molecule” refers to a molecule that enhances the therapeutic efficacy of an oncolytic virus described herein. In general, the therapeutic molecules described herein are proteins, nucleic acids, or a combination thereof. Exemplary therapeutic molecules include cytokines, chemokines, antibodies or antigen binding fragments thereof, proteases, RNA polynucleotides, and DNA polynucleotides.

[0144] In some embodiments, the therapeutic molecule is capable of increasing or enhancing the therapeutic efficacy of an oncolytic virus described herein by stimulating, or activating, a cellular immune response. In some embodiments, the therapeutic molecule is capable of increasing or enhancing the therapeutic efficacy of an oncolytic virus described herein by antagonizing a suppressive or regulatory immune response. In some embodiments, reduction of a suppressive immune response occurs in a tumor microenvironment. In some instances, reduction of a suppressive immune response by the therapeutic molecule enhances the oncolytic effects of a pseudotyped oncolytic virus described herein. In some embodiments, the therapeutic molecule further reduces immunoregulatory T cell activity in a subject treated with a pseudotyped oncolytic virus described herein. In some embodiments, the therapeutic molecule modulates or impairs the production level of a protein at a nucleic acid level or at a protein level, or disrupts a protein function.

[0145] In some embodiments, a nucleic acid sequence encoding an engager molecule and a nucleic acid sequence encoding one or more therapeutic molecules are comprised within the same vector. In some embodiments, a nucleic acid sequence encoding an engager molecule and a nucleic acid sequence encoding one or more therapeutic molecules are comprised in different vectors. In some embodiments, the vector is a viral vector. In some instances, a therapeutic molecule comprises a polypeptide or a nucleic acid polymer. In some embodiments, the additional nucleic acid sequence is inserted into a viral vector which allows higher expression levels and production of the therapeutic molecule.

[0146] In some embodiments, the therapeutic molecule is a polypeptide. In some instances, the polypeptide is an immune modulator polypeptide. In some cases, the immune modulator polypeptide is a cytokine, a co-stimulatory domain, a domain that inhibits negative regulatory molecules of T-cell activation (e.g., an immune checkpoint inhibitor), or a combination thereof.

[0147] In some embodiments, the immune modulator polypeptide modulates the activity of one or more cell types, such as regulatory T cells (Tregs), myeloid-derived suppres-

sor cells (MDSCs), dendritic cells, and/or T cells. Exemplary Treg modulatory polypeptides include CCR4, Helios, TIGIT, GITR, neuropilin, neuritin, CD103, CTLA-4, ICOS, and Swap70. Exemplary MDSC modulatory polypeptides include TGF- β R1, GM-CSF, INF γ , interleukins such as IL- β , IL-1F2, IL-6, IL-10, IL-12, IL-13, IL-6, IL-6Ra, IL-6/IL-6R complex, TGF- β 1, M-CSF, Prostaglandin E2/PGE2, Prostaglandin E Synthase 2, S100A8, and VEGF. Exemplary dendritic-cell directed modulatory polypeptides include GM-CSF and/or IL-13. Exemplary T cell-directed modulatory polypeptides include IL-12, OX-40, GITR, CD28, or IL-28, or an antibody that agonizes a pathway comprising IL-12, OX-40, GITR, CD28, or IL-28.

[0148] In other embodiments, the therapeutic polypeptides modulate the fibrotic stroma. Exemplary fibrotic stromal polypeptides include fibroblast activation protein-alpha (FAP). In some embodiments, the therapeutic polypeptide is a protease. In particular embodiments, the protease is capable of altering the extracellular matrix, particularly the extracellular matrix within a tumor microenvironment. Exemplary proteases include matrixmetalloproteases (MMP), such as MMP9, collagenases, and elastases.

Cytokines as Therapeutic Molecules

[0149] In some cases, the immune modulator polypeptide is a cytokine. Cytokines are a category of small proteins between about 5-20 kDa that are involved in cell signaling and include chemokines, interferons (INF), interleukins (IL), and tumor necrosis factors (TNF), among others. Chemokines play a role as a chemoattractant to guide the migration of cells and are classified into four subfamilies: CXC, CC, CX3C, and XC. Exemplary chemokines include chemokines from the CC subfamily, such as CCL1, CCL2 (MCP-1), CCL3, CCL4, CCL5 (RANTES), CCL6, CCL7, CCL8, CCL9 (or CCL10), CCL11, CCL12, CCL13, CCL14, CCL15, CCL16, CCL17, CCL18, CCL19, CCL20, CCL21, CCL22, CCL23, CCL24, CCL25, CCL26, CCL27, and CCL28; the CXC subfamily, such as CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL15, CXCL16, and CXCL17; the XC subfamily, such as XCL1 and XCL2; and the CX3C subfamily, such as CX3CL1.

[0150] Interferons (IFNs) comprise Type I IFNs (e.g. IFN- α , IFN- β , IFN- ϵ , IFN- κ , and IFN- ϕ), Type II IFNs (e.g. IFN- γ), and Type III IFNs. In some embodiments, IFN- α is further classified into about 13 subtypes including IFNA1, IFNA2, IFNA4, IFNA5, IFNA6, IFNA7, IFNA8, IFNA10, IFNA13, IFNA14, IFNA16, IFNA17, and IFNA21.

[0151] Interleukins are a broad class of cytokine that promote the development and differentiation of immune cells, including T and B cells, and other hematopoietic cells. Exemplary interleukins include IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8 (CXCL8), IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-19, IL-20, IL-21, IL-22, IL-23, IL-24, IL-25, IL-26, IL-27, IL-28, IL-29, IL-30, IL-31, IL-32, IL-33, IL-35, and IL-36.

[0152] Tumor necrosis factors (TNFs) are a group of cytokines that modulate apoptosis. In some instances, there are about 19 members within the TNF family, including, not limited to, TNF α , lymphotoxin-alpha (LT- α), lymphotoxin-beta (LT- β), T cell antigen gp39 (CD40L), CD27L, CD30L, FASL, 4-1BBL, OX40L, and TNF-related apoptosis inducing ligand (TRAIL).

[0153] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes a cytokine selected from chemokine, interferon, interleukin, or tumor necrosis factor. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodes a chemokine, an interferon, an interleukin, and/or a tumor necrosis factor.

Co-Stimulatory Domains as Therapeutic Molecules

[0154] In some embodiments, the immune modulator polypeptide is a co-stimulatory domain. In some cases, the co-stimulatory domain enhances antigen-specific cytotoxicity. In some cases, the co-stimulatory domain further enhances cytokine production. In some embodiments, the co-stimulatory domain comprises CD27, CD28, CD70, CD80, CD83, CD86, CD134 (OX-40), CD134L (OK-40L), CD137 (41BB), CD137L (41BBL), or CD224.

[0155] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes a co-stimulatory domain. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes a co-stimulatory domain selected from CD27, CD28, CD80, CD83, CD86, CD134, CD134L, CD137, CD137L, or CD224.

Immune Checkpoint Inhibitors as Therapeutic Molecules

[0156] In some embodiments, the immune modulator polypeptide is an immune checkpoint inhibitor polypeptide that inhibits a negative regulatory molecule of T-cell activation. Immune checkpoint inhibitor bind to immune checkpoint molecules, which are a group of molecules on the cell surface of CD4 and CD8 T cells. In some instances, these molecules effectively serve as “brakes” to down-modulate or inhibit an anti-tumor immune response. An immune checkpoint inhibitor refers to any molecule that modulates or inhibits the activity of an immune checkpoint molecule. In some instances, immune checkpoint inhibitors include antibodies, antibody-derivatives (e.g., Fab fragments, scFvs, minibodies, diabodies), antisense oligonucleotides, siRNA, aptamers, or peptides.

[0157] Exemplary immune checkpoint molecules include, but are not limited to, programmed death-ligand 1 (PDL1, also known as B7-H1, CD274), programmed death 1 (PD-1), PD-L2 (B7-DC, CD273), LAG3, TIM3, 2B4, A2aR, B7H1, B7H3, B7H4, BTLA, CD2, CD16, CD27, CD28, CD30, CD40, CD70, CD80, CD86, CD137, CD160, CD226, CD276, DR3, GAL9, GITR, HAVCR2, HVEM, IDO1, IDO2, inducible T cell costimulatory (ICOS), KIR, LAIR, LIGHT, macrophage receptor with collageneous structure (MARCO), OX-40, phosphatidylserine (PS), SLAM, TIGHT, VISTA, and VTCN1. In some embodiments, an immune checkpoint inhibitor inhibits one or more of PDL1, PD-1, CTLA-4, PD-L2, LAG3, TIM3, 2B4, A2aR, B7H1, B7H3, B7H4, BTLA, CD2, CD27, CD28, CD30, CD40, CD70, CD80, CD86, CD137, CD160, CD226, CD276, DR3, GAL9, GITR, HAVCR2, HVEM, IDO1, IDO2, ICOS, KIR, LAIR1, LIGHT, MARCO, OX-40, PS, SLAM, TIGHT, VISTA, and VTCN1.

[0158] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodes an immune checkpoint inhibitor. In some embodiments, the immune checkpoint inhibitor reduces the expression or activity of one or more immune checkpoint molecules. In some embodiments, the immune checkpoint inhibitor reduces the interaction between an immune checkpoint molecule and its ligand (e.g., reduced the interaction between PD-1 and PDL1). In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes an immune checkpoint inhibitor that inhibits one or more of PDL1, PD-1, CTLA-4, PD-L2, LAG3, TIM3, 2B4, A2aR, B7H1, B7H3, B7H4, BTLA, CD2, CD27, CD28, CD30, CD40, CD70, CD80, CD86, CD137, CD160, CD226, CD276, DR3, GAL9, GITR, HAVCR2, HVEM, IDO1, IDO2, ICOS, KIR, LAIR1, LIGHT, MARCO, OX-40, PS, SLAM, TIGHT, VISTA, and VTCN1.

[0159] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain, wherein the therapeutic molecule domain is an immune checkpoint inhibitor. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain, wherein the therapeutic molecule domain is an immune checkpoint inhibitor that inhibits one or more of PDL1, PD-1, CTLA-4, PD-L2, LAG3, TIM3, 2B4, A2aR, B7H1, B7H3, B7H4, BTLA, CD2, CD27, CD28, CD30, CD40, CD70, CD80, CD86, CD137, CD160, CD226, CD276, DR3, GAL9, GITR, HAVCR2, HVEM, IDO1, IDO2, ICOS, KIR, LAIR1, LIGHT, MARCO, OX-40, PS, SLAM, TIGHT, VISTA, and VTCN1.

[0160] a) PDL1 Inhibitors

[0161] In some embodiments, the immune checkpoint inhibitor is an inhibitor of PDL1. In some embodiments, the immune checkpoint inhibitor is an antibody (e.g., a monoclonal antibody or antigen-binding fragments thereof, or a humanized or chimeric antibody or antigen-binding fragments thereof) against PDL1. In some embodiments, the inhibitor of PDL1 reduces the expression or activity of PDL1. In some embodiments, the inhibitor of PDL1 reduces the interaction between PD-1 and PDL1. Exemplary inhibitors of PDL1 include anti-PDL1 antibodies, RNAi molecules (e.g., anti-PDL1 RNAi), antisense molecules (e.g., an anti-PDL1 antisense RNA), or dominant negative proteins (e.g., a dominant negative PDL1 protein). Exemplary anti-PDL1 antibodies include clone EH12; MPDL3280A (Genentech, RG7446); anti-mouse PDL1 antibody Clone 10F. 9G2 (BioXcell, Cat # BE0101); anti-PDL1 monoclonal antibody MDX-1105 (BMS-936559 and BMS-935559 from Bristol-Meyers Squibb; MSB0010718C; mouse anti-PDL1 Clone 29E.2A3; and AstraZeneca's MED14736.

[0162] In some embodiments, the anti-PDL1 antibody is an anti-PDL1 antibody disclosed in International PCT Publication Nos. WO 2013/079174; WO 2010/036959; WO 2013/056716; WO 2007/005874; WO 2010/089411; WO 2010/077634; WO 2004/004771; WO 2006/133396; WO 2013/09906; WO 2012/145493; WO 2013/181634; U.S. Patent Application Publication No. 20140294898; or Chinese Patent Application Publication No. CN 101104640.

[0163] In some embodiments, the PDL1 inhibitor is a nucleic acid inhibitor of PDL1 expression. In some embodiments, the PDL1 inhibitor is one disclosed in international PCT Publication Nos. WO 2011/127180 or WO 2011/000841. In some embodiments, the PDL1 inhibitor is rapamycin.

[0164] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to PDL1 (e.g., an anti-PDL scFv). In such embodiments, the pseudotyped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.

[0165] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to PDL1. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a PDL1 inhibitor. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes PDL1 inhibitor selected from EH12, Genentech's MPDL3280A (RG7446); Anti-mouse PDL1 antibody Clone 10F.9G2 (Cat # BE0101) from BioXcell; anti-PDL1 monoclonal antibody MDX-1105 (BMS-936559) and BMS-935559 from Bristol-Meyers Squibb; MSB0010718C; mouse anti-PDL1 Clone 29E.2A3; and AstraZeneca's MED14736.

[0166] b) PD-L2 Inhibitors

[0167] In some embodiments, the immune checkpoint inhibitor is an inhibitor of PD-L2. In some embodiments, the inhibitor of PD-L2 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against PD-L2. In some embodiments, the inhibitor of PD-L2 reduces the expression or activity of PD-L2. In other embodiments, the inhibitor of PD-L2 reduces the interaction between PD-1 and PD-L2. Exemplary inhibitors of PD-L2 include antibodies (e.g., an anti-PD-L2 antibody), RNAi molecules (e.g., an anti-PD-L2 RNAi), antisense molecules (e.g., an anti-PD-L2 antisense RNA), or dominant negative proteins (e.g., a dominant negative PD-L2 protein).

[0168] In some embodiments, the PD-L2 inhibitor is GlaxoSmithKline's AMP-224 (Amplimmune). In some embodiments, the PD-L2 inhibitor is rH IgM12B7.

[0169] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a PD-L2 inhibitor. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes PD-L2 inhibitor selected from AMP-224 (Amplimmune) or rH IgM12B7.

[0170] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to PDL2. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule

comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to PD-L2 (e.g., an anti-PDL2 scFv). In such embodiments, the pseudotyped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.

[0171] c) PD-1 Inhibitors

[0172] In some embodiments, the immune checkpoint inhibitor is an inhibitor of PD1. In some embodiments, the inhibitor of PDL1 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against PD-1. Exemplary antibodies against PD-1 include: anti-mouse PD-1 antibody Clone J43 (Cat # BE0033-2) from BioXcell; anti-mouse PD-1 antibody Clone RMP1-14 (Cat # BE0146) from BioXcell; mouse anti-PD-1 antibody Clone EH12; Merck's MK-3475 anti-mouse PD-1 antibody (Keytruda, pembrolizumab, lambrolizumab); and AnaptysBio's anti-PD-1 antibody, known as ANB011; antibody MDX-1 106 (ONO-4538); Bristol-Myers Squibb's human IgG4 monoclonal antibody nivolumab (Opdivo®, BMS-936558, MDX1106); AstraZeneca's AMP-514, and AMP-224; and Pidilizumab (CT-011), CureTech Ltd.

[0173] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a PD1 inhibitor selected from ANB011; antibody MDX-1 106 (ONO-4538); Bristol-Myers Squibb's human IgG4 monoclonal antibody nivolumab (Opdivo®, BMS-936558, MDX1106); AstraZeneca's AMP-514, and AMP-224; and Pidilizumab (CT-011). In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes PD-1 inhibitor selected from ANB011; antibody MDX-1 106 (ONO-4538); Bristol-Myers Squibb's human IgG4 monoclonal antibody nivolumab (Opdivo®, BMS-936558, MDX1106); AstraZeneca's AMP-514, and AMP-224; and Pidilizumab (CT-011).

[0174] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a PD-L2 inhibitor. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodes PD-L2 inhibitor selected from AMP-224 (Amplimmune) or rH IgM1287.

[0175] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to PD1. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to PD1 (e.g., an anti-PD1 scFv). In such embodiments, the pseudotyped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.

[0176] d) CTLA-4 Inhibitors

[0177] In some embodiments, the immune checkpoint inhibitor is an inhibitor of CTLA-4. In some embodiments,

the an inhibitor of CTLA-4 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against CTLA-4. In one embodiment, the anti-CTLA-4 antibody blocks the binding of CTLA-4 to CD80 (B7-1) and/or CD86 (B7-2) expressed on antigen presenting cells. Exemplary antibodies against CTLA-4 include ipilimumab (also known as Yervoy®, MDX-010, BMS-734016 and MDX-101, Bristol Meyers Squibb); anti-CTLA4 antibody clone 9H10 from Millipore; tremelimumab (CP-675,206, ticilimumab, Pfizer); and anti-CTLA4 antibody clone BNI3 from Abcam.

[0178] In some embodiments, the anti-CTLA-4 antibody is one disclosed in any of International PCT Publication Nos. WO 2001/014424; WO 2004/035607; WO 2003/086459; WO 2012/120125; WO 2000/037504; WO 2009/100140; WO 2006/09649; WO 2005/092380; WO 2007/123737; WO 2006/029219; WO 2010/0979597; WO 2006/12168; WO 1997/020574 U.S. Patent Application Publication No. 2005/0201994; or European Patent Application Publication No. EP 1212422. Additional CTLA-4 antibodies are described in U.S. Pat. Nos. 5,811,097; 5,855,887; 5,977,318; 6,051,227; 6,682,736; 6,984,720; 7,109,003; 7,132,281; International PCT Publication Nos. WO 01/14424 and WO 00/37504; and in U.S. Patent Application Publication Nos. 2002/0039581 and 2002/086014. In some embodiments, the anti-CTLA-4 antibody is one disclosed in any of International PCT Publication Nos. WO 1998/42752; U.S. Pat. Nos. 6,682,736 and 6,207,156; Hurwitz et al, Proc. Natl. Acad. Sci. USA, 95(17): 10067-10071 (1998); Camacho et al, J. Clin. Oncol., 22(145): Abstract No. 2505 (2004) (antibody CP-675206); Mokyr et al, Cancer Res., 58:5301-5304 (1998).

[0179] In some embodiments, the CTLA-4 inhibitor is a CTLA-4 ligand as disclosed in International PCT Publication No. WO 1996/040915.

[0180] In some embodiments, the CTLA-4 inhibitor is a nucleic acid inhibitor of CTLA-4 expression, such as an RNAi molecule. In some embodiments, anti-CTLA4 RNAi molecules take the form of those described in any of International PCT Publication Nos. WO 1999/032619 and WO 2001/029058; U.S. Patent Application Publication Nos. 2003/0051263, 2003/0055020, 2003/0056235, 2004/265839, 2005/0100913, 2006/0024798, 2008/0050342, 2008/0081373, 2008/0248576, and 2008/055443; and/or U.S. Pat. Nos. 6,506,559; 7,282,564; 7,538,095; and 7,560,438. In some instances, the anti-CTLA4 RNAi molecules are double stranded RNAi molecules, such as those disclosed in European Patent No. EP 1309726. In some instances, the anti-CTLA4 RNAi molecules are double stranded RNAi molecules, such as those described in U.S. Pat. Nos. 7,056,704 and 7,078,196. In some embodiments, the CTLA4 inhibitor is an aptamer, such as those described in International PCT Publication No. WO 2004/081021, such as Del 60 or M9-14 del 55. Additionally, in some embodiments, the anti-CTLA4 RNAi molecules of the present invention are RNA molecules, such as those described in U.S. Pat. Nos. 5,898,031, 6,107,094, 7,432,249, and 7,432,250, and European Application No. EP 0928290.

[0181] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a CTLA-4 inhibitor. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic

acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodes a CTLA-4 inhibitor selected from ipilimumab (also known as Yervoy®, MDX-010, BMS-734016 and MDX-101); anti-CTLA4 Antibody, clone 9H10 from Millipore; Pfizer's tremelimumab (CP-675,206, tictilimumab); and anti-CTLA4 antibody clone BNI3 from Abcam.

[0182] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to CTLA-4. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to CTLA-4 (e.g., an anti-CTLA-4 scFv). In such embodiments, the pseudotyped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.

[0183] e) LAG3 Inhibitors

[0184] In some embodiments, the immune checkpoint inhibitor is an inhibitor of LAG3 (CD223). In some embodiments, the inhibitor of LAG3 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against LAG3. In additional embodiments, an antibody against LAG3 blocks the interaction of LAG3 with major histocompatibility complex (MHC) class II molecules. Exemplary antibodies against LAG3 include: anti-Lag-3 antibody clone eBioC9B7W (C97W) from eBioscience; anti-Lag3 antibody LS-B2237 from LifeSpan Biosciences; IMP321 (Immufact) from Immunetep; anti-Lag3 antibody BMS-986016; and the LAG-3 chimeric antibody A9H12. In some embodiments, the anti-LAG3 antibody is an anti-LAG3 antibody disclosed in International PCT Publication Nos. WO 2010/019570; WO 2008/132601; or WO 2004/078928.

[0185] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes LAG3 inhibitor. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodes LAG3 inhibitor selected from anti-Lag-3 antibody clone eBioC9B7W (C9B7W) from eBioscience; anti-Lag3 antibody LS-B2237 from LifeSpan Biosciences; IMP321 (Immufact) from Immunetep; anti-Lag3 antibody BMS-986016; and the LAG-3 chimeric antibody A9H12.

[0186] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to LAG3. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to LAG3 (e.g., an anti-LAG3 scFv). In such embodiments, the pseudotyped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.

[0187] f) TIM3 Inhibitors

[0188] In some embodiments, the immune checkpoint inhibitor is an inhibitor of TIM3. In some embodiments, the

inhibitor of TIM3 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against TIM3 (also known as HAVCR2). In additional embodiments, an antibody against TIM3 blocks the interaction of TIM3 with galectin-9 (Gal9). In some embodiments, the anti-TIM3 antibody is an anti-TIM3 antibody disclosed in International PCT Publication Nos. WO 2013/006490; WO 2011/55607; WO 2011/159877; or WO 2001/17057. In another embodiment, a TIM3 inhibitor is a TIM3 inhibitor disclosed in International PCT Publication No. WO 2009/052623.

[0189] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes TIM3 inhibitor. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule and an additional nucleic acid sequence that encodes TIM3 inhibitor such as an antibody against TIM3 blocks the interaction of TIM3 with galectin-9 (Gal9).

[0190] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to TIM3. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to LAG3 (e.g., an anti-TIM3 scFv). In such embodiments, the pseudotyped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.

[0191] g) B7-H3 Inhibitors

[0192] In some embodiments, the immune checkpoint inhibitor is an inhibitor of B7-3. In some embodiments, the inhibitor of B7-H3 is an antibody (e.g., a monoclonal antibody or fragments, or a humanized or chimeric antibody or fragments thereof) against B7-H3. In some embodiments, the inhibitor of B7-H3 is MGA271 (MacroGenics).

[0193] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and an antigen recognition domain, and an additional nucleic acid sequence that encodes a B7-H3 inhibitor. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager and an additional nucleic acid sequence that encodes a B7-H3 inhibitor such as MGA271.

[0194] In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain and a therapeutic molecule domain that binds to B7-H3. In some embodiments, a pseudotyped oncolytic virus comprises a nucleic acid sequence that encodes an engager molecule comprising an activation domain that binds to CD3 (e.g., an anti-CD3 scFv) and a therapeutic molecule domain that binds to B7-H3 (e.g., an anti-B7-H3 scFv). In such embodiments, the pseudotyped oncolytic virus may further comprise an additional nucleic acid sequence that encodes an additional therapeutic molecule.

[0195] In certain other embodiments, the engager molecule additionally comprises one or more other domains, e.g., one or more of a cytokine, a co-stimulatory domain, a

domain that inhibits negative regulatory molecules of T-cell activation, or a combination thereof. In alternative embodiments, the engager is a first polypeptide provided within the pseudotyped oncolytic virus with a second polypeptide having one or more other domains, e.g., one or more of a cytokine, a co-stimulatory domain, a domain that inhibits negative regulatory molecules of T-cell activation, or a combination thereof. In some embodiments, the first polypeptide and the second polypeptide are encoded in the same vector (e.g., viral vector). In some embodiments, the first polypeptide and the second polypeptide are encoded in different vectors (e.g., viral vectors). In specific embodiments, the cytokine is IL-15, IL-2, and/or IL-7. In other specific embodiments, the co-stimulatory domain is CD27, CD80, CD83, CD86, CD134, or CD137. In other specific embodiments, the domain that inhibits negative regulatory molecules of T-cell activation is PD-1, PDL1, CTLA4, or B7-H4.

Anti-Angiogenic Factors as Therapeutic Molecules

[0196] In some embodiments, the therapeutic molecule is a polypeptide such as an anti-angiogenic factor. Angiogenesis or neovascularization is the formation of new microvessels from an established vascular network. In some instances, the angiogenic process involves communications from multiple cell types such as endothelial cells (EC) and circulating endothelial progenitor cells, pericytes, vascular smooth muscle cells, stromal cells, including stem cells, and parenchymal cells. These communications or interactions occur through secreted factors such as VEGF, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), or angiopoietins. In some instances, an anti-angiogenic factor is a polypeptide that disrupts one or more of the interactions of the cell types: endothelial cells (EC) and circulating endothelial progenitor cells, pericytes, vascular smooth muscle cells, stromal cells, including stem cells, and parenchymal cells. In some instances, an anti-angiogenic factor is a polypeptide that disrupts one or more of the interactions of secreted factors such as VEGF, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF) or angiopoietins.

[0197] In other embodiments, provided are pseudotyped oncolytic viruses comprising nucleic acids that encode therapeutic polypeptides that modulate regulatory T cells. In some instances, regulatory T cells maintain the tolerance to self-antigens and in some instances abrogate autoimmunity. In some cases, Treg suppresses or downregulates induction and proliferation of effector T cells. Exemplary Treg modulatory polypeptides include CCR4, Helios, TIGIT, GITR, neuropilin, neuritin, CD103, CTLA-4, ICOS, and Swap70.

[0198] In other embodiments, provided are pseudotyped oncolytic viruses comprising nucleic acids that encode therapeutic polypeptides that modulate myeloid-derived suppressor cells (MDSCs). MDSCs are a heterogenous population of immune cells from the myeloid lineage (a cluster of different cell types that originate from bone marrow stem cells), to which also includes dendritic cells, macrophages and neutrophils. In some instances, myeloid cells interact with T cells to regulate the T cell's function. Exemplary MDSC modulatory polypeptides include TGF- β 1, GM-CSF, IFN- γ , Interleukins (e.g., IL- β , IL-1F2, IL-6, IL-10, IL-12, IL-13, IL-6, IL-6Ra, IL-6/IL-6R complex, TGF- β 1, M-CSF, Prostaglandin E2/PGE2, Prostaglandin E Synthase 2, S100A8, and VEGF.

[0199] In other embodiments, provided are pseudotyped oncolytic viruses comprising nucleic acids that encode therapeutic polypeptides that modulate the fibrotic stroma. In some embodiments, fibrosis occurs in response to inflammation, either chronic or recurrent. Over time, the repeated bouts of inflammation irritate and scar the tissue, causing buildups of fibrous tissue. In some instances, if enough fibrous material develops, it turns into stromal fibrosis. Exemplary fibrotic stromal polypeptides include fibroblast activation protein-alpha (FAP).

Nucleic Acid Polymers as Therapeutic Molecules

[0200] In some embodiments, the therapeutic molecule is a nucleic acid polymer. In some instances, the nucleic acid polymer is a RNA polymer. In some instances, the RNA polymer is an antisense polymer those sequence is complementary to a microRNA (miRNA or miR) target sequence. In some instances, the RNA polymer is a microRNA polymer. In some embodiments, the RNA polymer comprises a DNA-directed RNAi (ddRNAi) sequence, which enables in vivo production of short hairpin RNAs (shRNAs).

[0201] In some embodiments, a microRNA polymer is a short non-coding RNA that is expressed in different tissue and cell types which suppresses the expression of a target gene. For example, miRNAs are transcribed by RNA polymerase 11 as part of the capped and polyadenylated primary transcripts (pri-miRNAs). In some instances, the primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. In some instances, the mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and in some instances results in translational inhibition or destabilization of the target mRNA.

[0202] In some instances, dysregulated microRNA expression is correlated with one or more types of cancer. In some embodiments, the microRNA is referred to as an oncomiR. In some instances, the dysregulated microRNA expression is an elevated expression. In some instances, the elevated expression level of microRNA correlates to one or more types of cancer. For example, overexpression of microRNA-155 (miR-155) has been observed in cancers such as Burkitt lymphoma, or laryngeal squamous cell carcinoma (LSCC) and overexpression of microRNA-21 (miR-21) has been observed in breast cancer.

[0203] In some embodiments, exemplary microRNAs with an elevated expression level include, but are not limited to, miR-10 family (e.g., miR-10b), miR-17, miR-21, miR-106 family (e.g., miR-106a), miR-125 family (e.g., miR-125b), miR-145, miR-146 family (e.g., miR-146a, miR-146b), miR-155, miR-96, miR-182, miR-183, miR-221, miR-222, and miR-1247-5p.

[0204] In some instances, the nucleic acid polymer is an antisense polymer those sequence complements an oncomiR. In some instances, the nucleic acid polymer is an antisense polymer those sequence complements an oncomiR that is characterized with an overexpression. In some instances, the nucleic acid polymer is an antisense polymer those sequence complements a microRNA target sequence. In some instances, the nucleic acid polymer is an antisense polymer those sequence complements a microRNA target

sequence that is characterized with an overexpression. In some instances, the therapeutic molecule is an antisense polymer those sequence complements a microRNA target sequence. In some instances, the therapeutic molecule is an antisense polymer those sequence complements a microRNA target sequence that is characterized with an overexpression. In some instances, the overexpression level is relative to the endogenous expression level of the microRNA.

[0205] In some instances, the dysregulated microRNA expression is a reduced expression. In some instances, the reduced expression level of microRNA correlates to one or more types of cancer. For example, a depleted level of miR-31 has been observed in both human and mouse metastatic breast cancer cell lines.

[0206] In some embodiments, exemplary microRNAs with reduced expression levels include, but are not limited to, miR-31, miR-34 family (e.g., miR34a, miR-34b, and miR-34c), miR-101, miR-126, miR-145, miR-196a, and the miR-200 family.

[0207] In some instances, the nucleic acid polymer is an oncomiR. In some instances, the oncomiR is equivalent to an endogenous oncomiR wherein the endogenous oncomiR is characterized with a reduced expression level. In some instances, the nucleic acid polymer is a microRNA polymer. In some instances, the therapeutic molecule is a microRNA polymer. In some instances, the microRNA is equivalent to an endogenous microRNA polymer wherein the endogenous microRNA is characterized with a reduced expression level.

[0208] As described above, in some instances the RNA polymer comprises a DNA-directed RNAi (ddRNAi) sequence. In some instances, a ddRNAi construct encoding a shRNA is packaged into a viral vector such as a viral vector of a pseudotyped oncolytic virus described herein. In some instances upon entry into the target cell (e.g., a tumor cell), the viral genome is processed to produce the encoded shRNAs. The shRNAs are then processed by endogenous host systems and enter the RNAi pathway to modulate or silence the desired gene target. In some instances, the gene target is a gene that is overexpressed in a cancer type. In some instances, the gene target is a gene that is overexpressed in a solid tumor. In some instances, the gene target is a gene that is overexpressed in a hematologic cancer. Exemplary genes that are overexpressed in cancer include, but are not limited to, TP53, human epidermal growth factor receptor 2 (HER2), mucin 1-cell surface associated (MUC1), human pituitary tumour-transforming gene 1 (hPPTG1), prostate and breast cancer overexpressed gene 1 protein (PBOV1), and the like.

[0209] In some instances, the nucleic acid polymer comprises a ddRNAi sequence. In some instances, the nucleic acid polymer is comprises a ddRNAi sequence which targets a gene that is overexpressed in a cancer. In some instances, the therapeutic molecule comprises a ddRNAi sequence. In some instances, the therapeutic molecule comprises a ddRNAi sequence which targets a gene that is overexpressed in a cancer.

Exemplarily Engager Molecules

[0210] In some embodiments, the engager molecules described herein comprise a bi-specific antibody construct comprising an activation domain and an antigen recognition domain, in which the activation domain interacts or binds to an effector cell surface receptor shown in Table 1; and the

antigen recognition domain interacts or binds to a target-cell antigen shown in Table 2. In some embodiments, the engager molecules described herein comprise a bi-specific antibody construct comprising an activation domain and a therapeutic molecule domain, in which the activation domain interacts or binds to an effector cell surface receptor shown in Table 1; and the therapeutic molecule domain interacts or binds to a cell surface antigen shown in Table 2.

[0211] In some embodiments, the engager molecules provided herein comprise an activation domain, wherein the activation domain comprises an anti-CD3 scFv. In some embodiments, the anti-CD3 scFv comprises a light chain variable fragment comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 20 and a heavy chain variable fragment comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 22. In some embodiments, the anti-CD3 scFv comprises a light chain variable fragment comprising an amino acid sequence that is 100% identical to the amino acid sequence of SEQ ID NO: 20 and a heavy chain variable fragment that is 100% identical to the amino acid sequence of SEQ ID NO: 22. In some embodiments, the anti-CD3 scFv comprises a light chain variable fragment comprising the amino acid sequence of SEQ ID NO: 20 and a heavy chain variable fragment comprising the amino acid sequence of SEQ ID NO: 22. In some embodiments, the anti-CD3 scFv comprises a light chain variable fragment consisting of the amino acid sequence of SEQ ID NO: 20 and a heavy chain variable fragment consisting of the amino acid sequence of SEQ ID NO: 22.

[0212] In some embodiments, the engager molecules provided herein comprise an activation domain, wherein the activation domain comprises an anti-CD3 scFv, wherein the anti-CD3 scFv comprises a light chain variable fragment nucleic acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 19 and a heavy chain variable fragment nucleic acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 21. In some embodiments, the anti-CD3 scFv comprises a light chain variable fragment nucleic acid sequence that is 100% identical to the nucleic acid sequence of SEQ ID NO: 19 and a heavy chain variable fragment nucleic acid sequence that is 100% identical to the amino acid sequence of SEQ ID NO: 21. In some embodiments, the anti-CD3 scFv comprises a light chain variable fragment nucleic acid sequence comprising SEQ ID NO: 19 and a heavy chain variable fragment nucleic acid sequence comprising SEQ ID NO: 21. In some embodiments, the anti-CD3 scFv comprises a light chain variable fragment nucleic acid sequence consisting of SEQ ID NO: 19 and a heavy chain variable fragment nucleic acid sequence consisting of SEQ ID NO: 21.

[0213] In some embodiments, the engager molecules provided herein comprise an antigen recognition domain, wherein the antigen recognition domain comprises an anti-CD19 scFv. In some embodiments, the anti-CD19 scFv comprises a light chain variable fragment comprising an

[0219] In some embodiments, the engager molecules comprise an activation domain comprising an scFv that binds to CD3 and an antigen recognition domain comprising an scFv that binds to CD19, referred to herein as a CD19-CD3 BiTE, or a CD19 BiTE. A schematic of an exemplary CD19-CD3 BiTE is shown in FIG. 1 (SEQ ID NO: 44). In such embodiments, the anti-CD3 scFv and the anti-CD19 scFv are linked together by a G4S linker (SEQ ID NO: 6). In some embodiments, the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes a CD19-CD3 BiTE and a second nucleic acid sequence encodes a therapeutic molecule such as IL-15 (FIG. 2, SEQ ID NO: 53), IL-12 (FIG. 3, SEQ ID NO: 54), or CXCL10 (FIG. 4, SEQ ID NO: 55). In such embodiments, the CD19-CD3 BiTE (e.g., SEQ ID NO: 44) is linked to the therapeutic molecule, e.g., IL-15 (SEQ ID NO: 24), IL-12 p35 (SEQ ID NO: 28), IL-12 p40 (SEQ ID NO: 26), and/or CXCL10 (SEQ ID NO: 30), by a T2A self-cleaving peptide linker (SEQ ID NO: 14).

[0220] In some embodiments, the engager molecules comprise an activation domain comprising an scFv that binds to CD3 and a therapeutic molecule domain comprising a SIRP1 α polypeptide fragment that binds to CD47 (SEQ ID NO: 32), referred to herein as an SIRP1 α -CD3 BiTE or a SIRP1 α BiTE. A schematic of an exemplary SIRP1 α -CD3 BiTE is shown in FIG. 5 (SIRP1 α -CD3 (SL), SEQ ID NO: 46) and FIG. 6 (SIRP1 α -CD3 (LL), SEQ ID NO: 48). In some embodiments, the anti-CD3 scFv and the SIRP1 α peptide fragment are linked together by a single amino acid linker, or a “short linker” (SL) (e.g., SIRP1 α -CD3 (SL) as shown in FIG. 5). In some embodiments, the anti-CD3 scFv and the SIRP1 α peptide fragment are linked together by G4S linker, or a “long linker” (LL) (e.g., SIRP1 α -CD3 (LL) as shown in FIG. 6). In some embodiments, the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes a SIRP1 α -CD3 BiTE and a second nucleic acid sequence encodes a therapeutic molecule such as IL-15 (FIG. 7, SEQ ID NO: 56 and FIG. 8, SEQ ID NO: 57), IL-12 (FIG. 9, SEQ ID NO: 58 and FIG. 10, SEQ ID NO: 59), or CXCL10 (FIG. 11, SEQ ID NO: 60 and FIG. 12, SEQ ID NO: 61). In such embodiments, the SIRP1 α -CD3 BiTE (e.g., SEQ ID NO: 46 or SEQ ID NO: 48) is linked to the therapeutic molecule, e.g., IL-15 (SEQ ID NO: 24), IL-12 p35 (SEQ ID NO: 28), IL-12 p40 (SEQ ID NO: 26), and/or CXCL10 (SEQ ID NO: 30), by a T2A self-cleaving peptide linker (SEQ ID NO: 14).

[0221] In some embodiments, the oncolytic viruses described herein comprise a bicistronic or multicistronic

nucleic acid sequence, wherein a first nucleic acid sequence encodes a SIRP1 α -CD3 BiTE and a second nucleic acid sequence encodes a therapeutic molecule such as MMP9 (FIG. 18A, SEQ ID NO: 65 and FIG. 18B, SEQ ID NO: 66). In such embodiments, the SIRP1 α -CD3 BiTE (e.g., SEQ ID NO: 65 or 66) is linked to the MMP9 polypeptide (SEQ ID NO: 34) by a T2A self-cleaving peptide linker (SEQ ID NO: 14).

[0222] In some embodiments, the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes a SIRP1 α -CD3 BiTE and a second nucleic acid sequence encodes a therapeutic molecule comprising an anti-PDL1 scFv linked to an IgG1 Fc domain (e.g., comprises an IgG1 CH2-CH3-Hinge, SEQ ID NO: 40), such as the SIRP1 α -CD3-PDL1-Fc (SL) construct shown in FIG. 37 (SEQ ID NO: 68) or the SIRP1 α -CD3-PDL1-Fc (LL) construct shown in FIG. 38 (SEQ ID NO: 70).

[0223] In some embodiments, the engager molecules comprise an activation domain comprising an scFv that binds to CD3 and a therapeutic molecule domain comprising an scFv that binds to PDL1, referred to herein as an PDL1-CD3 BiTE or a PDL1 BiTE. Exemplary PDL1-CD3 BiTEs are shown in FIG. 13 (SEQ ID NO: 50). In some embodiments, the anti-CD3 scFv and the anti-PDL1 scFv are linked together by G4S linker (SEQ ID NO: 6). In some embodiments, the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes a PDL1-CD3 BiTE and a second nucleic acid sequence encodes a therapeutic molecule such as IL-15 (FIG. 14, SEQ ID NO: 62), IL-12 (FIG. 15, SEQ ID NO: 63), or CXCL10 (FIG. 16, SEQ ID NO: 64). In such embodiments, the SIRP1 α -CD3 BiTE (e.g., SEQ ID NO: 50) is linked to the therapeutic molecule, e.g., IL-15 (SEQ ID NO: 24), IL-12 p35 (SEQ ID NO: 28), IL-12 p40 (SEQ ID NO: 26), and/or CXCL10 (SEQ ID NO: 30), by a T2A self-cleaving peptide linker (SEQ ID NO: 14).

[0224] In some embodiments, the engager molecule is a tripartite engager molecule and comprises an activation domain comprising an scFv that binds to CD3, a therapeutic molecule domain comprising an scFv that binds to PDL1, and a third domain comprising an IgG1 Fc domain (e.g., comprises an IgG1 CH2-CH3-Hinge, SEQ ID NO: 40) and capable of binding to one or more Fc γ Rs, referred to herein as an PDL1-CD3-Fc tripartite T cell engager, or TiTE, or a PDL1 TITE. A schematic of an exemplary PDL1-CD3-Fc TiTE is shown in FIG. 17 (SEQ ID NO: 52).

[0225] The amino acid sequences of exemplary engager molecules and therapeutic molecules are shown in Table 3.

