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(57) ABSTRACT 
The present invention provides permutation instructions 
which can be used in Software executed in a programmable 
processor for Solving permutation problems in cryptography, 
multimedia and other applications. The permute instructions 
are based on a Benes network comprising two butterfly 
networks of the same size connected back-to-back. Inter 
mediate Sequences of bits are defined that an initial Sequence 
of bits from a Source register are transformed into. Each 
intermediate Sequence of bits is used as input to a Subsequent 
permutation instruction. Permutation instructions are deter 
mined for permitting the initial Source Sequence of bits into 
one or more intermediate Sequence of bits until a desired 
Sequence is obtained. The intermediate Sequences of bits are 
determined by configuration bits. The permutation instruc 
tions form a permutation instruction Sequence of at least one 
instruction. At most 21gr/m permutation instructions are 
used in the permutation instruction Sequence, where r is the 
number of k-bit subwords to be permuted, and m is the 
number of network Stages executed in one instruction. The 
permutation instructions can be used to permute k-bit Sub 
words packed into an n-bit word, where k can be 1, 2, ..., 
or n bits, and kr=n. 
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METHOD AND SYSTEM FOR PERFORMING 
PERMUTATIONS USING PERMUTATION 
INSTRUCTIONS BASED ON BUTTERFLY 

NETWORKS 

BACKGROUND OF THE INVENTION 

0001) 1. Field of the Invention 
0002 The present invention relates to a method and 
System for performing arbitrary permutations of a Sequence 
of bits in a programmable processor by determining a 
permutation instruction based on butterfly networkS. 
0003 2. Description of the Related Art 
0004. The need for secure information processing has 
increased with the increasing use of the public internet and 
wireleSS communications in e-commerce, e-busineSS and 
personal use. Typical use of the internet is not Secure. Secure 
information processing typically includes authentication of 
users and host machines, confidentiality of messages Sent 
over public networks, and assurances that messages, pro 
grams and data have not been maliciously changed. Con 
ventional Solutions have provided Security functions by 
using different Security protocols employing different cryp 
tographic algorithms, Such as public key, Symmetric key and 
hash algorithms. 
0005 For encrypting large amounts of data, symmetric 
key cryptography algorithms have been used, See Bruce 
Schneier, “Applied Cryptography', 2nd Ed., John Wiley & 
Sons, Inc., 1996. These algorithms use the same secret key 
to encrypt and decrypt a given message, and encryption and 
decryption have the same computational complexity. In 
Symmetric key algorithms, the cryptographic techniques of 
“confusion” and “diffusion” are synergistically employed. 
“Confusion” obscures the relationship between the plaintext 
(original message) and the ciphertext (encrypted message), 
for example, through substitution of arbitrary bits for bits in 
the plaintext. “Diffusion” spreads the redundancy of the 
plaintext over the ciphertext, for example through permuta 
tion of the bits of the plaintext block. Such bit-level permu 
tations have the drawback of being slow when implemented 
with conventional instructions available in microprocessors 
and other programmable processors. 

0006 Bit-level permutations are particularly difficult for 
processors, and have been avoided in the design of new 
cryptography algorithms, where it is desired to have fast 
Software implementations, for example in the Advanced 
Encryption Standard, as described in NIST, “Announcing 
Request for Candidate Algorithm Nominations for the 
Advanced Encryption Standard (AES)”, http://csrc.nist.gov/ 
encryption/aes/pre-round 1/aes 9709.htm, Since conven 
tional microprocessors are word-oriented, performing bit 
level permutations is difficult and tedious. Every bit has to 
be extracted from the Source register, moved to its new 
location in the destination register, and combined with the 
bits that have already been moved. This requires 4 instruc 
tions per bit (mask generation, AND, SHIFT, OR), and 4n 
instructions to perform an arbitrary permutation of n bits. 
Conventional microprocessors, for example Precision 
Architecture (PA-RISC) have been described to provide 
more powerful bit-manipulation capabilities using 
EXTRACT and DEPOSIT instructions, which can essen 
tially perform the four operations required for each bit in 2 

Feb. 23, 2006 

instructions (EXTRACT, DEPOSIT), resulting in 2n 
instructions for any arbitrary permutation of n bits, see Ruby 
Lee, “Precision Architecture”, IEEE Computer, Vol. 22, No. 
1, pp. 78-91, January 1989. Accordingly, an arbitrary 64-bit 
permutation could take 128 or 256 instructions on this type 
of conventional microprocessor. Pre-defined permutations 
with Some regular patterns have been implemented in fewer 
instructions, for example, the permutations in DES, as 
described in Bruce Schneier, “ Applied Cryptography', 2nd 
Ed., John Wiley & Sons, Inc., 1996. 
0007 Conventional techniques have also used table 
lookup methods to implement fixed permutations. To 
achieve a fixed permutation of n input bits with one table 
lookup, a table with 2" entries is used with each entry being 
in bits. For a 64-bit permutation, this type of table lookup 
would use 2 bytes, which is clearly infeasible. Alterna 
tively, the table can be broken up into Smaller tables, and 
Several table lookup operations could be used. For example, 
a 64-bit permutation could be implemented by permuting 8 
consecutive bits at a time, then combining these 8 interme 
diate permutations into a final permutation. This method 
requires 8 tables, each with 256 entries, each entry being 64 
bits. Each entry has ZeroS in all positions, except the 8 bit 
positions to which the Selected 8 bits in the Source are 
permuted. After the eight table lookups done by 8 LOAD 
instructions, the results are combined with 7 OR instructions 
to get the final permutation. In addition, 8 instructions are 
needed to extract the index for the LOAD instruction, for a 
total of 23 instructions. The memory requirement is 
8*256*8=16 kilobytes for eight tables. Although 23 instruc 
tions is less than the 128 or 256 instructions used in the 
previous method, the actual execution time can be much 
longer due to cache miss penalties or memory access laten 
cies. For example, if half of the 8 Load instructions miss in 
the cache, and each cache miss takes 50 cycles to fetch the 
missing cache line from main memory, the actual execution 
time is more than 450=200 cycles. Accordingly, this 
method can be longer than the previously described 128 
cycles using EXTRACT and DEPOSIT. This method also 
has the drawback of a memory requirement of 16 kilobytes 
for the tables. 

