

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
14 August 2008 (14.08.2008)

PCT

(10) International Publication Number
WO 2008/097991 A1(51) International Patent Classification:
C07D 471/04 (2006.01) A61P 25/00 (2006.01)
A61K 31/505 (2006.01)

Columbia V5G 4W8 (CA). SUN, Jianyu [CA/CA]; 3650 Gilmore Way, Burnaby, British Columbia V5G 4W8 (CA).

(21) International Application Number:
PCT/US2008/053075

(74) Agent: ROTH, Carol J.; Seed Intellectual Property Law Group PLLC, Suite 5400, 701 Fifth Avenue, Seattle, Washington 98104, (US).

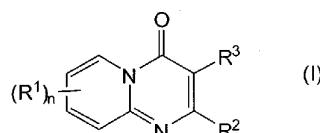
(22) International Filing Date: 5 February 2008 (05.02.2008)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/888,253 5 February 2007 (05.02.2007) US
60/912,122 16 April 2007 (16.04.2007) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): XENON PHARMACEUTICALS INC. [CA/CA]; 3650 Gilmore Way, Burnaby, British Columbia V5G 4W8 (CA).


(72) Inventors; and

(75) Inventors/Applicants (for US only): LIU, Shifeng [CA/CA]; 3650 Gilmore Way, Burnaby, British Columbia V5G 4W8 (CA). FU, Jianmin [US/CA]; 3650 Gilmore Way, Burnaby, British Columbia V5G 4W8 (CA). KAM-BOJ, Rajender [CA/CA]; 3650 Gilmore Way, Burnaby, British Columbia V5G 4W8 (CA). JIA, Qi [CA/CA]; 3650 Gilmore Way, Burnaby, British Columbia V5G 4W8 (CA). WOOD, Mark [CA/CA]; 3650 Gilmore Way, Burnaby, British Columbia V5G 4W8 (CA). CHOWDHURY, Sultan [CA/CA]; 3650 Gilmore Way, Burnaby, British

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(54) Title: PYRIDOPYRIMIDINONE COMPOUNDS USEFUL IN TREATING SODIUM CHANNEL-MEDIATED DISEASES OR CONDITIONS

(57) Abstract: This invention is directed to pyridopyrimidinone compounds of formula (I): wherein n, R1, R2 and R3 are as defined herein, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a pharmaceutically acceptable salt, solvate or prodrug thereof, useful for the treatment and/or prevention of sodium channel-mediated diseases or conditions, such as pain.

WO 2008/097991 A1

PYRIDOPYRIMIDINONE COMPOUNDS USEFUL IN TREATING SODIUM CHANNEL-MEDIATED DISEASES OR CONDITIONS

FIELD OF THE INVENTION

The present invention is directed to pyridopyrimidinone compounds and 5 pharmaceutical compositions comprising the compounds, which are useful in treating sodium channel-mediated diseases or conditions, such as pain, as well as other diseases and conditions associated with the mediation of sodium channels.

BACKGROUND OF THE INVENTION

Voltage-gated sodium channels, transmembrane proteins that initiate action 10 potentials in nerve, muscle and other electrically excitable cells, are a necessary component of normal sensation, emotions, thoughts and movements (Catterall, W.A., *Nature* (2001), Vol. 409, pp. 988-990). These channels consist of a highly processed alpha subunit that is associated with auxiliary beta subunits. The pore-forming alpha subunit is sufficient for channel function, but the kinetics and voltage dependence of 15 channel gating are in part modified by the beta subunits (Goldin et al., *Neuron* (2000), Vol. 28, pp. 365-368). Each alpha-subunit contains four homologous domains, I to IV, each with six predicted transmembrane segments. The alpha-subunit of the sodium channel, forming the ion-conducting pore and containing the voltage sensors regulating sodium ion conduction has a relative molecular mass of 260,000. Electrophysiological 20 recording, biochemical purification, and molecular cloning have identified ten different sodium channel alpha subunits and four beta subunits (Yu, F.H., et al., *Sci. STKE* (2004), 253; and Yu, F.H., et al., *Neurosci.* (2003), 20:7577-85).

The hallmarks of sodium channels include rapid activation and inactivation 25 when the voltage across the plasma membrane of an excitable cell is depolarized (voltage-dependent gating), and efficient and selective conduction of sodium ions through conducting pores intrinsic to the structure of the protein (Sato, C., et al., *Nature* (2001), 409:1047-1051). At negative or hyperpolarized membrane potentials, sodium channels are closed. Following membrane depolarization, sodium channels open rapidly and then inactivate. Channels only conduct currents in the open state and, 30 once inactivated, have to return to the resting state, favoured by membrane hyperpolarization, before they can reopen. Different sodium channel subtypes vary in the voltage range over which they activate and inactivate as well as their activation and

inactivation kinetics.

The sodium channel family of proteins has been extensively studied and shown to be involved in a number of vital body functions. Research in this area has identified variants of the alpha subunits that result in major changes in channel function and activities, which can ultimately lead to major pathophysiological conditions. Implicit with function, this family of proteins are considered prime points of therapeutic intervention. $NaV1.1$ and $NaV1.2$ are highly expressed in the brain (Raymond, C.K., et al., *J. Biol. Chem.* (2004), 279(44):46234-41) and are vital to normal brain function. In humans, mutations in $NaV1.1$ and $NaV1.2$ result in severe epileptic states and in some cases mental decline (Rhodes, T.H., et al., *Proc. Natl. Acad. Sci. USA* (2004), 101(30):11147-52; Kamiya, K., et al., *J. Biol. Chem.* (2004), 24(11):2690-8; Pereira, S., et al., *Neurology* (2004), 63(1):191-2). As such both channels have been considered as validated targets for the treatment of epilepsy (see PCT Published Patent Publication No. WO 01/38564).

15 $NaV1.3$ is broadly expressed throughout the body (Raymond, C.K., et al., *op. cit.*). It has been demonstrated to have its expression upregulated in the dorsal horn sensory neurons of rats after nervous system injury (Hains, B.D., et al., *J. Neurosci.* (2003), 23(26):8881-92). Many experts in the field have considered $NaV1.3$ as a suitable target for pain therapeutics (Lai, J., et al., *Curr. Opin. Neurobiol.* (2003), 13:291-72003; Wood, J.N., et al., *J. Neurobiol.* (2004), 61(1):55-71; Chung, J.M., et al., *Novartis Found Symp.* (2004), 261:19-27; discussion 27-31, 47-54).

20 $NaV1.4$ expression is essentially limited to muscle (Raymond, C.K., et al., *op. cit.*). Mutations in this gene have been shown to have profound effects on muscle function including paralysis, (Tamaoka A., *Intern. Med.* (2003), (9):769-70). Thus, this 25 channel can be considered a target for the treatment of abnormal muscle contractility, spasm or paralysis.

The cardiac sodium channel, $NaV1.5$, is expressed mainly in the heart ventricles and atria (Raymond, C.K., et al., *op. cit.*), and can be found in the sinovial node, ventricular node and possibly Purkinje cells. The rapid upstroke of the cardiac action 30 potential and the rapid impulse conduction through cardiac tissue is due to the opening of $NaV1.5$. As such, $NaV1.5$ is central to the genesis of cardiac arrhythmias. Mutations in human $NaV1.5$ result in multiple arrhythmic syndromes, including, for example, long QT3 (LQT3), Brugada syndrome (BS), an inherited cardiac conduction defect, sudden unexpected nocturnal death syndrome (SUNDS) and sudden infant death syndrome 35 (SIDS) (Liu, H. et al., *Am. J. Pharmacogenomics* (2003), 3(3):173-9). Sodium channel

blocker therapy has been used extensively in treating cardiac arrhythmias. The first antiarrhythmic drug, quinidine, discovered in 1914, is classified as a sodium channel blocker.

Na_v1.6 encodes an abundant, widely distributed voltage-gated sodium channel found throughout the central and peripheral nervous systems, clustered in the nodes of Ranvier of neural axons (Caldwell, J.H., et al., *Proc. Natl. Acad. Sci. USA* (2000), 97(10): 5616-20). Although no mutations in humans have been detected, Na_v1.6 is thought to play a role in the manifestation of the symptoms associated with multiple sclerosis and has been considered as a target for the treatment of this disease (Craner, M.J., et al., *Proc. Natl. Acad. Sci. USA* (2004), 101(21):8168-73).

Na_v1.7 was first cloned from the pheochromocytoma PC12 cell line (Toledo-Aral, J. J., et al., *Proc. Natl. Acad. Sci. USA* (1997), 94:1527-1532). Its presence at high levels in the growth cones of small-diameter neurons suggested that it could play a role in the transmission of nociceptive information. Although this has been challenged by experts in the field as Na_v1.7 is also expressed in neuroendocrine cells associated with the autonomic system (Klugbauer, N., et al., *EMBO J.* (1995), 14(6):1084-90) and as such has been implicated in autonomic processes. The implicit role in autonomic functions was demonstrated with the generation of Na_v1.7 null mutants; deleting Na_v1.7 in all sensory and sympathetic neurons resulted in a lethal perinatal phenotype. (Nassar, et al., *Proc. Natl. Acad. Sci. USA* (2004), 101(34):12706-11.). In contrast, by deleting the Na_v1.7 expression in a subset of sensory neurons that are predominantly nociceptive, a role in pain mechanisms, was demonstrated (Nassar, et al., *op. cit.*). Further support for Na_v1.7 blockers active in a subset of neurons is supported by the finding that two human heritable pain conditions, primary erythermalgia and familial rectal pain, have been shown to map to Na_v1.7 (Yang, Y., et al., *J. Med. Genet.* (2004), 41(3):171-4).

The expression of Na_v1.8 is essentially restricted to the DRG (Raymond, C.K., et al., *op. cit.*). There are no identified human mutations for Na_v1.8. However, Na_v1.8-null mutant mice were viable, fertile and normal in appearance. A pronounced analgesia to noxious mechanical stimuli, small deficits in noxious thermoreception and delayed development of inflammatory hyperalgesia suggested to the researchers that Na_v1.8 plays a major role in pain signalling (Akopian, A. N., et al., *Nat. Neurosci.* (1999), 2(6): 541-8). Blocking of this channel is widely accepted as a potential treatment for pain (Lai, J, et al., *op. cit.*; Wood, J.N., et al., *op. cit.*; Chung, J.M., et al., *op. cit.*). PCT Published Patent Application No. WO03/037274A2 describes pyrazole-

amides and sulfonamides for the treatment of central or peripheral nervous system conditions, particularly pain and chronic pain by blocking sodium channels associated with the onset or recurrence of the indicated conditions. PCT Published Patent Application No. WO03/037890A2 describes piperidines for the treatment of central or 5 peripheral nervous system conditions, particularly pain and chronic pain by blocking sodium channels associated with the onset or recurrence of the indicated conditions. The compounds, compositions and methods of these inventions are of particular use for treating neuropathic or inflammatory pain by the inhibition of ion flux through a channel that includes a PN3 ($\text{Na}_V1.8$) subunit.

10 The tetrodotoxin insensitive, peripheral sodium channel $\text{Na}_V1.9$, disclosed by Dib-Hajj, S.D., et al. (see Dib-Hajj, S.D., et al., *Proc. Natl. Acad. Sci. USA* (1998), 95(15):8963-8) was shown to reside solely in the dorsal root ganglia. It has been demonstrated that $\text{Na}_V1.9$ underlies neurotrophin (BDNF)-evoked depolarization and excitation, and is the only member of the voltage gated sodium channel superfamily to 15 be shown to be ligand mediated (Blum, R., Kafitz, K.W., Konnerth, A., *Nature* (2002), 419 (6908):687-93). The limited pattern of expression of this channel has made it a candidate target for the treatment of pain (Lai, J., et al., *op. cit.*; Wood, J.N., et al., *op. cit.*; Chung, J.M. et al., *op. cit.*).

14 NaX is a putative sodium channel, which has not been shown to be voltage gated. In addition to expression in the lung, heart, dorsal root ganglia, and Schwann 20 cells of the peripheral nervous system, NaX is found in neurons and ependymal cells in restricted areas of the CNS, particularly in the circumventricular organs, which are involved in body-fluid homeostasis (Watanabe, E., et al., *J. Neurosci.* (2000), 20(20):7743-51). NaX-null mice showed abnormal intakes of hypertonic saline under 25 both water- and salt-depleted conditions. These findings suggest that the NaX plays an important role in the central sensing of body-fluid sodium level and regulation of salt intake behaviour. Its pattern of expression and function suggest it as a target for the treatment of cystic fibrosis and other related salt regulating maladies.

29 Studies with the sodium channel blocker tetrodotoxin (TTX) used to lower 30 neuron activity in certain regions of the brain, indicate its potential use in the treatment of addiction. Drug-paired stimuli elicit drug craving and relapse in addicts and drug-seeking behavior in rats. The functional integrity of the basolateral amygdala (BLA) is necessary for reinstatement of cocaine-seeking behaviour elicited by cocaine-conditioned stimuli, but not by cocaine itself. BLA plays a similar role in reinstatement 35 of heroin-seeking behavior. TTX-induced inactivation of the BLA on conditioned and

heroin-primed reinstatement of extinguished heroin-seeking behaviour in a rat model (Fuchs, R.A. and See, R.E., *Psychopharmacology* (2002) 160(4):425-33).

This closely related family of proteins has long been recognised as targets for therapeutic intervention. Sodium channels are targeted by a diverse array of 5 pharmacological agents. These include neurotoxins, antiarrhythmics, anticonvulsants and local anesthetics (Clare, J.J., et al., *Drug Discovery Today* (2000) 5:506-520). All of the current pharmacological agents that act on sodium channels have receptor sites on the alpha subunits. At least six distinct receptor sites for neurotoxins and one receptor site for local anesthetics and related drugs have been identified (Cestèle, S. et 10 al., *Biochimie* (2000), Vol. 82, pp. 883-892).

The small molecule sodium channel blockers or the local anesthetics and related antiepileptic and antiarrhythmic drugs, interact with overlapping receptor sites located in the inner cavity of the pore of the sodium channel (Catterall, W.A., *Neuron* (2000), 26:13-25). Amino acid residues in the S6 segments from at least three of the 15 four domains contribute to this complex drug receptor site, with the IVS6 segment playing the dominant role. These regions are highly conserved and as such most sodium channel blockers known to date interact with similar potency with all channel subtypes. Nevertheless, it has been possible to produce sodium channel blockers with therapeutic selectivity and a sufficient therapeutic window for the treatment of epilepsy 20 (e.g. lamotrigine, phenytoin and carbamazepine) and certain cardiac arrhythmias (e.g. lignocaine, tocainide and mexiletine). However, the potency and therapeutic index of these blockers is not optimal and have limited the usefulness of these compounds in a variety of therapeutic areas where a sodium channel blocker would be ideally suited.

Management of Acute and Chronic Pain

25 Drug therapy is the mainstay of management for acute and chronic pain in all age groups, including neonates, infants and children. The pain drugs are classified by the American Pain Society into three main categories: 1) non-opioid analgesics-acetaminophen, and non-steroidal anti-inflammatory drugs (NSAIDs), including salicylates (e.g. aspirin), 2) opioid analgesics and 3) co-analgesics.

30 Non-opioid analgesics such as acetaminophen and NSAIDs are useful for acute and chronic pain due to a variety of causes including surgery, trauma, arthritis and cancer. NSAIDs are indicated for pain involving inflammation because acetaminophen lacks anti-inflammatory activity. Opioids also lack anti-inflammatory activity. All NSAIDs inhibit the enzyme cyclooxygenase (COX), thereby inhibiting

prostaglandin synthesis and reducing the inflammatory pain response. There are at least two COX isoforms, COX-1 and COX-2. Common non-selective COX inhibitors include, ibuprofen and naproxen. Inhibition of COX-1, which is found in platelets, GI tract, kidneys and most other human tissues, is thought to be associated with adverse

5 effects such as gastrointestinal bleeding. The development of selective COX-2 NSAIDs, such as Celecoxib, Valdecoxib and Rofecoxib, have the benefits of non-selective NSAIDs with reduced adverse effect profiles in the gut and kidney. However, evidence now suggests that chronic use of certain selective COX-2 inhibitors can result in an increased risk of stroke occurrence.

10 The use of opioid analgesics is recommended by the American Pain Society to be initiated based on a pain-directed history and physical that includes repeated pain assessment. Due to the broad adverse effect profiles associated with opiate use, therapy should include a diagnosis, integrated interdisciplinary treatment plan and appropriate ongoing patient monitoring. It is further recommended that opioids be

15 added to non-opioids to manage acute pain and cancer related pain that does not respond to non-opioids alone. Opioid analgesics act as agonists to specific receptors of the mu and kappa types in the central and peripheral nervous system. Depending on the opioid and its formulation or mode of administration it can be of shorter or longer duration. All opioid analgesics have a risk of causing respiratory depression, liver

20 failure, addiction and dependency, and as such are not ideal for long-term or chronic pain management.

A number of other classes of drugs may enhance the effects of opioids or NSAIDSS, have independent analgesic activity in certain situations, or counteract the side effects of analgesics. Regardless of which of these actions the drug has, they are

25 collectively termed "coanalgesics". Tricyclic antidepressants, antiepileptic drugs, local anaesthetics, glucocorticoids, skeletal muscle relaxants, anti-spasmodic agents, antihistamines, benzodiazepines, caffeine, topical agents (e.g. capsaicin), dextroamphetamine and phenothiazines are all used in the clinic as adjuvant therapies or individually in the treatment of pain. The antiepileptic drugs in particular have

30 enjoyed some success in treating pain conditions. For instance, Gabapentin, which has an unconfirmed therapeutic target, is indicated for neuropathic pain. Other clinical trials are attempting to establish that central neuropathic pain may respond to ion channel blockers such as blockers of calcium, sodium and/or NMDA (*N*-methyl-D-aspartate) channels. Currently in development are low affinity NMDA channel blocking

35 agents for the treatment of neuropathic pain. The literature provides substantial pre-

clinical electrophysiological evidence in support of the use of NMDA antagonists in the treatment of neuropathic pain. Such agents also may find use in the control of pain after tolerance to opioid analgesia occurs, particularly in cancer patients.

Systemic analgesics such as NSAIDs and opioids are to be distinguished from 5 therapeutic agents which are useful only as local analgesics/anaesthetics. Well known local analgesics such as lidocaine and xylocaine are non-selective ion channel blockers which can be fatal when administered systemically. A good description of non-selective sodium channel blockers is found in Madge, D. et al., *J. Med. Chem.* (2001), 44(2):115-37.

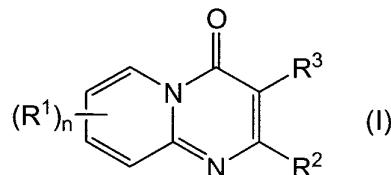
10 Several sodium channel modulators are known for use as anticonvulsants or antidepressants, such as carbamazepine, amitriptyline, lamotrigine and riluzole, all of which target brain tetrodotoxin- sensitive (TTX-S) sodium channels. Such TTX-S agents suffer from dose- limiting side effects, including dizziness, ataxia and somnolence, primarily due to action at TTX-S channels in the brain.

15 Sodium Channels Role in Pain

Sodium channels play a diverse set of roles in maintaining normal and pathological states, including the long recognized role that voltage gated sodium channels play in the generation of abnormal neuronal activity and neuropathic or pathological pain (Chung, J.M. et al., *op.cit.*). Damage to peripheral nerves following 20 trauma or disease can result in changes to sodium channel activity and the development of abnormal afferent activity including ectopic discharges from axotomised afferents and spontaneous activity of sensitized intact nociceptors. These changes can produce long-lasting abnormal hypersensitivity to normally innocuous stimuli, or allodynia. Examples of neuropathic pain include, but are not limited to, post- 25 herptic neuralgia, trigeminal neuralgia, diabetic neuropathy, chronic lower back pain, phantom limb pain, and pain resulting from cancer and chemotherapy, chronic pelvic pain, complex regional pain syndrome and related neuralgias.

There has been some degree of success in treating neuropathic pain symptoms by using medications, such as gabapentin, and more recently pregabalin, as 30 short-term, first-line treatments. However, pharmacotherapy for neuropathic pain has generally had limited success with little response to commonly used pain reducing drugs, such as NSAIDS and opiates. Consequently, there is still a considerable need to explore novel treatment modalities.

There remains a limited number of potent effective sodium channel blockers


with a minimum of adverse events in the clinic. There is also an unmet medical need to treat neuropathic pain and other sodium channel associated pathological states effectively and without adverse side effects. The present invention provides methods to meet these critical needs.

5

SUMMARY OF THE INVENTION

The present invention is directed to pyridopyrimidinone compounds and pharmaceutical compositions comprising the compounds and methods of using the compounds and pharmaceutical compositions for the treatment and/or prevention of sodium channel-mediated diseases or conditions, such as pain. The present invention 10 is also directed to methods of using the compounds of the invention and pharmaceutical compositions comprising the compounds for the treatment of other sodium channel-mediated diseases or conditions, including, but not limited to central nervous conditions such as epilepsy, anxiety, depression and bipolar disease; cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular 15 fibrillation; neuromuscular conditions such as restless leg syndrome, essential tremour and muscle paralysis or tetanus; neuroprotection against stroke, glaucoma, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome. The present invention is also directed to methods of using the compounds and pharmaceutical compositions of the invention for the 20 treatment and/or prevention of diseases or conditions, such as hypercholesterolemia, benign prostatic hyperplasia, pruritis, and cancer.

Accordingly, in one aspect this invention is directed to compounds of formula (I):

25 wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl,

alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl,

cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl,

30 aralkynyl, heterocyclcyl, heterocyclcylalkyl, heterocyclcylalkenyl,

heterocyclalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl,
heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴,
-R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴,
-R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴,
-R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴,
-R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴,
-R⁶-N(R⁵)S(O)N(R⁴)R⁵, -R⁶-S(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and
-R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and
each t is independently 1 or 2;

10 or two adjacent R¹ groups, together with the carbon atoms to which they are directly
attached, form a fused ring selected from optionally substituted cycloalkyl,
optionally substituted aryl, optionally substituted heterocyclyl, or optionally
substituted heteroaryl, and the other R¹'s, if present, are as described above;

15 R² is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl,
cycloalkylalkyl, cycloalkylalkenyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl,
heterocyclalkyl, heterocyclalkenyl, heterocyclalkynyl, heteroaryl,
heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

20 R³ is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl,
cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl,
aralkenyl, aralkynyl, heterocyclyl, heterocyclalkyl, heterocyclalkenyl,
heterocyclalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl,
heteroarylalkynyl, -R⁶-N(R⁴)R⁵, or -R⁶-N(R⁴)C(O)OR⁴,
wherein the cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl,
aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclalkyl,
25 heterocyclalkenyl, heterocyclalkynyl, heteroaryl, heteroarylalkyl,
heteroarylalkenyl, and heteroarylalkynyl are each optionally substituted
by one or more substituents selected from the group consisting of alkyl,
alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, optionally
substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally
substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl,
30 optionally substituted aryl, optionally substituted aralkyl, optionally
substituted aralkenyl, optionally substituted aralkynyl, optionally
substituted heterocyclyl, optionally substituted heterocyclalkyl,
optionally substituted heterocyclalkenyl, optionally substituted
heterocyclalkynyl, optionally substituted heteroaryl, optionally
35 heterocyclalkynyl, optionally substituted heteroaryl, optionally

substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain or an optionally substituted straight or branched alkynylene chain; and

R⁷ is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;

as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;

or a pharmaceutically acceptable salt, solvate or prodrug thereof.

In another aspect, the invention provides pharmaceutical compositions comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of formula (I) as set forth above.

In another aspect, the invention provides methods for the treatment of pain in a mammal, preferably a human, wherein the methods comprise administering to the mammal in need thereof a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer,

tautomer thereof or mixtures thereof; or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

In another aspect, the present invention provides a method for treating or lessening the severity of a disease, condition, or disorder in a mammal where

5 activation or hyperactivity of one or more of $\text{Na}_V1.1$, $\text{Na}_V1.2$, $\text{Na}_V1.3$, $\text{Na}_V1.4$, $\text{Na}_V1.5$, $\text{Na}_V1.6$, $\text{Na}_V1.7$, $\text{Na}_V1.8$, or $\text{Na}_V1.9$ is implicated in the disease, condition or disorder, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a

10 pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

15 In another aspect, the invention provides methods of treating a range of sodium channel-mediated diseases or conditions in a mammal, for example, pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, post-herpetic neuralgia, eudynia, heat sensitivity, tosarcoidosis, irritable bowel syndrome, Crohns disease, pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), diabetic neuropathy, peripheral neuropathy, arthritic, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxin related illnesses, familial erythermalgia, primary erythermalgia, familial rectal pain, cancer, epilepsy, partial and general tonic seizures, restless leg syndrome, arrhythmias, fibromyalgia, neuroprotection under ischaemic conditions caused by stroke, glaucoma or neural trauma, tachy-arrhythmias, atrial fibrillation and ventricular fibrillation, wherein the methods comprise administering to the mammal in need thereof, preferably a human, a therapeutically effective amount of a compound of the

20 invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a pharmaceutically acceptable salt, solvate or

25 prodrug thereof, and a pharmaceutically acceptable excipient.

30

35

In another aspect, the invention provides methods of treating a range of sodium channel-mediated diseases or conditions in a mammal, preferably a human, by the inhibition of ion flux through a voltage-dependent sodium channel in the mammal, wherein the methods comprise administering to the mammal in need thereof a

5 therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or

10 mixtures thereof; or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

In another aspect, the invention provides methods of treating or preventing hypercholesterolemia in a mammal, preferably a human, wherein the methods comprise administering to the mammal in need thereof a therapeutically effective

15 amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a

20 pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

In another aspect, the invention provides methods of treating or preventing benign prostatic hyperplasia in a mammal, preferably a human, wherein the methods comprise administering to the mammal in need thereof a therapeutically effective

25 amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a

30 pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

In another aspect, the invention provides methods of treating or preventing pruritis in a mammal, preferably a human, wherein the methods comprise administering to the mammal in need thereof a therapeutically effective amount of a

35 compound of the invention, as set forth above, as a stereoisomer, enantiomer,

tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a pharmaceutically acceptable 5 salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

In another aspect, the invention provides methods of treating or preventing cancer in a mammal, preferably a human, wherein the methods comprise administering to the mammal in need thereof a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, 10 tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

15 In another aspect, the invention provides pharmaceutical therapy in combination with one or more other compounds of the invention or one or more other accepted therapies or as any combination thereof to increase the potency of an existing or future drug therapy or to decrease the adverse events associated with the accepted therapy. In one embodiment, the present invention relates to a 20 pharmaceutical composition combining compounds of the present invention with established or future therapies for the indications listed in the invention.

In another aspect, this invention is directed to the use of the compounds of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or 25 the use of a pharmaceutical composition comprising a pharmaceutically acceptable excipient and a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, in the preparation of a medicament for the treatment of iron disorders in a mammal.

30 DETAILED DESCRIPTION OF THE INVENTION

DEFINITIONS

Certain chemical groups named herein may be preceded by a shorthand notation indicating the total number of carbon atoms that are to be found in the

indicated chemical group. For example; C₇-C₁₂alkyl describes an alkyl group, as defined below, having a total of 7 to 12 carbon atoms, and C₄-C₁₂cycloalkylalkyl describes a cycloalkylalkyl group, as defined below, having a total of 4 to 12 carbon atoms. The total number of carbons in the shorthand notation does not include 5 carbons that may exist in substituents of the group described.

In addition to the foregoing, as used in the specification and appended claims, unless specified to the contrary, the following terms have the meaning indicated:

- "Amino" refers to the -NH₂ radical.
- "Cyano" refers to the -CN radical.
- 10 "Hydroxy" refers to the -OH radical.
- "Imino" refers to the =NH substituent.
- "Nitro" refers to the -NO₂ radical.
- "Oxo" refers to the =O substituent.
- "Thioxo" refers to the =S substituent.
- 15 "Trifluoromethyl" refers to the -CF₃ radical.
- "Alkyl" refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to twelve carbon atoms, preferably one to eight carbon atoms or one to six carbon atoms, and which is attached to the rest of the molecule by a single bond, e.g., methyl, ethyl, 20 n-propyl, 1-methylethyl (*iso*-propyl), *n*-butyl, *n*-pentyl, 1,1-dimethylethyl (*t*-butyl), 3-methylhexyl, 2-methylhexyl, and the like. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted by one of the following groups: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, trimethylsilanyl, -OR¹⁴, -OC(O)-R¹⁴, -N(R¹⁴)₂, -C(O)R¹⁴, -C(O)OR¹⁴, 25 -C(O)N(R¹⁴)₂, -N(R¹⁴)C(O)OR¹⁶, -N(R¹⁴)C(O)R¹⁶, -N(R¹⁴)S(O)_tR¹⁶ (where t is 1 to 2), -S(O)_tOR¹⁶ (where t is 1 to 2), -S(O)_pR¹⁶ (where p is 0 to 2), and -S(O)_tN(R¹⁴)₂ (where t is 1 to 2) where each R¹⁴ is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R¹⁶ is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, 30 heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl.
- "Alkenyl" refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one double bond, having from two to twelve carbon atoms, preferably two to eight carbon atoms and which is attached to the rest of the molecule by a single bond, e.g., ethenyl, 35 prop-1-enyl, but-1-enyl, pent-1-enyl, penta-1,4-dienyl, and the like. Unless stated

otherwise specifically in the specification, an alkenyl group may be optionally substituted by one of the following groups: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, trimethylsilanyl, -OR¹⁴, -OC(O)-R¹⁴, -N(R¹⁴)₂, -C(O)R¹⁴, -C(O)OR¹⁴, -C(O)N(R¹⁴)₂, -N(R¹⁴)C(O)OR¹⁶, -N(R¹⁴)C(O)R¹⁶, -N(R¹⁴)S(O)R¹⁶ (where t is 1 to 2), -S(O)_tOR¹⁶ (where t is 1 to 2), -S(O)_pR¹⁶ (where p is 0 to 2), and -S(O)_tN(R¹⁴)₂ (where t is 1 to 2) where each R¹⁴ is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R¹⁶ is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl.

5 "Alkynyl" refers to a straight or branched hydrocarbon chain radical group comprising solely of carbon and hydrogen atoms, containing at least one triple bond, optionally containing at least one double bond, having from two to twelve carbon atoms, preferably two to eight carbon atoms and which is attached to the rest of the molecule by a single bond, for example, ethynyl, propynyl, butynyl, pentynyl, hexynyl, and the like. Unless stated otherwise specifically in the specification, an alkynyl group 10 may be optionally substituted by one or more of the following substituents: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, trimethylsilanyl, -OR¹⁴, -OC(O)-R¹⁴, -N(R¹⁴)₂, -C(O)R¹⁴, -C(O)OR¹⁴, -C(O)N(R¹⁴)₂, -N(R¹⁴)C(O)OR¹⁶, -N(R¹⁴)C(O)R¹⁶, -N(R¹⁴)S(O)R¹⁶ (where t is 1 to 2), -S(O)_tOR¹⁶ 15 (where t is 1 to 2), -S(O)_pR¹⁶ (where p is 0 to 2), and -S(O)_tN(R¹⁴)₂ (where t is 1 to 2) where each R¹⁴ is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R¹⁶ is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl.

20 "Alkylene" or "alkylene chain" refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, containing no unsaturation and having from one to twelve carbon atoms, e.g., methylene, ethylene, propylene, n-butylene, and the like. The alkylene chain is attached to the rest of the molecule through a single bond and to the radical group through a single bond. The points of attachment of the alkylene chain to 25 the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkylene chain may be optionally substituted by one of the following groups: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, trimethylsilanyl, -OR¹⁴, -OC(O)-R¹⁴, -N(R¹⁴)₂, -C(O)R¹⁴, -C(O)OR¹⁴, -C(O)N(R¹⁴)₂, 30

35

-N(R¹⁴)C(O)OR¹⁶, -N(R¹⁴)C(O)R¹⁶, -N(R¹⁴)S(O)_tR¹⁶ (where t is 1 to 2), -S(O)OR¹⁶ (where t is 1 to 2), -S(O)_pR¹⁶ (where p is 0 to 2), and -S(O)_tN(R¹⁴)₂ (where t is 1 to 2) where each R¹⁴ is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R¹⁶ is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl.

5 "Alkenylene" or "alkenylene chain" refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, containing at least one double bond and having from two to 10 twelve carbon atoms, e.g., ethenylene, propenylene, *n*-butenylene, and the like. The alkenylene chain is attached to the rest of the molecule through a single bond and to the radical group through a double bond or a single bond. The points of attachment of the alkenylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise 15 specifically in the specification, an alkenylene chain may be optionally substituted by one of the following groups: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, trimethylsilyl, -OR¹⁴, -OC(O)-R¹⁴, -N(R¹⁴)₂, -C(O)R¹⁴, -C(O)OR¹⁴, -C(O)N(R¹⁴)₂, -N(R¹⁴)C(O)OR¹⁶, -N(R¹⁴)C(O)R¹⁶, -N(R¹⁴)S(O)_tR¹⁶ (where t is 1 to 2), -S(O)OR¹⁶ (where t is 1 to 2), -S(O)_pR¹⁶ (where p is 0 to 2), and 20 -S(O)_tN(R¹⁴)₂ (where t is 1 to 2) where each R¹⁴ is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R¹⁶ is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl.

25 "Alkynylene" or "alkynylene chain" refers to a straight or branched divalent hydrocarbon chain linking the rest of the molecule to a radical group, consisting solely of carbon and hydrogen, containing at least one triple bond and having from two to twelve carbon atoms, e.g., propynylene, *n*-butynylene, and the like. The alkynylene chain is attached to the rest of the molecule through a single bond and to the radical group through a double bond or a single bond. The points of attachment of the 30 alkynylene chain to the rest of the molecule and to the radical group can be through one carbon or any two carbons within the chain. Unless stated otherwise specifically in the specification, an alkynylene chain may be optionally substituted by one of the following groups: alkyl, alkenyl, halo, haloalkenyl, cyano, nitro, aryl, cycloalkyl, heterocyclyl, heteroaryl, oxo, trimethylsilyl, -OR¹⁴, -OC(O)-R¹⁴, -N(R¹⁴)₂, -C(O)R¹⁴, -C(O)OR¹⁴, -C(O)N(R¹⁴)₂, -N(R¹⁴)C(O)OR¹⁶, -N(R¹⁴)C(O)R¹⁶, -N(R¹⁴)S(O)_tR¹⁶ (where t 35 is 1 to 2), -S(O)OR¹⁶ (where t is 1 to 2), -S(O)_pR¹⁶ (where p is 0 to 2), and -S(O)_tN(R¹⁴)₂ (where t is 1 to 2) where each R¹⁴ is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R¹⁶ is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl.

is 1 to 2), $-S(O)_tOR^{16}$ (where t is 1 to 2), $-S(O)_pR^{16}$ (where p is 0 to 2), and $-S(O)_tN(R^{14})_2$ (where t is 1 to 2) where each R^{14} is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and each R^{16} is alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, 5 aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl.

"Alkoxy" refers to a radical of the formula $-OR_a$ where R_a is an alkyl radical as defined above containing one to twelve carbon atoms. The alkyl part of the alkoxy radical may be optionally substituted as defined above for an alkyl radical.

"Alkoxyalkyl" refers to a radical of the formula $-R_b-O-R_a$ where R_b is an alkylene 10 chain as defined above and R_a is an alkyl radical as defined above. The oxygen atom may be bonded to any carbon in the alkylene chain and in the alkyl radical. The alkyl part of the alkoxyalkyl radical may be optionally substituted as defined above for an alkyl group. The alkylene chain part of the alkoxyalkyl radical may be optionally substituted as defined above for an alkylene chain.

"Aryl" refers to a hydrocarbon ring system radical comprising hydrogen, 6 to 18 carbon atoms and at least one aromatic ring. For purposes of this invention, the aryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Aryl radicals include, but are not limited to, 15 aryl radicals derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, fluoranthene, fluorene, *as-indacene*, *s-indacene*, indane, indene, naphthalene, phenalene, phenanthrene, pleiadene, pyrene, and triphenylene. Unless stated otherwise specifically in the specification, the term "aryl" or the prefix "ar-" (such as in "aralkyl") is meant to include aryl radicals 20 optionally substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, $-R^{15}-OR^{14}$, $-R^{15}-OC(O)-R^{14}$, $-R^{15}-N(R^{14})_2$, $-R^{15}-C(O)R^{14}$, $-R^{15}-C(O)OR^{14}$, $-R^{15}-C(O)N(R^{14})_2$, $-R^{15}-N(R^{14})C(O)OR^{16}$, $-R^{15}-N(R^{14})C(O)R^{16}$, $-R^{15}-N(R^{14})S(O)_tR^{16}$ (where t is 1 to 2), $-R^{15}-N=C(O)R^{14}$, $-R^{15}-S(O)_tOR^{16}$ (where t is 1 to 2), $-R^{15}-S(O)_pR^{16}$ 25 (where p is 0 to 2), and $-R^{15}-S(O)_tN(R^{14})_2$ (where t is 1 to 2) where each R^{14} is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; each R^{15} is independently a direct bond or a straight or branched alkylene or alkenylene chain; and each R^{16} is 30 alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl.