TABLE 3

Amino acid sequences of exemplary engager molecules and therapeutic molecules			SEQ ID NO:
BiTE	Amino Acid Sequence		44
CD19-CD3	MEFGLSWVFLVALFRGVQCDIQLTQSPLASLAVSLGQRATISCKASQSVDYDGDSYLNW YQQIPGQPPKLLIYDASNLVSGIPPRFSGSGSGTDFTLNIHPVEKDAATYHCQQSTE DPQTFGGGTKEIKGGGSGGGSGGGSGQVQLOQSGAELVRPGSVKISCKASGYAF SSYWMNWVKQRPQGLEWIGQIWPQGDGTNYNGKFKGKATLTADESSSTAYMQLSSLA SEDSAVYFCARRETTTVGRYYAMDYWGQGTTVTVSSGGGGSDIQLQSGAELARPGA SVKMSCKTSGYFTTRYTMHWVKQRPQGLEWIGYINPSRGYTYNQKFKDATALTTDK SSSTAYMQLSSLTSEDSAVYYCARYYDHYCLDYWGQGTTLTVSSVEGGSGGGSGGG SGGVDDIQLTQSPLAIMSASPGEKVTMTCRASSSVSYMNWYQOKSGTSPKRWIYDTSKV ASGVPYRFSGSGSGTTSYSLTISSEMAEDAATYYCQQWSNPLTFGAGTKLELKHHHHH H-		

TABLE 3 - continued

Amino acid sequences of exemplary engager molecules and therapeutic molecules		
BITE	Amino Acid Sequence	SEQ ID NO:
SIRP1 α -CD3 - SL	METDTLLLWVLLWPGSTGDEEEQIIQPDKSVLVAAGETATLRCITSLFPVGPIQWFRGAGPGRVLIYINQRCQGPFPVRVTSDDTTRKRNMMDFSIRIGNITPADAGTYCIKEPRKGSPDDVEFKSGAGTELSVRAKPSASDIKLQSGAELARPGASVMSCKTSGYTFTRYTMHWVKQRPQGQLEWIGYINPSRGYTNYNQKPKDKATLTTDKSSSTAYMQLSSLTSEDASAVYYCARYYDDHYCLDYWGQGTTLVSSVEGGSGGSGGGSGGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSEASDEAATYYCQQWSSNPLTFGAGTKLELKHHHHHH-	46
SIRP1 α -CD3 - LL	METDTLLLWVLLWPGSTGDEEEQIIQPDKSVLVAAGETATLRCITSLFPVGPIQWFRGAGPGRVLIYINQRCQGPFPVRVTSDDTTRKRNMMDFSIRIGNITPADAGTYCIKEPRKGSPDDVEFKSGAGTELSVRAKPSASGGGGSDIKLQSGAELARPGASVMSCKTSGYTFTRYTMHWVKQRPQGQLEWIGYINPSRGYTNYNQKPKDKATLTTDKSSSTAYMQLSSLTSEDASAVYYCARYYDDHYCLDYWGQGTTLVSSVEGGSGGSGGGSGGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRQIYDTSKVASGVPYRFSGSGSGTSYSLTISSEASDEAATYYCQQWSSNPLTFGAGTKLELKHHHHHH-	48
PDL1 - CD3	MEFGLSWVFLVALFRGVQCDIKLQSGAELARPGASVMSCKTSGYTFTRYTMHWVKQRPQGQLEWIGYINPSRGYTNYNQKPKDKATLTTDKSSSTAYMQLSSLTSEDASAVYYCARYYDDHYCLDYWGQGTTLVSSVEGGSGGSGGGSGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSEASDEAATYYCQQWSSNPLTFGAGTKLELKGGGGSDIQLMTQSPSSLSASVGRVITTCRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSRGSGSGTDFTLTISSLQPEDFATYYCQYLYHPATFGQGTTKVEIKRGGGGGGGGGGGSEVQLVESGGGLVQPGSSRLSCAASGFTFSDSWIHWVRQAPGKGLEWVAWISPYGGSTYYADSVKGRFTISADTSKNTAYLQMNLSRAEDTAVYYCARRHWPGGFYWGQGLTVTVAHHHHHH-	50
PDL1 - CD3 - Fc	MEFGLSWVFLVALFRGVQCDIKLQSGAELARPGASVMSCKTSGYTFTRYTMHWVKQRPQGQLEWIGYINPSRGYTNYNQKPKDKATLTTDKSSSTAYMQLSSLTSEDASAVYYCARYYDDHYCLDYWGQGTTLVSSVEGGSGGSGGGSGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSEASDEAATYYCQQWSSNPLTFGAGTKLELKGGGGSDIQLMTQSPSSLSASVGRVITTCRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSRGSGSGTDFTLTISSLQPEDFATYYCQYLYHPATFGQGTTKVEIKRGGGGGGGGGGGSEVQLVESGGGLVQPGSSRLSCAASGFTFSDSWIHWVRQAPGKGLEWVAWISPYGGSTYYADSVKGRFTISADTSKNTAYLQMNLSRAEDTAVYYCARRHWPGGFYWGQGLTVTVAHHHHHH-	52
CD19 - CD3	MEFGLSWVFLVALFRGVQCDIQLTQSPASLAVSLGQORATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFRSGSGSGTDFTLNIPVKEVDAATYHCQQSTEWPQFPGGTTKLEIKGGGGSGGGSGGGSGVQLQSGAELVRPGSSVKISKASGYAFSSYWMNNWVKQRPQGQLEWIGQIWPQGDTNTYNGKPKGKATLTADESSSTAYMQLSSLAEDSAVYPCARRETTTVGRYYYAMDYWGQGTTVTSVSSGGGGSDIKLQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPQGQLEWIGYINPSRGYTNYNQKPKDKATLTTDKSSSTAYMQLSSLTSEDASAVYYCARYYDDHYCLDYWGQGTTLVSSVEGGSGGSGGGSGGSGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSEASDEAATYYCQQWSSNPLTFGAGTKLELKHHHHHHHRRKREGRGSSLTCGDVEENPGPMRISKPHLRSISIQCYCLCLLNSHFLTEAGIHFILGCFSAGLPKTEANWNVNISDLKKIEDLIQSMHIDATLYTESDWHPSCKVTAMKCFELQVVISLESQDASIHDTVENLII LANNSLSSNGNVTESGCKECEELEENIKEFLQSFVHIVQMFINTS-	53
CD19 - CD3 - IL12	MEFGLSWVFLVALFRGVQCDIQLTQSPASLAVSLGQORATISCKASQSVDYDGDSYLNWYQQIPGQPPKLLIYDASNLVSGIPPRFRSGSGSGTDFTLNIPVKEVDAATYHCQQSTEWPQFPGGTTKLEIKGGGGSGGGSGGGSGVQLQSGAELVRPGSSVKISKASGYAFSSYWMNNWVKQRPQGQLEWIGQIWPQGDTNTYNGKPKGKATLTADESSSTAYMQLSSLAEDSAVYPCARRETTTVGRYYYAMDYWGQGTTVTSVSSGGGGSDIKLQSGAELARPGASVKMSCKTSGYTFTRYTMHWVKQRPQGQLEWIGYINPSRGYTNYNQKPKDKATLTTDKSSSTAYMQLSSLTSEDASAVYYCARYYDDHYCLDYWGQGTTLVSSVEGGSGGSGGGSGGSGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGSGSGTSYSLTISSEASDEAATYYCQQWSSNPLTFGAGTKLELKHHHHHHHRRKREGRGSSLTCGDVEENPGPMRISKPHLRSISIQCYCLCLLNSHFLTEAGIHFILGCFSAGLPKTEANWNVNISDLKKIEDLIQSMHIDATLYTESDWHPSCKVTAMKCFELQVVISLESQDASIHDTVENLII LANNSLSSNGNVTESGCKECEELEENIKEFLQSFVHIVQMFINTS-	54

TABLE 3 - continued

Amino acid sequences of exemplary engager molecules and therapeutic molecules		
BITE	Amino Acid Sequence	SEQ ID NO:
	EDGIWSTDILKDQKEPKNKTFLRCEAKNYSGRFTCWLLTTISTDLTFSVKSSRGSSDP QGVTCGAATLSAERVRGDNKEYEYESVECQEDSACPAAEESLPIEVMVDAVHKLKYENY TSSFFFIRDIIKPDPPKLNQLKPLKNSRQEVEVSWEYPDTWSTPHSYFSLTFCVQVQGKS KREKKDRVFTDKTSATVICRKNASISVRAQDRYSSSWSEASVPCS-	
CD19-CD3 CXCL10	MEFGLSWVFLVALFRGVQCDIQLTQSPASLAVSLGQRATISCKASQSVDYDGDSYLNW YQQIPGQPQLLIIYDASNLVSGIIPPRFSGSGSGTDFTLNINHPVEKVDAAUTYHCQQSTE DPWTFGGGTKELEIKGG SSYWMNNVQKRPQGQLEWIGQIWPQGDNTNYNGKFKGKATLTADESSSTAYMQLSSLA SEDSAVYFCARRETTTVGRYYAMDYWGQGTTVTVSSGGGSDIKLQSGAELARPGA SVKMSCKTSGYTFTRYTMHWVKQRPQGQLEWIGYINPSRGYTNYNQFKFDKATLTTDK SSGTTAYMQLSSLTSEDAVYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGGGGGGGG SSGGDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKV ASGVPYRFSGGSGSGTSYSLTISSMEAEDAATYYCQOWSSNPLTFGAGTKLELKHHHHHH HRRKREGRGSLLTCGDVEENPGPMRISPKHLSRISIQCYLCLLNSHFLTEAGIHFVILGCF SNQFFNPRSLKLEIIPASQFCPRVETIATMKKGEKRCRCLNPESKAINKLIAVSKER SKRSP-	55
SIRP1 α - CD3-IL15 (SL)	METDTLLLWVLLWVPGSTGDEEEQIIPQDKSVLVAAGETATLRCITISLFPVGPIQ WFRGAGPGRVLIYINQRQGPFPRTTVSDTTKRNNMDFSIRIGNITPADAGTYYCIKFR KGSPDDVEFKSGAGTELSVRAKPSASDIKLQSGAELARPGASVKMSCKTSGYTFTRY TMHWVKQRPQGQLEWIGYINPSRGYTNYNQFKFDKATLTTDKSSSTAYMQLSSLTSED SAVYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGGGGGGGGGGGGGG SASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGS GSCTSYLTISMEAEDAATYYCQOWSSNPLTFGAGTKLELKHHHHHHRRKREGRGSLLTCGD VEENPGPMRISPKHLSRISIQCYLCLLNSHFLTEAGIHFVILGCF EANWVNVISDLKIEDLIQSMHIDATLYTESDVHPSCVTAMKCFLLELQVISLESGDASIHD TVENLIIILANNSSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHVQMFINTS-	56
SIRP1 α - CD3-IL15 (LL)	METDTLLLWVLLWVPGSTGDEEEQIIPQDKSVLVAAGETATLRCITISLFPVGPIQ WFRGAGPGRVLIYINQRQGPFPRTTVSDTTKRNNMDFSIRIGNITPADAGTYYCIKFR KGSPDDVEFKSGAGTELSVRAKPSASDIKLQSGAELARPGASVKMSCKTSGY TFTRYTMHWVKQRPQGQLEWIGYINPSRGYTNYNQFKFDKATLTTDKSSSTAYMQLSS LTSEDAVYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGGGGGGGG SASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGS GSCTSYLTISMEAEDAATYYCQOWSSNPLTFGAGTKLELKHHHHHHRRKREGRGSLLTCGD LTCDGVEENPGPMRISPKHLSRISIQCYLCLLNSHFLTEAGIHFVILGCF EANWVNVISDLKIEDLIQSMHIDATLYTESDVHPSCVTAMKCFLLELQVISLESGD ASIHDTVENLIIILANNSSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHVQMFINTS	57
SIRP1 α -C3- IL12 (SL)	METDTLLLWVLLWVPGSTGDEEEQIIPQDKSVLVAAGETATLRCITISLFPVGPIQ WFRGAGPGRVLIYINQRQGPFPRTTVSDTTKRNNMDFSIRIGNITPADAGTYYCIKFR KGSPDDVEFKSGAGTELSVRAKPSASDIKLQSGAELARPGASVKMSCKTSGYTFTRY TMHWVKQRPQGQLEWIGYINPSRGYTNYNQFKFDKATLTTDKSSSTAYMQLSSLTSED SAVYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGGGGGGGGGG SASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGS GSCTSYLTISMEAEDAATYYCQOWSSNPLTFGAGTKLELKHHHHHHRRKREGRGSLLTCGD VEENPGPMWPPGSASQPPPSAAATGLHPAARPVSLQCRLSMCPARSLLL HLSLARNLPVATPDPMFPCLHHSQNLRAVSNMLQKARQTL DKDTSTVEACLPLELTKNESCLNSRETSFITNGSCLASRKT YQVEFKTMNAKLLMDPKRQIFLDQNMALVNFS KIKLCLLHA ISWFLSFLVPLASLVAI ISWFLSFLVPLASLVAI SEVLGSGKTL KNTKFLRCEAKNYSGRFTCWLL GDNKEYEYES NLQKPLKNSRQEV SIRP1 α - CD3-IL12 (LL)	58
SIRP1 α - CD3-IL12 (LL)	METDTLLLWVLLWVPGSTGDEEEQIIPQDKSVLVAAGETATLRCITISLFPVGPIQ WFRGAGPGRVLIYINQRQGPFPRTTVSDTTKRNNMDFSIRIGNITPADAGTYYCIKFR KGSPDDVEFKSGAGTELSVRAKPSASGGGGSDIKLQSGAELARPGASVKMSCKTSGY TFTRYTMHWVKQRPQGQLEWIGYINPSRGYTNYNQFKFDKATLTTDKSSSTAYMQLSS LTSEDAVYCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGGGGGGGGGG SASPGEKVTMTCRASSSVSYMNWYQQKSGTSPKRWIYDTSKVASGVPYRFSGS GSCTSYLTISMEAEDAATYYCQOWSSNPLTFGAGTKLELKHHHHHHRRKREGRGSLLTCGD LTCDGVEENPGPMWPPGSASQPPPSAAATGLHPAARPVSLQCRLSMCPARSLLL LVLLDHLSLARNLPVATPDPMFPCLHHSQNLRAVSNMLQKARQTL HEDITDKDTSTVEACLPLELTKNESCLNSRETSFITNGSCLASRKT EDLKM ASIHDTVENLII ISWFLSFLVPLASLVAI ISWFLSFLVPLASLVAI SEVLGSGKTL KNTKFLRCEAKNYSGRFTCWLL GDNKEYEYES NLQKPLKNSRQEV SIRP1 α - CD3-IL12 (LL)	59

TABLE 3 - continued

Amino acid sequences of exemplary engager molecules and therapeutic molecules		
BITE	Amino Acid Sequence	SEQ ID NO:
	DFYKTKIKLCLILLHAFRIRAVTIDRVMSYLNASRRKREGRGSLLTCGDVEENPGPPMC HQQLVISWFSFLVFLASPLVAIWELKKDVKVYVVELWDWYDAPGEMVVLTCDTPEEDGITW TLDQSSSEVLGSGKTLIQVKFQGDAGQYTCHKGEVLSHSLLLHKKEDGIWSTDILK DQKEPKNKTFLRCEAKNYSGRFTCWLTTISTDLTFSVKSSRGSSDPQGVTCGAATLS AERVGRGDNKEYEYSEVCEQEDSACPAEEESLPIEVMDAVHKLKYENYTSSFFIRDIK PDPPKPNLQLKFLKNSRQVEVSWEYPDTWSTPHSYFSLTFCVQVQGSKREKKDRVFTD TKTSATVICRKNASISVRAQDRYSSSSWEASVPCS-	
SIRP1 α - CD3- CSCL10 (SL)	METDTLLLWVLLWVPGSTGDEEEQIIPDQKSVLVAAGETATLRCITISLFPVGPIQ WFRGAGPGRVLIYNQRQGPFPFRVTVSDTTKRNNMDFSIRIGNITPADAGTYYC1KFR KGSPDDVEFKSGAGTELTSVRAKPSASD1KLQOSGAEELARPAGSVKMSCKTSGYTFTRY TMHWVKQRPQGLEWIGYINPSRGYTNQKPKDKATLTTDKSSSTAYMQLSSLTSED SAVYYCARYYDDHCLDYWGQGTTLTVSVEGGSSGGSSGGVDDIQLTQSPAIM SASPGEVKTMTCRASSSVSYMNWYQQKSGTSPKRWYDTSKVASGVPYRFSGSGSGTS YSLTISSEMAEDAATYYCQWQSSNPLTFGAGTKLELKHIIHRRKREGRGSLLTCGD VEENPGPMNQTAI1CCLIFLTLSGIQGVPLSRTVRCTCISISNQPVNPRSLKLEII PASQFCPCRVEIATMKKKGEKRCLNPESKAIKNLLKAVSKERSKRSP-	60
SIRP1 α - CD3- CSCL10 (LL)	METDTLLLWVLLWVPGSTGDEEEQIIPDQKSVLVAAGETATLRCITISLFPVGPIQ WFRGAGPGRVLIYNQRQGPFPFRVTVSDTTKRNNMDFSIRIGNITPADAGTYYC1KFR KGSPDDVEFKSGAGTELTSVRAKPSASGCGGSD1KLQOSGAEELARPAGSVKMSCKTSGY TFTRYTMHWVKQRPQGLEWIGYINPSRGYTNQKPKDKATLTTDKSSSTAYMQLSS LTSEDSAVYYCARYYDDHCLDYWGQGTTLTVSVEGGSSGGSSGGVDDIQLTQ SPAIRSASPGEVKTMTCRASSSVSYMNWYQQKSGTSPKRWYDTSKVASGVPYRFSGS GSCTSYSLTISSEMAEDAATYYCQWQSSNPLTFGAGTKLELKHIIHRRKREGRGSL LTCDVVEENPGPMNQTAI1CCLIFLTLSGIQGVPLSRTVRCTCISISNQPVNPRSL KLEIIIPASQFCPCRVEIATMKKKGEKRCLNPESKAIKNLLKAVSKERSKRSP-	61
PDL1-CD3- IL15	MEFGLSWVFLVALFRGVQCDIKLQOSGAEELARPAGSVKMSCKTSGYTFTRYTMHWVKQ RPGQGLEWIGYINPSRGYTNQKPKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCA RYYDDHCLDYWGQGTTLTVSVEGGSSGGSSGGVDDIQLTQSPAIMSASPGEK VTMTCRASSSVSYMNWYQQKSGTSPKRWYDTSKVASGVPYRFSGSGSGTYSLSLT MEAEDAATYYCQWQSSNPLTFGAGTKLELKGSSDIQMTQSPSSLSASVDRVTITC RASQDVSTAVAVYQQKPGKAPKLLIYASFLYSGVPSRFSGSGSGTDFTLTISL DFATYYCQYLYHPATFGQGKVEIKRGGGGGGGGGGGSEVQLVESGGGLVQPGG SLRLSCAASGFTSDSWIHWVRQAPGKLEWVAWISPYGGSTYYADSVKGRFTISADT SKNTAYLQMSNLSRAEDTAVYYCARRHWPGCFDYGQGTLTVTSAAHHHHRRKREGRG SLLTCGDVEENPGPMRISKPHLRSISIQCYLCLLNLNSHFLTEAGIHVFLGCFSL KTEANWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTAMKCFLLQLVISLES GDASIHDTVENLIILANNSSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQMF TS-	62
PDL1-CD3- IL12	MEFGLSWVFLVALFRGVQCDIKLQOSGAEELARPAGSVKMSCKTSGYTFTRYTMHWVKQ RPGQGLEWIGYINPSRGYTNQKPKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCA RYYDDHCLDYWGQGTTLTVSVEGGSSGGSSGGVDDIQLTQSPAIMSASPGEK VTMTCRASSSVSYMNWYQQKSGTSPKRWYDTSKVASGVPYRFSGSGSGTYSLSLT MEAEDAATYYCQWQSSNPLTFGAGTKLELKGSSDIQMTQSPSSLSASVDRVTITC RASQDVSTAVAVYQQKPGKAPKLLIYASFLYSGVPSRFSGSGSGTDFTLTISL DFATYYCQYLYHPATFGQGKVEIKRGGGGGGGGGSEVQLVESGGGLVQPGG SLRLSCAASGFTSDSWIHWVRQAPGKLEWVAWISPYGGSTYYADSVKGRFTISADT SKNTAYLQMSNLSRAEDTAVYYCARRHWPGCFDYGQGTLTVTSAAHHHHRRKREGRG SLLTCGDVEENPGPMRISKPHLRSISIQCYLCLLNLNSHFLTEAGIHVFLGCFSL ATLVLQDPLSLARNLPVATPDPGMFPCLHHSQNLRAVSNMLQKARQTLFYPCTSEE IDHEDITKDKTSTVEACLPLELTKNESCLNSRETSETFTNGSCLASRKTTSFMMALCLSS IYEDLKMYQVEFKTMNAKLLMDPKRQIFLDQNLMAVIDELMQLNFSSETVPQKSSLE EPDFYKTKIKLCLILLHAFRIRAVTIDRVMSYLNASRRKREGRGSLLTCGDVEENPGPP MCHQQLVISWFSFLVFLASPLVAIWELKKDVKVYVVELWDWYDAPGEMVVLTCDTPEEDGI TWTLQDQSSSEVLGSGKTLIQVKFQGDAGQYTCHKGEVLSHSLLLHKKEDGIWSTD LKDQKEPKNKTFLRCEAKNYSGRFTCWLTTISTDLTFSVKSSRGSSDPQGVTCGAAT LSAERVGRGDNKEYEYSEVCEQEDSACPAEEESLPIEVMDAVHKLKYENYTSSFFIRDI IKPDPKPNLQLKPLKNSRQVEVSWEYPDTWSTPHSYFSLTFCVQVQGSKREKKDRV TDKTSATVICRKNASISVRAQDRYSSSSWEASVPCS-	63
PDL1-CD3- CXCL10	MEFGLSWVFLVALFRGVQCDIKLQOSGAEELARPAGSVKMSCKTSGYTFTRYTMHWVKQ RPGQGLEWIGYINPSRGYTNQKPKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCA RYYDDHCLDYWGQGTTLTVSVEGGSSGGSSGGVDDIQLTQSPAIMSASPGEK VTMTCRASSSVSYMNWYQQKSGTSPKRWYDTSKVASGVPYRFSGSGSGTYSLSLT MEAEDAATYYCQWQSSNPLTFGAGTKLELKGSSDIQMTQSPSSLSASVDRVTITC TASQDVSTAVAVYQQKPGKAPKLLIYASFLYSGVPSRFSGSGSGTDFTLTISL DFATYYCQYLYHPATFGQGKVEIKRGGGGGGGGGSEVQLVESGGGLVQPGG SLRLSCAASGFTSDSWIHWVRQAPGKLEWVAWISPYGGSTYYADSVKGRFTISADT	64

TABLE 3 - continued

Amino acid sequences of exemplary engager molecules and therapeutic molecules		SEQ ID NO:
BITE	Amino Acid Sequence	
	SKNTAYLQMSNLSRAEDTAVYYCARRHWPGGF DYWGQGTLVTVSAAHHHHHHRRKREGRG SLLTCGDVEENPGPMNQTAIICLIFLTLSGIQGVPLSRTVRCTCICISNQPVNPRS LEKLEIIPASQFCPRV EIIATMKKKGEKRCNLNPESKAIAKNLKAVSKERSKRS-	
SIRP1 α - CD3 -MMP9 (2L)	METDTLLLWVLLWVPGSTGDEEEQI IQPDKSVLVAAGETATLRC TITS LFPVGPIQ WFRGAGPGP RVL IYINQRQGPFP RVT TVSDTTKRN NMDF SIRIGNITPADAGTYYC I KFR KGSPDDVEFKSGAGTEL S VRAKPSASDI K LQOSGAE L PAGASVKMSCKTSGYTFTRY TMHWVKQRPQGLEWIGYINP S RGYTNYNQKPKDKATLTTDKSSSTAYMQLSSLTSED SAVYVCARYYDDHYCLDYWGQGTTLTVSSVEGGSGGGGGGGGGV D IQLT Q SPAIM SASPGEKV TMT CRASS SVS YM NWYQ QKSGTSPKR WIYDT SKV ASGV PYR FSGSGSGTS YSLTIS SMEA DAAT YYC Q QWSSNPLTFGAGT KLE LKHHHHHHRRKREGR GSLLT CGD VEENPGPM S L WQPLV L VLLV L G C FAAP R Q R Q S T L V L F P G D L R T N L T D R Q L A E E Y L Y R YGYTRVAE M R G E S K L G P A L L L Q K Q L S L P E T G E L D S A T L K A M R T P R C G V P D L G R F Q T FEGDLKWHHHNITYWIQNYSEDL P R A V I D D A F A R A F A L W S A T V P L T F T R V Y S R D A I V I Q P G V A E H G D G Y P F D G K D G L L A H A F P P G P G I Q G D A H P D D D E L W S L G K G V V V P T R F G N A DGAAC H F F I F E G R S Y S A C T T D G R S D G L P W C S T T A N Y D T D D R F G F C P S E R I Y T R D G N A DGKPCQFFFIFQGQSY SACTTDGRSDG Y R W C A T T A N Y D R D K L F G F C P T R A D S T V M G G N S A G E L C V P P F T F L G K E Y S T C T S E G R G D G R L W C A T T S N F D S D K K W G F C P D Q G Y S L F L V A A H E F G H A L G L D H S V P E A L M Y P M Y R F T E G P P L H K D D V N G I R H L Y G P R P E P E P R P P T T T T P Q P T A P P T V C P T G P P T V H P S E R P T A G P T G P P S A G P T G P P T A G P S T A T T V P L S P V D D A C N V I F D A I E I G N Q L Y L F K D G K Y W R F S E G R G S R P Q G P F L I A D K W P A L P R K L D S V F E E P L S K K L F F F S G R Q V W V Y T G A S V L G P R R L D K L G L G A D V A Q V T G A L R S G R G K M L L F S G R L W R D V K A Q M V D P R S A S E V D R M F P G V P L D T H D V F Q Y R E K A Y F C Q D R F Y W R V S S R S E L N Q V D Q V G Y V T Y D I L Q C P E D -	65
SIRP1 α - CD3 -MMP9 (LL)	METDTLLLWVLLWVPGSTGDEEEQI IQPDKSVLVAAGETATLRC TITS LFPVGPIQ WFRGAGPGP RVL IYINQRQGPFP RVT TVSDTTKRN NMDF SIRIGNITPADAGTYYC I KFR KGSPDDVEFKSGAGTEL S VRAKPSASGGGS I K L QOSGAE L PAGASVKMSCKTSGY T F T R Y T M H W V K Q R P Q G L E W I G Y I N P S R G Y T N Y N Q K P K D K A T L T T D K S S T A Y M Q L S S L T S E D S A V Y C A R Y Y D D H Y C L D Y W G Q G T T L T V S V E G G S G G G G G S G G V D I Q L T Q S P A I M S A S P G E K V T M T C R A S S V S Y M N W Y Q Q K S G T S P K R W I Y D T S K V A S G V P Y R F S G S S G S G T S Y L T I S S M E A D A A T Y Y C Q Q W S S N P L T F G A G T K L E I K H H H H H H H R R K R E G R G S L L T C G D V E E N P G P M S L W Q P L V L V L V L G C C F A A P R Q R Q S T L V L F P G D L R T N L T D R Q L A E E Y L Y R Y G T R V A E M R G E S K L G P A L L L Q K Q L S L P E T G E L D S A T L K A M R T P R C G V P D L G R F Q T F E G D L K W H H H N I T Y W I Q N Y S E D L P R A V I D D A F A R A F A L W S A T V P L T F T R V Y S R D A D I V I Q F G V A E H G D G Y P F D G K D G L L A H A F P P G P G I Q G D A H P D D D E L W S L G K G V V V P T R F G N A D G A A C H F F I F E G R S Y S A C T T D G R S D G L P W C S T T A N Y D T D D R F G F C P S E R I Y T R D G N A D G K P C Q F F I F Q G Q S Y S A C T T D G R S D G L P W C S T T A N Y D T D D R F G F C P S E R I Y T V M G G N S A G E L C V P P F T F L G K E Y S T C T S E G R G D G R L W C A T T S N F D S D K K W G F C P D Q G Y S L F L V A A H E F G H A L G L D H S S V P E A L M Y P M Y R F T E G P P L H K D D V N G I R H L Y G P R P E P E P R P P T T T P Q P T A P P T V C P T G P P T V H P S E R P T A G P T G P P S A G P T G P P T A G P S T A T T V P L S P V D D A C N V I F D A I E I G N Q L Y L F K D G K Y W R F S E G R G S R P Q G P F L I A D K W P A L P R K L D S V F E E P L S K K L F F F S G R Q V W V Y T G A S V L G P R R L D K L G L G A D V A Q V T G A L R S G R G K M L L F S G R R L W R F D V K A Q M V D P R S A S E V D R M F P G V P L D T H D V F Q Y R E K A Y F C Q D R F Y W R V S S R S E L N R S E L N Q V D Q V G Y V T Y D I L Q C P E D -	66
SIRP1 α - CD3 -PDL1 - Fc (SL)	METDRLLLWVLLWVPGSTG D Y P D Y A G A Q P A D D I Q M T Q S P S S L S A S V G D R V T I T CRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSGSGTDF T L I S S L Q P EDFATYYCQ Q Y L Y H P A T F G Q Q G T K V E I K R G G G S G G G G G G G S G G G S E V Q L V E S G G G L V Q P G G S L R L S C A A S G F T F S D S W I H W V R Q A P G K G L E V W A I S P Y G G S T Y Y A D S V K G R F T I S A D T S K N T A Y L Q M N S L R A E D T A V Y Y C A R R H W P G G F D Y W G Q G T L V T V S A V D E A K S C D K T H T C P P C P A P E L L G G P S V F L F P P K P K D T L M I S R T P E V T C V V V D V S H E D P E V K F N W V D G V E V H N A K T K P R E E Q Y N S T Y R V V S V T V L H Q D W L N G K E Y K C K V S N K A L P A I E K T I S K A K Q P R E Q V Y T L P P S R D E L T K N Q V S T L C L V K G F Y P S D I A V E W E S N Q P E N N Y K T T P P V L D S D G S F F L Y S K L T V D K S R W Q Q G N V F S C S V M H E A L H N H Y T Q K S I S L S P G K V D E Q K L I S E E D L N R K R E G R G S L L T C G D V E E N P G P M E T D R L L L W V L L L W V P G S T G D E E L Q I I Q P D K S V L V A A G E T A T L R C T I S L F P V G P I Q W F R G A G P G R V L I Y N Q R Q G P F P R V T T V S D T T K R N N M D F S I R G N I T P A D A G T Y C I K P R K G S P D D V E F K S G A G T E L S V R A K P S A S D I K L Q Q S G A E L A R P G A S V K M S C K T S G Y T F T R Y T M H W V K Q R P Q G L E W I G Y I N P S R G Y T N Y N Q K P K D K A T L T T D K S S S T A Y M Q L S S L T S E D S A V Y Y C A R Y Y D D H Y C L D Y W G Q G T T L T V S V E G G S G G S G G S G G G V D D I Q L T Q S P A I M S A S P G E K V T M T C R A S S V S Y M N W Y Q Q K S G T S P K R W I Y D T S K V A S G V P Y R F S G S G S G T S Y S L T I S S M E A D A T Y Y C Q Q W S S N P L T F G A G T K L E L K H H H H H -	68
SIRP1 α - CD3 -PDL1 - Fc (LL)	METDRLLLWVLLWVPGSTG D Y P D Y A G A Q P A D D I Q M T Q S P S S L S A S V G D R V T I T CRASQDVSTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSGSGTDF T L I S S L Q P EDFATYYCQ Q Y L Y H P A T F G Q Q G T K V E I K R G G G S G G G G G G G S G G G S E V Q L V E S G G G L V Q P G G S L R L S C A A S G F T F S D S W I H W V R Q A P G K G L E V W A I S P Y G G S T Y Y A D S V K G R F T I S A D T S K N T A Y L Q M N S L R A E D T A V Y Y C A R R H W P G G F D Y W G Q G T L V T V S A V D E A K S C D K T H T C P P C P A P E L L G G P S V F L F P P K P K D T L M I S R T P E V T C V V V D V S H E D P E V K F N W V D G V E V H N A K T K P R E E Q Y N S T Y R V V S V T V L H Q D W L N G K E Y K C K V S N K A L P A I E K T I S K A K Q	70

TABLE 3 - continued

Amino acid sequences of exemplary engager molecules and therapeutic molecules		SEQ ID NO:
BITE	Amino Acid Sequence	
	PREPVQYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPVVLDS DGSFFFLYSKLTVDKSRWQGQNVFSCSVMHEALHNHTQKSLSLSPGVDEQKLISEED LNRKREGRGSLLTCGVEENPGPMETDRLLLWVLLLWVPGSTGDEEELQIQQPDKSV LVAAGETATLRCITSLFPVGPQWFRGAGPGRVLIYNQRQGPFPRTTVSDTTKRNN MDFSRIGNITPADAGTYYCIKERKGSPDDVEFKSGAGTELSVRAKPSASGGGSDIK LQQSGAELARPAGSAVMSCKTSGYTFTRYTMHWVKQRPQGLEWIGYINPSRGYTNYN QKPKDKATLTDKSSSTAYMQLSSLTSEDSAVYYCARYYDHYCLDYWGQGTTLTVSS VEGGSGGGGGGGGGVDDIQLTQSPAIMSASPGEKVTMTCRASSSVSYMNWYQQKSG TSPKRWIYDTSKVASGVYRFSGSGSGTYSLSISSLMEAADAATYYCQQWSSNPLTFG AGTKLEIKHHHHHH-	

[0226] In some embodiments, the present invention provides recombinant nucleic acid sequences encoding an engager molecule and/or a therapeutic molecule. Exemplary recombinant nucleic acid sequences are shown in Table 4.

[0227] In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule, wherein the therapeutic molecule is IL-15. In some embodiments, the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule comprising an amino acid sequence that is at least 80%, at least, 85%, at least 900%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 24. In some embodiments, the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule that is 100% identical to the amino acid sequence of SEQ ID NO: 24. In some embodiments, the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule comprising the amino acid sequence of SEQ ID NO: 24. In some embodiments, the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule consisting of the amino acid sequence of SEQ ID NO: 24. In some embodiments, the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule and comprise a sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 23. In some embodiments, the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule and comprise the nucleic acid sequence of SEQ ID NO: 23. In some embodiments, the nucleic acid sequences provided herein encode an IL-15 therapeutic molecule and consist of the nucleic acid sequence of SEQ ID NO: 23.

[0228] In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule, wherein the therapeutic molecule is IL-12 (i.e., IL-12 p35 and/or IL-12 p40). In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 26. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule that is 100% identical to the amino acid sequence of SEQ ID NO: 26. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule comprising the amino acid sequence of SEQ ID NO: 26. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule consisting of the amino acid sequence of SEQ ID NO: 26. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and comprise the nucleic acid sequence of SEQ ID NO: 26.

sequences provided herein encode an IL-12 therapeutic molecule consisting of the amino acid sequence of SEQ ID NO: 26. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and comprise a sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 25. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and comprise the nucleic acid sequence of SEQ ID NO: 25. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and consist of the nucleic acid sequence of SEQ ID NO: 25.

[0229] In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule comprising an amino acid sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the amino acid sequence of SEQ ID NO: 28. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule that is 100% identical to the amino acid sequence of SEQ ID NO: 28. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule comprising the amino acid sequence of SEQ ID NO: 28. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule consisting of the amino acid sequence of SEQ ID NO: 28. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and comprise a sequence that is at least 80%, at least, 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 27. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and comprise the nucleic acid sequence of SEQ ID NO: 27. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and consist of the nucleic acid sequence of SEQ ID NO: 27.

[0230] In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule comprising an amino acid sequence of SEQ ID NO: 26 and 28. In some embodiments, the nucleic acid sequences provided herein encode an IL-12 therapeutic molecule and comprise the nucleic acid sequences of SEQ ID NO: 25 and 27.

[0231] In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule, wherein the therapeutic molecule is CXCL10. In some embodiments, the

molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain is 100% identical to the amino acid sequence of SEQ ID NO: 40. In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain comprises the amino acid sequence of SEQ ID NO: 40. In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain consists of the amino acid sequence of SEQ ID NO: 40. In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain nucleic acid sequence is at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to the nucleic acid sequence of SEQ ID NO: 39. In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain nucleic acid sequence comprises SEQ ID NO: 39. In some embodiments, the nucleic acid sequences provided herein encode a therapeutic molecule comprising an anti-PDL1 scFv and an IgG1 Fc domain, wherein the IgG1 Fc domain nucleic acid sequence comprises SEQ ID NO: 39.

[0236] In some embodiments, the nucleic acid sequences provided herein comprise a nucleic acid sequence selected from SEQ ID NOs: 43, 45, 47, 49, 51, 67, and 69. In some embodiments, the nucleic acid sequences provided herein are at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a nucleic acid sequence selected from SEQ ID NOs: 43, 45, 47, 49, 51, 67, and 69. In some embodiments, the nucleic acid sequences provided herein are 100% identical to a nucleic acid sequence selected from SEQ ID NOs: 43, 45, 47, 49, 51, 67, and 69. In some embodiments, the

nucleic acid sequences provided herein consist of a nucleic acid sequence selected from SEQ ID NOs: 43, 45, 47, 49, 51, 67, and 69.

[0237] In some embodiments, the nucleic acid sequences provided herein encode an engager molecule and/or therapeutic molecule that is at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to an amino acid sequence selected from SEQ ID NOs: 44, 46, 48, 50, and 52. In some embodiments, the nucleic acid sequences provided herein encode an engager molecule protein that is 100% identical to an amino acid sequence selected from SEQ ID NOs: 44, 46, 48, 50, and 52. In some embodiments, the nucleic acid sequences provided herein encode an engager molecule comprising an amino acid sequence selected from SEQ ID NOs: 44, 46, 48, 50, and 52. In some embodiments, the nucleic acid sequences provided herein encode an engager molecule protein consisting of an amino acid sequence selected from SEQ ID NOs: 44, 46, 48, 50, and 52.

[0238] In some embodiments, the recombinant nucleic acid sequences provided herein encode an engager molecule and a therapeutic molecule. In some embodiments, the recombinant nucleic acid sequences encode an amino acid sequence comprising an engager molecule and a therapeutic molecule, wherein the amino acid sequence is at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to an amino acid sequence selected from SEQ ID NOs: 53-66, 68 and 70. In some embodiments, the nucleic acid sequences encode an amino acid sequence comprising an engager molecule and a therapeutic molecule, wherein the amino acid sequence is 100% identical to an amino acid sequences selected from SEQ ID NOs: 53-66, 68 and 70. In some embodiments, the nucleic acid sequences encode an amino acid sequence comprising an engager molecule and a therapeutic molecule, wherein the amino acid sequence consists of an amino acid sequence selected from SEQ ID NOs: 53-66, 68 and 70.