0008 Permutations are a requirement for fast processing 
of digital multimedia information, using Subword-parallel 
instructions, more commonly known as multimedia instruc 
tions, as described in Ruby Lee, "Accelerating Multimedia 
with Enhanced Micro-processors”, IEEE Micro, Vol. 15, No. 
2, pp. 22-32, April 1995, and Ruby Lee, “Subword Paral 
lelism in MAX-2", IEEE Micro, Vol. 16, No. 4, pp. 51-59, 
August 1996. Microprocessor Instruction Set Architecture 
(ISA) uses these subword parallel instructions for fast mul 
timedia information processing. With Subwords packed into 
64-bit words, it is often necessary to rearrange the Subwords 
within the word. However, such subword permutation 
instructions are not provided by many of the conventional 
multimedia ISA extensions. 

0009. A few microprocessor architectures have subword 
rearrangement instructions. MIX and PERMUTE instruc 
tions have been implemented in the MAX-2 extension to 
Precision Architecture RISC (PA-RISC) processor, see Ruby 
Lee, “Subword Parallelism in MAX-2, IEEE Micro, Vol. 
16, No. 4, pp. 51-59, August 1996. The MAX-2 general 
purpose PERMUTE instruction can do any permutation, 
with and without repetitions, of the Subwords packed in a 
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register. However, it is only defined for 16-bit subwords. 
MIX and MUX instructions have been implemented in the 
IA-64 architectures, which are extensions to the MIX and 
PERMUTE instructions of MAX-2, see Intel Corporation, 
“IA-64 Application Developers Architecture Guide”, Intel 
Corporation, May 1999. The IA-64 uses MUX instruction, 
which is a fully general permute instruction for 16-bit 
subwords, with five new permute byte variants. A VPERM 
instruction has been used in an AltiVec extension to the 
Power PCTM available from IBM Corporation, Armonk, 
N.Y., see Motorola Corporation, “AltiVec Extensions to 
PowerPC Instruction Set Architecture Specification”, 
Motorola Corporation, May 1998. The Altivec VPERM 
instruction extends the general permutation capabilities of 
MAX-2S PERMUTE instruction to 8-bit Subwords Selected 
from two 128-bit Source registers, into a Single 128-bit 
destination register. Since there are 32 Such Subwords from 
which 16 are selected, this requires 16*1g32=80 bits for 
specifying the desired permutation. This means that VPERM 
has to use another 128-bit register to hold the permutation 
control bits, making it a very expensive instruction with 
three Source registers and one destination register, all 128 
bits wide. 

0010. It is desirable to provide significantly faster and 
more economical ways to perform arbitrary permutations of 
in bits, without any need for table Storage, which can be used 
for encrypting large amounts of data for confidentiality or 
privacy. 

SUMMARY OF THE INVENTION 

0.011 The present invention provides permutation 
instructions which can be used in Software executed in a 
programmable processor for Solving permutation problems 
in both cryptography and multimedia. For fast cryptography, 
bit-level permutations are used, whereas for multimedia, 
permutations on Subwords of typically 8 bits or 16 bits are 
used. Permutation instructions of the present invention can 
be used to provide any arbitrary permutation of Sixty-four 
1-bit Subwords in a 64-bit processor, i.e., a processor with 
64-bit words, registers and datapaths, for use in fast cryp 
tography. The permutation instructions of the present inven 
tion can also be used for permuting Subwords greater than 1 
bit in size, for use in fast multimedia processing. For 
example, in addition to being able to permute Sixty-four 
1-bit Subwords in a register, the permutation instructions and 
underlying functional unit can permute thirty-two 2-bit 
subwords, sixteen 4-bit subwords, eight 8-bit subwords, four 
16-bit subwords, or two 32-bit subwords. The permutation 
instructions of the present invention can be added as new 
instructions to the Instruction Set Architecture of a conven 
tional microprocessor, or they can be used in the design of 
new processors or coprocessors to be efficient for both 
cryptography and multimedia Software. 
0012. The method for performing permutations is by 
constructing a Benes interconnection network. This is done 
by executing a certain number of Stages of the Benes 
network with permute instructions. The permute instructions 
are performed by a circuit comprising Benes network Stages. 
Intermediate Sequences of bits are defined that an initial 
Sequence of bits from a Source register are transformed into. 
Each intermediate Sequence of bits is used as input to a 
Subsequent permutation instruction. Permutation instruc 
tions are determined for permuting the initial Source 
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Sequence of bits into one or more intermediate Sequence of 
bits until a desired Sequence is obtained. The intermediate 
Sequences of bits are determined by configuration bits. The 
permutation instructions form a permutation instruction 
Sequence. At most 19n permutation instructions are used in 
the permutation instruction Sequence. 

0013 In an embodiment of the present invention, multibit 
Subwords are permuted by eliminating pass-throughs in the 
Benes network. In a further embodiment of the invention, 
the method and System are Scaled for performing permuta 
tions of 2n bits in which subwords are packed into two or 
more registers. In this embodiment, at most 41gn+2 instruc 
tions are used to permute 2n bits using n-bit words. 
0014 For a better understanding of the present invention, 
reference may be made to the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0015 FIG. 1 is a schematic diagram of a system for 
implementing permutation instructions in accordance with 
an embodiment of the present invention. 
0016 FIG. 2 is a flow diagram of a method for deter 
mining permutation instruction Sequence to achieve a 
desired permutation in accordance with an embodiment of 
the present invention. 
0017 FIG. 3A is a schematic diagram of an 8-input 
Benes network. 