"Aralkyl" refers to a radical of the formula $-R_b-R_c$ where R_b is an alkylene chain as defined above and R_c is one or more aryl radicals as defined above, for example, benzyl, diphenylmethyl and the like. The alkylene chain part of the aralkyl radical may be optionally substituted as described above for an alkylene chain. The aryl part of the 5 aralkyl radical may be optionally substituted as described above for an aryl group.

"Aralkenyl" refers to a radical of the formula $-R_d-R_c$ where R_d is an alkenylene chain as defined above and R_c is one or more aryl radicals as defined above. The aryl part of the aralkenyl radical may be optionally substituted as described above for an aryl group. The alkenylene chain part of the aralkenyl radical may be optionally 10 substituted as defined above for an alkenylene group.

"Aralkynyl" refers to a radical of the formula $-R_eR_c$ where R_e is an alkynylene chain as defined above and R_c is one or more aryl radicals as defined above. The aryl part of the aralkynyl radical may be optionally substituted as described above for an aryl group. The alkynylene chain part of the aralkynyl radical may be optionally 15 substituted as defined above for an alkynylene chain.

"Cycloalkyl" refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon radical consisting solely of carbon and hydrogen atoms, which may include fused or bridged ring systems, having from three to fifteen carbon atoms, preferably having from three to ten carbon atoms, and which is saturated or 20 unsaturated and attached to the rest of the molecule by a single bond. Monocyclic radicals include, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl. Polycyclic radicals include, for example, adamantyl, norbornyl, decalinyl, 7,7-dimethyl-bicyclo[2.2.1]heptanyl, and the like. Unless otherwise stated specifically in the specification, the term "cycloalkyl" is meant to 25 include cycloalkyl radicals which are optionally substituted by one or more substituents independently selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, nitro, oxo, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, $-R^{15}-OR^{14}$, $-R^{15}-OC(O)-R^{14}$, $-R^{15}-N(R^{14})_2$, $-R^{15}-C(O)R^{14}$, $-R^{15}-C(O)OR^{14}$, $-R^{15}-C(O)N(R^{14})_2$, $-R^{15}-N(R^{14})C(O)OR^{16}$, $-R^{15}-N(R^{14})C(O)R^{16}$, $-R^{15}-N(R^{14})S(O)_tR^{16}$ (where t is 1 to 2), $-R^{15}-N=C(OR^{14})R^{14}$, $-R^{15}-S(O)_tOR^{16}$ (where t is 1 to 2), $-R^{15}-S(O)_pR^{16}$ (where p is 0 to 2), and $-R^{15}-S(O)_tN(R^{14})_2$ (where t is 1 to 2) where each R^{14} is independently hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; each R^{15} is independently a direct bond or a straight or 30 branched alkylene or alkenylene chain; and each R^{16} is alkyl, haloalkyl, cycloalkyl, 35

cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl.

"Cycloalkylalkyl" refers to a radical of the formula $-R_bR_g$ where R_b is an alkylene chain as defined above and R_g is a cycloalkyl radical as defined above. The alkylene chain and the cycloalkyl radical may be optionally substituted as defined above.

5 "Cycloalkylalkenyl" refers to a radical of the formula $-R_dR_g$ where R_d is an alkenylene chain as defined above and R_g is a cycloalkyl radical as defined above.

The alkenylene chain and the cycloalkyl radical may be optionally substituted as defined above.

10 "Cycloalkylalkynyl" refers to a radical of the formula $-R_eR_g$ where R_e is an alkynylene radical as defined above and R_g is a cycloalkyl radical as defined above. The alkynylene chain and the cycloalkyl radical may be optionally substituted as defined above.

15 "Fused" refers to any ring system described herein which is fused to an existing ring structure in the compounds of the invention.

"Halo" refers to bromo, chloro, fluoro or iodo.

20 "Haloalkyl" refers to an alkyl radical, as defined above, that is substituted by one or more halo radicals, as defined above, e.g., trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1-fluoromethyl-2-fluoroethyl, 3-bromo-2-fluoropropyl, 1-bromomethyl-2-bromoethyl, and the like. The alkyl part of the haloalkyl radical may be optionally substituted as defined above for an alkyl group.

25 "Haloalkenyl" refers to an alkenyl radical, as defined above, that is substituted by one or more halo radicals, as defined above. The alkenyl part of the haloalkyl radical may be optionally substituted as defined above for an alkenyl group.

30 "Haloalkynyl" refers to an alkynyl radical, as defined above, that is substituted by one or more halo radicals, as defined above. The alkynyl part of the haloalkyl radical may be optionally substituted as defined above for an alkynyl group.

35 "Heterocyclyl" refers to a stable 3- to 18-membered non-aromatic ring radical which consists of two to twelve carbon atoms and from one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur. Unless stated otherwise specifically in the specification, the heterocyclyl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heterocyclyl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized; and the heterocyclyl radical may be partially or fully saturated. Examples of such heterocyclyl

radicals include, but are not limited to, dioxolanyl, thienyl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, 5 pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, the term "heterocycl" is meant to include heterocycl radicals as defined above which are optionally substituted by one or more substituents selected from the group consisting of alkyl, 10 alkenyl, halo, haloalkyl, haloalkenyl, cyano, oxo, thioxo, nitro, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocycl, heterocyclalkyl, heteroaryl, heteroarylalkyl, $-R^{15}-OR^{14}$, $-R^{15}-OC(O)-R^{14}$, $-R^{15}-N(R^{14})_2$, $-R^{15}-C(O)R^{14}$, $-R^{15}-C(O)OR^{14}$, $-R^{15}-C(O)N(R^{14})_2$, $-R^{15}-N(R^{14})C(O)OR^{16}$, $-R^{15}-N(R^{14})C(O)R^{16}$, $-R^{15}-N(R^{14})S(O)_tR^{16}$ (where t is 1 to 2), $-R^{15}-N=C(OR^{14})R^{14}$, $-R^{15}-S(O)_tOR^{16}$ (where t is 1 to 2), $-R^{15}-S(O)_pR^{16}$ (where p is 0 to 15 2), and $-R^{15}-S(O)_tN(R^{14})_2$ (where t is 1 to 2) where each R^{14} is independently hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocycl, heterocyclalkyl, heteroaryl or heteroarylalkyl; each R^{15} is independently a direct bond or a straight or branched alkylene or alkenylene chain; and each R^{16} is alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocycl, heterocyclalkyl, 20 heteroaryl or heteroarylalkyl.

"N-heterocycl" refers to a heterocycl radical as defined above containing at least one nitrogen and where the point of attachment of the heterocycl radical to the rest of the molecule is through a nitrogen atom in the heterocycl radical. An N-heterocycl radical may be optionally substituted as described above for 25 heterocycl radicals.

"Heterocyclalkyl" refers to a radical of the formula $-R_bR_h$ where R_b is an alkylene chain as defined above and R_h is a heterocycl radical as defined above, and if the heterocycl is a nitrogen-containing heterocycl, the heterocycl may be attached to the alkyl radical at the nitrogen atom. The alkylene chain of the 30 heterocyclalkyl radical may be optionally substituted as defined above for an alkylene chain. The heterocycl part of the heterocyclalkyl radical may be optionally substituted as defined above for a heterocycl group.

"Heterocyclalkenyl" refers to a radical of the formula $-R_dR_h$ where R_d is an alkenylene chain as defined above and R_h is a heterocycl radical as defined above, 35 and if the heterocycl is a nitrogen-containing heterocycl, the heterocycl may be

attached to the alkenylene chain at the nitrogen atom. The alkenylene chain of the heterocyclalkenyl radical may be optionally substituted as defined above for an alkenylene chain. The heterocycl part of the heterocyclalkenyl radical may be optionally substituted as defined above for a heterocycl group.

5 "Heterocyclalkynyl" refers to a radical of the formula $-R_eR_h$ where R_e is an alkynylene chain as defined above and R_h is a heterocycl radical as defined above, and if the heterocycl is a nitrogen-containing heterocycl, the heterocycl may be attached to the alkynyl radical at the nitrogen atom. The alkynylene chain part of the heterocyclalkynyl radical may be optionally substituted as defined above for an
10 alkynylene chain. The heterocycl part of the heterocyclalkynyl radical may be optionally substituted as defined above for a heterocycl group.

"Heteroaryl" refers to a 5- to 14-membered ring system radical comprising hydrogen atoms, one to thirteen carbon atoms, one to six heteroatoms selected from the group consisting of nitrogen, oxygen and sulfur, and at least one aromatic ring. For
15 purposes of this invention, the aromatic ring of the heteroaryl radical need not contain a heteroatom, as long as one ring of the heteroaryl radical contains a heteroatom. For purposes of this invention, the heteroaryl radical may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized;
20 the nitrogen atom may be optionally quaternized. Examples include, but are not limited to, azepinyl, acridinyl, benzimidazolyl, benzthiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzoazazolyl, benzothiazolyl, benzothiadiazolyl, benzo[*b*][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl,
25 benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-*a*]pyridinyl, carbazolyl, cinnolinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indolinyl, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, naphthyridinyl, oxadiazolyl, 2-oxoazepinyl, oxazolyl, oxiranyl, 1-oxidopyridinyl,
30 1-oxidopyrimidinyl, 1-oxidopyrazinyl, 1-oxidopyridazinyl, 1-phenyl-1*H*-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyrrolyl, quinazolinyl, quinoxalinyl, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, and thiophenyl (i.e. thienyl). Unless stated
35 otherwise specifically in the specification, the term "heteroaryl" is meant to include

heteroaryl radicals as defined above which are optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkoxy, halo, haloalkyl, haloalkenyl, cyano, oxo, thioxo, nitro, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocycl, heterocyclalkyl, heteroaryl, heteroarylalkyl, $-R^{15}-OR^{14}$, $-R^{15}-OC(O)-R^{14}$,

5 $-R^{15}-N(R^{14})_2$, $-R^{15}-C(O)R^{14}$, $-R^{15}-C(O)OR^{14}$, $-R^{15}-C(O)N(R^{14})_2$, $-R^{15}-N(R^{14})C(O)OR^{16}$,
 $-R^{15}-N(R^{14})C(O)R^{16}$, $-R^{15}-N(R^{14})S(O)_tR^{16}$ (where t is 1 to 2), $-R^{15}-N=C(OR^{14})R^{14}$,
 $-R^{15}-S(O)_tOR^{16}$ (where t is 1 to 2), $-R^{15}-S(O)_pR^{16}$ (where p is 0 to 2), and
 $-R^{15}-S(O)_tN(R^{14})_2$ (where t is 1 to 2) where each R^{14} is independently hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocycl, heterocyclalkyl, heteroaryl or heteroarylalkyl.

10 heterocyclalkyl, heteroaryl or heteroarylalkyl; each R^{15} is independently a direct bond or a straight or branched alkylene or alkenylene chain; and each R^{16} is alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocycl, heterocyclalkyl, heteroaryl or heteroarylalkyl.

"*N*-heteroaryl" refers to a heteroaryl radical as defined above containing at least one nitrogen and where the point of attachment of the heteroaryl radical to the rest of the molecule is through a nitrogen atom in the heteroaryl radical. An *N*-heteroaryl radical may be optionally substituted as described above for heteroaryl radicals.

"Heteroarylalkyl" refers to a radical of the formula $-R_bR_i$ where R_b is an alkylene chain as defined above and R_i is a heteroaryl radical as defined above. The heteroaryl part of the heteroarylalkyl radical may be optionally substituted as defined above for a heteroaryl group. The alkylene chain part of the heteroarylalkyl radical may be optionally substituted as defined above for an alkylene chain.

"Heteroarylalkenyl" refers to a radical of the formula $-R_dR_i$ where R_d is an alkenylene chain as defined above and R_i is a heteroaryl radical as defined above.

25 The heteroaryl part of the heteroarylalkenyl radical may be optionally substituted as defined above for a heteroaryl group. The alkenylene chain part of the heteroarylalkenyl radical may be optionally substituted as defined above for an alkenylene chain.

"Heteroarylalkynyl" refers to a radical of the formula $-R_eR_i$ where R_e is an alkynylene chain as defined above and R_i is a heteroaryl radical as defined above. The heteroaryl part of the heteroarylalkynyl radical may be optionally substituted as defined above for a heteroaryl group. The alkynylene chain part of the heteroarylalkynyl radical may be optionally substituted as defined above for an alkynylene chain.

35 "Hydroxyalkyl" refers to an alkyl radical, as defined above, substituted by one or

more hydroxy groups.

"Analgesia" refers to an absence of pain in response to a stimulus that would normally be painful.

"Allodynia" refers to a condition in which a normally innocuous sensation, such 5 as pressure or light touch, is perceived as being extremely painful.

"Prodrugs" is meant to indicate a compound that may be converted under physiological conditions or by solvolysis to a biologically active compound of the invention. Thus, the term "prodrug" refers to a metabolic precursor of a compound of the invention that is pharmaceutically acceptable. A prodrug may be inactive when 10 administered to a subject in need thereof, but is converted *in vivo* to an active compound of the invention. Prodrugs are typically rapidly transformed *in vivo* to yield the parent compound of the invention, for example, by hydrolysis in blood. The prodrug compound often offers advantages of solubility, tissue compatibility or delayed release in a mammalian organism (see, Bundgard, H., *Design of Prodrugs* (1985), pp. 15 7-9, 21-24 (Elsevier, Amsterdam)). A discussion of prodrugs is provided in Higuchi, T., et al., "Pro-drugs as Novel Delivery Systems," A.C.S. Symposium Series, Vol. 14, and in *Bioreversible Carriers in Drug Design*, Ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated in full by reference herein.

20 The term "prodrug" is also meant to include any covalently bonded carriers, which release the active compound of the invention *in vivo* when such prodrug is administered to a mammalian subject. Prodrugs of a compound of the invention may be prepared by modifying functional groups present in the compound of the invention in such a way that the modifications are cleaved, either in routine manipulation or 25 *in vivo*, to the parent compound of the invention. Prodrugs include compounds of the invention wherein a hydroxy, amino or mercapto group is bonded to any group that, when the prodrug of the compound of the invention is administered to a mammalian subject, cleaves to form a free hydroxy, free amino or free mercapto group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate 30 and benzoate derivatives of alcohol or amide derivatives of amine functional groups in the compounds of the invention and the like.

The invention disclosed herein is also meant to encompass all pharmaceutically acceptable compounds of formula (I) being isotopically-labelled by having one or more atoms replaced by an atom having a different atomic mass or mass number.

35 Examples of isotopes that can be incorporated into the disclosed compounds include

isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, chlorine, and iodine, such as ^2H , ^3H , ^{11}C , ^{13}C , ^{14}C , ^{13}N , ^{15}N , ^{15}O , ^{17}O , ^{18}O , ^{31}P , ^{32}P , ^{35}S , ^{18}F , ^{36}Cl , ^{123}I , and ^{125}I , respectively. These radiolabelled compounds could be useful to help determine or measure the effectiveness of the compounds, by characterizing, for 5 example, the site or mode of action on the sodium channels, or binding affinity to pharmacologically important site of action on the sodium channels. Certain isotopically-labelled compounds of formula (I), for example, those incorporating a radioactive isotope, are useful in drug and/or substrate tissue distribution studies. The radioactive isotopes tritium, *i.e.* ^3H , and carbon-14, *i.e.* ^{14}C , are particularly useful for 10 this purpose in view of their ease of incorporation and ready means of detection.

Substitution with heavier isotopes such as deuterium, *i.e.* ^2H , may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased *in vivo* half-life or reduced dosage requirements, and hence may be preferred in some circumstances.

15 Substitution with positron emitting isotopes, such as ^{11}C , ^{18}F , ^{15}O and ^{13}N , can be useful in Positron Emission Topography (PET) studies for examining substrate receptor occupancy. Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the Preparations and Examples as set out below using 20 an appropriate isotopically-labeled reagent in place of the non-labeled reagent previously employed.

The invention disclosed herein is also meant to encompass the *in vivo* metabolic products of the disclosed compounds. Such products may result from, for example, the oxidation, reduction, hydrolysis, amidation, esterification, and the like of 25 the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof. Such products are typically identified by administering a radiolabelled compound of the invention in a detectable dose to an animal, such as rat, 30 mouse, guinea pig, monkey, or to human, allowing sufficient time for metabolism to occur, and isolating its conversion products from the urine, blood or other biological samples.

"Stable compound" and "stable structure" are meant to indicate a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction 35 mixture, and formulation into an efficacious therapeutic agent.

"Mammal" includes humans and both domestic animals such as laboratory animals and household pets, (e.g. cats, dogs, swine, cattle, sheep, goats, horses, rabbits), and non-domestic animals such as wildlife and the like.

"Optional" or "optionally" means that the subsequently described event of 5 circumstances may or may not occur, and that the description includes instances where said event or circumstance occurs and instances in which it does not. For example, "optionally substituted aryl" means that the aryl radical may or may not be substituted and that the description includes both substituted aryl radicals and aryl radicals having no substitution.

10 "Pharmaceutically acceptable carrier, diluent or excipient" includes without limitation any adjuvant, carrier, excipient, glidant, sweetening agent, diluent, preservative, dye/colorant, flavor enhancer, surfactant, wetting agent, dispersing agent, suspending agent, stabilizer, isotonic agent, solvent, or emulsifier which has been approved by the United States Food and Drug Administration as being acceptable for 15 use in humans or domestic animals.

"Pharmaceutically acceptable salt" includes both acid and base addition salts.

"Pharmaceutically acceptable acid addition salt" refers to those salts which retain the biological effectiveness and properties of the free bases, which are not biologically or otherwise undesirable, and which are formed with inorganic acids such 20 as, but are not limited to, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as, but not limited to, acetic acid, 2,2-dichloroacetic acid, adipic acid, alginic acid, ascorbic acid, aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, camphoric acid, camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, carbonic acid, 25 cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, gluconic acid, glucuronic acid, glutamic acid, glutaric acid, 2-oxo-glutaric acid, glycerophosphoric acid, glycolic acid, hippuric acid, isobutyric acid, lactic acid, lactobionic acid, lauric acid, maleic acid, malic 30 acid, malonic acid, mandelic acid, methanesulfonic acid, mucic acid, naphthalene-1,5-disulfonic acid, naphthalene-2-sulfonic acid, 1-hydroxy-2-naphthoic acid, nicotinic acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, propionic acid, pyroglutamic acid, pyruvic acid, salicylic acid, 4-aminosalicylic acid, sebacic acid, stearic acid, succinic acid, tartaric acid, thiocyanic acid, *p*-toluenesulfonic acid, 35 trifluoroacetic acid, undecylenic acid, and the like.

"Pharmaceutically acceptable base addition salt" refers to those salts which retain the biological effectiveness and properties of the free acids, which are not biologically or otherwise undesirable. These salts are prepared from addition of an inorganic base or an organic base to the free acid. Salts derived from inorganic bases 5 include, but are not limited to, the sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Preferred inorganic salts are the ammonium, sodium, potassium, calcium, and magnesium salts. Salts derived from organic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring 10 substituted amines, cyclic amines and basic ion exchange resins, such as ammonia, isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, diethanolamine, ethanolamine, deanol, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, benethamine, benzathine, ethylenediamine, 15 glucosamine, methylglucamine, theobromine, triethanolamine, tromethamine, purines, piperazine, piperidine, *N*-ethylpiperidine, polyamine resins and the like. Particularly preferred organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline and caffeine.

Often crystallizations produce a solvate of the compound of the invention. As 20 used herein, the term "solvate" refers to an aggregate that comprises one or more molecules of a compound of the invention with one or more molecules of solvent. The solvent may be water, in which case the solvate may be a hydrate. Alternatively, the solvent may be an organic solvent. Thus, the compounds of the present invention may exist as a hydrate, including a monohydrate, dihydrate, hemihydrate, sesquihydrate, 25 trihydrate, tetrahydrate and the like, as well as the corresponding solvated forms. The compound of the invention may be true solvates, while in other cases, the compound of the invention may merely retain adventitious water or be a mixture of water plus some adventitious solvent.

A "pharmaceutical composition" refers to a formulation of a compound of the 30 invention and a medium generally accepted in the art for the delivery of the biologically active compound to mammals, e.g., humans. Such a medium includes all pharmaceutically acceptable carriers, diluents or excipients therefor.

"Therapeutically effective amount" refers to that amount of a compound of the 35 invention which, when administered to a mammal, preferably a human, is sufficient to effect treatment, as defined below, of a sodium channel-mediated disease or condition

in the mammal, preferably a human. The amount of a compound of the invention which constitutes a "therapeutically effective amount" will vary depending on the compound, the condition and its severity, the manner of administration, and the age of the mammal to be treated, but can be determined routinely by one of ordinary skill in 5 the art having regard to his own knowledge and to this disclosure.

"Treating" or "treatment" as used herein covers the treatment of the disease or condition of interest in a mammal, preferably a human, having the disease or condition of interest, and includes:

- (i) preventing the disease or condition from occurring in a mammal, in 10 particular, when such mammal is predisposed to the condition but has not yet been diagnosed as having it;
- (ii) inhibiting the disease or condition, *i.e.*, arresting its development;
- (iii) relieving the disease or condition, *i.e.*, causing regression of the disease or condition; or
- 15 (iv) relieving the symptoms resulting from the disease or condition, *i.e.*, relieving pain without addressing the underlying disease or condition. As used herein, the terms "disease" and "condition" may be used interchangeably or may be different in that the particular malady or condition may not have a known causative agent (so that etiology has not yet been worked out) and it is therefore not yet recognized as a disease but only as an undesirable condition or syndrome, wherein a more or less 20 specific set of symptoms have been identified by clinicians.

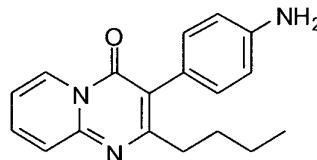
The compounds of the invention, or their pharmaceutically acceptable salts may contain one or more asymmetric centres and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of 25 absolute stereochemistry, as (R)- or (S)- or, as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optically active (+) and (-), (R)- and (S)-, or (D)- and (L)- isomers may be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques, for example, chromatography and fractional 30 crystallisation. Conventional techniques for the preparation/isolation of individual enantiomers include chiral synthesis from a suitable optically pure precursor or resolution of the racemate (or the racemate of a salt or derivative) using, for example, chiral high pressure liquid chromatography (HPLC). When the compounds described herein contain olefinic double bonds or other centres of geometric asymmetry, and 35 unless specified otherwise, it is intended that the compounds include both E and Z

geometric isomers. Likewise, all tautomeric forms are also intended to be included.

A "stereoisomer" refers to a compound made up of the same atoms bonded by the same bonds but having different three-dimensional structures, which are not interchangeable. The present invention contemplates various stereoisomers and

5 mixtures thereof and includes "enantiomers", which refers to two stereoisomers whose molecules are nonsuperimposeable mirror images of one another.

A "tautomer" refers to a proton shift from one atom of a molecule to another atom of the same molecule. The present invention includes tautomers of any said compounds.


10 Also within the scope of the invention are intermediate compounds of formula (I) and all polymorphs of the aforementioned species and crystal habits thereof.

The chemical naming protocol and structure diagrams used herein are a modified form of the I.U.P.A.C. nomenclature system, using the ACD/Name Version 9.07 software program, and/or ChemDraw Version 10.0 software naming program

15 (CambridgeSoft), wherein the compounds of the invention are named herein as derivatives of the central core structure, e.g., the pyridopyrimidinone structure. For complex chemical names employed herein, a substituent group is named before the group to which it attaches. For example, cyclopropylethyl comprises an ethyl backbone with cyclopropyl substituent. In chemical structure diagrams, all bonds are

20 identified, except for some carbon atoms, which are assumed to be bonded to sufficient hydrogen atoms to complete the valency.

Thus, for example, a compound of formula (I) wherein n is 1, R¹ is hydrogen, R² is *n*-butyl and R³ is 4-aminophenyl; *i.e.*, a compound of the following formula:

25 is named herein as 2-butyl-3-(4-aminophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one.

EMBODIMENTS OF THE INVENTION

Of the various aspects of the invention set forth above in the Summary of the Invention, certain embodiments are preferred.

One embodiment is a compound of formula (I), as set forth above in the

30 Summary of the Invention, wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)N(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

or two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other R¹'s, if present, are as described above;

15 R² is hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

R³ is hydrogen, alkyl, alkenyl, haloalkyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-N(R⁴)R⁵, or -R⁶-N(R⁴)C(O)OR⁴;

20 wherein the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and

25

30

35

-R⁶-S(O)_pN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroaryalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the

15 Summary of the Invention, wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroaryalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)N(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵ and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

R² is hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroaryalkyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

30 R³ is alkyl, alkenyl, haloalkyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroaryalkyl, -R⁶-N(R⁴)R⁵, or -R⁶-N(R⁴)C(O)OR⁴;

wherein the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroaryalkyl are each optionally substituted by one or more substituents selected from the group

consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, 5 optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N[S(O)R⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, 10 -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from the group consisting of hydrogen, alkyl, 15 alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

20 or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

25 Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo, 30 haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, 35 -R⁶-N(R⁵)S(O)N(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵ and

$-R^6-N(R^5)C(N=C(R^4)R^5)N(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

5 R^2 is hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, $-R^6-OR^5$ or $-R^6-N(R^4)R^5$;

10 R^3 is aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, wherein the aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)R^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$, $-R^6-N[S(O)R^4]_2$, $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)CN$, $-R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, $-R^6-N(R^5)-R^7-N(R^4)R^5$, $-R^6-N=C(OR^4)R^5$, $-R^6-N=C(R^4)R^5$, $-R^6-N(R^5)-R^6-OR^5$, and $-R^6-S(O)_pR^4$, $-R^6-S(O)N(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

20 each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

25 or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;

30 each R^6 is a direct bond or an optionally substituted straight or branched alkylene chain; and

35 R^7 is a straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

n is 1, 2, 3 or 4;

35 each R^1 is independently selected from the group consisting of hydrogen, alkyl, halo,

haloalkyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-N(R^4)R^5$, $-R^6-S(O)_pR^4$, $-R^6-C(O)R^4$,
 $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$,
 $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$, $-R^6-N(R^5)S(O)N(R^4)R^5$,
 $-R^6-S(O)N(R^4)R^5$ and $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, and wherein each p is
5 independently 0, 1, or 2 and each t is independently 1 or 2;
 R^2 is alkyl, haloalkyl, cycloalkylalkyl, aralkyl, heterocyclalkyl or heteroarylalkyl;
 R^3 is aryl optionally substituted by one or more substituents selected from the group
consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally
substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted
10 aralkyl, optionally substituted heterocyclyl, optionally substituted
heterocyclalkyl, optionally substituted heteroaryl, optionally substituted
heteroarylalkyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)_2R^4$,
 $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$,
 $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)_tR^4$, $-R^6-N[S(O)_tR^4]_2$,
15 $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)CN$,
 $-R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, $-R^6-N(R^5)-R^7-N(R^4)R^5$,
 $-R^6-N=C(OR^4)R^5$, $-R^6-N=C(R^4)R^5$, $-R^6-N(R^5)-R^6-OR^5$, $-R^6-S(O)_pR^4$, and
 $-R^6-S(O)N(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is
independently 1 or 2;
20 each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl,
alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted
cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl,
optionally substituted aralkyl, optionally substituted heterocyclyl, optionally
substituted heterocyclalkyl, optionally substituted heteroaryl and optionally
substituted heteroarylalkyl;
25 or R^4 and R^5 , together with the nitrogen to which they are both attached, form an
optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;
each R^6 is a direct bond or an optionally substituted straight or branched alkylene
chain; and
30 R^7 is a straight or branched alkylene chain.
Another embodiment is a compound of formula (I), as set forth above in the
Summary of the Invention, wherein:
n is 1, 2, 3 or 4;
each R^1 is independently selected from the group consisting of hydrogen, alkyl, halo
35 and haloalkyl;

R^2 is alkyl, haloalkyl or cycloalkylalkyl;

R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)R^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$, $-R^6-N[S(O)R^4]_2$, $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)CN$, $-R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, $-R^6-N(R^5)-R^7-N(R^4)R^5$, $-R^6-N=C(OR^4)R^5$, $-R^6-N=C(R^4)R^5$, $-R^6-N(R^5)-R^6-OR^5$, $-R^6-S(O)_pR^4$, and $-R^6-S(O)_tN(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

5 each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

10 or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;

15 each R^6 is a direct bond or an optionally substituted straight or branched alkylene chain; and

20 R^7 is a straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

n is 1, 2, 3 or 4;

each R^1 is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;

30 R^2 is alkyl, haloalkyl or cycloalkylalkyl;

R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)R^4$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$ and $R^6-N(R^5)C(=NR^5)N(R^4)R^5$;

each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

5 or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted N -heterocyclyl or an optionally substituted N -heteroaryl; and

10 each R^6 is a direct bond or an optionally substituted straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, selected from the group consisting of:

2-butyl-3-(4-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

15 2-butyl-3-(4-aminophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(4-hydroxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

20 *tert*-butyl 3-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino]pyrrolidine-1-carboxylate;

(S)-*tert*-butyl 2-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]carbamoyl]-25 pyrrolidine-1-carboxylate;

tert-butyl 4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylcarbamate;

2-butyl-3-(3-chloro-4-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(3-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

25 2-butyl-3-(4-chloro-3-fluorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

3-(4-chlorophenyl)-2-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl trifluoromethanesulfonate;

(S)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-30 yl)phenylamino)pyrrolidine-1-carboxylate;

(R)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;

tert-butyl 3-(3-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;

tert-butyl 3-[(4-[2-(1-methylethyl)-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-35 yl]phenyl]amino)pyrrolidine-1-carboxylate;

(*R*)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)-2-fluorophenylamino)pyrrolidine-1-carboxylate;

2-butyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*S*)-*N*-[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]-*L*-prolinamide;

5 (*S*)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*R*)-2-butyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*R*)-2-butyl-3-{3-fluoro-4-[(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one};

2-butyl-3-[3-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-(1-methylethyl)-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

10 3-(4-chlorophenyl)-2-methyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

3-(4-chlorophenyl)-2-ethyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

3-(4-chlorophenyl)-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(2-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(4-chloro-2-methylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

15 2-butyl-3-(4-chloro-3-methylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(4-chloro-3-(trifluoromethyl)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

3-(4-chlorophenyl)-2-isopentyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

3-(4-chlorophenyl)-2-(2-cyclopropylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(4-chlorophenyl)-7-methyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

20 2-butyl-3-(4-chlorophenyl)-7-fluoro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(4-chlorophenyl)-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-7-chloro-3-(4-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

tert-butyl 3-{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate;

25 (*R*)-*tert*-butyl 3-{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate;

tert-butyl 4-{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate;

(*R*)-*tert*-butyl 3-(4-(2-methyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;

30 (*R*)-*tert*-butyl 3-(4-(2-ethyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;

(*R*)-*tert*-butyl 3-(4-(4-oxo-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;

35 (*R*)-*tert*-butyl 3-{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)-3-

methylphenyl]amino}pyrrolidine-1-carboxylate;
 (R)-*tert*-butyl 3-(4-(2-isopentyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;
 (R)-*tert*-butyl 3-(4-(2-cyclopropylethyl)-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;
 5 (R)-*tert*-butyl 3-[4-(2-butyl-7-methyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}pyrrolidine-1-carboxylate;
tert-butyl 3-[4-(2-butyl-7-fluoro-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}pyrrolidine-1-carboxylate;
 10 (R)-*tert*-butyl 3-(4-[2-butyl-4-oxo-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenyl]amino)pyrrolidine-1-carboxylate;
 2-butyl-3-(4-morpholin-4-ylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 2-butyl-3-[4-(tetrahydro-2*H*-pyran-4-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one ;
 (R)-2-butyl-3-(4-[[tetrahydrofuran-2-ylmethyl]amino]phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-
 15 4-one;
 (S)-2-butyl-3-(4-[[tetrahydrofuran-2-ylmethyl]amino]phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R)-2-butyl-3-{4-[tetrahydrofuran-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one
 hydrochloride;
 20 2-butyl-3-[4-(piperidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 2-butyl-3-[4-(piperidin-4-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R)-2-butyl-3-{4-[piperidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R)-2-methyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 25 (R)-2-ethyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R)-2-propyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R)-2-butyl-7-methyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-
 30 one;
 (R)-2-butyl-7-fluoro-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 35 (R)-2-butyl-3-{2-methyl-4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R)-2-isopentyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R)-2-(2-cyclopropylethyl)-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*R*)-2-butyl-3-(4-{{1-methylpyrrolidin-3-yl}amino}phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*R*)-2-butyl-3-(4-{methyl[1-methylpyrrolidin-3-yl]amino}phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

5 2-butyl-7-chloro-3-(4-hydroxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

tert-butyl (*R*)-3-[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenoxy]pyrrolidine-1-carboxylate;

(*R*)-2-butyl-3-{4-[pyrrolidin-3-yl]oxy}phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

tert-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}(methyl)amino}piperidine-1-carboxylate; and

10 2-butyl-3-{4-[methyl(piperidin-3-yl)amino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

n is 1, 2, 3 or 4;

15 each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵ and -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

20 R² is -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

R³ is aryl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

25 30 35 each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl,

alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

5 or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; each R^6 is a direct bond or an optionally substituted straight or branched alkylene chain; and

10 R^7 is a straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

n is 1, 2, 3 or 4;

each R^1 is hydrogen;

15 R^2 is $-R^6-OR^5$ or $-R^6-N(R^4)R^5$;

R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, - R^6-CN , - R^6-NO_2 , - R^6-OR^5 , - $R^6-OC(O)R^4$, - $R^6-OS(O)_2R^4$, - $R^6-C(O)R^4$, - $R^6-C(O)OR^4$, - $R^6-C(O)N(R^4)R^5$, - $R^6-N(R^4)R^5$, - $R^6-N(R^5)C(O)R^4$, - $R^6-N(R^5)C(O)OR^4$, - $R^6-N(R^5)C(O)N(R^4)R^5$, - $R^6-N(R^5)S(O)_tR^4$, - $R^6-N[S(O)_tR^4]_2$, - $R^6-N(R^5)C(=NR^5)N(R^4)R^5$, - $R^6-N(R^5)C(=NR^5)N(R^4)CN$, - $R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, - $R^6-N(R^5)-R^7-N(R^4)R^5$, - $R^6-N=C(OR^4)R^5$, - $R^6-N=C(R^4)R^5$, - $R^6-N(R^5)-R^6-OR^5$, - $R^6-S(O)_pR^4$, and - $R^6-S(O)_tN(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

20 each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, heteroarylalkyl, - R^6-CN , - R^6-NO_2 , - R^6-OR^5 , - $R^6-OC(O)R^4$, - $R^6-OS(O)_2R^4$, - $R^6-C(O)R^4$, - $R^6-C(O)OR^4$, - $R^6-C(O)N(R^4)R^5$, - $R^6-N(R^4)R^5$, - $R^6-N(R^5)C(O)R^4$, - $R^6-N(R^5)C(O)OR^4$, - $R^6-N(R^5)C(O)N(R^4)R^5$, - $R^6-N(R^5)S(O)_tR^4$, - $R^6-N[S(O)_tR^4]_2$, - $R^6-N(R^5)C(=NR^5)N(R^4)R^5$, - $R^6-N(R^5)C(=NR^5)N(R^4)CN$, - $R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, - $R^6-N(R^5)-R^7-N(R^4)R^5$, - $R^6-N=C(OR^4)R^5$, - $R^6-N=C(R^4)R^5$, - $R^6-N(R^5)-R^6-OR^5$, - $R^6-S(O)_pR^4$, and - $R^6-S(O)_tN(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

25 each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, heteroarylalkyl, - R^6-CN , - R^6-NO_2 , - R^6-OR^5 , - $R^6-OC(O)R^4$, - $R^6-OS(O)_2R^4$, - $R^6-C(O)R^4$, - $R^6-C(O)OR^4$, - $R^6-C(O)N(R^4)R^5$, - $R^6-N(R^4)R^5$, - $R^6-N(R^5)C(O)R^4$, - $R^6-N(R^5)C(O)OR^4$, - $R^6-N(R^5)C(O)N(R^4)R^5$, - $R^6-N(R^5)S(O)_tR^4$, - $R^6-N[S(O)_tR^4]_2$, - $R^6-N(R^5)C(=NR^5)N(R^4)R^5$, - $R^6-N(R^5)C(=NR^5)N(R^4)CN$, - $R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, - $R^6-N(R^5)-R^7-N(R^4)R^5$, - $R^6-N=C(OR^4)R^5$, - $R^6-N=C(R^4)R^5$, - $R^6-N(R^5)-R^6-OR^5$, - $R^6-S(O)_pR^4$, and - $R^6-S(O)_tN(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

30 each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

35 or R^4 and R^5 , together with the nitrogen to which they are both attached, form an

optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl; each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

5 Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

n is 1, 2, 3 or 4;

each R¹ is hydrogen;

R² is -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

10 R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴ and R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

15 or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl;

and

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain.