TABLE 4

Nucleic sequences of exemplary engager molecules		
BiTE	Nucleic Acid Sequence	SEQ ID NO:
CD19-CD3	ATGGAGTTGGCTGAGCTGGTCTGGTGGCCCTGTTAGGGGGCTGAGTGGCG ACATCCAGCTGACCCAGAGCCCCGGCAGCCCTGGCGTGGACCTACGACGGCAGCTACCTGA CATCAGCTGCAAGGCCAGGCCAGAGCTGCTGATCTACGACGCCAGCACCTGG TACCAAGCTCCCGGGCAAGCCCCCAAGCTGCTGATCTACGACGCCAGCACCTGG TGAGCGGCATCCCCGGGCAAGGGTCAAGCTAGCGGCCAGGGCAGCCACCTTACCCCTGAA CATCCACCCCTGGAGAACGGTGGACCCCCCACTTACCATGCCAGCAGGACCCGAG GACCCCTGGACCTTCGGCGCGGACCAAGCTGGAGATCAAGGGCGCCGGCGAGCG GCGCGCGCGGAGCGGGCGGGCAGCCAGGTGAGCTGAGCAGAGCGGGCGCGA GCTGGTGAAGGCCCGCAGCGAGCTGAAGATCAGCTGCAAGGGCAGCGCTACGGCCTTC AGCAGCTACTGGATGGAACCTGGGTGAAGCAGGGCCGGCAGGGCTTGGAGTGGATCG GCCAGATCTGGCCGGCGACGGGCAACCAACTACACCGCAAGTTCAAGGGCAAGGC CACCCCTGACCGCCAGGAGGAGCAGCAGCACCGCTACATGCACTGAGCAGCGCTGGCC AGCGAGGAGCAGCGCCGTGTACTCTGGCCAGGGAGGAGCACCCACCGTGGCGAGGT GGGCTACACCAACTACACCGAGCTGGAGGACACTGGGGCAGGGCAGCGCCAGCG ACTACTACGCTCATGGACTACTGGGGCAGGGCAGGGCTACCGTGAAGCAGCGCG CGGGCGAGCGACATCAAGCTGAGCAGAGCGGGCGGAGCTGGCCAGGGCCGGCG AGCGTGAAGATGAGCTGCAAGACCGAGCGGTACACCTTCACCGGTACACCATGCACT GGGTGAAGCAGAGGCCCGCCAGGGCTGGAGTGGATCGGCTACATCAACCCAGCAG GGGCTACACCAACTACACCGAGCTGGAGGACACTGGGGCAGGGCAGCGCCAGCG AGCAGCAGCACCGCTACATGCACTGAGCAGCTGGAGGAGGAGCAGCGCG ACTACTACGCTCATGGACTACTGGGGCAGGGCAGGGCTACCGTGAAGCAGCGCG CACCCCTGACCGTGAAGCAGGGCGGAGGGCCAGGGCGGAGCGGGCG AGCGGCGGGCTGGAGCAGCTGGAGGAGGCCAGGGCGGAGCGGGCG CGGGCGAGAGGTGACCATGACCTGCAAGGGCAGGGCAGCGTGAAGCTACATGAA GTACCGAGAGAGCGGGCAGGGCCAGGGCGGAGCGGGCG 	43

TABLE 4 -continued

Nucleic sequences of exemplary engager molecules		SEQ ID NO:
BITE	Nucleic Acid Sequence	
	GCCAGCGGCGTGCCTACAGGTTCAAGCGGCAGCGGCAGCGCACCAGCTACAGCCTGA CCATCAGCAGCATGGAGGCCAGGACGCCGCCACCTACTACTGCCAGCAGTGGAGCAG CAACCCCTGACCTTCGGCGCCGCACCAAGCTGGAGCTGAAGCACCACCAACACCAC CACTAG	
SIRP1 α -CD3 (SL)	ATGGAGACCGATACTCTGCTTGTGGGTTTGCTTGGGTGCCAGGATCTACAG GTGATGAAGAAGAATTGAGATCATCCAACCAGACAATCCGACTCGTGGCGCAGG AGAGACCGCTACCCCTCAGATGTACCATCTCTCTCCCGTTGGCCCCATCCAG TGTTTCGAGGCCAGGACAGGACGAGTGTCTATTAACTACAACGACAGGGCCAT TCCAAGAGTGACAACAGTATCGATACCAAGCGAATAATATGGACTTAGCAT TAGAATCGCAACATAACCCCGCTGACGCCGCTACATACTATTGTATTAAATTTCGA AAGGGCTCACCGACGACGAGTGAATTAAAGTCAGGGCCGGAACCGAACTCTCAGTTA GAGCAAACCTCTGCTAGCGACATCAAGCTGAGCAGGCCGAGCTGGCCAG GCCGGCGCCAGCGTGAAGATGAGCTGCAAGACAGCAGGCCCTACACCTTCACAGGTAC ACCATGACTGGGTGAAGCAGAGGCCCGCAGGGCTGGAGTGGATCGGTACATCA ACCCAGCAGGGCTACACCAACTACAACCGAGAAGTCAAGGACAAGGCCACCCCTGAC CACCGACAAGGAGCAGCACCCCTACATGAGCTGAGCAGCTGACCGAGGAGAC AGCAGCGTGTACTACTGCGCAGGTACTACGACGACCAACTACTGCTGGACTACTGGG GCCAGGGCACCCCTGACCGTGGAGCAGCAGCTGACGCCAGCGAGCGCG CAGCGCGAGCGCGAGCGAGCGACATCCAGCTGACGCCATCATGAGCGTGGAGCT AGCGCCAGCCCGCGAGAAGGTGACCATGACTGCAAGGGCCAGCAGCTGAGCT ACATGAACTGGTACCACTACAGAGAGCGGCACCAAGCCCCAAGAGGTGATCTACGACAC CAGCAAGGTGCCAGCGCGTGCCTACAGGTTCAAGGGCAGCGGCCAGCGGACCCAG TACAGCCTGACCATCAGCAGCATGGAGGCCAGGACGCCACCTACTACTGCCAGC AGTGAGCAGCAACCCCTGACCTTCGGCGCCGCACCAAGCTGGAGCTGAAGCACCA CCATCATCACCACTGAG	45
SIRP1 α -C3 (LL)	ATGGAGACCGATACTCTGCTTGTGGGTTTGCTTGGGTGCCAGGATCTACAG GTGATGAAGAAGAATTGAGATCATCCAACCAGACAATCCGACTCGTGGCGCAGG AGACACCGCTACCCCTCAGATGTACCATCTCTCTCCCGTTGGCCCCATCCAG TGTTTCGAGGCCAGGACAGGACGAGTGTCTATTAACTACAACGACAGGGCCAT TAGAATCGCAACATAACCCCGCTGACGCCGCTACATGAGCTGGAGCTTAAATTTCGA AAGGGCTCACCGACGAGTGAATTAAAGTCAGGGCCGGAACCGAACTCTCAGTTA GAGCAAACCTCTGCTAGCGCCGGCGCGCAGCAGCATCAAGCTGAGCAGAGCGG CGCAGCGTGTGGCCAGGCCAGCGTGAAGATGAGCTGCAAGACAGCAGGGCTAC ACCTTCACCGGACACCATGAGCTGGGTGAAGCAGAGCCCCCGCCAGGCCCTGGAGT GGATCGGTACATCAACCCCGAGGCTACACCAACTACACCGAGAAGTCTAACAGGA CAAGGCCACCTGACCACCGACAAGAGCAGCAGCACCGCTACATGAGCTGAGCAGC CTGAGCAGCAGCACGCCAGCGAGCGAGCACCGCTACACCGAGCTGAGCAGCAG GCCTGGACTACTGGGGCAGGGCACCCCTGACCGTGAGCAGCGTGGAGGGCGAG CGGGCGCAGCGGGAGCGAGCGAGCGAGCATCCAGCTGACCCAG AGCCCCGCATCATGAGCGCAGCCCGCGAGAAGGTGACCATGACTGAGGGCCA GCAGCAGCGTGAAGTACATGGTACCGAGCAAGAGCGGCACCAAGCCCCAAGAG GTGGATCTACGACACCAGCAAGGTGGCCAGCGCGTGCCTACAGGTTCAAGGGCAGC GGCAGCGGCACCAAGCTACAGGCTGACCATCAGCAGCATGGAGGCCAGGACCCGCA CCTACTACTGCCAGCAGTGGAGCAGCAACCCCTGACCTTCGGCGCCGGCACCAAGCT GGAGCTGAAGCACCACCAACCAACCAACTAG	47
PDL1-CD3	ATGGAGTTCGGCTGAGCTGGGTCTCTGGTGGCCCTGTTAGGGCGTGCAGTGC ACATCAAGCTGAGCAGAGCGGCCAGCTGGCCAGGCCGCCAGCGTGAAGAT GAGCTGAGAGACGCCAGCGCTACACCTTCACAGGTACACCATGCACTGGGTGAAGCAG AGGCCCGGCCAGGGCTGGAGTGGATCGGCTACATCAACCCCGAGCAGGGCTACACCA ACTACACCGAGAAGTCAAGGACAAGGCCACCCCTGACCCAGACAAGAGCAGCAGCAC CGCCTACATGAGCTGAGCAGCTGACCAGCGAGGACAGCGCCGTACTACTGCGCC AGGTTACTACGAGCAGCAACTACTGCGCTGGACTACTGGGGCAGGGCACCCCTGACCG TGAGCAGCGTGGGGCGAGCGGCCAGCGGCCAGCGGCCAGCGGCCAGCGGCC GGACGACATCGTACCGAGCGGCCAGCGGCCAGCGGCCAGCGGCCAGCGGCCAG GTGACCATGACCTGAGGGCAGCAGCAGCGTGAAGTACATGAACCTGGTACAGCAGA AGAGCGGCACCGCCCAAGAGGTGGATCTACGACACCCAGCAAGGTGGCCAGGGCT GCCCTACAGGTTCAAGCGGCCAGCGGCCAGCGGCCAGCATGAGCTGACCATCAGCAGC ATGGAGGGCGAGGAGCAGCGGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCTGA CCTCTGGCGGGCGCACCAAGCTGGAGCTGAAGGGCGGGCGAGCGATATCCAGAT GACACAGAGCCCATCATCTGCTGAGCTGGAGCAGCGTGAAGTACATGAACCTGGTACAGCAGA AGAGCGCTCCAAAGACGCTTCCACAGCAGCTGGCTGGTATCAGCAAAACCTGGTAAGG CGCCCAAGCTCTCATCTATTCAAGCCAGTTCTGTATAGCGCGTGTCCCAAGCCGATT CTCTGGCTCTGGATCCGGCACGGACTTTACTTGTACATTTCTCTCTCAGCCGAA GATTTGCAACCTACTACTGTAGCAGCAATATCTTACCATCAGCCACATTCTGGACAGG GCACCAAAAGTCGAAATCAAAGAGGCCAGCGGCCAGTGGCGCGGGGGTTCAGGAGG CGGGGTTCTGAGTCAGCAACTCGTCAAAGGAGGAGGGCTGTCCAACCTGGCGGG TCACTGCGGTGAGCTGCGCCAGCGGATTCAACCTCTCAGACTTGGATCCATT	49

TABLE 4 -continued

Nucleic sequences of exemplary engager molecules		SEQ ID NO:
BITE	Nucleic Acid Sequence	
	GGGTGCGCAGGGCTCCCGAAAAGGCTTGGAAATGGGTTGCTGGATTTCACCGTATGG CGGTTCCACATACGCTGACAGCGTTAAGGTCGATTCAACATCTCGAGATACT TCAAAAAAACACCGCTACCTCAGATGAATAGTTGCGCGGAGGACACAGCGTT ATTATTGTGCCGAAGACATTGGCCCGGCGTTTCAGACTGGGGCAAGGTACGTT GGTGACTCTGAGGCCACCATCATCACCAACTG	
PDL1-CD3 - Fc	ATGGAGTCGGCTGAGCTGGTGTTCCTGGTGGCCCTGTTCAAGGGCGTGCAGTGGC ACATCAAGCTGCAGCAGCGCCCGAGCTGGCCAGGCCCGCCAGCGTGAAGAT GAGCTGAAGAACCGCGCTACACCTTCACCAAGGTACACATGCACTGGGTGAAGCAG AGGCCCGGCCAGGGCTGGAGTGGATCGGCTACATCAACCCAGGAGGGCTACACCA ACTACAACAGGAAGTCAAGGACAAGGCCACCTGACCCACAGAACAGCAGCAC CGCCTACATCGAGCTGAGCGCTGACCAGCGAGGACAGCGCCGTGACTACTGCGCC AGGTTACTACGACGACCACTACTGCTGGACTACTGGGGCAAGGGCACCCCTGACCG TGAGCGCTGGAGGGCGGAGCGGGCGAGCGGGCGAGCGGGCGAGCGGGCGGT GGACGACATCAGCTGACCCAGAGCCCGCATCATGAGCGCCAGCCCCGGGAGAAG GTGACCATCGAGCTGACGGCCAGCAGCGAGCTGAGCTACATGAACATGGTACAGCAGA AGAGCGGACACGCCAACAGGGTGGATCTACGACACCCAGCAAGGTGGCCAGCGGT GCCCTACAGGTTCAAGCGGAGCGGACAGCGGACCCAGCTACAGCCTGACCATCAGCAGC ATGGAGGCAGGGACGCCACCTACTACTGCAAGCTGAGTGGAGGCAGCAACCCCTGA CCTTCGGCCGGCACAAGCTGGAGCTGAAGGGCGGGCGAGCGATATCCAGAT GACACAGGCCCATCATCTGTCAGCAAGCGTAGGAGACCGAGTCACCATTAACATGC AGAGCCTCCAAGACGTTCCACAGCAGTGGCTGGTATCAGCAAAACCTGTTAAGG CGCCAAGCTCTCATCTATTAGCCAGTTCTGTATAGCGGCGTTCCACCGGATT CTCTGGCTCTGGATCTGGGACTTACTTGACAATTTCCTCTTCAGCCCGAA GATTTGCAACCTACTACTGTCAAGCATATCTTACCATCAAGCCACATTGGACAGG GCACCAAAAGTCAAATCAAAGAGGCGGCGGCCAGTGGGGCGGGGTTAGGAGG CGGGGTTCTGAAGTCAACTCGTGAAGCGGAGGAGGGTTGTCAACCTGGCGGG TCACTCGGCTGAGCTGCCCGCAAGCGGATTACCTCTCAGACTCTTGATCCATT GGGTGCGCAGGGCTCCGGAAAAGGCTGGAAATGGGTTGCTGGATTTCAACCGTATGG CGGTTCCACATACGCTGACAGCGTTAAGGTCGATTCAACATCTCGAGATACT TCAAAAAACACAGCCTACCTCAGATGAATAGTTGCGCGGAGGACACAGCGTT ATTATTGTGCCGAAGACATTGGCCCGGTTTCAGACTACTGGGGCAAGGTACGTT GGTGAAGTGTGAGCTGCCCGCAAGCGGATTACCTCTCAGACTCTTGATCCATT CTCTGGCTCTGGATCTGGGACTTACTTGACAATTTCCTCTTCAGCCCGAA GATTTGCAACCTACTACTGTCAAGTCAAATTAACTGTTAGTGAAGCGGTGAGGTGAC AACCTTAAACTAACGGGAGGACACTAACACTAACCTATCGCTCTATCTG TGCTTACCGTCTGCACTCAAGACTGGCTCAATGTAAGGAATATAATGTAAGTGA TAACAAGGCACTGCCAGCACCTATCGAAAAAAACCATCTCAAGGCAAGGGACAGCCC AGGGAAACCCAGGTCTAACTCTGCAACCTCTCGGGATGAATTGACCAAGAACCAAG TTAGCCTGACATGTCTGGTGAAGGTTCTATCCAAGCGATATAGCTGCGAGTGGGA GTCCAATGCCAACCTGAGAACAAATTATAAGGACACCCACCCGTTCTGGACAGGAC GGATCCTTTCTGTACTCAAAACTCACTGTGATAAAATCAAGATGGCAACAAGGA ACGTTTTAGCTGTAGCGTGTAGCAGCAAGGCACTTCATAATCACTACACAGAAC ACTCTCTTTCTCCAGGACACCACCATCATCACCAACTG	51
SIRP1a- CD3 -PDL1 - Fc (SL)	ATGGAAACCGATACACTCTGTTGGGTGCTGCTGTTGGGCCCTGGTCAACAG GCGATTATCCCTACGATGTGCCCGACTACGCAAGCGCTCAGGCCAGTGTGATATC GATGACACAGGCCATCATCTCTGTCAGCGTGAAGCGTAGGAGACCGAGTCACCAT TGAGAGCCTCCAAAGCGATTCTACAGCAGTGGCTGGTATCAGCAAAACCTGGTA AGGCCGCCAAAGCTCTCATCTATTCAAGCGAGTTCTGTATAGCGGCGTTCCAGCG ATTCTCTGGCTCTGGATCCGGCACGGACTTTACTTGACAAATTTCCTCTTCAGCCC GAAGATTTGCAACCTACTACTGTCAAGCAATATCTTACCATCCAGGCAACTTCGGAC AGGGCACCACAAAGTCAAAAGAGGCGGCCGGCGAGCTGGCGGGGGTTCAAGG AGGGCGGGGGTCTGAAGTCAACTCGTGAAGCGTAGGAGGGCTTGTCAACCTGG GGGTCACTCGGGTTGAGCTGCGCGCAAGCGGATTCAACCTCTCAGACTCTGGATCC ATTAGGGTGGCAGGGCTCCGGAAAAGGCTTGGAAATGGGTTGCTGGATTTCACCGTA TGCGGTTTCCACATACGCTGACAGCGTTAAGGGTCGATTCAACATCTCGAGAT ACTCTAAAAAACACAGCCTACCTCAGATGAATAGTTGCGGCCAGGACACAGCG TTTATTATTGTGCCCTAAAGACATTGGCCGGCGTTTCAGACTACTGGGGCAAGGTAC GTGGTGAAGCTGAGCGCCGAGTGAAGCAAAATCTTGACAAACAAACCCATACCTGC CCACCATGCCAACCCAGAACACTCTTGGCGTACCCCTCTGTCTTCTTCCCTCCGA AGCCCAAGGATACCCAGTGTGATCAGCGGAACCCGGAGGTAACATGTTGCGAGT TGTTAGCCATGAGGATCTGAGTCAGTCAAATTAACTGCTGATGAGCGGTGTTGAGGTG CACAACGCTAAACTAACGCCCCAGGGAGGAGCAGTACAACCTATCGCGTCGTAT CTGTCCTACCGTCTGCACTAAGACTGGCTCAATGTAAGGAATATAATGTAAGT GAGTAACAAGGCACTGCCAGCACCTATCGAAAAAAACCATCTCAAGGCAAGGGACAG CCCAGGGAAACCCAGGTCTATACTCTGCAACCTCTCGGGATGAATGACCAAGAAC AAGTTAGCTGACATGTCTGGTGAAGGTTCTATCCAAGCGATATAGCTGCGAGTG GGAGTCCAATGCCAACCTGAGAACAAATTATAAGGACACCCACCCGTTCTGGACAGC GACGGATCCTTTCTGTACTCAAAACTCACTGTGATAAAATCAAGATGGCAACAAG	67

TABLE 4-continued

Nucleic sequences of exemplary enqager molecules

TABLE 4-continued

Nucleic sequences of exemplary engager molecules		SEQ ID NO:
BITE	Nucleic Acid Sequence	
	GGTCAGCGGCAGCGGCAGCGGCACCAGCTACAGCCTGACCATCAGCAGCATGGAGGC CGAGGACGCCACCTACTACTGCCAGCAGTGGAGCAGCAACCCCTGACCTTCGGC GCCGGCACCAAGCTGGAGCTGAAGCACCACCAACCACTAG	

[0239] Additional exemplarily embodiments of engager molecules include engager molecules comprising an activation domain comprising an anti-CD3 scFv (e.g., comprised of SEQ ID NOs: 20 and 22) and a therapeutic domain comprising an scFv that binds to a cell surface protein such as CTLA4, TIM3, LAG3, BTLA, KIR, TIGIT, OX40, or GITR. In some embodiments, the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes an engager molecules comprising an activation domain comprising an anti-CD3 scFv (e.g., comprised of SEQ ID NOs: 20 and 22) and a therapeutic domain comprising an scFv that binds to a cell surface protein such as CTLA4, TIM3, LAG3, BTLA, KIR, TIGIT, OX40, CD47, or GITR, and a second nucleic acid sequence encoding a therapeutic molecule such as IL-15 (SEQ ID NO: 24), IL-12 (SEQ ID NOs: 26 and 28), CXCL10 (SEQ ID NO: 30), or MMP9 (SEQ ID NO: 34). In such embodiments, the engager molecule is linked to the therapeutic molecule polypeptide by a T2A self-cleaving peptide linker (SEQ ID NO: 14).

[0240] Additional exemplarily embodiments of engager molecules include engager molecules comprising an activation domain comprising an anti-CD3 scFv (e.g., comprised of SEQ ID NOs: 20 and 22) and an antigen recognition domain comprising an scFv that binds to SLAMF7 (also known as CD319) or CD27 (either the membrane bound form of CD27 or the soluble form of CD27). In some embodiments, the oncolytic viruses described herein comprise a bicistronic or multicistronic nucleic acid sequence, wherein a first nucleic acid sequence encodes an engager molecules comprising an activation domain comprising an anti-CD3 scFv (e.g., comprised of SEQ ID NOs: 20 and 22) and an antigen-recognition domain comprising an scFv that binds to a target cell antigen such as SLAMF7 or CD27, and a second nucleic acid sequence encoding a therapeutic molecule such as IL-15 (SEQ ID NO: 24), IL-12 (SEQ ID NOs: 26 and 28), CXCL10 (SEQ ID NO: 30), or MMP9 (SEQ ID NO: 34). In such embodiments, the engager molecule is linked to the therapeutic molecule polypeptide by a T2A self-cleaving peptide linker (SEQ ID NO: 14).

[0241] Additional cell surface proteins that are suitable for target by the engager molecules described herein are shown below in Table 5. Additional proteins that are suitable for use as therapeutic molecules are show below in Table 6.

TABLE 5

Cell-surface proteins suitable for targeting by engager molecules	
Cell-surface protein	NCBI Reference Sequence (RefSeq) Identifier
human SLAMF7	NP_067004.3
human NKGD2L	NP_079494.1
human CTLA4	NP_005205.2

TABLE 5-continued

Cell-surface proteins suitable for targeting by engager molecules	
Cell-surface protein	NCBI Reference Sequence (RefSeq) Identifier
human TIM3	NP_116171.3
human LAG3	NP_002277.4
human BTLA (isoform 1 and 2, respectively)	NP_001078826.1; NP_861445.3
human KIR	
human TIGIT	NP_776160.2
human OX40	NP_003318.1
human GITR (isoform 1, 2, 3 respectively)	NP_004186.1; NP_683699.1; NP_683700.1
human CD27	NP_001233.1
human CD40 (isoforms 1-5, respectively)	NP_001241.1; NP_690593.1; NP_001289682.1; NP_001309350.1; NP_001309351.1
human NKGD2L	NP_079494.1
human CD200	NP_005935.4

TABLE 6

Proteins suitable for use as therapeutic molecules	
Molecule	NCBI Reference Sequence (RefSeq) Identifier
human TNF α	NP_000585.2
human CX3CL1	NP_002987.1
human CCR4	NP_005499.1
human CSF-1	NP_000748.3
human TGF β	NP_000651.3
human IL-7	NP_000871.1
human GM-CSF	NP_000749.2

Therapeutic Uses of Oncolytic Viruses

[0242] In some embodiments, the present invention provides compositions and methods of use for the prevention, treatment, and/or amelioration of a cancerous disease. In some embodiments, the methods described herein comprise administering an effective amount (e.g., a therapeutically effective amount) of an oncolytic virus described herein to a subject in need thereof, wherein the virus expresses an engager molecule or an engager molecule and a therapeutic molecule.

[0243] In some embodiments, compositions and methods of the present invention are useful for all stages and types of cancer, including for minimal residual disease, early solid tumor, advanced solid tumor and/or metastatic solid tumor. In some embodiments, compositions and methods of the present invention are used to treat a variety of solid tumors

associated with a number of different cancers. The term “solid tumors” refers to relapsed or refractory tumors as well as metastases (wherever located), other than metastases observed in lymphatic cancer.

[0244] Exemplarily solid tumors include, but are not limited to, brain and other central nervous system tumors (e.g. tumors of the meninges, brain, spinal cord, cranial nerves and other parts of central nervous system, e.g. glioblastomas or medulla blastomas); head and/or neck cancer; breast tumors; circulatory system tumors (e.g. heart, mediastinum and pleura, and other intrathoracic organs, vascular tumors and tumor-associated vascular tissue); excretory system tumors (e.g. kidney, renal pelvis, ureter, bladder, other and unspecified urinary organs); gastrointestinal tract tumors (e.g. oesophagus, stomach, small intestine, colon, colorectal, rectosigmoid junction, rectum, anus and anal canal), tumors involving the liver and intrahepatic bile ducts, gall bladder, other and unspecified parts of biliary tract, pancreas, other and digestive organs); head and neck; oral cavity (lip, tongue, gum, floor of mouth, palate, and other parts of mouth, parotid gland, and other parts of the salivary glands, tonsil, oropharynx, nasopharynx, pyriform sinus, hypopharynx, and other sites in the lip, oral cavity and pharynx); reproductive system tumors (e.g. vulva, vagina, Cervix uteri, Corpus uteri, uterus, ovary, and other sites associated with female genital organs, placenta, penis, prostate, testis, and other sites associated with male genital organs); respiratory tract tumors (e.g. nasal cavity and middle ear, accessory sinuses, larynx, trachea, bronchus and lung, e.g. small cell lung cancer or non-small cell lung cancer); skeletal system tumors (e.g. bone and articular cartilage of limbs, bone articular cartilage and other sites); skin tumors (e.g. malignant melanoma of the skin, non-melanoma skin cancer, basal cell carcinoma of skin, squamous cell carcinoma of skin, mesothelioma, Kaposi’s sarcoma); and tumors involving other tissues including peripheral nerves and autonomic nervous system, connective and soft tissue, retroperitoneum and peritoneum, eye and adnexa, thyroid, adrenal gland and other endocrine glands and related structures, secondary and unspecified malignant neoplasm of lymph nodes, secondary malignant neoplasm of respiratory and digestive systems and secondary malignant neoplasm of other sites, oligodendrogloma, oligoastrocytoma, astrocytoma, glioblastoma or medulloblastoma or other solid tumor.

[0245] In particular embodiments, the solid tumor is a brain tumor. In some instances, the brain tumor includes, but is not limited to, a glioma, in particular ependymoma, oligodendrogloma, oligoastrocytoma, astrocytoma, glioblastoma, or a medulloblastoma.

[0246] In some embodiments, compositions and methods of the present invention are used to treat a hematologic cancer. The term “hematologic cancer” refers herein to a cancer of the blood system and includes relapsed or refractory hematologic cancer as well as a metastasized hematologic cancer (wherever located). In some instances, the hematologic cancer is a T-cell malignancy or a B-cell malignancy. Exemplary T-cell malignancies include, but are not limited to, peripheral T-cell lymphoma not otherwise specified (PTCL-NOS), anaplastic large cell lymphoma, angioimmunoblastic lymphoma, cutaneous T-cell lymphoma, adult T-cell leukemia/lymphoma (ATLL), blastic NK-cell lymphoma, enteropathy-type T-cell lymphoma,

hematosplenic gamma-delta T-cell lymphoma, lymphoblastic lymphoma, nasal NK/T-cell lymphomas, or treatment-related T-cell lymphomas.

[0247] Exemplary B-cell malignancies include, but are not limited to, chronic lymphocytic leukemia (CLL), small lymphocytic lymphoma (SLL), high risk CLL, a non-CLL/SLL lymphoma, prolymphocytic leukemia (PLL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Waldenström’s macroglobulinemia, multiple myeloma, extranodal marginal zone B cell lymphoma, nodal marginal zone B cell lymphoma, Burkitt’s lymphoma, non-Burkitt high grade B cell lymphoma, primary mediastinal B-cell lymphoma (PMBL), immunoblastic large cell lymphoma, precursor B-lymphoblastic lymphoma, B cell prolymphocytic leukemia, lymphoplasmacytic lymphoma, splenic marginal zone lymphoma, plasma cell myeloma, plasmacytoma, mediastinal (thymic) large B cell lymphoma, intravascular large B cell lymphoma, primary effusion lymphoma, or lymphomatoid granulomatosis. In some cases, the hematologic cancer is a relapsed or refractory hematologic cancer. In some cases, the hematologic cancer is a metastasized hematologic cancer.

[0248] In some embodiments, the oncolytic virus is engineered to produce a high level of expression of the engager molecule and/or the therapeutic polypeptide prior to the death of the virally-infected cell, e.g., within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 hours of infection, or within 2, 3, 4, 5, or 6 days of infection. Expression of the engager molecule and/or the therapeutic polypeptide can be determined by methods known in the art, including Western blot, ELISA, immunoprecipitation, or electrophoresis, among others. In general, a “high level of expression” in reference to a therapeutic molecule refers to a level of expression that is greater than the basal level of expression of a corresponding polypeptide in a cell that is not infected with the oncolytic virus

Compositions and Routes of Administration

[0249] In some embodiments, a therapeutically effective amount of an oncolytic virus or compositions thereof are administered to a subject. In accordance with this disclosure, the term “pharmaceutical composition” relates to a composition for administration to an individual. Administration of the compositions described herein can be local or systemic and can be effected by different ways, e.g., by intravenous, subcutaneous, intraperitoneal, intramuscular, topical or intradermal administration. In some embodiments, compositions disclosed herein are administered by any means known in the art. For example, the compositions described herein may be administered to a subject intravenously, intratumorally, intradermally, intraarterially, intraperitoneally, intralesionally, intracranially, intraarticularly, intraprostatically, intrapleurally, intratracheally, intranasally, intravittally, intravaginally, intrarectally, topically, intratumorally, intramuscularly, intrathecally, subcutaneously, subconjunctivally, intravesicularly, mucosally, intrapericardially, intraumbilically, intraocularly, orally, locally, by inhalation, by injection, by infusion, by continuous infusion, by localized perfusion, via a catheter, via a lavage, in a cream, or in a lipid composition. In particular embodiments, the composition is administered to the individual via infusion or injection. In some embodiments, administration is parenteral, e.g., intravenous. In some embodiments, the oncolytic virus or composition thereof is administered

directly to the target site, e.g., by biolistic delivery to an internal or external target site or by catheter to a site in an artery. In particular embodiments, the compositions described herein are administered subcutaneously or intravenously. In some embodiments, the oncolytic viruses or compositions thereof described herein are administered intravenously or intraarterially.

[0250] In a preferred embodiment, the compositions described herein are formulated for a particular route of administration, for parenteral, transdermal, intraluminal, intra-arterial, intrathecal, intravenous administration, or for direct injection into a cancer. In some embodiments, the compositions further comprise a pharmaceutically acceptable carrier. "Pharmaceutically or pharmacologically acceptable" refer herein to molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal, or a human, as appropriate. In some embodiments, the pharmaceutical compositions of the present disclosure further comprise a pharmaceutically acceptable carrier. A "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, buffer, stabilizing formulation, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. Examples of suitable pharmaceutical carriers are well known in the art and include phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions, etc. Compositions comprising such carriers are formulated by well-known conventional methods. In some embodiments, supplementary active ingredients are also incorporated into the compositions. For human administration, the compositions described herein are met with sterility, pyrogenicity, and general safety and purity standards as required by FDA Office of Biologics standards.

[0251] In some embodiments, the compositions described herein comprise a carrier such as a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity is maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms is brought about by various antibacterial and antifungal agents known in the art. In many cases, it is preferable to include isotonic agents, for example, sugars or sodium chloride. In some embodiments, prolonged absorption of the injectable compositions is brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

[0252] In some embodiments, the oncolytic viruses described herein are formulated into a composition in a neutral or salt form. Pharmaceutically acceptable salts, include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups are derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.

[0253] Pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formula-

tions including sesame oil, peanut oil or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In some cases, the form is sterile and is fluid. In some cases, it is stable under the conditions of manufacture and certain storage parameters (e.g. refrigeration and freezing) and is preserved against the contaminating action of microorganisms, such as bacteria and fungi. Aqueous compositions of some embodiments herein include an effective amount of a virus, nucleic acid, therapeutic protein, peptide, construct, stimulator, inhibitor, and the like, dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium. Aqueous compositions of vectors expressing any of the foregoing are also contemplated.

[0254] In certain embodiments, biological material is extensively dialyzed to remove undesired small molecular weight molecules and/or lyophilized for more ready formulation into a desired vehicle, where appropriate. In some embodiments, the active compounds or constructs are formulated for parenteral administration, e.g., formulated for injection via the intravenous, intramuscular, sub-cutaneous, intralesional, intranasal or intraperitoneal routes. Any route used for vaccination or boost of a subject is used. The preparation of an aqueous composition that contains an active component or ingredient is known to those of skill in the art in light of the present disclosure. Typically, such compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for use in preparing solutions or suspensions upon the addition of a liquid prior to injection is also prepared; and the preparations are also emulsified.

[0255] In some instances, the oncolytic virus is dispersed in a pharmaceutically acceptable formulation for injection. In some embodiments, sterile injectable solutions are prepared by incorporating the active compounds or constructs in the required amount in the appropriate solvent with any of the other ingredients enumerated above, as required, followed by filtered sterilization.

[0256] Upon formulation, the compositions described herein are administered in a manner compatible with disease to be treated and the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but also as slow release capsules or microparticles and microspheres and the like.

[0257] For parenteral administration in an aqueous solution, for example, the solution is suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intratumorally, intramuscular, subcutaneous and intraperitoneal administration. In this context, sterile aqueous media that is employed is known to those of skill in the art in light of the present disclosure. For example, one dosage is dissolved in 1 mL of isotonic NaCl solution and either added to 1000 mL of hypodermolysis fluid or injected at the proposed site of infusion.

[0258] In addition to the compounds formulated for parenteral administration, such as intravenous, intratumorally, intradermal or intramuscular injection, other pharmaceutically acceptable forms include, e.g., tablets or other solids for oral administration; liposomal formulations; time release capsules; biodegradable and any other form currently used.

[0259] In some embodiments, the viruses are encapsulated to inhibit immune recognition and placed at the site of a tumor.

[0260] In some instances, preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives are also present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like. In addition, the pharmaceutical composition of the present disclosure might comprise proteinaceous carriers, like, e.g., serum albumin or immunoglobulin, preferably of human origin. It is envisaged that the pharmaceutical composition of the disclosure might comprise, in addition to the proteinaceous bispecific single chain antibody constructs or nucleic acid molecules or vectors encoding the same (as described in this disclosure), further biologically active agents, depending on the intended use of the pharmaceutical composition.

[0261] In some embodiments, tumor-infiltrating virus-producing cells which continuously release vectors are formulated for direct implantation into a tumor in order to increase the viral oncolysis and the transfer efficiency of the therapeutic genes.

[0262] Intranasal formulations are known in the art and are described in, for example, U.S. Pat. Nos. 4,476,116; 5,116,817; and 6,391,452. Formulations which are prepared according to these and other techniques well-known in the art are prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, fluorocarbons, and/or other solubilizing or dispersing agents known in the art. See, for example, Ansel, H. C. et al., *Pharmaceutical Dosage Forms and Drug Delivery Systems*, Sixth Ed. (1995). Preferably these compositions and formulations are prepared with suitable nontoxic pharmaceutically acceptable ingredients. These ingredients are known to those skilled in the preparation of nasal dosage forms and some of these are found in Remington: The Science and Practice of Pharmacy, 21st edition, 2005, a standard reference in the field. The choice of suitable carriers is highly dependent upon the exact nature of the nasal dosage form desired, e.g., solutions, suspensions, ointments, or gels. Nasal dosage forms generally contain large amounts of water in addition to the active ingredient. Minor amounts of other ingredients such as pH adjusters, emulsifiers or dispersing agents, preservatives, surfactants, gelling agents, or buffering and other stabilizing and solubilizing agents are also present. The nasal dosage form is isotonic with nasal secretions.

[0263] For administration by inhalation described herein is in a form as an aerosol, a mist or a powder. Pharmaceutical compositions described herein are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit is

determined by providing a valve to deliver a metered amount. Capsules and cartridges of, such as, by way of example only, gelatin for use in an inhaler or insufflator is formulated containing a powder mix of the compound described herein and a suitable powder base such as lactose or starch.

Therapeutically Effective Amount, and Therapeutic Regimens

[0264] In some embodiments, the oncolytic viruses and compositions thereof described herein are administered to a subject at therapeutically effective amount. The therapeutically effective amount will depend on the subject to be treated, the state (e.g., general health) of the subject, the protection desired, the disease to be treated, the route of administration, and/or the nature of the virus. In some embodiments, the person responsible for administration (e.g., an attending physician) will determine the appropriate dose for an individual. As is well known in the medical arts, dosages for any one patient depend upon many factors, including the patient's size, weight, body surface area, age, sex, and general health, the particular compound to be administered, the particular disease to be treated, timing and route of administration, and other drugs being administered concurrently. Therefore, it is expected that for each individual patient, even if the viruses that are administered to the population at large, each patient is monitored for the proper dosage for the individual, and such practices of monitoring a patient are routine in the art.

[0265] In some embodiments, the therapeutically effective amount of an oncolytic virus described herein is administered in a single dose. In some embodiments of the present invention, the pseudotyped oncolytic viruses or compositions thereof are administered to a subject at a dose ranging from about $1 \times 10^{+5}$ pfu to about $1 \times 10^{+15}$ pfu (plaque forming units), about $1 \times 10^{+8}$ pfu to about $1 \times 10^{+15}$ pfu, about $1 \times 10^{+10}$ pfu to about $1 \times 10^{+15}$ pfu, or about $1 \times 10^{+8}$ pfu to about $1 \times 10^{+12}$ pfu. For example, in some embodiments, the pseudotyped oncolytic viruses or compositions thereof are administered to a subject at a dose of about 10^5 , 10^6 , 10^7 , 10^8 , 10^9 , 10^{10} , 10^{11} , 10^{12} , 10^{13} , 10^{14} , or 10^{15} pfu of virus. In some embodiments, the dose depends, on the age of the subject to which a composition is being administered. For example, a lower dose may be required if the subject is juvenile, and a higher dose may be required if the subject is an adult human subject. In certain embodiments, for example, a juvenile subject receives about $1 \times 10^{+8}$ pfu and about $1 \times 10^{+10}$ pfu, while an adult human subject receives a dose between about $1 \times 10^{+10}$ pfu and about $1 \times 10^{+12}$ pfu. In some embodiments, the therapeutically effective amount of an oncolytic virus described herein is administered over the course of two or more doses. In some embodiments, the two or more doses are administered simultaneously (e.g., on the same day or over a short period of time) or at appropriate intervals, for example as two, three, four or more sub-doses per day.

[0266] In some embodiments, the oncolytic viruses or compositions thereof described herein are administered to a subject once. In some embodiments, the oncolytic viruses or compositions thereof described herein are administered to a subject more than once. For example, a composition disclosed herein may be administered multiple times, including 1, 2, 3, 4, 5, 6, or more times. In some embodiments, a composition disclosed herein may be administered to a

subject on a daily or weekly basis for a time period or on a monthly, bi-yearly, or yearly basis depending on need or exposure to a pathogenic organism or to a condition in the subject (e.g. cancer). In particular embodiments, the oncolytic viruses and compositions thereof are formulated in such a way, and administered in such and amount and/or frequency, that they are retained by the subject for extended periods of time.

[0267] In some embodiments, the pseudotyped oncolytic viruses or compositions thereof are administered for therapeutic applications or is administered as a maintenance therapy, such as for example, for a patient in remission. In some embodiments, the pseudotyped oncolytic viruses or compositions thereof are administered once every month, once every 2 months, once every 6 months, once a year, twice a year, three times a year, once every two years, once every three years, or once every five years.

[0268] In some embodiments wherein a patient's status does improve, the pseudotyped oncolytic viruses or compositions thereof may be administered continuously upon the doctor's discretion. In some embodiments, the dose composition is temporarily reduced and/or administration of the composition is temporarily suspended for a certain length of time (i.e., a "drug holiday"). In some embodiments, the length of the drug holiday varies between 2 days and 1 year, including by way of example only, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 10 days, 12 days, 15 days, 20 days, 28 days, 35 days, 50 days, 70 days, 100 days, 120 days, 150 days, 180 days, 200 days, 250 days, 280 days, 300 days, 320 days, 350 days, or 365 days. The dose reduction during a drug holiday is from 10%100%, including, by way of example only, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%.

[0269] In some embodiments, once improvement of a patient's conditions has occurred, a maintenance dose may be administered if necessary. In some embodiments, the dosage and/or the frequency of administration of the composition is reduced, as a function of the symptoms, to a level at which the improved disease, disorder or condition is retained. In some embodiments, patients may require intermittent treatment on a long-term basis upon any recurrence of symptoms.

[0270] In some embodiments, toxicity and therapeutic efficacy of such therapeutic regimens are determined by standard pharmaceutical procedures in cell cultures or experimental animals, including, but not limited to, the determination of the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between the toxic and therapeutic effects is the therapeutic index and it is expressed as the ratio between LD₅₀ and ED₅₀. Compounds exhibiting high therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with minimal toxicity. The dosage varies within this range depending upon the dosage form employed and the route of administration utilized.

[0271] In some instances, tumor antigen expression levels are evaluated to assess the progress of treatment in a patient, to stratify a patient, and/or to modulate a therapeutic regimen. In some instances, assessment of antigen expression

levels include the use of immunohistochemistry (IHC) (including semi-quantitative or quantitative IHC) or other antibody-based assays (Western blot, fluorescent immunoassay (FIA), fluorescence in situ hybridization (FISH), radioimmunoassay (RIA), radioimmunoprecipitation (RIP), enzyme-linked immunosorbent assay (ELISA), immunoassay, immunoradiometric assay, fluoroimmunoassay, chemiluminescent assay, bioluminescent assay, gel electrophoresis), or indirectly by quantitating the transcripts for these genes (e.g. by in situ hybridization, nuclease protection, Northern blot, polymerase chain reaction (PCR) including reverse transcriptase PCR (RT-PCR)). In some instances, cells, for example, lymphocytes, are analyzed using FACS technology or paraffin embedded tumor sections using antibodies.

[0272] In some instances, antibodies are used to characterize the protein content of target cells through techniques such as immunohistochemistry, ELISAs and Western blotting. In some cases, this provides a screen e.g. for the presence or absence of a subject likely to respond favorably to oncolytic virus therapy and/or a need for co-administering an immune stimulating agent with an oncolytic virus.

[0273] In some embodiments, immunohistochemistry is performed on a sample of tissue from a biopsy. In some cases, the sample is examined fresh or frozen. In some instances, antibodies against antigens presented in the cell are added to the sample on a slide and the antibodies bind wherever the antigens are present. In some embodiments, excess antibody is then washed away. In some cases, the antibodies that remain bound to the cell are further labeled by a secondary antibody for visualization under a microscope.

[0274] In some embodiments, test samples are obtained from a subject such as for example, from tissue (e.g. tumor biopsy), cerebrospinal fluid (CSF), lymph, blood, plasma, serum, peripheral blood mononuclear cells (PBMCs), lymph fluid, lymphocytes, synovial fluid and urine. In particular embodiments, the test sample is obtained from CSF or tumor tissue. In other particular embodiments, the test sample is obtained from tumor tissue and e.g. the relative number of CD4⁺ and/or CD8⁺ cells in the sample is determined and/or the level of one or more Th1 and/or Th2 cytokines in the sample is measured e.g. by immunofluorescent staining of fixed and permeabilized cells from the sample with antibodies against the Th1 and/or Th2 cytokines. In other particular embodiments, the test sample is obtained from blood and e.g. the level of one or more Th1 and/or Th2 cytokines in the sample is measured by ELISA.