0018 FIG. 3B is a schematic diagram of an implemen 
tation of a CROSS instruction in accordance with an 
embodiment of the present invention. 
0019 FIG. 3C is a schematic diagram of a layout of a 
CROSS instruction in accordance with an embodiment of 
the present invention. 
0020 FIG. 4A is a flow diagram of a method for imple 
menting a CROSS instruction Sequence to do an arbitrary 
permutation. 

0021 FIG. 4B is a schematic diagram for obtaining 
configuration bits for an 8-input Benes network based on 
hierarchical partitioning into Subnets. 

0022 FIG. 5 is a schematic diagram of a Benes network 
configured for a given permutation. 

0023 FIG. 6 is a flow diagram of a method for permu 
tations of multi-bit Subwords in accordance with an embodi 
ment of the present invention. 
0024 FIG. 7A is a schematic diagram of a Benes net 
work configured for a multi-bit permutation including pass 
through Stages. 

0025 FIG. 7B is a schematic diagram of the Benes 
network of FIG. 7A after elimination of pass through stages. 
0026 FIG. 8A is a flow diagram of a method for 2n-bit 
permutations in accordance with an embodiment of the 
present invention. 
0027 FIG. 8B is a schematic diagram of an implemen 
tation of the method shown in FIG. 8A. 

0028 FIG. 9A is a schematic diagram of a circuit imple 
mentation of CROSS instructions for an individual node. 
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0029 FIG.9B is a schematic diagram of a circuit imple 
mentation of CROSS instructions for an 8-bit implementa 
tion. 

0030 FIG. 10A is a high-level schematic diagram of a 
circuit implementation for CROSS instructions in accor 
dance with an embodiment of the present invention. 
0031 FIG. 10B is a high-level schematic diagram of a 
circuit implementation for CROSS instructions in accor 
dance with an alternate embodiment of the present inven 
tion. 

0.032 FIG. 11 is a schematic diagram of a circuit imple 
mentation of an 8x8 crossbar for comparison with the circuit 
implementation of OMFLIP instructions. 
0.033 FIG. 12A is a schematic diagram of a system for 
implementing permutation instructions in accordance with 
an alternate embodiment of the present invention. 
0034 FIG. 12B is a schematic diagram of a system for 
implementing permutation instructions in accordance with 
another alternate embodiment of the present invention. 

DETAILED DESCRIPTION 

0.035 Reference will now be made in greater detail to a 
preferred embodiment of the invention, an example of which 
is illustrated in the accompanying drawings. Wherever poS 
Sible, the same reference numerals will be used throughout 
the drawings and the description to refer to the same or like 
parts. 

0.036 FIG. 1 illustrates a schematic diagram of a system 
for implementing efficient permutation instructions 10 in 
accordance with the teachings of the present invention. 
Register file 12 includes Source register 11a, Source register 
11b and destination register 11c. System 10 can provide 
bit-level permutations of all n bits of any register in register 
file 12. The same solution can be applied to different 
subword sizes of 2 bits, for i=0,1,2,..., m, where n=2" 
bits. For a fixed word size of n bits, and 1-bit Subwords, there 
are n Subwords to be permuted. Source register values to be 
permuted 13 from Source register 11a and configuration bits 
15 from Source register 11b are applied over datapaths to 
permutation functional unit 14. Source register values to be 
permuted 13 can be a sequence of bits or a Sequence of 
Subwords. Permutation functional unit 14 generates permu 
tation result 16. Permutation result 16 can be an intermediate 
result if additional permutations are performed by permu 
tation functional unit 14. For other instructions, arithmetic 
logic unit (ALU) 17 and shifter 18 receive source register 
values 13 from Source register 11a and Source register values 
15 from Source register 11b and generate a respective ALU 
result 20 and a shifter result 21 over a data path to destina 
tion register 11c. System 10 can be implemented in any 
programmable processor, for example, a conventional 
microprocessor, digital signal processor (DSP), crypto 
graphic processor, multimedia processor and can be used in 
developing processors or coprocessors for providing cryp 
tography and multimedia operations. 
0037 FIG. 2 is a flow diagram of a method of determin 
ing permutation instruction Sequences for permutations 22. 
The determined permutation instruction Sequences can be 
performed in permutation functional unit 14. In block 23, 
intermediate States are defined that an initial Sequence of bits 
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from a Source register are to be transformed into. The final 
State is the desired permutation of the initial Sequence of 
bits. In block 24, control configuration bits are defined for 
transforming the initial Sequence into the first intermediate 
State and Subsequent intermediate States until transformation 
into the final State. 

0038 A Benes network can be used to perform permu 
tations of n bits with edge-disjoint paths using intermediate 
States. The Benes network can be formed by connecting two 
butterfly networks of the same size back-to-back. An 
example of an 8-input Benes network is shown in FIG. 3A. 

0039. An n-input Benes network can be broken into 21gn 
Stages, 1gn of them are distinct. The number of node in each 
Stage is n. A node is defined as a point in the network where 
the path Selection for an input takes place. In each Stage of 
a butterfly network, for every input, there is another input 
that shares the same two outputs with it. Such pairs of inputs 
can be referred to as “conflict inputs” and their correspond 
ing outputs can be referred to as “conflict outputs'. The 
distances between conflict pairs in one Stage of the Benes 
network are the same. The distances between conflict pairs 
are different in different Stages. 
0040. In the implementation of method 22 in a Benes 
network, basic operations are defined corresponding to one 
Stage of the butterfly network. One basic operation is that 
done by one Stage of a butterfly network. A basic operation 
is specified by a parameter m, where 2" is the distance 
between conflict pairs for the corresponding Stage. A basic 
operation uses n/2 configuration bits to Set up the connec 
tions in the corresponding Stage and move the n input bits to 
the output. Accordingly, for permuting the contents in an 
n-bit register, the n configuration bits for two basic opera 
tions can be packed into one configuration register for 
allowing two basic operations to be packed into a single 
instruction. Since an n-input Benes network has 1gn distinct 
Stages, there are 1gn different basic operations. Bits from the 
Source register are moved to the result register based on the 
configuration bits. In an embodiment of the present inven 
tion, if the configuration bit for a pair of conflict inputs is 0, 
the bits from the two conflict inputs go through non-crossing 
paths to the outputs. If the configuration bit for a pair of 
conflict inputS is 1, the bits from the two conflict inputs go 
through crossing paths to the outputs. 