20 Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, selected from the group consisting of:

3-(4-chlorophenyl)-2-[(1-methylethyl)amino]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

3-(4-chlorophenyl)-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

3-(4-chlorophenyl)-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

30 3-(4-chlorophenyl)-2-methoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

3-(4-chlorophenyl)-2-(1-methylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*R*)-*tert*-butyl 3-{{4-(4-oxo-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}pyrrolidine-1-carboxylate;

35 *tert*-butyl 3-{{4-[4-oxo-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenyl}amino}pyrrolidine-1-carboxylate;

tert-butyl 3-[(4-{2-[(1-methylethyl)amino]-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl}phenyl)amino]pyrrolidine-1-carboxylate;
(R)-*tert*-butyl 3-[(4-{2-[(1-methylethyl)amino]-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl}phenyl)amino]pyrrolidine-1-carboxylate;
5 2-methoxy-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
(R)-2-pyrrolidin-1-yl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-(propylamino)-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
(R)-2-[(1-methylethyl)amino]-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
10 2-[(1-methylethyl)amino]-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-propoxy-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-(2-methoxyethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
tert-butyl 3-[(4-{2-methoxy-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-
15 yl}phenyl)amino]pyrrolidine-1-carboxylate;
(R)-*tert*-butyl 3-(4-{4-oxo-2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-3-
yl}phenylamino)pyrrolidine-1-carboxylate; and
(R)-2-propoxy-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one.
Another embodiment is a compound of formula (I), as set forth above in the
20 Summary of the Invention, wherein:
n is 1, 2, 3 or 4;
each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo,
haloalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴,
-
25 -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴,
-R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N(R⁵)S(O)N(R⁴)R⁵,
-R⁶-S(O)N(R⁴)R⁵ and -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and wherein each p is
independently 0, 1, or 2 and each t is independently 1 or 2;
R² is alkyl, haloalkyl, aralkyl, heterocyclalkyl or heteroarylalkyl;
R³ is aralkyl optionally substituted by one or more substituents selected from the group
30 consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally
substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted
aralkyl, optionally substituted heterocyclyl, optionally substituted
heterocyclalkyl, optionally substituted heteroaryl, optionally substituted
heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴,
35 -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴,

$\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{O})\text{OR}^4$, $\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{O})\text{N}(\text{R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{S}(\text{O})_t\text{R}^4$, $\text{-R}^6\text{-N}[\text{S}(\text{O})_t\text{R}^4]_2$,
 $\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{=NR}^5)\text{N}(\text{R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{=NR}^5)\text{N}(\text{R}^4)\text{CN}$,
 $\text{-R}^6\text{-N}(\text{R}^5)\text{C}[\text{=NC}(\text{O})\text{OR}^4]\text{-N}(\text{R}^4)\text{-C}(\text{O})\text{OR}^4$, $\text{-R}^6\text{-N}(\text{R}^5)\text{-R}^7\text{-N}(\text{R}^4)\text{R}^5$,
 $\text{-R}^6\text{-N}=\text{C}(\text{OR}^4)\text{R}^5$, $\text{-R}^6\text{-N}=\text{C}(\text{R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{-R}^6\text{-OR}^5$, $\text{-R}^6\text{-S}(\text{O})_p\text{R}^4$,
5 $\text{-R}^6\text{-S}(\text{O})_t\text{N}(\text{R}^4)\text{R}^5$, wherein each p is independently 0, 1, or 2 and each t is
 independently 1 or 2;
 each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl,
 alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted
 cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl,
10 optionally substituted aralkyl, optionally substituted heterocyclyl, optionally
 substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally
 substituted heteroarylalkyl;
 or R^4 and R^5 , together with the nitrogen to which they are both attached, form an
 optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;
15 each R^6 is a direct bond or an optionally substituted straight or branched alkylene
 chain; and
 R^7 is a straight or branched alkylene chain.
 Another embodiment is a compound of formula (I), as set forth above in the
 Summary of the Invention, wherein:
20 n is 1, 2, 3 or 4;
 each R^1 is independently selected from the group consisting of hydrogen, alkyl, halo,
 haloalkyl, $\text{-R}^6\text{-CN}$, $\text{-R}^6\text{-NO}_2$, $\text{-R}^6\text{-OR}^5$, $\text{-R}^6\text{-N}(\text{R}^4)\text{R}^5$, $\text{-R}^6\text{-S}(\text{O})_p\text{R}^4$, $\text{-R}^6\text{-C}(\text{O})\text{R}^4$,
 $\text{-R}^6\text{-C}(\text{O})\text{OR}^4$, $\text{-R}^6\text{-C}(\text{O})\text{N}(\text{R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{O})\text{R}^4$, $\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{O})\text{OR}^4$,
 $\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{O})\text{N}(\text{R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{S}(\text{O})_t\text{R}^4$, $\text{-R}^6\text{-N}(\text{R}^5)\text{S}(\text{O})_t\text{N}(\text{R}^4)\text{R}^5$,
25 $\text{-R}^6\text{-S}(\text{O})_t\text{N}(\text{R}^4)\text{R}^5$ and $\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{=NR}^5)\text{N}(\text{R}^4)\text{R}^5$, and wherein each p is
 independently 0, 1, or 2 and each t is independently 1 or 2;
 R^2 is alkyl, haloalkyl, cycloalkylalkyl, aralkyl, heterocyclylalkyl or heteroarylalkyl;
 R^3 is heteroaryl optionally substituted by one or more substituents selected from the
 group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl,
30 optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally
 substituted aralkyl, optionally substituted heterocyclyl, optionally substituted
 heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted
 heteroarylalkyl, $\text{-R}^6\text{-CN}$, $\text{-R}^6\text{-NO}_2$, $\text{-R}^6\text{-OR}^5$, $\text{-R}^6\text{-OC}(\text{O})\text{R}^4$, $\text{-R}^6\text{-OS}(\text{O})_2\text{R}^4$,
 $\text{-R}^6\text{-C}(\text{O})\text{R}^4$, $\text{-R}^6\text{-C}(\text{O})\text{OR}^4$, $\text{-R}^6\text{-C}(\text{O})\text{N}(\text{R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{O})\text{R}^4$,
35 $\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{O})\text{OR}^4$, $\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{O})\text{N}(\text{R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{S}(\text{O})_t\text{R}^4$, $\text{-R}^6\text{-N}[\text{S}(\text{O})_t\text{R}^4]_2$,

$\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{=NR}^5)\text{N}(\text{R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{C}(\text{=NR}^5)\text{N}(\text{R}^4)\text{CN}$,
 $\text{-R}^6\text{-N}(\text{R}^5)\text{C}[\text{=NC(O)OR}^4]\text{-N}(\text{R}^4)\text{-C(O)OR}^4$, $\text{-R}^6\text{-N}(\text{R}^5)\text{-R}^7\text{-N}(\text{R}^4)\text{R}^5$,
 $\text{-R}^6\text{-N=C(OR}^4)\text{R}^5$, $\text{-R}^6\text{-N=C(R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{-R}^6\text{-OR}^5$, $\text{-R}^6\text{-S(O)}_p\text{R}^4$,
 $\text{-R}^6\text{-S(O)}_t\text{N}(\text{R}^4)\text{R}^5$, wherein each p is independently 0, 1, or 2 and each t is
5 independently 1 or 2;
each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;
10 or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;
each R^6 is a direct bond or an optionally substituted straight or branched alkylene
15 chain; and
 R^7 is a straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

n is 1, 2, 3 or 4;
20 each R^1 is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;
 R^2 is alkyl, haloalkyl or cycloalkylalkyl;
 R^3 is pyridinyl, indolyl or indolinyl, wherein the pyridinyl, indolyl and indolinyl are each
25 optionally substituted by one or more substituents selected from the group
 consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally
 substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted
 aralkyl, optionally substituted heterocyclyl, optionally substituted
 heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted
 heteroarylalkyl, $\text{-R}^6\text{-CN}$, $\text{-R}^6\text{-NO}_2$, $\text{-R}^6\text{-OR}^5$, $\text{-R}^6\text{-OC(O)R}^4$, $\text{-R}^6\text{-OS(O)}_2\text{R}^4$,
30 $\text{-R}^6\text{-C(O)R}^4$, $\text{-R}^6\text{-C(O)OR}^4$, $\text{-R}^6\text{-C(O)N(R}^4)\text{R}^5$, $\text{-R}^6\text{-N(R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{C(O)R}^4$,
 $\text{-R}^6\text{-N}(\text{R}^5)\text{C(O)OR}^4$, $\text{-R}^6\text{-N}(\text{R}^5)\text{C(O)N(R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{S(O)}_t\text{R}^4$, $\text{-R}^6\text{-N}[\text{S(O)}_t\text{R}^4]_2$,
 $\text{-R}^6\text{-N}(\text{R}^5)\text{C(=NR}^5)\text{N}(\text{R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{C(=NR}^5)\text{N}(\text{R}^4)\text{CN}$,
 $\text{-R}^6\text{-N}(\text{R}^5)\text{C}[\text{=NC(O)OR}^4]\text{-N}(\text{R}^4)\text{-C(O)OR}^4$, $\text{-R}^6\text{-N}(\text{R}^5)\text{-R}^7\text{-N}(\text{R}^4)\text{R}^5$,
 $\text{-R}^6\text{-N=C(OR}^4)\text{R}^5$, $\text{-R}^6\text{-N=C(R}^4)\text{R}^5$, $\text{-R}^6\text{-N}(\text{R}^5)\text{-R}^6\text{-OR}^5$, $\text{-R}^6\text{-S(O)}_p\text{R}^4$, and
35 $\text{-R}^6\text{-S(O)}_t\text{N}(\text{R}^4)\text{R}^5$, wherein each p is independently 0, 1, or 2 and each t is

independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, 5 optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

10 each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

15 n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;

R² is alkyl, haloalkyl or cycloalkylalkyl;

R³ is pyridinyl, indolyl or indolinyl, where the pyridinyl, indolyl and indolinyl are each 20 optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)₂R⁴ and R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, 25 alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an 30 optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

and

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain.

35 Another embodiment is a compound of formula (I), as set forth above in the

Summary of the Invention, selected from the group consisting of:

2-butyl-3-(6-chloropyridin-3-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(1*H*-indol-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

tert-butyl 4-(5-(4-oxo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)pyridin-2-yl)piperazine-1-

5 carboxylate;

2-butyl-3-(indolin-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*R*)-*tert*-butyl 3-(5-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)pyridin-2-

10 ylamo)pyrrolidine-1-carboxylate;

tert-butyl 3-(5-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)indolin-1-yl)pyrrolidine-1-

15 carboxylate;

2-butyl-3-(1-(pyrrolidin-3-yl)indolin-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one; and

2-butyl-3-(6-piperazin-1-ylpyridin-3-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

15 n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N(R⁵)S(O)N(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵ and -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

20 R² is alkyl, haloalkyl, aralkyl, heterocyclalkyl or heteroarylalkyl;

R³ is heteroarylalkyl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

25

30

35

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

5 or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene

10 chain; and

R⁷ is a straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

n is 2, 3 or 4;

15 two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other R¹'s, if present, are independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, cycloalkyl,

20 cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

25 R² is hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

30 R³ is hydrogen, alkyl, alkenyl, haloalkyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-N(R⁴)R⁵, or -R⁶-N(R⁴)C(O)OR⁴;

35 wherein the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl,

heterocyclalkyl, heteroaryl and heteroarylalkyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, 5 optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, 10 -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N[S(O)R⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, 15 -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, 20 optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocycl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene 25 chain; and

R⁷ is a straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

n is 2, 3 or 4;

30 two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form an optionally substituted aryl, and the other R¹'s are independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;

R² is alkyl, haloalkyl, cycloalkylalkyl, aralkyl, heterocyclalkyl, heteroarylalkyl, -R⁶-OR⁵ 35 or -R⁶-N(R⁴)R⁵;

R³ is aryl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

n is 2, 3 or 4;

two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form an optionally substituted phenyl, and the other R¹'s are independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;

R² is alkyl, haloalkyl, cycloalkylalkyl, aralkyl, heterocyclylalkyl, heteroarylalkyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally

substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴,
 5 -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴,
 -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N[S(O)]₂R⁴,
 10 -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵,
 -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and
 15 -R⁶-S(O)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;
 each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, 20 optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;
 or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;
 25 each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and
 R⁷ is a straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein:

25 n is 2, 3 or 4;
 two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form an optionally substituted phenyl, and the other R¹'s are independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;
 30 R² is alkyl, haloalkyl, cycloalkylalkyl, aralkyl, heterocyclylalkyl, heteroarylalkyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;
 R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴,
 35 -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵,
 -R⁶-N(R⁵)S(O)R⁴ and R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵;

each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

5 or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted N -heterocyclyl or an optionally substituted N -heteroaryl; and

10 each R^6 is a direct bond or an optionally substituted straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, selected from the group consisting of: 2-butyl-3-(4-chlorophenyl)-4H-pyrimido[2,1-a]isoquinolin-4-one;

15 (*R*)-*tert*-butyl 3-{{4-(2-butyl-4-oxo-4H-pyrimido[2,1-a]isoquinolin-3-yl)phenyl}amino}pyrrolidine-1-carboxylate; and (*R*)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4H-pyrimido[2,1-a]isoquinolin-4-one.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein n is 1 or 2; each R^1 is independently selected from

20 the group consisting of hydrogen, alkyl, halo and haloalkyl; R^2 is alkyl, haloalkyl or cycloalkylalkyl; R^3 is phenyl, pyridinyl or indolinyl, each optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl, $-R^6-OR^5$, $-R^6-OS(O)_2R^4$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$ and optionally substituted heterocyclyl; each R^4 and R^5 is independently selected from group

25 consisting of hydrogen, alkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted heterocyclyl, and optionally substituted heterocyclylalkyl; or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted N -heterocyclyl or an optionally substituted N -heteroaryl; and each R^6 is a direct bond or an optionally substituted straight or branched alkylene chain.

30 Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein n is 1 or 2; each R^1 is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl; R^2 is alkyl, haloalkyl or cycloalkylalkyl; R^3 is phenyl, pyridinyl or indolinyl, each optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl and

35 $-R^6-N(R^4)R^5$; R^4 is hydrogen or alkyl; R^5 is selected from the group consisting of

optionally substituted heterocyclyl and optionally substituted heterocyclylalkyl; R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein n is 1 or 2; each R¹ is independently selected from 5 the group consisting of hydrogen, alkyl, halo and haloalkyl; R² is alkyl, haloalkyl or cycloalkylalkyl; R³ is phenyl, pyridinyl or indolinyl, each optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl and -R⁶-N(R⁴)R⁵; R⁴ is hydrogen or alkyl; R⁵ is selected from the group consisting of pyrrolidinyl, piperidinyl, tetrahydrofuran-yl, tetrahydropyran-yl and tetrahydrofuranylalkyl 10 where the pyrrolidinyl, piperidinyl, tetrahydrofuran-yl, tetrahydropyran-yl and tetrahydrofuranylalkyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, halo, haloalkyl, haloalkenyl, cyano, oxo, thioxo, nitro, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R¹⁵-OR¹⁴, -R¹⁵-OC(O)-R¹⁴, -R¹⁵-N(R¹⁴)₂, 15 -R¹⁵-C(O)R¹⁴, -R¹⁵-C(O)OR¹⁴, -R¹⁵-C(O)N(R¹⁴)₂, -R¹⁵-N(R¹⁴)C(O)OR¹⁶, -R¹⁵-N(R¹⁴)C(O)R¹⁶, -R¹⁵-N(R¹⁴)S(O)_tR¹⁶ (where t is 1 to 2), -R¹⁵-N=C(OR¹⁴)R¹⁴, -R¹⁵-S(O)_tOR¹⁶ (where t is 1 to 2), -R¹⁵-S(O)_pR¹⁶ (where p is 0 to 2), and -R¹⁵-S(O)_tN(R¹⁴)₂ (where t is 1 to 2) where each R¹⁴ is independently hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, 20 heterocyclylalkyl, heteroaryl or heteroarylalkyl; each R¹⁵ is independently a direct bond or a straight or branched alkylene or alkenylene chain; and each R¹⁶ is alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl; and R⁶ is a direct bond.

Another embodiment is a compound of formula (I), as set forth above in the 25 Summary of the Invention, wherein n is 1 or 2; each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl; R² is alkyl, haloalkyl or cycloalkylalkyl; R³ is phenyl, pyridinyl or indolinyl, each optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl and -R⁶-N(R⁴)R⁵; R⁴ is hydrogen or alkyl; R⁵ is selected from the group consisting of 30 pyrrolidinyl, piperidinyl, tetrahydrofuran-yl, tetrahydropyran-yl and tetrahydrofuranylalkyl where the pyrrolidinyl, piperidinyl, tetrahydrofuran-yl, tetrahydropyran-yl and tetrahydrofuranylalkyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl and -R¹⁵-C(O)OR¹⁴ where R¹⁴ is hydrogen, alkyl, haloalkyl; and R¹⁵ is a direct bond; and R⁶ is a direct bond.

35 Another embodiment is a compound of formula (I), as set forth above in the

Summary of the Invention, wherein n is 1 or 2; each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl; R² is alkyl, haloalkyl or cycloalkylalkyl; R³ is phenyl, pyridinyl or indolinyl, each optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵ and optionally substituted heterocyclyl; each R⁴ and R⁵ is independently selected from group consisting of hydrogen and alkyl; or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl; and each R⁶ is a direct bond.

Another embodiment is a compound of formula (I), as set forth above in the
10 Summary of the Invention, wherein n is 1 or 2; each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl; R² is alkyl, haloalkyl or cycloalkylalkyl; R³ is phenyl, pyridinyl or indolinyl, each optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵ and optionally substituted pyrrolidinyl; each R⁴ and R⁵ is independently selected from group consisting of hydrogen and alkyl; or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted morpholinyl or 15 an optionally substituted piperazinyl; and each R⁶ is a direct bond.

Another embodiment is a compound of formula (I), as set forth above in the
Summary of the Invention, wherein n is 1 or 2; each R¹ is independently selected from
20 the group consisting of hydrogen, alkyl, halo and haloalkyl; R² is alkyl, haloalkyl or cycloalkylalkyl; R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl, and -R⁶-OS(O)₂R⁴; R⁴ is alkyl or haloalkyl; and R⁶ is a direct bond.

Another embodiment is a compound of formula (I), as set forth above in the
25 Summary of the Invention, wherein n is 1 or 2; each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl; R² is alkyl, haloalkyl or cycloalkylalkyl; R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl and -R⁶-N(R⁵)C(O)R⁴; R⁴ is optionally substituted heterocyclyl; R⁵ is hydrogen or alkyl; and R⁶ is a direct bond.

30 Another embodiment is a compound of formula (I), as set forth above in the
Summary of the Invention, wherein n is 1 or 2; each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl; R² is alkyl, haloalkyl or cycloalkylalkyl; R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl and -R⁶-N(R⁵)C(O)R⁴; R⁴ is optionally 35 substituted pyrrolidinyl; R⁵ is hydrogen or alkyl; and R⁶ is a direct bond.

Another embodiment is a compound of formula (I), as set forth above in the Summary of the Invention, wherein n is 1 or 2; each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl; R² is alkyl, haloalkyl or cycloalkylalkyl; R³ is phenyl optionally substituted by one or more substituents selected 5 from the group consisting of halo, alkyl, haloalkyl and -R⁶-N(R⁵)C(O)OR⁴; R⁴ is alkyl; R⁵ is hydrogen or alkyl; and R⁶ is a direct bond.

Another embodiment of the invention is a method of treating, preventing or ameliorating a disease or a condition in a mammal, preferably a human, wherein the disease or condition is selected from the group consisting of pain, depression, 10 cardiovascular diseases, respiratory diseases, and psychiatric diseases, and combinations thereof, and wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a 15 pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

One embodiment of this embodiment is wherein the disease or condition is 20 selected from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post-surgical pain, childbirth pain, labor pain, neurogenic bladder, ulcerative colitis, chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, sinus headache, tension headache, phantom limb pain, peripheral 25 nerve injury, and combinations thereof.

Another embodiment of this embodiment is wherein the disease or condition is selected from the group consisting of pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, post-herpetic neuralgia, eudynia, heat sensitivity, 30 tosarcoidosis, irritable bowel syndrome, Crohns disease, pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), diabetic neuropathy, peripheral neuropathy, arthritic, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, 35 schizophrenia, sodium channel toxin related illnesses, familial erythermalgia, primary erythermalgia, familial rectal pain, cancer, epilepsy, partial and general tonic seizures,

restless leg syndrome, arrhythmias, fibromyalgia, neuroprotection under ischaemic conditions caused by stroke or neural trauma, tachy-arrhythmias, atrial fibrillation and ventricular fibrillation.

Another embodiment of the invention is the method of treating pain in a
5 mammal, preferably a human, by the inhibition of ion flux through a voltage-dependent sodium channel in the mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or
10 prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

Another embodiment of the invention is the method of treating or preventing
15 hypercholesterolemia in a mammal, preferably a human, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition
20 comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

Another embodiment of the invention is the method of treating or preventing
25 benign prostatic hyperplasia in a mammal, preferably a human, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition
30 comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

Another embodiment of the invention is the method of treating or preventing
35 pruritis in a mammal, preferably a human, wherein the method comprises

administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a

5 therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

Another embodiment of the invention is the method of treating or preventing

10 cancer in a mammal, preferably a human, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a

15 therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.

Another embodiment of the invention is the method of decreasing ion flux

20 through a voltage-dependent sodium channel in a cell in a mammal, wherein the method comprises contacting the cell with an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof.

Specific embodiments of the compounds of the invention are described in more

25 detail below in the Preparation of the Compounds of Formula (I).

UTILITY AND TESTING OF THE COMPOUNDS OF THE INVENTION

The compounds of the invention modulate, preferably inhibit, ion flux through a voltage-dependent sodium channel in a mammal, especially in a human. Any such modulation, whether it be partial or complete inhibition or prevention of ion flux, is

30 sometimes referred to herein as "blocking" and corresponding compounds as "blockers" or "inhibitors". In general, the compounds of the invention modulate the activity of a sodium channel downwards, inhibit the voltage-dependent activity of the sodium channel, and/or reduce or prevent sodium ion flux across a cell membrane by preventing sodium channel activity such as ion flux.

The compounds of the invention inhibit the ion flux through a voltage-dependent sodium channel. Preferably, the compounds are state or frequency dependent modifiers of the sodium channels, having a low affinity for the rested/closed state and a high affinity for the inactivated state. These compounds are likely to

5 interact with overlapping sites located in the inner cavity of the sodium conducting pore of the channel similar to that described for other state-dependent sodium channel blockers (Cestèle, S., et al., *op. cit.*). These compounds may also be likely to interact with sites outside of the inner cavity and have allosteric effects on sodium ion conduction through the channel pore.

10 Any of these consequences may ultimately be responsible for the overall therapeutic benefit provided by these compounds.

Accordingly, the compounds of the invention are sodium channel blockers and are therefore useful for treating diseases and conditions in mammals, preferably humans, and other organisms, including all those human diseases and conditions

15 which are the result of aberrant voltage-dependent sodium channel biological activity or which may be ameliorated by modulation of voltage-dependent sodium channel biological activity.

As defined herein, a sodium channel-mediated disease or condition refers to a disease or condition in a mammal, preferably a human, which is ameliorated upon

20 modulation of the sodium channel and includes, but is not limited to, pain, central nervous conditions such as epilepsy, anxiety, depression and bipolar disease; cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular conditions such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple

25 sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome.

The present invention therefore relates to compounds, pharmaceutical compositions and methods of using the compounds and pharmaceutical compositions for the treatment of sodium channel-mediated diseases in mammals, preferably

30 humans and preferably diseases related to pain, central nervous conditions such as epilepsy, anxiety, depression and bipolar disease; cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular conditions such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple sclerosis; and channelopathies such as

35 erythromyalgia and familial rectal pain syndrome, by administering to a mammal,

preferably a human, in need of such treatment an effective amount of a sodium channel blocker modulating, especially inhibiting, agent.

Accordingly, the present invention provides a method for treating a mammal for, or protecting a mammal from developing, a sodium channel-mediated disease,

5 especially pain, comprising administering to the mammal, especially a human, in need thereof, a therapeutically effective amount of a compound of the invention or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention wherein the compound modulates the activity of one or more voltage-dependent sodium channels.

10 The general value of the compounds of the invention in mediating, especially inhibiting, the sodium channel ion flux can be determined using the assays described below in the Biological Assays section. Alternatively, the general value of the compounds in treating conditions and diseases in humans may be established in industry standard animal models for demonstrating the efficacy of compounds in 15 treating pain. Animal models of human neuropathic pain conditions have been developed that result in reproducible sensory deficits (allodynia, hyperalgesia, and spontaneous pain) over a sustained period of time that can be evaluated by sensory testing. By establishing the degree of mechanical, chemical, and temperature induced allodynia and hyperalgesia present, several physiopathological conditions observed in 20 humans can be modeled allowing the evaluation of pharmacotherapies.

In rat models of peripheral nerve injury, ectopic activity in the injured nerve corresponds to the behavioural signs of pain. In these models, intravenous application of the sodium channel blocker and local anesthetic lidocaine can suppress the ectopic activity and reverse the tactile allodynia at concentrations that do not affect general 25 behaviour and motor function (Mao, J. and Chen, L.L, *Pain* (2000), 87:7-17). Allometric scaling of the doses effective in these rat models, translates into doses similar to those shown to be efficacious in humans (Tanelian, D.L. and Brose, W.G., *Anesthesiology* (1991), 74(5):949-951). Furthermore, Lidoderm®, lidocaine applied in the form of a dermal patch, is currently an FDA approved treatment for post-herpetic neuralgia 30 (Devers, A. and Glaler, B.S., *Clin. J. Pain* (2000), 16(3):205-8).

A sodium channel-mediated disease or condition also includes pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, glossopharyngeal neuralgia, neuropathy secondary to metastatic infiltration, adiposis dolorosa, thalamic lesions, hypertension, autoimmune disease, asthma, drug addiction (e.g. opiate, 35 benzodiazepine, amphetamine, cocaine, alcohol, butane inhalation), Alzheimer,

dementia, age-related memory impairment, Korsakoff syndrome, restenosis, urinary dysfunction, incontinence, Parkinson's disease, cerebrovascular ischemia, neurosis, gastrointestinal disease, sickle cell anemia, transplant rejection, heart failure, myocardial infarction, reperfusion injury, intermittent claudication, angina, convulsion,

5 respiratory disorders, cerebral or myocardial ischemias, long-QT syndrome, Catecholaminergic polymorphic ventricular tachycardia, ophthalmic diseases, spasticity, spastic paraplegia, myopathies, myasthenia gravis, paramyotonia congenita, hyperkalemic periodic paralysis, hypokalemic periodic paralysis, alopecia, anxiety disorders, psychotic disorders, mania, paranoia, seasonal affective disorder, panic

10 disorder, obsessive compulsive disorder (OCD), phobias, autism, Aspergers Syndrome, Retts syndrome, disintegrative disorder, attention deficit disorder, aggressivity, impulse control disorders, thrombosis, pre clampsia, congestive cardiac failure, cardiac arrest, Freidrich's ataxia, Spinocerebellar ataxia, myelopathy, radiculopathy, systemic lupus erythematosis, granulomatous disease, olivo-ponto-

15 cerebellar atrophy, spinocerebellar ataxia, episodic ataxia, myokymia, progressive pallidal atrophy, progressive supranuclear palsy and spasticity, traumatic brain injury, cerebral oedema, hydrocephalus injury, spinal cord injury, anorexia nervosa, bulimia, Prader-Willi syndrome, obesity, optic neuritis, cataract, retinal haemorrhage, ischaemic retinopathy, retinitis pigmentosa, acute and chronic glaucoma, macular degeneration,

20 retinal artery occlusion, Chorea, Huntington's chorea, cerebral edema, proctitis, post-herpetic neuralgia, eudynia, heat sensitivity, sarcoidosis, irritable bowel syndrome, Tourette syndrome, Lesch-Nyhan Syndrome, Brugado syndrome, Liddle syndrome, Crohns disease, multiple sclerosis and the pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), disseminated sclerosis, diabetic neuropathy,

25 peripheral neuropathy, charcot marie tooth syndrome, arthritic, rheumatoid arthritis, osteoarthritis, chondrocalcinosis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, myotonic dystrophy, muscular dystrophy, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, mental handicap, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxin

30 related illnesses, familial erythermalgia, primary erythermalgia, rectal pain, cancer, epilepsy, partial and general tonic seizures, febrile seizures, absence seizures (petit mal), myoclonic seizures, atonic seizures, clonic seizures, Lennox Gastaut, West Syndrome (infantile spasms), multiresistant seizures, seizure prophylaxis (anti-epileptogenic), familial Mediterranean fever syndrome, gout, restless leg syndrome,

35 arrhythmias, fibromyalgia, neuroprotection under ischaemic conditions caused by

stroke or neural trauma, tachy-arrhythmias, atrial fibrillation and ventricular fibrillation and as a general or local anaesthetic.

As used herein, the term "pain" refers to all categories of pain and is recognized to include, but is not limited to, neuropathic pain, inflammatory pain, 5 nociceptive pain, idiopathic pain, neuralgic pain, orofacial pain, burn pain, burning mouth syndrome, somatic pain, visceral pain, myofacial pain, dental pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post-surgical pain, childbirth pain, labor pain, reflex sympathetic dystrophy, brachial plexus avulsion, neurogenic bladder, acute pain (e.g. musculoskeletal and post-operative pain), chronic pain, persistent pain, 10 peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, familial hemiplegic migraine, conditions associated with cephalic pain, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, pain following stroke, thalamic lesions, radiculopathy, HIV pain, post-herpetic pain, non-cardiac chest pain, irritable bowel syndrome and pain associated with bowel disorders 15 and dyspepsia, and combinations thereof.

Sodium channel blockers have clinical uses in addition to pain. Epilepsy and cardiac arrhythmias are often targets of sodium channel blockers. Recent evidence from animal models suggest that sodium channel blockers may also be useful for neuroprotection under ischaemic conditions caused by stroke or neural trauma and in 20 patients with multiple sclerosis (MS) (Clare, J.J. *et al.*, *op. cit.* and Anger, T. *et al.*, *op. cit.*).

The present invention also relates to compounds, pharmaceutical compositions and methods of using the compounds and pharmaceutical compositions for the treatment or prevention of diseases or conditions such as benign prostatic hyperplasia 25 (BPH), hypercholesterolemia, cancer and pruritis (itch).

Benign prostatic hyperplasia (BPH), also known as benign prostatic hypertrophy, is one of the most common diseases affecting aging men. BPH is a progressive condition which is characterized by a nodular enlargement of prostatic tissue resulting in obstruction of the urethra. Consequences of BPH can include 30 hypertrophy of bladder smooth muscle, a decompensated bladder, acute urinary retention and an increased incidence of urinary tract infection.

BPH has a high public health impact and is one of the most common reasons for surgical intervention among elderly men. Attempts have been made to clarify the etiology and pathogenesis and, to that end, experimental models have been 35 developed. Spontaneous animal models are limited to the chimpanzee and the dog.

BPH in man and the dog share many common features. In both species, the development of BPH occurs spontaneously with advanced age and can be prevented by early/prepubertal castration. A medical alternative to surgery is very desirable for treating BHP and the consequences.

5 The prostatic epithelial hyperplasia in both man and the dog is androgen sensitive, undergoing involution with androgen deprivation and resuming epithelial hyperplasia when androgen is replaced. Cells originating from the prostate gland have been shown to express high levels of voltage gated sodium channels. Immunostaining studies clearly demonstrated evidence for voltage gated sodium channels in prostatic
10 tissues (*Prostate Cancer Prostatic Dis.* 2005; 8(3):266-73).

Hypercholesterolemia, *i.e.*, elevated blood cholesterol, is an established risk factor in the development of, *e.g.*, atherosclerosis, coronary artery disease, hyperlipidemia, stroke, hyperinsulinemias, hypertension, obesity, diabetes, cardiovascular diseases (CVD), myocardial ischemia, and heart attack. Thus, lowering
15 the levels of total serum cholesterol in individuals with high levels of cholesterol has been known to reduce the risk of these diseases. The lowering of low density lipoprotein cholesterol in particular is an essential step in the prevention of CVD. Although there are a variety of hypercholesterolemia therapies, there is a continuing need and a continuing search in this field of art for alternative therapies.

20 The invention provides compounds which are useful as antihypercholesterolemia agents and their related conditions. The present compounds may act in a variety of ways. While not wishing to be bound to any particular mechanism of action, the compounds may be direct or indirect inhibitors of the enzyme acyl CoA: cholesterol acyl transferase (ACAT) that results in inhibition of the
25 esterification and transport of cholesterol across the intestinal wall. Another possibility may be that the compounds of the invention may be direct or indirect inhibitors of cholesterol biosynthesis in the liver. It is possible that some compounds of the invention may act as both direct or indirect inhibitors of ACAT and cholesterol biosynthesis.

30 Pruritus, commonly known as itch, is a common dermatological condition. While the exact causes of pruritis are complex and poorly understood, there has long been acknowledged to have interactions with pain. In particular, it is believed that sodium channels likely communicate or propagate along the nerve axon the itch signals along the skin. Transmission of the itch impulses results in the unpleasant
35 sensation that elicits the desire or reflex to scratch.

From a neurobiology level, it is believed that there is a shared complexity of specific mediators, related neuronal pathways and the central processes of itch and pain and recent data suggest that there is a broad overlap between pain- and itch-related peripheral mediators and/or receptors (Ikoma *et al.*, *Nature Reviews Neuroscience*, 7:535-547, 2006). Remarkably, pain and itch have similar mechanisms of neuronal sensitization in the peripheral nervous system and the central nervous system but exhibits intriguing differences as well.

For example, the mildly painful stimuli from scratching are effective in abolishing the itch sensation. In contrast, analgesics such as opioids can generate severe pruritus. The antagonistic interaction between pain and itch can be exploited in pruritus therapy, and current research concentrates on the identification of common targets for future analgesic and antipruritic therapy.

Compounds of the present invention have been shown to have analgesic effects in a number of animal models at oral doses ranging from 1 mg/Kg to 100 mg/Kg.

The compounds of the invention can also be useful for treating pruritus. The types of itch or skin irritation, include, but are not limited to:

- a) psoriatic pruritis, itch due to hemodialysis, aquagenic pruritus, and itching caused by skin disorders (e.g., contact dermatitis), systemic disorders, neuropathy, psychogenic factors or a mixture thereof;
- b) itch caused by allergic reactions, insect bites, hypersensitivity (e.g., dry skin, acne, eczema, psoriasis), inflammatory conditions or injury;
- c) itch associated with vulvar vestibulitis; and
- d) skin irritation or inflammatory effect from administration of another therapeutic such as, for example, antibiotics, antivirals and antihistamines.

The compounds of the invention are also useful in treating or preventing certain hormone sensitive cancers, such as prostate cancer (adenocarcinoma), breast cancer, ovarian cancer, testicular cancer, thyroid neoplasia, in a mammal, preferably a human. The voltage gated sodium channels have been demonstrated to be expressed in prostate and breast cancer cells. Up-regulation of neonatal Na_v1.5 occurs as an integral part of the metastatic process in human breast cancer and could serve both as a novel marker of the metastatic phenotype and a therapeutic target (*Clin. Cancer Res.* 2005, Aug. 1; 11(15): 5381-9). Functional expression of voltage-gated sodium channel alpha-subunits, specifically Na_v1.7, is associated with strong metastatic potential in prostate cancer (CaP) in vitro. Voltage-gated sodium channel alpha-

subunits immunostaining, using antibodies specific to the sodium channel alpha subunit was evident in prostatic tissues and markedly stronger in CaP vs non-CaP patients (*Prostate Cancer Prostatic Dis.*, 2005; 8(3):266-73).