Combination Therapy

[0275] In some embodiments, the viruses, expression constructs, nucleic acid molecules and/or vectors described herein are administered in combination with another therapeutic agent. In some embodiments, the oncolytic viruses and an additional therapeutic agent are formulated in the same compositions. In such embodiments, the composition may further comprise a pharmaceutically acceptable carrier or excipient. In some embodiments, the oncolytic viruses and an additional therapeutic agent are formulated in separate compositions (e.g., two or more compositions suitable for administration to patient or subject). The disclosure further encompasses co-administration protocols with other cancer therapies, e.g. bispecific antibody constructs, targeted toxins or other compounds, including those which act via

immune cells, including T-cell therapy. The clinical regimen for co-administration of the inventive composition(s) encompass(es) co-administration at the same time, before and/or after the administration of the other component. Particular combination therapies include chemotherapy, radiation, surgery, hormone therapy, and/or other types of immunotherapy. In some embodiments, a therapeutically effective amount of a pseudotyped oncolytic virus is administered to a subject in need thereof in combination with an additional therapeutic agent. In some instances, the additional therapeutic agent is a chemotherapeutic agent, a steroid, an immunotherapeutic agent, a targeted therapy, or a combination thereof.

[0276] In some embodiments, pharmaceutical compositions are administered in conjunction with an adjuvant therapy. For examples, activating adjuvant treatments are administered prior to, contemporaneous with, or after one or more administrations (e.g., intratumoral injection of the pseudotyped virus). For example, adjuvant therapy includes modulation of Toll-like receptor (TLR) ligands, such as TLR9 activation by DNA molecules comprising CpG sequences, or TLR9 activation (e.g., by RNA ligands). Other adjuvant treatments include agonizing antibodies or other polypeptides (e.g., activation of CD40 or GITR by CD40 Ligand (CD40L) or GITR Ligand (GITRL), respectively). Further, provided are cyclic dinucleotides (e.g., c-di-GMP) that modulate STING. Another activating adjuvant includes interleukins such as IL-33.

[0277] In some embodiments, the additional therapeutic agent comprises an agent selected from: bendamustine, bortezomib, lenalidomide, idelalisib (GS-1101), vorinostat, everolimus, panobinostat, temsirolimus, romidepsin, vorinostat, fludarabine, cyclophosphamide, mitoxantrone, pentostatin, prednisone, etoposide, procarbazine, and thalidomide.

[0278] In some embodiments, the additional therapeutic agent is a multi-agent therapeutic regimen. In some embodiments the additional therapeutic agent comprises the Hyper-CVAD regimen (cyclophosphamide, vincristine, doxorubicin, dexamethasone alternating with methotrexate and cytarabine). In some embodiments, the HyperCVAD regimen is administered in combination with rituximab.

[0279] In some embodiments the additional therapeutic agent comprises the R-CHOP regimen (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone).

[0280] In some embodiments the additional therapeutic agent comprises the FCR regimen (fludarabine, cyclophosphamide, rituximab).

[0281] In some embodiments the additional therapeutic agent comprises the FCML regimen (fludarabine, cyclophosphamide, mitoxantrone, rituximab).

[0282] In some embodiments the additional therapeutic agent comprises the FMR regimen (fludarabine, mitoxantrone, rituximab).

[0283] In some embodiments the additional therapeutic agent comprises the PCR regimen (pentostatin, cyclophosphamide, rituximab).

[0284] In some embodiments the additional therapeutic agent comprises the PEPC regimen (prednisone, etoposide, procarbazine, cyclophosphamide).

[0285] In some embodiments the additional therapeutic agent comprises radioimmunotherapy with ⁹⁰Y-ibritumomab tiuxetan or ¹³¹I-tositumomab.

[0286] In some embodiments, the additional therapeutic agent is an autologous stem cell transplant.

[0287] In some embodiments, the additional therapeutic agent is selected from: nitrogen mustards such as for example, bendamustine, chlorambucil, chloramphamide, ifosfamide, meiphalan, prednimustine, trofosfamide; alkyl sulfonates like busulfan, mannosulfan, treosulfan; ethylene imines like carboquone, thiotepa, triaziquone; nitrosoureas like carmustine, fotemustine, lomustine, nimustine, ranimustine, semustine, streptozocin; epoxides such as for example, etoglucid; other alkylating agents such as for example dacarbazine, mitobronitol, piperbroman, temozolamide; folic acid analogues such as for example methotrexate, permetrexed, pralatrexate, raltitrexed; purine analogs such as for example cladribine, clofarabine, fludarabine, mercaptopurine, nelarabine, tioguanine; pyrimidine analogs such as for example azaconidine, capecitabine, carmofur, cytarabine, decitabine, fluorouracil, gemcitabine, tegafur, *vinca* alkaloids such as for example vinblastine, vincristine, vindesine, vinflunine, vinorelbine; podophyllotoxin derivatives such as for example etoposide, teniposide; colchicine derivatives such as for example demecolcine; taxanes such as for example docetaxel, paclitaxel, paclitaxel poliglumex; other plant alkaloids and natural products such as for example trabectedin; actinomycines such as for example dactinomycin; antracyclines such as for example aclarubicin, daunorubicin, doxorubicin, epirubicin, idarubicin, mitoxantrone, pirarubicin, valrubicin, zorubicin; other cytotoxic antibiotics such as for example bleomycin, ixabepilone, mitomycin, platinamycin; platinum compounds such as for example carboplatin, cisplatin, oxaliplatin, satraplatin; methyldihydropyrimidines such as for example procarbazine; sensitizers such as for example aminolevulinic acid, efaproxiral, methyl aminolevulinate, porfimer sodium, temoporfin; protein kinase inhibitors such as for example dasatinib, erlotinib, everolimus, gefitinib, imatinib, lapatinib, nilotinib, pazopanib, sorafenib, sunitinib, temsirolimus; other antineoplastic agents such as for example altretinoin, altretamine, amazarine, anagrelide, arsenic trioxide, asparaginase, bexarotene, bortezomib, celecoxib, denileukin diftitox, estramustine, hydroxycarbamide, irinotecan, lonidamine, masoprolol, miltefosine, mitoguazone, mitotane, oblimersen, pegasparagase, pentostatin, romidepsin, sitimogene ceranovec, tiazofurine, topotecan, tretinoin, vorinostat; estrogens such as for example diethylstilbestrol, ethinylestradiol, fesfostrol, polyestradiol phosphate; progestogens such as for example gestonorone, medroxyprogesterone, megestrol; gonadotropin releasing hormone analogs such as for example buserelin, goserelin, leuprorelin, triptorelin; anti-estrogens such as for example fulvestrant, tamoxifen, toremifene; anti-androgens such as for example bicalutamide, flutamide, nilutamide, enzyme inhibitors, aminoglutethimide, anastrozole, exemestane, formestane, letrozole, vorozole; other hormone antagonists such as for example abarelix, degarelix; Immunostimulants such as for example histamine dihydrochloride, mifamurtide, pidotimod, plerixafor, roquinimex, thymopentin; immunosuppressants such as for example everolimus, gusperimus, leflunomide, mycophenolic acid, sirolimus; calcineurin inhibitors such as for example ciclosporin, tacrolimus; other immunosuppressants such as for example azathioprine, lenalidomide, methotrexate, thalidomide; and Radiopharmaceuticals such as for example, ibogaine.

[0288] In some embodiments, the additional therapeutic agent is selected from: interferons, interleukins, tumor necrosis factors, growth factors, or the like.

[0289] In some embodiments, the additional therapeutic agent is selected from: anestim, filgrastim, lenograstim, molgramostim, pegfilgrastim, sargramostim; Interferons such as for example IFN α natural, IFN α -2a, IFN α -2b, IFN alfacon-1, IFN α -n1, IFN β natural, IFN β -1 α , IFN β -1b, IFN γ , peginterferon α -2a, peginterferon α -2b; interleukins such as for example aldesleukin, oprelvekin; other immunostimulants such as for example BCG vaccine, glatiramer acetate, histamine dihydrochloride, immunocyanin, lentinan, melanoma vaccine, misfamurtide, pegademase, pidotimod, plerixafor, poly I:C, poly ICLC, roquinimex, tasonermin, thymopentin; Immunosuppressants such as for example abatacept, abetimus, alefacept, antilymphocyte immunoglobulin (horse), antithymocyte immunoglobulin (rabbit), eculizumab, efalizumab, everolimus, gusperimus, leflunomide, muromab-CD3, mycophenolic acid, natalizumab, sirolimus; TNF α inhibitors such as for example adalimumab, afelimomab, certolizumab pegol, etanercept, golimumab, infliximab; Interleukin Inhibitors such as for example anakinra, basiliximab, canakinumab, daclizumab, mepolizumab, rilonacept, tocilizumab, ustekinumab; calcineurin inhibitors such as for example ciclosporin, tacrolimus; other immunosuppressants such as for example azathioprine, lenalidomide, methotrexate, thalidomide.

[0290] In some embodiments, the additional therapeutic agent is selected from: Adalimumab, Alemtuzumab, Basiliximab, Bevacizumab, Cetuximab, Certolizumab pegol, Daclizumab, Eculizumab, Efalizumab, Gemtuzumab, Ibrutumomab tiuxetan, Infliximab, Muromonab-CD3, Natalizumab, Panitumumab, Ranibizumab, Rituximab, Tositumomab, Trastuzumab, or the like, or a combination thereof.

[0291] In some embodiments, the additional therapeutic agent is selected from: monoclonal antibodies such as for example alemtuzumab, bevacizumab, catumaxomab, cetuximab, edrecolomab, gemtuzumab, panitumumab, rituximab, trastuzumab; Immunosuppressants, eculizumab, efalizumab, muromab-CD3, natalizumab; TNF alpha Inhibitors such as for example adalimumab, afelimomab, certolizumab pegol, golimumab, infliximab; Interleukin Inhibitors, basiliximab, canakinumab, daclizumab, mepolizumab, tocilizumab, ustekinumab; Radiopharmaceuticals, ibritumomab tiuxetan, tositumomab; additional monoclonal antibodies such as for example abagovomab, adecatumumab, alemtuzumab, anti-CD30 monoclonal antibody Xmab2513, anti-MET monoclonal antibody MetMab, apolizumab, apomab, arcitumomab, basiliximab, bispecific antibody 2B1, blinatumomab, brentuximab vedotin, capromab pendetide, cixutumumab, claudiximab, conatumumab, dacetuzumab, denosumab, eculizumab, epratuzumab, epratuzumab, ertumaxomab, etaracizumab, figitumumab, fresolimumab, galiximab, ganitumab, gemtuzumab ozogamicin, glembatumumab, ibritumomab, inotuzumab ozogamicin, ipilimumab, lexatumumab, lintuzumab, lintuzumab, lucatumumab, mapatumumab, matuzumab, milatuzumab, monoclonal antibody CC49, necitumumab, nimotuzumab, oregovomab, pertuzumab, ramucirumab, ranibizumab, siplizumab, sonepcizumab, tanezumab, tositumomab, trastuzumab, tremelimumab, tucotuzumab, celmoleukin, veltuzumab, visilizumab, volociximab, zalutumumab.

[0292] In some embodiments, the additional therapeutic agent is selected from: agents that affect the tumor micro-

environment such as cellular signaling network (e.g. phosphatidylinositol 3-kinase (PI3K) signaling pathway, signaling from the B-cell receptor and the IgE receptor). In some embodiments, the additional therapeutic agent is a PI3K signaling inhibitor or a syk kinase inhibitor. In one embodiment, the syk inhibitor is R788. In another embodiment is a PKC γ inhibitor such as by way of example only, enzastaurin.

[0293] Examples of agents that affect the tumor micro-environment include PI3K signaling inhibitor, syk kinase inhibitor, protein kinase inhibitors such as for example dasatinib, erlotinib, everolimus, gefitinib, imatinib, lapatinib, nilotinib, pazopanib, sorafenib, sunitinib, temsirolimus; other angiogenesis inhibitors such as for example GT-111, 11-101, R1530; other kinase inhibitors such as for example AC220, AC480, ACE-041, AMG 900, AP24534, Arry-614, AT7519, AT9283, AV-951, axitinib, AZD1152, AZD7762, AZD8055, AZD8931, bafetinib, BAY 73-4506, BGJ398, BGT226, BI 811283, BI6727, BIBF 1120, BIBW 2992, BMS-690154, BMS-777607, BMS-863233, BSK-461364, CAL-101, CEP-11981, CYC116, DCC-2036, dinaciclib, dovitinib lactate, E7050, EMD 1214063, ENMD-2076, fostamatinib disodium, GSK2256098, GSK690693, INCIBI8424, INNO-406, JNJ-26483327, JX-594, KX2-391, linifanib, LY2603618, MGCD265, MK-0457, MK1496, MLN8054, MLN8237, MP470, NMS-1116354, NMS-1286937, ON 01919.Na, OSI-027, OSI-930, Btk inhibitor, PF-00562271, PF-02341066, PF-03814735, PF-04217903, PF-04554878, PF-04691502, PF-3758309, PHA-7393358, PLC3397, progenipotin, R547, R763, ramucirumab, regorafenib, RO5185426, SAR103168, SCH 727965, SGI-176, SGX523, SNS-314, TAK-593, TAK-901, TK1258, TLN-232, TTP607, XL147, XL228, XL281RO5126766, XL418, XL765.

[0294] In some embodiments, the additional therapeutic agent is selected from: inhibitors of mitogen-activated protein kinase signaling, e.g., U0126, PD98059, PD184352, PD0325901, ARRY-142886, SB239063, SP600125, BAY 43-9006, wortmannin, or LY294002; Syk inhibitors; mTOR inhibitors; and antibodies (e.g., rituxan).

[0295] In some embodiments, the additional therapeutic agent is selected from: 20-epi-1, 25 dihydroxyvitamin D3; 5-ethynyluracil; abiraterone; aclarubicin; acylfulvene; adecyepol; adozelesin; aldesleukin; ALL-TK antagonists; altretamine; ambamustine; amidox; amifostine; aminolevulinic acid; amrubicin; amsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors; antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein-1; antiandrogen, prostatic carcinoma; antiestrogen; anti-neoplaston; antisense oligonucleotides; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA; arginine deaminase; asulacrine; atamestane; atrimustine; axinastatin 1; axinastatin 2; axinastatin 3; azasetron; azatoxin; azatyrosine; baccatin III derivatives; balanol; batimastat; BCR/ABL antagonists; benzochlorins; benzoylstaurosporine; beta lactam derivatives; beta-alethine; betaclamycin B; betulinic acid; bFGF inhibitor; bicalutamide; bisantrene; bisaziridinylspermine; bisnafide; bistratene A; bizelesin; breflate; bropirimine; budotitane; buthionine sulfoximine; calcipotriol; calphostin C; camptothecin derivatives; canarypox IL-2; capecitabine; carboxamide-amino-triazole; carboxyamidotriazole; CaRest M3; CARN 700; cartilage derived inhibitor; carzelesin; casein kinase inhibitors (ICOS); castanospermine; cecropin B; cetrorelix; chlorlins; chloroquinoxaline sulfonamide;

cicaprost; cis-porphyrin; cladribine; clomifene analogues; clotrimazole; collismycin A; collismycin B; combretastatin A4; combretastatin analogue; conagenin; crambescidin 816; crisnatol; cryptophycin 8; cryptophycin A derivatives; curacin A; cyclopentanthraquinones; cycloplatam; cypemycin; cytarabine ocfosfate; cytolytic factor; cytostatin; daclizimab; decitabine; dehydrodideamin B; deslorelin; dexamethasone; dexamethasone; dexrazoxane; dexverapamil; diaziquone; didemnin B; didox; diethylnorlorspermine; dihydro-5-azacytidine; 9-dioxamycin; diphenyl spiromustine; docosanol; dolasetron; doxifluridine; droloxfene; dronabinol; duocarmycin SA; ebselen; ecomustine; edelfosine; edrecolomab; eflorenthine; elemene; emitefur epirubicin; epristeride; estramustine analogue; estrogen agonists; estrogen antagonists; etanidazole; etoposide phosphate; exemestane; fadrozole; fazarabine; fenretinide; filgrastim; finasteride; flavopiridol; flezelastine; fluasterone; fludarabine; fluorodaunorubicin hydrochloride; forsenimex; formestane; fostriecin; fotemustine; gadolinium texaphyrin; gallium nitrate; galocitabine; ganirelix; gelatinase inhibitors; gemcitabine; glutathione inhibitors; hepsulfam; heregulin; hexamethylene bisacetamide; hypericin; ibandronic acid; idarubicin; idoxifene; idramantone; ilmofosine; ilomastat; imidazoacridones; imiquimod; immunostimulant peptides; insulin-such as for example growth factor-1 receptor inhibitor; interferon agonists; interferons; interleukins; iobenguane; iododoxorubicin; ipomeanol, 4-; iroplact; irsogladine; isobengazole; isohomohalicondrin B; itasetron; jasplakinolide; kahalalide F; lamellarin-N triacetate; lanreotide; leinamycin; lenograstim; lentinan sulfate; leptolstatin; letrozole; leukemia inhibiting factor; leukocyte alpha interferon; leuprolide+estrogen+progesterone; leuprorelin; levamisole; liarozole; linear polyamine analogue; lipophilic disaccharide peptide; lipophilic platinum compounds; lissoclinamide 7; lobaplatin; lombricine; lometrexol; lonidamine; losoxantrone; lovastatin; loxoribine; lurtotecan; lutetium texaphyrin; lysofylline; lytic peptides; maitansine; mannosatin A; marimastat; masoprolol; maspin; matrilysin inhibitors; matrix metalloproteinase inhibitors; menogaril; merbarone; meterelin; methioninase; metoclopramide; MIF inhibitor; mifepristone; miltefosine; mirimostim; mismatched double stranded RNA; mitoguazone; mitolactol; mitomycin analogues; mitonafide; mitotoxin fibroblast growth factor-saporin; mitoxantrone; mofarotene; molgramostim; monoclonal antibody, human chorionic gonadotrophin; monophosphoryl lipid A+myobacterium cell wall sk; moperidol; multiple drug resistance gene inhibitor; multiple tumor suppressor 1-based therapy; mustard anticancer agent; mycaperoxide B; mycobacterial cell wall extract; myriaporone; N-acetylinaline; N-substituted benzamides; nafarelin; nagrestip; naloxone+pentazocine; napavine; naphterpin; nartograstim; nedaplatin; nemorubicin; neridronic acid; neutral endopeptidase; nilutamide; nisamycin; nitric oxide modulators; nitroxide antioxidant; nitrullyn; O6-benzylguanine; octreotide; okicenone; oligonucleotides; onapristone; ondansetron; ondansetron; oracin; oral cytokine inducer; ormaplatin; osaterone; oxaliplatin; oxaunomycin; palauamine; palmitoylrhizoxin; pamidronic acid; panaxytriol; panomifene; parabactin; pazelliptine; pegaspargase; peldesine; pentosan polysulfate sodium; pentostatin; pentozole; perflubron; perfosfamide; perillyl alcohol; phenazinomycin; phenylacetate; phosphatase inhibitors; picibanil; pilocarpine hydrochloride; pirarubicin; piritrexim; placetin A; placetin B; plasminogen activator

inhibitor; platinum complex; platinum compounds; platinum-triamine complex; porfimer sodium; porfiromycin; prednisone; propyl bis-acridone; prostaglandin J2; proteasome inhibitors; protein A-based immune modulator; protein kinase C inhibitor; protein kinase C inhibitors; microalgal; protein tyrosine phosphatase inhibitors; purine nucleoside phosphorylase inhibitors; purpurins; pyrazolacridine; pyridoxylated hemoglobin polyoxyethylery conjugate; raf antagonists; raltitrexed; ramosetron; ras farnesyl protein transferase inhibitors; ras inhibitors; ras-GAP inhibitor; retelliptine demethylated; rhenium Re 186 etidronate; rhizoxin; ribozymes; RII retinamide; rogliptimide; rohitukine; romurtide; roquinimex; rubiginone B1; ruboxyl; safingol; saintopin; SarCNU; sarcophytol A; sargramostim; Sdi 1 mimetics; semustine; senescence derived inhibitor 1; sense oligonucleotides; signal transduction inhibitors; signal transduction modulators; single chain antigen-binding protein; sizofiran; sobuzoxane; sodium borocaptate; sodium phenylacetate; solverol; somatomedin binding protein; sonermin; sparfosic acid; spicamycin D; spiromustine; splenopentin; spongistatin 1; squalamine; stem cell inhibitor; stem-cell division inhibitors; stipiamide; stromelysin inhibitors; sulfinosine; superactive vasoactive intestinal peptide antagonist; suradista; suramin; swainsonine; synthetic glycosaminoglycans; tallimustine; tamoxifen methiodide; tauromustine; tazarotene; tecogalan sodium; tegafur; tellurapyrylium; telomerase inhibitors; temoporfin; temozolomide; temiposide; tetrachlorodecaoxide; tetrazomine; thaliblastine; thiocoraline; thrombopoietin; thrombopoietin mimetic; thymalfasin; thymopoietin receptor agonist; thymotrinan; thyroid stimulating hormone; tin ethyl etiopurpurin; tirapazamine; titanocene bichloride; topsentin; toremifene; totipotent stem cell factor, translation inhibitors; tretinoiin; triacetyluridine; triciribine; trimetrexate; triptorelin; tropisetron; turosteride; tyrosine kinase inhibitors; tyrophostins; UBC inhibitors; ubenimex; urogenital sinus-derived growth inhibitory factor, urokinase receptor antagonists; vapreotide; variolin B; vector system, erythrocyte gene therapy; velaresol; veramine; verdins; verteporfin; vinorelbine; vinxaline; vitaxin; vorozole; zanoterone; zeniplatin; zilascorb; and zinostatin stimalamer.

[0296] In some embodiments, the additional therapeutic agent is selected from: alkylating agents, antimetabolites, natural products, or hormones, e.g., nitrogen mustards (e.g., mechlorethamine, cyclophosphamide, chlorambucil, etc.), alkyl sulfonates (e.g., busulfan), nitrosoureas (e.g., carmustine, lomustine, etc.), or triazenes (decarbazine, etc.). Examples of antimetabolites include but are not limited to folic acid analog (e.g., methotrexate), or pyrimidine analogs (e.g., Cytarabine), purine analogs (e.g., mercaptopurine, thioguanine, tenostatin).

[0297] In some embodiments, pharmaceutical compositions are administered in conjunction with an adjuvant therapy. For examples, activating adjuvant treatments are administered prior to, contemporaneous with, or after one or more administrations (e.g., intratumoral injection of the pseudotyped virus). For example, adjuvant therapy includes modulation of Toll-like receptor (TLR) ligands, such as TLR9 activation by DNA molecules comprising CpG sequences, or TLR9 activation (e.g., by RNA ligands). Other adjuvant treatments include agonizing antibodies or other polypeptides (e.g., activation of CD40 or GITR by CD40 Ligand (CD40L) or GITR Ligand (GITRL), respectively). Further, provided are cyclic dinucleotides (e.g., c-di-GMP)

that modulate STING. Another activating adjuvant includes interleukins such as IL-33. In some instances, the pharmaceutical compositions described herein are administered in conjunction with an adjuvant therapy.

Kits

[0298] In some embodiments, the present invention provides kits comprising one or more oncolytic viruses as described herein, a nucleic acid sequence as described herein, a vector as described herein, and/or a host cell as described herein. In some embodiments, the kits comprise a pharmaceutical composition as described herein above, either alone or in combination with further therapeutic agents to be administered to an individual in need thereof. [0299] In some embodiments, the present invention provides kits for the use of vectors and virus-producing cells according to the invention as drugs in therapeutic methods. In particular, the vectors and virus producing cells according to some embodiments of the invention are used for the therapy or treatment of solid tumors in a subject. In some embodiments, the therapeutic effect is caused by the oncolytic properties of the recombinant vectors and viruses as well as by the use of therapeutic genes.

[0300] In some embodiments, the present invention provides kits for use with methods and compositions. Some embodiments concern kits having vaccine compositions of use to reduce onset of or treat subjects having one or more solid tumors. Other embodiments concern kits for making and using molecular constructs described herein. In some instances, kits also include a suitable container, for example, vials, tubes, mini- or microfuge tubes, test tube, flask, bottle, syringe or other container. Where an additional component or agent is provided, the kit contains one or more additional containers into which this agent or component is placed. Kits herein also include a means for containing the constructs, vaccine compositions and any other reagent containers in close confinement for commercial sale. Such containers include injection or blow-molded plastic containers into which the desired vials are retained. Optionally, one or more additional agents such as other anti-viral agents, anti-fungal or anti-bacterial agents are needed for compositions described, for example, for compositions of use as a vaccine. [0301] All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.

EXAMPLES

[0302] The examples below further illustrate the described embodiments without limiting the scope of the invention.

Example 1: Preparation of Pseudotyped VSV-G

[0303] The following protocol was adopted to prepare an exemplary pseudotyped VSV-G, by combining VSV-Glycoprotein (VSV-GP) with HIV1-gag and rev proteins.

[0304] Cell Culture and Transfection:

[0305] DNA of the following packaging plasmids was mixed and prepared for transfection into 293T cells: pMDLg/pRRE expressing HIV-1 GAG/POL; PRSVIREV expressing HIV-1 REV; and pMD2.G 5' 60 5.8 VSV glycoprotein. The DNA mix was added to 500 μ L of pre-warmed Optimem II medium. A working stock of polyethyleneimine

transfection reagent (PEI) was prepared at 1 μ g/ μ L in 1xPBS, pH 4.5, and 88 μ L of the working stock was added to the mixture, maintaining a 4:1 v/w ratio of PEI:DNA. The mixture was vortexed briefly and left for 5-10 min at room temperature to form a PEI:DNA transfection complex. A total of 2.5×10^6 low passage (less than P20) 293T cells were seeded per 15 cm dish in 15 mL DMEM supplemented with 10% serum and 1% Pen/Strep. 2 hours prior to transfection, the cell culture medium was aspirated and replaced with 15 mL of fresh pre-warmed growth medium (GM). The transfection complex was then added drop-wise to each 15 cm plate, swirled briefly to mix and incubated for 8 hrs in 10% CO₂, 35° C. After 8 hours, the medium was replaced with 10 mL of fresh growth medium containing 25 mM HEPES and 10% serum. The mixture was then incubated for 48 hrs post-transfection.

[0306] Virus Collection:

[0307] The medium from each dish was removed, pooled, and filtered through a 0.22 μ m low protein binding/fast flow filter unit and stored at 4° C. A 5 mL volume of fresh growth medium was added to each dish and incubated overnight at 4° C. (60-72 hours post transfection). The second lot of medium from each dish was collected, as in the previous step, and pooled with previous media harvest. The plasmid carry-over is removed by digestion with DNASE-I (1 mg/mL stock). A 1 μ g/mL solution the viral supernatant, supplemented with 1 μ L of 1M MgCl₂, was incubated at room temperature for 30 min followed by 2-4 hrs at 4° C. The filtered supernatants can be used directly on cultured cells, or aliquoted and stored at -80° C. The pseudotyped VSV-G viral supernatant can be optionally concentrated and purified.

Example 2: Construction of Pseudotyped VSV-G Expressing a CD28-CA125 Bispecific Antibody Engager Molecule

[0308] Pseudotyped VSV-G is prepared as described in Example 1 and further processed to express a nucleic acid encoding an engager polypeptide comprising an activation domain comprising an anti-CD28 molecule and an antigen recognition domain comprising an anti-CA125 molecule, and a nucleic acid encoding an anti-PD immune modulatory peptide. The resulting oncolytic virus is a pseudotyped oncolytic VSV-G virus encoding a CD28-CA125 engager molecule and an anti-PD1 therapeutic molecule (CD28-CA125-PD1 VSV-G).

Example 3: CD28-CA125-PD1 VSV-G Activates Human T Cells and Exhibits Anti-Tumor Activity

[0309] Human T cells are infected with the pseudotyped CD28-CA125-PD1 VSV-G virus. 24 hrs to 48 hrs post viral infection, the T cell culture medium is collected and checked for the presence of proinflammatory cytokines. These results will show that T cells are activated by CD28-CA125-PD1 VSV-G, as evidenced by presence of proinflammatory cytokines such as IFN- β and IL-2 in the cell culture supernatant of CD28-CA125-PD1 VSV-G infected human T cells.

[0310] EphA2-overexpressing gastric cancer cells, from KATO3 cell line, are infected with pseudotyped CD28-CA125-PD1 VSV-G or non-pseudotyped CD28-CA125-PD1 VSV virus and the cell proliferation is assessed. These results will show that cell proliferation is significantly reduced in cells KATO3 cells infected with pseudotyped

CD28-CA125-PD1 VSV-G compared to KATO3 cells infected with non-pseudotyped CD28-CA125-PD VSV virus.

Example 4: CD19-CD3, SIRP1 α -CD3, and PDL1-CD3-Fc Engager Molecules Specifically Bind to T-Cells Via CD3

[0311] The binding of bipartite (CD19-CD3 and SIRP1 α -CD3) and triparte (PDL1-CD3-Fc) engager molecules to T cells was assessed. Briefly, 25,000 T cells were stimulated with 200 U/mL IL-2 for 12 days. After 12 days, T cell were incubated with varying concentrations of engager molecules (500, 1000, or 2000 ng/mL for CD19-CD3 and SIRP1 α -CD3; neat supernatant for PDL1-CD3-Fc) for 20 minutes at room temperature in triplicate. Cells were then washed twice, followed by staining with an anti-6 \times His APC antibody at 500 ng/mL for an additional 20 minutes. Cells were washed again and treated with propidium iodide (PI) to exclude dead cells from further analysis. Stained cells were analyzed by flow cytometry on a BD LSR Fortesa cytometer and the percentage of the cell population positive for staining was set at 2% of the secondary only control.

[0312] Results for CD19-CD3 (FIG. 19A), SIRP1 α -CD3 (FIG. 19B), and PDL1-CD3-Fc (FIG. 19C) show that the CD3 binding moiety of each of these molecules functional binds to CD3-expressing 293F T cells, as indicated by an increase in the percentage of cells that are positive for the engager molecules compared to the secondary antibody alone. In particular, a dose dependent increase in the % positive cells is observed for CD19-CD3 (FIG. 19A), while the SIRP1 α -CD3 construct demonstrated maximal binding at all concentrations. The amount of the neat PDL1-CD3-Fc supernatant used resulted in binding of the construct to the majority of T cells (FIG. 19C).

[0313] The results of this experiment are quantified in FIG. 20. In particular, all of the constructs demonstrated a significant increase in the % positive T cells compared to samples where no engager molecule was added.

[0314] Additional experiments demonstrated that the binding of the CD19-CD3, SIRP1 α -CD3, and PDL1-CD3-Fc was mediated by interactions of the anti-CD3 domain of the engager molecules with CD3 expressed by the T cells. Prior to exposure of T cells to the engager molecules, the T cells were incubated with an anti-CD3 monoclonal antibody (OKT3). Preincubation with the OKT3 inhibited binding of the CD19-CD3 engager, and substantially reduced binding of the PDL1-CD3-Fc engager. The lack of inhibition of binding of the SIRP1 α -CD3 engager by preincubation with OKT3 (FIG. 21C) is likely due to an incomplete inhibition of CD3 by OKT3 in these samples.

Example 5: SIRP1 α -CD3 Constructs Specifically Bind to CD47

[0315] Experiments were performed to determine the binding specificity of the SIRP1 α -CD3 engager constructs. Raji cells were preincubated with SIRP1 α -CD3 engagers for 20 min at RT. Cells were then washed and incubated with a fluorescently labelled anti-CD47 monoclonal antibody for 20 min at RT, after which cells were washed and analyzed by flow cytometry. Raji cells that were not preincubated with the SIRP1 α -CD3 engager showed significant binding of the anti-CD47 monoclonal antibody (FIG. 22, IgG control histogram vs. the anti-CD47 histogram). Preincubation of Raji

cells with the SIRP1 α -CD3 engager blocked binding of the anti-CD47 monoclonal antibody (FIG. 22, anti-CD47 histogram vs. anti-CD47+SIRP1 α -CD3 histogram).

Example 6: Binding of SIRP1 α -CD3 and CD19-CD3 Engager Molecules to Target Cells

[0316] Experiments were performed to determine the ability of SIRP1 α -CD3 and CD19-CD3 BiTEs to bind to Raji (CD19 $^+$ CD47 $^+$, FIG. 23), U2OS (CD19 $^+$ CD47 $^+$, FIG. 24), GBM30-luc (CD19 $^-$ CD47 $^+$, FIG. 25), and U251 (CD19 $^-$ CD47 $^+$, FIG. 26) target cell types. For each target cell type, cells were treated with 500 or 1000 ng/mL of either (i) His-tagged soluble SIRP1 α ; (ii) SIRP1 α -CD3 BiTE; or (iii) or CD19-CD3 BiTE. Cells were then stained with a fluorescently labelled anti-His antibody and analyzed by flow cytometry.

[0317] The results of SIRP1 α -CD3 and CD19-CD3 binding to CD19 $^+$ CD47 $^+$ Raji cells are shown in FIG. 23. Relative to the negative control Ig (2 $^\circ$ only), soluble SIRP1 α , SIRP1 α -CD3 BiTE, and CD19-CD3 BiTE were able to bind to Raji cells, as indicated by a shift towards the right of the engager histograms compared to the IgG control histogram (FIG. 23A). Quantitation of the binding data showing percentage of BiTE positive cells is show in FIG. 23B.

[0318] The results of SIRP1 α -CD3 and CD19-CD3 binding to CD19 $^-$ CD47 $^+$ U2OS cells are shown in FIG. 24. Relative to the negative control Ig (2 $^\circ$ only), soluble SIRP1 α , SIRP1 α -CD3 BiTE were able to bind to U2OS cells at all concentrations used, as indicated by a shift towards the right of the engager histograms compared to the IgG control histogram (FIG. 24A). CD19-CD3 BiTEs were unable to bind to U2OS cells, which was expected based on the lack of CD19 expression by U2OS cells. Quantitation of these binding data showing percentage of BiTE positive cells is show in FIG. 24B.

[0319] The results of SIRP1 α -CD3 and CD19-CD3 binding to CD19 $^-$ CD47 $^+$ GBM30-luc cells are shown in FIG. 25. Relative to the negative control Ig (2 $^\circ$ only), SIRP1 α -CD3 BiTE were able to bind to GBM30-luc cells at all concentrations used, as indicated by a shift towards the right of the engager histograms compared to the IgG control histogram (FIG. 25A). In constant, CD19-CD3 BiTEs were unable to bind to GBM30-luc cells, which was expected based on the lack of CD19 expression by GBM30-luc cells. Quantitation of these binding data showing percentage of BiTE positive cells is show in FIG. 25B.

[0320] The results of SIRP1 α -CD3 and CD19-CD3 binding to CD19 $^-$ CD47 $^+$ U251 cells are shown in FIG. 26. Relative to the negative control Ig (2 $^\circ$ only), SIRP1 α -CD3 BiTE were able to bind to U251 cells at all concentrations used, as indicated by a shift towards the right of the engager histograms compared to the IgG control histogram (FIG. 26A). In constant, CD19-CD3 BiTEs were unable to bind to U251 cells, which was expected based on the lack of CD19 expression by U251 cells. Quantitation of these binding data showing percentage of BiTE positive cells is show in FIG. 26B.

Example 7: Binding of PDL1-CD3-Fc TiTEs to U251 Cells is Mediated by CD47, not Fc γ Rs

[0321] As the PDL1-CD3-Fc TiTE construct comprises 2 domains that are capable of binding to target cells (the

anti-PDL1 and the Fc domain) experiments were performed to assess the binding specificity of these constructs. CD19⁺ CD47⁺ U251 cells were treated with 2 μ g/mL of a fluorescently labeled anti-PDL1 antibody, an isotype control, or PDL1-CD3-Fc transfection supernant. Relative to negative control Ig, the PDL1-CD3-Fc TiTE bound to U251 cells (FIG. 27B). To assess whether this observed binding was due to interactions with CD47 or Fc γ Rs expressed by U251 cells, the Fc γ R expression on U251 cells was determined. Cells were incubated with 2 μ g/mL of fluorophore-conjugated anti-CD16/32 (recognizing Fc γ RIII/Fc γ RII) or anti-CD64 (recognizing Fc γ RI) mAbs for 20 min at RT. Cells were then washed and analyzed by flow cytometry using a BD LSR Fortessa cytometer. As shown in FIG. 27C, U251 cells do not express Fc γ RI, Fc γ RII, or Fc γ RIII, indicating the binding of the PDL1-CD3-Fc construct was mediated by interactions with CD47 and not Fc γ Rs.

Example 8: CD19-CD3, SIRP1 α -CD3, and PDL1-CD3-Fc Constructs Stimulate CD8 $^{+}$ T Cell-Mediated Killing of Target Cells

[0322] Experiments were performed to determine the ability of CD19-CD3, SIRP1 α -CD3, and PDL1-CD3-Fc constructs to mediate killing of target cells. Briefly, CD8 $^{+}$ T cells were stimulated for 8-12 days in the presence of 200 U/mL IL-2 and Dynabeads. Prior to co-culture with target cells, all Dynabeads were removed by magnet and cells were washed to remove IL-2. Raji (FIG. 28), THP1 (FIG. 29), U251 (FIG. 30), and 293F (FIG. 31) target cells were labeled with the fluorescent membrane dye PKH67 green before plating. CD8 $^{+}$ effector T cells were then co-cultured with target cells at an effector to target ratio of 1:1 along with 1000 ng/mL CD19-CD3 BiTE, SIRP1 α -CD3 BiTEs, or a 1:3 dilution of PDL1-CD3-Fc transfection supernatant. Co-cultures of target and effector cells were incubated for 18 hours, after which they were stained with 7-AAD and live/dead analysis was performed by flow cytometry on a BD LSR Fortessa cytometer.

[0323] The results of these experiments indicate that the CD19-CD3, SIRP1 α -CD3 and PDL1-CD3-Fc engager constructs were all capable of inducing effector cell-mediated death of Raji target cells (FIG. 28). The EC₅₀ for each of the CD19-CD3, SIRP1 α -CD3 and PDL1-CD3-Fc engager molecules on Raji cells are shown below in Table 7.

TABLE 7

EC ₅₀ of engager molecules on Raji cells	
Engager Molecule	EC ₅₀ (ng/mL)
CD19-CD3	0.6997
SIRP1 α -CD3	0.0137
PDL1-CD3-Fc	0.8907

[0324] The results of these experiments further indicate that the PDL1-CD3-Fc engager constructs, but not the CD19-CD3 constructs, were capable of inducing effector cell-mediated death of THP1 target cells (FIG. 29). This is likely due to the lack of/relatively low expression of CD19 by THP1 cells.

[0325] Further, the PDL1-CD3-Fc engager constructs were capable of inducing effector cell-mediated death of U251 target cells (FIG. 30), while the CD19-CD3 constructs did not induce effector cell-mediated death of U251 cells due

to a lack of CD19 expression by U251 cells. The EC₅₀ for each of the CD19-CD3 and PDL1-CD3-Fc constructs on U251 cells are shown below in Table 8.

TABLE 8

EC ₅₀ of engager molecules on U251 cells	
Engager Molecule	EC ₅₀ (ng/mL)
CD19-CD3	2.247
PDL1-CD3-Fc	2.611

[0326] Further, the SIRP1 α -CD3 engager constructs were capable of inducing effector cell-mediated death of 293F target cells (FIG. 31), indicated by the increase in cell death in SIRP1 α -CD3 containing cultures compared to a control osteopontin-fusion protein (OPN 1). The EC₅₀ for SIRP1 α -CD3 engager molecules on 293F cells is shown below in Table 9.

TABLE 9

EC ₅₀ of SIRP1 α -CD3 on 293F cells	
Engager Molecule	EC ₅₀ (ng/mL)
SIRP1 α -CD3	0.0184

Example 9: PDL1-CD3-Fe BiTE Enhances Primary NK Cell Killing of U251 Cells

[0327] Experiments are performed to assess the ability of PDL1-CD3-Fc constructs to induce NK cell-mediated killing of target cells. Briefly, U251 cells are labeled with cell membrane dye PKH67 green, and then seeded and allowed to adhere to wells over night (FIG. 32). Primary NK cells (StemCell Technologies, Inc.) are then added to each well at an effector to target ratio of 1:1, along with varying amounts of virally produced PDL1-CD3-Fc protein. Effector/target cell co-culture are incubated at 37° C. for 6 hours prior to live/dead analysis by 7-AAD staining. Stained cells are analyzed by flow cytometry on a BD LSR Fortessa cytometer.

[0328] These results will demonstrate that virally produced PDL1-CD3-Fc compounds are able to stimulate NK cell-mediated death of target cells such as U251.

