发明名称
对滑动面的局部构型

摘要
在对曲轴的所述滑动面 (1) 进行构型时，为了利用针对性地设置的极小的凹处 (27) 以较为简单的方式在所述曲轴的使用中大幅减小摩擦，本发明提出，在中间轴套和连杆轴套上，沿周向又沿轴向，有针对性地仅对所述支承面的承受较大负荷的区域进行构型，因为与所述工具的仅为数个 μm 的工作间隙便已使得上述方案难以实现。
1. 一种滑动面 (1)，特别是滑动轴承面，特别是旋转对称的滑动轴承面，用于沿相对面进行滑动运动，所述面利用若干凹处被构型，
 其特征在于，
 所述滑动面沿运动方向 (28) 在承受主负荷的分区 (11) 内，
 以及 / 或者
 沿相对所述运动方向 (28) 的横向 (29)，在所述轴承间隙在工作状态中为最小的分区 (11) 内，
 以不同于其余区域的方式被构型，特别是仅在这些分区 (11) 内被构型。
2. 根据权利要求 1 所述的滑动面，
 其特征在于，
 横向于所述运动方向，所述中心宽度区域 (11b)，特别是所述整个宽度的 50%，以与所述边缘区域相比更高的程度被构型，或者仅所述中心区域被构型。
3. 根据权利要求 1 或 2 所述的滑动面，
 其特征在于，
 对于周向滑动面，特别是对于旋转对称的滑动轴承面，沿运动方向 (28)，即沿所述周向，仅小于 90°，特别是小于 70°，特别是小于 60°，特别是小于 45° 的区域以不同于其余部分的方式被构型，或者仅该区域被构型，以及 / 或者，
 对于用于活塞式内燃机的曲轴 (2) 的旋转对称的滑动轴承面，
 在所述连杆轴承 (1a) 的滑动轴承面上，从所述连杆颈的径向最外侧的点 (13) 出发，从沿旋转方向 30° 到逆于所述连杆轴承的旋转方向 (28) 60°，特别是从沿旋转方向 20° 到逆于所述连杆轴承的旋转方向 55° 的周向区域 (11a1, 11a2) 更高程度地被构型，或者仅这些周向区域被构型。
4. 根据上述权利要求中任一项所述的滑动面，
 其特征在于，
 对于所述用于活塞式内燃机的曲轴的旋转对称的滑动轴承面，在所述中间轴承 (1b) 的滑动轴承面上，
 与所述一端部连杆颈或所述两个相邻连杆颈 (1a) 的所述被更高程度地构型或仅被构型的周向区域 (11a1, 11a2) 相对布置，并从所述周向区域向外指去的一个或两个周向区域 (11a1’，11a2’)，更高程度地被构型，或者仅这些周向区域被构型
 或者，与所有连杆颈的所述所有被更高程度地构型或仅被构型的周向区域 (11a1, 11a2) 相对布置的周向区域 (11a1’，11a2’)，更高程度地被构型，或者仅这些周向区域被构型。
5. 根据上述权利要求中任一项所述的滑动面，
 其特征在于，
 滑动对的所述滑动面中仅其中一个被构型。
6. 根据上述权利要求中任一项所述的滑动面，
 其特征在于，
 所述凹处 (27) 的深度 (t’) 不超过 10 μm，特别是不超过 5 μm，特别是不超过 1 μm，以及 / 或者
所述表面在所述凹处之间的区域内具有粗糙度 Rz，所述粗糙度小于所述凹处的深度，特别是低于 5 µm，特别是为 1 至 4 µm，以及/或者，具有至少 50% 但最大 85% 的承重比率。

7. 根据上述权利要求中任一项所述的滑动面，
其特征在于，
所述凹处（27）所占据的面积比率 - 采用局部构型时仅考虑所述被更高程度地构型或仅被构型的区域 - 为 1% 至 30%，特别是为 10% 至 20%，以及/或者
所述深度（h）与所述凹处的最大表面延伸段（E）的比例为 0.005 至 0.02，特别是为 0.008 至 0.012。

8. 根据上述权利要求中任一项所述的滑动面，
其特征在于，
从俯视图中来看，最小延伸段（e）不超过 150 µm，优选不超过 100 µm，优选不超过 50 µm，以及/或者
从俯视图中来看，所述凹处（27）的最大延伸段（E）的大小为所述最小延伸段（e）的 10 倍，优选仅为 5 倍，优选仅为 3 倍。

9. 根据上述权利要求中任一项所述的滑动面，
其特征在于，
在所述侧面（18）与所述支承部位（1）的表面之间的过渡处，所述凹处（27）具有半径至少为 2 µm 的倒圆（20）和/或与所述表面成小于 60° 角度的斜角（9），以及/或者
在沿所述凹处（27）的滑动面的相对运动方向，特别是沿所述支承（28）的、所述凹处（27）所处于的剖面中，所述凹处（27）的以与所述运动方向相反的方向定向的侧面（18）以角度小于相对侧面（18）的方式延伸，特别是与所述凹处（27）之间的表面成不超过 45°，优选不超过 30°，优选不超过 25°，优选不超过 20° 的角度。

10. 一种用于借助电化学加工特别是在曲轴（2）上加工旋转对称的支承部位（1）的机器（30），
其特征在于，
所述机器（30）是像车床一样配设有工件装轴机构的机床，具有受控的 C 轴且所述工具（25）布置于工具单元（14）中，所述工具单元可以沿 X 向和 Z 向主动移动并沿 Y 向受限制地运动，特别是得到浮动支承，特别是而言，浮动支承范围不超过 100 µm，或者可以围绕所述 C 轴浮动式旋转。