The compounds of the invention are also useful in treating or preventing 5 symptoms in a mammal associated with BPH such as, but not limited to, acute urinary retention and urinary tract infection.

The compounds of the invention are also useful in treating or preventing certain 10 endocrine imbalances or endocrinopathies such as congenital adrenal hyperplasia , hyperthyroidism, hypothyroidism, osteoporosis, osteomalacia, rickets, Cushing's Syndrome, Conn's syndrome, hyperaldosteronism, hypogonadism, hypergonadism, infertility, fertility and diabetes.

The present invention readily affords many different means for identification of 15 sodium channel modulating agents that are useful as therapeutic agents. Identification of modulators of sodium channel can be assessed using a variety of *in vitro* and *in vivo* assays, e.g. measuring current, measuring membrane potential, measuring ion flux, (e.g. sodium or guanidinium), measuring sodium concentration, measuring second messengers and transcription levels, and using e.g., voltage-sensitive dyes, radioactive tracers, and patch-clamp electrophysiology.

One such protocol involves the screening of chemical agents for ability to 20 modulate the activity of a sodium channel thereby identifying it as a modulating agent.

A typical assay described in Bean et al., *J. General Physiology* (1983), 83:613-642, and Leuwer, M., et al., *Br. J. Pharmacol* (2004), 141(1):47-54, uses patch-clamp 25 techniques to study the behaviour of channels. Such techniques are known to those skilled in the art, and may be developed, using current technologies, into low or medium throughput assays for evaluating compounds for their ability to modulate sodium channel behaviour.

A competitive binding assay with known sodium channel toxins such as 30 tetrodotoxin, alpha-scorpion toxins, aconitine, BTX and the like, may be suitable for identifying potential therapeutic agents with high selectivity for a particular sodium channel. The use of BTX in such a binding assay is well known and is described in McNeal, E.T., et al., *J. Med. Chem.* (1985), 28(3):381-8; and Creveling, C.R., et al., *Methods in Neuroscience*, Vol.8: *Neurotoxins* (Conn PM Ed) (1992), pp. 25-37, Academic Press, New York.

These assays can be carried out in cells, or cell or tissue extracts expressing 35 the channel of interest in a natural endogenous setting or in a recombinant setting. The

assays that can be used include plate assays which measure Na⁺ influx through surrogate markers such as ¹⁴C-guanidine influx or determine cell depolarization using fluorescent dyes such as the FRET based and other fluorescent assays or a radiolabelled binding assay employing radiolabelled aconitine, BTX, TTX or STX. More 5 direct measurements can be made with manual or automated electrophysiology systems. The guanidine influx assay is explained in more detail below in the Biological Assays section.

Throughput of test compounds is an important consideration in the choice of screening assay to be used. In some strategies, where hundreds of thousands of 10 compounds are to be tested, it is not desirable to use low throughput means. In other cases, however, low throughput is satisfactory to identify important differences between a limited number of compounds. Often it will be necessary to combine assay types to identify specific sodium channel modulating compounds.

Electrophysiological assays using patch clamp techniques is accepted as a 15 gold standard for detailed characterization of sodium channel compound interactions, and as described in Bean et al., *op. cit.* and Leuwer, M., et al., *op. cit.* There is a manual low-throughput screening (LTS) method which can compare 2-10 compounds per day; a recently developed system for automated medium-throughput screening (MTS) at 20-50 patches (i.e. compounds) per day; and a technology from Molecular 20 Devices Corporation (Sunnyvale, CA) which permits automated high-throughput screening (HTS) at 1000-3000 patches (i.e. compounds) per day.

One automated patch-clamp system utilizes planar electrode technology to accelerate the rate of drug discovery. Planar electrodes are capable of achieving high-resistance, cells-attached seals followed by stable, low-noise whole-cell recordings that 25 are comparable to conventional recordings. A suitable instrument is the PatchXpress 7000A (Axon Instruments Inc, Union City, CA). A variety of cell lines and culture techniques, which include adherent cells as well as cells growing spontaneously in suspension are ranked for seal success rate and stability. Immortalized cells (e.g. HEK and CHO) stably expressing high levels of the relevant sodium ion channel can 30 be adapted into high-density suspension cultures.

Other assays can be selected which allow the investigator to identify 35 compounds which block specific states of the channel, such as the open state, closed state or the resting state, or which block transition from open to closed, closed to resting or resting to open. Those skilled in the art are generally familiar with such assays.

Binding assays are also available, however these are of only limited functional value and information content. Designs include traditional radioactive filter based binding assays or the confocal based fluorescent system available from Evotec OAI group of companies (Hamburg, Germany), both of which are HTS.

5 Radioactive flux assays can also be used. In this assay, channels are stimulated to open with veratridine or aconitine and held in a stabilized open state with a toxin, and channel blockers are identified by their ability to prevent ion influx. The assay can use radioactive ^{22}Na and ^{14}C guanidinium ions as tracers. FlashPlate & Cytostar-T plates in living cells avoids separation steps and are suitable for HTS.

10 Scintillation plate technology has also advanced this method to HTS suitability. Because of the functional aspects of the assay, the information content is reasonably good.

15 Yet another format measures the redistribution of membrane potential using the FLIPR system membrane potential kit (HTS) available from Molecular Dynamics (a division of Amersham Biosciences, Piscataway, NJ). This method is limited to slow membrane potential changes. Some problems may result from the fluorescent background of compounds. Test compounds may also directly influence the fluidity of the cell membrane and lead to an increase in intracellular dye concentrations. Still, because of the functional aspects of the assay, the information content is reasonably good.

20 Sodium dyes can be used to measure the rate or amount of sodium ion influx through a channel. This type of assay provides a very high information content regarding potential channel blockers. The assay is functional and would measure Na^+ influx directly. CoroNa Red, SBFI and/or sodium green (Molecular Probes, Inc. Eugene OR) can be used to measure Na influx; all are Na responsive dyes. They can be used in combination with the FLIPR instrument. The use of these dyes in a screen has not been previously described in the literature. Calcium dyes may also have potential in this format.

25 In another assay, FRET based voltage sensors are used to measure the ability of a test compound to directly block Na influx. Commercially available HTS systems include the VIPR™ II FRET system (Aurora Biosciences Corporation, San Diego, CA, a division of Vertex Pharmaceuticals, Inc.) which may be used in conjunction with FRET dyes, also available from Aurora Biosciences. This assay measures sub-second responses to voltage changes. There is no requirement for a modifier of channel function. The assay measures depolarization and hyperpolarizations, and provides

ratiometric outputs for quantification. A somewhat less expensive MTS version of this assay employs the FLEXstation™ (Molecular Devices Corporation) in conjunction with FRET dyes from Aurora Biosciences. Other methods of testing the compounds disclosed herein are also readily known and available to those skilled in the art.

5 These results provide the basis for analysis of the structure-activity relationship (SAR) between test compounds and the sodium channel. Certain substituents on the core structure of the test compound tend to provide more potent inhibitory compounds. SAR analysis is one of the tools those skilled in the art may now employ to identify preferred embodiments of the compounds of the invention for use as therapeutic
10 agents.

Modulating agents so identified are then tested in a variety of *in vivo* models so as to determine if they alleviate pain, especially chronic pain or other conditions such as arrhythmias and epilepsy, benign prostatic hyperplasia (BPH), hypercholesterolemia, cancer and pruritis (itch) with minimal adverse events, . The
15 assays described below in the Biological Assays Section are useful in assessing the biological activity of the instant compounds.

Typically, a successful therapeutic agent of the present invention will meet some or all of the following criteria. Oral availability should be at or above 20%. Animal model efficacy is less than about 0.1 µg to about 100 mg/Kg body weight and
20 the target human dose is between 0.1 µg to about 100 mg/Kg body weight, although doses outside of this range may be acceptable ("mg/Kg" means milligrams of compound per kilogram of body mass of the subject to whom it is being administered). The therapeutic index (or ratio of toxic dose to therapeutic dose) should be greater than 100. The potency (as expressed by IC₅₀ value) should be less than 10 µM, preferably below 1 µM and most preferably below 50 nM. The IC₅₀ ("Inhibitory
25 Concentration – 50%") is a measure of the amount of compound required to achieve 50% inhibition of ion flux through a sodium channel, over a specific time period, in an assay of the invention. Compounds of the present invention in the guanidine influx assay have demonstrated IC-50s ranging from less than a nanomolar to less than 10
30 micromolar.

In an alternative use of the invention, the compounds of the invention can be used in *in vitro* or *in vivo* studies as exemplary agents for comparative purposes to find other compounds also useful in treatment of, or protection from, the various diseases disclosed herein.

35 Another aspect of the invention relates to inhibiting Na_v1.1, Na_v1.2, Na_v1.3,

$\text{Na}_V1.4$, $\text{Na}_V1.5$, $\text{Na}_V1.6$, $\text{Na}_V1.7$, $\text{Na}_V1.8$, or $\text{Na}_V1.9$ activity in a biological sample or a mammal, preferably a human, which method comprises administering to the mammal, preferably a human, or contacting said biological sample with a compound of formula I or a composition comprising said compound. The term "biological sample", as used 5 herein, includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.

Inhibition of $\text{Na}_V1.1$, $\text{Na}_V1.2$, $\text{Na}_V1.3$, $\text{Na}_V1.4$, $\text{Na}_V1.5$, $\text{Na}_V1.6$, $\text{Na}_V1.7$, $\text{Na}_V1.8$, or $\text{Na}_V1.9$ activity in a biological sample is useful for a variety of purposes that are 10 known to one of skill in the art. Examples of such purposes include, but are not limited to, the study of sodium ion channels in biological and pathological phenomena; and the comparative evaluation of new sodium ion channel inhibitors.

The compounds of the invention, as set forth above in the Summary of the Invention, as stereoisomers, enantiomers, tautomers thereof or mixtures thereof, or 15 pharmaceutically acceptable salts, solvates or prodrugs thereof, and/or the pharmaceutical compositions described herein which comprise a pharmaceutically acceptable excipient and one or more compounds of the invention, as set forth above in the Summary of the Invention, as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, can 20 be used in the preparation of a medicament for the treatment of sodium channel-mediated disease or condition in a mammal.

PHARMACEUTICAL COMPOSITIONS OF THE INVENTION AND ADMINISTRATION

The present invention also relates to pharmaceutical composition containing the compounds of the invention disclosed herein. In one embodiment, the present 25 invention relates to a composition comprising compounds of the invention in a pharmaceutically acceptable excipient, carrier or diluent and in an amount effective to modulate, preferably inhibit, ion flux through a voltage-dependent sodium channel to treat sodium channel mediated diseases, such as pain, when administered to an animal, preferably a mammal, most preferably a human patient.

30 Administration of the compounds of the invention, or their pharmaceutically acceptable salts, in pure form or in an appropriate pharmaceutical composition, can be carried out via any of the accepted modes of administration of agents for serving similar utilities. The pharmaceutical compositions of the invention can be prepared by combining a compound of the invention with an appropriate pharmaceutically

acceptable carrier, diluent or excipient, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres, and aerosols. Typical routes of administering such pharmaceutical compositions

5 include, without limitation, oral, topical, transdermal, inhalation, parenteral, sublingual, rectal, vaginal, and intranasal. The term parenteral as used herein includes subcutaneous injections, intravenous, intramuscular, intrasternal injection or infusion techniques. Pharmaceutical compositions of the invention are formulated so as to allow the active ingredients contained therein to be bioavailable upon administration of

10 the composition to a patient. Compositions that will be administered to a subject or patient take the form of one or more dosage units, where for example, a tablet may be a single dosage unit, and a container of a compound of the invention in aerosol form may hold a plurality of dosage units. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in this art; for example, see *The*

15 *Science and Practice of Pharmacy*, 20th Edition (Philadelphia College of Pharmacy and Science, 2000). The composition to be administered will, in any event, contain a therapeutically effective amount of a compound of the invention, or a pharmaceutically acceptable salt thereof, for treatment of a disease or condition of interest in accordance with the teachings of this invention.

20 The pharmaceutical compositions useful herein also contain a pharmaceutically acceptable carrier, including any suitable diluent or excipient, which includes any pharmaceutical agent that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Pharmaceutically acceptable carriers include, but are not limited to, liquids,

25 such as water, saline, glycerol and ethanol, and the like. A thorough discussion of pharmaceutically acceptable carriers, diluents, and other excipients is presented in REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Pub. Co., N.J. current edition).

30 A pharmaceutical composition of the invention may be in the form of a solid or liquid. In one aspect, the carrier(s) are particulate, so that the compositions are, for example, in tablet or powder form. The carrier(s) may be liquid, with the compositions being, for example, an oral syrup, injectable liquid or an aerosol, which is useful in, for example, inhalatory administration.

35 When intended for oral administration, the pharmaceutical composition is preferably in either solid or liquid form, where semi-solid, semi-liquid, suspension and

gel forms are included within the forms considered herein as either solid or liquid.

As a solid composition for oral administration, the pharmaceutical composition may be formulated into a powder, granule, compressed tablet, pill, capsule, chewing gum, wafer or the like form. Such a solid composition will typically contain one or more

5 inert diluents or edible carriers. In addition, one or more of the following may be present: binders such as carboxymethylcellulose, ethyl cellulose, microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch, lactose or dextrins, disintegrating agents such as alginic acid, sodium alginate, Primogel, corn starch and the like; lubricants such as magnesium stearate or Sterotex; glidants such as colloidal

10 silicon dioxide; sweetening agents such as sucrose or saccharin; a flavoring agent such as peppermint, methyl salicylate or orange flavoring; and a coloring agent.

When the pharmaceutical composition is in the form of a capsule, for example, a gelatin capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or oil.

15 The pharmaceutical composition may be in the form of a liquid, for example, an elixir, syrup, solution, emulsion or suspension. The liquid may be for oral administration or for delivery by injection, as two examples. When intended for oral administration, preferred composition contain, in addition to the present compounds, one or more of a sweetening agent, preservatives, dye/colorant and flavor enhancer.

20 In a composition intended to be administered by injection, one or more of a surfactant, preservative, wetting agent, dispersing agent, suspending agent, buffer, stabilizer and isotonic agent may be included.

The liquid pharmaceutical compositions of the invention, whether they be solutions, suspensions or other like form, may include one or more of the following

25 adjuvants: sterile diluents such as water for injection, saline solution, preferably physiological saline, Ringer's solution, isotonic sodium chloride, fixed oils such as synthetic mono or diglycerides which may serve as the solvent or suspending medium, polyethylene glycols, glycerin, propylene glycol or other solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or

30 sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

Physiological saline is a preferred adjuvant. An injectable pharmaceutical composition

35 is preferably sterile.

A liquid pharmaceutical composition of the invention intended for either parenteral or oral administration should contain an amount of a compound of the invention such that a suitable dosage will be obtained. Typically, this amount is at least 0.01% of a compound of the invention in the composition. When intended for oral administration, this amount may be varied to be between 0.1 and about 70% of the weight of the composition. Preferred oral pharmaceutical compositions contain between about 4% and about 50% of the compound of the invention. Preferred pharmaceutical compositions and preparations according to the present invention are prepared so that a parenteral dosage unit contains between 0.01 to 10% by weight of the compound prior to dilution of the invention.

The pharmaceutical composition of the invention may be intended for topical administration, in which case the carrier may suitably comprise a solution, emulsion, ointment or gel base. The base, for example, may comprise one or more of the following: petrolatum, lanolin, polyethylene glycols, bee wax, mineral oil, diluents such as water and alcohol, and emulsifiers and stabilizers. Thickening agents may be present in a pharmaceutical composition for topical administration. If intended for transdermal administration, the composition may include a transdermal patch or iontophoresis device. Topical formulations may contain a concentration of the compound of the invention from about 0.1 to about 10% w/v (weight per unit volume).

The pharmaceutical composition of the invention may be intended for rectal administration, in the form, for example, of a suppository, which will melt in the rectum and release the drug. The composition for rectal administration may contain an oleaginous base as a suitable nonirritating excipient. Such bases include, without limitation, lanolin, cocoa butter and polyethylene glycol.

The pharmaceutical composition of the invention may include various materials, which modify the physical form of a solid or liquid dosage unit. For example, the composition may include materials that form a coating shell around the active ingredients. The materials that form the coating shell are typically inert, and may be selected from, for example, sugar, shellac, and other enteric coating agents.

Alternatively, the active ingredients may be encased in a gelatin capsule.

The pharmaceutical composition of the invention in solid or liquid form may include an agent that binds to the compound of the invention and thereby assists in the delivery of the compound. Suitable agents that may act in this capacity include a monoclonal or polyclonal antibody, a protein or a liposome.

The pharmaceutical composition of the invention may consist of dosage units

that can be administered as an aerosol. The term aerosol is used to denote a variety of systems ranging from those of colloidal nature to systems consisting of pressurized packages. Delivery may be by a liquefied or compressed gas or by a suitable pump system that dispenses the active ingredients. Aerosols of compounds of the invention 5 may be delivered in single phase, bi-phasic, or tri-phasic systems in order to deliver the active ingredient(s). Delivery of the aerosol includes the necessary container, activators, valves, subcontainers, and the like, which together may form a kit. One skilled in the art, without undue experimentation may determine preferred aerosols.

The pharmaceutical compositions of the invention may be prepared by 10 methodology well known in the pharmaceutical art. For example, a pharmaceutical composition intended to be administered by injection can be prepared by combining a compound of the invention with sterile, distilled water so as to form a solution. A surfactant may be added to facilitate the formation of a homogeneous solution or suspension. Surfactants are compounds that non-covalently interact with the 15 compound of the invention so as to facilitate dissolution or homogeneous suspension of the compound in the aqueous delivery system.

The compounds of the invention, or their pharmaceutically acceptable salts, are administered in a therapeutically effective amount, which will vary depending upon a variety of factors including the activity of the specific compound employed; the 20 metabolic stability and length of action of the compound; the age, body weight, general health, sex, and diet of the patient; the mode and time of administration; the rate of excretion; the drug combination; the severity of the particular disorder or condition; and the subject undergoing therapy. Generally, a therapeutically effective daily dose is (for a 70 Kg mammal) from about 0.001 mg/Kg (*i.e.*, 0.07 mg) to about 100 mg/Kg (*i.e.*, 7.0 25 g); preferably a therapeutically effective dose is (for a 70 Kg mammal) from about 0.01 mg/Kg (*i.e.*, 0.7 mg) to about 50 mg/Kg (*i.e.*, 3.5 g); more preferably a therapeutically effective dose is (for a 70 Kg mammal) from about 1 mg/Kg (*i.e.*, 70 mg) to about 25 mg/Kg (*i.e.*, 1.75 g).

The ranges of effective doses provided herein are not intended to be limiting 30 and represent preferred dose ranges. However, the most preferred dosage will be tailored to the individual subject, as is understood and determinable by one skilled in the relevant arts. (see, e.g., Berkow et al., eds., *The Merck Manual*, 16th edition, Merck and Co., Rahway, N.J., 1992; Goodman and Gilman's *The Pharmacological Basis of Therapeutics*, 10th edition, Pergamon Press, Inc., Elmsford, 35 N.Y., (2001); Avery's *Drug Treatment: Principles and Practice of Clinical Pharmacology*

and Therapeutics, 3rd edition, ADIS Press, LTD., Williams and Wilkins, Baltimore, MD. (1987), Ebadi, Pharmacology, Little, Brown and Co., Boston, (1985); Osolci al., eds., Remington's Pharmaceutical Sciences, 18th edition, Mack Publishing Co., Easton, PA (1990); Katzung, Basic and Clinical Pharmacology, Appleton and Lange, Norwalk, CT (1992)).

The total dose required for each treatment can be administered by multiple doses or in a single dose over the course of the day, if desired. Generally, treatment is initiated with smaller dosages, which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. The diagnostic pharmaceutical compound or composition can be administered alone or in conjunction with other diagnostics and/or pharmaceuticals directed to the pathology, or directed to other symptoms of the pathology. The recipients of administration of compounds and/or compositions of the invention can be any vertebrate animal, such as mammals. Among mammals, the preferred recipients are mammals of the Orders Primate (including humans, apes and monkeys), Arteriodactyla (including horses, goats, cows, sheep, pigs), Rodenta (including mice, rats, rabbits, and hamsters), and Carnivora (including cats, and dogs). Among birds, the preferred recipients are turkeys, chickens and other members of the same order. The most preferred recipients are humans.

For topical applications, it is preferred to administer an effective amount of a pharmaceutical composition according to the invention to target area, e.g., skin surfaces, mucous membranes, and the like, which are adjacent to peripheral neurons which are to be treated. This amount will generally range from about 0.0001 mg to about 1 g of a compound of the invention per application, depending upon the area to be treated, whether the use is diagnostic, prophylactic or therapeutic, the severity of the symptoms, and the nature of the topical vehicle employed. A preferred topical preparation is an ointment, wherein about 0.001 to about 50 mg of active ingredient is used per cc of ointment base. The pharmaceutical composition can be formulated as transdermal compositions or transdermal delivery devices ("patches"). Such compositions include, for example, a backing, active compound reservoir, a control membrane, liner and contact adhesive. Such transdermal patches may be used to provide continuous pulsatile, or on demand delivery of the compounds of the present invention as desired.

The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient

by employing procedures known in the art. Controlled release drug delivery systems include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations. Examples of controlled release systems are given in U.S. Pat. Nos. 3,845,770 and 4,326,525 and in P. J. Kuzma et al., 5 *Regional Anesthesia* 22 (6): 543-551 (1997), all of which are incorporated herein by reference.

The compositions of the invention can also be delivered through intra-nasal drug delivery systems for local, systemic, and nose-to-brain medical therapies. Controlled Particle Dispersion (CPD)TM technology, traditional nasal spray bottles, 10 inhalers or nebulizers are known by those skilled in the art to provide effective local and systemic delivery of drugs by targeting the olfactory region and paranasal sinuses.

The invention also relates to an intravaginal shell or core drug delivery device suitable for administration to the human or animal female. The device may be comprised of the active pharmaceutical ingredient in a polymer matrix, surrounded by a 15 sheath, and capable of releasing the compound in a substantially zero order pattern on a daily basis similar to devices used to apply testosterone as described in Published PCT Application No. WO 98/50016.

Current methods for ocular delivery include topical administration (eye drops), 20 subconjunctival injections, periocular injections, intravitreal injections, surgical implants and iontophoresis (uses a small electrical current to transport ionized drugs into and through body tissues). Those skilled in the art would combine the best suited excipients with the compound for safe and effective intra-ocular administration.

The most suitable route will depend on the nature and severity of the condition being treated. Those skilled in the art are also familiar with determining administration 25 methods (e.g., oral, intravenous, inhalation, sub-cutaneous, rectal etc.), dosage forms, suitable pharmaceutical excipients and other matters relevant to the delivery of the compounds to a subject in need thereof.

COMBINATION THERAPY

The compounds of the invention may be usefully combined with one or more 30 other compounds of the invention or one or more other therapeutic agent or as any combination thereof, in the treatment of sodium channel-mediated diseases and conditions. For example, a compound of the invention may be administered simultaneously, sequentially or separately in combination with other therapeutic agents, including, but not limited to:

- opiates analgesics, e.g. morphine, heroin, cocaine, oxymorphone, levorphanol, levallorphan, oxycodone, codeine, dihydrocodeine, propoxyphene, nalmefene, fentanyl, hydrocodone, hydromorphone, meripidine, methadone, nalorphine, naloxone, naltrexone, buprenorphine, butorphanol, nalbuphine and pentazocine;
- non-opiate analgesics, e.g. acetomeniphen, salicylates (e.g. aspirin);
- nonsteroidal antiinflammatory drugs (NSAIDs), e.g. ibuprofen, naproxen, fenoprofen, ketoprofen, celecoxib, diclofenac, diflusinal, etodolac, fenbufen, fenoprofen, flufenisal, flurbiprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, meclofenamic acid, mefenamic acid, meloxicam, nabumetone, naproxen, nimesulide, nitroflurbiprofen, olsalazine, oxaprozin, phenylbutazone, piroxicam, sulfasalazine, sulindac, tolmetin and zomepirac;
- anticonvulsants, e.g. carbamazepine, oxcarbazepine, lamotrigine, valproate, topiramate, gabapentin and pregabalin;
- antidepressants such as tricyclic antidepressants, e.g. amitriptyline, clomipramine, despramine, imipramine and nortriptyline;;
- COX-2 selective inhibitors, e.g. celecoxib, rofecoxib, parecoxib, valdecoxib, deracoxib, etoricoxib, and lumiracoxib;
- alpha-adrenergics, e.g. doxazosin, tamsulosin, clonidine, guanfacine, dexmetatomidine, modafinil, and 4-amino-6,7-dimethoxy-2-(5- methane sulfonamido-1,2,3,4-tetrahydroisoquinol-2-yl)-5-(2-pyridyl) quinazoline;
- barbiturate sedatives, e.g. amobarbital, aprobarbital, butabarbital, butabital, mephobarbital, metharbital, methohexital, pentobarbital, phenobarbital, secobarbital, talbutal, theamylal and thiopental;
- tachykinin (NK) antagonist, particularly an NK-3, NK-2 or NK-1 antagonist, e.g. (α R, 9R)-7-[3,5-bis(trifluoromethyl)benzyl]-8,9,10,11-tetrahydro-9-methyl-5-(4-methylphenyl)-7H-[1,4]diazocino[2,1-g][1,7]-naphthyridine-6-13-dione (TAK-637), 5-[[2R,3S)-2-[(1R)-1-[3,5-bis(trifluoromethylphenyl)ethoxy-3-(4-fluorophenyl)-4-morpholinyl]-methyl]-1,2-dihydro-3H-1,2,4-triazol-3-one (MK-869), aprepitant, lanepitant, dapitant or 3-[[2-methoxy-5-(trifluoromethoxy)phenyl]-methylamino]-2-phenylpiperidine (2S,3S);
- coal-tar analgesics, in particular paracetamol;
- serotonin reuptake inhibitors, e.g. paroxetine, sertraline, norfluoxetine (fluoxetine desmethyl metabolite), metabolite demethylsertraline, '3

fluvoxamine, paroxetine, citalopram, citalopram metabolite desmethylcitalopram, escitalopram, d,l-fenfluramine, femoxetine, ifoxetine, cyanodothiepin, litoxetine, dapoxetine, nefazodone, cobiclamine, trazodone and fluoxetine;

5 • noradrenaline (norepinephrine) reuptake inhibitors, e.g. maprotiline, lofepramine, mirtazepine, oxaprotiline, fezolamine, tomoxetine, mianserin, bupropion, bupropion metabolite hydroxybupropion, nomifensine and viloxazine (Vivalan®)), especially a selective noradrenaline reuptake inhibitor such as reboxetine, in particular (S,S)-reboxetine, and venlafaxine duloxetine

10 10 neuroleptics sedative/anxiolytics;

• dual serotonin-noradrenaline reuptake inhibitors, such as venlafaxine, venlafaxine metabolite O- desmethylvenlafaxine, clomipramine, clomipramine metabolite desmethylclomipramine, duloxetine, milnacipran and imipramine;

• acetylcholinesterase inhibitors such as donepezil;

15 15 • 5-HT₃ antagonists such as ondansetron;

• metabotropic glutamate receptor (mGluR) antagonists;

• local anaesthetic such as mexiletine and lidocaine;

• corticosteroid such as dexamethasone;

• antiarrhythmics, e.g. mexiletine and phenytoin;

20 20 • muscarinic antagonists, e.g., tolterodine, propiverine, tropium t chloride, darifenacin, solifenacin, temiverine and ipratropium;

• cannabinoids;

• vanilloid receptor agonists (e.g. resiniferatoxin) or antagonists (e.g. capsazepine);

25 25 • sedatives, e.g. glutethimide, meprobamate, methaqualone, and dichloralphenazone;

• anxiolytics such as benzodiazepines,

• antidepressants such as mirtazapine,

• topical agents (e.g. lidocaine, capsacin and resiniferotoxin);

30 30 • muscle relaxants such as benzodiazepines, baclofen, carisoprodol, chlorzoxazone, cyclobenzaprine, methocarbamol and orphenadrine;

• anti-histamines or H1 antagonists;

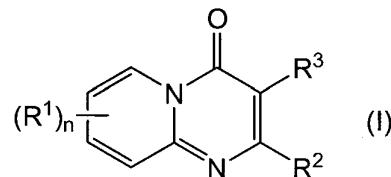
• NMDA receptor antagonists;

• 5-HT receptor agonists/antagonists;

- PDEV inhibitors;
- Tramadol®;
- cholinergic (nicotinic) analgesics;
- alpha-2-delta ligands;
- 5 • prostaglandin E2 subtype antagonists;
- leukotriene B4 antagonists;
- 5-lipoxygenase inhibitors; and
- 5-HT₃ antagonists.

Sodium channel-mediated diseases and conditions that may be treated and/or prevented using such combinations include but not limited to, pain, central and peripherally mediated, acute, chronic, neuropathic as well as other diseases with associated pain and other central nervous disorders such as epilepsy, anxiety, depression and bipolar disease; or cardiovascular disorders such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular disorders such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome.

As used herein "combination" refers to any mixture or permutation of one or more compounds of the invention and one or more other compounds of the invention or one or more additional therapeutic agent. Unless the context makes clear otherwise, "combination" may include simultaneous or sequentially delivery of a compound of the invention with one or more therapeutic agents. Unless the context makes clear otherwise, "combination" may include dosage forms of a compound of the invention with another therapeutic agent. Unless the context makes clear otherwise, 25 "combination" may include routes of administration of a compound of the invention with another therapeutic agent. Unless the context makes clear otherwise, "combination" may include formulations of a compound of the invention with another therapeutic agent. Dosage forms, routes of administration and pharmaceutical compositions include, but are not limited to, those described herein.


30 KITS-OF-PARTS

The present invention also provides kits that contain a pharmaceutical composition which includes one or more compounds of the invention. The kit also includes instructions for the use of the pharmaceutical composition for modulating the activity of ion channels, for the treatment of pain, as well as other utilities as disclosed

herein. Preferably, a commercial package will contain one or more unit doses of the pharmaceutical composition. For example, such a unit dose may be an amount sufficient for the preparation of an intravenous injection. It will be evident to those of ordinary skill in the art that compounds which are light and/or air sensitive may require 5 special packaging and/or formulation. For example, packaging may be used which is opaque to light, and/or sealed from contact with ambient air, and/or formulated with suitable coatings or excipients.

PREPARATION OF THE COMPOUNDS OF THE INVENTION

10 The following Reaction Schemes illustrate methods to make compounds of this invention, *i.e.*, compounds of formula (I):

wherein n, R¹, R² and R³ are as defined above in the Summary of the Invention for compounds of formula (I), as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a pharmaceutically acceptable salt, solvate or prodrug thereof.

15 It is understood that in the following description, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable compounds.

It will also be appreciated by those skilled in the art that in the process described below the functional groups of intermediate compounds may need to be 20 protected by suitable protecting groups. Such functional groups include hydroxy, amino, mercapto and carboxylic acid. Suitable protecting groups for hydroxy include trialkylsilyl or diarylalkylsilyl (e.g., *t*-butyldimethylsilyl, *t*-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like. Suitable protecting groups for amino, amidino and guanidino include *t*-butoxycarbonyl, benzyloxycarbonyl, and the 25 like. Suitable protecting groups for mercapto include -C(O)-R" (where R" is alkyl, aryl or arylalkyl), *p*-methoxybenzyl, trityl and the like. Suitable protecting groups for carboxylic acid include alkyl, aryl or arylalkyl esters.

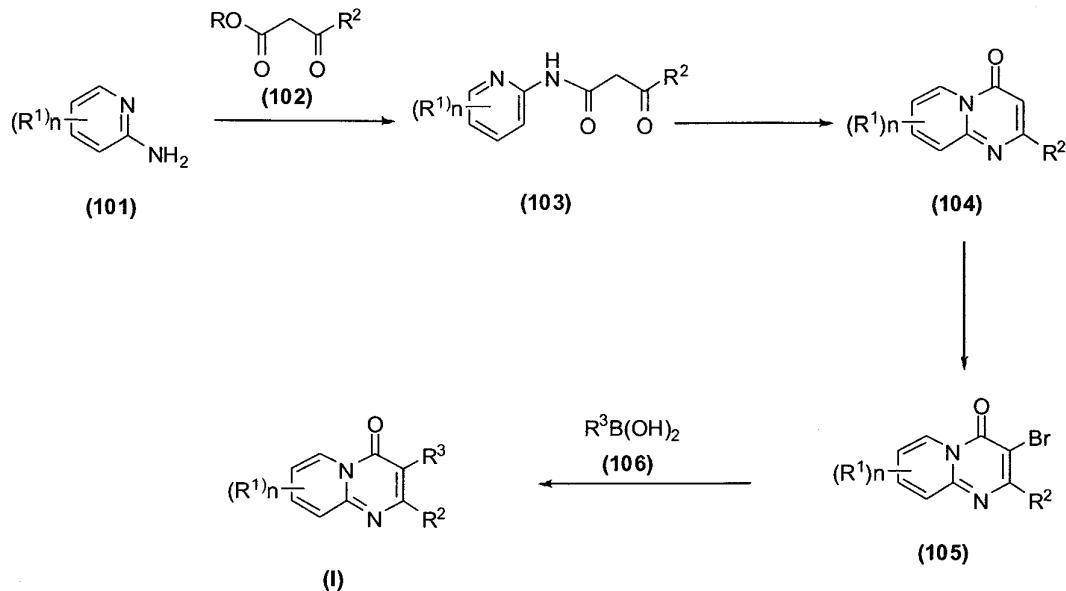
Protecting groups may be added or removed in accordance with standard techniques, which are known to one skilled in the art and as described herein.

30 The use of protecting groups is described in detail in Greene, T.W. and P.G.M.

Wuts, *Greene's Protective Groups in Organic Synthesis* (2006), 4th Ed., Wiley. The protecting group may also be a polymer resin such as a Wang resin or a 2-chlorotriyl-chloride resin.

It will also be appreciated by those skilled in the art, although such protected

5 derivatives of compounds of this invention may not possess pharmacological activity as such, they may be administered to a mammal and thereafter metabolized in the body to form compounds of the invention which are pharmacologically active. Such derivatives may therefore be described as "prodrugs". All prodrugs of compounds of this invention are included within the scope of the invention.

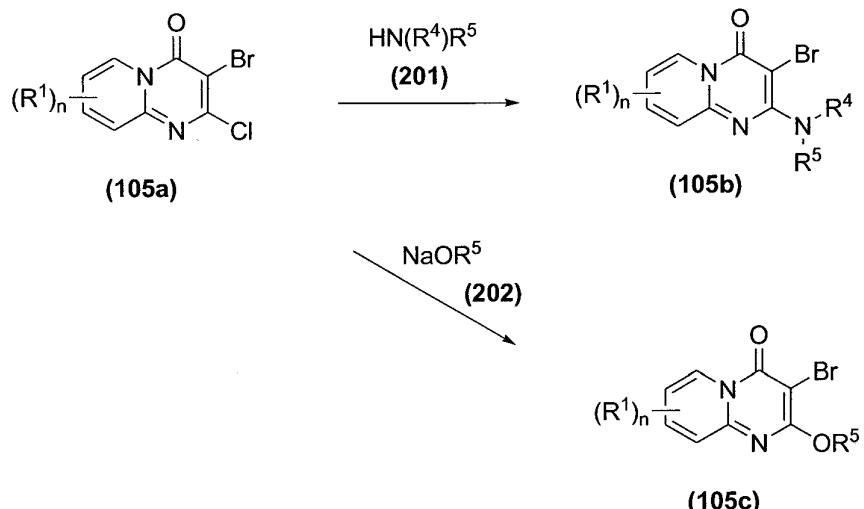

10 It is understood that one skilled in the art would be able to make compounds of the invention by similar methods, as shown below, or by methods known to one skilled in the art. It is also understood that one skilled in the art would be able to make in a similar manner as described below other compounds of formula (I) not specifically illustrated below by using the appropriate starting components and modifying the

15 parameters of the synthesis as needed. In general, starting components may be obtained from sources such as Sigma Aldrich, Lancaster Synthesis, Inc., Maybridge, Matrix Scientific, TCI, and Fluorochem USA, etc. or synthesized according to sources known to those skilled in the art (see, e.g., Smith, M.B. and J. March, *Advanced Organic Chemistry: Reactions, Mechanisms, and Structure*, 5th edition (Wiley, December 2000)) or prepared as described herein.

20

In the following Reaction Scheme 1, R¹, R² and R³ are defined as set forth above in the Summary of the Invention for compounds of formula (I), unless specifically defined otherwise, and R is an alkyl group:

REACTION SCHEME 1


Compounds of formula (101), formula (102), and formula (106) are commercially available or can be prepared according to methods known to one skilled in the art or by methods disclosed herein.