Example 10: oHSV-Infected Vero Cells Express SIRP1 α -CD3 BiTEs

[0329] To demonstrate that the oncolytic viruses described here are capable of producing the engager molecules, Vero cells were infected with oHSV expressing SIRP1 α -CD3 BiTEs (FIG. 32) with either a short linker (SL) (ONCR-085; 2A5B SIRP1 α -CD3 (SL) BiTE) or long linker (LL) (ONCR-087; 2A5B SIRP1 α -CD3 (LL) BiTE), or with oHSV expressing PDL1-CD3-Fc TiTEs (ONCR-089, FIG. 33). Cells were infected for 3 days, after which supernatants from infected cells were passed through a 100K MWCO ultrafiltration membrane to remove any viral particles. The flowthrough was concentrated with a 10K MWCO ultrafiltration membrane. Concentrated viral supernatants and 100 ng, 50 ng, 25 ng, or 12.5 ng of purified SIRP1 α -CD3 or PDL1-CD3-Fc protein were then analyzed by PAGE followed by Western blotting with an anti-6xHis detection

antibody in order to determine the amount of engager protein present in the viral supernatants.

[0330] The results demonstrate that cells infected with either ONCR-085 or ONCR-087 produced the SIRP1 α -CD3 (SL) and SIRP1 α -CD3 (LL) protein, respectively (FIG. 32). Further, cells infected with ONCR-089 produced the PDL1-CD3-Fc protein (FIG. 33). The ability of the 100K and 10K Amicon filtration and concentration steps to remove remaining virus was assessed by Western blot. The workflow for clarifying viral supernatants comprises low-speed centrifugation of the supernatants followed by filtration through a 0.8 μ m filter membrane. Supernatant filtrates are then passed through an Amicon 100 kDa filter to entrain the virus, followed by passage of the filtrate through an Amicon 10 kDa filter to entrain remaining protein. Aliquots of supernatants from virally-infected cells were taken before and after processing with the Amicon filters and the presence of HSV was determined by blotting with an anti-HSV polyclonal antibody. These results show that the ultrafiltration steps used to purify the engager constructs effectively removed virus (FIG. 35). Therefore, any target cell killing observed in the presence of these engager constructs is due to the engager construct itself, and not a result of viral infection of the target cells.

Example 11: Virally-Produced SIRP1 α -CD3 and PDL1-CD3-Fc Engager Constructs Induced Effector-Cell Mediated Killing of Target Cells

[0331] Experiments were performed to assess the ability of virally-produced engager molecules (SIRP1 α -CD3 and PDL1-CD3-Fc constructs) to mediate target cell killing. Briefly, SIRP1 α -CD3 (SL), SIRP1 α -CD3 (LL) and PDL1-CD3-Fc proteins were prepared from Vero cells as described in Example 10. 50 μ L of the resulting SIRP1 α -CD3 (SL), SIRP1 α -CD3 (LL), and PDL1-CD3-Fc engager proteins protein samples were diluted 1:1 in tissue culture media containing 20% FBS. The diluted engager proteins were then incubated with activated CD8 $^{+}$ effector T cells co-cultured with fluorescently labelled U251 target cells at a target to effector ratio of 1:1 for 18 hours. Cell death of U251 cells was assessed by flow cytometry on a BD LSR Fortessa cytometer.

[0332] The results of this experiment demonstrate that virally-produced engager constructs direct T-cell mediated killing of U251 target cells (FIG. 34A). These results are quantified in FIG. 34B.

Example 12: Expression of SIRP1 α -CD3/PDL1-Fc Compounds from 293 T Cells

[0333] Two expression plasmids encoding a SIRP1 α -CD3 engager molecule and a PDL1-Fc therapeutic molecule were generated. One construct comprised a first gene encoding an HA-tagged PDL1-Fc linked to a second gene encoding a His-tagged SIRP1 α -CD3 BiTE. The SIRP1 α amino acid sequence was linked to the anti-CD3 scFv by a single amino acid linker (i.e., a short linker) (SIRP1 α -CD3/PDL1-Fc (SL), FIG. 37). The other construct comprised a first gene encoding a PDL1-Fc linked to a second gene encoding a SIRP1 α -CD3 BiTE. The SIRP1 α amino acid sequence was linked to the anti-CD3 scFv by a G4S linker (i.e., a long linker) (SIRP1 α -CD3/PDL1-Fc (LL), FIG. 38). The constructs were inserted into a plasmid (FIG. 39) and the resultant SIRP1 α -CD3/PDL1-Fc expression plasmids were

transfected into 293 Free Style T cells. Four days after plasmid transfection, culture supernatants were collected.

[0334] Anti-PDL1-Fc compounds were purified from the culture supernatants using a HiTrap MabSelect SuRe Protein A column HiTrap column (GE Healthcare). Briefly, supernatants from 293 T cells transfected with either the SIRP1 α -CD3/PDL1-Fc (LL) or the SIRP1 α -CD3/PDL1-Fc (LL) expression plasmids were loaded onto the column to purify the anti-PDL1-Fc compounds by binding of the HA-tag to the column. Flow through was collected for SIRP1 α -CD3 BiTE detection by Western Blot using an anti-His antibody (FIG. 40B). Columns were washed with wash buffer (20 mM sodium phosphate, 150 mM NaCl, pH 7.4). Bound anti-PDL1-Fc protein was eluted with IgG elution buffer (pH 2.8, Pierce) and was immediately neutralized with a 1 M Tris-HCl buffer, pH 8.

[0335] The anti-PDL1-Fc protein content of different elution fractions then were visualized by Coomassie staining. Briefly, elution fractions were run on a 4%-12% Bis-Tris NuPAGE gel in MOPS buffer at 180 volts for 1 hour. Gels were stained for 1 hour in Simply Blue SafeStain followed by destaining with water. Anti-PDL1-Fc protein content for each elution fraction is show in FIG. 40A. After Coomassie analysis, elution fractions were combined and dialyzed against PBS at 4 $^{\circ}$ C. Total anti-PDL1-Fc protein concentration was then determined by a BCA assay.

Example 13: Isolated PDL1-Fc Proteins Stimulate T Cell-Mediated Death of Target Cells

[0336] The ability of the anti-PDL1-Fc proteins to induce effector cell-mediated death of target cells was assessed by a PD1/PDL1 blockade assay. A general schematic of the assay is show in FIG. 41A-41B. Briefly, CD8 $^{+}$ T cells were co-cultured with PDL1-expressing target cells (CHO-K1 cells). Varying concentrations of the anti-PDL1-Fc protein isolated as described in Example 12 were then added to the culture. The highest concentration of anti-PDL1-Fc used was 50 μ g/mL. 8, 2.5 fold serial dilutions were then performed to generate the remainder of the anti-PDL1-Fc concentrations. Cell death was analyzed by a CytoTox-GloTM cytotoxicity assay in the presence (FIG. 41B) and absence (FIG. 41A) of the anti-PDL1-Fc. Results are quantified in FIG. 41C. The EC₅₀ of the anti-PDL1-Fc is shown in Table 10. These results demonstrate that the anti-PDL1-Fc therapeutic molecules produced from the expression constructs described herein are capable of mediating effector cell-mediated death of target cells.

TABLE 10

EC ₅₀ of anti-PDL1-Fc compounds	
Compound	EC ₅₀
anti-PDL1-Fc	0.45 μ g/mL

Example 13: oHSV-Infected Vero Cells Express MMP9 and Anti-PDL1-Fc Therapeutic Molecules

[0337] In addition to producing the engager molecules as described in Example 10, experiments are performed to demonstrate that the oncolytic viruses described here are capable of producing the MMP9 and anti-PDL1-Fc therapeutic molecules. Vero cells are infected with oHSV

expressing SIRP1 α -CD3/PDL1-Fc constructs BiTEs (FIG. 37 and FIG. 38) or with oHSV expressing SIRP1 α -CD3/MMP9 constructs (FIG. 18A and FIG. 18B). Cells are infected for 3 days, after which supernatants from infected cells are passed through a 100K MWCO ultrafiltration membrane to remove any viral particles. The flowthrough is concentrated with a 10K MWCO ultrafiltration membrane. MMP9 and anti-PDL1-Fc are purified from filtered, concentrated supernatants according to the protocol outlined in Example 11. Protein A-isolated MMP9 and anti-PDL1 fractions are analyzed by PAGE followed by Coomassie staining. SIRP1 α -CD3 BiTEs present in the Protein A flowthrough are analyzed by Western blotting with an anti-6xHis detection antibody.

[0338] The results will demonstrate that cells infected with oHSV vectors encoding either SIRP1 α -CD3/PDL1-Fc constructs or SIRP1 α -CD3/MMP9 constructs produce the SIRP1 α -CD3 (SL) and SIRP1 α -CD3 (LL) BiTE protein, MMP9, and anti-PDL1-Fc.

Example 14: Virally-Produced SIRP1 α -CD3/MMP9 and SIRP1 α -CD3/PDL1-Fc Engager Constructs Induce Effector-Cell Mediated Killing of Target Cells

[0339] Experiments are performed to assess the ability of virally-produced engager molecules (SIRP1 α -CD3) and

therapeutic molecules (MMP9 and anti-PDL1-Fc) to mediate target cell killing. Briefly, SIRP1 α -CD3 (SL), SIRP1 α -CD3 (LL), MMP9, and anti-PDL1-Fc proteins are prepared from Vero cells as described in Example 13. 50 μ L of the resulting protein samples are diluted in tissue culture media containing 20% FBS. The diluted proteins are then incubated with activated CD8 $^+$ effector T cells or NK effector cells and are co-cultured with fluorescently labelled target cells at a target to effector ratio of 1:1 for 18 hours. Cell death of target cells is assessed by flow cytometry on a BD LSR Fortessa cytometer.

[0340] The results of this experiment will demonstrate that virally-produced SIRP1 α -CD3 engager constructs and therapeutic molecules MMP9 and anti-PDL1-Fc are able to direct T-cell and/or NK cell mediated killing of target cells.

[0341] While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

SEQUENCE LISTING

```

<160> NUMBER OF SEQ ID NOS: 70

<210> SEQ ID NO 1
<211> LENGTH: 57
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized polynucleotide encoding signal
 peptide

<400> SEQUENCE: 1
atggagttcg gcctgagctg ggtgttccctg gtggccctgt tcagggcgt gcagtgc      57

<210> SEQ ID NO 2
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized signal peptide sequence

<400> SEQUENCE: 2
Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Phe Arg Gly
1           5           10           15
Val Gln Cys Asp
20

<210> SEQ ID NO 3
<400> SEQUENCE: 3
000

<210> SEQ ID NO 4
<211> LENGTH: 20

```

-continued

<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized signal peptide sequence

<400> SEQUENCE: 4

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Phe Arg Gly
1 5 10 15

Val Gln Cys Asp
20

<210> SEQ ID NO 5
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized polynucleotide encoding GlySer linker peptide

<400> SEQUENCE: 5

ggcgccggcg gcagc 15

<210> SEQ ID NO 6
<211> LENGTH: 5
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized GlySer linker peptide sequence

<400> SEQUENCE: 6

Gly Gly Gly Gly Ser
1 5

<210> SEQ ID NO 7
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized polynucleotide encoding GlySer linker peptide

<400> SEQUENCE: 7

ggcgccggcg gcagcggccgg cggccggcagc ggcgccggcg gcagc 45

<210> SEQ ID NO 8
<211> LENGTH: 15
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized GlySer linker peptide sequence

<400> SEQUENCE: 8

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

<210> SEQ ID NO 9
<211> LENGTH: 54
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized polynucleotide encoding GlySer linker peptide

<400> SEQUENCE: 9

-continued

gtggaggcg gcagcgccgg cagcgccggc agcgccggca gcggccggct ggac 54

<210> SEQ ID NO 10
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized GlySer linker peptide sequence
<400> SEQUENCE: 10

Gly Gly Ser Gly Gly Ser Gly Gly Ser
1 5 10

<210> SEQ ID NO 11
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized polynucleotide encoding 6-His tag
<400> SEQUENCE: 11

caccaccacc accaccac 18

<210> SEQ ID NO 12
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized 6-His tag sequence
<400> SEQUENCE: 12

His His His His His
1 5

<210> SEQ ID NO 13
<211> LENGTH: 66
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized polynucleotide encoding T2A linker
<400> SEQUENCE: 13

cgaagaaaac gcgaggggag gggctccctg ctcacctgtg gtgatgtcga agagaacct 60
ggcccg 66

<210> SEQ ID NO 14
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized T2A linker linker sequence
<400> SEQUENCE: 14

Arg Arg Lys Arg Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val
1 5 10 15

Glu Glu Asn Pro Gly Pro
20

<210> SEQ ID NO 15
<211> LENGTH: 333
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:

-continued

<223> OTHER INFORMATION: Synthesized polynucleotide encoding anti-CD19 light chain sequence

<400> SEQUENCE: 15

```

gacatccagc tgacccagag cccgcgcagc ctggccgtga gcctggcca gagggccacc      60
atcagctgca aggccagcca gagegtggac tacgacggcg acagctacct gaactggtag      120
cagcagatcc cccgcgcagcc ccccaagctg ctgatctacg acgcccagcaa cctggtagc      180
ggcatcccccc ccaggttcag cggcagcggc agcggcaccg acttcaccct gaacatccac      240
cccgtggaga aggtggacgc cgccacctac cactgccagc agagcaccga ggaccctgg      300
accttcggcg gcgccaccaa gctggagatc aag                                         333

```

<210> SEQ ID NO 16

<211> LENGTH: 111

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized anti-CD19 light chain sequence

<400> SEQUENCE: 16

```

Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly
1           5           10          15

Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val Asp Tyr Asp
20          25          30

Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly Gln Pro Pro
35          40          45

Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly Ile Pro Pro
50          55          60

Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His
65          70          75          80

Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln Gln Ser Thr
85          90          95

Glu Asp Pro Trp Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys
100         105         110

```

<210> SEQ ID NO 17

<211> LENGTH: 372

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized polynucleotide encoding anti-CD19 heavy chain sequence

<400> SEQUENCE: 17

```

caggtgcagc tgcagcagag cggcgccagc ctggtgaggc cccgcgcagc cgtgaagatc      60
agctgcaagg ccagcggctc cgccttcagc agtactgtt gtaactgggt gaagcaggagg      120
cccgccagg gcctggatgt gatcgccagc atctggcccg gcgacggcgca caccactac      180
aacggcaagt tcaaggccaa ggccacccctg accggcgacg agagcaggcag caccgcctac      240
atgcagctga gcagcctggc cagcgaggac agcgccgtgt acttctgcgc caggaggag      300
accaccaccc tggcaggta ctactacgcc atggactact gggccaggc caccaccgtg      360
accgtgagca gc                                         372

```

<210> SEQ ID NO 18

<211> LENGTH: 124

-continued

<212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized anti-CD19 heavy chain sequence

<400> SEQUENCE: 18

Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly Ser
 1 5 10 15

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Tyr
 20 25 30

Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
 35 40 45

Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe
 50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala Tyr
 65 70 75 80

Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe Cys
 85 90 95

Ala Arg Arg Glu Thr Thr Val Gly Arg Tyr Tyr Ala Met Asp
 100 105 110

Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser
 115 120

<210> SEQ ID NO 19

<211> LENGTH: 318

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized polynucleotide encoding anti-CD3
 light chain sequence

<400> SEQUENCE: 19

gacatccagc tgaccaggag cccggccatc atgagcgcca gccccggcga gaaggtgacc 60
 atgacctgca gggccagcag cagcgtgac tacatgaact ggtaccagca gaagagccgc 120
 accagccccca agaggtggat ctacgacacc agcaagggtgg ccagcggcgt gccctacagg 180
 ttccageggca gcggcagcgg caccagctac agcctgacca tcagcagcat ggaggccgag 240
 gacgcccaca cctactactg ccagcagtgg agcagcaacc ccctgacctt cggcgccggc 300
 accaagctgg agctgaag 318

<210> SEQ ID NO 20

<211> LENGTH: 106

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized anti-CD3 light chain sequence

<400> SEQUENCE: 20

Asp Ile Gln Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
 1 5 10 15

Glu Lys Val Thr Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met
 20 25 30

Asn Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr
 35 40 45

Asp Thr Ser Lys Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser
 50 55 60

-continued

Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu
65 70 75 80

Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr
85 90 95

Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys
100 105

<210> SEQ ID NO 21

<211> LENGTH: 357

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized polynucleotide encoding anti-CD3
heavy chain sequence

<400> SEQUENCE: 21

gacatcaagc tgcagcagag cggcgccgag ctggccaggc cggcgccagc cgtgaagatg 60
agctgcaaga ccagcggctta caccttcacc aggtacacca tgcactgggt gaagcagagg 120
cccgccagg gcctggagtg gateggctac atcaacccca gcaggggctta caccaactac 180
aaccagaagt tcaaggacaa ggccaccctg accaccgaca agagcagcag caccgcctac 240
atgcagctga gcagecctgac cagegaggac agcgcgcgtg actactgcgc caggtactac 300
gacgaccact actgcctgga ctactgggc cagggcacca ccctgaccgt gagcagc 357

<210> SEQ ID NO 22

<211> LENGTH: 119

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized anti-CD3 heavy chain sequence

<400> SEQUENCE: 22

Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala
1 5 10 15

Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr
20 25 30

Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe
50 55 60

Lys Asp Lys Ala Thr Leu Thr Asp Lys Ser Ser Ser Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly
100 105 110

Thr Thr Leu Thr Val Ser Ser
115

<210> SEQ ID NO 23

<211> LENGTH: 489

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 23

atgagaattt cgaaaccaca tttgagaagt atttccatcc agtgctactt gtgtttactt 60

-continued

ctaaacagtc atttctaac tgaagctggc attcatgtct tcattttggg ctgtttcagt	120
gcagggcttc ctaaaacaga agccaactgg gtgaatgtaa taagtgattt gaaaaaaatt	180
gaagatctta ttcaatctat gcatattgtat gctactttat atacggaaag tgatgttcac	240
cccagttgca aagtaacagc aatgaagtgc tttctttgg agttacaagt tatttcactt	300
gagtccggag atgcaagtat tcatacata gtagaaaatc tgatcatcct agcaaacaac	360
agtttgtctt ctaatggaa tgtaacagaa tctggatgca aagaatgtga ggaactggag	420
gaaaaaaaata ttaaagaatt tttgcagagt tttgtacata ttgtccaaat gttcatcaac	480
acttcttag	489

<210> SEQ ID NO 24

<211> LENGTH: 162

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 24

Met Arg Ile Ser Lys Pro His Leu Arg Ser Ile Ser Ile Gln Cys Tyr			
1	5	10	15

Leu Cys Leu Leu Leu Asn Ser His Phe Leu Thr Glu Ala Gly Ile His		
20	25	30

Val Phe Ile Leu Gly Cys Phe Ser Ala Gly Leu Pro Lys Thr Glu Ala		
35	40	45

Asn Trp Val Asn Val Ile Ser Asp Leu Lys Lys Ile Glu Asp Leu Ile		
50	55	60

Gln Ser Met His Ile Asp Ala Thr Leu Tyr Thr Glu Ser Asp Val His			
65	70	75	80

Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe Leu Leu Glu Leu Gln		
85	90	95

Val Ile Ser Leu Glu Ser Gly Asp Ala Ser Ile His Asp Thr Val Glu		
100	105	110

Asn Leu Ile Ile Leu Ala Asn Asn Ser Leu Ser Ser Asn Gly Asn Val		
115	120	125

Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu Leu Glu Lys Asn Ile		
130	135	140

Lys Glu Phe Leu Gln Ser Phe Val His Ile Val Gln Met Phe Ile Asn			
145	150	155	160

Thr Ser

<210> SEQ ID NO 25

<211> LENGTH: 987

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 25

atgtgtcacc agcagtttgtt catctttggg tttccctgg ttttctggc atctccctc	60
---	----

gtggccatat gggaaactgaa gaaagatgtt tatgtcgtag aattggattt gtagccggat	120
--	-----

gccccctggag aaatgggtt cctcacctgt gacacccctg aagaagatgg tatcacctgg	180
---	-----

accttggacc agagcagtga ggttttaggc tctggcaaaa ccctgaccat ccaagtcaaa	240
---	-----

gagtttggag atgctggcca gtacacctgt cacaaggag gcgaggttct aagccattcg	300
--	-----

ctcctgtgc ttcacaaaaa ggaagatgga atttggtcca ctgatattt aaaggaccag	360
---	-----

-continued

aaagaaccca aaaataagac ctttctaaga tgcgaggcca agaattattc tggacgttc	420
acctgctggt ggctgacgac aatcagtaact gatttgacat tcagtgtcaa aagcagcaga	480
ggctcttctg acccccaagg ggtgacgtgc ggagctgcta cactctctgc agagagagtc	540
agaggggaca acaaggagta tgagtactca gtggagtgcc aggaggacag tgcctgcca	600
gctgctgagg agagtctgcc cattgaggatc atgggtggatc ccgttcacaa gctcaagtat	660
gaaaactaca ccagcagctt cttcatcagg gacatcatca aacctgaccc acccaagaac	720
ttgcagctga agccattaaa gaattctcggt caggtggagg tcagctggga gtaccctgac	780
acctggagta ctccacattc ctacttctcc ctgacattctc gcttcaggtt ccagggcaag	840
agcaagagag aaaagaaga tagagtcttc acggacaaga cctcagccac ggtcatctgc	900
cgcaaaaatg ccagcattag cgtgcgggccc caggaccgct actatagctc atcttggagc	960
gaatgggcattt ctgtgcctt cagttag	987

<210> SEQ ID NO 26

<211> LENGTH: 329

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 26

Pro Met Cys His Gln Gln Leu Val Ile Ser Trp Phe Ser Leu Val Phe	
1	5
10	15

Leu Ala Ser Pro Leu Val Ala Ile Trp Glu Leu Lys Lys Asp Val Tyr	
20	25
30	

Val Val Glu Leu Asp Trp Tyr Pro Asp Ala Pro Gly Glu Met Val Val	
35	40
45	

Leu Thr Cys Asp Thr Pro Glu Glu Asp Gly Ile Thr Trp Thr Leu Asp	
50	55
60	

Gln Ser Ser Glu Val Leu Gly Ser Gly Lys Thr Leu Thr Ile Gln Val	
65	70
75	80

Lys Glu Phe Gly Asp Ala Gly Gln Tyr Thr Cys His Lys Gly Glu	
85	90
95	

Val Leu Ser His Ser Leu Leu Leu His Lys Lys Glu Asp Gly Ile	
100	105
110	

Trp Ser Thr Asp Ile Leu Lys Asp Gln Lys Glu Pro Lys Asn Lys Thr	
115	120
125	

Phe Leu Arg Cys Glu Ala Lys Asn Tyr Ser Gly Arg Phe Thr Cys Trp	
130	135
140	

Trp Leu Thr Thr Ile Ser Thr Asp Leu Thr Phe Ser Val Lys Ser Ser	
145	150
155	160

Arg Gly Ser Ser Asp Pro Gln Gly Val Thr Cys Gly Ala Ala Thr Leu	
165	170
175	

Ser Ala Glu Arg Val Arg Gly Asp Asn Lys Glu Tyr Glu Tyr Ser Val	
180	185
190	

Glu Cys Gln Glu Asp Ser Ala Cys Pro Ala Ala Glu Glu Ser Leu Pro	
195	200
205	

Ile Glu Val Met Val Asp Ala Val His Lys Leu Lys Tyr Glu Asn Tyr	
210	215
220	

Thr Ser Ser Phe Phe Ile Arg Asp Ile Ile Lys Pro Asp Pro Pro Lys	
225	230
235	240

Asn Leu Gln Leu Lys Pro Leu Lys Asn Ser Arg Gln Val Glu Val Ser

-continued

245	250	255
Trp Glu Tyr Pro Asp Thr Trp Ser Thr Pro His Ser Tyr Phe Ser Leu		
260	265	270
Thr Phe Cys Val Gln Val Gln Gly Lys Ser Lys Arg Glu Lys Lys Asp		
275	280	285
Arg Val Phe Thr Asp Lys Thr Ser Ala Thr Val Ile Cys Arg Lys Asn		
290	295	300
Ala Ser Ile Ser Val Arg Ala Gln Asp Arg Tyr Tyr Ser Ser Ser Trp		
305	310	315
Ser Glu Trp Ala Ser Val Pro Cys Ser		
325		

<210> SEQ ID NO 27

<211> LENGTH: 762

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 27

atgtggccca ctgggtcagc ctcccagcca ccgcgcctcac ctggcgccgc cacaggtctg	60
catccagcgg ctcgcctgtgt ctcgcctgcag tgccggctca gcatgtgtcc agcgcgcagc	120
ctccctcccttggcttcccttggcttccctggaccacctca gtttggccag aaacctcccc	180
gtggccactc cagaccagg aatgttccca tgccctcacc actccaaaaa cctgctgagg	240
gccgtcagca acatgctcca gaaggccaga caaactctag aattttaccc ttgcacttct	300
gaagagatttgc atcatgaaga tatcacaaaa gataaaacca gcacagtggaa ggcctgttta	360
ccatttggaaat taaccaagaa tgagagttgc ctaaattcca gagagaccc ttccataact	420
aatggggatttgc cccctggccctc cagaaagacc tcttttatga tggccctgtg ccttagttagt	480
atttatgaag acttgaagat gtaccagggtg gagttcaaga ccatgaatgc aaagcttctg	540
atggatccta agaggcagat ctttctagat caaaacatgc tggcagttat tgatgagctg	600
atgcaggcccc tgaatttcaa cagttagact gtgccacaaaa aatcctccct tgaagaacccg	660
gattttataaaat caagctctgc atacttcttc atgctttagt aattcgggca	720
gtgactatttgc atagagtgtat gagctatctg aatgcttctc ag	762

<210> SEQ ID NO 28

<211> LENGTH: 253

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 28

Met Trp Pro Pro Gly Ser Ala Ser Gln Pro Pro Pro Ser Pro Ala Ala		
1	5	10
Ala Thr Gly Leu His Pro Ala Ala Arg Pro Val Ser Leu Gln Cys Arg		
20	25	30
Leu Ser Met Cys Pro Ala Arg Ser Leu Leu Leu Val Ala Thr Leu Val		
35	40	45
Leu Leu Asp His Leu Ser Leu Ala Arg Asn Leu Pro Val Ala Thr Pro		
50	55	60
Asp Pro Gly Met Phe Pro Cys Leu His His Ser Gln Asn Leu Leu Arg		
65	70	75
Ala Val Ser Asn Met Leu Gln Lys Ala Arg Gln Thr Leu Glu Phe Tyr		
85	90	95

-continued

Pro Cys Thr Ser Glu Glu Ile Asp His Glu Asp Ile Thr Lys Asp Lys
 100 105 110

Thr Ser Thr Val Glu Ala Cys Leu Pro Leu Glu Leu Thr Lys Asn Glu
 115 120 125

Ser Cys Leu Asn Ser Arg Glu Thr Ser Phe Ile Thr Asn Gly Ser Cys
 130 135 140

Leu Ala Ser Arg Lys Thr Ser Phe Met Met Ala Leu Cys Leu Ser Ser
 145 150 155 160

Ile Tyr Glu Asp Leu Lys Met Tyr Gln Val Glu Phe Lys Thr Met Asn
 165 170 175

Ala Lys Leu Leu Met Asp Pro Lys Arg Gln Ile Phe Leu Asp Gln Asn
 180 185 190

Met Leu Ala Val Ile Asp Glu Leu Met Gln Ala Leu Asn Phe Asn Ser
 195 200 205

Glu Thr Val Pro Gln Lys Ser Ser Leu Glu Glu Pro Asp Phe Tyr Lys
 210 215 220

Thr Lys Ile Lys Leu Cys Ile Leu Leu His Ala Phe Arg Ile Arg Ala
 225 230 235 240

Val Thr Ile Asp Arg Val Met Ser Tyr Leu Asn Ala Ser
 245 250

<210> SEQ ID NO 29
 <211> LENGTH: 297
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 29

atgaatcaaa ctgccattct gatttgctgc cttatctttc tgactctaag tggcattcaa 60
 ggagtacctc tctctagaac tgtacgctgt acctgcatca gcattagtaa tcaacctgtt 120
 aatccaaggt cttagaaaaa acttgaaatt attcctgcaa gccaatttg tccacgttt 180
 gagatcattg ctacaatgaa aaagaagggt gagaagagat gtctgaatcc agaatcgaag 240
 gccatcaaga atttactgaa agcagttac aaggaaaggat ctaaaagatc tccttag 297

<210> SEQ ID NO 30
 <211> LENGTH: 98
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 30

Met Asn Gln Thr Ala Ile Leu Ile Cys Cys Leu Ile Phe Leu Thr Leu
 1 5 10 15

Ser Gly Ile Gln Gly Val Pro Leu Ser Arg Thr Val Arg Cys Thr Cys
 20 25 30

Ile Ser Ile Ser Asn Gln Pro Val Asn Pro Arg Ser Leu Glu Lys Leu
 35 40 45

Glu Ile Ile Pro Ala Ser Gln Phe Cys Pro Arg Val Glu Ile Ile Ala
 50 55 60

Thr Met Lys Lys Gly Glu Lys Arg Cys Leu Asn Pro Glu Ser Lys
 65 70 75 80

Ala Ile Lys Asn Leu Leu Lys Ala Val Ser Lys Glu Arg Ser Lys Arg
 85 90 95

Ser Pro

-continued

<210> SEQ ID NO 31
 <211> LENGTH: 426
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <400> SEQUENCE: 31

```
atggagaccc ataccctgct cttgtgggtt ttgcttctt ggggccagg atctacaggt      60
gatgaagaag aattgcagat catccaaacca gacaaatccg tactcgtggc cgcaggagag      120
accgctaccc tcagatgtac catcaacttct ctcttccccg ttggcccat ccagtggtt      180
cgaggcgcag gaccaggacg agtgcatttatacaatcaac gacaggccc attccaaga      240
gtgacaacag tatccgatac caccaagcgc aataatatgg acttttagcat tagaatccgc      300
aacataaacac ccgctgacgc cggtacatac tattgtatataatttcgaaa gggctcacca      360
gacgacgtgg aatttaagtc agggccgga accgaactct cagtttagagc aaaaccttct      420
gcttagc
```

<210> SEQ ID NO 32
 <211> LENGTH: 142
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens
 <400> SEQUENCE: 32

Met	Glu	Thr	Asp	Thr	Leu	Leu	Leu	Trp	Val	Leu	Leu	Leu	Trp	Val	Pro
1					5				10				15		

Gly	Ser	Thr	Gly	Asp	Glu	Glu	Glu	Leu	Gln	Ile	Ile	Gln	Pro	Asp	Lys
					20			25				30			

Ser	Val	Leu	Val	Ala	Ala	Gly	Glu	Thr	Ala	Thr	Leu	Arg	Cys	Thr	Ile
					35		40				45				

Thr	Ser	Leu	Phe	Pro	Val	Gly	Pro	Ile	Gln	Trp	Phe	Arg	Gly	Ala	Gly
					50			55			60				

Pro	Gly	Arg	Val	Leu	Ile	Tyr	Asn	Gln	Arg	Gln	Gly	Pro	Phe	Pro	Arg
65					70			75			80				

Val	Thr	Thr	Val	Ser	Asp	Thr	Thr	Lys	Arg	Asn	Asn	Met	Asp	Phe	Ser
					85			90			95				

Ile	Arg	Ile	Gly	Asn	Ile	Thr	Pro	Ala	Asp	Ala	Gly	Thr	Tyr	Tyr	Cys
					100			105			110				

Ile	Lys	Phe	Arg	Lys	Gly	Ser	Pro	Asp	Asp	Val	Glu	Phe	Lys	Ser	Gly
					115			120			125				

Ala	Gly	Thr	Glu	Leu	Ser	Val	Arg	Ala	Lys	Pro	Ser	Ala	Ser		
					130			135			140				

<210> SEQ ID NO 33
 <211> LENGTH: 2124
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <400> SEQUENCE: 33

```
atgagcctct ggcagccct ggtctgggt ctccctggc tgggctgctg ctttgcgtcc      60
cccagacagc gccagtccac cttgtgtc ttccctggag acctgagaac caatctcacc      120
gacaggcgcg tggcagagga atacctgtac cgctatgggt acactcggtt ggcagagatg      180
cgtggagagt cgaaatctct gggccctgcg ctgctgtttc tccagaagca actgtccctg      240
```

-continued

cccgagacgg	gtgagctgga	tagccgcacg	ctgaaggccca	tgcgaaacccc	acgggtcgccgg	300
gtcccgagacc	tggcagatt	ccaaaccttt	gagggcgacc	tcaagtggca	ccaccacaac	360
atcacctatt	ggatccaaaa	ctactcgaa	gacttgcgc	ggcggtgtat	tgacgacgcc	420
tttgcggcg	ccttcgcact	gtggagcgcg	gtgacgcccgc	tcaccttac	tcgcgtgtac	480
agccgggacg	cagacatcgt	catccagttt	ggtgtcgccgg	agcacggaga	cgggtatccc	540
ttcgacggga	aggacgggct	cctggcacac	gcctttctc	ctggccccgg	cattcaggga	600
gacgcccatt	tcgacgatga	cgagttgtgg	tccctggca	agggcgctgt	ggttccaact	660
cggtttggaa	acgcagatgg	cgcggcctgc	cacttcccct	tcatcttcga	ggccgcgtcc	720
tactctgcct	gcaccaccga	cggtcgcctcc	gacggcttgc	cctgggtgcag	taccacggcc	780
aactacgaca	ccgacgacgg	gtttggcttc	tgccccagcg	agagactcta	caccgggac	840
ggcaatgcgt	atggaaacc	ctgcccagttt	ccattcatct	tccaaaggcca	atccctactcc	900
gcctgcacca	oggacggtcg	ctccgacggc	taccgctgg	gogccaccac	cgccaaactac	960
gaccgggaca	agcttttcgg	cttctggccg	acccgagotg	actcgacgg	gatggggggc	1020
aactcggcgg	gggagctgtg	cgtttttccc	ttcactttcc	tgggttaagga	gtactcgacc	1080
tgtaccagcg	agggccgcgg	agatgggcgc	ctctggtgcc	ctaccaccc	gaactttgac	1140
agcgacaaga	agtggggctt	ctgccccggac	caaggataca	gtttgttcc	cgtggcggcg	1200
catgagttcg	cccaacgcgt	gggcttagat	cattcctcag	tgccggaggc	gctcatgtac	1260
cctatgtacc	gtttactga	ggggcccccc	ttgcataagg	acgacgtgaa	tggcatccgg	1320
cacctctatg	gtccctcgccc	tgaaccttag	ccacggcctc	caaccaccac	cacaccgcag	1380
cccacggctc	ccccgacgg	ctgccccacc	ggacccccc	ctgtccaccc	ctcagagcgc	1440
cccacagctg	ccccacagg	tccccctca	gctggccccc	caggcccc	cactgctggc	1500
ccttctacgg	ccactactgt	gcctttgagt	ccgggtggac	atgcctgcaa	cgtgaacatc	1560
tgcacgcca	tgcggagat	tgggaaaccag	ctgtatttt	tcaaggatgg	gaagtactgg	1620
cgattctctg	aggcaggggg	gagccggccg	cagggcccc	tccttatcgc	cgacaagtgg	1680
cccgcgctgc	cccgcaagct	ggactcggtc	tttggggagc	cgctctccaa	gaagttttc	1740
ttcttctctg	ggcgcacagg	gtgggtgtac	acaggcgctg	cggtgtgtgg	cccgaggcgt	1800
ctggacaagg	tgggctgggg	agccgacgtg	gcccaggtg	ccggggccct	ccggagttggc	1860
agggggaaaga	tgctgtgtt	cagccccccgg	cgccctctgg	ggttcgacgt	gaaggcgcag	1920
atgggtggatc	cccgaggcgc	cagcgagggt	gaccggatgt	tccccgggg	gcctttggac	1980
acgcacacgc	tcttcagta	ccgagagaaa	gcctatttct	gccaggaccc	cttctactgg	2040
cgcgtgagtt	cccgaggatg	gttgaaccag	gtggaccaag	tgggtacgt	gacctatgac	2100
atccctgcagt	ccccctgagga	ctag				2124

<210> SEQ ID NO 34

<211> LENGTH: 707

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 34

Met	Ser	Leu	Trp	Gln	Pro	Leu	Val	Leu	Val	Leu	Leu	Val	Gly	Cys
1														15

Cys Phe Ala Ala Pro Arg Gln Arg Gln Ser Thr Leu Val Leu Phe Pro

-continued

20	25	30
Gly Asp Leu Arg Thr Asn Leu Thr Asp Arg Gln Leu Ala Glu Glu Tyr		
35	40	45
Leu Tyr Arg Tyr Gly Tyr Thr Arg Val Ala Glu Met Arg Gly Glu Ser		
50	55	60
Lys Ser Leu Gly Pro Ala Leu Leu Leu Gln Lys Gln Leu Ser Leu		
65	70	75
Pro Glu Thr Gly Glu Leu Asp Ser Ala Thr Leu Lys Ala Met Arg Thr		
85	90	95
Pro Arg Cys Gly Val Pro Asp Leu Gly Arg Phe Gln Thr Phe Glu Gly		
100	105	110
Asp Leu Lys Trp His His His Asn Ile Thr Tyr Trp Ile Gln Asn Tyr		
115	120	125
Ser Glu Asp Leu Pro Arg Ala Val Ile Asp Asp Ala Phe Ala Arg Ala		
130	135	140
Phe Ala Leu Trp Ser Ala Val Thr Pro Leu Thr Phe Thr Arg Val Tyr		
145	150	155
160		
Ser Arg Asp Ala Asp Ile Val Ile Gln Phe Gly Val Ala Glu His Gly		
165	170	175
Asp Gly Tyr Pro Phe Asp Gly Lys Asp Gly Leu Leu Ala His Ala Phe		
180	185	190
Pro Pro Gly Pro Gly Ile Gln Gly Asp Ala His Phe Asp Asp Asp Glu		
195	200	205
Leu Trp Ser Leu Gly Lys Gly Val Val Val Pro Thr Arg Phe Gly Asn		
210	215	220
Ala Asp Gly Ala Ala Cys His Phe Pro Phe Ile Phe Glu Gly Arg Ser		
225	230	235
240		
Tyr Ser Ala Cys Thr Thr Asp Gly Arg Ser Asp Gly Leu Pro Trp Cys		
245	250	255
Ser Thr Thr Ala Asn Tyr Asp Thr Asp Asp Arg Phe Gly Phe Cys Pro		
260	265	270
Ser Glu Arg Leu Tyr Thr Arg Asp Gly Asn Ala Asp Gly Lys Pro Cys		
275	280	285
Gln Phe Pro Phe Ile Phe Gln Gly Gln Ser Tyr Ser Ala Cys Thr Thr		
290	295	300
Asp Gly Arg Ser Asp Gly Tyr Arg Trp Cys Ala Thr Thr Ala Asn Tyr		
305	310	315
320		
Asp Arg Asp Lys Leu Phe Gly Phe Cys Pro Thr Arg Ala Asp Ser Thr		
325	330	335
Val Met Gly Gly Asn Ser Ala Gly Glu Leu Cys Val Phe Pro Phe Thr		
340	345	350
Phe Leu Gly Lys Glu Tyr Ser Thr Cys Thr Ser Glu Gly Arg Gly Asp		
355	360	365
Gly Arg Leu Trp Cys Ala Thr Thr Ser Asn Phe Asp Ser Asp Lys Lys		
370	375	380
Trp Gly Phe Cys Pro Asp Gln Gly Tyr Ser Leu Phe Leu Val Ala Ala		
385	390	395
400		
His Glu Phe Gly His Ala Leu Gly Leu Asp His Ser Ser Val Pro Glu		
405	410	415
Ala Leu Met Tyr Pro Met Tyr Arg Phe Thr Glu Gly Pro Pro Leu His		
420	425	430

-continued

Lys Asp Asp Val Asn Gly Ile Arg His Leu Tyr Gly Pro Arg Pro Glu
435 440 445

Pro Glu Pro Arg Pro Pro Thr Thr Thr Pro Gln Pro Thr Ala Pro
450 455 460

Pro Thr Val Cys Pro Thr Gly Pro Pro Thr Val His Pro Ser Glu Arg
465 470 475 480

Pro Thr Ala Gly Pro Thr Gly Pro Pro Ser Ala Gly Pro Thr Gly Pro
485 490 495

Pro Thr Ala Gly Pro Ser Thr Ala Thr Thr Val Pro Leu Ser Pro Val
500 505 510

Asp Asp Ala Cys Asn Val Asn Ile Phe Asp Ala Ile Ala Glu Ile Gly
515 520 525

Asn Gln Leu Tyr Leu Phe Lys Asp Gly Lys Tyr Trp Arg Phe Ser Glu
530 535 540

Gly Arg Gly Ser Arg Pro Gln Gly Pro Phe Leu Ile Ala Asp Lys Trp
545 550 555 560

Pro Ala Leu Pro Arg Lys Leu Asp Ser Val Phe Glu Glu Pro Leu Ser
565 570 575

Lys Lys Leu Phe Phe Ser Gly Arg Gln Val Trp Val Tyr Thr Gly
580 585 590

Ala Ser Val Leu Gly Pro Arg Arg Leu Asp Lys Leu Gly Leu Gly Ala
595 600 605

Asp Val Ala Gln Val Thr Gly Ala Leu Arg Ser Gly Arg Gly Lys Met
610 615 620

Leu Leu Phe Ser Gly Arg Arg Leu Trp Arg Phe Asp Val Lys Ala Gln
625 630 635 640

Met Val Asp Pro Arg Ser Ala Ser Glu Val Asp Arg Met Phe Pro Gly
645 650 655

Val Pro Leu Asp Thr His Asp Val Phe Gln Tyr Arg Glu Lys Ala Tyr
660 665 670

Phe Cys Gln Asp Arg Phe Tyr Trp Arg Val Ser Ser Arg Ser Glu Leu
675 680 685

Asn Gln Val Asp Gln Val Gly Tyr Val Thr Tyr Asp Ile Leu Gln Cys
690 695 700

Pro Glu Asp
705

<210> SEQ ID NO 35
<211> LENGTH: 324
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized polynucleotide encoding PD-L1 light chain Fv