0041. In a preferred embodiment of the invention, the 
instruction format for the permutation instruction can be 
defined as: 

0042 wherein m1 and m2 are the parameters that specify 
the two basic operations to be used, R1 is a reference to a 
Source register which contains the Subwords to be permuted, 
R2 is a reference to a configuration register that holds the 
configuration bits for the two basic operations and R3 is a 
reference to a destination register where the permuted Sub 
words are placed. R1, R2 and R3 refer to any registers R, 
RandR where i,j and k can be all different or two or more 
of i,j and k can be the Same. Alternately, R can be omitted 
and the permuted Subwords are placed in register R. A 
CROSS instruction performs two basic operations on the 
Source according to the contents of the configuration register 
and the values of m1 and m2. The first basic operation can 
be determined by the value of m1. The first basic operation 
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moves the bits in source register R1 based on the left half of 
the configuration bits held in the configuration in register R2 
to an intermediate result. The Second basic operation can be 
determined by the value of m2. The second basic operation 
moves the bits in the intermediate result according to the 
right half of the configuration bits in the register R2 to the 
destination register R3. Pseudo code for the CROSS instruc 
tion is shown in Table 1. 

TABLE 1. 

CROSS, m1, m2 R3 = R1; 
R1, R2, R3 j = 0; 

dist = 1 << ml; 

The CROSS instruction can be added to the Instruction Set 
Architecture of conventional microprocessors, digital signal 
processor (DSP), cryptographic processor, multimedia pro 
ceSSor, media processors, programmable System-on-a-Chips 
(SOC), and can be used in developing processors or copro 
ceSSors for providing cryptography and multimedia opera 
tion. In particular, the CROSS instruction can permute 
sixty-four 1-bit subwords in a 64-bit processor for use in, for 
example,encryption and decryption processing using Soft 
ware. The CROSS instruction can also permute multi-bit 
subwords as described below, for example, thirty-two 2-bit 
subwords, sixteen 4-bit subwords, eight 8-bit subwords, four 
16-bit subwords or two 32-bit subwords in a 64-bit proces 
Sor for use for example in multimedia processing. 
0.043 FIG. 3B illustrates an example of operation of a 
CROSS instruction. The source sequence of bits consists of 
8 bits: bit a, bit b, bit c, bit d, bit e, bit f and bit h. The 
CROSS instruction is CROSS, 2, 1, R1, R2, R3 wherein the 
Source Sequence of bits in register R1 is referred to by 
abcdefgh, the control bits of R2 are 10011010 and the 
destination Sequence of bits received in register R3 is 
cbehgfad. Each of bit positions 30a-30h in source register 
R1 acts as an input node to this Benes network: node 30a 
receives bit a, node 30b receives bit b, node 30c receives bit 
c, node 30d receives bit d, node 30e receives bite, node 30f 
receives bit f, node 30g receives bit g and node 30h receives 
bit h. 

0044) Each node 30a-30h has two outputs 31a and 31b. 
Outputs 31a and 31b for each of nodes 30a-30h are config 
ured Such that the distance between conflict pairs is 4 as 
specified by m1 =2. Outputs 31a and 31b for each of nodes 
30a-30h are each directed to one node in set of nodes 
32a-32h. For example, output 31a of node 30a is directed to 
node 32a and output 31b of node 30a is directed to node 32e. 
Output 31a of node 30e is directed to node 32a and output 
31b of node 30e is directed to node 32e. Accordingly, node 
30a and node 30e are conflict inputs and respective nodes 
32a and 32e receive conflict outputs. Similarly, node 30b 
and node 30f are conflict inputs and respective nodes 32b 
and 32f receive conflict outputs. Node 30c and node 30g are 
conflict inputs and respective nodes 32c and 32g receive 

Feb. 23, 2006 

conflict outputs. Node 30d and 30h are conflict inputs and 
respective nodes 32d and 32h receive conflict outputs. 

0045 Left half of configuration bits R2 are applied to 
each pair of conflict outputs and are represented in the first 
node of each pair of conflict outputs. Accordingly, configu 
ration bit 34a is applied to nodes 32a and 32e, configuration 
bit 34b is applied to nodes 32b and 32f, configuration bit 34c 
is applied to nodes 32c and 32g and configuration bit 34d is 
applied to nodes 32d and 32h. 

0046. During the first basic operation, node 30a and node 
30e have crossing paths to nodes 32a and 32e since the 
configuration bit 34a is 1. Node 30b and node 30f have 
non-crossing paths to nodes 32b and 32f since configuration 
bit 34b is 0. Node 30c and node 30g have non-crossing paths 
to nodes 32c and 32g since configuration bit 34c is 0. Node 
30d and node 30h have crossing paths to nodes 32d and 32h 
since configuration bit 34d is 1. After the first basic opera 
tion, the intermediate Sequence of bits is ebchafgd. 