In general, compounds of formula (I) are prepared as described above by first reacting ketoester compounds of formula (102) with aminopyridine compounds of formula (101) to afford compounds of formula (103). Treatment of the compounds of formula (103) with an acid, such as, but not limited to, concentrated sulfuric acid, provides fused pyridopyrimidinone compounds of formula (104). The compounds of formula (104) can be treated with a brominating agent under standard conditions, such as *N*-bromosuccinimide in a solvent, such as, but not limited to, carbon tetrachloride, to produce compounds of formula (105). The compounds of formula (105) can be treated under standard Suzuki coupling reaction conditions with boronic acid compounds of formula (106) in the presence of a palladium catalyst such as, but not limited to, tetrakis(triphenylphosphine)palladium(0), with or without a ligand, such as, but not limited to, triphenylphosphine, tri(*o*-tolyl)phosphine, 1,1'-bis(diphenylphosphino)ferrocene or 2-(*di-tert*-butylphosphino)biphenyl, and a base, such as, but not limited to, sodium carbonate or cesium carbonate in a solvent, such as, but not limited to, 1,2-dimethoxyethane, dioxane or tetrahydrofuran, to generate the compounds of formula (I).

Compounds of formula (105) where R^2 is $-\text{N}(\text{R}^4)\text{R}^5$ or $-\text{OR}^5$ where each R^5 is as

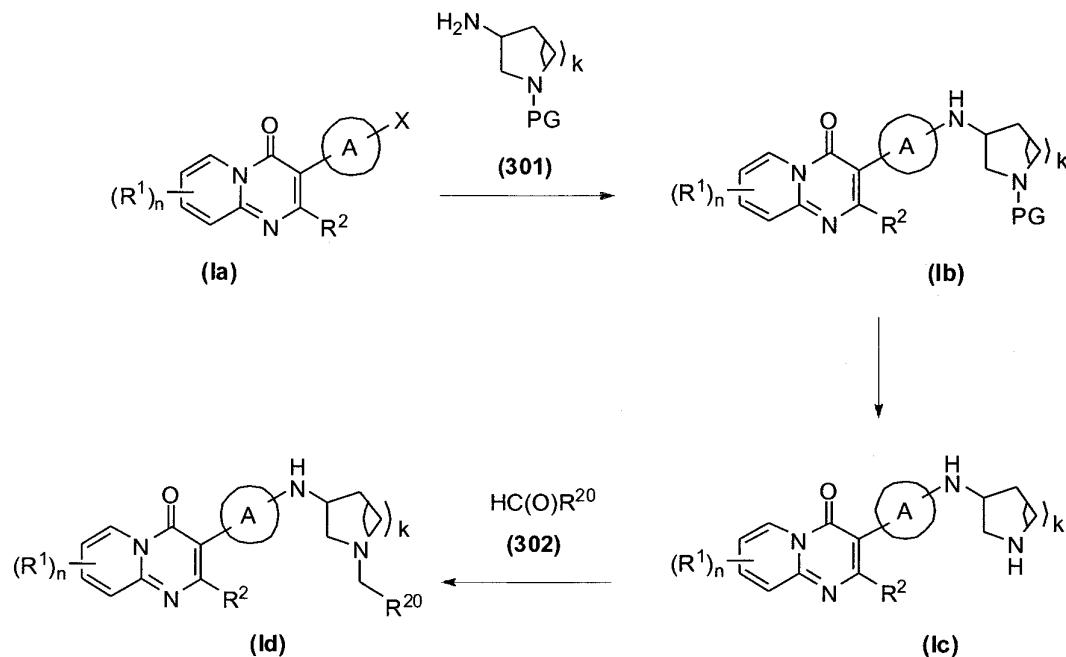
defined above in the Summary of the Invention and R⁴ is as defined above in the Summary of the Invention can also be prepared as shown below in Reaction Scheme 2 where R¹, R⁴ and R⁵ are as described above in the Summary of the Invention:

REACTION SCHEME 2

5

Compounds of formula (105a) can be prepared by the method disclosed above in Reaction Scheme 1 or by methods known to one skilled in the art. Compounds of formula (201) and formula (202) are commercially available or can be prepared according to methods known to one skilled in the art or by methods disclosed herein.

10 In general, compounds of formula (105b) (which are compounds of formula (105) wherein R² is -N(R⁴)R⁵) are prepared by the method disclosed above in Reaction Scheme 2 by treating a compound of formula (105a) with a compound of formula (201) in an alcoholic solvent, such as, but not limited to, ethanol.


15 In general, compounds of formula (105c) (which are compounds of formula (105) wherein R² is -OR⁵) are prepared by the method disclosed above in Reaction Scheme 2 by treating a compound of formula (105a) with a compound of formula (202) in an alcoholic solvent.

20 Compounds of formula (I) where R³ is aryl substituted by a substituted amino group or heteroaryl substituted by a substituted amino group can be prepared from a compound of formula (I) where R³ is aryl substituted by chloro, bromo, iodo or trifluoromethylsulfonate group or heteroaryl substituted by chloro, bromo, iodo or trifluoromethylsulfonate group as shown below in Reaction Scheme 3 where X is a

chloro, bromo, iodo or trifluoromethylsulfonate group; \textcircled{A} is an aryl or a heteroaryl group; PG is a nitrogen-protecting group; k is 0, 1, 2 or 3; R^{20} is alkyl, haloalkyl, aralkyl, cycloalkylalkyl, heterocyclalkyl or heteroarylalkyl; and n , R^1 and R^2 are each as described above in the Summary of the Invention:

5

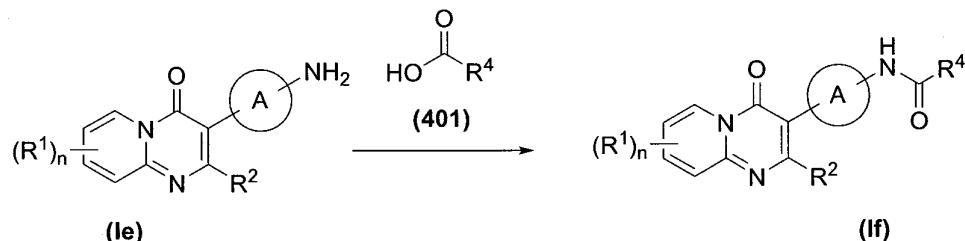
REACTION SCHEME 3

Compounds of formula (Ia) can be prepared by the methods disclosed herein. compounds of formula (301) and (302) are commercially available or can be prepared according to methods known to one skill in the art or by methods disclosed herein.

Compounds of formula (Ia) where X is trifluoromethylsulfonate can be prepared from the corresponding methoxy compound by demethylation followed by the reaction of the generated phenolic compound with trifluoromethylsulfonic anhydride.

In general, compounds of formula (Ib), (Ic) and (Id) can be prepared by first carrying out a Buchwald/Hartwig amination reaction (See Muci, A. R., et al, *Topics in Current Chemistry* (2002), 219:131) between a compound of formula (Ia) and a compound of formula (301) in the presence of a palladium catalyst, such as, but not limited to, tetrakis(triphenylphosphine)palladium(0) or tris(dibenzylideneacetone)dipalladium(0), with or without a ligand, such as, but not limited to, triphenylphosphine, tri(o-tolyl)phosphine, 1,1'-

bis(diphenylphosphino)ferrocene or 2-(di-*tert*-butylphosphino)biphenyl, a base, such as, but not limited to, sodium carbonate, cesium carbonate or sodium *tert*-butoxide, in a solvent, such as, but not limited to, dioxane or tetrahydrofuran, to generate a compound of formula (Ib). The protecting group can be removed from the compound


5 of formula (Ib) using the methods known to those skilled in the art to produce a compound of formula (Ic). Reductive amination with the aldehyde compound of formula (302) provides compounds of formula (Id). Alternatively, a ketone corresponding to the compound of formula (302) may also be used to furnish compounds of formula (Id).

10 Compounds of formula (I) where R³ is aryl substituted by a -N(R⁵)C(O)R⁴ group or heteroaryl substituted by a -N(R⁵)C(O)R⁴ group can be prepared from a compound of formula (I) where R³ is aryl substituted by -NH₂ or heteroaryl substituted by -NH₂ as

shown below in Reaction Scheme 3 where is an aryl or a heteroaryl group, and n, R¹, R² and R⁴ are each as described above in the Summary of the Invention:

15

REACTION SCHEME 4

Compounds of formula (Ie), which are compounds of formula (I), can be prepared by the methods disclosed herein. Compounds of formula (401) are commercially available, or can be prepared by methods known to one skilled in the art

20 or by methods disclosed herein.

In general, compounds of formula (Ie), which are compounds of formula (I) as set forth above in the Summary of the Invention, can be prepared by treating the compound of formula (Ie) with a compound of formula (401) under standard amide formation conditions known to those skilled in the art to produce a compound of formula (If), which is a compound of formula (I).

All compounds of the invention as prepared above and below which exist in free base or acid form may be converted to their pharmaceutically acceptable salt by

treatment with the appropriate inorganic or organic base or acid by methods known to one skilled in the art. Salts of the compounds prepared herein may be converted to their free base or acid by standard techniques known to one skilled in the art.

The following Preparations, which are directed to the preparation of 5 intermediates used in the preparation of the compounds of formula (I), and the following Examples, which are directed to the preparation of the compounds of formula (I), are provided as a guide to assist in the practice of the invention, and are not intended as a limitation on the scope of the invention.

10

PREPARATION 1

Preparation of 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

A. Preparation of 3-oxo-*N*-pyridin-2-ylheptanamide

3-oxoheptoic acid ethyl ester (6.20 g, 36 mmol) and 2-aminopyridine (2.82 g, 30 mmol) was heated at 110 °C for 16 hours. The solid was precipitated and filtered, 15 washed by hexane (10 mL) and dried to give 3-oxo-*N*-pyridin-2-ylheptanamide as a light yellow solid (2.61 g, 40%): ^1H NMR (300 MHz, CDCl_3) δ 9.50-9.35 (br, 1H), 8.31-8.10 (m, 2H), 7.73-7.65 (m, 1H), 7.08-6.99 (m, 1H), 3.56 (s, 2H), 2.57 (t, J = 7.5 Hz, 2H), 1.65-1.52 (m, 2H), 1.38-1.25 (m, 2H), 0.89 (t, J = 7.5 Hz, 3H).

B. Preparation of 2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

20 3-oxo-*N*-pyridin-2-ylheptanamide (2.60 g, 11.8 mmol) was stirred in concentrated sulfuric acid (15 mL) at ambient temperature for 48 hours. The above mixture was poured into ice, ammonia was added to adjust pH > 9. The resulting mixture was extracted with ether (3 X 50 mL), the combined organic layers was dried over anhydrous sodium sulfate, then filtered and concentrated to give the crude product. The crude product was purified by flash chromatography (50% ethyl acetate in hexane) to afford 2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one as a colorless solid (0.69 g, 29%): ^1H NMR (300 MHz, CDCl_3) δ 9.02 (d, J = 6.9 Hz, 1H), 7.75-7.57 (m, 2H), 7.13-7.05 (m, 1H), 6.33 (s, 1H), 2.67 (t, J = 7.5 Hz, 2H), 1.78-1.65 (m, 2H), 1.48-1.33 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H).

25 30 C. Preparation of 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

To a solution of 2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (0.67 g, 3.32 mmol) in carbon tetrachloride (30 mL) was added *N*-bromosuccinimide (0.65 g, 3.65 mmol).

The mixture was refluxed for 40 minutes. The reaction mixture was extracted with dichloromethane (3 x 50 mL), the combined organic layers was dried over anhydrous sodium sulfate, then filtered and concentrated to give 3-bromo-2-butyl-4*H*-pyrido[1,2-a]pyrimidin-4-one (0.87 g, 94%): ¹H NMR (300 MHz, CDCl₃) δ 9.03 (d, *J* = 7.2 Hz, 1H), 5 7.79-7.59 (m, 2H), 7.16 (ddd, *J* = 6.9, 6.9, 1.2 Hz, 1H), 2.95 (t, *J* = 7.8 Hz, 2H), 1.82-1.69 (m, 2H), 1.54-1.40 (m, 2H), 0.98 (t, *J* = 7.5 Hz, 3H).

PREPARATION 2

Preparation of 3-bromo-2-methyl-4*H*-pyrido[1,2-a]pyrimidin-4-one acetate

A solution of 2-aminopyridine (7.5 g, 79.8 mmol) and ethyl 3-oxobutanoate (11.0 mL, 87.8 mmol) in acetic acid (50.0 mL) was refluxed for 72 hours. The reaction mixture was cooled to ambient temperature for 2 hours where colorless crystals were produced. The crystalline solid was filtered, washed with cold diethyl ether and air dried to give 2-methyl-4*H*-pyrido[1,2-a]pyrimidin-4-one acetate as a color less solid (6.5 g). To a solution of 2-methyl-4*H*-pyrido[1,2-a]pyrimidin-4-one acetate in acetic acid (100.0 mL) was added bromine (4.80 g, 29.7 mmol) dropwise over 5 minutes. The resulting solution was stirred at ambient temperature for 30 minutes and additional acetic acid (50.0 mL) was added to free up the solid that precipitated. The solid was filtered and rinsed with diethyl ether (100.0 mL) and air dried to afford 3-bromo-2-methyl-4*H*-pyrido[1,2-a]pyrimidin-4-one acetate (9.20 g, 100%) as a pale orange solid: 15 ¹H NMR (300 MHz, DMSO-*d*₆) δ 13.49 (br, 1H), 8.98 (d, *J* = 7.1 Hz, 1H), 8.22-8.14 (m, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.56-7.50 (m, 1H), 2.57 (s, 3H); MS (ES+) *m/z* 238.8 (M + 1), 240.8 (M + 1).

PREPARATION 3

Preparation of 3-bromo-2-(trifluoromethyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one

A solution of 2-aminopyridine (11.6 g, 123 mmol), and ethyl 4,4,4-trifluoroacetoacetate (25.0 g, 136 mmol) in acetic acid (100.0 mL) was heated at reflux for 24 hours. The reaction solution was cooled down to ambient temperature followed by the addition of a solution of bromine (23.9 g, 149 mmol) in acetic acid (50.0 mL). The yellow reaction solution was stirred at ambient temperature for 3 hours. The precipitate was filtered to afford 3-bromo-2-(trifluoromethyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrobromide (12.8 g, 45%) as a yellow solid: ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.01-8.98 (m, 1H), 8.12 (ddd, *J* = 8.8, 8.8, 1.5 Hz, 1H), 7.88 (dd, *J* = 8.8, 8.8 Hz, 1H), 30 7.55 (ddd, *J* = 6.6, 6.9, 1.4 Hz, 1H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 155.8, 148.8 (d,

$^1J_{CF} = 276$ Hz), 128.6, 126.9, 121.2 (d, $^2J_{CF} = 64$ Hz), 119.5, 98.0; MS (ES+) *m/z* 193.2 (M + 1), 195.1 (M + 1).

PREPARATION 4

Preparation of 3-bromo-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

5 Following the procedure as described in PREPARATION 3 and making non-critical variations using ethyl 3-oxohexanoate to replace ethyl 4,4,4-trifluoroacetoacetate, 3-bromo-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (45%) as an yellow solid: 1H NMR (300 MHz, DMSO-*d*₆) δ 9.00 (d, *J* = 6.6 Hz, 1H), 7.40 (dd, *J* = 6.8 Hz, 1H), 7.25 (dd, *J* = 6.9 Hz, 1H), 7.09 (d, *J* = 6.8 Hz, 1H), 2.55 (t, *J* = 7.4 Hz, 2H), 1.73-1.61 (m, 2H), 0.84 (t, *J* = 7.4 Hz, 3H); ^{13}C NMR (75 MHz, DMSO-*d*₆) δ 166.3, 154.6, 148.6, 136.2, 127.6, 125.7, 115.9, 102.0, 40.2, 21.3, 14.0; MS (ES+) *m/z* 267.2 (M + 1), 269.2 (M + 1).

PREPARATION 5

Preparation of 3-bromo-2-(1-methylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

15 Following the procedure as described in PREPARATION 2 and making non-critical variations using isobutyrylacetate to replace 3-oxobutanoate, 3-bromo-2-(1-methylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (25%) as an orange solid: mp 204-207 °C; 1H NMR (300 MHz, DMSO-*d*₆) δ 8.89 (d, *J* = 7.2 Hz, 1H), 7.98-7.91 (m, 1H), 7.68 (d, *J* = 8.9 Hz, 1H), 7.38-7.31 (m, 1H), 3.64 (sep, *J* = 6.6 Hz, 1H), 1.20 (d, *J* = 6.8 Hz, 6H); MS (ES+) *m/z* 267.1 (M + 1), 269.1 (M + 1).

PREPARATION 6

Preparation of 3-bromo-2-isopentyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrobromide

Following the procedure as described in PREPARATION 3 and making non-critical variations using methyl 6-methyl-3-oxoheptanoate to replace ethyl 4,4,4-trifluoroacetoacetate, 3-bromo-2-isopentyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrobromide was obtained (69%) as a yellow solid: mp 132-135 °C; 1H NMR (300 MHz, DMSO-*d*₆) δ 10.00 (br, 1H), 8.99 (dd, *J* = 6.9 Hz, 1H), 8.31 (dd, *J* = 8.5 Hz, 1H), 8.00 (d, *J* = 8.8 Hz, 1H), 7.63 (dd, *J* = 6.9, 6.9 Hz, 1H), 2.87-2.82 (m, 2H), 1.66-1.47 (m, 3H), 0.89 (d, *J* = 13.2 Hz, 6H); ^{13}C NMR (75 MHz, DMSO-*d*₆) δ 160.5, 153.6, 147.2, 142.4, 129.1, 121.1, 119.5, 100.0, 36.4, 33.6, 28.0, 22.6; MS (ES+) *m/z* 295.2 (M + 1), 297.2 (M + 1).

PREPARATION 7

Preparation of 3-bromo-2-(2-cyclopropylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

A solution of 2-aminopyridine (2.47 g, 26.3 mmol) and methyl 4-cyclopropyl-3-oxobutanoate (4.92 g, 28.9 mmol) in acetic acid (15.0 mL) was heated at reflux for 5 hours. The reaction solution was cooled to ambient temperature, diluted with ethyl acetate (100 mL), washed with water (3 x 50 mL), saturated sodium bicarbonate solution (3 x 50 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated *in vacuo* to dryness. The residue was purified by column chromatography eluting with ethyl acetate to afford 2-(2-cyclopropylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (0.82 g, 13%) as a gum. To a solution of this product in acetic acid (2.0 mL) was added a solution of bromine (0.65 g, 4.09 mmol) in acetic acid (1.0 mL). The yellow reaction solution was stirred at ambient temperature for 1 hour. The precipitate was filtered to give 3-bromo-2-(2-cyclopropylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (1.38 g, 97%) as a yellow solid: mp 162-164 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.99 (d, *J* = 7.2 Hz, 1H), 7.68 (ddd, *J* = 7.2, 7.0, 1.5 Hz, 1H), 7.58 (d, *J* = 8.9 Hz, 1H), 7.06 (ddd, *J* = 7.1, 7.1, 1.4 Hz, 1H), 2.74 (t, *J* = 7.9 Hz, 2H), 1.65-1.57 (m, 2H), 0.78-0.65 (m, 1H), 0.43-0.37 (m, 2H), 0.06-0.01 (m, 2H); MS (ES+) *m/z* 293.20 (M + 1), 295.19 (M + 1).

PREPARATION 8

20 Preparation of 3-bromo-2-butyl-7-methyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in PREPARATION 2 and making non-critical variations using 2-amino-5-picoline to replace 2-aminopyridine, and methyl-3-oxo-heptanoate to replace 3-oxobutanoate, 3-bromo-2-butyl-7-methyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (71%) as a colorless solid: ¹H NMR (300 MHz, CDCl₃) δ 8.95 (s, 1H), 8.94 (d, *J* = 9.1 Hz, 1H), 8.23 (dd, *J* = 9.1, 1.8 Hz, 1H), 3.26 (t, *J* = 7.6 Hz, 2H), 2.61 (s, 3H), 1.93-1.80 (m, 2H), 1.62-1.47 (m, 2H), 0.99 (t, *J* = 7.0 Hz, 3H); MS (ES+) *m/z* 295.1 (M + 1), 297.1 (M + 1).

PREPARATION 9

Preparation of 3-bromo-2-butyl-7-fluoro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

30 Following the procedure as described in PREPARATION 2 and making non-critical variations using 5-fluoropyridin-2-amine to replace 2-aminopyridine, and methyl-3-oxo-heptanoate to replace 3-oxobutanoate, 3-bromo-2-butyl-7-fluoro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (66%) as a colorless solid: ¹H NMR (300 MHz, CDCl₃)

δ 8.95-8.89 (m, 1H), 7.68-7.61 (m, 2H), 2.93 (t, J = 7.6 Hz, 2H), 1.79-1.66 (m, 2H), 1.52-1.37 (m, 2H), 0.95 (t, J = 7.0 Hz, 3H); MS (ES+) m/z 299.0 (M + 1), 301.0 (M + 1).

PREPARATION 10

Preparation of 3-bromo-2-butyl-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in PREPARATION 2 and making non-critical variations using 4-(trifluoromethyl)pyridin-2-amine to replace 2-aminopyridine, and methyl-3-oxo-heptanoate to replace 3-oxobutanoate, 3-bromo-2-butyl-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (25%) as a colorless solid: 1 H NMR (300 MHz, CDCl₃) δ 9.50 (s, 1H), 9.32 (d, J = 7.3 Hz, 1H), 7.76 (dd, J = 7.3, 1.8 Hz, 1H), 3.32 (t, J = 7.6 Hz, 2H), 1.94-1.80 (m, 2H), 1.62-1.47 (m, 2H), 0.99 (t, J = 7.0 Hz, 3H); MS (ES+) m/z 349.0 (M + 1), 351.0 (M + 1).

PREPARATION 11

Preparation of 3-bromo-2-butyl-4*H*-pyrimido[2,1-*a*]isoquinolin-4-one

Following the procedure as described in PREPARATION 2 and making non-critical variations using 1-aminoisoquinoline to replace 2-aminopyridine, and methyl-3-oxo-heptanoate to replace 3-oxobutanoate, 3-bromo-2-butyl-4*H*-pyrimido[2,1-*a*]isoquinolin-4-one was obtained (17%) as a colorless solid: 1 H NMR (300 MHz, CDCl₃) δ 10.31 (d, J = 8.2 Hz, 1H), 8.97 (d, J = 7.6 Hz, 1H), 8.24-8.08 (m, 2H), 8.07-8.01 (m, 1H), 7.84 (d, J = 7.6 Hz, 1H), 3.66 (t, J = 7.6 Hz, 2H), 1.96-1.82 (m, 2H), 1.69-1.54 (m, 2H), 1.01 (t, J = 7.0 Hz, 3H); MS (ES+) m/z 331.1 (M + 1), 333.1 (M + 1).

PREPARATION 12

Preparation of 3-bromo-2-butyl-7-chloro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in PREPARATION 2 and making non-critical variations using 4-chloropyridin-2-amine to replace 2-aminopyridine, and methyl-3-oxo-heptanoate to replace 3-oxobutanoate, 3-bromo-2-butyl-7-chloro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (84%) as a colorless solid: 1 H NMR (300 MHz, CDCl₃) δ 9.19 (d, J = 2.0 Hz, 1H), 9.07 (d, J = 9.4 Hz, 1H), 8.29 (dd, J = 9.4, 2.0 Hz, 1H), 3.27 (t, J = 7.6 Hz, 2H), 1.94-1.80 (m, 2H), 1.62-1.47 (m, 2H), 0.99 (t, J = 7.0 Hz, 3H); MS (ES+) m/z 315.0 (M + 1), 317.0 (M + 1), 319.0 (M + 1).

30

PREPARATION 13

Preparation of 3-bromo-2-methoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

To a suspension of 3-bromo-2-chloro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (Roma,

G. et al., *Bioorg. Med. Chem.* 2000, 8(4):751-68) (6.50 g, 3.90 mmol) in methanol (25 mL) was added a 2.0 M solution of sodium methoxide in methanol (75.0 mL, 38.0 mmol). The solution was refluxed for 2 hours, cooled to room temperature and concentrated *in vacuo* to dryness. The residue was suspended in distilled water (100.0 mL) and extracted with dichloromethane (3 x 100.0 mL). The combined organic layers was dried over anhydrous magnesium sulfate and filtered. The filtrate was concentrated *in vacuo* to dryness to afford 3-bromo-2-methoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (5.01 g, 77%) as a colourless solid: ¹H NMR (300 MHz, CDCl₃) δ 9.09-9.04 (m, 1H), 7.82-7.75 (m, 1H), 7.56-7.51 (m, 1H), 7.19-7.13 (m, 1H), 4.09 (s, 3H); MS (ES+) *m/z* 255.1 (M + 1), 257.1 (M + 1).

PREPARATION 14

Preparation of 3-bromo-2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

A. Preparation of 2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

A solution of 2-hydroxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (Roma et al., 15 *Bioorganic & Medicinal Chemistry* 2000, 8:751) (2.00 g, 12.3 mmol), 1-bromopropane (3.00 g, 24.6 mmol), cesium carbonate (12.0 g, 36.9 mmol) in acetone (50.0 mL) was refluxed for 40 hours. An additional aliquot of 1-bromopropane (3.0 g, 24.6 mmol) was added. The mixture was refluxed for an additional 20 hour. The reaction mixture was then cooled to ambient temperature. The inorganic salts were filtered and the filtrate 20 was concentrated *in vacuo* to dryness. The residue was purified by flash chromatography with ethyl acetate in hexanes and recrystallized from diethyl ether and hexanes (1:4) to afford 2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (1.58 g, 63 %) as a light pink solid: ¹H NMR (300 MHz, CDCl₃) δ 8.98 (d, *J* = 7.1 Hz, 1H), 7.72-7.65 (m, 1H), 7.45 (d, *J* = 8.9 Hz, 1H), 7.06-7.00 (m, 1H), 5.74 (s, 1H), 4.20 (t, *J* = 6.7 Hz, 2H), 25 1.84-1.69 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H); MS (ES+) *m/z* 205.2 (M + 1).

B. Preparation of 3-bromo-2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

To a solution of 2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (1.49 g, 7.3 mmol) in chloroform (10.0 mL) was added *N*-bromosuccinimide (1.56 g, 8.8 mmol). The reaction was complete upon the addition of the *N*-bromosuccinimide so the solution 30 was diluted with dichloromethane (15.0 mL) and partitioned with saturated sodium carbonate solution in water (25.0 mL). The aqueous layer was extracted with dichloromethane (4 x 25.0 mL), dried over anhydrous magnesium sulfate and concentrated *in vacuo* to dryness. The residue was purified by flash chromatography

with ethyl acetate in hexanes to afford 3-bromo-2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (1.61 g, 78%) as a pink solid: ^1H NMR (300 MHz, CDCl_3) δ 9.09-9.03 (m, 1H), 7.80-7.72 (m, 1H), 7.53-7.48 (m, 1H), 7.16-7.10 (m, 1H), 4.43 (t, J = 6.6 Hz, 2H), 1.90-1.76 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H); MS (ES+) m/z 241.0 (M - 43), 243.0 (M - 43).

5

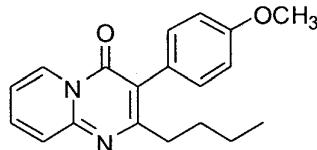
PREPARATION 15

Preparation of 3-bromo-2-[(1-methylethyl)amino]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

A solution of 3-bromo-2-chloro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (1.10 g, 4.3 mmol (Roma *et al.* *Bioorganic & Medicinal Chemistry* 2000, 8:751) and isopropylamine (2.50 g, 43.0 mmol) in ethanol (50.0 mL) was refluxed for 4 hours. The solution was 10 cooled to ambient temperature and concentrated *in vacuo* to dryness. The residue was purified by flash chromatography with ethyl acetate in hexanes to afford 3-bromo-2-[(1-methylethyl)amino]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (1.20 g, 99%) as a yellow solid: mp 101-104 °C; ^1H NMR (300 MHz, CDCl_3) δ 8.90 (d, J = 7.2 Hz, 1H), 7.63-7.54 (m, 1H), 7.31 (d, J = 9.0 Hz, 1H), 6.89 (dd, J = 6.9, 6.9 Hz, 1H), 5.25 (d, J = 7.2 Hz, 1H), 4.39 (octet, J = 6.6 Hz, 1H), 1.25 (dd, J = 6.5, 1.0 Hz, 6H); ^{13}C NMR (75 MHz, CDCl_3) δ 156.7, 154.0, 149.6, 136.5, 128.1, 124.2, 113.1, 80.78, 43.3, 23.2; MS (ES+) m/z 282.1 (M + 1), 284.1 (M + 1).

PREPARATION 16

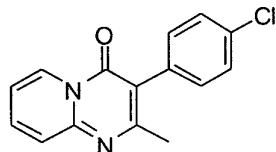
Preparation of 3-bromo-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one


20 Following the procedure as described in PREPARATION 15, and making non-critical variations using *n*-propylamine to replace isopropylamine, 3-bromo-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (89%) as a yellow oil: MS (ES+) m/z 282.1 (M + 1), 284.1 (M + 1).

PREPARATION 17

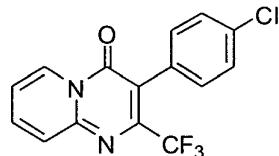
25 Preparation of 3-bromo-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in PREPARATION 15, and making non-critical variations using pyrrolidine to replace isopropylamine, 3-bromo-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (94%) as a yellow oil: MS (ES+) m/z 294.1 (M + 1), 296.1 (M + 1).


EXAMPLE 1

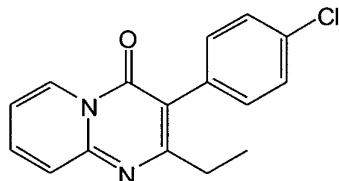
Synthesis of 2-butyl-3-(4-methoxyphenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one

A stirred 1,2-dimethoxyethane (10 mL) solution of 3-bromo-2-butyl-4*H*-


5 pyrido[1,2-a]pyrimidin-4-one (0.60 g, 2.13 mmol) and 4-methoxyphenylboronic acid (0.49 g, 3.2 mmol) was bubbled with nitrogen for 15 minutes. Tetrakis(triphenylphosphine)palladium(0) (0.12 g, 0.10 mmol) and 2 M sodium carbonate (2.13 mL, 4.27 mmol) were added, and the reaction mixture was bubbled with nitrogen for an additional 15 minutes, then equipped with a condenser and heated 10 to reflux under nitrogen for 16 hours. The mixture was evaporated to dryness. The residue was subjected to column chromatography (50% ethyl acetate in hexanes) to give 2-butyl-3-(4-methoxyphenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one (0.28 g, 42%) as a colorless solid: MS (ES+) *m/z* 309.2 (M + 1).

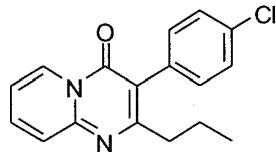
EXAMPLE 1.1

15 Synthesis of 3-(4-chlorophenyl)-2-methyl-4*H*-pyrido[1,2-a]pyrimidin-4-one


Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-methyl-4*H*-pyrido[1,2-a]pyrimidin-4-one acetate to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-a]pyrimidin-4-one, and 4-chlorophenylboronic acid to 20 replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-methyl-4*H*-pyrido[1,2-a]pyrimidin-4-one was obtained (68%) as a colorless solid: ¹H NMR (300 MHz, CDCl₃) δ 8.98 (d, *J* = 7.2 Hz, 1H), 7.71-7.64 (m, 1H), 7.56 (d, *J* = 9.0 Hz, 1H), 7.40-7.34 (m, 2H), 7.29-7.23 (m, 2H), 7.10-7.03 (m, 1H), 2.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 161.9, 157.1, 149.3, 136.1, 133.5, 133.4, 131.8, 128.7, 127.6, 125.8, 115.7, 115.3, 25 23.8; MS (ES+) *m/z* 271.1 (M + 1), 273.1 (M + 1).

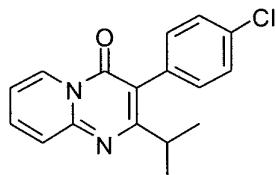
EXAMPLE 1.2

Synthesis of 3-(4-chlorophenyl)-2-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one


Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (78%) as a pale yellow solid: ^1H NMR (300 MHz, CDCl_3) δ 8.98 (d, J = 7.2 Hz, 1H), 8.14-8.07 (m, 1H), 7.87 (d, J = 8.9 Hz, 1H), 7.51-7.48 (m, 3H), 7.31 (d, J = 8.4 Hz, 2H); MS (ES+) m/z 325.1 (M + 1).

EXAMPLE 1.3

Synthesis of 3-(4-chlorophenyl)-2-ethyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one


Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-ethyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrobromide (PCT Published Application WO 07002701) to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-ethyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (3.10 g, 55%) was obtained as a colourless solid: ^1H NMR (300 MHz, $\text{DMSO}-d_6$) δ 8.87 (d, J = 7.2 Hz, 1H), 7.89 (dd, J = 8.4, 8.4 Hz, 1H), 7.63 (d, J = 8.9 Hz, 1H), 7.46 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 7.27 (dd, J = 6.7, 6.7 Hz, 1H), 2.46 (q, J = 7.5 Hz, 2H), 1.08 (t, J = 7.5 Hz, 3H); ^{13}C NMR (75 MHz, $\text{DMSO}-d_6$) δ 165.7, 157.0, 149.7, 137.5, 134.4, 132.8, 132.4, 128.6, 127.5, 126.0, 116.5, 114.4, 29.0, 13.2; MS (ES+) m/z 285.2 (M + 1), 287.2 (M + 1).

EXAMPLE 1.4

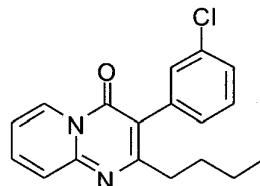
Synthesis of 3-(4-chlorophenyl)-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrobromide to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (59%) as a pale yellow solid: mp 109-110 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.00 (d, *J* = 6.6 Hz, 1H), 7.72-7.61 (m, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 7.09 (dd, *J* = 6.8, 6.8 Hz, 1H), 2.55 (t, *J* = 7.4 Hz, 2H), 1.73-1.61 (m, 2H), 0.84 (t, *J* = 7.4 Hz, 3H); MS (ES+) *m/z* 299.2 (M + 1), 301.2 (M + 1).


EXAMPLE 1.5

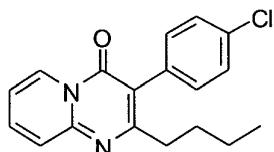
Synthesis of 3-(4-chlorophenyl)-2-(1-methylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

15


Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-(1-methylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-(1-methylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (67%) as a yellow solid: mp 98-100 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.87 (d, *J* = 7.2 Hz, 1H), 7.88 (ddd, *J* = 6.6, 6.6, 1.5 Hz, 1H), 7.64 (d, *J* = 8.7 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.33-7.24 (m, 3H), 2.81 (sep, *J* = 6.6 Hz, 1H), 1.09 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 168.9, 157.2, 150.2, 137.4, 134.5, 132.8, 132.5, 128.7, 127.5, 126.3, 116.5, 114.0, 32.4, 21.8; MS (ES+) *m/z* 299.1 (M + 1), 301.1 (M + 1).

EXAMPLE 1.6

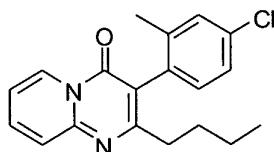
Synthesis of 2-butyl-3-(2-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one


Following the procedure as described in EXAMPLE 1 and making non-critical variations using 2-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(2-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (37%) as a colourless solid: mp 118-120 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.02 (d, *J* = 7.2 Hz, 1H), 7.72-7.67 (m, 1H), 7.62 (d, *J* = 8.9 Hz, 1H), 7.50-7.46 (m, 1H), 7.33-7.24 (m, 3H), 7.08 (dd, *J* = 6.5, 6.5 Hz, 1H), 2.58-2.37 (m, 2H), 1.66-1.54 (m, 2H), 1.28-1.15 (m, 2H), 0.78 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 166.3, 156.7, 150.0, 135.9, 134.8, 133.9, 132.2, 129.7, 129.3, 127.6, 126.9, 126.0, 115.1, 114.5, 35.8, 30.5, 22.6, 13.7; MS (ES+) *m/z* 315.2 (M + 1), 313.2 (M + 1).