11. 根据权利要求 10 所述的机器，
其特征在于，
所述工具单元（34）可以围绕所述 B 轴浮动式旋转，特别是可以受限制地浮动式旋转。

12. 一种用于借助电化学加工（ECM）来特别是在曲轴（2）上加工凸面状滑动面，特别是旋转对称的支承部位的工具（25），包含作用面（24），所述作用面具有若干凸起部（26），
其特征在于，
所述工具（25）的作用面（24）仅在小于 90°，特别是小于 70°，特别是小于 60°，特别是小于 45° 的区域内上延伸。

13. 根据权利要求 12 所述的工具，
其特征在于，
沿周向，所述工具 (25) 的作用面 (24) 要么以与所述工件 (2) 的凸面状表面相切的方式平坦地布置，要么呈凹面状，但特定而言弯曲半径 (7) 为所述凸面状滑动面的 1.1-2.0 倍，以及 / 或者

所述工具 (25) 的作用面 (24) 上的凸起部 (26) 的高度 (h) 至少为待利用其制造的凹处 (27) 的深度 (t) 的两倍，优选为三倍。

14. 一种借助电化学加工 (ECM) 来加工滑动面的方法，
其特征在于，
在加工时利用振动，特别是利用所述工具 (25) 的振动来交替地增大和减小工具 (25) 与工件 (2) 的距离，以及 / 或者，以脉冲方式 (PECM)，特别是同步于所述振动地对所述工具 (25) 施加电流。

15. 根据上述方法权利要求中任一项所述的方法，
其特征在于，
在所述移除期间，利用间隔垫片 (16) 将所述工具 (25) 保持在与所述滑动面间隔预设的距离，以及，所述特定而言为间隔条的间隔垫片沿所述工具的最大延伸方向布置在所述工具的相对的末端上。

以及，在所述工具中，以特别是沿所述滑动面的运动方向延伸的方向添设有用于所述导电液的冲洗槽，所述冲洗槽的深度特定而言至少为 1/10mm，以及 / 或者
在脉冲式施加电流时，将所述脉冲的数目和 / 或所述脉冲的持续时间用作用于控制所述方法，特别是用于中断所述加工的基准变量。

16. 根据上述方法权利要求中任一项所述的方法，
其特征在于，
在持续施加电流时，将所述导电液的温度和 / 或所述电流强度用作用于控制所述方法，特别是用于中断所述加工的基准变量。

17. 根据上述方法权利要求中任一项所述的方法，
其特征在于，
在加工期间振动式地改变所述工具与滑动面的距离时，
要么将所述导电液中的压力变化用于控制所述距离
要么所述工具的特定而言为间隔条的间隔垫片具有可变厚度，特定而言形式为压电元件，
所述工具以可朝向及背离所述滑动面运动的方式布置在贴靠于所述滑动面上的间隔垫片上并可被驱动。

18. 根据上述方法权利要求中任一项所述的方法，
其特征在于，
为改变所述工具 (25) 的表面结构在所述工件 (2) 上的映射清晰度
要么改变所述工具 (25) 与工件 (2) 的距离 (3)，特别是在采用振动式距离 (3) 时改变振荡期间的最小距离，
要么改变所述电流强度。

19. 根据上述方法权利要求中任一项所述的方法，
其特征在于，
权利要求书

特别是在面加工中，利用所述电化学加工进行不超过30 μm的材料移除，优选仅20 μm，优选仅10 μm，但至少为0.5 μm，优选为2 μm，以及或者

加工时，将所述刀具(25)保持在与所述滑动面间隔5 μm至400 μm的距离(3)，优选间隔10 μm至100 μm的距离(3)。

20. 根据上述方法权利要求中任一项所述的方法，

其特征在于，

为在所述滑动面中制造所述凹处(27)，

要么采用包含若干凸起部(26)的工具(25)，以及，在加工时特别是通过所述工具(25)的作用面(24)的中心，将所述导流所需的液体(4)送入工具(25)与工件(2)之间的间隙(23)。

要么采用包含平滑作用面(24)的工具(25)，以及将由不导电材料构成的包含若干穿孔的掩模(22)保持在工件(2)与工具(25)之间，并沿所述表面将特别是所述掩模(22)与所述滑动面之间所需的液体(4)送入和排出。