0047. Each of nodes 32a-32h has two outputs 35a and 
35b. Outputs 35a and 35b for each of nodes 32a-32h are 
configured Such that the difference between conflict pairs is 
2 as specified by m2=1. Outputs 35a and 35b are each 
directed to one node in set of nodes 36a-36.h. For example, 
output 35a of node 32a is directed to node 36a and output 
35b of node 32a is directed to node 36c. Similarly, output 
35a of node 32c is directed to node 36a and output 32b of 
node 32c is directed to node 36c. Accordingly, node 32a and 
node 32c receive conflict inputs and respective nodes 36a 
and 36c receive conflict outputs. Conflict outputs are also 
received at the respective pairs of node 36b and 36d, nodes 
36e and 36g, nodes 36f and 36h. Right half of configuration 
bits of R2 are applied to each pair of conflict outputs. 
Accordingly, configuration bit 34e is applied to nodes 36a 
and 36c, configuration bit 34f is applied to nodes 36b and 
36d, configuration bit 34g is applied to nodes 36e and 36g 
and configuration bit 34h is applied to node 36f and 36.h. 

0048. During the second basic operation, node 32a and 
32c have crossing paths to nodes 36a and 36c Since con 
figuration bit 34e is 1. Node 32b and 32d have non-crossing 
paths to nodes 36b and 36d since configuration bit 34f is 0. 
Node 32e and node 32g have crossing paths to nodes 36e 
and 36g since configuration bit 34g is 1. Node 32f and node 
32h have crossing paths to node 36f and node 36th since 
configuration bit 34h is 1. After the Second operation, the 
result Sequence of bits is cbehgfad. 

0049 FIG. 3C shows a one embodiment of the encoding 
of the CROSS instruction 39 for use in a programmable 
processor. The instruction may also contain other fields. AS 
will be understood by persons of ordinary skill in the art, 
relative locations of the fields in an instruction is arbitrary 
and may be varied without violating the Spirit of the inven 
tion. 

0050 Amethod for implementing CROSS instructions to 
do arbitrary permutations is shown in FIG. 4A. In block 51, 
a Benes network configuration is determined for the desired 
permutation. A Benes network can be configured as 
described in X. Yang, M. Vachharajani and R. B. Lee, “Fast 
Subword Permutation Instructions Based on Butterfly Net 
works”, Proceedings of SPIE, Media Processor 2000, pp. 
80-86, January 2000, herein incorporated by reference. FIG. 
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4B illustrates the following Steps for configuring a Benes 
network: 

0051 1. “Inputs” and “outputs” refer to the inputs and 
outputs of current Benes network. Starting from the first 
input that is not configured, referred to as "current input, Set 
the “end input' to be the conflict input of the “current input'. 
If all "inputs have already been configured, go to Step 4. 

0.052 2a. Connect “current input' to the sub-network 
“sub1" that is on the same side as “current input'. Connect 
the output that has the same value as “current input', to Sub1 
and call it “output (current input)". Set “current output” to 
the conflict output of "output (current input)' and go to Step 
3. 

0053 2b. Connect “current input” to the sub-network 
“sub1” such that “sub1 is not “sub2”. Connect the output 
that has the same value as "current input', to Sub1 and call 
it "output (current input)". Set “current output' to the 
conflict output of "output (current input). 
0054) 3. Connect “current output” to sub-network “sub2” 
such that “sub2 is not “sub 1'. Also connect the input that 
has the same value as “current output, call it "input (current 
output)", to “sub2”. If “input (current output)" is the same as 
“end input', go back to Step 1. Otherwise set “current input' 
to the conflict input of "input (current output)' and go to 
Step 2b. 

0.055 4. At this point, all the “inputs” and “outputs” have 
been connected to the two Sub-networks. If the configuration 
of the two Sub-networks is trivial, i.e. n=2, the configuration 
is done. Otherwise for each Sub-network, treat it as a full 
Benes network and repeat the Steps beginning at Step 1. 

0056 FIG. 4B illustrates the above steps for permutation 
(a- - - h) to (h- - - a- - ), where "-" means do-not-care. 
Starting from an unconfigured Benes network 150, the first 
input that is not configured is node 151, which contains 
value a. We mark node 151 as “current input' and its conflict 
input, node 152 as “end input'. We then connect node 151 
to the Subnet 156 that is on the same side as node 151. The 
output that has the value a is node 153, we mark it as “output 
(current input)". We connect node 153 to subnet 156, which 
is the same Subnet as node 151 is connected to. The conflict 
output of node 153 is node 154, which contains value h. We 
refer to node 154 as “current output'. Node 154 is connected 
to subnet 157 that is not 156. The input that contains value 
h is node 155, we mark it as “input (current output)' and 
connect it to Subnet 157 as well. Since node 155 is different 
from “end input', or node 152. We set “current input' to the 
conflict input of node 155, which is node 158, and repeat the 
above Steps. This process terminates when all the inputs and 
outputs of Benes network 150 are configured. Thereafter, for 
each of Subnets 156 and 157, we treat it as a full Benes 
network and apply the whole process on it until the whole 
Benes network 150 is configured. 

0057. In block 53 of FIG. 4A, the configured Benes 
network is broken into pairs of stages. In block 54, a CROSS 
instruction is assigned for each pair of Stages. The first 
CROSS instruction takes the original input. Thereafter, each 
CROSS instruction uses the output from the last CROSS 
instruction as input and produces input for the next CROSS 
instruction. The last CROSS instruction generates the final 
permutation. Accordingly, Since there are 21gn Stages in an 
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n-input Benes network, all possible permutations can be 
performed for Subwords in an n-bit register using 1gn 
CROSS instructions. 

0058 For example, a Benes network configured for the 
permutation (abcdefgh)->(fabcedhg) is shown in FIG. 5. 
Configuration bits are determined for each node. These 
configuration bits are the contents of the configuration 
registers R2, R3 and R4. The configuration bits are read 
from left to right through nodes from left to right. The Benes 
network is broken into stages 55a-55c, by performing block 
53. Performing block 54, the CROSS instruction CROSS2, 
1R1, R2, R1 is assigned to stage 55a with the configuration 
bits of R2-01010001. CROSS instruction CROSS 0, 0 R1, 
R3, R1 is assigned to stage 55b with the configuration bits 
of R3=00001101. CROSS instruction CROSS 1, 2, R1, R4, 
R1 is assigned to stage 55c with the configuration bits of 
R4=OOOOOO10. 