<400> SEQUENCE: 35

gatatccaga tgacacagag cccatcatct ctgtctgcaa gctgtggaga ccgagtcacc 60
attacatgca gagcctccca agacgtttcc acagcagtgg cctggtatca gcaaaaacct 120
ggtaaggcgc ccaagcttct catctattca gccagtttc tgtatagccg cgccccagc 180
cgattctctg gctctggatc cggcacggac tttactttga caatccctc tcttcagccc 240
gaagattttg caacctacta ctgtcagcaa tatctctacc atccagccac attcggacag 300

-continued

ggcaccaaaag tcgaaatcaa aaga 324

<210> SEQ ID NO 36
 <211> LENGTH: 108
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized PD-L1 light chain Fv sequence

<400> SEQUENCE: 36

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Ser Thr Ala
 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

Glu Asp Phe Ala Thr Tyr Cys Gln Gln Tyr Leu Tyr His Pro Ala
 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
 100 105

<210> SEQ ID NO 37
 <211> LENGTH: 354
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized polynucleotide encoding PD-L1 heavy chain Fv

<400> SEQUENCE: 37

gaagtcaac tcgttcaaag cggaggaggg cttgtccaaac ctggcggttc actgegggttg 60
 agctgegccc caageggatt cacttctca gactcttgg tccattgggt ggcggcaggct 120
 cccggaaaag gcttggaaatg gggtgcttgg atttcaccgt atggcggttc cacataactac 180
 gctgacagcg ttaagggtcg attcaccatc tctgcagata cttcaaaaaa cacagcctac 240
 cttcagatga atagtttgcg cgccgaggac acagcggttt attattgtgc ccgaagacat 300
 tggcccgccg gtttcgacta ctggggcaa ggtacgttgg tgactgtgag cgcc 354

<210> SEQ ID NO 38
 <211> LENGTH: 118
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized PD-L1 heavy chain Fv sequence

<400> SEQUENCE: 38

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Ser
 20 25 30

Trp Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

Ala Trp Ile Ser Pro Tyr Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val

-continued

50	55	60
----	----	----

Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr	65	70 75 80
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys	85	90 95
Ala Arg Arg His Trp Pro Gly Gly Phe Asp Tyr Trp Gly Gln Gly Thr	100	105 110
Leu Val Thr Val Ser Ala	115	

<210> SEQ ID NO 39
 <211> LENGTH: 699
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 39

gtagatgaag caaaatcttg tgacaaaacc catacctgcc caccatgccc agccccagaa	60
cttcttggcg gaccctctgt cttecttttc cctccgaagc ccaaggatac cctgtatgtc	120
agccgaaccc cggaggtaac atgtgtggtg gtgcgtgtta gocatgagga tcctgaagtc	180
aaatttaact ggtatgtaga cgggtgttag gtgcacaacg ctaaaaactaa gcccaggag	240
gagcagtaca actcaaccta tcgcgtcgta tctgtgtta ccgtcctgca tcaagactgg	300
ctcaatggta aggaatataa atgtaaatgt agtaacaagg cactgcacgc acctatcgaa	360
aaaaccatct caaaggcgaa gggacagccc agggaaacccc aggtctatac tctgcacact	420
tctcgggatg aattgaccaa gaaccaagtt agcctgacat gtctggtgaa aggtttctat	480
ccaaagcgata tagctgtcga gtgggagtcc aatggccaac ctgagaacaa ttataagacc	540
accccacccg ttctggacag cgacggatcc ttttcctgt actcaaaaact cactgtcgat	600
aaatcaagat ggcaacaagg caacgtttt agctgttagcg tgatgcacga agcacttcat	660
aatcactata cacagaagtc actctcttct tctccagga	699

<210> SEQ ID NO 40
 <211> LENGTH: 233
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 40

Val Asp Glu Ala Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys	1	5 10 15
Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro	20	25 30
Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys	35	40 45
Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp	50	55 60
Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu	65	70 75 80
Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu	85	90 95
His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn	100	105 110
Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly		

-continued

115	120	125	
Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu			
130	135	140	
Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr			
145	150	155	160
Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn			
165	170	175	
Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe			
180	185	190	
Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn			
195	200	205	
Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr			
210	215	220	
Gln Lys Ser Leu Ser Leu Ser Pro Gly			
225	230		

<210> SEQ ID NO 41

<211> LENGTH: 69

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 41

gtagatgaag caaaatcttg tgacaaaacc cataacctgcc caccatgccc agccccagaa	60
cttcttggc	69

<210> SEQ ID NO 42

<211> LENGTH: 23

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 42

Val Asp Glu Ala Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys			
1	5	10	15

Pro Ala Pro Glu Leu Leu Gly	
20	

<210> SEQ ID NO 43

<211> LENGTH: 1572

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized polynucleotide encoding CD19-CD3
bi-specific T-cell engager construct

<400> SEQUENCE: 43

atggagttcg gcctgagctg ggtgttcctg gtggccctgt tcagggcggt gcagtgcgac	60
atccagctga cccagagccc cgccagcctg gccgtgagcc tggggccagag ggccaccatc	120
agctgcaagg ccagccagag cgtggactac gacggcgaca gctacctgaa ctggtaccag	180
cagatccccc gccagccccc caagctgctg atctacgacg ccagcaacct ggtgagccgc	240
atccccccca gttttagccg cagccggcgc ggcaccgact tcaccctgaa catccacccc	300
gtggagaagg tggacgccc cacctaccac tgccagcaga gcaccgagga cccctggacc	360
ttcggccggcg gcaccaagct ggagatcaag ggcggccggcg gcagccggcg cggccggcagc	420
ggccggccggcg gcagccagggt gcagctgcag cagagccggcg ccgagctggt gaggccggc	480

-continued

agcagcgtga	agatcagctg	caaggccagc	ggctacgcct	tcagcagctg	ctggatgaac	540
tgggtgaagc	agaggcccg	ccagggcctg	gagtggatcg	gccagatctg	gcccgccgac	600
ggcgacacca	actacaacgg	caagttcaag	ggcaaggcca	ccctgaccgc	cgacgagagc	660
agcagcaccg	cctacatgca	gctgagcagc	ctggccagcg	aggacagcgc	cgtgtacttc	720
tgcgccagga	gggagaccac	caccgtggc	aggtactact	acgccatgga	ctactgggc	780
cagggcacca	ccgtgaccgt	gagcagcggc	ggcgccggca	gcgacatcaa	gctgcagcag	840
agcgccgccc	agctggccag	gcccgccgc	agcgtgaaga	tgagctgcaa	gaccagcggc	900
tacaccttca	ccaggtacac	catgcaactgg	gtgaagcaga	ggcccgccca	gggcctggag	960
tggatcggct	acatcaaccc	cagcaggggc	tacaccaact	acaaccagaa	gttcaaggac	1020
aaggccaccc	tgaccaccga	caagagcagc	agcaccgcct	acatgcagct	gagcagcctg	1080
accagegagg	acagegcccgt	gtactactgc	gccaggtact	acgacgacca	ctactgcctg	1140
gactactggg	gccagggcac	caccctgacc	gtgagcagcg	tggagggcgg	cagcggccgc	1200
agcgccggca	cgcgccggcag	cggcgccgt	gacgacatcc	agctgaccca	gagccccgccc	1260
atcatgagcg	ccagccccgg	cgagaagggt	accatgaccc	gcagggccag	cagcagcgtg	1320
agctacatga	actggatcca	gcagaagagc	ggcaccagcc	ccaagagggt	gatctacgac	1380
accagecaagg	tggccagcgg	cgtgccctac	agttcagcg	gcagcggcag	cgccaccagc	1440
tacagectga	ccatcagcag	catggaggcc	gaggacgccc	ccacctacta	ctgccagcag	1500
tggagcagca	acccctgac	cttcggccgc	ggcaccaagc	tggagctgaa	gcaccaccac	1560
caccaccact	ag					1572

<210> SEQ ID NO 44
 <211> LENGTH: 523
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized CD19-CD3 bi-specific T-cell engager construct

<400> SEQUENCE: 44

Met	Glu	Phe	Gly	Lle	Ser	Trp	Val	Phe	Lle	Val	Ala	Lle	Phe	Arg	Gly
1				5			10				15				

Val	Gln	Cys	Asp	Ile	Gln	Lle	Thr	Gln	Ser	Pro	Ala	Ser	Lle	Ala	Val
				20			25				30				

Ser	Lle	Gly	Gln	Arg	Ala	Thr	Ile	Ser	Cys	Lys	Ala	Ser	Gln	Ser	Val
				35			40			45					

Asp	Tyr	Asp	Gly	Asp	Ser	Tyr	Lle	Asn	Trp	Tyr	Gln	Gln	Ile	Pro	Gly
				50			55			60					

Gln	Pro	Pro	Lys	Lle	Lle	Ile	Tyr	Asp	Ala	Ser	Asn	Lle	Val	Ser	Gly
65					70			75			80				

Ile	Pro	Pro	Arg	Phe	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Lle		
				85			90			95					

Asn	Ile	His	Pro	Val	Glu	Lys	Val	Asp	Ala	Ala	Thr	Tyr	His	Cys	Gln
				100			105				110				

Gln	Ser	Thr	Glu	Asp	Pro	Trp	Thr	Phe	Gly	Gly	Thr	Lys	Lle	Glu	
				115			120			125					

Ile	Lys	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Gly	
				130			135			140					

-continued

Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly
 145 150 155 160
 Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser
 165 170 175
 Tyr Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp
 180 185 190
 Ile Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys
 195 200 205
 Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala
 210 215 220
 Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe
 225 230 235 240
 Cys Ala Arg Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met
 245 250 255
 Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly
 260 265 270
 Gly Ser Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro
 275 280 285
 Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr
 290 295 300
 Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu
 305 310 315 320
 Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln
 325 330 335
 Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr
 340 345 350
 Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr
 355 360 365
 Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly
 370 375 380
 Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly
 385 390 395 400
 Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr
 405 410 415
 Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met
 420 425 430
 Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln
 435 440 445
 Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val
 450 455 460
 Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser
 465 470 475 480
 Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr
 485 490 495
 Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr
 500 505 510
 Lys Leu Glu Leu Lys His His His His His His
 515 520

<210> SEQ ID NO 45
 <211> LENGTH: 1177
 <212> TYPE: DNA

-continued

<213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized polynucleotide encoding
 SIRP1alpha-CD3-SL bi-specific T-cell engager construct

<400> SEQUENCE: 45

atggagaccc ataccctgct cttgtgggtt ttgcttcttt ggggtgcaggat atctacaggt	60
gatgaagaag aattgcagat catccaacca gacaaatccg tactcgtggc cgccaggagag	120
accgctaccc tcagatgtac catcaattct ctcttccccc ttggcccat ccagtggttt	180
cgaggcgcag gaccaggacg agtgcttatt tacaatcaac gacagggccc attccaaga	240
gtgacaacac tatccgatac caccaagcgc aataatatgg acttttagcat tagaatccgc	300
aacataacac ccgctgacgc cggtacatac tattgtatta aatttcgaaa gggctcacca	360
gacgacgtgg aatttaagtgc aggggcccga accgaactct cagtttagacg aaaaccttct	420
gtctagcgaca tcaagctgca gcagagcggc gcccggccgg ccaggccgg cgccagcgtg	480
aagatgagct gcaagaccag cggctacacc ttcaccaggat acaccatgca ctgggtgaag	540
cagaggcccg gccaggccct ggagtggatc ggctacatca accccagcag gggctacacc	600
aactacaacc agaagttcaa ggacaaggcc accctgacca ccgacaagag cagcagcacc	660
gcctacatgc agctgagcag cctgaccgcg gaggacagcg ccgtgtacta ctgcgccagg	720
tactacgacg accactactg cctggactac tggggccagg gcaccaccc gaccgtgagc	780
agcgtggagg gcccggccgg cggcggccgg ggcagcggcg gcagcggccgg cgtggacgac	840
atccagctga cccagagccc cgccatcatg agcgcgcagcc cccggcgagaa ggtgaccatg	900
acctgcggg ccagcagcag cgtgagctac atgaactggt accagcagaa gagcggcacc	960
agccccaaaga ggtggatcta cgacaccgcg aagggtggcca gcccgcgtgcc ctacaggttc	1020
agcggcggccg gcagcggccac cagctacgcg ctgaccatca gcagcatgga gggcgaggac	1080
gcccgcaccc actactgcca gcagttggagc agcaaccccc tggaccccttgg cggccggcacc	1140
aagctggagc tgaagcacca ccatcatcac cactgag	1177

<210> SEQ ID NO 46
 <211> LENGTH: 391
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized SIRP1alpha-CD3-SL bi-specific
 T-cell engager construct

<400> SEQUENCE: 46

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro	
1 5 10 15	
Gly Ser Thr Gly Asp Glu Glu Glu Leu Gln Ile Ile Gln Pro Asp Lys	
20 25 30	
Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys Thr Ile	
35 40 45	
Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly Ala Gly	
50 55 60	
Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe Pro Arg	
65 70 75 80	
Val Thr Thr Val Ser Asp Thr Thr Lys Arg Asn Asn Met Asp Phe Ser	
85 90 95	

-continued

Ile Arg Ile Gly Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr Tyr Cys
 100 105 110

Ile Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys Ser Gly
 115 120 125

Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Ser Asp Ile
 130 135 140

Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val
 145 150 155 160

Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr Met
 165 170 175

His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr
 180 185 190

Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys Asp
 195 200 205

Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln
 210 215 220

Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg
 225 230 235 240

Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr Thr
 245 250 255

Leu Thr Val Ser Ser Val Glu Gly Ser Gly Ser Gly Ser
 260 265 270

Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro Ala
 275 280 285

Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala
 290 295 300

Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr
 305 310 315 320

Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly Val
 325 330 335

Pro Tyr Arg Phe Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr
 340 345 350

Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln
 355 360 365

Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
 370 375 380

Lys His His His His His
 385 390

<210> SEQ ID NO 47
 <211> LENGTH: 1191
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized polynucleotide encoding
 SIRP1alpha-CD3-LL bi-specific T-cell engager construct

<400> SEQUENCE: 47

atggagacccg ataccctgct cttgtgggtt ttgcttcttt ggggtgcaggat atctacaggt 60
 gatgaagaag aattgcagat catccaaacca gacaaatccg tactcgtggc cgcaggagag 120
 accgctaccc tcagatgtac catcacttct ctcttccccg ttggcccat ccagtggttt 180
 cgaggcgcag gaccaggacg agtgcttatt tacaatcaac gacagggccc attcccaaga 240

-continued

gtgacaacag tatccgatac caccaagcgc aataatatgg acttttagcat tagaatcgac	300
aacataaacac ccgctgacgc cggtaatac tattgtatta aatttcgaaa gggctacca	360
gacgacgtgg aatttaagtc agggccgga accgaactct cagtttagagc aaaacttct	420
gtcggcgccg gcccggccag cgacatcaag ctgcagcaga gcccggccga gctggccagg	480
cccgccgcca gcgtgaagat gagctgcaag accagcggct acacccac caggtacacc	540
atgcactggg tgaaggcagag gcccggccag ggctggagt ggateggcta catcaacccc	600
agcaggggct acaccaacta caaccagaag ttcaaggaca aggccaccc gaccaccgac	660
aagagcagca gcaccgccta catgcagctg agcagcctga ccagcggaga cagcggcgt	720
tactactcg cgaggtaacta cgacgaccac tactgcctgg tactactggg ccaggccacc	780
accctgaccg tgagcagcgt ggagggccgc agcggcggca gcccggccag cggccggcagc	840
ggccggcgtgg acgacatcca gctgacccag agccccccca tcatgagcgc cagccccggc	900
gagaaggta ccatgacactg cagggccagc agcagcgtga gtcacatgaa ctggtaccag	960
cagaagagcg gcaccagccc caagaggctgg atctacgaca ccagcaaggt gcccggccgc	1020
gtgcctaca gttcagcgg cagccggcgc ggcaccagct acagcctgac catcagcagc	1080
atggaggccg aggaacgcccgc cacctactac tgccagcgt ggagcggcaa cccctgacc	1140
ttcggcggccg gcaccaagct ggagctgaag caccaccacc accaccacta g	1191

<210> SEQ ID NO 48

<211> LENGTH: 396

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthesized SIRPialpha-CD3-LL bi-specific T-cell engager construct

<400> SEQUENCE: 48

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro			
1	5	10	15

Gly Ser Thr Gly Asp Glu Glu Glu Leu Gln Ile Ile Gln Pro Asp Lys			
20	25	30	

Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys Thr Ile			
35	40	45	

Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly Ala Gly			
50	55	60	

Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe Pro Arg			
65	70	75	80

Val Thr Thr Val Ser Asp Thr Thr Lys Arg Asn Asn Met Asp Phe Ser			
85	90	95	

Ile Arg Ile Gly Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr Tyr Cys			
100	105	110	

Ile Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys Ser Gly			
115	120	125	

Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Ser Gly Gly			
130	135	140	

Gly Gly Ser Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg			
145	150	155	160

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe			
165	170	175	

-continued

Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
 180 185 190

Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn
 195 200 205

Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser
 210 215 220

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
 225 230 235 240

Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp
 245 250 255

Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly
 260 265 270

Gly Ser Gly Gly Ser Gly Ser Gly Val Asp Asp Ile Gln Leu
 275 280 285

Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr
 290 295 300

Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln
 305 310 315 320

Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys
 325 330 335

Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr
 340 345 350

Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr
 355 360 365

Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly
 370 375 380

Thr Lys Leu Glu Leu Lys His His His His His
 385 390 395

<210> SEQ ID NO 49
 <211> LENGTH: 1545
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized polynucleotide encoding PDL1-CD3
 bi-specific T-cell engager construct

<400> SEQUENCE: 49

atggagttcg gcctgagctg ggtgttcctg gtggccctgt tcagggcggt gcagtgcac 60
 atcaagctgc agcagagcgg cgcccgagctg gccaggcccg ggcgcgcgt gaagatgagc 120
 tgcaagacca gcccgtacac ctccaccagg tacaccatgc actgggtgaa gcagaggccc 180
 ggcaggggcc tggagtggat cggctacatc aaccccgca ggggtcacac caactacaac 240
 cagaaggtaa aggacaaggc caccctgacc accgacaaga gcagcgcac cgcctacatg 300
 cagctgagca gcctgaccag cgaggacacg gccgtgtact actgcgcacgt gtaatcgcac 360
 gaccactact gcctggacta ctggggccag ggcaccaccc tgaccgtgag cagcgtggag 420
 ggcggcagcg gcccgcgcgg cggcgcgcgc ggcagcggcg gcgtggacga catccagctg 480
 acccagagcc cccgcgcgc ggcgcgcgc cccggcgaga aggtgaccat gacctgcagg 540
 gccgcgcgc ggcgtgagcta catgaactgg taccagcaga agagcggcac cagccccaaag 600
 aggtggatct acgacaccag caaggtggcc agcggcgtgc cttacaggtt cagcggcagc 660
 ggcagcggca ccagctacag cctgaccatc agcagcatgg aggccgagga cggccacc 720

-continued

tactactgcc	agcagtggag	cagcaacccc	ctgacacctcg	gcccggcac	caagctggag	780
ctgaaggcg	gccccggcag	cgtatccag	atgacacaga	gccccatcatc	tctgtctgca	840
agcgttaggag	accgagtac	cattacatgc	agagcctcc	aagacgttcc	cacagcagt	900
gcctggatc	agcaaaaacc	tggtaaggcg	cccaagtttc	tcatctatc	agccagttt	960
ctgtatagcg	gcgttcccag	ccgattctct	ggctctggat	ccggcacgga	cttactttt	1020
acaatttct	ctttcagcc	cgaagatttt	gcaacctact	actgtcagca	atatctctac	1080
catccagcca	cattcggaca	gggcacccaa	gtcgaaatca	aaagaggcg	ccgcggcagt	1140
gcgggggggg	gttcaggagg	ccccgggtct	gaagtgcac	tgcgtgaaag	cgaggagg	1200
cttgcacac	ctggcggtc	actgcggttt	agctgcgccc	caagcggatt	caccttctca	1260
gactcttgg	tccattgggt	gcccaggct	cccgaaaag	gcttggaaatg	ggtgcttg	1320
atttcaccgt	atggcggtt	cacatactac	gctgacagcg	ttaagggtcg	attcaccatc	1380
tctgcagata	cttcaaaaaa	cacagcctac	cttcagatg	atagttgcg	cgccgaggac	1440
acagcggtt	attattgtgc	ccgaagacat	tggcccgccg	gttgcacta	ctgggggcaa	1500
ggtacgttgg	tgactgtgag	cggccaccac	catcatcacc	actgaa		1545

<210> SEQ ID NO 50
 <211> LENGTH: 514
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized PDL1-CD3 bi-specific T-cell engager
 construct

<400> SEQUENCE: 50

Met	Glu	Phe	Gly	Leu	Ser	Trp	Val	Phe	Leu	Val	Ala	Leu	Phe	Arg	Gly	
1				5			10				15					
Val	Gln	Cys	Asp	Ile	Lys	Leu	Gln	Gln	Ser	Gly	Ala	Glu	Leu	Ala	Arg	
				20			25			30						
Pro	Gly	Ala	Ser	Val	Lys	Met	Ser	Cys	Lys	Thr	Ser	Gly	Tyr	Thr	Phe	
				35			40			45						
Thr	Arg	Tyr	Thr	Met	His	Trp	Val	Lys	Gln	Arg	Pro	Gly	Gln	Gly	Leu	
				50			55			60						
Glu	Trp	Ile	Gly	Tyr	Ile	Asn	Pro	Ser	Arg	Gly	Tyr	Thr	Asn	Tyr	Asn	
				65			70			75			80			
Gln	Lys	Phe	Lys	Asp	Lys	Ala	Thr	Leu	Thr	Asp	Lys	Ser	Ser	Ser		
				85			90			95						
Thr	Ala	Tyr	Met	Gln	Leu	Ser	Ser	Leu	Thr	Ser	Glu	Asp	Ser	Ala	Val	
				100			105			110						
Tyr	Tyr	Cys	Ala	Arg	Tyr	Tyr	Asp	Asp	His	Tyr	Cys	Leu	Asp	Tyr	Trp	
				115			120			125						
Gly	Gln	Gly	Thr	Thr	Leu	Thr	Val	Ser	Ser	Val	Glu	Gly	Ser	Gly		
				130			135			140						
Gly	Ser	Gly	Gly	Ser	Gly	Gly	Ser	Gly	Gly	Val	Asp	Asp	Ile	Gln	Leu	
				145			150			155			160			
Thr	Gln	Ser	Pro	Ala	Ile	Met	Ser	Ala	Ser	Pro	Gly	Glu	Lys	Val	Thr	
				165			170			175						
Met	Thr	Cys	Arg	Ala	Ser	Ser	Ser	Val	Ser	Tyr	Met	Asn	Trp	Tyr	Gln	
				180			185			190						

-continued

Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys
 195 200 205
 Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr Ser Gly Thr
 210 215 220
 Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr
 225 230 235 240
 Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly
 245 250 255
 Thr Lys Leu Glu Leu Lys Gly Gly Ser Asp Ile Gln Met Thr
 260 265 270
 Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile
 275 280 285
 Thr Cys Arg Ala Ser Gln Asp Val Ser Thr Ala Val Ala Trp Tyr Gln
 290 295 300
 Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe
 305 310 315 320
 Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr
 325 330 335
 Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr
 340 345 350
 Tyr Tyr Cys Gln Gln Tyr Leu Tyr His Pro Ala Thr Phe Gly Gln Gly
 355 360 365
 Thr Lys Val Glu Ile Lys Arg Gly Gly Ser Gly Gly Gly
 370 375 380
 Ser Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly
 385 390 395 400
 Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
 405 410 415
 Phe Thr Phe Ser Asp Ser Trp Ile His Trp Val Arg Gln Ala Pro Gly
 420 425 430
 Lys Gly Leu Glu Trp Val Ala Trp Ile Ser Pro Tyr Gly Gly Ser Thr
 435 440 445
 Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr
 450 455 460
 Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
 465 470 475 480
 Thr Ala Val Tyr Tyr Cys Ala Arg Arg His Trp Pro Gly Gly Phe Asp
 485 490 495
 Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala His His His
 500 505 510
 His His

<210> SEQ ID NO 51
 <211> LENGTH: 2244
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized polynucleotide encoding PDL1-CD3-Fc
 bi-specific T-cell engager construct

<400> SEQUENCE: 51
 atggagttcg gcctgagctg ggtgttcctg gtggccctgt tcaggggcgt gcagtgcgac 60
 atcaagctgc agcagagcgg cggcagctg gccaggcccg gcccagcgt gaagatgagc 120

-continued

tgcaagacca	gcggctacac	cttcaccagg	tacaccatgc	actgggtgaa	gcagaggccc	180
ggccaggccc	tggagtggat	cggctacatc	aaccccagca	ggggctacac	caactacaac	240
cagaagttca	aggacaaggc	cacccctgacc	accgacaaga	gcagcagcac	cgccctacatg	300
cagctgagca	gcctgaccag	cgaggacagc	gcccgtact	actgcgccag	gtactacgac	360
gaccactact	gcctggacta	ctggggccag	ggcaccaccc	tgaccgtgag	cagcgtggag	420
ggcggcagcg	gcccgcggg	cggcagcggc	ggcagcggc	gcgtggacga	catccagctg	480
acccagagcc	ccgccatcat	gagcgcgcagc	cccggcgaga	aggtgaccat	gacctgcagg	540
gccagcagca	gcgtgagcta	catgaactgg	taccagcaga	agagcggcac	cagccccaa	600
aggtggatct	acgacaccag	caaggtggcc	agcggcgtgc	cctacaggtt	cageggcagc	660
ggcagcggca	ccagctacag	cctgaccatc	agcagcatgg	aggccgagga	cgccgcacc	720
tactactgcc	acgactggag	cagcaacccc	ctgacacctcg	gcgcggcac	caagctggag	780
ctgaagggcg	gcccgcggcag	cgatatccag	atgacacaga	gccccatcatc	tctgtctgca	840
agcgttaggag	accgagtcac	cattacatgc	agacgcctcc	aagacgttcc	cacagcagtg	900
gcctggtata	agcaaaaacc	tggtaaggcg	cccaagcttc	tcatctatcc	agccagttt	960
ctgtatagcg	gcgttcccag	ccgattctct	ggctctggat	ccggcacgga	ctttactttt	1020
acaatttctt	ctttcagcc	cgaagatttt	gcaacctact	actgtcagca	atatcttac	1080
catccagcca	cattcggaca	gggcacccaa	gtcgaaatca	aaagaggcgg	cgccggcagt	1140
ggcggcgggg	gttcaggagg	cgggggttct	gaagtgcac	tcgttgaag	cgaggaggg	1200
cttgtccaa	ctggcggttc	actgcggttt	agctgcgcgc	caagcggatt	cacctctca	1260
gactcttgg	tccattgggt	gcccaggct	cccgaaaaag	gcttggatg	ggttgcttgg	1320
atttcaccgt	atggcggttc	cacatactac	gtgcacagc	ttaagggtcg	attcaccatc	1380
tctgcagata	tttcaaaaaa	cacagcctac	cttcagatga	atagttgcg	cgccgaggac	1440
acagcggtt	attattgtgc	ccgaagacat	tggcccgccg	gtttcgacta	ctggggccaa	1500
gttacgttgg	tgactgttag	cgccgttagat	gaagcaaaat	cttgcacaa	aacccatacc	1560
tgcccaccat	gcccagcccc	agaacttctt	ggcggacccct	ctgtcttcct	tttccctccg	1620
aagcccaagg	ataccctgat	gtcagccga	accccgagg	taacatgtgt	ggtggtcgat	1680
gttagccatg	aggatccctga	agtcaaaattt	aactggatg	tagacggtgt	tgaggtgcac	1740
aacgctaaaa	ctaagcccag	ggaggagcag	tacaactcaa	cctatcgct	cgtatctgt	1800
cttaccgtcc	tgcataaaga	ctggctcaat	ggtaaggaaat	ataaaatgtaa	agttagtaac	1860
aaggcactgc	cagcacctat	cgaaaaacc	atctcaaagg	cgaaggaca	gccaggaa	1920
ccccaggctt	atactctgcc	accttctcg	gtgaattga	ccaagaacca	agttagcctg	1980
acatgtctgg	tgaaaggttt	ctatccaac	gatatacg	tcgagtggga	gtccaatggc	2040
caacctgaga	acaattataa	gaccacccca	cccgttctgg	acagcgcacgg	atcccttttc	2100
ctgtactcaa	aactcactgt	cgataaaatca	agatggcaac	aaggcaacgt	tttttagctgt	2160
agcgtgatgc	acgaaggact	tcataatcac	tatacacaga	agtcaactctc	tctttctcca	2220
ggacaccacc	atcatcacca	ctga				2244

-continued

<212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized PDL1-CD3-Fc bi-specific T-cell
 engager construct

<400> SEQUENCE: 52

```

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Phe Arg Gly
1           5           10          15

Val Gln Cys Asp Ile Lys Leu Gln Ser Gly Ala Glu Leu Ala Arg
20          25          30

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe
35          40          45

Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
50          55          60

Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn
65          70          75          80

Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Asp Lys Ser Ser Ser
85          90          95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
100         105         110

Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp
115         120         125

Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly
130         135         140

Gly Ser Gly Gly Ser Gly Ser Gly Val Asp Asp Ile Gln Leu
145         150         155         160

Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr
165         170         175

Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln
180         185         190

Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys
195         200         205

Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr
210         215         220

Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr
225         230         235         240

Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly
245         250         255

Thr Lys Leu Glu Leu Lys Gly Gly Ser Asp Ile Gln Met Thr
260         265         270

Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile
275         280         285

Thr Cys Arg Ala Ser Gln Asp Val Ser Thr Ala Val Ala Trp Tyr Gln
290         295         300

Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe
305         310         315         320

Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Thr
325         330         335

Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr
340         345         350

Tyr Tyr Cys Gln Gln Tyr Leu Tyr His Pro Ala Thr Phe Gly Gln Gly
355         360         365
  
```

-continued

Thr Lys Val Glu Ile Lys Arg Gly Gly Gly Ser Gly Gly Gly
 370 375 380
 Ser Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly
 385 390 395 400
 Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
 405 410 415
 Phe Thr Phe Ser Asp Ser Trp Ile His Trp Val Arg Gln Ala Pro Gly
 420 425 430
 Lys Gly Leu Glu Trp Val Ala Trp Ile Ser Pro Tyr Gly Ser Thr
 435 440 445
 Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr
 450 455 460
 Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
 465 470 475 480
 Thr Ala Val Tyr Tyr Cys Ala Arg Arg His Trp Pro Gly Gly Phe Asp
 485 490 495
 Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Val Asp Glu Ala
 500 505 510
 Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
 515 520 525
 Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
 530 535 540
 Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
 545 550 555 560
 Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
 565 570 575
 Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
 580 585 590
 Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
 595 600 605
 Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro
 610 615 620
 Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
 625 630 635 640
 Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn
 645 650 655
 Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
 660 665 670
 Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr
 675 680 685
 Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
 690 695 700
 Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
 705 710 715 720
 Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
 725 730 735
 Ser Leu Ser Pro Gly His His His His His His
 740 745

-continued

<212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized CD19-IL15 bi-specific T-cell
 engager construct

<400> SEQUENCE: 53

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Phe Arg Gly
 1 5 10 15

Val Gln Cys Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val
 20 25 30

Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val
 35 40 45

Asp Tyr Asp Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly
 50 55 60

Gln Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly
 65 70 75 80

Ile Pro Pro Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu
 85 90 95

Asn Ile His Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln
 100 105 110

Gln Ser Thr Glu Asp Pro Trp Thr Phe Gly Gly Thr Lys Leu Glu
 115 120 125

Ile Lys Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
 130 135 140

Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly
 145 150 155 160

Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser
 165 170 175

Tyr Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp
 180 185 190

Ile Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys
 195 200 205

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala
 210 215 220

Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe
 225 230 235 240

Cys Ala Arg Arg Glu Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met
 245 250 255

Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly
 260 265 270

Gly Ser Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro
 275 280 285

Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr
 290 295 300

Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu
 305 310 315 320

Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln
 325 330 335

Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr
 340 345 350

Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr
 355 360 365

-continued

Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly
 370 375 380
 Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly
 385 390 395 400
 Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr
 405 410 415
 Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met
 420 425 430
 Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln
 435 440 445
 Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val
 450 455 460
 Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser
 465 470 475 480
 Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr
 485 490 495
 Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr
 500 505 510
 Lys Leu Glu Leu Lys His His His His His Arg Arg Lys Arg Glu
 515 520 525
 Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly
 530 535 540
 Pro Met Arg Ile Ser Lys Pro His Leu Arg Ser Ile Ser Ile Gln Cys
 545 550 555 560
 Tyr Leu Cys Leu Leu Asn Ser His Phe Leu Thr Glu Ala Gly Ile
 565 570 575
 His Val Phe Ile Leu Gly Cys Phe Ser Ala Gly Leu Pro Lys Thr Glu
 580 585 590
 Ala Asn Trp Val Asn Val Ile Ser Asp Leu Lys Lys Ile Glu Asp Leu
 595 600 605
 Ile Gln Ser Met His Ile Asp Ala Thr Leu Tyr Thr Glu Ser Asp Val
 610 615 620
 His Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe Leu Leu Glu Leu
 625 630 635 640
 Gln Val Ile Ser Leu Glu Ser Gly Asp Ala Ser Ile His Asp Thr Val
 645 650 655
 Glu Asn Leu Ile Ile Leu Ala Asn Asn Ser Leu Ser Ser Asn Gly Asn
 660 665 670
 Val Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu Leu Glu Lys Asn
 675 680 685
 Ile Lys Glu Phe Leu Gln Ser Phe Val His Ile Val Gln Met Phe Ile
 690 695 700
 Asn Thr Ser
 705

<210> SEQ ID NO 54
 <211> LENGTH: 1149
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized CD19-IL12 bi-specific T-cell
 engager construct

-continued

<400> SEQUENCE: 54

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Phe Arg Gly
 1 5 10 15

Val Gln Cys Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val
 20 25 30

Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val
 35 40 45

Asp Tyr Asp Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly
 50 55 60

Gln Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly
 65 70 75 80

Ile Pro Pro Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu
 85 90 95

Asn Ile His Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln
 100 105 110

Gln Ser Thr Glu Asp Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu
 115 120 125

Ile Lys Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
 130 135 140

Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly
 145 150 155 160

Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser
 165 170 175

Tyr Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp
 180 185 190

Ile Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys
 195 200 205

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala
 210 215 220

Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe
 225 230 235 240

Cys Ala Arg Arg Glu Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met
 245 250 255

Asp Tyr Trp Gly Gln Gly Thr Thr Val Ser Ser Gly Gly Gly
 260 265 270

Gly Ser Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro
 275 280 285

Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr
 290 295 300

Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu
 305 310 315 320

Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln
 325 330 335

Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr
 340 345 350

Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr
 355 360 365

Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly
 370 375 380

Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly
 385 390 395 400

-continued

Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr
 405 410 415
 Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met
 420 425 430
 Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln
 435 440 445
 Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val
 450 455 460
 Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr Ser
 465 470 475 480
 Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr
 485 490 495
 Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr
 500 505 510
 Lys Leu Glu Leu Lys His His His His Arg Arg Lys Arg Glu
 515 520 525
 Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly
 530 535 540
 Pro Met Trp Pro Pro Gly Ser Ala Ser Gln Pro Pro Pro Ser Pro Ala
 545 550 555 560
 Ala Ala Thr Gly Leu His Pro Ala Ala Arg Pro Val Ser Leu Gln Cys
 565 570 575
 Arg Leu Ser Met Cys Pro Ala Arg Ser Leu Leu Leu Val Ala Thr Leu
 580 585 590
 Val Leu Leu Asp His Leu Ser Leu Ala Arg Asn Leu Pro Val Ala Thr
 595 600 605
 Pro Asp Pro Gly Met Phe Pro Cys Leu His His Ser Gln Asn Leu Leu
 610 615 620
 Arg Ala Val Ser Asn Met Leu Gln Lys Ala Arg Gln Thr Leu Glu Phe
 625 630 635 640
 Tyr Pro Cys Thr Ser Glu Glu Ile Asp His Glu Asp Ile Thr Lys Asp
 645 650 655
 Lys Thr Ser Thr Val Glu Ala Cys Leu Pro Leu Glu Leu Thr Lys Asn
 660 665 670
 Glu Ser Cys Leu Asn Ser Arg Glu Thr Ser Phe Ile Thr Asn Gly Ser
 675 680 685
 Cys Leu Ala Ser Arg Lys Thr Ser Phe Met Met Ala Leu Cys Leu Ser
 690 695 700
 Ser Ile Tyr Glu Asp Leu Lys Met Tyr Gln Val Glu Phe Lys Thr Met
 705 710 715 720
 Asn Ala Lys Leu Leu Met Asp Pro Lys Arg Gln Ile Phe Leu Asp Gln
 725 730 735
 Asn Met Leu Ala Val Ile Asp Glu Leu Met Gln Ala Leu Asn Phe Asn
 740 745 750
 Ser Glu Thr Val Pro Gln Lys Ser Ser Leu Glu Glu Pro Asp Phe Tyr
 755 760 765
 Lys Thr Lys Ile Lys Leu Cys Ile Leu Leu His Ala Phe Arg Ile Arg
 770 775 780
 Ala Val Thr Ile Asp Arg Val Met Ser Tyr Leu Asn Ala Ser Arg Arg
 785 790 795 800

-continued

Lys Arg Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu
 805 810 815

Asn Pro Gly Pro Pro Met Cys His Gln Gln Leu Val Ile Ser Trp Phe
 820 825 830

Ser Leu Val Phe Leu Ala Ser Pro Leu Val Ala Ile Trp Glu Leu Lys
 835 840 845

Lys Asp Val Tyr Val Val Glu Leu Asp Trp Tyr Pro Asp Ala Pro Gly
 850 855 860

Glu Met Val Val Leu Thr Cys Asp Thr Pro Glu Glu Asp Gly Ile Thr
 865 870 875 880

Trp Thr Leu Asp Gln Ser Ser Glu Val Leu Gly Ser Gly Lys Thr Leu
 885 890 895

Thr Ile Gln Val Lys Glu Phe Gly Asp Ala Gly Gln Tyr Thr Cys His
 900 905 910

Lys Gly Gly Glu Val Leu Ser His Ser Leu Leu Leu His Lys Lys
 915 920 925

Glu Asp Gly Ile Trp Ser Thr Asp Ile Leu Lys Asp Gln Lys Glu Pro
 930 935 940

Lys Asn Lys Thr Phe Leu Arg Cys Glu Ala Lys Asn Tyr Ser Gly Arg
 945 950 955 960

Phe Thr Cys Trp Trp Leu Thr Thr Ile Ser Thr Asp Leu Thr Phe Ser
 965 970 975

Val Lys Ser Ser Arg Gly Ser Ser Asp Pro Gln Gly Val Thr Cys Gly
 980 985 990

Ala Ala Thr Leu Ser Ala Glu Arg Val Arg Gly Asp Asn Lys Glu Tyr
 995 1000 1005

Glu Tyr Ser Val Glu Cys Gln Glu Asp Ser Ala Cys Pro Ala Ala
 1010 1015 1020

Glu Glu Ser Leu Pro Ile Glu Val Met Val Asp Ala Val His Lys
 1025 1030 1035

Leu Lys Tyr Glu Asn Tyr Thr Ser Ser Phe Phe Ile Arg Asp Ile
 1040 1045 1050

Ile Lys Pro Asp Pro Pro Lys Asn Leu Gln Leu Lys Pro Leu Lys
 1055 1060 1065

Asn Ser Arg Gln Val Glu Val Ser Trp Glu Tyr Pro Asp Thr Trp
 1070 1075 1080

Ser Thr Pro His Ser Tyr Phe Ser Leu Thr Phe Cys Val Gln Val
 1085 1090 1095

Gln Gly Lys Ser Lys Arg Glu Lys Lys Asp Arg Val Phe Thr Asp
 1100 1105 1110

Lys Thr Ser Ala Thr Val Ile Cys Arg Lys Asn Ala Ser Ile Ser
 1115 1120 1125

Val Arg Ala Gln Asp Arg Tyr Tyr Ser Ser Trp Ser Glu Trp
 1130 1135 1140

Ala Ser Val Pro Cys Ser
 1145

<210> SEQ ID NO 55
 <211> LENGTH: 643
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized CD19-CXCL10 bi-specific T-cell

-continued

engager construct

<400> SEQUENCE: 55

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Phe Arg Gly
1 5 10 15

Val Gln Cys Asp Ile Gln Leu Thr Gln Ser Pro Ala Ser Leu Ala Val
20 25 30

Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Lys Ala Ser Gln Ser Val
35 40 45