21. 根据上述方法权利要求中任一项所述的方法，

其特征在于，

在对所述滑动面进行加工的同时，另在所述工件(2)的内部，特别是在钻孔的交叉处利用电化学加工实施去毛刺。

22. 根据上述方法权利要求中任一项所述的方法，

其特征在于，

利用ECM或PECM来进行构型。
对滑动面的局部构型

技术领域
[0001] 本发明涉及一种滑动对的滑动面，特别是径向轴承的滑动轴承面，特别是曲轴在内燃机中的既抵抗发动机组又抵抗连杆的支撑部位。

背景技术
[0002] 在润滑系统的滑动对的滑动面上，无论是对于滑动摩擦的大小，还是对于滑动对特别是滑动轴承的寿命而言，关键之处在于，尽可能在所有工作状态中都存在足够多的润滑剂。以及，润滑剂尽可能均匀地分布在滑动对的接触面之间。其中，最为关键的是两个滑动面间的相对运动的开始阶段。
[0003] 随着启动系统被越来越多地应用于汽车中，滑动轴承的启动过程的数目增加到100倍或更高，因此，上述关键点也愈发重要，特别是曲轴的支承部位上。
[0004] 因此，以某种方式来加工滑动面的，特别是径向轴承的接触面，使得这些接触面具有用作润滑剂储槽的较小凹处。这些凹处因滑动面的材料的正常粗糙度而存在，或者系针对性地设置。因此，滑动轴承的承重比率，即接触面实际相互贴合时的面积比率，始终远低于100%，有时甚至低于60%。
[0005] 通过专用的加工步骤，例如磨削、精加工或珩磨来实现对滑动面的相应构型，但其中，无法对凹处的具体布置方式进行设定，以及，这些凹处在大小、特别是深度方面的离散度相对较大。构型的结果很大程度上也与执行人员的经验有关。
[0006] 为对滑动轴承的接触面进行在凹处的数目、大小、深度及分布状况方面预设的构型，同样已知的是，利用激光器对这些表面进行轰击，从而获得所期望的凹处。
[0007] 但该处理方式的其中一个缺点在于，在凹处数目较大时非常耗时，此外，击中的激光束不仅会在表面上产生凹处，还会产生环绕该凹处的、在很多情形下都不期望的钟形口，并需要重新执行后续加工来消除该钟形口。一般而言，利用激光器制造的凹处的侧面形状几乎不可控。
[0008] 另一缺点在于，激光加工造成狭小的空间内急剧升温并随后快速冷却，这会导致有害的新坚硬区域。
[0009] 此外还公开过电化学加工（ECM）的加工法，也可以以脉冲方式应用该法（PECM）。采用这种方法能产生纤维表面，例如制造硬币的三维表面，或者在表面中设置上述凹处，其中就经济性而言，此方法仅适用于执行不超过30μm的移除。
[0010] 通过将相应构建为负极的电极接近待加工的用作另一电极的表面，以离子的形式将材料从该表面移除，采用该过程能够实现比如用采用电火花蚀刻精细得多的结构。
[0011] 在整个过程中，压缩独特液体使其穿过工具和工件之间的间隙，从而对剥离的物料进行导流并将其运移。
[0012] 此外就用作工件的曲轴，特别是用于缸数较多的乘用车发动机的曲轴而言，这些曲轴是在加工期间不稳定因而难以定位且在构型中难以加工的工件。
[0013] 除了轴向支撑宽度外，对加工完毕的曲轴的尺寸精度的评估主要通过评估下列参
数来实现：
[0015] - 直径偏差＝与轴颈的设定直径的偏大最大偏差。
[0016] - 长度与轴颈的设定轮廓的标注偏差，由包络与内包络圆的距离给出。
[0017] - 直径大小与轴颈的设定向尺寸的偏大，由旋转支承部位的偏心度和与支承部位与理论轮廓的形状偏差造成。
[0018] - 粗糙度，形式为平均单颗粒粗度深度 Rz ＝计算得出的代表支承部位的表面的微小粗糙度的值。
[0019] - 重合比率＝微观视之表面结构的，与任一对应的面相接触的承重面积比率。
[0020] 此外对于连杆支承部位：
[0021] - 冲程偏差＝实际冲程（连杆颈的实际中心与中间轴颈的实际中心的距离）与设定冲程的尺寸偏差，以及
[0022] - 角度偏差＝以度或者以冲程为准的长度单位沿周向给出的，连杆颈的相对于中间轴颈轴线并和与其余连杆颈的角位有关的实际角位置与其设定角位置的偏差。
[0023] 在遵循这些参数的期望公差时，可用的加工法以及工件的不稳定性与作用力均会构成限制。
[0024] 实际操作中，加工法的效率和经济性也非常重要，特别是对周期时间以及制造成本为决定性因素的批量制造而言，而在单次试验中进行的或对原型进行的加工则不受这些限制。
[0025] 上述情形尤其适用于例如制造曲轴时的最终处理步骤，即精加工和表面构型。

发明内容
[0026] 因此，本发明的目的是，提出一种受到构型的滑动面，以及所述滑动面的一种制造方法和一种制造工具，所述方法和工具特别是在流体动力的滑动轴承中在尽管大幅减小摩擦的情况下也能实现高效制造。
[0027] 本发明用以达成上述目的的解决方案是，权利要求 1、10、12 和 14 的特征。有利实施方式由从属权利要求给出。
[0028] 在所述滑动面（可以是滑动轴承面，或者也可以是例如凸轮轴的滑动面）方面，本发明用以达成上述目的的解决方案是，不对整个滑动面，而仅对若干分区分进行构型，特别是，仅对承受最大负荷的那些分区分进行构型，或对其进行比其余部分更高程度地构型，这能显著降低构型复杂度，并在减小摩擦方面实现与对滑动面实施完全构型时相同的结
果。其中，必须沿所述滑动面的相对于所述运动对的对应面的运动方向，或者平行于该方向，对所述待构型分区分或者需要进行更高程度构型的分区分进行区分。
[0029] 承受较小负荷的分区分要么完全不受构型，要么受到较小程度的构型，亦即，将所
述凹处的数目、大小、深度或其他用于构型的参数选定都比较小，从而降低这些区域内的构型复杂度，或者在完全不对这些承受较小负荷的分区分进行构型的情况下彻底消除构型复杂度。
[0030] 下文始终仅对经过构型的分区分进行说明，这表示，要么仅（只有）这些分区分经过构型，即其他分区分完全未构型，要么这些分区分的构型程度与所述滑动面的其余部分相比更高。
优选横向于所述运动方向对相对于边缘区域的中心区域进行构型，特别是当滑动面对的两个滑动面中的一个滑动方向视之呈凸面状时。因为在此情形下，于所述中心区域内会形成润滑间隙的最小厚度，且该处存在最大的干运转危险。