0059 A schematic diagram of a method for permuting 
multi-bit Subwords 60 is shown in FIG. 6 in which each 
Subword contains more than one bit. Multi-bit Subwords can 
be represented as k-bit subword permutation. Block 61 is 
identical to block 51 in FIG. 4A. In block 62, a determina 
tion is made for eliminating pass through Stages. For many 
permutations, Some Stages of the Benes network can be 
configured as pass-throughs. This is true even for Some 
permutations that are not Subword permutations. Because 
the bypassing connections only Serve to copy the inputs to 
the outputs, these stages can be removed before the assign 
ment of the CROSS instructions. For example if 2k stages 
are removed, there will be k fewer instructions. An example 
of an implementation of method 60 is shown in FIGS. 7A 
and 7B. FIG. 7A illustrates the configuration of an 8 input 
Benes network for a 2-bit permutation of 
(a1a2b, baccadid) (c. cabbad d2a1a2) in which the 
middle 2 Stages of the Benes network copy the input bits to 
their output without any change of order as determined from 
block 62. The middle stages are eliminated from the con 
figured Benes network as shown in FIG. 7B. In block 63, the 
instructions are assigned to the remaining Stages without 
affecting the result. In general, when permuting k-bit Sub 
word in an n-bit word, the middle 21gk Stages of the Benes 
network are configured as pass-throughs. Some other Stages 
may be configured as pass-throughs and thus can be 
removed as well. Accordingly, when permuting k-bit Sub 
words in an n-bit word, the maximum number of instructions 
needed becomes 1gn-1gk=1g(n/k)=1gr, where r is the num 
ber of Subwords in a word. 

0060. The CROSS instruction can be used to permute 
Subwords packed into more than one register. If a register is 
in bits, two registers are 2n bits. The CROSS instructions can 
be used for 2n-bit permutations by using an instruction Such 
as the SHIFT PAIR instruction in PA-RISC, as described in 
Ruby Lee, “Precision Architecture”, IEEE Computer, Vol. 
22, No. 1, pp. 78-91, January 1989, and Ruby Lee, Michael 
Mahon, Dale Morris, “Pathlength Reduction Features in the 
PA-RISC Architecture', Proceedings of IEEE CompCon, pp. 
129-135, Feb. 24-28, 1992, San Francisco, Calif., hereby 
incorporated by reference into this application. The SHIFT 
PAIR instruction can process operands that croSS word 
boundaries. This instruction concatenates two Source regis 
ters to form a double-word value, then extracts any contigu 
ous single-word value. FIGS. 8A and 8B illustrate an 
example of performing 2n-bit permutations using SHIFT 
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PAIR and CROSS instructions. In this example, source 
registers R1 and R2 store the bits to be permuted and the 
results are put in destination register referred to by R3 or R4. 

0061. In block 70, the bits of the source registers R1 and 
R2 are divided into two groups using two CROSS instruc 
tion sequences. One CROSS instruction sequence is for R1 
and one CROSS instruction sequence is for R2. For 
example, for R1, the bits going to register R3 are put into a 
left group and the bits going to R4 into the right group. In 
R2 the bits going to register R4 are put into a left group, and 
the bits going to register R3 are put into a right group. After 
performing block 70, register R1 is divided into left group 
75a and right group 75b as shown in FIG. 8B. Register R2 
is divided into left group 77a and right group 77b. 

0062). In block 71, using two SHIFT PAIR instructions, 
all bits going to register R3 are put into R3 and all bits going 
to register R4 are put into R4. After the implementation of 
block 71, register R3 includes the bits of left group 75a and 
right group 77b and register R4 includes the bits of right 
group 75b and left group 77a. In block 72, considering R3 
and R4 as Separate n-bit words, n-bit permutations are 
performed on register R3 and register R4. Each of R3 and R4 
can use up to 19n instructions. In total, excluding the 
instructions needed for loading control bits, 41gn+2 instruc 
tions are needed to do a 2n-bit permutation. Accordingly, 
with 64-bit registers, a 128-bit permutation can be per 
formed with 26 instructions. 

0063 FIGS. 9A and 9B illustrate schematic diagrams of 
a circuit implementation for CROSS instruction correspond 
ing to the high level diagram of 100 as shown in FIG. 10A, 
for an individual node 80 and 8-bit implementation 90. The 
CROSS instruction can be implemented by implementing at 
the circuit level a Benes network. An n-input Benes network 
has 2n 1gn Switch points. When executing a CROSS, m1, m2 
R1, R2, R3 instruction, the control logic selects the two 
Stages for the two basic operations based on the value of m1 
and m2. Because the Benes network has two of each 
butterfly Stage, Stages can always be Selected for all possible 
m1 and m2. The left and right half of R2 are used to 
configure the two stages Selected and all the other Stages are 
configured as pass-throughs. The Source R1 is put through 
the configured network, and the result R3 is obtained. The 
method of the present invention can do arbitrary bit permu 
tations of a 64-bit word with a maximum of 1g64=6 CROSS 
instructions. For 2-bit subwords, at most 1g(64/2)=5 instruc 
tions are needed and for 4-bit subwords, at most 1g(64/4)=4 
instructions are needed. 