EXAMPLE 1.7

Synthesis of 2-butyl-3-(3-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(3-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (64%) as a colourless solid: ¹H NMR (300 MHz, CDCl₃) δ 8.88 (d, *J* = 7.1 Hz, 1H), 7.91 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.64 (d, *J* = 8.9 Hz, 1H), 7.45-7.24 (m, 5H), 2.48-2.43 (m, 2H), 1.60-1.50 (m, 2H), 1.21-1.10 (m, 2H), 0.71 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 164.9, 156.9, 149.8, 137.8, 137.7, 133.2, 130.8, 130.5, 129.8, 127.7, 127.9, 126.1, 116.6, 114.8, 35.3, 30.6, 22.3, 14.1.

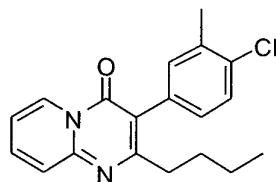

EXAMPLE 1.8

Synthesis of 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1, making non-critical

5 variations using 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (51%) as a colorless solid: ^1H NMR (300 MHz, CDCl_3) δ 9.0 (d, J = 7.8 Hz, 1H), 7.73-7.60 (m, 2H), 7.46-7.34 (m, 2H), 7.28-7.21 (m, 2H), 7.12-7.07 (m, 1H), 2.57 (t, J = 7.5 Hz, 2H), 1.68-1.57 (m, 2H), 1.31-1.19 (m, 2H), 0.80 (t, J = 7.5 Hz, 3H); MS (ES+) m/z 313.2 (M + 1), 10 315.2 (M + 1).

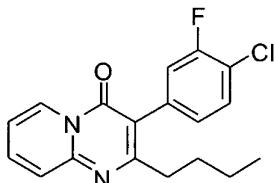
EXAMPLE 1.9


Synthesis of 2-butyl-3-(4-chloro-2-methylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1 and making non-critical

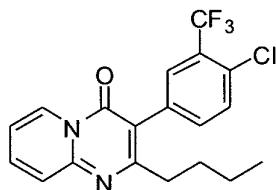
15 variations using 4-chloro-2-methylphenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(4-chloro-2-methylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (39%) as a colourless solid: mp 105-107 °C; ^1H NMR (300 MHz, $\text{DMSO-}d_6$) δ 8.89 (d, J = 7.1 Hz, 1H), 7.91 (ddd, J = 8.7, 8.7, 1.5 Hz, 1H), 7.66 (d, J = 8.9 Hz, 1H), 7.38 (d, J = 1.5 Hz, 1H), 7.32-7.26 (m, 2H), 7.13 (d, J = 8.2 Hz, 1H), 2.43-2.23 (m, 2H), 2.02 (s, 3H), 1.55-1.45 (m, 2H), 1.19-1.07 (m, 2H), 0.70 (t, J = 7.3 Hz, 3H); ^{13}C NMR (75 MHz, $\text{DMSO-}d_6$) δ 165.2, 156.2, 149.9, 140.3, 137.5, 134.2, 132.8, 132.5, 129.9, 127.5, 126.1, 126.1, 116.5, 114.2, 35.2, 30.2, 22.3, 19.5, 14.0; MS (ES+) m/z 327.2 (M + 1), 329.2 (M + 1).

EXAMPLE 1.10


25 Synthesis of 2-butyl-3-(4-chloro-3-methylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

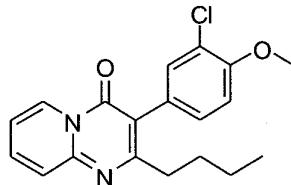
Following the procedure as described in EXAMPLE 1 and making non-critical variations using 4-chloro-3-methylphenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(4-chloro-3-methylphenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one was obtained (38%) as a pale yellow solid: mp 122-124 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.99 (d, *J* = 7.2 Hz, 1H), 7.68 (dd, *J* = 6.5, 6.5 Hz, 1H), 7.60 (d, *J* = 8.9 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.19 (s, 1H), 7.09-7.05 (m, 2H), 2.56 (t, *J* = 7.7 Hz, 2H), 2.38 (s, 3H), 1.67-1.57 (m, 2H), 1.31-1.19 (m, 2H), 0.80 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 165.6, 157.5, 149.5, 136.1, 135.6, 133.7, 133.4, 132.9, 129.1 (2), 127.5, 126.0, 115.9, 115.0, 35.7, 31.1, 22.6, 20.1, 13.8; MS (ES+) *m/z* 327.2 (M + 1), 329.2 (M + 1).

EXAMPLE 1.11

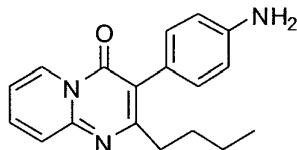

Synthesis of 2-butyl-3-(4-chloro-3-fluorophenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1 and making non-critical variations using 4-chloro-3-fluorophenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(4-chloro-3-fluorophenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one was obtained (41%) as a colourless solid: ¹H NMR (300 MHz, CDCl₃) δ 8.89 (d, *J* = 7.1 Hz, 1H), 7.91 (dd, *J* = 7.3, 7.3 Hz, 1H), 7.66-7.63 (m, 2H), 7.38 (dd, *J* = 10.4, 1.9 Hz, 1H), 7.30 (dd, *J* = 6.9, 6.9 Hz, 1H), 7.16 (dd, *J* = 8.3, 1.7 Hz, 1H), 2.50-2.45 (m, 2H), 1.60-1.50 (m, 2H), 1.23-1.11 (m, 2H), 0.73 (t, *J* = 7.3 Hz, 3H).

EXAMPLE 1.12


Synthesis of 2-butyl-3-(4-chloro-3-(trifluoromethyl)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

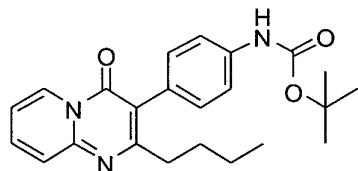
5 Following the procedure as described in EXAMPLE 1 and making non-critical variations using 4-chloro-3-trifluoromethylphenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(4-chloro-3-(trifluoromethyl)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (37%) as a colourless solid: MS (ES+) *m/z* 381.2 (M + 1).


10 EXAMPLE 1.13

Synthesis of 2-butyl-3-(3-chloro-4-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-chloro-4-methoxyphenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(4-chloro-3-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (37%) as a colourless solid: mp 113-115 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.85 (d, *J* = 7.0 Hz, 1H), 7.87 (dd, *J* = 7.3, 7.3 Hz, 1H), 7.61 (d, *J* = 8.9 Hz, 1H), 7.33 (d, *J* = 1.7 Hz, 1H), 7.26 (dd, *J* = 6.3, 6.3 Hz, 1H), 7.20-7.15 (m, 2H), 3.86 (s, 3H), 2.46 (t, *J* = 7.7 Hz, 2H), 1.60-1.49 (m, 2H), 1.28-1.09 (m, 2H), 0.72 (t, *J* = 7.3 Hz, 3H); MS (ES+) *m/z* 343.3 (M + 1), 345.3 (M + 1).

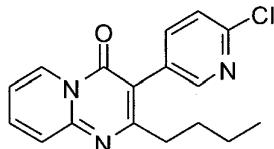
EXAMPLE 1.14


Synthesis of 2-butyl-3-(4-aminophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1, making non-critical

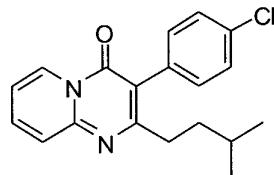
5 variations using 4-aminophenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(4-aminophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (30%) as a colorless solid: mp 95-97 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.06-9.01 (m, 1H), 7.74-7.60 (m, 2H), 7.15-7.03 (m, 3H), 6.79-6.72 (m, 2H), 4.20-3.20 (br, 2H), 2.65 (t, *J* = 7.8 Hz, 2H), 1.70-1.58 (m, 2H), 1.35-1.21 (m, 2H), 0.83 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.7, 158.1, 149.3, 145.9, 135.3, 131.4, 127.6, 126.0, 124.8, 117.2, 115.3, 114.9, 35.9, 31.4, 22.8, 14.0; MS (ES+) *m/z* 294.2 (M + 1).

10


EXAMPLE 1.15

Synthesis of *tert*-butyl 4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylcarbamate

15 Following the procedure as described in EXAMPLE 1 and making non-critical variations using 4-(*tert*-butyloxycarbonylamino)phenylboronic acid pinacol ester to replace 4-methoxyphenylboronic acid, *tert*-butyl 4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl carbamate was obtained (73%) as a colourless solid: mp 132-135 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.02 (d, *J* = 7.9 Hz, 1H), 7.71 (dd, *J* = 8.9 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 7.43 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.7 Hz, 2H), 7.12 (d, *J* = 6.8 Hz, 1H), 2.56 (t, *J* = 7.5 Hz, 2H), 1.67-1.57 (m, 2H), 1.36 (s, 9H), 1.31-1.18 (m, 2H), 0.79 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ 165.7, 157.3, 149.7, 148.9, 136.2, 135.4, 132.5, 127.5, 125.9, 121.4, 118.8 (q), 115.5, 114.9, 35.6, 31.1, 22.6, 13.7; MS (ES+) *m/z* 394.3 (M + 1), 338.3 (M - 57).

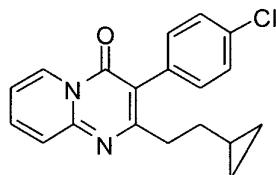

20

EXAMPLE 1.16

Synthesis of 2-butyl-3-(6-chloropyridin-3-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1 and making non-critical variations using 2-chloropyridine-5-boronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(6-chloropyridin-3-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (18%) as a pale yellow solid: ^1H NMR (300 MHz, DMSO- d_6) δ 8.89 (d, J = 7.8 Hz, 1H), 8.35 (d, J = 2.4 Hz, 1H), 7.93 (d, J = 7.2 Hz, 1H), 7.83 (dd, J = 8.3, 2.3 Hz, 1H), 7.66 (d, J = 9.0 Hz, 1H), 7.58 (d, J = 8.2 Hz, 1H), 7.31 (dd, J = 6.9, 6.9 Hz, 1H), 2.47 (t, J = 7.7 Hz, 2H), 1.61-1.49 (m, 2H), 1.22-1.09 (m, 2H), 0.72 (t, J = 7.3 Hz, 3H); ^{13}C NMR (75 MHz, DMSO- d_6) δ 165.3, 157.1, 151.5, 149.9, 149.4, 142.3, 138.0, 131.0, 127.6, 126.1, 124.3, 116.7, 111.3, 35.3, 30.5, 22.3, 14.0; MS (ES+) m/z 316.2 (M + 1), 314.2 (M + 1).

EXAMPLE 1.17

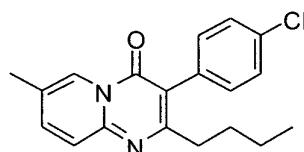

Synthesis of 3-(4-chlorophenyl)-2-isopentyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-isopentyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrobromide to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-isopentyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (31%) as a colourless solid: mp 146-149 °C; ^1H NMR (300 MHz, DMSO- d_6) δ 8.88 (d, J = 7.0 Hz, 1H), 7.90 (ddd, J = 7.0, 7.0, 1.5 Hz, 1H), 7.64 (d, J = 8.9 Hz, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.29 (ddd, J = 6.9, 6.9, 1.5 Hz, 1H), 2.48-2.46 (m, 2H), 1.48-1.35 (m, 3H), 0.70 (d, J = 6.3 Hz, 6H); ^{13}C NMR (75 MHz, DMSO- d_6) δ 165.2, 157.0, 149.7, 137.5, 134.5, 132.9, 132.5, 128.6, 127.5, 126.1, 116.5, 114.7, 37.8, 33.7, 27.8, 22.6; MS (ES+) m/z 327.2

(M + 1), 325.2 (M + 1).

EXAMPLE 1.18

Synthesis of 3-(4-chlorophenyl)-2-(2-cyclopropylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

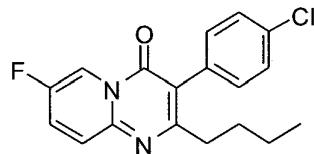

5 Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-(2-cyclopropylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-(2-cyclopropylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (73%) as a colourless solid: mp 126-127 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.89 (d, *J* = 7.2 Hz, 1H), 7.91 (ddd, *J* = 7.2, 7.0, 1.5 Hz, 1H), 7.64 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.3 Hz, 2H), 7.34-7.27 (m, 1H), 2.55 (t, *J* = 7.9 Hz, 2H), 1.52-1.44 (m, 2H), 0.61-0.49 (m, 1H), 0.29-0.21 (m, 2H), -0.14-(-)0.17 (m, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 164.5, 157.0, 149.6, 137.5, 134.5, 132.9, 132.4, 128.6, 127.5, 126.0, 116.5, 114.9, 35.8, 33.5, 11.1, 4.8; MS (ES+) *m/z* 328.2 (M + 1), 329.2 (M + 1).

10

15

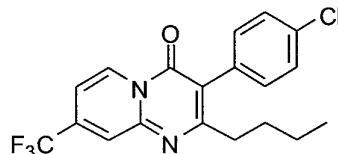
EXAMPLE 1.19

Synthesis of 2-butyl-3-(4-chlorophenyl)-7-methyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one



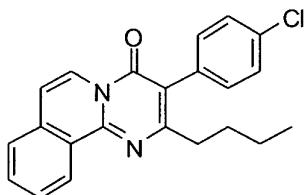
Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-butyl-7-methyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(4-chlorophenyl)-7-methyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (52%) as a colorless solid: ¹H NMR (300 MHz, CDCl₃) δ 8.84-8.79 (m, 1H), 7.59-7.53 (m, 2H), 7.44-7.38 (m, 2H), 7.29-7.23 (m, 2H), 2.55 (t, *J* = 7.6 Hz, 2H), 2.41 (s, 3H), 1.67-1.53 (m, 2H), 1.33-1.16 (m, 2H), 0.80 (t, *J* = 7.0 Hz, 3H); MS (ES+) *m/z* 327.2 (M + 1).

20


25

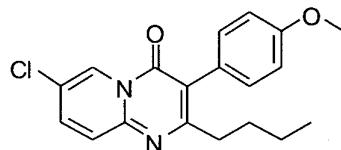
EXAMPLE 1.20

Synthesis of 2-butyl-3-(4-chlorophenyl)-7-fluoro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one


Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-butyl-7-fluoro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(4-chlorophenyl)-7-fluoro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (83%) as a colorless solid: ^1H NMR (300 MHz, CDCl_3) δ 8.94-8.89 (m, 1H), 7.66-7.58 (m, 2H), 7.42 (d, J = 8.8 Hz, 2H), 7.25 (d, J = 8.8 Hz, 2H), 2.57 (t, J = 7.6 Hz, 2H), 1.67-1.53 (m, 2H), 1.33-1.16 (m, 2H), 0.80 (t, J = 7.0 Hz, 3H); MS (ES+) m/z 331.1 (M + 1), 333.1 (M + 1).

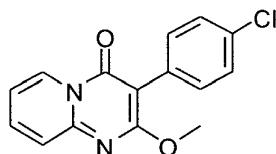
EXAMPLE 1.21

Synthesis of 2-butyl-3-(4-chlorophenyl)-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one


Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-butyl-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(4-chlorophenyl)-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (91%) as a colorless solid: ^1H NMR (300 MHz, CDCl_3) δ 9.06 (d, J = 7.6 Hz, 1H), 7.90-7.86 (m, 1H), 7.47-7.39 (m, 2H), 7.29-7.21 (m, 2H), 7.18-7.11 (m, 1H), 2.59 (t, J = 7.6 Hz, 2H), 1.70-1.56 (m, 2H), 1.32-1.18 (m, 2H), 0.82 (t, J = 7.0 Hz, 3H); MS (ES+) m/z 381.1 (M + 1), 383.1 (M + 1).

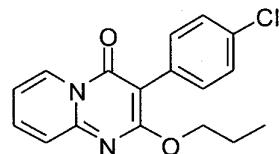
EXAMPLE 1.22

Synthesis of 2-butyl-3-(4-chlorophenyl)-4*H*-pyrimido[2,1-*a*]isoquinolin-4-one


Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-butyl-4*H*-pyrimido[2,1-*a*]isoquinolin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(4-chlorophenyl)-4*H*-pyrimido[2,1-*a*]isoquinolin-4-one was obtained (61%) as a colorless solid: ^1H NMR (300 MHz, CDCl_3) δ 9.08 (d, J = 8.2 Hz, 1H), 8.74 (d, J = 7.6 Hz, 1H), 7.83-7.67 (m, 3H), 7.45-10 7.39 (m, 2H), 7.33-7.26 (m, 2H), 7.24-7.21 (m, 1H), 2.63 (t, J = 7.6 Hz, 2H), 1.81-1.69 (m, 2H), 1.38-1.24 (m, 2H), 0.86 (t, J = 7.0 Hz, 3H); MS (ES+) m/z 363.2 (M + 1), 365.2 (M + 1).

EXAMPLE 1.23

Synthesis of 2-butyl-7-chloro-3-(4-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

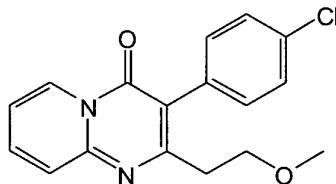

15 Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-butyl-7-chloro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, 2-butyl-7-chloro-3-(4-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (64%) as a colorless solid: ^1H NMR (300 MHz, CDCl_3) δ 9.04-9.00 (m, 1H), 7.62-7.51 (m, 2H), 7.23-7.19 (m, 2H), 7.01-6.94 (m, 2H), 3.84 (s, 3H), 2.59 (t, J = 7.6 Hz, 2H), 1.68-1.56 (m, 2H), 1.32-1.17 (m, 2H), 0.80 (t, J = 7.0 Hz, 3H); MS (ES+) m/z 343.2 (M + 1), 345.2 (M + 1).

EXAMPLE 1.24

Synthesis of 3-(4-chlorophenyl)-2-methoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-methoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-methoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (51%) as a colourless solid: mp 149-151 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.98-8.94 (m, 1H), 7.93-7.85 (m, 1H), 7.55-7.50 (m, 1H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.30 (d, *J* = 8.7 Hz, 2H), 7.27-7.21 (m, 1H), 3.90 (s, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 163.7, 156.9, 148.7, 145.2, 138.0, 132.2, 131.3, 131.1, 127.7, 127.2, 124.4, 115.4, 96.6, 53.8; MS (ES+) *m/z* 287.1 (M + 1) 289.1 (M + 1).

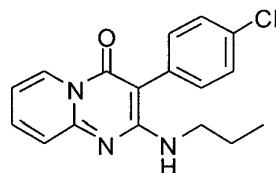
EXAMPLE 1.25


Synthesis of 2-propoxy-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

15

Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 2-propoxy-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (98%) as a pale yellow solid: ¹H NMR (300 MHz, CDCl₃) δ 9.10 (d, *J* = 7.0 Hz, 1H), 7.77-7.69 (m, 1H), 7.57 (d, *J* = 8.5 Hz, 2H), 7.50 (d, *J* = 8.8 Hz, 1H), 7.35 (d, *J* = 8.5 Hz, 2H), 7.13-7.06 (m, 1H), 4.42-4.35 (m, 2H), 1.81-1.64 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.4, 158.0, 149.2, 136.9, 132.4, 132.2, 131.1, 128.3, 127.9, 124.9, 114.8, 98.3, 68.7, 22.4, 10.7; MS (ES+) *m/z* 315.2 (M + 1), 317.2 (M + 1).

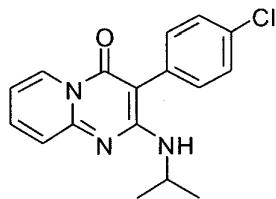
EXAMPLE 1.26


Synthesis of 3-(4-chlorophenyl)-2-(2-methoxyethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-(2-methoxyethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-(2-methoxyethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (14%) as a colourless solid: mp 116-118 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.89 (d, *J* = 6.6 Hz, 1H), 7.91 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.64 (d, *J* = 8.9 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.30 (dd, *J* = 6.4, 6.4 Hz, 1H), 3.64 (t, *J* = 6.4 Hz, 2H), 3.10 (s, 3H), 2.72 (t, *J* = 6.7 Hz, 2H); MS (ES+) *m/z* 317.1 (M + 1), 315.1 (M + 1).

EXAMPLE 1.27

Synthesis of 3-(4-chlorophenyl)-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

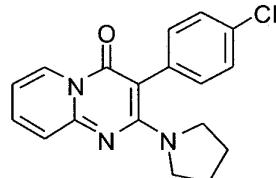


15

Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (92%) was obtained as a yellow solid: MS (ES+) *m/z* 314.2 (M + 1), 316.2 (M + 1).

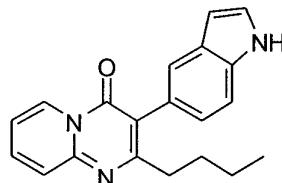
EXAMPLE 1.28

Synthesis of 3-(4-chlorophenyl)-2-[(1-methylethyl)amino]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

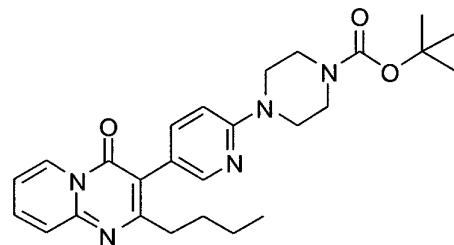


5 Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-[(1-methylethyl)amino]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-[(1-methylethyl)amino]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (50%) as a

10 colourless solid: MS (ES+) m/z 314.2 (M + 1), 316.2 (M + 1).


EXAMPLE 1.29

Synthesis of 3-(4-chlorophenyl)-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one


Following the procedure as described in EXAMPLE 1 and making non-critical variations using 3-bromo-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 3-bromo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and 4-chlorophenylboronic acid to replace 4-methoxyphenylboronic acid, 3-(4-chlorophenyl)-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (30%) as a yellow oil: MS (ES+) m/z 326.2 (M + 1), 328.2 (M + 1).

EXAMPLE 1.30

Synthesis of 2-butyl-3-(1*H*-indol-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

Following the procedure as described in EXAMPLE 1 and making non-critical variations using indole-5-boronic acid to replace 4-methoxyphenylboronic acid, 2-butyl-3-(1*H*-indol-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (60%) as a pale yellow solid: mp 132-135 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 11.15 (s, 1H), 8.91 (d, *J* = 7.2 Hz, 1H), 7.87 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.64 (d, *J* = 8.8 Hz, 1H), 7.44-7.42 (m, 1H), 7.37 (s, 1H), 7.38-7.36 (m, 1H), 7.27 (dd, *J* = 6.8, 6.8 Hz, 1H), 6.99 (d, *J* = 6.4 Hz, 1H), 6.44 (s, 1H), 2.55-2.50 (m, 2H), 1.64-1.54 (m, 2H), 1.22-1.09 (m, 2H), 0.72 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 164.9, 157.6, 149.3, 136.8, 135.5, 128.0, 127.4, 126.0 (2), 125.8, 124.1, 122.3, 117.6, 116.0, 111.4, 101.6, 35.4, 30.8, 22.4, 14.1; MS (ES+) *m/z* 318.2 (M + 1).

EXAMPLE 1.31

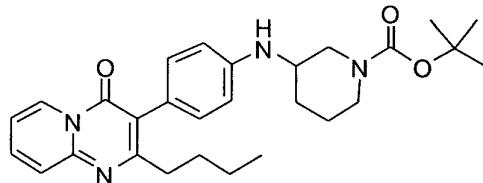
15 Synthesis of *tert*-butyl 4-(5-(4-oxo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)pyridin-2-yl)piperazine-1-carboxylate

Following the procedure as described in EXAMPLE 1 and making non-critical variations using 2-(4-*tert*-butyloxycarbonyl-piperizin-1-yl)pyridine-5-boronic acid pinacol ester to replace 4-methoxyphenylboronic acid, *tert*-butyl 4-(5-(4-oxo-2-butyl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)pyridin-2-yl)piperazine-1-carboxylate was obtained (26%) as a yellow solid: mp 126-128 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.87 (d, *J* = 6.9 Hz, 1H), 8.02 (d, *J* = 2.3 Hz, 1H), 7.86 (ddd, *J* = 8.6, 8.6, 1.4 Hz, 1H), 7.61 (d, *J* = 8.9 Hz, 1H), 7.49 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.26 (ddd, *J* = 6.9, 6.9, 1.3 Hz, 1H), 6.88 (d, *J* = 8.8

Hz, 1H), 3.51-3.41 (m, 8H), 2.54-2.46 (m, 3H), 1.62-1.52 (m, 2H), 1.39 (s, 9H), 1.28-1.11 (m, 2H), 0.74 (t, J = 9.0 Hz, 3H); ^{13}C NMR (75 MHz, DMSO- d_6) δ 165.1, 158.1, 157.5, 154.4, 149.4, 149.1, 140.2, 137.2, 127.4, 126.0, 120.4, 116.3, 113.1, 106.9, 79.4, 44.8, 35.3, 30.7, 28.5, 22.4, 14.2; MS (ES+) m/z 349.2 (M - 100).

5

EXAMPLE 2

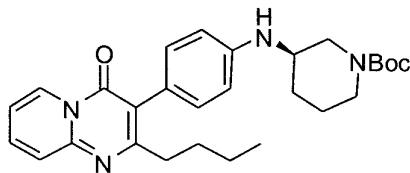

Synthesis of 2-butyl-3-(indolin-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one hydrochloride

To a solution of 2-butyl-3-(1*H*-indol-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (2.2 g, 6.9 mmol) in glacial acetic acid was added sodium cyanoborohydride (1.6 g, 27.7 mmol). The solution was stirred at ambient temperature for 2 h then quenched with sodium hydroxide (5 M, 45.0 mL) until the solution was pH 12. The aqueous solution was extracted with ethyl acetate (3 x 100 mL), dried on anhydrous magnesium sulfate and filtered. The filtrate was concentrated *in vacuo* to dryness. The residue was purified by flash chromatography with ethyl acetate in hexanes to afford 2-butyl-3-(indolin-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (1.52 g, 69 %) as a colorless solid. To a solution of 2-butyl-3-(indolin-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (201 mg, 0.63 mmol) in anhydrous methanol (2.0 mL) was added a saturated hydrochloric acid methanol solution (2.0 mL). The resulting mixture was stirred for 10 min followed by the addition of ethyl acetate (10 mL). The precipitate was filtered and dried *in vacuo* to give 2-butyl-3-(indolin-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride (189 mg, 76 %) as a pale yellow solid: mp 157-162 °C; ^1H NMR (300 MHz, DMSO- d_6) δ 9.07 (d, J = 6.9 Hz, 1H), 8.43-8.33 (m, 1H), 8.27 (d, J = 8.7 Hz, 1H), 7.65 (dd, J = 6.8, 6.8 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.39 (s, 1H), 7.30 (d, J = 8.1 Hz, 1H), 3.73 (t, J = 7.8 Hz, 2H), 3.23 (t, J = 7.7 Hz, 2H), 2.66-2.56 (m, 2H), 1.68-1.53 (m, 2H), 1.26-1.12 (m, 2H), 0.72 (t, J = 7.3 Hz, 3H); ^{13}C NMR (75 MHz, DMSO- d_6) δ 157.3, 156.1, 147.6, 143.1, 137.6, 136.3, 133.5, 130.6, 129.3, 128.2, 119.9, 119.7, 119.3, 114.9, 45.4, 31.8, 30.7, 29.4, 22.1, 13.9; MS (ES+) m/z 320.26 (M + 1). Anal. Calcd. for $\text{C}_{20}\text{H}_{21}\text{N}_3\text{O}\cdot 2\text{HCl}\cdot 2.2\text{H}_2\text{O}$: C, 55.61; H, 6.39; N, 9.73. Found: C, 55.61; H, 6.24; N, 9.67.

EXAMPLE 3

Synthesis of *tert*-butyl 3-{{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate

5 To a stirred solution of 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (0.94 g, 3.00 mmol), *tert*-butyl 3-aminopiperidine-1-carboxylate (0.90 g, 4.50 mmol) and (2-biphenyl)di-*tert*-butylphosphine (0.18 g, 0.60 mmol) in toluene (40 mL) was added palladium(II) acetate (0.20 g, 0.30 mmol) followed by the addition of sodium *tert*-butoxide (0.72 g, 7.50 mmol). The mixture was heated at 100 °C for 18 hours.

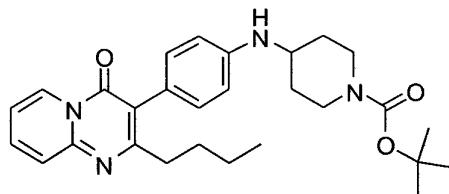

10 The mixture was filtered through a pad of celite, the filtrate was concentrated *in vacuo*. The residue was subjected to column chromatography (ethyl acetate/hexane, 1/1) to give *tert*-butyl 3-{{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate (0.82 g, 57%) as a colorless solid: ¹H NMR (300 MHz, CDCl₃) δ 9.03 (d, *J* = 7.2 Hz, 1H), 7.75-7.59 (m, 2H), 7.18-7.04 (m, 3H), 6.70 (d, *J* = 8.4 Hz, 2H), 4.15-4.00 (m, 1H), 3.82-3.66 (m, 2H), 3.48-3.35 (m, 1H), 3.14-2.84 (m, 2H), 2.66 (t, *J* = 7.5 Hz, 2H), 2.07-1.96 (m, 1H), 1.81-1.22 (m, 7H), 1.47 (s, 9H), 0.84 (t, *J* = 7.5 Hz, 3H); MS (ES+) *m/z* 477.2 (M + 1).

15

EXAMPLE 3.1

Synthesis of (*R*)-*tert*-butyl 3-{{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate

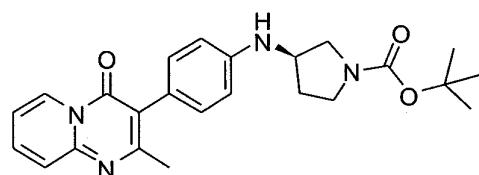
20


Following the procedure as described in EXAMPLE 3 and making non-critical variations using (*R*)-*tert*-butyl 3-aminopiperidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-*tert*-butyl 3-{{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate was obtained (61%) as a colorless solid: ¹H NMR (300 MHz, CDCl₃) δ 9.02 (dd, *J* = 7.2, 0.6 Hz, 1H), 7.70-7.56

25

(m, 2H), 7.18-7.02 (m, 3H), 6.74-6.67 (m, 2H), 4.15-4.01 (m, 1H), 3.79-3.68 (m, 2H), 3.49-3.35 (m, 1H), 3.14-2.84 (m, 2H), 2.65 (t, J = 7.5 Hz, 2H), 2.07-1.96 (m, 1H), 1.82-1.21 (m, 7H), 1.47 (s, 9H), 0.84 (t, J = 7.5 Hz, 3H); MS (ES+) m/z 477.2 (M + 1).

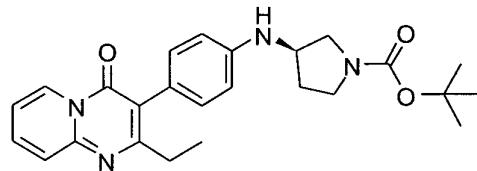
EXAMPLE 3.2


5 Synthesis of *tert*-butyl 4-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenyl}amino}piperidine-1-carboxylate

Following the procedure as described in EXAMPLE 3 and making non-critical variation using *tert*-butyl 4-aminopiperidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, *tert*-butyl 4-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenyl}amino}piperidine-1-carboxylate was obtained (47%) as a colorless solid: 1 H NMR (300 MHz, CDCl₃) δ 9.02 (d, J = 7.2 Hz, 1H), 7.70-7.56 (m, 2H), 7.14 (d, J = 8.4 Hz, 2H), 7.55 (dd, J = 6.9, 6.9 Hz, 1H), 6.68 (d, J = 8.4 Hz, 2H), 4.16-3.97 (m, 2H), 3.66-3.40 (m, 2H), 2.94 (t, J = 8.7 Hz, 2H), 2.65 (t, J = 7.8 Hz, 2H), 2.13-2.03 (m, 2H), 1.72-1.20 (m, 6H), 1.47 (s, 9H), 0.83 (t, J = 7.5 Hz, 3H); MS (ES+) m/z 477.3 (M + 1).

EXAMPLE 3.3

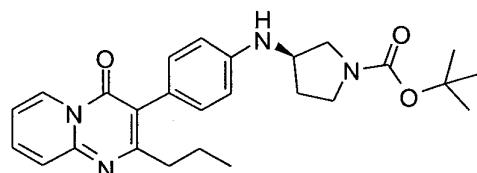
Synthesis of (*R*)-*tert*-butyl 3-(4-(2-methyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate



20 Following the procedure as described in EXAMPLE 3 and making non-critical variations using 3-(4-chlorophenyl)-2-methyl-4*H*-pyrido[1,2-a]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one, and (*R*)-*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-*tert*-butyl 3-(4-(2-methyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate was obtained (28%) as a yellow solid: 1 H

NMR (300 MHz, CDCl₃) δ 8.86 (d, *J* = 7.2 Hz, 1H), 7.88-7.80 (m, 1H), 7.57 (d, *J* = 9.0 Hz, 1H), 7.27-7.21 (m, 1H), 7.05 (d, *J* = 8.5 Hz, 1H), 6.61 (d, *J* = 8.6 Hz, 2H), 5.94 (d, *J* = 6.5 Hz, 2H), 4.04-3.87 (m, 1H), 3.59-3.47 (m, 1H), 3.44-3.24 (m, 1H), 3.15-3.04 (m, 1H), 2.26 (s, 3H), 2.18-2.01 (m, 1H), 1.86-1.70 (m, 1H), 1.36 (s, 9H); MS (ES+) *m/z* 5 421.2 (M + 1).

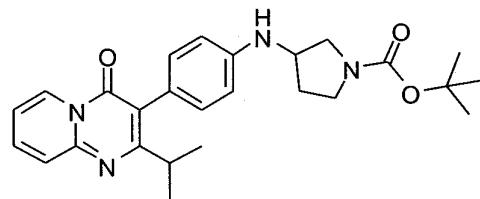
EXAMPLE 3.4


Synthesis of (*R*)-*tert*-butyl 3-(4-(2-ethyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate

10 Following the procedure as described in EXAMPLE 3 and making non-critical variations using 3-(4-chlorophenyl)-2-ethyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and (*R*)-*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-*tert*-butyl 3-(4-(2-ethyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate was obtained (33%) as a yellow solid: ¹H NMR (300 MHz, CDCl₃) δ 8.99 (d, *J* = 7.2 Hz, 1H), 7.68-7.54 (m, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 7.06-7.00 (m, 1H), 6.65 (d, *J* = 8.2 Hz, 2H), 4.12-3.97 (m, 1H), 3.96-3.83 (m, 1H), 3.78-3.60 (m, 1H), 3.54-3.37 (m, 2H), 3.33-3.13 (m, 1H), 2.64 (q, *J* = 7.5 Hz, 2H), 2.24-2.10 (m, 1H), 1.98-1.78 (m, 1H), 1.44 (s, 9H), 1.18 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 158.0, 154.7, 149.3, 146.3, 135.2, 131.3, 127.5, 125.9, 20 123.8, 116.7, 114.8, 113.1, 79.5, 53.0, 52.1 (2), 44.0 (2), 31.6 (2), 29.3, 28.5, 13.5; MS (ES+) *m/z* 435.3 (M + 1).

EXAMPLE 3.5

25 Synthesis of (*R*)-*tert*-butyl 3-(4-(4-oxo-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate


Following the procedure as described in EXAMPLE 3 and making non-critical variations using 3-(4-chlorophenyl)-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and (*R*)-*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate,

5 (*R*)-*tert*-butyl 3-(4-(4-oxo-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate was obtained (19%) as a yellow solid: ¹H NMR (300 MHz, CDCl₃) δ 9.02 (d, *J* = 7.2 Hz, 1H), 7.80-7.61 (m, 2H), 7.18-7.05 (m, 3H), 6.67 (d, *J* = 8.5 Hz, 2H), 4.14-3.99 (m, 1H), 3.92-3.62 (m, 2H), 3.57-3.38 (m, 2H), 3.36-3.17 (m, 1H), 2.69-2.59 (m, 2H), 2.26-2.11 (m, 1H), 2.01-1.81 (m, 1H), 1.78-1.62 (m, 2H), 1.46 (s, 9H), 0.87 (t, *J* = 7.4 Hz, 3H); MS (ES+) *m/z* 449.3 (M + 1).