采用转轴对称的滑动面时，特定而言，于所述运动方向仅对周边的某个尤其是小于 90°，优选小于 70°，优选小于 60° 的周向区域进行构型。

若所述滑动面是用于活塞式内燃机的曲轴的滑动轴承时，则通过如下方式进行构型：沿周向仅对所述连杆颈的、在相应活塞点燃以及随后产生爆炸压力时承受由所述连杆施加的最大负荷的侧面区段进行构型。该侧面区段优选为：沿所述曲轴的中间轴向轴线视之，从所述连杆颈的径向最外侧的点出发，所述连杆轴心的从沿旋转方向 30° 到逆向于旋转方向 60° 的区间，特别是从沿旋转方向 20° 到逆向于旋转方向 55° 的区域。

对于所述中间轴颈有两种方案可供采用：

要么仅对所述中间轴颈的、沿径向与两个相邻的连杆颈相对，并从这些连杆颈的经过构型的向外指去的周向区段进行构型，其中，第一和最后一个中间轴颈仅有一个相邻的连杆颈。

另一方案是，在每个中间轴颈上对相同的周向区域进行构型，即（再度沿轴向视之）与所有连杆颈的经过构型的区域相对并从其向外指的那些周向区域。在此情形下，就用于六缸发动机的曲轴而言，这些区域通常为每个中间轴颈的三个周向区域，就四缸发动机而言则通常为每个中间轴颈的仅两个周向区域。

上述方案能够特别是在承受较大负荷的周向区域内减小滑动摩擦，在这些周向区域内，较高的负荷导致工作状态中的滑动摩擦可能比其余周向区域内高出数倍。因此，尽管只对所述滑动面的一部分（通常远低于 50%）进行构型，仍然能整体上将摩擦减小，摩擦减小效果为以同程度对所述滑动面进行完全构型时的 80 或 90%。

优选采用电化学加工 (ECM)，特别是脉冲式电化学加工 (PECM) 来实施所述构型。后者是以脉冲方式对两个电极（即工具和组件）施加电流。优选地，通常利用所述工具的振动运动，与上述方案同形的方式使得所述工具周期性地接近并重新离开所述工件，其中，分别在工具与工件最为接近的点中施加电流。在所述距离尚且较大的无电流过渡时间中，利用借助泵抽出而流入的电解液将移除的金属离子冲走。

对于由两个相对彼此运动的滑动面所形成的滑动对，优选采用上述方案仅对这两个滑动面中的一个进行构型，因为对所述对应面进行的构型通常只能次要地改善摩擦减小效果。

在此情形下，所述凹出的深度应不超过 10 μm，特别是不超过 5 μm，特别是不超过 1 μm，因为过大的深度可能会导致在所述凹处的区域内无法使所述润滑剂产生足够的压力。此外，实验证明，所述深度应与所述凹处的最大表面延伸段成特定比例，即在 0.005 与 0.002 之间，特别是 0.008 与 0.012 之间。

在所述凹处之间的区域内，所述表面应具有一定粗糙度，所述粗糙度 Rz 优选小于所述凹处的深度，特别是低于 5 μm，优选为 1 到 4 μm。所述凹处之间的区域应至少为 50% 且最大为 85%，以实现适宜的较小摩擦。

实践还证明，从顶视图来看，各凹处的较小延伸段的深度应不超过 150 μm，优选不超过 100 μm 甚或 50 μm。此外，所述凹处的最大延伸段与最小延伸段的比例系数应不超过
10. 优选仅为 5、7 或 3。所述经过构型的面的被凹处占据的面积比率为 1% 至 30%，特别是为 10% 至 20%。

[0043] 实践还证明，适合作为所述凹处的边缘，即所述凹处的侧面与所述滑动面的其余表面之间的过渡部分，配置半径至少为 2 μm 的倒圆和/或与所述表面形成的小于 60° 的斜角，因为这样便能使汇集在所述凹处中的润滑油更好地从所述凹处流出。

[0044] 出于同一原因，（沿所述滑动面的相对于所述对应面的移动方向削开）所述凹处的沿与所述滑动面的运动方向相反的方向定向的侧面，以陡度低于所述相对侧面的方式延伸。特定而言，以与所述凹处之间的表面形成不超过 45° 的角度的方式，优选不超过 30°，优选不超过 25°，优选不超过 20°。

[0045] 在用于借助电化学加工特别是在曲轴的支承部位上加工旋转对称滑动面的机
器方面，本发明以达成上述目的的解决方案是，所述机器是前述机床一样配设有“工件-主轴”机构的机床，其具有受控的 C 轴，且在该机器中，所述移除工具特别是布置在工具单元
中，所述工具单元可以沿 X 向和 Z 向主动运动，沿 Y 向则能受限制地运动，特别是得到浮
动支承，特定而言，浮动支承范围为 +/-100 μm。

[0046] 所述工具单元优选可以围绕 B 轴受限制地旋转，从而受到浮动支承。

[0047] 在用于借助电化学加工（ECM）特别是在曲轴的支承部位上加工旋转对称滑动面的工具方面，本发明用以达成上述目的的解决方案是，所述工具的作用面沿运动方向，即沿所述旋转对称的支承面的周向，在小于 90° 的，特别是小于 70° 的，特别是小于 60° 的，特别是小于 45° 的区域上延伸。

[0048] 所述工具的作用面优选

[0049] - 要么以与所述支承部位的凸面状滑动面相切的方式平坦地布置

[0050] - 要么呈凹面状，但特定而言弯曲半径为所述凸面状待加工滑动面的 1.1 至 2.0 倍。

[0051] 这样便能在利用所述作用面加工的滑动面区域的中心处将工具与工件的距离降至最低，从而使得所述设置的凹处的深度最大，并在所述滑动面上进行最大程度的映射，而在与所述距离最小的位置间隔不远处，所述凹处的深度递减，所述构型也随之减弱。