Asp Tyr Asp Gly Asp Ser Tyr Leu Asn Trp Tyr Gln Gln Ile Pro Gly
50 55 60

Gln Pro Pro Lys Leu Leu Ile Tyr Asp Ala Ser Asn Leu Val Ser Gly
65 70 75 80

Ile Pro Pro Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu
85 90 95

Asn Ile His Pro Val Glu Lys Val Asp Ala Ala Thr Tyr His Cys Gln
100 105 110

Gln Ser Thr Glu Asp Pro Trp Thr Phe Gly Gly Thr Lys Leu Glu
115 120 125

Ile Lys Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly
130 135 140

Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Pro Gly
145 150 155 160

Ser Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser
165 170 175

Tyr Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp
180 185 190

Ile Gly Gln Ile Trp Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys
195 200 205

Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Glu Ser Ser Ser Thr Ala
210 215 220

Tyr Met Gln Leu Ser Ser Leu Ala Ser Glu Asp Ser Ala Val Tyr Phe
225 230 235 240

Cys Ala Arg Arg Glu Thr Thr Thr Val Gly Arg Tyr Tyr Tyr Ala Met
245 250 255

Asp Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly
260 265 270

Gly Ser Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro
275 280 285

Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr
290 295 300

Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu
305 310 315 320

Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln
325 330 335

Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr
340 345 350

Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr
355 360 365

Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly
370 375 380

-continued

Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly
 385 390 395 400

Ser Gly Gly Ser Gly Gly Ser Gly Val Asp Asp Ile Gln Leu Thr
 405 410 415

Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met
 420 425 430

Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln
 435 440 445

Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val
 450 455 460

Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr Ser
 465 470 475 480

Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr
 485 490 495

Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr
 500 505 510

Lys Leu Glu Leu Lys His His His His His Arg Arg Lys Arg Glu
 515 520 525

Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly
 530 535 540

Pro Met Asn Gln Thr Ala Ile Leu Ile Cys Cys Leu Ile Phe Leu Thr
 545 550 555 560

Leu Ser Gly Ile Gln Gly Val Pro Leu Ser Arg Thr Val Arg Cys Thr
 565 570 575

Cys Ile Ser Ile Ser Asn Gln Pro Val Asn Pro Arg Ser Leu Glu Lys
 580 585 590

Leu Glu Ile Ile Pro Ala Ser Gln Phe Cys Pro Arg Val Glu Ile Ile
 595 600 605

Ala Thr Met Lys Lys Gly Glu Lys Arg Cys Leu Asn Pro Glu Ser
 610 615 620

Lys Ala Ile Lys Asn Leu Leu Lys Ala Val Ser Lys Glu Arg Ser Lys
 625 630 635 640

Arg Ser Pro

<210> SEQ ID NO 56
 <211> LENGTH: 575
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized SIRP1alpha-IL15-SL bi-specific
 T-cell engager construct

<400> SEQUENCE: 56

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 1 5 10 15

Gly Ser Thr Gly Asp Glu Glu Glu Leu Gln Ile Ile Gln Pro Asp Lys
 20 25 30

Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys Thr Ile
 35 40 45

Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly Ala Gly
 50 55 60

Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe Pro Arg
 65 70 75 80

-continued

Val	Thr	Thr	Val	Ser	Asp	Thr	Thr	Lys	Arg	Asn	Asn	Met	Asp	Phe	Ser
85								90						95	
Ile	Arg	Ile	Gly	Asn	Ile	Thr	Pro	Ala	Asp	Ala	Gly	Thr	Tyr	Tyr	Cys
100								105					110		
Ile	Lys	Phe	Arg	Lys	Gly	Ser	Pro	Asp	Asp	Val	Glu	Phe	Lys	Ser	Gly
115								120					125		
Ala	Gly	Thr	Glu	Leu	Ser	Val	Arg	Ala	Lys	Pro	Ser	Ala	Ser	Asp	Ile
130							135					140			
Lys	Leu	Gln	Gln	Ser	Gly	Ala	Glu	Leu	Ala	Arg	Pro	Gly	Ala	Ser	Val
145							150					155			160
Lys	Met	Ser	Cys	Lys	Thr	Ser	Gly	Tyr	Thr	Phe	Thr	Arg	Tyr	Thr	Met
165							170					175			
His	Trp	Val	Lys	Gln	Arg	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Ile	Gly	Tyr
180							185					190			
Ile	Asn	Pro	Ser	Arg	Gly	Tyr	Thr	Asn	Tyr	Asn	Gln	Lys	Phe	Lys	Asp
195							200					205			
Lys	Ala	Thr	Leu	Thr	Thr	Asp	Lys	Ser	Ser	Ser	Thr	Ala	Tyr	Met	Gln
210							215					220			
Leu	Ser	Ser	Leu	Thr	Ser	Glu	Asp	Ser	Ala	Val	Tyr	Tyr	Cys	Ala	Arg
225							230					235			240
Tyr	Tyr	Asp	Asp	His	Tyr	Cys	Leu	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Thr
245							250					255			
Leu	Thr	Val	Ser	Ser	Val	Glu	Gly	Ser	Gly	Gly	Ser	Gly	Gly	Ser	
260							265					270			
Gly	Gly	Ser	Gly	Gly	Val	Asp	Asp	Ile	Gln	Leu	Thr	Gln	Ser	Pro	Ala
275							280					285			
Ile	Met	Ser	Ala	Ser	Pro	Gly	Glu	Lys	Val	Thr	Met	Thr	Cys	Arg	Ala
290							295					300			
Ser	Ser	Ser	Val	Ser	Tyr	Met	Asn	Trp	Tyr	Gln	Gln	Lys	Ser	Gly	Thr
305							310					315			320
Ser	Pro	Lys	Arg	Trp	Ile	Tyr	Asp	Thr	Ser	Lys	Val	Ala	Ser	Gly	Val
325							330					335			
Pro	Tyr	Arg	Phe	Ser	Gly	Ser	Gly	Thr	Ser	Tyr	Ser	Leu	Thr		
340							345					350			
Ile	Ser	Ser	Met	Glu	Ala	Glu	Asp	Ala	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln
355							360					365			
Trp	Ser	Ser	Asn	Pro	Leu	Thr	Phe	Gly	Ala	Gly	Thr	Lys	Leu	Glu	Leu
370							375					380			
Lys	His	His	His	His	His	Arg	Arg	Lys	Arg	Glu	Gly	Arg	Gly	Ser	
385							390					395			400
Leu	Leu	Thr	Cys	Gly	Asp	Val	Glu	Glu	Asn	Pro	Gly	Pro	Met	Arg	Ile
405							410					415			
Ser	Lys	Pro	His	Leu	Arg	Ser	Ile	Ser	Ile	Gln	Cys	Tyr	Leu	Cys	Leu
420							425					430			
Leu	Leu	Asn	Ser	His	Phe	Leu	Thr	Glu	Ala	Gly	Ile	His	Val	Phe	Ile
435							440					445			
Leu	Gly	Cys	Phe	Ser	Ala	Gly	Leu	Pro	Lys	Thr	Glu	Ala	Asn	Trp	Val
450							455					460			
Asn	Val	Ile	Ser	Asp	Leu	Lys	Lys	Ile	Glu	Asp	Leu	Ile	Gln	Ser	Met
465							470					475			480
His Ile Asp Ala Thr Leu Tyr Thr Glu Ser Asp Val His Pro Ser Cys															

-continued

485	490	495	
Lys Val Thr Ala Met Lys Cys Phe Leu Leu Glu Leu Gln Val Ile Ser			
500	505	510	
Leu Glu Ser Gly Asp Ala Ser Ile His Asp Thr Val Glu Asn Leu Ile			
515	520	525	
Ile Leu Ala Asn Asn Ser Leu Ser Ser Asn Gly Asn Val Thr Glu Ser			
530	535	540	
Gly Cys Lys Glu Cys Glu Glu Leu Glu Glu Lys Asn Ile Lys Glu Phe			
545	550	555	560
Leu Gln Ser Phe Val His Ile Val Gln Met Phe Ile Asn Thr Ser			
565	570	575	

<210> SEQ_ID NO 57
 <211> LENGTH: 580
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized SIRP1alpha-IL15-LL bi-specific
 T-cell engager construct

<400> SEQUENCE: 57

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro			
1	5	10	15
Gly Ser Thr Gly Asp Glu Glu Glu Leu Gln Ile Ile Gln Pro Asp Lys			
20	25	30	
Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys Thr Ile			
35	40	45	
Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly Ala Gly			
50	55	60	
Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe Pro Arg			
65	70	75	80
Val Thr Thr Val Ser Asp Thr Thr Lys Arg Asn Asn Met Asp Phe Ser			
85	90	95	
Ile Arg Ile Gly Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr Tyr Cys			
100	105	110	
Ile Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys Ser Gly			
115	120	125	
Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Ser Gly Gly			
130	135	140	
Gly Gly Ser Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg			
145	150	155	160
Pro Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe			
165	170	175	
Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu			
180	185	190	
Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn			
195	200	205	
Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Asp Lys Ser Ser Ser			
210	215	220	
Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val			
225	230	235	240
Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp			
245	250	255	

-continued

Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly
 260 265 270

Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu
 275 280 285

Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr
 290 295 300

Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln
 305 310 315 320

Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys
 325 330 335

Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr
 340 345 350

Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr
 355 360 365

Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly
 370 375 380

Thr Lys Leu Glu Leu Lys His His His His His Arg Arg Lys Arg
 385 390 395 400

Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro
 405 410 415

Gly Pro Met Arg Ile Ser Lys Pro His Leu Arg Ser Ile Ser Ile Gln
 420 425 430

Cys Tyr Leu Cys Leu Leu Asn Ser His Phe Leu Thr Glu Ala Gly
 435 440 445

Ile His Val Phe Ile Leu Gly Cys Phe Ser Ala Gly Leu Pro Lys Thr
 450 455 460

Glu Ala Asn Trp Val Asn Val Ile Ser Asp Leu Lys Lys Ile Glu Asp
 465 470 475 480

Leu Ile Gln Ser Met His Ile Asp Ala Thr Leu Tyr Thr Glu Ser Asp
 485 490 495

Val His Pro Ser Cys Lys Val Thr Ala Met Lys Cys Phe Leu Leu Glu
 500 505 510

Leu Gln Val Ile Ser Leu Glu Ser Gly Asp Ala Ser Ile His Asp Thr
 515 520 525

Val Glu Asn Leu Ile Ile Leu Ala Asn Asn Ser Leu Ser Ser Asn Gly
 530 535 540

Asn Val Thr Glu Ser Gly Cys Lys Glu Cys Glu Glu Leu Glu Glu Lys
 545 550 555 560

Asn Ile Lys Glu Phe Leu Gln Ser Phe Val His Ile Val Gln Met Phe
 565 570 575

Ile Asn Thr Ser
 580

<210> SEQ ID NO 58
 <211> LENGTH: 1017
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized SIRP1alpha-IL12-SL bi-specific
 T-cell engager construct

<400> SEQUENCE: 58

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 1 5 10 15

-continued

Gly Ser Thr Gly Asp Glu Glu Glu Leu Gln Ile Ile Gln Pro Asp Lys
 20 25 30

Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys Thr Ile
 35 40 45

Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly Ala Gly
 50 55 60

Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe Pro Arg
 65 70 75 80

Val Thr Thr Val Ser Asp Thr Thr Lys Arg Asn Asn Met Asp Phe Ser
 85 90 95

Ile Arg Ile Gly Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr Tyr Cys
 100 105 110

Ile Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys Ser Gly
 115 120 125

Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Ser Asp Ile
 130 135 140

Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val
 145 150 155 160

Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr Met
 165 170 175

His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr
 180 185 190

Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys Asp
 195 200 205

Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln
 210 215 220

Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg
 225 230 235 240

Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr Thr
 245 250 255

Leu Thr Val Ser Ser Val Glu Gly Ser Gly Ser Gly Ser
 260 265 270

Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro Ala
 275 280 285

Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala
 290 295 300

Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr
 305 310 315 320

Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly Val
 325 330 335

Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr
 340 345 350

Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln
 355 360 365

Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
 370 375 380

Lys His His His His Arg Arg Lys Arg Glu Gly Arg Gly Ser
 385 390 395 400

Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Trp Pro
 405 410 415

-continued

Pro	Gly	Ser	Ala	Ser	Gln	Pro	Pro	Pro	Ser	Pro	Ala	Ala	Ala	Thr	Gly
420															430
Leu	His	Pro	Ala	Ala	Arg	Pro	Val	Ser	Leu	Gln	Cys	Arg	Leu	Ser	Met
435															445
Cys	Pro	Ala	Arg	Ser	Leu	Leu	Leu	Val	Ala	Thr	Leu	Val	Leu	Leu	Asp
450															460
His	Leu	Ser	Leu	Ala	Arg	Asn	Leu	Pro	Val	Ala	Thr	Pro	Asp	Pro	Gly
465															480
Met	Phe	Pro	Cys	Leu	His	His	Ser	Gln	Asn	Leu	Leu	Arg	Ala	Val	Ser
485															495
Asn	Met	Leu	Gln	Lys	Ala	Arg	Gln	Thr	Leu	Glu	Phe	Tyr	Pro	Cys	Thr
500															510
Ser	Glu	Glu	Ile	Asp	His	Glu	Asp	Ile	Thr	Lys	Asp	Lys	Thr	Ser	Thr
515															525
Val	Glu	Ala	Cys	Leu	Pro	Leu	Glu	Leu	Thr	Lys	Asn	Glu	Ser	Cys	Leu
530															540
Asn	Ser	Arg	Glu	Thr	Ser	Phe	Ile	Thr	Asn	Gly	Ser	Cys	Leu	Ala	Ser
545															560
Arg	Lys	Thr	Ser	Phe	Met	Met	Ala	Leu	Cys	Leu	Ser	Ser	Ile	Tyr	Glu
565															575
Asp	Leu	Lys	Met	Tyr	Gln	Val	Glu	Phe	Lys	Thr	Met	Asn	Ala	Lys	Leu
580															590
Leu	Met	Asp	Pro	Lys	Arg	Gln	Ile	Phe	Leu	Asp	Gln	Asn	Met	Leu	Ala
595															605
Val	Ile	Asp	Glu	Leu	Met	Gln	Ala	Leu	Asn	Phe	Asn	Ser	Glu	Thr	Val
610															620
Pro	Gln	Lys	Ser	Ser	Leu	Glu	Glu	Pro	Asp	Phe	Tyr	Lys	Thr	Lys	Ile
625															640
Lys	Leu	Cys	Ile	Leu	Leu	His	Ala	Phe	Arg	Ile	Arg	Ala	Val	Thr	Ile
645															655
Asp	Arg	Val	Met	Ser	Tyr	Leu	Asn	Ala	Ser	Arg	Arg	Lys	Arg	Glu	Gly
660															670
Arg	Gly	Ser	Leu	Leu	Thr	Cys	Gly	Asp	Val	Glu	Glu	Asn	Pro	Gly	Pro
675															685
Pro	Met	Cys	His	Gln	Gln	Leu	Val	Ile	Ser	Trp	Phe	Ser	Leu	Val	Phe
690															700
Leu	Ala	Ser	Pro	Leu	Val	Ala	Ile	Trp	Glu	Leu	Lys	Lys	Asp	Val	Tyr
705															720
Val	Val	Glu	Leu	Asp	Trp	Tyr	Pro	Asp	Ala	Pro	Gly	Glu	Met	Val	Val
725															735
Leu	Thr	Cys	Asp	Thr	Pro	Glu	Glu	Asp	Gly	Ile	Thr	Trp	Thr	Leu	Asp
740															750
Gln	Ser	Ser	Glu	Val	Leu	Gly	Ser	Gly	Lys	Thr	Leu	Thr	Ile	Gln	Val
755															765
Lys	Glu	Phe	Gly	Asp	Ala	Gly	Gln	Tyr	Thr	Cys	His	Lys	Gly	Glu	Glu
770															780
Val	Leu	Ser	His	Ser	Leu	Leu	Leu	His	Lys	Lys	Glu	Asp	Gly	Ile	
785															800
Trp	Ser	Thr	Asp	Ile	Leu	Lys	Asp	Gln	Lys	Glu	Pro	Lys	Asn	Lys	Thr
805															815
Phe	Leu	Arg	Cys	Glu	Ala	Lys	Asn	Tyr	Ser	Gly	Arg	Phe	Thr	Cys	Trp

-continued

820	825	830
Trp Leu Thr Thr Ile Ser Thr Asp Leu Thr Phe Ser Val Lys Ser Ser		
835	840	845
Arg Gly Ser Ser Asp Pro Gln Gly Val Thr Cys Gly Ala Ala Thr Leu		
850	855	860
Ser Ala Glu Arg Val Arg Gly Asp Asn Lys Glu Tyr Glu Tyr Ser Val		
865	870	875
Glu Cys Gln Glu Asp Ser Ala Cys Pro Ala Ala Glu Glu Ser Leu Pro		
885	890	895
Ile Glu Val Met Val Asp Ala Val His Lys Leu Lys Tyr Glu Asn Tyr		
900	905	910
Thr Ser Ser Phe Phe Ile Arg Asp Ile Ile Lys Pro Asp Pro Pro Lys		
915	920	925
Asn Leu Gln Leu Lys Pro Leu Lys Asn Ser Arg Gln Val Glu Val Ser		
930	935	940
Trp Glu Tyr Pro Asp Thr Trp Ser Thr Pro His Ser Tyr Phe Ser Leu		
945	950	955
Thr Phe Cys Val Gln Val Gln Gly Lys Ser Lys Arg Glu Lys Lys Asp		
965	970	975
Arg Val Phe Thr Asp Lys Thr Ser Ala Thr Val Ile Cys Arg Lys Asn		
980	985	990
Ala Ser Ile Ser Val Arg Ala Gln Asp Arg Tyr Tyr Ser Ser Ser Trp		
995	1000	1005
Ser Glu Trp Ala Ser Val Pro Cys Ser		
1010	1015	

<210> SEQ ID NO 59
 <211> LENGTH: 1022
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized SIRP1alpha-IL12-LL bi-specific
 T-cell engager construct

<400> SEQUENCE: 59

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro			
1	5	10	15
Gly Ser Thr Gly Asp Glu Glu Leu Gln Ile Ile Gln Pro Asp Lys			
20	25	30	
Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys Thr Ile			
35	40	45	
Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly Ala Gly			
50	55	60	
Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe Pro Arg			
65	70	75	80
Val Thr Thr Val Ser Asp Thr Thr Lys Arg Asn Asn Met Asp Phe Ser			
85	90	95	
Ile Arg Ile Gly Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr Tyr Cys			
100	105	110	
Ile Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys Ser Gly			
115	120	125	
Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Ser Gly Gly			
130	135	140	

-continued

Gly Gly Ser Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg
 145 150 155 160
 Pro Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe
 165 170 175
 Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
 180 185 190
 Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn
 195 200 205
 Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser
 210 215 220
 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
 225 230 235 240
 Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp
 245 250 255
 Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Ser Gly
 260 265 270
 Gly Ser Gly Gly Ser Gly Ser Gly Gly Val Asp Asp Ile Gln Leu
 275 280 285
 Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr
 290 295 300
 Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln
 305 310 315 320
 Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys
 325 330 335
 Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr
 340 345 350
 Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr
 355 360 365
 Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly
 370 375 380
 Thr Lys Leu Glu Leu Lys His His His His His Arg Arg Lys Arg
 385 390 395 400
 Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Asn Pro
 405 410 415
 Gly Pro Met Trp Pro Pro Gly Ser Ala Ser Gln Pro Pro Pro Ser Pro
 420 425 430
 Ala Ala Ala Thr Gly Leu His Pro Ala Ala Arg Pro Val Ser Leu Gln
 435 440 445
 Cys Arg Leu Ser Met Cys Pro Ala Arg Ser Leu Leu Val Ala Thr
 450 455 460
 Leu Val Leu Leu Asp His Leu Ser Leu Ala Arg Asn Leu Pro Val Ala
 465 470 475 480
 Thr Pro Asp Pro Gly Met Phe Pro Cys Leu His His Ser Gln Asn Leu
 485 490 495
 Leu Arg Ala Val Ser Asn Met Leu Gln Lys Ala Arg Gln Thr Leu Glu
 500 505 510
 Phe Tyr Pro Cys Thr Ser Glu Glu Ile Asp His Glu Asp Ile Thr Lys
 515 520 525
 Asp Lys Thr Ser Thr Val Glu Ala Cys Leu Pro Leu Glu Leu Thr Lys
 530 535 540
 Asn Glu Ser Cys Leu Asn Ser Arg Glu Thr Ser Phe Ile Thr Asn Gly

-continued

545	550	555	560
Ser Cys Leu Ala Ser Arg Lys Thr Ser Phe Met Met Ala Leu Cys Leu			
565	570	575	
Ser Ser Ile Tyr Glu Asp Leu Lys Met Tyr Gln Val Glu Phe Lys Thr			
580	585	590	
Met Asn Ala Lys Leu Leu Met Asp Pro Lys Arg Gln Ile Phe Leu Asp			
595	600	605	
Gln Asn Met Leu Ala Val Ile Asp Glu Leu Met Gln Ala Leu Asn Phe			
610	615	620	
Asn Ser Glu Thr Val Pro Gln Lys Ser Ser Leu Glu Glu Pro Asp Phe			
625	630	635	640
Tyr Lys Thr Lys Ile Lys Leu Cys Ile Leu Leu His Ala Phe Arg Ile			
645	650	655	
Arg Ala Val Thr Ile Asp Arg Val Met Ser Tyr Leu Asn Ala Ser Arg			
660	665	670	
Arg Lys Arg Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu			
675	680	685	
Glu Asn Pro Gly Pro Pro Met Cys His Gln Gln Leu Val Ile Ser Trp			
690	695	700	
Phe Ser Leu Val Phe Leu Ala Ser Pro Leu Val Ala Ile Trp Glu Leu			
705	710	715	720
Lys Lys Asp Val Tyr Val Val Glu Leu Asp Trp Tyr Pro Asp Ala Pro			
725	730	735	
Gly Glu Met Val Val Leu Thr Cys Asp Thr Pro Glu Glu Asp Gly Ile			
740	745	750	
Thr Trp Thr Leu Asp Gln Ser Ser Glu Val Leu Gly Ser Gly Lys Thr			
755	760	765	
Leu Thr Ile Gln Val Lys Glu Phe Gly Asp Ala Gly Gln Tyr Thr Cys			
770	775	780	
His Lys Gly Gly Glu Val Leu Ser His Ser Leu Leu Leu His Lys			
785	790	795	800
Lys Glu Asp Gly Ile Trp Ser Thr Asp Ile Leu Lys Asp Gln Lys Glu			
805	810	815	
Pro Lys Asn Lys Thr Phe Leu Arg Cys Glu Ala Lys Asn Tyr Ser Gly			
820	825	830	
Arg Phe Thr Cys Trp Trp Leu Thr Thr Ile Ser Thr Asp Leu Thr Phe			
835	840	845	
Ser Val Lys Ser Ser Arg Gly Ser Ser Asp Pro Gln Gly Val Thr Cys			
850	855	860	
Gly Ala Ala Thr Leu Ser Ala Glu Arg Val Arg Gly Asp Asn Lys Glu			
865	870	875	880
Tyr Glu Tyr Ser Val Glu Cys Gln Glu Asp Ser Ala Cys Pro Ala Ala			
885	890	895	
Glu Glu Ser Leu Pro Ile Glu Val Met Val Asp Ala Val His Lys Leu			
900	905	910	
Lys Tyr Glu Asn Tyr Thr Ser Ser Phe Phe Ile Arg Asp Ile Ile Lys			
915	920	925	
Pro Asp Pro Pro Lys Asn Leu Gln Leu Lys Pro Leu Lys Asn Ser Arg			
930	935	940	
Gln Val Glu Val Ser Trp Glu Tyr Pro Asp Thr Trp Ser Thr Pro His			
945	950	955	960

-continued

Ser Tyr Phe Ser Leu Thr Phe Cys Val Gln Val Gln Gly Lys Ser Lys
 965 970 975
 Arg Glu Lys Lys Asp Arg Val Phe Thr Asp Lys Thr Ser Ala Thr Val
 980 985 990
 Ile Cys Arg Lys Asn Ala Ser Ile Ser Val Arg Ala Gln Asp Arg Tyr
 995 1000 1005
 Tyr Ser Ser Ser Trp Ser Glu Trp Ala Ser Val Pro Cys Ser
 1010 1015 1020

<210> SEQ ID NO 60
 <211> LENGTH: 511
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized SIRP1alpha-CXCL10-SL bi-specific
 T-cell engager construct

<400> SEQUENCE: 60

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 1 5 10 15
 Gly Ser Thr Gly Asp Glu Glu Glu Leu Gln Ile Ile Gln Pro Asp Lys
 20 25 30
 Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys Thr Ile
 35 40 45
 Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly Ala Gly
 50 55 60
 Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe Pro Arg
 65 70 75 80
 Val Thr Thr Val Ser Asp Thr Thr Lys Arg Asn Asn Met Asp Phe Ser
 85 90 95
 Ile Arg Ile Gly Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr Tyr Cys
 100 105 110
 Ile Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys Ser Gly
 115 120 125
 Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Ser Asp Ile
 130 135 140
 Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val
 145 150 155 160
 Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr Met
 165 170 175
 His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr
 180 185 190
 Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys Asp
 195 200 205
 Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln
 210 215 220
 Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg
 225 230 235 240
 Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr Thr
 245 250 255
 Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly Ser
 260 265 270
 Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro Ala

-continued

275	280	285
Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala		
290	295	300
Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr		
305	310	315
Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly Val		
325	330	335
Pro Tyr Arg Phe Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr		
340	345	350
Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln		
355	360	365
Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu		
370	375	380
Lys His His His His His Arg Arg Lys Arg Glu Gly Arg Gly Ser		
385	390	395
Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Asn Gln		
405	410	415
Thr Ala Ile Leu Ile Cys Cys Leu Ile Phe Leu Thr Leu Ser Gly Ile		
420	425	430
Gln Gly Val Pro Leu Ser Arg Thr Val Arg Cys Thr Cys Ile Ser Ile		
435	440	445
Ser Asn Gln Pro Val Asn Pro Arg Ser Leu Glu Lys Leu Glu Ile Ile		
450	455	460
Pro Ala Ser Gln Phe Cys Pro Arg Val Glu Ile Ile Ala Thr Met Lys		
465	470	475
Lys Lys Gly Glu Lys Arg Cys Leu Asn Pro Glu Ser Lys Ala Ile Lys		
485	490	495
Asn Leu Leu Lys Ala Val Ser Lys Glu Arg Ser Lys Arg Ser Pro		
500	505	510

<210> SEQ ID NO 61
 <211> LENGTH: 516
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized SIRP1alpha-CXCL10-LL bi-specific
 T-cell engager construct

<400> SEQUENCE: 61

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro			
1	5	10	15
Gly Ser Thr Gly Asp Glu Glu Glu Leu Gln Ile Ile Gln Pro Asp Lys			
20	25	30	
Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys Thr Ile			
35	40	45	
Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly Ala Gly			
50	55	60	
Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe Pro Arg			
65	70	75	80
Val Thr Thr Val Ser Asp Thr Thr Lys Arg Asn Asn Met Asp Phe Ser			
85	90	95	
Ile Arg Ile Gly Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr Tyr Cys			
100	105	110	

-continued

Ile Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys Ser Gly
 115 120 125

Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Ser Gly Gly
 130 135 140

Gly Gly Ser Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg
 145 150 155 160

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe
 165 170 175

Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
 180 185 190

Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn
 195 200 205

Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser
 210 215 220

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
 225 230 235 240

Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp
 245 250 255

Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly
 260 265 270

Gly Ser Gly Gly Ser Gly Ser Gly Val Asp Asp Ile Gln Leu
 275 280 285

Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr
 290 295 300

Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln
 305 310 315 320

Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys
 325 330 335

Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr
 340 345 350

Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr
 355 360 365

Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly
 370 375 380

Thr Lys Leu Glu Leu Lys His His His His Arg Arg Lys Arg
 385 390 395 400

Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro
 405 410 415

Gly Pro Met Asn Gln Thr Ala Ile Leu Ile Cys Cys Leu Ile Phe Leu
 420 425 430

Thr Leu Ser Gly Ile Gln Gly Val Pro Leu Ser Arg Thr Val Arg Cys
 435 440 445

Thr Cys Ile Ser Ile Ser Asn Gln Pro Val Asn Pro Arg Ser Leu Glu
 450 455 460

Lys Leu Glu Ile Ile Pro Ala Ser Gln Phe Cys Pro Arg Val Glu Ile
 465 470 475 480

Ile Ala Thr Met Lys Lys Gly Glu Lys Arg Cys Leu Asn Pro Glu
 485 490 495

Ser Lys Ala Ile Lys Asn Leu Leu Lys Ala Val Ser Lys Glu Arg Ser
 500 505 510

Lys Arg Ser Pro

-continued

515

```
<210> SEQ_ID NO 62
<211> LENGTH: 698
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized PDL1-CD3-IL15 bi-specific T-cell
engager construct

<400> SEQUENCE: 62

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Phe Arg Gly
1           5           10          15

Val Gln Cys Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg
20          25          30

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe
35          40          45

Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
50          55          60

Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn
65          70          75          80

Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser
85          90          95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
100         105         110

Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp
115         120         125

Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly
130         135         140

Gly Ser Gly Gly Ser Gly Ser Gly Val Asp Asp Ile Gln Leu
145         150         155         160

Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr
165         170         175

Met Thr Cys Arg Ala Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln
180         185         190

Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys
195         200         205

Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr
210         215         220

Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr
225         230         235         240

Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly
245         250         255

Thr Lys Leu Glu Leu Lys Gly Gly Ser Asp Ile Gln Met Thr
260         265         270

Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile
275         280         285

Thr Cys Arg Ala Ser Gln Asp Val Ser Thr Ala Val Ala Trp Tyr Gln
290         295         300

Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe
305         310         315         320

Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Thr
325         330         335
```

-continued

Asp	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Gln	Pro	Glu	Asp	Phe	Ala	Thr
340															350
Tyr	Tyr	Cys	Gln	Gln	Tyr	Leu	Tyr	His	Pro	Ala	Thr	Phe	Gly	Gln	Gly
355															365
Thr	Lys	Val	Glu	Ile	Lys	Arg	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	
370															380
Ser	Gly	Gly	Gly	Ser	Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	
385															400
Leu	Val	Gln	Pro	Gly	Gly	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly
405															415
Phe	Thr	Phe	Ser	Asp	Ser	Trp	Ile	His	Trp	Val	Arg	Gln	Ala	Pro	Gly
420															430
Lys	Gly	Leu	Glu	Trp	Val	Ala	Trp	Ile	Ser	Pro	Tyr	Gly	Gly	Ser	Thr
435															445
Tyr	Tyr	Ala	Asp	Ser	Val	Lys	Gly	Arg	Phe	Thr	Ile	Ser	Ala	Asp	Thr
450															460
Ser	Lys	Asn	Thr	Ala	Tyr	Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp
465															480
Thr	Ala	Val	Tyr	Tyr	Cys	Ala	Arg	Arg	His	Trp	Pro	Gly	Phe	Asp	
485															495
Tyr	Trp	Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ala	His	His	His	
500															510
His	His	Arg	Arg	Lys	Arg	Glu	Gly	Arg	Gly	Ser	Leu	Leu	Thr	Cys	Gly
515															525
Asp	Val	Glu	Glu	Asn	Pro	Gly	Pro	Met	Arg	Ile	Ser	Lys	Pro	His	Leu
530															540
Arg	Ser	Ile	Ser	Ile	Gln	Cys	Tyr	Leu	Cys	Leu	Leu	Leu	Asn	Ser	His
545															560
Phe	Leu	Thr	Glu	Ala	Gly	Ile	His	Val	Phe	Ile	Leu	Gly	Cys	Phe	Ser
565															575
Ala	Gly	Leu	Pro	Lys	Thr	Glu	Ala	Asn	Trp	Val	Asn	Val	Ile	Ser	Asp
580															590
Leu	Lys	Lys	Ile	Glu	Asp	Leu	Ile	Gln	Ser	Met	His	Ile	Asp	Ala	Thr
595															605
Leu	Tyr	Thr	Glu	Ser	Asp	Val	His	Pro	Ser	Cys	Lys	Val	Thr	Ala	Met
610															620
Lys	Cys	Phe	Leu	Leu	Glu	Leu	Gln	Val	Ile	Ser	Leu	Glu	Ser	Gly	Asp
625															640
Ala	Ser	Ile	His	Asp	Thr	Val	Glu	Asn	Leu	Ile	Ile	Leu	Ala	Asn	Asn
645															655
Ser	Leu	Ser	Ser	Asn	Gly	Asn	Val	Thr	Glu	Ser	Gly	Cys	Lys	Glu	Cys
660															670
Glu	Glu	Leu	Glu	Glu	Lys	Asn	Ile	Lys	Glu	Phe	Leu	Gln	Ser	Phe	Val
675															685
His	Ile	Val	Gln	Met	Phe	Ile	Asn	Thr	Ser						
690															695

<210> SEQ ID NO 63
<211> LENGTH: 1140
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized PDL1-CD3-IL12 bi-specific T-cell

-continued

engager construct

<400> SEQUENCE: 63

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Phe Arg Gly
1 5 10 15

Val Gln Cys Asp Ile Lys Leu Gln Ser Gly Ala Glu Leu Ala Arg
20 25 30

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe
35 40 45

Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
50 55 60

Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn
65 70 75 80

Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser
85 90 95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
100 105 110

Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp
115 120 125

Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly
130 135 140

Gly Ser Gly Gly Ser Gly Ser Gly Val Asp Asp Ile Gln Leu
145 150 155 160

Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr
165 170 175

Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln
180 185 190

Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys
195 200 205

Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr
210 215 220

Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr
225 230 235 240

Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly
245 250 255

Thr Lys Leu Glu Leu Lys Gly Gly Ser Asp Ile Gln Met Thr
260 265 270

Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile
275 280 285

Thr Cys Arg Ala Ser Gln Asp Val Ser Thr Ala Val Ala Trp Tyr Gln
290 295 300

Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe
305 310 315 320

Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Thr
325 330 335

Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr
340 345 350

Tyr Tyr Cys Gln Gln Tyr Leu Tyr His Pro Ala Thr Phe Gly Gln Gly
355 360 365

Thr Lys Val Glu Ile Lys Arg Gly Gly Ser Gly Gly Gly Gly
370 375 380

-continued

Ser Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly
 385 390 395 400
 Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
 405 410 415
 Phe Thr Phe Ser Asp Ser Trp Ile His Trp Val Arg Gln Ala Pro Gly
 420 425 430
 Lys Gly Leu Glu Trp Val Ala Trp Ile Ser Pro Tyr Gly Ser Thr
 435 440 445
 Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr
 450 455 460
 Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
 465 470 475 480
 Thr Ala Val Tyr Tyr Cys Ala Arg Arg His Trp Pro Gly Phe Asp
 485 490 495
 Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala His His His His
 500 505 510
 His His Arg Arg Lys Arg Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly
 515 520 525
 Asp Val Glu Glu Asn Pro Gly Pro Met Trp Pro Pro Gly Ser Ala Ser
 530 535 540
 Gln Pro Pro Pro Ser Pro Ala Ala Ala Thr Gly Leu His Pro Ala Ala
 545 550 555 560
 Arg Pro Val Ser Leu Gln Cys Arg Leu Ser Met Cys Pro Ala Arg Ser
 565 570 575
 Leu Leu Leu Val Ala Thr Leu Val Leu Leu Asp His Leu Ser Leu Ala
 580 585 590
 Arg Asn Leu Pro Val Ala Thr Pro Asp Pro Gly Met Phe Pro Cys Leu
 595 600 605
 His His Ser Gln Asn Leu Leu Arg Ala Val Ser Asn Met Leu Gln Lys
 610 615 620
 Ala Arg Gln Thr Leu Glu Phe Tyr Pro Cys Thr Ser Glu Glu Ile Asp
 625 630 635 640
 His Glu Asp Ile Thr Lys Asp Lys Thr Ser Thr Val Glu Ala Cys Leu
 645 650 655
 Pro Leu Glu Leu Thr Lys Asn Glu Ser Cys Leu Asn Ser Arg Glu Thr
 660 665 670
 Ser Phe Ile Thr Asn Gly Ser Cys Leu Ala Ser Arg Lys Thr Ser Phe
 675 680 685
 Met Met Ala Leu Cys Leu Ser Ser Ile Tyr Glu Asp Leu Lys Met Tyr
 690 695 700
 Gln Val Glu Phe Lys Thr Met Asn Ala Lys Leu Leu Met Asp Pro Lys
 705 710 715 720
 Arg Gln Ile Phe Leu Asp Gln Asn Met Leu Ala Val Ile Asp Glu Leu
 725 730 735
 Met Gln Ala Leu Asn Phe Asn Ser Glu Thr Val Pro Gln Lys Ser Ser
 740 745 750
 Leu Glu Glu Pro Asp Phe Tyr Lys Thr Lys Ile Lys Leu Cys Ile Leu
 755 760 765
 Leu His Ala Phe Arg Ile Arg Ala Val Thr Ile Asp Arg Val Met Ser
 770 775 780
 Tyr Leu Asn Ala Ser Arg Arg Lys Arg Glu Gly Arg Gly Ser Leu Leu

-continued

785	790	795	800
Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Pro Met Cys His Gln			
805	810	815	
Gln Leu Val Ile Ser Trp Phe Ser Leu Val Phe Leu Ala Ser Pro Leu			
820	825	830	
Val Ala Ile Trp Glu Leu Lys Lys Asp Val Tyr Val Val Glu Leu Asp			
835	840	845	
Trp Tyr Pro Asp Ala Pro Gly Glu Met Val Val Leu Thr Cys Asp Thr			
850	855	860	
Pro Glu Glu Asp Gly Ile Thr Trp Thr Leu Asp Gln Ser Ser Glu Val			
865	870	875	880
Leu Gly Ser Gly Lys Thr Leu Thr Ile Gln Val Lys Glu Phe Gly Asp			
885	890	895	
Ala Gly Gln Tyr Thr Cys His Lys Gly Gly Glu Val Leu Ser His Ser			
900	905	910	
Leu Leu Leu His Lys Lys Glu Asp Gly Ile Trp Ser Thr Asp Ile			
915	920	925	
Leu Lys Asp Gln Lys Glu Pro Lys Asn Lys Thr Phe Leu Arg Cys Glu			
930	935	940	
Ala Lys Asn Tyr Ser Gly Arg Phe Thr Cys Trp Trp Leu Thr Thr Ile			
945	950	955	960
Ser Thr Asp Leu Thr Phe Ser Val Lys Ser Ser Arg Gly Ser Ser Asp			
965	970	975	
Pro Gln Gly Val Thr Cys Gly Ala Ala Thr Leu Ser Ala Glu Arg Val			
980	985	990	
Arg Gly Asp Asn Lys Glu Tyr Glu Tyr Ser Val Glu Cys Gln Glu Asp			
995	1000	1005	
Ser Ala Cys Pro Ala Ala Glu Glu Ser Leu Pro Ile Glu Val Met			
1010	1015	1020	
Val Asp Ala Val His Lys Leu Lys Tyr Glu Asn Tyr Thr Ser Ser			
1025	1030	1035	
Phe Phe Ile Arg Asp Ile Ile Lys Pro Asp Pro Pro Lys Asn Leu			
1040	1045	1050	
Gln Leu Lys Pro Leu Lys Asn Ser Arg Gln Val Glu Val Ser Trp			
1055	1060	1065	
Glu Tyr Pro Asp Thr Trp Ser Thr Pro His Ser Tyr Phe Ser Leu			
1070	1075	1080	
Thr Phe Cys Val Gln Val Gln Gly Lys Ser Lys Arg Glu Lys Lys			
1085	1090	1095	
Asp Arg Val Phe Thr Asp Lys Thr Ser Ala Thr Val Ile Cys Arg			
1100	1105	1110	
Lys Asn Ala Ser Ile Ser Val Arg Ala Gln Asp Arg Tyr Tyr Ser			
1115	1120	1125	
Ser Ser Trp Ser Glu Trp Ala Ser Val Pro Cys Ser			
1130	1135	1140	

<210> SEQ ID NO 64
<211> LENGTH: 634
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthesized PDL1-CD3-CXCL10 bi-specific T-cell
engager construct

-continued

<400> SEQUENCE: 64

Met Glu Phe Gly Leu Ser Trp Val Phe Leu Val Ala Leu Phe Arg Gly
 1 5 10 15

Val Gln Cys Asp Ile Lys Leu Gln Ser Gly Ala Glu Leu Ala Arg
 20 25 30

Pro Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe
 35 40 45

Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu
 50 55 60

Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn
 65 70 75 80

Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Asp Lys Ser Ser Ser
 85 90 95

Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
 100 105 110

Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp
 115 120 125

Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly
 130 135 140

Gly Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu
 145 150 155 160

Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr
 165 170 175

Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln
 180 185 190

Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys
 195 200 205

Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr
 210 215 220

Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr
 225 230 235 240

Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly
 245 250 255

Thr Lys Leu Glu Leu Lys Gly Gly Ser Asp Ile Gln Met Thr
 260 265 270

Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile
 275 280 285

Thr Cys Arg Ala Ser Gln Asp Val Ser Thr Ala Val Ala Trp Tyr Gln
 290 295 300

Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Tyr Ser Ala Ser Phe
 305 310 315 320

Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Thr
 325 330 335

Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr
 340 345 350

Tyr Tyr Cys Gln Gln Tyr Leu Tyr His Pro Ala Thr Phe Gly Gln Gly
 355 360 365

Thr Lys Val Glu Ile Lys Arg Gly Gly Ser Gly Gly Gly
 370 375 380

Ser Gly Gly Gly Ser Glu Val Gln Leu Val Glu Ser Gly Gly

-continued

385	390	395	400
Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly			
405	410	415	
Phe Thr Phe Ser Asp Ser Trp Ile His Trp Val Arg Gln Ala Pro Gly			
420	425	430	
Lys Gly Leu Glu Trp Val Ala Trp Ile Ser Pro Tyr Gly Gly Ser Thr			
435	440	445	
Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Ala Asp Thr			
450	455	460	
Ser Lys Asn Thr Ala Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp			
465	470	475	480
Thr Ala Val Tyr Tyr Cys Ala Arg Arg His Trp Pro Gly Phe Asp			
485	490	495	
Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala His His His			
500	505	510	
His His Arg Arg Lys Arg Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly			
515	520	525	
Asp Val Glu Glu Asn Pro Gly Pro Met Asn Gln Thr Ala Ile Leu Ile			
530	535	540	
Cys Cys Leu Ile Phe Leu Thr Leu Ser Gly Ile Gln Gly Val Pro Leu			
545	550	555	560
Ser Arg Thr Val Arg Cys Thr Cys Ile Ser Ile Ser Asn Gln Pro Val			
565	570	575	
Asn Pro Arg Ser Leu Glu Lys Leu Glu Ile Ile Pro Ala Ser Gln Phe			
580	585	590	
Cys Pro Arg Val Glu Ile Ile Ala Thr Met Lys Lys Gly Glu Lys			
595	600	605	
Arg Cys Leu Asn Pro Glu Ser Lys Ala Ile Lys Asn Leu Leu Lys Ala			
610	615	620	
Val Ser Lys Glu Arg Ser Lys Arg Ser Pro			
625	630		

<210> SEQ ID NO 65
 <211> LENGTH: 1120
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized SIRP1alpha-MMP9-SL bi-specific
 T-cell engager construct

<400> SEQUENCE: 65

Met	Glu	Thr	Asp
1	5	10	15
Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro			
Gly Ser Thr Gly Asp Glu Glu Glu Leu Gln Ile Ile Gln Pro Asp Lys			
20	25	30	
Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys Thr Ile			
35	40	45	
Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly Ala Gly			
50	55	60	
Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe Pro Arg			
65	70	75	80
Val Thr Thr Val Ser Asp Thr Thr Lys Arg Asn Asn Met Asp Phe Ser			
85	90	95	

-continued

Ile Arg Ile Gly Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr Tyr Cys
 100 105 110

Ile Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys Ser Gly
 115 120 125

Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Ser Asp Ile
 130 135 140

Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala Ser Val
 145 150 155 160

Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr Thr Met
 165 170 175

His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Tyr
 180 185 190

Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe Lys Asp
 195 200 205

Lys Ala Thr Leu Thr Thr Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln
 210 215 220

Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys Ala Arg
 225 230 235 240

Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly Thr Thr
 245 250 255

Leu Thr Val Ser Ser Val Glu Gly Ser Gly Ser Gly Ser
 260 265 270

Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser Pro Ala
 275 280 285

Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala
 290 295 300

Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser Gly Thr
 305 310 315 320

Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser Gly Val
 325 330 335

Pro Tyr Arg Phe Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr
 340 345 350

Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln
 355 360 365

Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
 370 375 380

Lys His His His His His Arg Arg Lys Arg Glu Gly Arg Gly Ser
 385 390 395 400

Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ser Leu
 405 410 415

Trp Gln Pro Leu Val Leu Val Leu Val Leu Gly Cys Cys Phe Ala
 420 425 430

Ala Pro Arg Gln Arg Gln Ser Thr Leu Val Leu Phe Pro Gly Asp Leu
 435 440 445

Arg Thr Asn Leu Thr Asp Arg Gln Leu Ala Glu Glu Tyr Leu Tyr Arg
 450 455 460

Tyr Gly Tyr Thr Arg Val Ala Glu Met Arg Gly Glu Ser Lys Ser Leu
 465 470 475 480

Gly Pro Ala Leu Leu Leu Gln Lys Gln Leu Ser Leu Pro Glu Thr
 485 490 495

Gly Glu Leu Asp Ser Ala Thr Leu Lys Ala Met Arg Thr Pro Arg Cys

-continued

500	505	510	
Gly Val Pro Asp Leu Gly Arg Phe Gln Thr Phe Glu Gly Asp Leu Lys			
515	520	525	
Trp His His His Asn Ile Thr Tyr Trp Ile Gln Asn Tyr Ser Glu Asp			
530	535	540	
Leu Pro Arg Ala Val Ile Asp Asp Ala Phe Ala Arg Ala Phe Ala Leu			
545	550	555	560
Trp Ser Ala Val Thr Pro Leu Thr Phe Thr Arg Val Tyr Ser Arg Asp			
565	570	575	
Ala Asp Ile Val Ile Gln Phe Gly Val Ala Glu His Gly Asp Gly Tyr			
580	585	590	
Pro Phe Asp Gly Lys Asp Gly Leu Leu Ala His Ala Phe Pro Pro Gly			
595	600	605	
Pro Gly Ile Gln Gly Asp Ala His Phe Asp Asp Asp Glu Leu Trp Ser			
610	615	620	
Leu Gly Lys Gly Val Val Val Pro Thr Arg Phe Gly Asn Ala Asp Gly			
625	630	635	640
Ala Ala Cys His Phe Pro Phe Ile Phe Glu Gly Arg Ser Tyr Ser Ala			
645	650	655	
Cys Thr Thr Asp Gly Arg Ser Asp Gly Leu Pro Trp Cys Ser Thr Thr			
660	665	670	
Ala Asn Tyr Asp Thr Asp Asp Arg Phe Gly Phe Cys Pro Ser Glu Arg			
675	680	685	
Leu Tyr Thr Arg Asp Gly Asn Ala Asp Gly Lys Pro Cys Gln Phe Pro			
690	695	700	
Phe Ile Phe Gln Gly Gln Ser Tyr Ser Ala Cys Thr Thr Asp Gly Arg			
705	710	715	720
Ser Asp Gly Tyr Arg Trp Cys Ala Thr Thr Ala Asn Tyr Asp Arg Asp			
725	730	735	
Lys Leu Phe Gly Phe Cys Pro Thr Arg Ala Asp Ser Thr Val Met Gly			
740	745	750	
Gly Asn Ser Ala Gly Glu Leu Cys Val Phe Pro Phe Thr Phe Leu Gly			
755	760	765	
Lys Glu Tyr Ser Thr Cys Thr Ser Glu Gly Arg Gly Asp Gly Arg Leu			
770	775	780	
Trp Cys Ala Thr Thr Ser Asn Phe Asp Ser Asp Lys Lys Trp Gly Phe			
785	790	795	800
Cys Pro Asp Gln Gly Tyr Ser Leu Phe Leu Val Ala Ala His Glu Phe			
805	810	815	
Gly His Ala Leu Gly Leu Asp His Ser Ser Val Pro Glu Ala Leu Met			
820	825	830	
Tyr Pro Met Tyr Arg Phe Thr Glu Gly Pro Pro Leu His Lys Asp Asp			
835	840	845	
Val Asn Gly Ile Arg His Leu Tyr Gly Pro Arg Pro Glu Pro Glu Pro			
850	855	860	
Arg Pro Pro Thr Thr Thr Pro Gln Pro Thr Ala Pro Pro Thr Val			
865	870	875	880
Cys Pro Thr Gly Pro Pro Thr Val His Pro Ser Glu Arg Pro Thr Ala			
885	890	895	
Gly Pro Thr Gly Pro Pro Ser Ala Gly Pro Thr Gly Pro Pro Thr Ala			
900	905	910	

-continued

Gly Pro Ser Thr Ala Thr Thr Val Pro Leu Ser Pro Val Asp Asp Ala
 915 920 925
 Cys Asn Val Asn Ile Phe Asp Ala Ile Ala Glu Ile Gly Asn Gln Leu
 930 935 940
 Tyr Leu Phe Lys Asp Gly Lys Tyr Trp Arg Phe Ser Glu Gly Arg Gly
 945 950 955 960
 Ser Arg Pro Gln Gly Pro Phe Leu Ile Ala Asp Lys Trp Pro Ala Leu
 965 970 975
 Pro Arg Lys Leu Asp Ser Val Phe Glu Glu Pro Leu Ser Lys Lys Leu
 980 985 990
 Phe Phe Phe Ser Gly Arg Gln Val Trp Val Tyr Thr Gly Ala Ser Val
 995 1000 1005
 Leu Gly Pro Arg Arg Leu Asp Lys Leu Gly Leu Gly Ala Asp Val
 1010 1015 1020
 Ala Gln Val Thr Gly Ala Leu Arg Ser Gly Arg Gly Lys Met Leu
 1025 1030 1035
 Leu Phe Ser Gly Arg Arg Leu Trp Arg Phe Asp Val Lys Ala Gln
 1040 1045 1050
 Met Val Asp Pro Arg Ser Ala Ser Glu Val Asp Arg Met Phe Pro
 1055 1060 1065
 Gly Val Pro Leu Asp Thr His Asp Val Phe Gln Tyr Arg Glu Lys
 1070 1075 1080
 Ala Tyr Phe Cys Gln Asp Arg Phe Tyr Trp Arg Val Ser Ser Arg
 1085 1090 1095
 Ser Glu Leu Asn Gln Val Asp Gln Val Gly Tyr Val Thr Tyr Asp
 1100 1105 1110
 Ile Leu Gln Cys Pro Glu Asp
 1115 1120

<210> SEQ ID NO 66
 <211> LENGTH: 1125
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized SIRP1alpha-MMP9-LL bi-specific
 T-cell engager construct

<400> SEQUENCE: 66

Met Glu Thr Asp Thr Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 1 5 10 15
 Gly Ser Thr Gly Asp Glu Glu Leu Gln Ile Ile Gln Pro Asp Lys
 20 25 30
 Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys Thr Ile
 35 40 45
 Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly Ala Gly
 50 55 60
 Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe Pro Arg
 65 70 75 80
 Val Thr Thr Val Ser Asp Thr Thr Lys Arg Asn Asn Met Asp Phe Ser
 85 90 95
 Ile Arg Ile Gly Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr Tyr Cys
 100 105 110
 Ile Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys Ser Gly

-continued

115	120	125	
Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Ser Gly Gly			
130	135	140	
Gly Gly Ser Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg			
145	150	155	160
Pro Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe			
165	170	175	
Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu			
180	185	190	
Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn			
195	200	205	
Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Asp Lys Ser Ser Ser			
210	215	220	
Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val			
225	230	235	240
Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp			
245	250	255	
Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly			
260	265	270	
Gly Ser Gly Ser Gly Ser Gly Val Asp Asp Ile Gln Leu			
275	280	285	
Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr			
290	295	300	
Met Thr Cys Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln			
305	310	315	320
Gln Lys Ser Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys			
325	330	335	
Val Ala Ser Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Thr			
340	345	350	
Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr			
355	360	365	
Tyr Tyr Cys Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly			
370	375	380	
Thr Lys Leu Glu Leu Lys His His His His His Arg Arg Lys Arg			
385	390	395	400
Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro			
405	410	415	
Gly Pro Met Ser Leu Trp Gln Pro Leu Val Leu Val Leu Val Leu			
420	425	430	
Gly Cys Cys Phe Ala Ala Pro Arg Gln Arg Gln Ser Thr Leu Val Leu			
435	440	445	
Phe Pro Gly Asp Leu Arg Thr Asn Leu Thr Asp Arg Gln Leu Ala Glu			
450	455	460	
Glu Tyr Leu Tyr Arg Tyr Gly Tyr Thr Arg Val Ala Glu Met Arg Gly			
465	470	475	480
Glu Ser Lys Ser Leu Gly Pro Ala Leu Leu Leu Gln Lys Gln Leu			
485	490	495	
Ser Leu Pro Glu Thr Gly Glu Leu Asp Ser Ala Thr Leu Lys Ala Met			
500	505	510	
Arg Thr Pro Arg Cys Gly Val Pro Asp Leu Gly Arg Phe Gln Thr Phe			
515	520	525	

-continued

Glu Gly Asp Leu Lys Trp His His His Asn Ile Thr Tyr Trp Ile Gln
 530 535 540

Asn Tyr Ser Glu Asp Leu Pro Arg Ala Val Ile Asp Asp Ala Phe Ala
 545 550 555 560

Arg Ala Phe Ala Leu Trp Ser Ala Val Thr Pro Leu Thr Phe Thr Arg
 565 570 575

Val Tyr Ser Arg Asp Ala Asp Ile Val Ile Gln Phe Gly Val Ala Glu
 580 585 590

His Gly Asp Gly Tyr Pro Phe Asp Gly Lys Asp Gly Leu Leu Ala His
 595 600 605

Ala Phe Pro Pro Gly Pro Gly Ile Gln Gly Asp Ala His Phe Asp Asp
 610 615 620

Asp Glu Leu Trp Ser Leu Gly Lys Gly Val Val Val Pro Thr Arg Phe
 625 630 635 640

Gly Asn Ala Asp Gly Ala Ala Cys His Phe Pro Phe Ile Phe Glu Gly
 645 650 655

Arg Ser Tyr Ser Ala Cys Thr Thr Asp Gly Arg Ser Asp Gly Leu Pro
 660 665 670

Trp Cys Ser Thr Thr Ala Asn Tyr Asp Thr Asp Asp Arg Phe Gly Phe
 675 680 685

Cys Pro Ser Glu Arg Leu Tyr Thr Arg Asp Gly Asn Ala Asp Gly Lys
 690 695 700

Pro Cys Gln Phe Pro Phe Ile Phe Gln Gly Gln Ser Tyr Ser Ala Cys
 705 710 715 720

Thr Thr Asp Gly Arg Ser Asp Gly Tyr Arg Trp Cys Ala Thr Thr Ala
 725 730 735

Asn Tyr Asp Arg Asp Lys Leu Phe Gly Phe Cys Pro Thr Arg Ala Asp
 740 745 750

Ser Thr Val Met Gly Gly Asn Ser Ala Gly Glu Leu Cys Val Phe Pro
 755 760 765

Phe Thr Phe Leu Gly Lys Glu Tyr Ser Thr Cys Thr Ser Glu Gly Arg
 770 775 780

Gly Asp Gly Arg Leu Trp Cys Ala Thr Thr Ser Asn Phe Asp Ser Asp
 785 790 795 800

Lys Lys Trp Gly Phe Cys Pro Asp Gln Gly Tyr Ser Leu Phe Leu Val
 805 810 815

Ala Ala His Glu Phe Gly His Ala Leu Gly Leu Asp His Ser Ser Val
 820 825 830

Pro Glu Ala Leu Met Tyr Pro Met Tyr Arg Phe Thr Glu Gly Pro Pro
 835 840 845

Leu His Lys Asp Asp Val Asn Gly Ile Arg His Leu Tyr Gly Pro Arg
 850 855 860

Pro Glu Pro Glu Pro Arg Pro Pro Thr Thr Thr Pro Gln Pro Thr
 865 870 875 880

Ala Pro Pro Thr Val Cys Pro Thr Gly Pro Pro Thr Val His Pro Ser
 885 890 895

Glu Arg Pro Thr Ala Gly Pro Thr Gly Pro Pro Ser Ala Gly Pro Thr
 900 905 910

Gly Pro Pro Thr Ala Gly Pro Ser Thr Ala Thr Thr Val Pro Leu Ser
 915 920 925

-continued

Pro Val Asp Asp Ala Cys Asn Val Asn Ile Phe Asp Ala Ile Ala Glu
 930 935 940

Ile Gly Asn Gln Leu Tyr Leu Phe Lys Asp Gly Lys Tyr Trp Arg Phe
 945 950 955 960

Ser Glu Gly Arg Gly Ser Arg Pro Gln Gly Pro Phe Leu Ile Ala Asp
 965 970 975

Lys Trp Pro Ala Leu Pro Arg Lys Leu Asp Ser Val Phe Glu Glu Pro
 980 985 990

Leu Ser Lys Leu Phe Phe Phe Ser Gly Arg Gln Val Trp Val Tyr
 995 1000 1005

Thr Gly Ala Ser Val Leu Gly Pro Arg Arg Leu Asp Lys Leu Gly
 1010 1015 1020

Leu Gly Ala Asp Val Ala Gln Val Thr Gly Ala Leu Arg Ser Gly
 1025 1030 1035

Arg Gly Lys Met Leu Leu Phe Ser Gly Arg Arg Leu Trp Arg Phe
 1040 1045 1050

Asp Val Lys Ala Gln Met Val Asp Pro Arg Ser Ala Ser Glu Val
 1055 1060 1065

Asp Arg Met Phe Pro Gly Val Pro Leu Asp Thr His Asp Val Phe
 1070 1075 1080

Gln Tyr Arg Glu Lys Ala Tyr Phe Cys Gln Asp Arg Phe Tyr Trp
 1085 1090 1095

Arg Val Ser Ser Arg Ser Glu Leu Asn Gln Val Asp Gln Val Gly
 1100 1105 1110

Tyr Val Thr Tyr Asp Ile Leu Gln Cys Pro Glu Asp
 1115 1120 1125

<210> SEQ ID NO 67
 <211> LENGTH: 2814
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized polynucleotide encoding
 SIRP1alpha-PDL1-CD3-Fc-SL bi-specific T-cell engager construct

<400> SEQUENCE: 67

atggaaacctg atacacttct gttgtgggtg ctgctgtgt gggccctgg ttcaacaggc 60
 gattatccct acgatgtgcc cgactacgca ggccgtcagc cagctgtatga tatccagatg 120
 acacagagcc catcatctct gtctgcaagc gtaggagacc gagtcaccat tacatgcaga 180
 gcctccaaag acgtttccac agcagtggcc tggatcagc aaaaacctgg taaggcgccc 240
 aagcttctca tctattcagc cagtttctg tatagcggcg ttcccgcccg attctctggc 300
 tctggatccg gcacggactt tactttgaca atttcctctc ttcaagccga agatttgca 360
 acctactact gtcagcaata tctctaccat ccagccacat tcggacaggg cacaaagtc 420
 gaaaatcaaaa gaggccggcg cgccagtgcc ggccgggggtt caggaggccg gggttctgaa 480
 gtgcaactcg ttgaaagcgt aggagggtt gtccaaacotg ggggtcaact ggggttgagc 540
 tgcggcccaa gcggattcac ctctcagac tcttggatcc attgggtgcg ccaggctccc 600
 gaaaaaggct tggaaatgggt tgcttggatt tcaccgtatg gccgttccac atactacgct 660
 gacagcgtta agggtcgatt caccatctct gcagatactt caaaaaacac agcctacatt 720
 cagatgaata gtttgcgcgc cgaggacaca gccgtttatt attgtgcctt aagacatgg 780

-continued

cccgccgggtt	tcgactactg	ggggcaaggt	acgttggtga	ctgtgagcgc	cgttagatgaa	840
geaaaaatctt	gtgacaaaac	ccataacctgc	ccaccatgcc	cagccccaga	acttcttggc	900
gtaccctctg	tcttcctttt	ccctccgaaag	cccaaggata	ccctgatgat	cagccgaacc	960
ccggaggtaa	catgtgtggt	ggtcgatgtt	agccatgagg	atcctgaagt	caaatttaac	1020
tggtatgttag	acgggtgttga	ggtgcacaac	gctaaaacta	agcccaggga	ggagcagttac	1080
aactcaacct	atcgctgtgt	atctgtgttt	accgtcctgc	atcaagactg	gctcaatgg	1140
aaggaatata	aatgttaaagt	gagtaacaag	gcactgccc	cacccatcg	aaaaaccatc	1200
tcaaaggcga	agggacagcc	cagggaaaccc	caggtctata	ctctgcaacc	ttctcgggat	1260
gaattgacca	agaaccaagt	tagctgaca	tgtctggtga	aaggtttcta	tccaaaggcgt	1320
atagctgtcg	agtgggagtc	caatggccaa	cctgagaaca	attataagac	cacccacccc	1380
gttctggaca	gcgacggatc	cttttctgt	tactcaaacc	tcactgtcga	taaatcaaga	1440
tggcaacaag	gcaacgtttt	tagctgtac	gtgatgcac	aagcacttca	taatcactat	1500
acacagaagt	cactctctct	ttctccagga	aagggttgcac	aacagaaatt	gatatccgag	1560
gaagatctca	ataggaggaa	gagagaaggc	agggggagcc	ttctcaactg	cgccgatgtc	1620
gaggaaaatc	cggggcctat	gggacccat	accctgtct	tgtggggttt	gcttcttgg	1680
gtgccaggat	ctacaggtga	tgaagaagaa	ttgcagatca	tccaaaccaga	caaatccgta	1740
ctcggtggcc	caggagagac	cgctaccctc	agatgtacca	tcacttctct	cttccccgtt	1800
ggccccatcc	agtggtttcg	agggcagga	ccaggacgag	tgcttattta	caatcaacga	1860
cagggcccat	tcccaagagt	gacaacagta	tccgatacc	ccaagcgcaa	taatatggac	1920
tttagcatta	gaatcgccaa	cataacaccc	gctgacgccc	gtacatacta	ttgttattaa	1980
tttcgaaagg	gctcaccaga	cgacgtggaa	ttaagttag	gggcccgaac	cgaactctca	2040
tttagagcaa	aaccttctgc	tagcgacatc	aagctgcac	agagcggcgc	cgagctggcc	2100
aggccggcgc	ccagegtgaa	gatgagctgc	aagaccagc	gctacacctt	caccaggatc	2160
accatgcact	gggtgaagca	gaggccggc	cagggctgg	agtggatcgg	ctacatcaac	2220
cccagcagg	gctacaccaa	ctacaaccag	aagttcaagg	acaaggccac	cctgaccacc	2280
gacaagagca	gcagcacccgc	ctacatgcag	ctgagcagcc	tgaccagcga	ggacagcgcc	2340
gtgtactact	gcgcaggta	ctacgacgc	cactactgc	tggactactg	ggccaggggc	2400
accaccctga	ccgtgagcag	cgtggagggc	ggcagcggcg	gcagcggccgg	cagcggccgc	2460
agcggccggcg	tggacgacat	ccagctgacc	cagagcccc	ccatcatgag	cgccagcccc	2520
ggcgagaagg	tgaccatgac	ctgcaggggcc	agcagcagcg	tgagctacat	gaactggatc	2580
cacgagaaga	gcggcaccag	ccccaaagg	tggatctacg	acaccagcaa	ggtggccagc	2640
ggcgtgcct	acaggttcag	cggcagcggc	agcggcacca	gctacagcct	gaccatcagc	2700
agcatggagg	ccgaggacgc	cgccacccatc	tactgccagc	agtggagcag	caacccctg	2760
acctccggcg	ccggcacc	aaatctggatctg	aagcaccacc	atcatcacca	ctga	2814

<210> SEQ ID NO 68
 <211> LENGTH: 937
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized SIRP1alpha-PDL1-CD3-Fc-SL
 bi-specific T-cell engager construct

-continued

<400> SEQUENCE: 68

Met Glu Thr Asp Arg Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
1 5 10 15

Gly Ser Thr Gly Asp Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Gly Ala
20 25 30

Gln Pro Ala Asp Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser
35 40 45

Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp
50 55 60

Val Ser Thr Ala Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro
65 70 75 80

Lys Leu Leu Ile Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser
85 90 95

Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser
100 105 110

Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Leu
115 120 125

Tyr His Pro Ala Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
130 135 140

Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Glu
145 150 155 160

Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly Ser
165 170 175

Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Ser Trp
180 185 190

Ile His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ala
195 200 205

Trp Ile Ser Pro Tyr Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys
210 215 220

Gly Arg Phe Thr Ile Ser Ala Asp Thr Ser Lys Asn Thr Ala Tyr Leu
225 230 235 240

Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala
245 250 255

Arg Arg His Trp Pro Gly Gly Phe Asp Tyr Trp Gly Gln Gly Thr Leu
260 265 270

Val Thr Val Ser Ala Val Asp Glu Ala Lys Ser Cys Asp Lys Thr His
275 280 285

Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val
290 295 300

Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr
305 310 315 320

Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu
325 330 335

Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys
340 345 350

Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser
355 360 365

Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys
370 375 380

Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile

-continued

385	390	395	400
Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro			
405	410	415	
Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu			
420	425	430	
Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn			
435	440	445	
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser			
450	455	460	
Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg			
465	470	475	480
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu			
485	490	495	
His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Val			
500	505	510	
Asp Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Arg Arg Lys Arg			
515	520	525	
Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro			
530	535	540	
Gly Pro Met Glu Thr Asp Arg Leu Leu Leu Trp Val Leu Leu Leu Trp			
545	550	555	560
Val Pro Gly Ser Thr Gly Asp Glu Glu Leu Gln Ile Ile Gln Pro			
565	570	575	
Asp Lys Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys			
580	585	590	
Thr Ile Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly			
595	600	605	
Ala Gly Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe			
610	615	620	
Pro Arg Val Thr Thr Val Ser Asp Thr Thr Lys Arg Asn Asn Met Asp			
625	630	635	640
Phe Ser Ile Arg Ile Gly Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr			
645	650	655	
Tyr Cys Ile Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys			
660	665	670	
Ser Gly Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Ser			
675	680	685	
Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu Ala Arg Pro Gly Ala			
690	695	700	
Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Arg Tyr			
705	710	715	720
Thr Met His Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile			
725	730	735	
Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn Tyr Asn Gln Lys Phe			
740	745	750	
Lys Asp Lys Ala Thr Leu Thr Asp Lys Ser Ser Ser Thr Ala Tyr			
755	760	765	
Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys			
770	775	780	
Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp Tyr Trp Gly Gln Gly			
785	790	795	800

-continued

Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly Ser Gly Gly Ser Gly
 805 810 815

Gly Ser Gly Gly Ser Gly Gly Val Asp Asp Ile Gln Leu Thr Gln Ser
 820 825 830

Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys
 835 840 845

Arg Ala Ser Ser Ser Val Ser Tyr Met Asn Trp Tyr Gln Gln Lys Ser
 850 855 860

Gly Thr Ser Pro Lys Arg Trp Ile Tyr Asp Thr Ser Lys Val Ala Ser
 865 870 875 880

Gly Val Pro Tyr Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser
 885 890 895

Leu Thr Ile Ser Ser Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys
 900 905 910

Gln Gln Trp Ser Ser Asn Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu
 915 920 925

Glu Leu Lys His His His His His His
 930 935

<210> SEQ ID NO 69
 <211> LENGTH: 2829
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized polynucleotide encoding
 SIRP1alpha-PDL1-CD3-Fc-LL bi-specific T-cell engager construct

<400> SEQUENCE: 69

atggaaacctg atacacttct gttgtgggtg ctgctgctgt gggccctgg ttcaacaggc	60
gattatccct acgatgtgcc cgactacgc ggcgctcagc cagctgtatga tatccatgt	120
acacagagcc catcatctct gtctgcaagc gtaggagacc gagtcaccat tacatgcaga	180
gcctcccaag acgtttccac agcagtgcc tggatcagc aaaaacctgg taaggcgccc	240
aagcttctca tctattcagc cagtttctg tatacgcccg ttccagccg attctctggc	300
tctggatccg gcacggactt tacttgaca atttcctctc ttcaagccga agatttgca	360
acctactact gtcagcaata tctctaccat ccagccacat tcggacaggg caccaaagtc	420
gaaatcaaaa gagggggcgg cgccagtgcc ggccgggggtt caggaggccgg gggttctgaa	480
gtgcaactcg ttgaaagcgt aggagggtt gtccaaacctg gccggtaact gccgttgagc	540
tgcggcccaa gcgattcac ctctcagac tcttggatcc attgggtgcg ccaggctccc	600
ggaaaaggct tggaaatgggt tgcttgatt tcaccgtatg gcggttccac atactacgct	660
gacagcgtaa agggtcgatt caccatctct gcagatactt caaaaaacac agcctacctt	720
cagatgaata gtttgcgcg cgaggacaca gcggtttattt attgtccct aagacatgg	780
ccggcggtt tcgactactg gggcaaggt acgttggta ctgtgagcgc cgtagatgaa	840
gcaaaaatctt gtgacaaaac ccatacctgc ccaccatgcc cagccccaga acttctggc	900
gtaccctctg tcttcctttt ccctccgaag cccaggata ccctgatgtatg cagccgaacc	960
ccggaggtaa catgtgtggt ggtcgatgtt agccatgagg atcctgaagt caaatataac	1020
tggtatgttag acgggtgtga ggtgcacaaac gctaaaacta agcccaggaa ggagcgtac	1080
aactcaacct atcgcgtcgt atctgtgctt accgtcctgc atcaagactg gctcaatggt	1140

-continued

aaggaatata	aatgtaaagt	gagtaacaag	gcactgccag	cacctatcga	aaaaaccatc	1200
tcaaaggcga	agggacagcc	cagggAACCC	caggtctata	ctctgcaacc	ttctcgggat	1260
gaattgacca	agaaccaagt	tagectgaca	tgtctggta	aaggttcta	tccaaGCGAT	1320
atagctgtcg	agtgggagtc	caatggccaa	cctgagaaca	attataagac	caccccaccc	1380
gttctggaca	gcgacggatc	cttttctg	tactcaaaac	tcactgtcga	taaatcaaga	1440
tggcaacaag	gcaacgtttt	tagctgtac	gtgatgcacg	aagcacttca	taatcactat	1500
acacagaagt	cactctctct	ttctccagga	aaggttgacg	aacagaaatt	gatatccgag	1560
gaagatctca	ataggaggaa	gagagaaggc	agggggagcc	ttctcaactg	cggcgatgtc	1620
gaggaaaatc	cggggcctat	ggagaccgat	accctgtct	tgtgggttt	gcttcttgg	1680
gtgccaggat	ctacaggtga	tgaagaagaa	ttgcagatca	tccaaaccaga	caaatccgta	1740
ctcgtggccg	caggagagac	cgctaccctc	agatgtacca	tcacttctct	cttcccccgtt	1800
ggcccccattcc	agtgggttcg	aggcgcagga	ccaggacgag	tgcttattta	caatcaacgaa	1860
caggggccat	tcccaagagt	gacaacagta	tccgataccca	ccaagcgcaa	taatatggac	1920
tttagcatta	gaatcgccaa	cataacaccc	gctgacgccc	gtacataacta	ttgttattaa	1980
tttcgaaagg	gctcaccaga	cgacgtggaa	ttaagttag	gggcccggAAC	cgaactctca	2040
gttagagcaa	aacttctgc	tagcggccgc	ggcggcagcg	acatcaagct	gcagcagagc	2100
ggcggccgagc	tggccaggcc	cggcgcgcagc	gtgaagatga	gctgcaagac	cagcggctac	2160
accttcacca	ggtacaccat	gcactgggtg	aagcagaggc	ccggccaggg	cctggagtgg	2220
atcggctaca	tcaacccca	caggggctac	accaactaca	accagaagtt	caaggacaag	2280
gccaccctga	ccacccgacaa	gagcagcagc	accgcctaca	tgcagctgag	cagcctgacc	2340
agcgaggaca	gcgcggctgt	ctactgcgc	aggtactacg	acgaccacta	ctgcctggac	2400
tactggggcc	agggcaccac	cctgaccgtg	agcagcgtgg	agggcggcag	cgccggcagc	2460
ggcggcagcg	gcccggcgg	cggcgtggac	gacatccagc	tgacccagag	ccccggccatc	2520
atgagcgcca	gccccggcga	gaaggtgacc	atgacctgca	gggccagcag	cagcgtgagc	2580
tacatgaact	ggtaccagca	gaagagcgcc	accagcccc	agaggtggat	ctacgacacc	2640
agcaagggtgg	ccageggcgt	gccctacagg	ttcagcggca	gcccggcgg	caccagctac	2700
agcctgacca	ttagcagcat	ggaggccgag	gacgcccgc	cctactactg	ccagcagtgg	2760
agcagcaacc	ccctgacctt	cggccggcggc	accaagctgg	agctgaagca	ccaccaccac	2820
caccactag						2829

<210> SEQ ID NO 70
 <211> LENGTH: 942
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Synthesized SIRP1alpha-PDL1-CD3-Fc-LL
 bi-specific T-cell engager construct

<400> SEQUENCE: 70

Met	Glu	Thr	Asp	Arg	Leu	Leu	Leu	Trp	Val	Leu	Leu	Leu	Trp	Val	Pro
1					5				10				15		

Gly	Ser	Thr	Gly	Asp	Tyr	Pro	Tyr	Asp	Val	Pro	Asp	Tyr	Ala	Gly	Ala
									20				30		

-continued

Gln	Pro	Ala	Asp	Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Ser	Leu	Ser	
35																
							40							45		
Ala	Ser	Val	Gly	Asp	Arg	Val	Thr	Ile	Thr	Cys	Arg	Ala	Ser	Gln	Asp	
50															55	
															60	
Val	Ser	Thr	Ala	Val	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro	
65															70	
															75	
Lys	Leu	Leu	Ile	Tyr	Ser	Ala	Ser	Phe	Leu	Tyr	Ser	Gly	Val	Pro	Ser	
85															90	
															95	
Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	
100															105	
															110	
Ser	Leu	Gln	Pro	Glu	Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Tyr	Leu	
115															120	
															125	
Tyr	His	Pro	Ala	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys	Arg	
130															135	
															140	
Gly	Gly	Gly	Ser	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Gly	Ser	Glu		
145															150	
															155	
Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly	Ser		
165															170	
															175	
Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Asp	Ser	Trp	
180															185	
															190	
Ile	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	Ala	
195															200	
															205	
Trp	Ile	Ser	Pro	Tyr	Gly	Gly	Ser	Thr	Tyr	Tyr	Ala	Asp	Ser	Val	Lys	
210															215	
															220	
Gly	Arg	Phe	Thr	Ile	Ser	Ala	Asp	Thr	Ser	Lys	Asn	Thr	Ala	Tyr	Leu	
225															230	
															235	
Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	Ala	
245															250	
															255	
Arg	Arg	His	Trp	Pro	Gly	Gly	Phe	Asp	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	
260															265	
															270	
Val	Thr	Val	Ser	Ala	Val	Asp	Glu	Ala	Lys	Ser	Cys	Asp	Lys	Thr	His	
275															280	
															285	
Thr	Cys	Pro	Pro	Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	
290															295	
															300	
Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	
305															310	
															315	
Pro	Glu	Val	Thr	Cys	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu		
325															330	
															335	
Val	Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	
340															345	
															350	
Thr	Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	
355															360	
															365	
Val	Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	
370															375	
															380	
Cys	Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	
385															390	
															395	
Ser	Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	
405															410	
															415	
Pro	Ser	Arg	Asp	Glu	Leu	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	
420															425	
															430	
Val	Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	

-continued

435	440	445
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser		
450	455	460
Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg		
465	470	475
480		
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu		
485	490	495
His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Val		
500	505	510
Asp Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Arg Arg Lys Arg		
515	520	525
Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro		
530	535	540
Gly Pro Met Glu Thr Asp Arg Leu Leu Leu Trp Val Leu Leu Leu Trp		
545	550	555
560		
Val Pro Gly Ser Thr Gly Asp Glu Glu Leu Gln Ile Ile Gln Pro		
565	570	575
Asp Lys Ser Val Leu Val Ala Ala Gly Glu Thr Ala Thr Leu Arg Cys		
580	585	590
Thr Ile Thr Ser Leu Phe Pro Val Gly Pro Ile Gln Trp Phe Arg Gly		
595	600	605
Ala Gly Pro Gly Arg Val Leu Ile Tyr Asn Gln Arg Gln Gly Pro Phe		
610	615	620
Pro Arg Val Thr Thr Val Ser Asp Thr Thr Lys Arg Asn Asn Met Asp		
625	630	635
640		
Phe Ser Ile Arg Ile Gly Asn Ile Thr Pro Ala Asp Ala Gly Thr Tyr		
645	650	655
Tyr Cys Ile Lys Phe Arg Lys Gly Ser Pro Asp Asp Val Glu Phe Lys		
660	665	670
Ser Gly Ala Gly Thr Glu Leu Ser Val Arg Ala Lys Pro Ser Ala Ser		
675	680	685
Gly Gly Gly Ser Asp Ile Lys Leu Gln Gln Ser Gly Ala Glu Leu		
690	695	700
Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Gly Tyr		
705	710	715
720		
Thr Phe Thr Arg Tyr Thr Met His Trp Val Lys Gln Arg Pro Gly Gln		
725	730	735
Gly Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser Arg Gly Tyr Thr Asn		
740	745	750
Tyr Asn Gln Lys Phe Lys Asp Lys Ala Thr Leu Thr Thr Asp Lys Ser		
755	760	765
Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser		
770	775	780
Ala Val Tyr Tyr Cys Ala Arg Tyr Tyr Asp Asp His Tyr Cys Leu Asp		
785	790	795
800		
Tyr Trp Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Val Glu Gly Gly		
805	810	815
Ser Gly Gly Ser Gly Gly Ser Gly Ser Gly Gly Val Asp Asp Ile		
820	825	830
Gln Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly Glu Lys		
835	840	845

-continued

Val	Thr	Met	Thr	Cys	Arg	Ala	Ser	Ser	Ser	Val	Ser	Tyr	Met	Asn	Trp
850						855				860					
Tyr	Gln	Gln	Lys	Ser	Gly	Thr	Ser	Pro	Lys	Arg	Trp	Ile	Tyr	Asp	Thr
865						870			875			880			
Ser	Lys	Val	Ala	Ser	Gly	Val	Pro	Tyr	Arg	Phe	Ser	Gly	Ser		
885						890			895						
Gly	Thr	Ser	Tyr	Ser	Leu	Thr	Ile	Ser	Ser	Met	Glu	Ala	Glu	Asp	Ala
900						905			910						
Ala	Thr	Tyr	Tyr	Cys	Gln	Gln	Trp	Ser	Ser	Asn	Pro	Leu	Thr	Phe	Gly
915						920			925						
Ala	Gly	Thr	Lys	Leu	Glu	Leu	Lys	His	His	His	His	His	His		
930					935			940							

1. A pseudotyped oncolytic virus comprising a recombinant nucleic acid comprising:

- i) a first nucleic acid sequence encoding a polypeptide comprising:
an activation domain specific for an antigen expressed on an effector cell and a therapeutic molecule domain specific for an antigen selected from the group consisting of programmed death ligand 1 (PDL1), PDL2, CD80, CD86, herpesvirus entry mediator (HVEM), and CD47; and
- ii) a second nucleic acid sequence complementary to a microRNA selected from miR-10b, miR-17, miR-21, miR-106a, miR-125b, miR-145, miR-146a, miR-146b, miR-155, miR-96, miR-182, miR-183, miR-221, miR-222, and miR-1247-5p.

2. The pseudotyped oncolytic virus of claim 1, wherein the second nucleic acid sequence is complementary to a plurality of microRNAs selected from miR-10b, miR-17, miR-21, miR-106a, miR-125b, miR-145, miR-146a, miR-146b, miR-155, miR-96, miR-182, miR-183, miR-221, miR-222, and miR-1247-5p.

3. The pseudotyped oncolytic virus of claim 1, wherein the antigen expressed on the effector cell is CD3.

4. The pseudotyped oncolytic virus of claim 1, wherein the pseudotyped oncolytic virus possesses an altered tropism relative to a non-pseudotyped virus.

5. The pseudotyped oncolytic virus of claim 1, wherein the pseudotyped oncolytic virus yields reduced toxicity and/or reduced entry of non-tumor cells or tissue relative to a non-pseudotyped virus.

6. The pseudotyped oncolytic virus of claim 1, wherein the pseudotyped oncolytic virus is derived from herpes simplex virus-1 (HSV-1).

7. A pseudotyped oncolytic virus capable of preferential replication in a tumor cell, comprising a recombinant nucleic acid comprising:

- i) a first nucleic acid sequence encoding a polypeptide comprising:
(a) an activation domain specific for an antigen expressed on an effector cell and a therapeutic mol-

ecule domain that binds to an inhibitory antigen expressed on a cell surface; or

- (b) an activation domain specific for an antigen expressed on an effector cell and an antigen recognition domain specific for a tumor cell antigen expressed on a target cell; and

- ii) a second nucleic acid sequence encoding an immune modulator polypeptide selected from the group consisting of a cytokine, a costimulatory molecule, an immune checkpoint polypeptide, an anti-angiogenesis factor, and a matrix metalloprotease (MMP).

8. The pseudotyped oncolytic virus of claim 7, wherein the first and second nucleic acid sequences are expressed from a single promoter sequence present in the recombinant nucleic acid.

9. The pseudotyped oncolytic virus of claim 7, wherein the antigen expressed on the effector cell is CD3, and wherein the tumor cell antigen is CD19.

10. The pseudotyped oncolytic virus of claim 7, wherein the first and second nucleic acids have a size of 7.2-38 kb.

11. The pseudotyped oncolytic virus of claim 7, wherein the pseudotyped oncolytic virus may be administered to a subject in a repeated manner over time without being neutralized by the immune system

12. A pseudotyped oncolytic virus comprising a recombinant nucleic acid comprising:

- i) a first nucleic acid sequence encoding a polypeptide comprising:
an activation domain specific for an antigen expressed on an effector cell, and an antigen recognition domain specific for a tumor cell antigen expressed on a target cell, and wherein the tumor cell antigen is CD19; and
- ii) a second nucleic acid sequence complementary to a microRNA selected from miR-10b, miR-17, miR-21, miR-106a, miR-125b, miR-145, miR-146a, miR-146b, miR-155, miR-96, miR-182, miR-183, miR-221, miR-222, and miR-1247-5p.

* * * * *