10

EXAMPLE 3.6

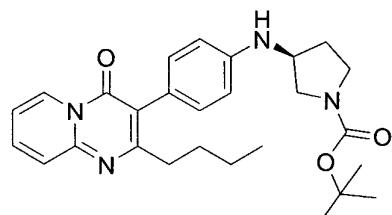
Synthesis of *tert*-butyl 3-({4-[2-(1-methylethyl)-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenyl}amino)pyrrolidine-1-carboxylate


15 Following the procedure as described in EXAMPLE 3 and making non-critical variations using 3-(4-chlorophenyl)-2-(1-methylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and *tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, *tert*-butyl 3-({4-[2-(1-methylethyl)-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenyl}amino)pyrrolidine-1-carboxylate was obtained (65%) as a yellow solid: mp 232-236 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.85 (d, *J* = 6.6 Hz, 1H), 7.85-7.79 (m, 1H), 7.60 (d, *J* = 9.0 Hz, 1H), 7.23 (m, 1H), 6.98 (d, *J* = 8.4 Hz, 2H), 6.61 (d, *J* = 8.7 Hz, 2H), 5.93 (d, *J* = 6.0 Hz, 1H), 4.02-3.87 (m, 1H), 3.58-3.47 (m, 1H), 3.44-3.30 (m, 2H), 3.15-3.05 (m, 1H), 2.99 (sep, *J* = 6.6 Hz, 1H), 2.18-2.02 (m, 1H), 1.87-1.70 (m, 1H), 1.37 (s, 9H), 1.09 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 157.6, 154.1, 149.6, 147.5, 136.7, 131.5, 127.4, 126.2, 122.6, 116.1, 115.6, 112.5, 78.7, 52.5, 51.9, 51.6, 44.6, 44.4, 32.1, 31.6, 30.8, 28.6, 22.0; MS (ES+) *m/z* 449.3 (M + 1).

20

25

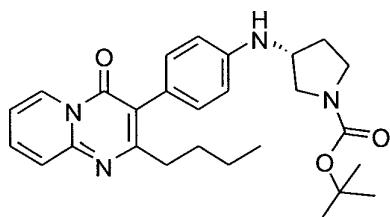
EXAMPLE 3.7


Synthesis of *tert*-butyl 3-{{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}pyrrolidine-1-carboxylate

5 Following the procedure as described in EXAMPLE 3 and making non-critical variations using *tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, *tert*-butyl 3-{{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}pyrrolidine-1-carboxylate was obtained (20%) as a yellow solid: mp 116-118 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.85 (d, *J* = 6.7 Hz, 1H), 7.82 (dd, *J* = 6.9, 10 6.9 Hz, 1H), 7.59 (d, *J* = 8.8 Hz, 1H), 7.23 (dd, *J* = 6.8, 6.8 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 2H), 6.61 (d, *J* = 6.5 Hz, 2H), 6.26 (d, *J* = 7.5 Hz, 1H), 4.02-3.91 (m, 1H), 3.56-3.44 (m, 1H), 3.42-3.32 (m, 2H), 3.14-3.06 (m, 1H), 2.54-2.46 (m, 2H), 2.15-2.04 (m, 1H), 1.82-1.71 (m, 1H), 1.60-1.50 (m, 2H), 1.36 (s, 9H), 1.23-1.11 (m, 2H), 0.74 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 164.7, 157.4, 154.1, 149.1, 147.4, 136.7, 131.6, 127.4, 126.0, 122.6, 116.557, 116.1, 112.4, 78.7, 55.4, 52.5, 51.8, 51.7, 44.6, 44.4, 35.4, 31.6, 30.8, 28.7, 22.5, 14.2; MS (ES+) *m/z* 463.1 (M + 1).

EXAMPLE 3.8

Synthesis of (S)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate

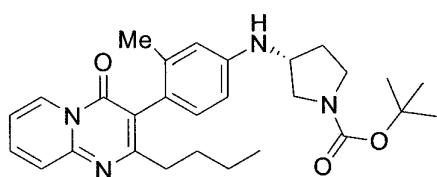

20

Following the procedure as described in EXAMPLE 3 and making non-critical variations using (S)-(-)-*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (S)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate was obtained (5.0%) as a

yellow solid: mp 95-96 °C; ^1H NMR (300 MHz, CDCl_3) δ 8.85 (d, $J = 7.0$ Hz, 1H), 7.80 (dd, $J = 7.8, 7.8$ Hz, 1H), 7.56 (d, $J = 8.8$ Hz, 1H), 7.20 (dd, $J = 6.7, 6.7$ Hz, 1H), 6.97 (d, $J = 8.3$ Hz, 2H), 6.60 (d, $J = 8.4$ Hz, 2H), 5.85 (br, 1H), 4.02-3.87 (m, 1H), 3.56-3.51 (m, 1H), 3.43-3.21 (m, 2H), 3.17-3.06 (m, 1H), 2.53-2.41 (m, 2H), 2.16-2.03 (m, 1H), 5 1.89-1.73 (m, 1H), 1.60-1.50 (m, 2H), 1.36 (s, 9H), 1.24-1.11 (m, 3H), 0.74 (t, $J = 7.3$ Hz, 3H); MS (ES+) m/z 463.3 (M + 1).

EXAMPLE 3.9

Synthesis of (*R*)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate

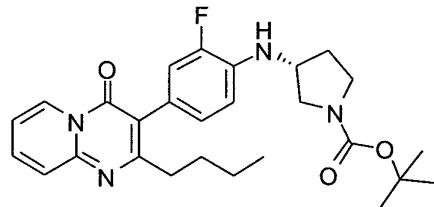


10

Following the procedure as described in EXAMPLE 3 and making non-critical variations using (*R*)-(+)-*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate (5.0%) was obtained as a yellow solid: mp 98-99 °C; ^1H NMR (300 MHz, CDCl_3) δ 8.85 (d, $J = 7.1$ Hz, 1H), 7.81 (dd, $J = 7.3, 7.3$ Hz, 1H), 7.57 (d, $J = 8.8$ Hz, 1H), 7.21 (dd, $J = 7.5, 7.5$ Hz, 1H), 6.98 (d, $J = 8.4$ Hz, 2H), 6.61 (d, $J = 8.4$ Hz, 2H), 5.89 (d, $J = 6.4$ Hz, 1H), 4.02-3.87 (m, 1H), 3.56-3.51 (m, 1H), 3.43-3.21 (m, 2H), 3.17-3.06 (m, 1H), 2.53-2.41 (m, 2H), 2.16-2.03 (m, 1H), 1.89-1.73 (m, 1H), 1.61-1.50 (m, 2H), 1.36 (s, 9H), 1.23-1.11 (m, 2H), 20 0.74 (t, $J = 7.3$ Hz, 3H); MS (ES+) m/z 463.3 (M + 1).

EXAMPLE 3.10

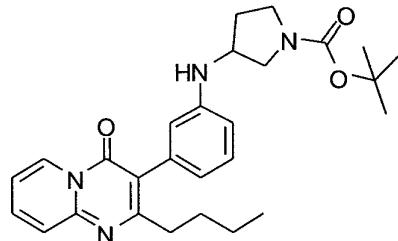
Synthesis of (*R*)-*tert*-butyl 3-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)-3-methylphenyl]amino]pyrrolidine-1-carboxylate


25

Following the procedure as described in EXAMPLE 3 and making non-critical

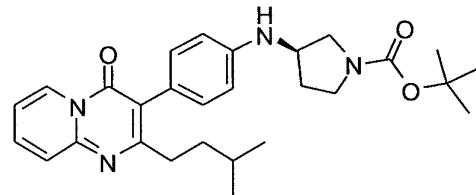
variations using 2-butyl-3-(4-chloro-2-methylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and (*R*)-(+) -*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-*tert*-butyl 3-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)-3-methylphenyl]amino]pyrrolidine-1-carboxylate was obtained (61%) as a yellow solid:
 5 mp 162-168 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.91 (d, *J* = 6.8 Hz, 1H), 7.88 (ddd, *J* = 8.4, 6.7, 1.4 Hz, 1H), 7.64 (d, *J* = 8.9 Hz, 1H), 7.28 (dd, *J* = 6.9, 6.9 Hz, 1H), 6.82 (d, *J* = 8.1 Hz, 1H), 6.53 (s, 1H), 6.47 (d, *J* = 8.1 Hz, 1H), 5.82 (d, *J* = 6.5 Hz, 1H), 3.99 (br, 1H), 3.56 (dd, *J* = 10.5, 5.8 Hz, 1H), 3.46-3.33 (m, 2H), 3.12 (d, *J* = 10.5 Hz, 1H),
 10 2.50-2.32 (m, 2H), 2.17-2.09 (m, 1H), 1.94 (s, 3H), 1.87-1.79 (m, 1H), 1.59-1.49 (m, 2H), 1.40 (d, *J* = 3.4 Hz, 9H), 1.23-1.11 (m, 2H), 0.75 (t, *J* = 7.3 Hz, 3H); MS (ES+) *m/z* 477.4 (M + 1).

EXAMPLE 3.11


15 Synthesis of (*R*)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)-2-fluorophenylamino)pyrrolidine-1-carboxylate

Following the procedure as described in EXAMPLE 3 and making non-critical variations using 2-butyl-3-(4-chloro-3-fluorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and (*R*)-(+) -*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)-2-fluorophenylamino)pyrrolidine-1-carboxylate was obtained (100%) as a yellow solid:
 20 MS (ES+) *m/z* 481.3 (M + 1).

EXAMPLE 3.12


Synthesis of *tert*-butyl 3-(3-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate

5 Following the procedure as described in EXAMPLE 3 and making non-critical variations using 2-butyl-3-(3-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and *tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, *tert*-butyl 3-(3-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate was obtained (100%) as a yellow solid: MS (ES+) *m/z* 463.3 (M + 1).

EXAMPLE 3.13

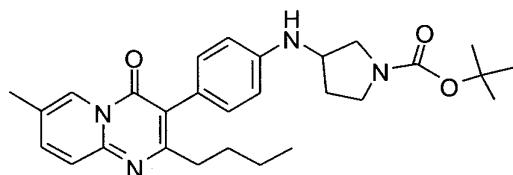
Synthesis of (*R*)-*tert*-butyl 3-(4-(2-isopentyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate

15 Following the procedure as described in EXAMPLE 3 and making non-critical variations using 3-(4-chlorophenyl)-2-isopentyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and (*R*)-(+) -*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-*tert*-butyl 3-(4-(2-isopentyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate was obtained (69%) as a yellow solid: ¹H NMR (300 MHz, CDCl₃) δ 9.01 (d, *J* = 7.1 Hz, 1H), 7.69-7.56 (m, 2H), 7.15 (d, *J* = 7.7 Hz, 2H), 7.08-7.01 (m, 1H), 6.66 (d, *J* = 7.4 Hz, 2H), 4.15-4.00 (m, 1H), 3.89-3.59 (m, 2H), 3.58-3.37 (m, 2H), 3.34-3.15 (m, 1H), 2.67-2.58 (m, 2H), 2.26-2.12 (m, 1H), 2.00-1.83 (m, 1H), 1.75-1.47 (m, 3H), 1.46 (s, 9H), 0.79 (d, *J* = 5.4 Hz, 6H); MS (ES+) *m/z*

477.4 (M + 1).

EXAMPLE 3.14

Synthesis of (R)-*tert*-butyl 3-(4-(2-(2-cyclopropylethyl)-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate

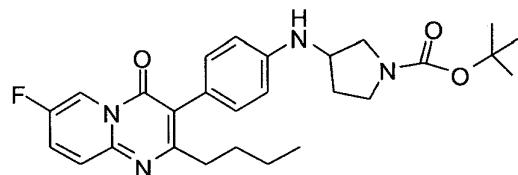


5

Following the procedure as described in EXAMPLE 3 and making non-critical variations using 3-(4-chlorophenyl)-2-(2-cyclopropylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and (R)-(+)-*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (R)-*tert*-butyl 3-(4-(2-(2-cyclopropylethyl)-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate was obtained (55%) as a yellow solid: ¹H NMR (300 MHz, CDCl₃) δ 9.00 (d, J = 7.2 Hz, 1H), 7.67-7.51 (m, 2H), 7.14 (d, J = 8.3 Hz, 2H), 7.07-6.99 (m, 1H), 6.66 (d, J = 8.5 Hz, 2H), 4.15-3.97 (m, 1H), 3.89-3.81 (m, 1H), 3.79-3.61 (m, 1H), 3.58-3.36 (m, 2H), 3.34-3.14 (m, 1H), 2.77-2.68 (m, 2H), 2.27-2.09 (m, 1H), 2.00-1.79 (m, 1H), 1.61-1.50 (m, 2H), 1.45 (s, 9H), 0.69-0.53 (m, 1H), 0.35-0.26 (m, 2H), -0.04--0.12 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 165.4, 158.0, 154.7, 149.2, 146.2, 135.1, 131.4, 127.5, 126.0, 124.0, 117.1, 114.7, 113.1, 79.5, 53.1, 52.1 (2), 44.0 (2), 36.1, 34.1, 31.6 (2), 28.5, 11.0, 4.6; MS (ES+) m/z 475.3 (M + 1).

EXAMPLE 3.15

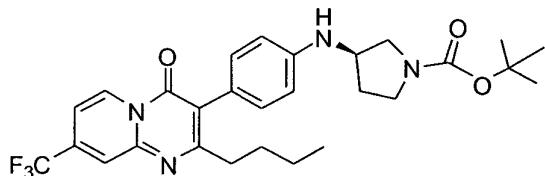
20 Synthesis of *tert*-butyl 3-[(4-(2-butyl-7-methyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino]pyrrolidine-1-carboxylate



Following the procedure as described in EXAMPLE 3 and making non-critical variations using 2-butyl-3-(4-chlorophenyl)-7-methyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and *tert*-butyl 3-

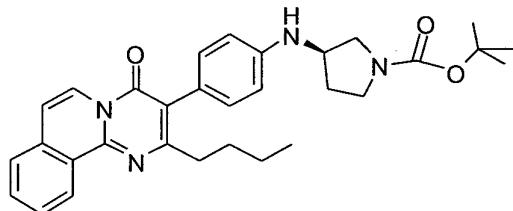
aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, *tert*-butyl 3-{{4-(2-butyl-7-methyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}pyrrolidine-1-carboxylate was obtained (70%): ^1H NMR (300 MHz, CDCl_3) δ 8.84-8.78 (m, 1H), 7.54-7.49 (m, 2H), 7.14 (d, J = 8.5 Hz, 2H), 6.66 (d, J = 8.5 Hz, 2H), 4.15-3.99 (m, 1H), 3.85-3.62 (m, 2H), 3.57-3.38 (m, 2H), 3.35-3.14 (m, 1H), 2.61 (t, J = 7.6 Hz, 2H), 2.39 (s, 3H), 2.27-2.11 (m, 1H), 2.00-1.79 (m, 1H), 1.70-1.53 (m, 2H), 1.46 (s, 9H), 1.33-1.16 (m, 2H), 0.81 (t, J = 7.0 Hz, 3H); MS (ES+) m/z 477.4 (M + 1).

EXAMPLE 3.16


10 Synthesis of *tert*-butyl 3-{{4-(2-butyl-7-fluoro-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}pyrrolidine-1-carboxylate

Following the procedure as described in EXAMPLE 3 and making non-critical variations using 2-butyl-3-(4-chlorophenyl)-7-fluoro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to 15 replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and *tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, *tert*-butyl 3-{{4-(2-butyl-7-fluoro-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}pyrrolidine-1-carboxylate was obtained (32%) as a colorless solid: ^1H NMR (300 MHz, CDCl_3) δ 8.94-8.89 (m, 1H), 7.66-7.51 (m, 2H), 7.13 (d, J = 8.8 Hz, 2H), 6.66 (d, J = 8.8 Hz, 2H), 4.15-3.99 (m, 1H), 3.88-3.62 (m, 2H), 3.57-3.38 (m, 2H), 3.35-3.14 (m, 1H), 2.63 (t, J = 7.6 Hz, 2H), 2.27-2.11 (m, 1H), 2.00-1.79 (m, 1H), 1.70-1.53 (m, 2H), 1.46 (s, 9H), 1.33-1.16 (m, 2H), 0.82 (t, J = 7.0 Hz, 3H); MS (ES+) m/z 481.3 (M + 1).

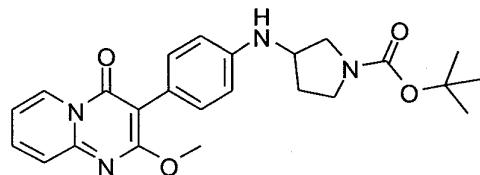
EXAMPLE 3.17


Synthesis of (*R*)-*tert*-butyl 3-({4-[2-butyl-4-oxo-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenyl}amino)pyrrolidine-1-carboxylate

5 Following the procedure as described in EXAMPLE 3 and making non-critical variations using 2-butyl-3-(4-chlorophenyl)-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and (*R*)-(+)-*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-*tert*-butyl 3-({4-[2-butyl-4-oxo-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenyl}amino)pyrrolidine-1-carboxylate was obtained (37%) as a colorless solid: ^1H NMR (300 MHz, CDCl_3) δ 9.05 (d, J = 7.6 Hz, 1H), 7.84 (s, 1H), 7.18-7.05 (m, 3H), 6.70-6.62 (m, 2H), 4.15-3.99 (m, 1H), 3.92-3.82 (m, 1H), 3.79-3.62 (m, 1H), 3.56-3.37 (m, 2H), 3.34-3.16 (m, 1H), 2.65 (t, J = 7.6 Hz, 2H), 2.27-2.11 (m, 1H), 2.01-1.80 (m, 1H), 1.71-1.56 (m, 2H), 1.45 (s, 9H), 1.34-1.19 (m, 2H), 0.82 (t, J = 7.0 Hz, 3H); MS (ES+) m/z 531.2 (M + 1).

EXAMPLE 3.18

Synthesis of (*R*)-*tert*-butyl 3-{{4-[2-butyl-4-oxo-4*H*-pyrimido[2,1-*a*]isoquinolin-3-yl]phenyl}amino}pyrrolidine-1-carboxylate



20 Following the procedure as described in EXAMPLE 3 and making non-critical variations using 2-butyl-3-(4-chlorophenyl)-4*H*-pyrimido[2,1-*a*]isoquinolin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and (*R*)-(+)-*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-*tert*-butyl 3-{{4-[2-butyl-4-oxo-4*H*-pyrimido[2,1-*a*]isoquinolin-3-yl]phenyl}amino}pyrrolidine-1-carboxylate was obtained (32%) as a colorless solid: ^1H

NMR (300 MHz, CDCl₃) δ 9.06 (d, *J* = 7.9 Hz, 1H), 8.74 (d, *J* = 7.9 Hz, 1H), 7.80-7.64 (m, 3H), 7.22-7.13 (m, 3H), 6.72-6.63 (m, 2H), 4.14-4.01 (m, 1H), 3.86-3.62 (m, 2H), 3.57-3.39 (m, 2H), 3.36-3.19 (m, 1H), 2.69 (t, *J* = 7.6 Hz, 2H), 2.28-2.11 (m, 1H), 2.01-1.83 (m, 1H), 1.83-1.69 (m, 2H), 1.46 (s, 9H), 1.39-1.28 (m, 2H), 0.87 (t, *J* = 7.0 Hz, 5 H); MS (ES+) *m/z* 513.4 (M + 1).

EXAMPLE 3.19

Synthesis of *tert*-butyl 3-{{[4-(2-methoxy-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}pyrrolidine-1-carboxylate

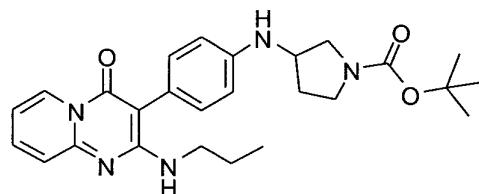
10 Following the procedure as described in EXAMPLE 3, and making non-critical variations using 3-(4-chlorophenyl)-2-methoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and *tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, *tert*-butyl 3-{{[4-(2-methoxy-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}pyrrolidine-1-carboxylate was obtained (60%) as a yellow solid: mp 102-104 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.10 (d, *J* = 7.0 Hz, 1H), 7.73-7.65 (m, 1H), 7.50 (d, *J* = 8.8 Hz, 1H), 7.44 (d, *J* = 8.3 Hz, 2H), 7.08 (dd, *J* = 6.9, 6.9 Hz, 1H), 6.67 (d, *J* = 8.5 Hz, 2H), 4.10-3.97 (m, 1H), 3.99 (s, 3H), 3.77-3.61 (m, 1H), 3.55-3.36 (m, 2H), 3.32-3.16 (m, 1H), 2.25-2.09 (m, 1H), 2.00-1.81 (m, 1H), 1.45 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 164.5, 158.3, 154.6, 148.5, 145.4, 136.2, 131.7, 128.2, 124.8, 121.7, 114.6, 113.0, 99.6, 79.5, 54.3, 52.8 (2), 51.9 (2), 44.0 (2), 31.4 (2), 28.5; MS (ES+) *m/z* 437.2 (M + 1).


15

20

25

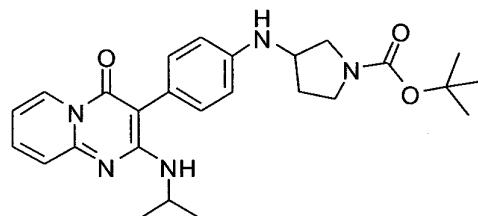
EXAMPLE 3.20


Synthesis of (*R*)-*tert*-butyl 3-(4-(4-oxo-2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate

Following the procedure as described in EXAMPLE 3 and making non-critical variations using 3-(4-chlorophenyl)-2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and (*R*)-(+) -*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-5 carboxylate, (*R*)-*tert*-butyl 3-(4-(4-oxo-2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate was obtained (54%) as a colorless solid: ¹H NMR (300 MHz, CDCl₃) δ 9.09 (d, *J* = 7.1 Hz, 1H), 7.70-7.63 (m, 1H), 7.51-7.43 (m, 3H), 7.09-7.02 (m, 1H), 6.65 (d, *J* = 8.5 Hz, 2H), 4.37 (t, *J* = 6.7 Hz, 2H), 4.14-3.97 (m, 1H), 3.78-3.61 (m, 1H), 3.54-3.36 (m, 2H), 3.33-3.15 (m, 1H), 2.25-2.09 (m, 1H), 2.00-10 1.82 (m, 1H), 1.82-1.68 (m, 2H), 1.45 (s, 9H), 0.97 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.3, 158.3, 154.7, 148.5, 145.4, 136.1, 131.8, 128.2, 124.7, 121.8, 114.4, 112.8, 99.5, 79.5, 68.4, 52.9 (2), 52.1 (2), 44.0 (2), 31.5 (2), 28.5, 22.4, 10.7; MS (ES+) *m/z* 465.2 (M + 1).

EXAMPLE 3.21

15 Synthesis of *tert*-butyl 3-(4-[4-oxo-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenylamino)pyrrolidine-1-carboxylate

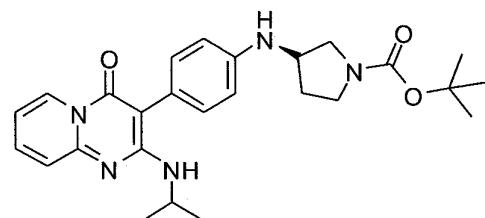


Following the procedure as described in EXAMPLE 3 and making non-critical variations using 3-(4-chlorophenyl)-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to 20 replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and *tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, *tert*-butyl 3-(4-[4-oxo-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenylamino)pyrrolidine-1-carboxylate was obtained (40%) as a yellow solid: mp 187-190 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.94 (d, *J* = 7.1 Hz, 1H), 7.57-7.49 (m, 1H), 7.30 (d, *J* = 8.9 Hz, 1H), 7.20 (d, *J* = 8.1 Hz, 2H), 6.83 (dd, *J* = 6.9, 6.9 Hz, 1H), 6.66 (d, *J* = 8.4 Hz, 2H), 4.96-4.88 (m, 1H), 4.09-3.93 (m, 1H), 3.75-3.59 (m, 2H), 3.51-3.33 (m, 4H), 3.33-3.13 (m, 1H), 2.22-2.07 (m, 1H), 1.97-1.80 (m, 1H), 1.52 (q, *J* = 7.3 Hz, 2H), 1.43 (s, 9H), 0.87 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 156.6, 154.6, 150.1, 146.2, 135.8, 131.8, 128.1, 124.1, 122.3, 114.0, 112.5, 95.7, 79.4, 52.7

(2), 52.0 (2), 44.7, 42.8, 31.5, 28.5, 23.2, 11.4; MS (ES+) m/z 464.25 (M + 1).

EXAMPLE 3.22

Synthesis of *tert*-butyl 3-[(4-{2-[(1-methylethyl)amino]-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl}phenyl)amino]pyrrolidine-1-carboxylate

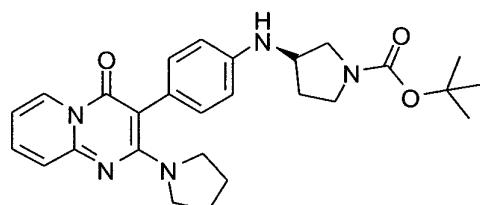


5

Following the procedure as described in EXAMPLE 3 and making non-critical variations using 3-(4-chlorophenyl)-2-[(1-methylethyl)amino]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and *tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, *tert*-butyl 3-[(4-{2-[(1-methylethyl)amino]-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl}phenyl)amino]pyrrolidine-1-carboxylate was obtained (61%) as a yellow solid: mp 210–212 °C; ^1H NMR (300 MHz, DMSO- d_6) δ 8.77 (d, J = 7.2 Hz, 1H), 7.72 (ddd, J = 6.6, 6.6, 1.5 Hz, 1H), 7.30 (d, J = 9.0 Hz, 1H), 7.08–6.98 (m, 3H), 6.63 (d, J = 6.3 Hz, 2H), 5.92 (d, J = 6.3 Hz, 1H), 5.26–5.16 (m, 1H), 4.42–4.25 (m, 1H), 4.02–3.85 (m, 1H), 4.66–4.57 (m, 1H), 3.43–3.25 (m, 2H), 3.16–3.05 (m, 1H), 2.16–2.02 (m, 1H), 1.86–1.70 (m, 1H), 1.36 (s, 9H), 1.08 (d, J = 6.6 Hz, 6H); ^{13}C NMR (75 MHz, DMSO- d_6) δ 158.0, 155.7, 154.1, 149.8, 147.3, 137.3, 131.9, 127.8, 124.1, 120.9, 113.1, 95.0, 78.7, 52.5, 51.9, 51.6, 44.6, 44.4, 31.6, 30.9, 28.6, 23.1; MS (ES+) m/z 464.3 (M + 1).

EXAMPLE 3.23

Synthesis of (*R*)-*tert*-butyl 3-[(4-{2-[(1-methylethyl)amino]-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl}phenyl)amino]pyrrolidine-1-carboxylate

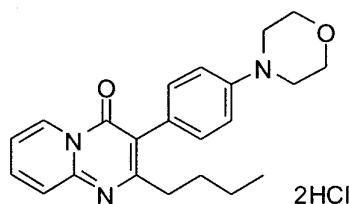


Following the procedure as described in EXAMPLE 3 and making non-critical

variations using 3-(4-chlorophenyl)-2-[(1-methylethyl)amino]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and (*R*)-(+)-*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-*tert*-butyl 3-[(4-{2-[(1-methylethyl)amino]-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl}phenyl)amino]pyrrolidine-1-carboxylate was obtained (42%) as a yellow solid: mp 208–211 °C; MS (ES+) *m/z* 464.3 (M + 1).

EXAMPLE 3.24

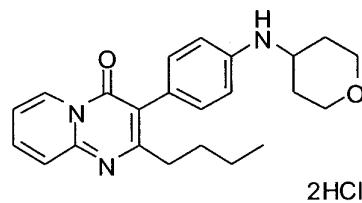
Synthesis of (*R*)-*tert*-butyl 3-[(4-(4-oxo-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl)amino]pyrrolidine-1-carboxylate



10

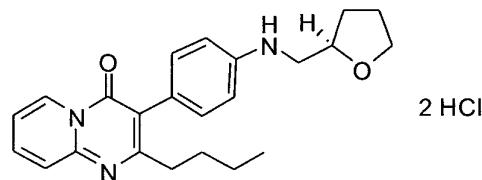
Following the procedure as described in EXAMPLE 3 making non-critical variations using 3-(4-chlorophenyl)-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, and (*R*)-(+)-*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-*tert*-butyl 3-[(4-(4-oxo-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl)amino]pyrrolidine-1-carboxylate was obtained (37%) as a yellow solid: ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.70 (d, *J* = 7.1 Hz, 1H), 7.72–7.65 (m, 1H), 7.26 (d, *J* = 8.8 Hz, 1H), 7.01–6.93 (m, 3H), 6.53 (d, *J* = 8.6 Hz, 2H), 5.79 (d, *J* = 6.5 Hz, 1H), 4.01–3.84 (m, 1H), 3.57–3.46 (m, 1H), 3.43–3.22 (m, 2H), 3.18–3.03 (m, 5H), 2.18–1.99 (m, 1H), 1.85–1.70 (m, 1H), 1.68–1.59 (m, 4H), 1.36 (s, 9H); MS (ES+) *m/z* 476.2 (M + 1).

EXAMPLE 3.25


Synthesis of 2-butyl-3-(4-morpholin-4-ylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

Following the procedure as described in EXAMPLE 3 and making non-critical variations using morpholine to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, 2-butyl-3-(4-morpholin-4-ylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (57%) as a colorless solid, which was converted to its hydrochloric acid salt: ^1H NMR (300 MHz, CD_3OD) δ 9.27 (d, J = 6.9 Hz, 1H), 8.53 (ddd, J = 8.4, 8.4, 1.2 Hz, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.87-7.74 (m, 3H), 7.63 (d, J = 8.7 Hz, 2H), 4.12 (t, J = 4.5 Hz, 4H), 3.73 (t, J = 4.5 Hz, 4H), 2.70 (t, J = 7.6 Hz, 2H), 1.73-1.58 (m, 2H), 1.38-1.23 (m, 2H), 0.82 (t, J = 7.0 Hz, 3H); ^{13}C NMR (75 MHz, CD_3OD) δ 155.0, 154.9, 146.9, 144.8, 142.8, 132.8, 132.5, 129.6, 121.1, 119.7, 117.3, 114.2, 64.2, 54.6, 31.1, 30.5, 22.0, 12.4; MS (ES+) m/z 364.2 (M + 1).

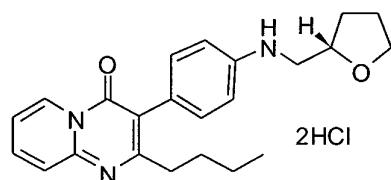
EXAMPLE 3.26


Synthesis of 2-butyl-3-[4-(tetrahydro-2*H*-pyran-4-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

Following the procedure as described in EXAMPLE 3 and making non-critical variations using 4-aminotetrahydropyran to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, 2-butyl-3-[4-(tetrahydro-2*H*-pyran-4-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained (53%) as a colorless solid, which was converted to its hydrochloric acid salt: ^1H NMR (300 MHz, DMSO-d_6) δ 9.08 (d, J = 6.6 Hz, 1H), 8.37 (dd, J = 7.8, 7.8 Hz, 1H), 8.25 (d, J = 8.7 Hz, 1H), 7.65 (dd, J = 6.9, 6.9 Hz, 1H), 7.57-7.34 (m, 4H), 3.95-3.81 (m, 2H), 3.72-3.57 (m, 1H), 3.30 (t, J = 11.4 Hz, 2H), 2.63 (t, J = 7.8 Hz, 2H), 1.91-1.64 (m, 4H), 1.64-1.49 (m, 2H), 1.26-1.08 (m, 2H), 0.68 (t, J = 7.0 Hz, 3H); ^{13}C NMR (75 MHz, DMSO-d_6) δ 156.0, 147.4, 143.2, 132.1, 129.4, 119.6, 119.4, 114.9, 65.8, 31.6, 30.7, 30.3, 22.0, 13.8; MS (ES+) m/z 378.3 (M + 1).

EXAMPLE 3.27

Synthesis of (*R*)-2-butyl-3-(4-{{[tetrahydrofuran-2-ylmethyl]amino}phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride


5 Following the procedure as described in EXAMPLE 3 and making non-critical variations using (*R*)-(-)-tetrahydrofurfurylamine to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*R*)-2-butyl-3-(4-{{[tetrahydrofuran-2-ylmethyl]amino}phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one was obtained, which was converted to its hydrochloride salt (55%) using 4 N HCl in dioxane as a dark yellow solid: mp 155-170 °C; ¹H NMR (300 MHz, CD₃OD) δ 9.22 (d, *J* = 6.9 Hz, 1H), 8.39 (dd, *J* = 7.5, 7.5 Hz, 1H), 7.95 (d, *J* = 8.7 Hz, 1H), 7.69 (dd, *J* = 6.9, 6.9 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 4.22-3.78 (m, 3H), 3.47-3.32 (m, 2H), 2.71 (t, *J* = 7.8 Hz, 2H), 2.17-1.90 (m, 3H), 1.77-1.60 (m, 3H), 1.39-1.25 (m, 2H), 0.84 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 159.1, 157.5, 148.8, 146.3, 143.4, 132.7, 130.1, 125.4, 120.9, 119.8, 117.2, 116.9, 77.7, 69.2, 51.4, 33.6, 32.0, 30.1, 26.6, 23.5, 13.9; MS (ES+) *m/z* 378.3 (M + 1).

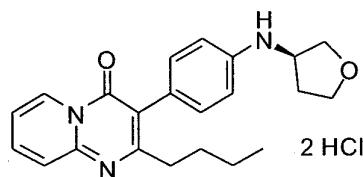
10

15

EXAMPLE 3.28

Synthesis of (*S*)-2-butyl-3-(4-{{[tetrahydrofuran-2-ylmethyl]amino}phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

20 Following the procedure as described in EXAMPLE 3 and making non-critical variations using (*S*)-(-)-tetrahydrofurfurylamine to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, (*S*)-2-butyl-3-(4-{{[tetrahydrofuran-2-ylmethyl]amino}phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (34%) as a colorless solid: mp 155-170 °C; ¹H NMR (300 MHz, CD₃OD) δ 9.26 (d, *J* = 6.9 Hz, 1H), 8.49 (dd, *J* = 7.5, 7.5 Hz, 1H), 8.03 (d, *J* = 8.7 Hz, 1H), 7.77 (dd, *J* = 6.9, 6.9 Hz, 1H), 7.58-7.46 (m, 4H),

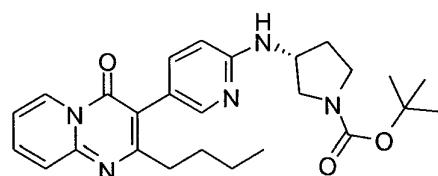

25

4.24-3.80 (m, 3H), 3.57-3.36 (m, 2H), 2.72 (t, J = 7.8 Hz, 2H), 2.20-1.91 (m, 3H), 1.77-1.61 (m, 3H), 1.39-1.25 (m, 2H), 0.84 (t, J = 7.2 Hz, 3H); 13 C NMR (75 MHz, CD₃OD) δ 157.3, 156.9, 148.6, 145.1, 141.5, 133.3, 130.7, 130.2, 121.1, 120.6, 119.6, 116.4, 76.1, 69.4, 54.3, 32.9, 31.9, 30.1, 26.7, 23.5, 13.9; MS (ES+) *m/z* 378.3 (M + 1).

5

EXAMPLE 3.29

Synthesis of (*R*)-2-butyl-3-{4-[tetrahydrofuran-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

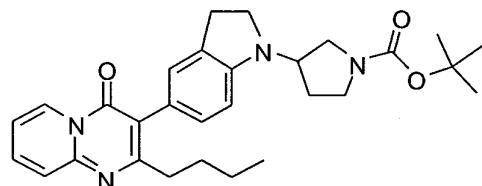


Following the procedure as described in EXAMPLE 3 and making non-critical variations using (*R*)-(+)-3-aminotetrahydrofuran toluene-4-sulfonate to replace (*R*)-(-)-tetrahydrofurfurylamine, 2-butyl-3-{4-[tetrahydrofuran-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (38%) as a colorless solid: mp 135-145 °C; 1 H NMR (300 MHz, CD₃OD) δ 9.26 (d, J = 6.9 Hz, 1H), 8.49 (dd, J = 7.5, 7.5 Hz, 1H), 8.07 (d, J = 8.7 Hz, 1H), 7.77 (dd, J = 6.9, 6.9 Hz, 1H), 7.45 (d, J = 7.8 Hz, 2H), 7.27 (d, J = 7.8 Hz, 2H), 4.36-4.26 (m, 1H), 4.14-3.78 (m, 4H), 2.80-2.69 (m, 2H), 2.44-2.29 (m, 1H), 2.15-2.01 (m, 1H), 1.76-1.61 (m, 2H), 1.41-1.25 (m, 2H), 0.84 (t, J = 7.2 Hz, 3H); 13 C NMR (75 MHz, CD₃OD) δ 156.8, 156.5, 148.3, 145.6, 133.3, 130.9, 120.8, 119.9, 119.0, 116.6, 72.1, 68.1, 32.6, 32.0, 31.9, 23.4, 13.9; MS (ES+) *m/z* 364.3 (M + 1).