[0052] 除此之外，在所述距离最小的区域内，由所述工具的作用面所造成的所述凹处之
间的平滑效应最大。

[0053] 在上述两种效应的共同作用下，当所述距离最小的这个点与沿周向承受最大负荷
的点一致时，能够在该距离最小的点上最大程度地减小摩擦。

[0054] 出于同一原因，所述工具的作用面上的凸起部应至少为待利用其制造的凹处的最大深度的 2 倍，优选为 3 倍。

[0055] 在借助电化学加工（ECM）加工滑动面的方法方面，本发明用以达成上述目的的解
决方案是，特别是利用所述工具的相应振动来在加工时交替地增大和减小工具与工件的距
离。

[0056] 另一方面，可以脉冲式（PECMS）地对所述工具施加电流，从而将所述工件的升温保
持在较小程度，并且与所述振动（亦即所述距离变化）同步，使得分别在特别是工具与工件
最接近的时间点进行所述电流脉冲，从而特别好地将所述金属离子分离出来。随后当间距
有所增大时，利用流过其间的电解液将所分离的金属离子更好地排出。在此情形下，所述
工具沿周向相对所述工件静止。

在所述工作间隙较小和所述作为工件的曲轴难以操作的情形下，为了能使所述所述工件对所述工具进行足够精确的定位，优选在所述工具上紧固若干间隔垫片，以便将所述工具放置在所述曲轴的待加工面，即支承面上。为此，所述间隔垫片必须由不导电材料构成。

所述间隔垫片优选构建为沿周向位于所述工具的末端上的间隔条。

在此情形下，所述周向是所述工具的最大延伸方向，因此，在所述工具的作用面中优选沿周向添设有冲洗槽，该冲洗槽与所述导电液体（即所述用于冲洗的电解液）的出口连通，且特定而言深度至少为1/10mm。这样一来，所述电解液沿周向流动，直至到达所述工具的因所述间隔垫片而至少局部封闭的末端，且所述电解液从该处出发沿轴向流过所述工作间隙，并沿向所述工具的作用面的两个轴向末端。

为了特别是针对加工中断的时间段对所述方法进行控制，在持续施加上电流时，将所述电解液的温度和/或变化的电流强度用作基准变量。

而在脉冲式施加电流时，将所述脉冲的数目和/或所述脉冲的持续时间用作基准变量。

而若在加工时振动式地改变工具与工件的距离，则例如将所述导电液体的供给装置中的压力变化用作用于对加工进行控制（特别是针对加工中断的时间段）的基准变量，因为随着所述工具逐渐接近所述工件的表面，所述电解液难以通过所述工作间隙流出，并在所述电解液的供给管路中产生递增的压力。

另一方案是，将特定而言为间隔条的所述间隔垫片构建为厚度可振动式变化，例如构建为压电元件，以及，通过该元件相应施加电流使得其厚度振动式变化。

另一方案是，在加工时将特定而言为间隔条的所述间隔垫片持续地放置在所述待加工面上，但以可相对运动且相对而言受到导引的方式将所述工具紧固在所述间隔垫片上，并且以适宜的方式使得所述工具振动式地朝向以及背离所述工件运动，该操作必须极快的进行，因为总加工时间为数秒。

为改变所述工具的表面结构在所述工件上的映射精度，

- 要么可以改变所述工件与工件的距离，即振动时的最小距离，
- 要么可以改变所述电流强度。

这样便有两个可独立调节的变量可用于改变所述映射精度，特定而言，也可以借助这些变量利用相同的工具改变所述凹处的深度。

实践证明较为经济的方案是，利用电化学加工，特别是在加工整个面时，即不仅仅是设置各凹处，进行不超过30μm的材料移除，优选仅为20μm，优选仅为10μm，但特定而言至少为0.5μm，优选至少为2μm。处于该变量范围内时，无需将现有微结构向下移除至最深的谷部便能实现微效的平滑效果。

针对这种经济性的加工，最好将所述工具保持在与所述待加工表面间隔5至400μm，优选间隔10至100μm。

为了制造凹处，所述工具要么可以在其作用面上具有若干对应的凸起部，这些凸起部呈现为所述工件的待实现表面的负结构，要么所述工具具有平滑的作用面，该作用面覆盖有由不导电材料构成的、具有若干以供液流流过的穿孔的掩模。在此情形下，特别是
在所述掩模与所述待加工工件的表面之间，沿所述表面将所需的液态电解液送入和排出。

[0072]优选地，在包含对所述滑动面进行构型的工序中，可以另外利用电化学加工在所述工件的内部实施去毛刺，特别是在钻孔的交叉处，以及这些钻孔的进入所述工件的入口处实施这一点。为此，可能需要对该工具进行相应构建，但该工具不需要额外的加工时间。

[0073]优选以某种方式对加工时间、脉冲的数目、接入的电流强度、工具与工件最为接近时的距离等加工参数进行规定，使得所述工件的表面在所述凹处之间的区域内相应具有粗糙度，该粗糙度小于所述待制造凹部的深度，以及/或者，所述粗糙度Rz为1至4μm。