0064 FIG. 10A illustrates one embodiment of a high 
level schematic diagram of a circuit implementation 100 for 
CROSS instructions for an 8 bit system. The circuit imple 
mentation implements the entire Benes network. When 
executing a CROSS instruction, the control logic Selects the 
proper two stages for the two basic operations based on the 
parameters m1 and m2. Thereafter, the CROSS instruction 
configures the two Selected Stages according to the left half 
and right half of the configuration register R2. The Stages 
that are not used are configured as pass-throughs. FIG. 10B 
illustrates another embodiment of a high-level Schematic 
diagram of a circuit implementation 110 for CROSS instruc 
tions. The circuit implementation implements two identical 
Stages. Each Stage comprises all the connections of all the 
stages of a butterfly network. When executing a CROSS 
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instruction, the control logic Selects the proper two sets of 
connections for the two basic operations based on the 
parameters m1 and m2. Thereafter, the CROSS instruction 
configures the two Selected Sets of connections according to 
the left half and right half of the configuration register R2. 
0065. In another embodiment of the invention, two or 
more different butterfly Stages are combined in one Stage of 
the implementation. 
0066 FIG. 12A illustrates an alternate embodiment of 
the invention, in which a single permute instruction can 
perform more than two Benes stages. In system 100 register 
file 112 includes three read ports, 111a, 111b, 111C. Two 
registers 111b and 111C can be used to Send configuration 
bits 115 and 122 to permutation unit 114. Accordingly, 
system 100 allows four Benes stages to be performed in one 
permute instruction. This allows any arbitrary permutation 
of n bits to be performed in an instruction Sequence of 
(21gn)/4, or 1gn/2 instructions. AS is understood by one of 
ordinary skill in the art, this can be extended to Sending more 
configuration bits with each permute instruction, thus per 
forming more Benes Stages per instruction, and reducing the 
number of instructions in the instruction Sequence needed 
for any arbitrary permutation of n bits. The minimum 
number of instructions needed in one instruction is achieved 
by Sending 1gn registers with configuration bits with the one 
register of n bits to be permuted in the permute instruction. 
Accordingly, this allows any arbitrary permutation of n bits 
to be performed in an instruction Sequence of 21gn/m 
instructions where m is the number of network Stages 
performed by one permutation instruction. 
0067 FIG. 12B illustrates an alternate embodiment of 
the invention, in which the permutation result can be tem 
porarily Stored in permutation functional unit 214. In System 
200, bits of intermediate permutation result 216 are stored in 
memory location 222 of permutation functional unit 214 
after the generation of intermediate permutation result 216. 
In a Subsequent execution of a permutation instruction, the 
Source bits can be used from memory location 222 instead 
of being fetched from register file 212. During the Subse 
quent execution, both of Source registers 2.11a and 2.11b are 
used for configuration bits in a permutation instruction. 
Accordingly, the desired permutation can be performed in 
fewer instructions. 

0068. In an alternate embodiment of using system 200 all 
of the n1gn configuration bits are Stored in the memory 222, 
rather than read from the register 211b (or from the registers 
111b and 111d in FIG. 12A). The n-bit value 213 to be 
permuted is read from register 211a and Sent to the permu 
tation functional unit 214. This embodiment is useful if the 
Same n-bit permutation is repeated many times for different 
n-bit values. The Sequence of permutation instructions 
needed to perform this n-bit permutation is reduced to one 
instruction. 

0069. In an alternate embodiment using system 200 of 
FIG. 12B, only (n-1)1gn configuration bits are stored in 
memory 222. This allows a small Subset of n-bit permuta 
tions to be performed in one instruction, by reading in 
configuration bits 215 from register 211b and sending this 
with the n-bit value 213 from register 211a to permutation 
unit 214. 

0070 The CROSS instruction, in any of the above 
described embodiments, can be used by itself, rather than in 
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a sequence of instructions. The CROSS instruction gener 
ates a Subset of all possible permutations. 
0.071) A permutation performed by a single CROSS 
instruction can be reversed by reversing the order of the 
stages used in the CROSS instruction with the configuration 
bits for each Stage being the same as for the original 
permutation. For example, the permutation achieved by 
CROSS,2,1 R1, R2, R1, where R2=10000101 can be 
reversed by doing CROSS, 12 R1, R3, R1, where 
R3=01011000. 

0.072 Horizontal and vertical track counts and transistor 
counts have been calculated for a circuit implementation of 
CROSS instruction based on the Benes network of the 
present invention and are compared to a circuit implemen 
tation of a cross bar network for 8-bit and 64-bit permuta 
tions in Table 2. The numbers in Table 2 are computed as 
follows: 

0073 For the CROSS instruction implementation, the 
following relationships are used, 

Vertical Tracks=2n 

Horizontal Tracks = 21 gnx + 2 x (2n - 2) 

= n ign + 4n - 4 

0.074 Transistors=2n1gnxThe 2n horizontal tracks come 
from the 2 input lines in each node. The number of hori 
Zontal tracks is composed of two parts: n/2 configuration 
lines per Stage for the 21gn Stages, and the number of data 
tracks needed between adjacent stages, which is 2x(2n-2) in 
total. The 8n1gn transistors are from 4=8n1gn 4 transistors 
in each cell for 2n 1gn cells. 
0075 For implementation of an 8-input crossbar network 
as shown in FIG. 11, 

Vertical Tracks=n 

Horizontal Tracks=nx (1+1gn)=n--in1gn 

Ign 
1gn 

Transistors = n x (n + ( 21gn +2i) 

The vertical tracks consist of the n input data lines. The 
horizontal tracks consist of the n output data lines and the 
1gn configuration lines for each output data line. The 
number of transistors are for the AND gate and pass tran 
Sistor at each croSS point. An alternative implementation of 
crossbar is to provide a negated Signal for each control Signal 
so that no inverters before AND gates are needed. Then the 
horizontal track count becomes n+2n1gn and the transistor 
count becomes n(1+21gn). This implementation may yield 
a larger Size due to more vertical tracks used. 
0.076 From these equations, it is shown that when n is 
large, the CROSS instructions yield the smaller size. As 
shown in table 2, the CROSS circuit implementation yields 
much Smaller transistor count and reasonable track counts 
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for permutations of 64 bits. Accordingly, it yields more 
area-efficient implementation. Control logic circuits for gen 
erating the configuration signals, which are more complex 
for the crossbar than for CROSS, were not counted. 