[0074]经过构型后，在所述工件的表面上，所述凹处之间的区域内的承重比率应为50%至85%，从而使得所述滑动面在设置所述凹处后仍具有足够的承载能力。

[0075]下面结合附图对本发明的实施方式进行示范性说明。

附图说明

[0076]图1为用于4缸内燃机的曲轴的侧视图；

[0077]图2a为轴向视图，图1所示曲轴在其中一个中间轴承处的剖面图；

[0078]图2b为轴向视图，用于6缸内燃机的曲轴在中间轴承处的剖面图；

[0079]图3a为滑动面的经过构型的区域的俯视图；

[0080]图3b为曲轴的一支承部位的放大图；

[0081]图4a, b为滑动面中的凹处的剖面图；

[0082]图5a为制造构型时的第一处理方式；

[0083]图5b为制造构型时的第二处理方式和第三处理方式；

[0084]图5c为工具的作用面的俯视图；

[0085]图5d为制造构型时的轴向视图；

[0086]图6为嵌合在滑动面上的工具的放大图。

具体实施方式

[0087]图1为用于4缸活塞式发动机的曲轴2（在此作为典型的需要在滑动面1上利用凹处进行构型以减小摩擦的工作）。的侧视图，在所述曲轴的未来的旋转轴10上设有总共五个中间轴承1b，这些中间轴承的直径为圆柱形的侧面作为滑动面1。在这些中间支承部位1b之间，分别设有径向向外错移的总共四个连杆支承部位1a中的一个，这些连杆支承部位同样各具一大致为圆柱形的，作为其各自配备的连杆的滑动面1的支承面，并通过侧壁5与中间轴承1b连接。

[0088]如该图便可看出，由于其结构以及易于在中心区域内弯曲的特性，这种在加工时仅借助其轴向末端保持在例如车床上的曲轴2是相对不稳定的工件，特别是在加工精度和工具的接近幅度的数量级为数个μm时。

[0089]如图3a以滑动面1的俯视图所示的那样，在滑动面1中分布地设有若干凹处27时，能够减小流体动力滑动轴承中的摩擦，在所述流体动力滑动轴承中，在所述滑动对的两侧滑动面间有通常为油料的润滑剂，该润滑剂借助所述滑动面的彼此相对运动分布在所述滑动面上，使在轴承间隙中形成滑动膜。

[0090]为了采用预设的形状、大小、深度和间距，以可重复且经济的方式实现对这种μ
说明 书

数量级的凹处 27 的的大量制造，采用电化学加工（ECM）
【0091】在此情形下，使得通常为所述待制造表面 1 的负形式（即在其作用面上具有若干凸起部 26）的电极，如图 5a、b 所示，与所述待加工表面间隔数个 μm 的极小距离。利用通过导电液体 4（即所述电解液）在工作间隙 3 中从工具 25 向工件 2 流动的电流，将金属离子从所述工具表面分离，并在工件 2 的表面上射射工具 25 的轮廓。
【0092】实际操作中，在待加工工件表面平坦的情况下便难以以可重复的方式将工具 25 接近到 10～20μm，且仅能采用专用机器来实现这一点。对于弯曲和旋转对称的待加工表面，例如曲轴的可能不仅沿周向，还沿轴向 10 弯曲的支承面，特别难以实现上述方案，特别是在需要对整个支承面进行构型时。
【0093】迄今为止的方法中，工件 2 与工具 25 间在加工过程中不允模拟工具 25 的作用面 24 发生相对运动，且工具 25 的作用面 24 理论上沿周向覆盖最多 180°，而实际操作中甚至远低于此，因此，在对整个周向区域进行构型时，要么采用多个工具同时工作，要么采用先后逐段工作，这使得在精确小型接近方面的难度倍增。
【0094】因此，本发明仅对所述曲轴的支承部位的各一区域进行构型，且如 2a 和 b 所示，沿所述支承部位的周向进行构型。
【0095】采用示出的用于四缸（图 2a）或六缸活塞式发动机（图 2b）曲轴时，在工作状态中，在气体内冷却时及在随较短的时间内（在该时间内在气缸中产生爆炸压力并使所述活塞向下加速）对连杆颈 1a 施加最大负荷。在此情形下，所述未绘示的连杆压到当前位于上方的连杆轴承 1a 的周向区域 11a1，其中心沿曲轴 2 的旋转方向 28 位于该连杆轴颈 1a 的与所述曲轴的旋转轴 10 间隔最远径向距离的点 13 后方。
【0096】所述连杆的轴瓦不是以点方式，而是通过特定的周向区域支撑在所述轴颈上，因此，所述承受最大负荷的周向区域 11a1（根据其设计的大小）是可能甚至从径向最外侧的点 13 前的不远处开始，且沿与旋转方向 28 相反的方向延伸经过一角度（例如 60°）的区域。
【0097】对于其他连杆颈 1a，当其位于最高位置时，承受最大负荷的是相似的区域。
【0098】由所述连杆施加的压力主要传递到对应的连杆颈上，从该处出发则通过侧壁 5 至少也传递到两个轴向相邻的中间轴颈 1b 上，并且也略为减弱地传递到间隔较远轴向距离的中间轴颈 1b 上，这些间隔较远轴向距离的中间轴颈在周向区域 111、在与周向区域 11a1 相对应的侧面之间入其轴瓦。
【0099】因此，中间轴颈 1b 的分别与所述两个周向区域 11a1 和 11a2 径向相对的周向区域 11a1’、11a2’ 同样为承受较大负荷的区域。
【0100】仅对所述承受较大负荷的周向区域进行构型，或者对其进行比所述周向区域的其一部位更高程度的构型，但优选仅对这些区域进行构型，从而使不必对其余的周向区域进行加工。
【0101】图 2b 以六缸曲轴为例示出，在所有中间轴颈 1b 上，分别对与所有曲轴轴颈的所有承受较大负荷区域 11a1、11a2、11a3 相对的周向区域 11a1’、11a2’、11a3’ 进行构型，尽管也可以仅对与两个轴向相邻的连杆轴颈相对的周向区域进行构型。
【0102】上述方案出于以下考虑，即使是过渡到间隔较远距离的连杆颈上的负荷，也可能会对相应中间轴颈的相应周向区域施加较大的负荷。
图3b还示出，横向于所述运动方向（即周向），也即沿轴向10，仅对支承部位1的中心宽度区域进行构型。

在许多情形下采用上述方案便已足够，特别是在支承面1如图5d所示不为圆柱形，而是略呈凸面状的情况下，因为在工作状态下，在配设有圆柱形轴瓦的滑动对中会在轴向延伸段的中心区域内产生最小的轴承间隙，从而存在较大的轴承咬死危险。

如图3a所示，要么轴向对支承部位1的整个宽度，要么根据本发明仅对支承部位1的轴向中心区域进行构型，除此之外视情况沿周向也只充仅进行局部构型。根据该方案，如图3a以俯视放大图所示，为所述滑动面在经过构型的区域内设置大量非常小的凹处27，因为实践证明，局部构型便能显著减小摩擦，而未经构型的区域则有助于确保轴承的载荷仅略微减小。

从俯视图来看，这些凹处27例如呈圆形或长条形，例如构建为包含半圆形末端的较短的凹槽，其中，凹处27之间的距离21约等于圆形凹处27的直径d的十倍，或在采用长条形凹处27时，约等于最小延伸段e。

在此情形下，经过构型的区域内的这些凹处的面积比率应为1%至30%。

凹处27优选布置在均匀的网格中，例如对角线沿周向28的菱形网格中。

采用长条形凹处27时，主延伸方向20应主要沿着支承部位1的周向28，即随后的旋转方向，并为此具有不超过30°的角度。

此外实践证明，为了实现上述目标，凹处27的形状和大小也非常重要，如图4a、b以剖面图所示：

所述凹处的深度应不超过数个μm，局部甚至小于1μm，因为这样便能尽可能保持承载能力，但又能实现足够的贮存效应并从而减小摩擦。

与凹处27的深度t相比，凹处27的最小延伸段e可以为50甚至150μm（例如对于直径为d的圆形凹处27），从而使得凹处27相对于其深度t而言面积很大且平坦，这在图4a、b中未实际示出，因为其为概览框且需要示出凹处27的侧面28的形状。

在垂直剖面中，所述凹处可以如图4a所示呈对称，特别是旋转对称，亦即，侧面18与支承部位1的表面或成的，应小于60°的斜角9。

作为补充和/或替代方案，侧面18应借助半径至少为2μm的倒圆20过渡至支承部位1的表面。两种措施均有助于：在所述曲轴工作时，利用轴承座的接触面上的附着装置将容置于凹口27中的润滑剂很好地沿周向28运离，从而将其送入距凹处27不远的轴承间隙。

为此，也可以将沿曲轴2随后的旋转方向35的侧面18构建得更陡，因为它沿相反方向取走润滑剂。这样便能以无负面影响的方式增大各凹处27的体积并从而增强贮存效应。

由于（无需针对性地建立相互连接便能完全发挥作用的）凹处27的深度t较小，显而易见的是，在凹处27之间的面区域内，支承部位1的表面的粗糙度所处于的范围必须小于凹处27的深度t。

因此，除了所述凹处之间的区域也需要具有足够的，例如为60%至70%的承载部分外，根据PCEM加工前的最后加工步骤，建议也以电化学方式对凹处27之间的区域进行平滑，亦即，将这些区域的微小表面结构的峰部移除。
图 6 画出，如何在一个工序中结合对凹口 27 的设置来实现上述方案；

如图 2 所示，通过电极 25 的整体作用面 24 来进行材料移除，而移除的材料的大小也和作用面 24 与工件 2 的距离 3 有关；

因此，可以在电极 25 上实施高度 h 比待利用其制造的凹口 27 的期望深度 t 大得多的凸起部 26，这使得电极 25 与工件 2 在凸起部 26 之间的距离 3 比较大，从而使得该处移除的材料相对较少。

通过以对比所期望深度 t 的方式确定高度 h，进而对加工时在凸起部 26 之间的区域内朝向工件 2 所能到达的最小距离 3 进行控制，便能在设置凹口 27 时在所述区域内对材料移除以及平滑应力进行控制，当然也根据电流、工件 2 的材料等其他参数。

如图 6 以分区的放大图所示，以某种方式在凹口 27 之间的区域内将该处的微小表面结构的峰部局部移除，从而使得其间留有的谷部的深度较小，并提高凹口 27 之间的承重比率。

图 5a 至 d 显示在将所述凹口设置到支承部位 1 的表面中时可采用的处理方式：

其中难点在于，对于工具 25（即所述电极）与待加工滑动面 1 之间的间隙 3，例如工具 25 的作用面 24 的沿周向 28 的弯曲必须与滑动面 1 的弯曲准确一致，以便在所有位置上均实现相同大小的、10 至 20 μm 的工作间隙。就支承部位 1 的侧面的始终处于 μ 数量级的加工精度而言，仅是在对相对于支承部位 1 静止的工具 25 进行加工时，上述要求便是很大的挑战。

如图 5a 所述，其作用面 24 沿周向 28 延伸经过例如为 100° 的圆周角 6 的工具 25，可以具有设置于该周向区域前后的间隔垫片 16，这些间隔垫片沿轴向（即 z 向）延伸，并且以接触的方式设置在支承部位 1 的周面上，从而产生预设的工作间隙 3。

为此，优选利用支撑装置 23，例如背撑 23，将支承部位 1 稳定地径向支撑在相对的一侧上。

为此，要么需要沿 y 向将工具 25 或工具 25 所位于的整个工具单元 14 浮动地支承在例如为 50 μm 的受限行程上，因为几乎无法以如此小的幅度，以及以与各自始终易变形的支承部位 1 相匹配的方式进行沿 y 向的主动设置。

可采用的另一方案是，工具 25 或工具单元 14 可以围绕平行于 c 轴的轴线受限制地回转，这样两个间隔垫片 16 均可以粘贴至支承部位 1。作为补充或替代方案，也可以以相同的方式围绕 b 轴回转，从而使得所述作用面借助所述两个轴向末端通过间隔垫片 16 贴紧在所述支承部位上。