TABLE 2 

Vertical Horizontal 
tracks tracks Transistors 

8-bit Benes 16 52 192 
permutations (cross) 16(data) 28(data) 

24(control) 
Crossbar 8 32 640 

8(data) 8(data) 
24(control) 

64-bit Benes 128 636 3072 
permutations (cross) 128(data) 252(data) 

384(control) 
Crossbar 64 448 >73728 

64(data) 64(data) 
384(control) 

0.077 Table 3 shows a comparison of the number of 
instructions needed for permutations of a 64-bit word with 
different subword sizes for method 10 using CROSS instruc 
tions and a method using conventional instruction Set archi 
tectures (ISAS). 

TABLE 3 

Subword Num of Max 
size in subwords in num of existing 
bits register CROSS ISAS 

1. 64 6 3Ob 
2 32 5 3Ob 
4 16 4 3Ob 
8 8 3 1cd 
16 4 2 1a 
32 2 1. 1a 

The maximum number here is 1 gn. 
Instruction counts using table lookup methods, actual cycle counts will be 
larger due to cache misses. 
Using subword permutation instructions. 
Only VPERM in AltiVec is able to do this in one instruction. 

0078. It is to be understood that the above-described 
embodiments are illustrative of only a few of the many 
possible specific embodiments which can represent applica 
tions of the principles of the invention. Numerous and varied 
other arrangements can be readily devised in accordance 
with these principles by those skilled in the art without 
departing from the Spirit and Scope of the invention. 

1-65. (canceled) 
66. A System of performing an arbitrary permutation of a 

Source Sequence of bits in a programmable processor com 
prising: 

means for defining an intermediate Sequence of bits that 
Said Source Sequence of bits is transformed into using 
butterfly network stages and inverse butterfly network 
Stages, 

means for determining a permutation instruction for trans 
forming Said Source Sequence of bits into one or more 
intermediate Sequence of bits until a desired Sequence 
of bits is obtained, 
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wherein each intermediate Sequence of bits is used as 
input to the Subsequent permutation instruction and the 
determined permutation instructions form a permuta 
tion instruction Sequence and configuration bits are 
used in Said permutation instruction for determining 
movement of Said Source Sequence of bits in Said 
Source register to Said intermediate Sequence of bits or 
movement of Said intermediate Sequence of bits into a 
destination register or a Source register, and 

means for Storing Said configuration bits and means for 
retrieving Said Stored configuration bits for use in Said 
permutation instruction. 

67. A System of performing an arbitrary permutation of a 
Source Sequence of bits in a programmable processor com 
prising: 

means for defining an intermediate Sequence of bits that 
Said Source Sequence of bits is transformed into using 
Benes network Stages and inverse butterfly network 
Stages, 

means for determining a permutation instruction for trans 
forming Said Source Sequence of bits into one or more 
intermediate Sequence of bits until a desired Sequence 
of bits is obtained, 

wherein each intermediate Sequence of bits is used as 
input to the Subsequent permutation instruction and the 
determined permutation instructions form a permuta 
tion instruction Sequence and configuration bits are 
used in Said permutation instruction for determining 
movement of Said Source Sequence of bits in Said 
Source register to Said intermediate Sequence of bits or 
movement of Said intermediate Sequence of bits into a 
destination register or a Source register, and 

means for Storing Said configuration bits and means for 
retrieving Said Stored configuration bits for use in Said 
permutation instruction. 

68. A method of performing an arbitrary permutation of a 
Source Sequence of bits in a programmable processor com 
prising the Steps of 

a. defining an intermediate Sequence of bits that Said 
Source Sequence of bitS is transformed into using one or 
more network Stages Selected from the group consisting 
of Benes network Stages, butterfly network Stages, and 
inverse network Stages, and 

Feb. 23, 2006 

b. determining one or more permutation instructions for 
transforming Said Source Sequence of bits into Said 
intermediate Sequence of bits, wherein configuration 
bits are used in Said one or more permutation instruc 
tions for determining movement of Said Source 
Sequence of bits in a Source register to Said intermediate 
Sequence of bits or movement of Said intermediate 
Sequence of bits into a destination register or a Second 
intermediate Sequence of bits. 

69. The method of claim 68 further comprising the steps 
of: 

repeating Steps a. and b. using Said determined interme 
diate Sequence of bits from Step b. as Said Source 
Sequence of bits in Step a.. until a desired Sequence of 
bits is obtained, the determined permutation instruc 
tions form a permutation instruction Sequence. 

70. The method of claim 69 wherein said one or more 
permutation instructions can perform more than two Said 
Benes Stages. 

71. The method of claim 68 further comprising the steps 
of: 

c. Storing Said configuration bits, and 
d. retrieving Said Stored configuration bits. 
72. The method of claim 71 further comprising the steps 

of: 

determining a Subsequent permutation instruction using 
Said retrieved configuration of bits. 

73. The method of claim 70 further comprising the steps 
of: 

d. Storing a portion of Said configuration bits, and 
e. retrieving Said Stored portions of Said configuration bits. 
74. The method of claim 73 further comprising the steps 

of: 

determining a Subsequent permutation instruction using 
Said retrieved configuration portion of Said configura 
tion bits. 

75. The method of claim 69 wherein said method per 
forms 1g(n) of Said network Stages in one instruction. 

76. The method of claim 69 wherein said method per 
forms 21 g(n) network Stages in one instruction. 

77. The method of claim 69 wherein said configuration 
bits are obtained from a register file. 

k k k k k 