间隔垫片 16 优选实施为间隔条。这些间隔垫片可以如图 5a 所示沿轴向延伸，或者如图 5d 所示沿周向延伸，或者，可以分别在工具 25 的矩形作用面 24 的角部上设有若干点状的间隔垫片。但是，加工时作用面 24 优选不与支承部位 1 的待加工表面间距相同的距离（即工作间隙），而是，该距离应在加工时歇式（即脉冲式）地改变，从而在距离较大的状态下，利用从工具 25 压入工作间隙 3 的电解液 4 较为容易地将从工件 2 的表面分离的金属离子冲出。

工具 25 的这种脉冲式运动，以及工作间隙 3 的幅度仅为数个 μm 的变化，在实际操作中相当难以实现。
在此情形下，每次重新接近时，固定装置于工具 25 上的隔离垫片 16 都会重新抵在工件 2 上，这会导致隔离垫片 16 严重磨损，这些隔离垫片为此还必须由例如为塑料或陶瓷的不导电材料构成，以及 / 或者，在支承部位 1 上留下不期望的压痕。

因此可采用的方案是，如图 5a 左半部分所示，隔离垫片 16 以可沿径向运动的方式布置在工具 25 上。这样便能将隔离垫片 16 持续贴靠在所述待加工的滑动面 1 上，且工具 25 能脉冲式地相对隔离垫片 16 朝向以及背离滑动面 1 往复运动。

图 5a 右半部分示出第二解决方案：要么在隔离垫片 16 中，要么在工具 25 中，要么在两者之间布置厚度可变的元件，例如压电元件，并通过控制所述厚度可变元件来实现始终固定贴靠于滑动面 1 上的隔离垫片 16 与工具 25 的相对运动。

在采用上述解决方案，或采用无间隔喷片 26 的解决方案时，均可以利用在泵与作用面 24 中的流出口之间的供给管路中所设有的压力传感器 17，在电解液 4 的供给管路中测定电解液 4 的倒流压力，并将其用作对工具 25 与待加工滑动面 1 的距离进行控制的参数，因为所述工作间隙产生所引起的电解液流出状况恶化会导致所述供给管路中的压力立即增大。

图 5d 示出，在工具 25 上可以沿轴向 10 选择包含凸起部 26 的直的作用面 24，尽管支承部位 1 的轮廓沿该方向凸起数个 μm。在此情形下，工具 25 可以借助轴向末端通过间隔垫片 16 贴靠在滑动面 1 上。沿轴向的中心区域中的工作间隙 3 较小，这使得该处在所述工件的表面中所产生的凹处比轴向末端区域内要深，但这与后续工作中的负荷以及中心区域内同样为最小的轴承间隙相符合。此外，采用此方式便不必在工具 25 上制造同样沿该方向凸起的作用面 24。

图 5b 的下半部分示出，在待构型的周向区域较大时，也可以采用平坦的作用面 24，该作用面可以利用侧边的，沿周向延伸的止挡条 16，以通过所期望的周向区段的方式在旋转对称的支承部位 1 上滚动。

该图的上半部分示出，工件 25 也可以具有沿轴向视之呈凹面状的作用面 24，但该作用面的弯曲半径 7 略大于支承部位 1 的凸面。

加工时，无论是所述工具相对所述工件静止，还是这两者在此上滚动，采用上述方式，要么能够在沿周向 28 的中心区域内，即在承受最大负荷的区域中将加工时存在的工作间隙 3 设置为最小，并且在该处使得制成的凹处 27 的深度最大，要么沿周向 28 产生深度始终相同的凹处 27。

所述待构型的面以及工具 25 的作用面 24 通常为正方形，而是沿延伸方向比沿另一方向更大。在图 5a 和 c 所示示例中（其中图 5c 为作用面 24 的俯视图），所述较大的延伸方向为周向 28。

然而，为了使得电解液 4 沿所有方向同等快速地从电解液 4 的进料口发出均匀流出，优选在作用面 24 添设沿作用面 24 的最大延伸方向延伸的冲水槽 22，该冲洗槽可以在作用面 24 的狭长端面中自由收尾，但也可以提前收尾。这样便能沿最大延伸槽的方向以最小的流阻对电解液 4 进行分布，并从该处出发朝较小的延伸端（在此情形下为作用面 24 的轴向延伸段）穿过工作间隙 3 流出。
[0144] 1a 连杆支承面，连杆轴承
[0145] 1b 中间支承面，中间轴承
[0146] 2 曲轴，工件
[0147] 3 距离，工作间隙
[0148] 4 液体，电解液
[0149] 5 侧壁
[0150] 6 周向角
[0151] 7 弯曲半径
[0152] 8 倒圆
[0153] 9 斜角
[0154] 10 轴向，旋转轴
[0155] 11 分区
[0156] 11a 周向区域
[0157] 11b 宽度区域
[0158] 12 总宽度
[0159] 13 径向最外侧的点
[0160] 14 工具单元
[0161] 15 压电元件
[0162] 16 间隔垫片
[0163] 17 压力传感器
[0164] 18 侧面
[0165] 20 主延伸方向
[0166] 21 距离
[0167] 22 凹槽
[0168] 23 支撑装置，背撑
[0169] 24 作用面
[0170] 25 工具，电极
[0171] 26 凸起部
[0172] 27 凹处
[0173] 28 运动方向，旋转方向
[0174] 29 横向
[0175] B B 轴
[0176] d 直径
[0177] e 最小延伸段
[0178] E 最大延伸段
[0179] t 深度
[0180] h 高度
图 2a
图 2b