20

EXAMPLE 3.30

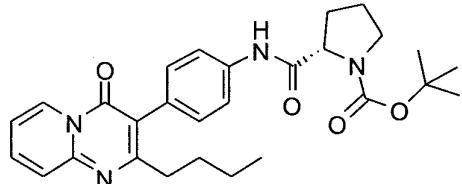
Synthesis of (*R*)-*tert*-butyl 3-(5-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)pyridin-2-ylamino)pyrrolidine-1-carboxylate



Following the procedure as described in EXAMPLE 3 and making non-critical variations using (*R*)-(+)-*tert*-butyl 3-aminopyrrolidine-1-carboxylate to replace *tert*-butyl 3-aminopiperidine-1-carboxylate, and 2-butyl-3-(6-chloropyridin-3-yl)-4*H*-pyrido[1,2-

a]pyrimidin-4-one to replace 2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one, (*R*)-*tert*-butyl 3-(5-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)pyridin-2-ylamino)pyrrolidine-1-carboxylate was obtained (12%) as a yellow solid: ^1H NMR (300 MHz, DMSO- d_6) δ 8.88 (d, J = 6.8 Hz, 1H), 7.8-7.81 (m, 2H), 7.61 (d, J = 8.8 Hz, 1H), 5.33-7.24 (m, 2H), 6.86 (d, J = 5.9 Hz, 1H), 6.54 (d, J = 8.6 Hz, 1H), 4.37-4.28 (m, 1H), 3.57-3.52 (m, 1H), 3.43-3.35 (m, 1H), 3.13-3.08 (m, 1H), 2.55-2.46 (m, 2H), 2.17-2.00 (m, 1H), 1.87-1.76 (m, 1H), 1.62-1.52 (m, 2H), 1.36 (s, 9H), 1.23-1.11 (m, 3H), 0.75 (t, J = 6.9 Hz, 3H); MS (ES+) m/z 464.2 (M + 1).

EXAMPLE 4


10 Synthesis of *tert*-butyl 3-(5-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)indolin-1-yl)pyrrolidine-1-carboxylate

To a solution of 2-butyl-3-(indolin-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (1.00 g, 3.10 mmol) and *tert*-butyl 3-oxopyrrolidine-1-carboxylate (2.25 g, 12.4 mmol) in 15 anhydrous methanol was added sodium triacetoxyborohydride (2.60 g, 12.4 mmol) followed by acetic acid (2.0 mL). The solution was refluxed for 16 h, cooled to ambient temperature and concentrated *in vacuo* to dryness. Sodium hydroxide (5 M, 50.0 mL) was added and the mixture was extracted with ethyl acetate (3 x 50.0 mL). The organic solution was dried with magnesium sulfate, filtered and the filtrate was 20 concentrated *in vacuo* to dryness. The residue was purified by flash chromatography eluting with ethyl acetate in hexanes to afford *tert*-butyl 3-(5-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)indolin-1-yl)pyrrolidine-1-carboxylate (0.29 g, 19%) as a colourless solid: ^1H NMR (300 MHz, CDCl₃) δ 9.03-8.97 (m, 1H), 7.67-7.62 (m, 2H), 7.10-6.92 (m, 3H), 6.52 (d, J = 8.0 Hz, 1H), 4.23-4.02 (m, 1H), 3.75-3.27 (m, 6H), 2.99 25 (t, J = 8.2 Hz, 2H), 2.67-2.59 (m, 2H), 2.20-1.99 (m, 2H), 1.71-1.57 (m, 2H), 1.45 (s, 9H), 1.34-1.22 (m, 2H), 0.81 (t, J = 7.32 Hz, 3H); MS (ES+) m/z 489.3 (M + 1).

EXAMPLE 5

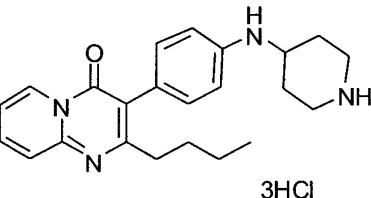
Synthesis of (*S*)-*tert*-butyl 2-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}carbamoyl}-pyrrolidine-1-carboxylate

5 To a mixture of *N*-(3-dimethylaminopropyl)-*N'*-ethylcarbodiimide (0.46 g, 2.40 mmol) and 1-hydroxybenzotriazole (0.14 g, 1.0 mmol) in dichloromethane (20.0 mL) was added *N*-Boc-L-proline (0.47 g, 2.20 mmol) at 0 °C. The reaction mixture was stirred for 0.5 h followed by the addition of a solution of 2-butyl-3-(4-aminophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (0.59 g, 2.00 mmol) in anhydrous dichloromethane (5.0 mL) and diisopropylamine (1.0 mL). The reaction mixture was stirred for 16 h and quenched with aqueous sodium carbonate solution (15.0 mL). The organic layer was separated, washed with water (15.0 mL), 3.0 N hydrochloride solution (2 x 10.0 mL), water (10.0 mL), brine (10.0 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated *in vacuo* to dryness. The residue was crystallized from dichloromethane and hexanes to afford (*S*)-*tert*-butyl 2-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}carbamoyl}-pyrrolidine-1-carboxylate (0.98 g, 100%) as a colourless solid: mp 179-187 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 10.08 (s, 1H), 8.91 (d, *J* = 6.8 Hz, 1H), 7.91 (d, *J* = 7.9 Hz, 1H), 7.68-7.64 (m, 3H), 7.31 (t, *J* = 6.9 Hz, 1H), 7.25 (d, *J* = 8.5 Hz, 2H), 4.31-4.20 (m, 1H), 3.48-3.31 (m, 2H), 2.54-2.50 (m, 2H), 2.28-2.16 (m, 1H), 1.96-1.78 (m, 3H), 1.62-1.54 (m, 2H), 1.41 (s, 3H), 1.30 (s, 6H), 1.24-1.17 (m, 2H), 0.77-0.71 (m, 3H); MS (ES+) *m/z* 491.5 (M + 1).

EXAMPLE 6

Synthesis of 2-butyl-3-[4-(piperidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

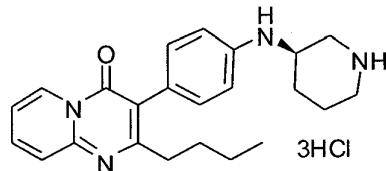
25


To a stirred solution of *tert*-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-

3-yl)phenyl]amino}piperidine-1-carboxylate (0.70 g, 1.47 mmol) in methanol (5 mL) was added 4 M hydrochloric acid in dioxane (5.0 mL, 20 mmol). The mixture was stirred at ambient temperature for 16 hours. The solvent and excess hydrochloric acid were removed under vacuum. The residue was triturated with anhydrous ether to give 2-butyl-3-[4-(piperidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride (0.64 g, 90%) as a colorless solid: mp 178-185 °C; ¹H NMR (300 MHz, CD₃OD) δ 9.27 (d, *J* = 6.9 Hz, 1H), 8.51 (ddd, *J* = 7.5, 7.5, 1.2 Hz, 1H), 8.04 (d, *J* = 8.7 Hz, 1H), 7.78 (dd, *J* = 6.9, 6.9 Hz, 1H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 3.97-3.85 (m, 1H), 3.62-3.53 (m, 1H), 3.42-3.33 (m, 1H), 3.12-2.69 (m, 4H), 2.26-1.26 (m, 8H), 0.85 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 156.7, 156.2, 148.2, 146.0, 133.5, 131.0, 129.0, 121.0, 120.4, 118.7, 116.5, 52.7, 46.5, 44.9, 32.5, 31.9, 27.9, 23.4, 21.8, 13.9; MS (ES+) *m/z* 377.3 (M + 1).

EXAMPLE 6.1

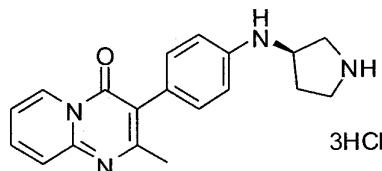
Synthesis of 2-butyl-3-[4-(piperidin-4-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride


15

Following the procedure as described in EXAMPLE 6 and making non-critical variations using *tert*-butyl 4-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate to replace *tert*-butyl 3-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate, 2-butyl-3-[4-(piperidin-4-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (77%) as a colorless solid: mp >220 °C; ¹H NMR (300 MHz, CD₃OD) δ 9.24 (d, *J* = 7.2 Hz, 1H), 8.43 (ddd, *J* = 7.2, 6.9, 1.2 Hz, 1H), 7.99 (d, *J* = 9.0 Hz, 1H), 7.71 (ddd, *J* = 7.2, 6.9, 1.2 Hz, 1H), 7.19 (d, *J* = 8.7 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 3.79-3.68 (m, 1H), 3.53-3.43 (m, 2H), 3.25-3.12 (m, 2H), 2.75 (t, *J* = 7.8 Hz, 2H), 2.35-2.22 (m, 2H), 1.85-1.61 (m, 4H), 1.41-1.26 (m, 2H), 0.85 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 157.2, 148.3, 144.8, 144.7, 132.6, 130.6, 120.4, 119.4, 117.7, 114.8, 48.5, 44.1, 32.9, 32.0, 29.8, 23.5, 13.9; MS (ES+) *m/z* 377.3 (M + 1).

EXAMPLE 6.2

Synthesis of (*R*)-2-butyl-3-{4-[piperidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride


5 Following the procedure as described in EXAMPLE 6 and making non-critical variations using (*R*)-*tert*-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}piperidine-1-carboxylate to replace *tert*-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}piperidine-1-carboxylate, (*R*)-2-butyl-3-{4-[piperidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (92%) as a colorless solid: mp 190-210 °C; ¹H NMR (300 MHz, CD₃OD) δ 9.27 (d, *J* = 6.9 Hz, 1H), 8.51 (dd, *J* = 7.5, 7.5 Hz, 1H), 8.06 (d, *J* = 8.7 Hz, 1H), 7.78 (dd, *J* = 7.2, 6.9 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.4 Hz, 2H), 3.99-3.87 (m, 1H), 3.63-3.54 (m, 1H), 3.43-3.33 (m, 1H), 3.13-2.99 (m, 2H), 2.79-2.70 (m, 2H), 2.27-1.26 (m, 8H), 0.85 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 156.7, 156.1, 148.2, 145.9, 141.4, 133.4, 130.9, 128.3, 121.0, 119.9, 118.7, 116.6, 52.2, 46.7, 44.9, 32.4, 31.9, 28.0, 23.4, 21.9, 13.9; MS (ES+) *m/z* 377.3 (M + 1).

10

15

EXAMPLE 6.3

Synthesis of (*R*)-2-methyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

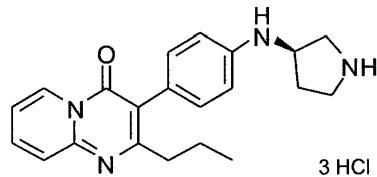
20 Following the procedure as described in EXAMPLE 6 and making non-critical variations using (*R*)-*tert*-butyl 3-(4-(2-methyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}piperidine-1-carboxylate, (*R*)-2-methyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (95%) as a colorless solid: mp 149-158 °C; ¹H NMR (300 MHz, DMSO-

25

d_6/CD_3OD) δ 9.15 (d, J = 6.9 Hz, 1H), 8.47 (dd, J = 7.9, 7.9 Hz, 1H), 8.22 (d, J = 8.8 Hz, 1H), 7.74 (dd, J = 7.0, 7.0 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 4.56 (s, 5H), 4.24-4.14 (m, 1H), 3.53-3.07 (m, 1H), 2.45 (s, 3H), 2.32-2.15 (m, 1H), 2.05-1.91 (m, 1H); ^{13}C NMR (75 MHz, DMSO- d_6) δ 155.6, 151.1, 146.5, 146.3, 144.1, 131.7, 129.7, 120.9, 119.8, 117.9, 115.7, 114.0, 52.7, 49.4, 43.8, 30.4, 18.8; MS (ES+) m/z 321.2 (M + 1).

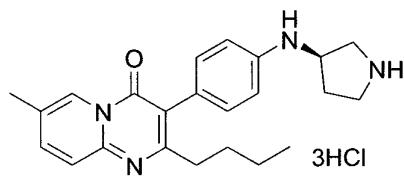
EXAMPLE 6.4

Synthesis of (*R*)-2-ethyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride


10

Following the procedure as described in EXAMPLE 6 and making non-critical variations using (*R*)-*tert*-butyl 3-(4-(2-ethyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenyl]amino)piperidine-1-carboxylate, (*R*)-2-ethyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride was obtained (98%) as a colorless solid: mp 175-182 °C; 1H NMR (300 MHz, DMSO- d_6) δ 9.76 (br, 1H), 9.63 (br, 1H), 9.08 (d, J = 6.8 Hz, 1H), 8.49-8.36 (m, 2H), 7.69 (dd, J = 6.2, 6.2 Hz, 1H), 7.12 (d, J = 8.3 Hz, 2H), 6.82 (d, J = 8.3 Hz, 2H), 4.21-4.08 (m, 1H), 3.47-3.02 (m, 4H), 2.67 (q, J = 7.1 Hz, 2H), 2.27-2.09 (m, 1H), 2.01-1.85 (m, 1H), 1.19 (t, J = 7.4 Hz, 3H); ^{13}C NMR (75 MHz, DMSO- d_6) δ 156.1, 155.9, 146.9, 146.4, 144.0, 131.5, 129.7, 121.2, 119.8, 118.1, 115.5, 114.3, 52.9, 49.4, 43.8, 30.4, 13.8; MS (ES+) m/z 335.2 (M + 1). Anal. Calcd. for $C_{20}H_{22}N_4O.3HCl.2H_2O$: C, 50.06; H, 6.09; N, 11.68. Found: C, 50.16; H, 6.10; N, 11.30.

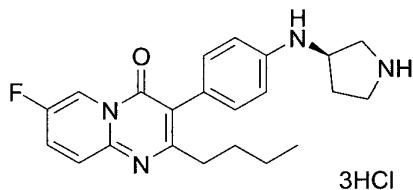
EXAMPLE 6.5


Synthesis of (*R*)-2-propyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

5 Following the procedure as described in EXAMPLE 6 and making non-critical variations using (*R*)-*tert*-butyl 3-(4-(4-oxo-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino)piperidine-1-carboxylate, (*R*)-2-propyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (95%) as a colorless solid: 171-176 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.73 (s, 1H), 9.61 (s, 1H), 9.09 (d, *J* = 6.9 Hz, 1H), 8.48-8.35 (m, 2H), 7.72-7.65 (m, 1H), 7.10 (d, *J* = 8.4 Hz, 2H), 6.78 (d, *J* = 8.4 Hz, 2H), 4.19-4.08 (m, 1H), 3.49-3.00 (m, 4H), 2.72-2.60 (m, 2H), 2.27-2.09 (m, 1H), 1.99-1.85 (m, 1H), 1.73-1.56 (m, 2H), 0.79 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 156.1, 154.6, 146.8, 146.7, 143.9, 131.6, 129.7, 120.9, 119.8, 118.2, 116.0, 113.9, 52.6, 49.5, 43.8, 33.0, 30.5, 22.3, 13.9; MS (ES+) *m/z* 349.3 (M + 1). Anal. Calcd. for C₂₁H₂₄N₄O.3HCl.H₂O: C, 53.01; H, 6.14; N, 11.77. Found: C, 52.78; H, 6.03; N, 11.48.

EXAMPLE 6.6

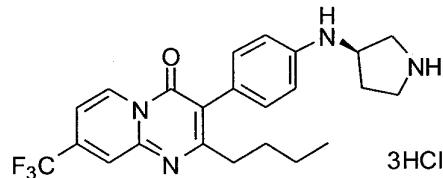
Synthesis of (*R*)-2-butyl-7-methyl-3-(4-[pyrrolidin-3-ylamino]phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride



Following the procedure as described in EXAMPLE 6 and making non-critical variations using (*R*)-*tert*-butyl 3-[(4-(2-butyl-7-methyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino)piperidine-1-carboxylate, (*R*)-2-butyl-7-methyl-3-(4-[pyrrolidin-3-ylamino]phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

hydrochloride was obtained (94%) as a colorless solid: ^1H NMR (300 MHz, DMSO-d₆) δ 9.50 (br, 2H), 8.94 (s, 1H), 8.36-8.20 (m, 2H), 7.07 (d, J = 8.8 Hz, 2H), 6.71 (d, J = 8.8 Hz, 2H), 4.18-4.06 (m, 1H), 3.48-2.98 (m, 4H), 2.67 (t, J = 7.9 Hz, 2H), 2.47 (s, 3H), 2.27-2.10 (m, 1H), 1.97-1.82 (m, 1H), 1.68-1.52 (m, 2H), 1.28-1.11 (m, 2H), 0.72 (t, J = 7.3 Hz, 3H); ^{13}C NMR (75 MHz, DMSO-d₆) δ 155.9, 147.4, 145.4, 131.6, 129.9, 126.9, 120.3, 117.9, 115.7, 113.2, 52.1, 49.7, 43.8, 31.0, 30.8, 30.7, 22.1, 18.1, 13.9; MS (ES+) m/z 377.3 (M + 1).

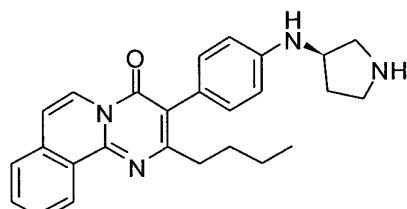
EXAMPLE 6.7


10 **Synthesis of (*R*)-2-butyl-7-fluoro-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride**

Following the procedure described in EXAMPLE 6 and making non-critical variations using (*R*)-*tert*-butyl 3-{[4-(2-butyl-7-fluoro-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}pyrrolidine-1-carboxylate to replace *tert*-butyl 3-{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate, (*R*)-2-butyl-7-fluoro-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (91%) as a colorless solid: ^1H NMR (300 MHz, D₂O) δ 9.10-9.00 (m, 1H), 8.29-8.17 (m, 1H), 7.95-7.85 (m, 1H), 7.11 (d, J = 8.5 Hz, 2H), 6.76 (d, J = 8.5 Hz, 2H), 4.26-4.13 (m, 1H), 3.53-3.08 (m, 4H), 2.58 (t, J = 7.9 Hz, 2H), 2.38-2.19 (m, 1H), 2.01-2.05 (m, 1H), 1.84 (m, 1H), 1.51-1.34 (m, 2H), 1.16-0.97 (m, 2H), 0.58 (t, J = 7.6 Hz, 3H); ^{13}C NMR (75 MHz, D₂O) δ 157.5, 156.6, 154.2, 145.4, 143.9, 135.4 (d), 131.4, 122.0, 119.7 (d), 116.5 (d), 115.3, 115.2, 52.8, 49.3, 44.2, 30.9, 30.2, 29.6, 21.4, 12.5; MS (ES+) m/z 381.3 (M + 1).

EXAMPLE 6.8

Synthesis of (*R*)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride


5 Following the procedure described in EXAMPLE 6 and making non-critical variations using (*R*)-*tert*-butyl 3-({4-[2-butyl-4-oxo-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenyl}amino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}piperidine-1-carboxylate, (*R*)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (84%) as a colorless solid: ^1H NMR (300 MHz, CD₃OD) δ 9.39 (d, *J* = 7.3 Hz, 1H), 8.24 (s, 1H), 7.93 (d, *J* = 7.0 Hz, 1H), 7.23 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.5 Hz, 2H), 4.37-4.26 (m, 1H), 3.63-3.33 (m, 4H), 2.79 (t, *J* = 7.6 Hz, 2H), 2.51-2.32 (m, 1H), 2.21-2.06 (m, 1H), 1.78-1.62 (m, 2H), 1.42-1.25 (m, 2H), 0.86 (t, *J* = 7.0 Hz, 3H); ^{13}C NMR (75 MHz, CD₃OD) δ 155.1, 155.0, 147.3, 146.5, 131.9, 131.4, 123.2, 120.7, 119.6, 118.2, 116.1, 114.3, 113.9, 52.8, 50.0, 44.3, 31.5, 30.6, 30.1, 22.1, 12.5; MS (ES+) *m/z* 431.2 (M + 1).

10

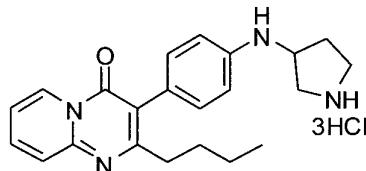
15

EXAMPLE 6.9

Synthesis of (*R*)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrimido[2,1-*a*]isoquinolin-4-one hydrochloride

20

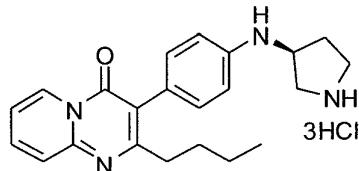
3HCl


Following the procedure described in EXAMPLE 6 and making non-critical variations using (*R*)-*tert*-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrimido[2,1-*a*]isoquinolin-3-yl)phenyl}amino}pyrrolidine-1-carboxylate to replace *tert*-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}piperidine-1-carboxylate, (*R*)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrimido[2,1-*a*]isoquinolin-4-one hydrochloride was

25

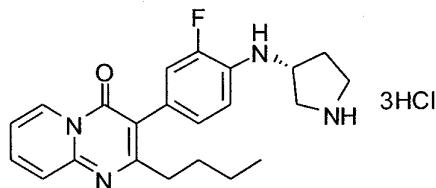
obtained (100%) as a colorless solid: ^1H NMR (300 MHz, DMSO- d_6) δ 9.34-9.16 (m, 2H), 8.91 (d, J = 7.9 Hz, 1H), 8.60 (d, J = 7.6 Hz, 1H), 7.97-7.83 (m, 2H), 7.81-7.73 (m, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.09 (d, J = 8.5 Hz, 2H), 6.68 (d, J = 8.5 Hz, 2H), 4.17-4.05 (m, 1H), 3.48-3.15 (m, 3H), 3.14-3.00 (m, 1H), 2.60 (t, J = 7.6 Hz, 2H), 2.29-2.11 (m, 1H), 1.99-1.84 (m, 1H), 1.77-1.62 (m, 2H), 1.32-1.16 (m, 2H), 0.79 (t, J = 7.0 Hz, 3H); ^{13}C NMR (75 MHz, DMSO- d_6) δ 162.7, 158.2, 147.4, 145.4, 133.6, 133.2, 131.7, 129.4, 127.4, 126.7, 126.5, 124.7, 122.3, 119.0, 115.4, 114.2, 53.0, 49.5, 43.9, 35.0, 30.6, 30.4, 22.4, 14.2; MS (ES+) m/z 413.2 (M + 1).

EXAMPLE 7


10 Synthesis of 2-butyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

To a mixture of *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate (0.30 g, 0.65 mmol) in anhydrous dioxane (5.0 mL) was added 4.0 M hydrochloric acid solution in dioxane (1.50 mL). The reaction solution was stirred for 3 h upon which time a yellow precipitate was formed. The mixture was concentrated *in vacuo* to dryness, the residue was crystallized from methanol and ethyl acetate to afford 2-butyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride (0.24 g, 78%) as a yellow solid: mp 136-139 °C; ^1H NMR (300 MHz, CDCl₃) δ 9.58 (br, 2H), 9.08 (d, J = 6.9 Hz, 1H), 8.41 (d, J = 8.7 Hz, 1H), 8.37 (d, J = 7.2 Hz, 1H), 7.67 (dd, J = 6.9, 6.9 Hz, 1H), 7.08 (d, J = 8.5 Hz, 2H), 6.74 (d, J = 8.5 Hz, 2H), 6.56-5.92 (br, 3H), 4.18-4.14 (m, 1H), 3.44-3.14 (m, 3H), 3.01-3.11 (m, 1H), 2.68 (t, J = 7.5 Hz, 2H), 2.24-2.12 (m, 1H), 1.95-1.85 (m, 1H), 1.65-1.55 (m, 2H), 1.25-1.13 (m, 2H), 0.72 (t, J = 7.3 Hz, 3H); ^{13}C NMR (75 MHz, DMSO- d_6) δ 156.1, 155.0, 147.1, 146.8, 143.8, 131.6, 129.6, 120.5, 119.7, 118.3, 115.9, 113.5, 52.4, 49.6, 43.8, 31.0, 30.8, 30.6, 22.1, 13.9; MS (ES+) m/z 363.3 (M + 1).

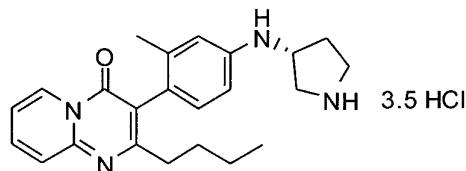
EXAMPLE 7.1


Synthesis of (S)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

5 Following the procedure as described in EXAMPLE 7 and making non-critical variations using (S)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, (S)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (84%) as a yellow solid: mp 164-171 °C; ¹H NMR (300 MHz, DMSO-*d*₆/CD₃OD) δ 9.14 (d, *J* = 6.9 Hz, 1H), 8.51-8.43 (m, 1H), 8.32 (d, *J* = 8.7 Hz, 1H), 7.73 (dd, *J* = 6.9, 6.9 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.83 (d, *J* = 8.4 Hz, 2H), 4.54 (br, 5H), 4.23-4.14 (m, 1H), 3.50-3.09 (m, 4H), 2.76-2.65 (m, 2H), 2.30-2.17 (m, 1H), 2.03-1.90 (m, 1H), 1.69-1.56 (m, 2H), 1.30-1.16 (m, 2H), 0.75 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆/CD₃OD) δ 155.3, 153.9, 146.0, 143.5, 130.9, 129.0, 119.9, 119.2, 117.4, 115.3, 113.0, 51.7, 49.0, 43.3, 30.3, 30.1, 29.8, 21.4, 13.1; MS (ES+) *m/z* 363.3 (M + 1).

EXAMPLE 7.2

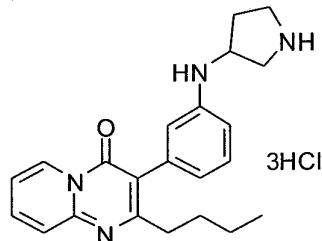
20 Synthesis of (R)-2-butyl-3-{3-fluoro-4-[{pyrrolidin-3-ylamino}phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride


Following the procedure as described in EXAMPLE 7, and making non-critical variations using (R)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)-2-fluorophenylamino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, (R)-2-butyl-3-{3-fluoro-4-[{pyrrolidin-3-ylamino}phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

was obtained (100%) as a yellow solid: mp 143-155 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.69 (s, 1H), 9.52 (s, 1H), 9.13 (d, *J* = 6.8 Hz, 1H), 8.50-8.40 (m, 2H), 7.72 (ddd, *J* = 6.9, 6.9, 1.5 Hz, 1H), 7.08-7.69 (m, 2H), 6.89 (dd, *J* = 8.7, 8.7 Hz, 1H), 6.21 (br, 3H), 4.27-4.20 (m, 1H), 3.49-3.18 (m, 4H), 2.76-2.70 (m, 2H), 2.29-2.18 (m, 1H), 2.03-1.93 (m, 1H), 1.69-1.59 (m, 2H), 1.30-1.18 (m, 2H), 0.76 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 155.5, 155.1, 150.5 (d, ¹*J*_{C-F} = 239.6 Hz), 146.4, 143.4, 135.4 (d, *J* = 11.8 Hz), 129.1, 126.9 (d, *J* = 2.4 Hz), 119.6 (d, *J* = 7.3 Hz), 119.3, 118.0, 116.6 (d, *J* = 18.9 Hz), 114.4 (d, *J* = 1.4 Hz), 112.4 (d, *J* = 4.2 Hz), 51.4, 49.1, 43.3, 30.5, 30.3, 30.2, 21.5, 13.4; MS (ES+) *m/z* 381.2 (M + 1).

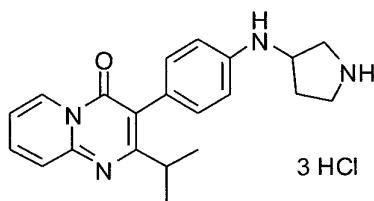
10

EXAMPLE 7.3


Synthesis of (*R*)-2-butyl-3-{2-methyl-4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

Following the procedure as described in EXAMPLE 7, and making non-critical variations using (*R*)-*tert*-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)-3-methylphenyl}amino}pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, (*R*)-2-butyl-3-{2-methyl-4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (50%) as a colorless solid: mp 179-187 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.54 (br, 2H), 9.12 (d, *J* = 6.8 Hz, 1H), 8.49-8.38 (m, 2H), 7.71 (ddd, *J* = 7.1, 7.1, 1.4 Hz, 1H), 6.94 (d, *J* = 8.2 Hz, 1H), 6.64-6.58 (m, 2H), 5.54 (br, 6H), 4.19-4.12 (m, 1H), 3.47-3.20 (m, 3H), 3.12-3.07 (m, 1H), 2.74-2.65 (m, 1H), 2.55-2.46 (m, 1H), 2.27-2.16 (m, 1H), 2.03 (s, 3H), 1.98-1.88 (m, 1H), 1.63-1.52 (m, 2H), 1.27-1.15 (m, 2H), 0.74 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 155.6, 154.9, 146.7, 146.7, 143.2, 138.3, 131.2, 129.1, 120.1, 119.1, 118.0, 114.9, 114.5, 110.8, 51.9, 49.2, 43.3, 30.6, 30.1, 29.8, 21.5, 19.4, 13.4; MS (ES+) *m/z* 377.3 (M + 1); Anal. Calcd for C₂₃H₂₈N₄O 3.5 HCl 1.0 H₂O: C, 52.91; H, 6.47; N, 10.73; Found: C, 53.01; H, 6.17; N, 10.41.

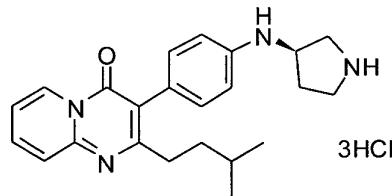
EXAMPLE 7.4


Synthesis of 2-butyl-3-[3-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

5 Following the procedure as described in EXAMPLE 7 and making non-critical variations using *tert*-butyl 3-(3-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, 2-butyl-3-[3-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (64%) as a yellow solid: mp >170 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.62 (d, *J* = 19.7 Hz, 1H), 9.13 (d, *J* = 6.6 Hz, 1H), 8.48-8.36 (m, 2H), 7.72 (dd, *J* = 6.1, 6.1 Hz, 1H), 7.27 (dd, *J* = 7.6, 7.6 Hz, 1H), 6.76 (d, *J* = 7.6 Hz, 1H), 6.64-6.62 (m, 2H), 5.53 (br, 4H), 4.11 (br, 1H), 3.41-3.01 (m, 4H), 2.71-2.66 (m, 2H), 2.22-2.16 (m, 1H), 1.94-1.90 (m, 1H), 1.66-1.62 (m, 2H), 1.27-1.19 (m, 2H), 0.75 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 155.2, 155.0, 146.6, 146.5, 143.4, 132.7, 129.3, 129.1, 119.2, 118.1, 115.5, 115.1, 113.4, 52.1, 49.0, 43.3, 30.6, 30.4, 30.0, 21.6, 13.4; MS (ES+) *m/z* 363.3 (M + 1).

EXAMPLE 7.5

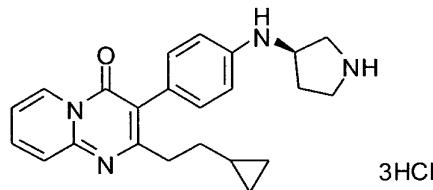
Synthesis of 2-(1-methylethyl)-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride


Following the procedure as described in EXAMPLE 7 and making non-critical variations using *tert*-butyl 3-((4-[2-(1-methylethyl)-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenyl)amino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-

5 pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, 2-(1-methylethyl)-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride was obtained (74%) as a yellow solid: mp 180-184 °C; ¹H NMR (300 MHz, DMSO-*d*₆/CD₃OD) δ 9.08 (d, *J* = 6.6 Hz, 1H), 8.67 (d, *J* = 8.7 Hz, 1H), 8.45-8.37 (m, 1H), 7.71-7.63 (m, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 2H), 4.54 (br, 6H), 4.13 (m, 1H), 3.47-3.17 (m, 3H), 3.13-2.97 (m, 2H), 2.26-2.12 (m, 1H), 1.97-1.85 (m, 1H), 1.34 (d, *J* = 7.2 Hz, 6H); ¹³C NMR (75 MHz, DMSO-*d*₆/CD₃OD) δ 159.8, 156.3, 147.7, 146.9, 143.2, 131.5, 129.4, 121.3, 119.5, 119.2, 114.9, 113.7, 52.5, 49.6, 43.8, 31.3, 30.6, 20.6; MS (ES+) *m/z* 349.3 (M + 1).

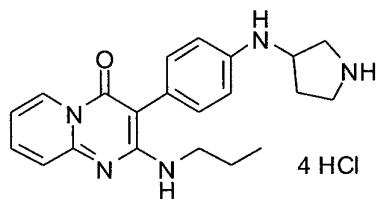
10

EXAMPLE 7.6


Synthesis of (*R*)-2-isopentyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride

15 Following the procedure as described in EXAMPLE 7 and making non-critical variations using (*R*)-*tert*-butyl 3-(4-(2-isopentyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, (*R*)-2-isopentyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride was obtained (55%) as a yellow solid: mp 171-187 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.73 (br, 1H), 9.61 (br, 1H), 9.09 (d, *J* = 6.9 Hz, 1H), 8.48-8.33 (m, 2H), 7.69 (dd, *J* = 6.9, 1.6 Hz, 1H), 7.12 (d, *J* = 8.4 Hz, 2H), 6.80 (d, *J* = 8.5 Hz, 2H), 4.20-4.10 (m, 1H), 3.47-3.00 (m, 4H), 2.73-2.62 (m, 2H), 2.26-2.10 (m, 1H), 1.98-1.84 (m, 1H), 1.59-1.36 (m, 3H), 0.70 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 156.0, 155.2, 146.8, 146.6, 143.9, 131.6, 129.6, 121.1, 119.8, 118.2, 115.7, 114.0, 52.7, 49.4, 43.8, 37.7, 30.4, 29.3, 27.8, 22.4; MS (ES+) *m/z* 377.3 (M + 1). Anal. Calcd. for C₂₃H₂₈N₄O·3HCl·1.75H₂O: C, 53.39; H, 6.72; N, 10.83. Found: C, 53.54; H, 6.46; N, 10.89.

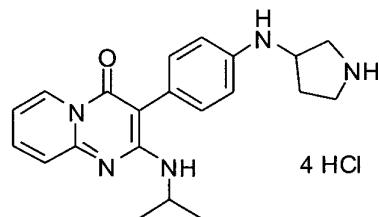
EXAMPLE 7.7


Synthesis of (R)-2-(2-cyclopropylethyl)-3-(4-(pyrrolidin-3-ylamino)phenyl)-4H-pyrido[1,2-a]pyrimidin-4-one hydrochloride

5 Following the procedure as described in EXAMPLE 7 and making non-critical variations using (*R*)-*tert*-butyl 3-(4-(2-(2-cyclopropylethyl)-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, (*R*)-2-(2-cyclopropylethyl)-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-10 one hydrochloride was obtained (86%) as a colorless solid: mp 182-185 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.80 (br, 1H), 9.64 (br, 1H), 9.08 (d, *J* = 6.7 Hz, 1H), 8.49-8.38 (m, 2H), 7.74-7.65 (m, 1H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.86 (d, *J* = 8.1 Hz, 2H), 4.22-4.10 (m, 1H), 3.50-3.01 (m, 4H), 2.82-2.68 (m, 2H), 2.27-2.09 (m, 1H), 2.02-1.86 (m, 1H), 1.61-1.48 (m, 2H), 0.66-0.51 (m, 1H), 0.30-0.19 (m, 2H), -0.02--0.11 (m, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 156.0, 154.5, 146.8, 146.0, 144.1, 131.7, 129.7, 121.7, 119.8, 118.0, 115.8, 114.6, 49.3, 43.8, 40.8, 33.9, 31.5, 30.3, 11.0, 9.2; MS (ES+) *m/z* 375.2 (M + 1). Anal. Calcd. for C₂₃H₂₈N₄O·3HCl·1.75H₂O: C, 54.07; H, 6.31; N, 10.97. Found: C, 54.20; H, 5.72; N, 11.23.

EXAMPLE 7.8

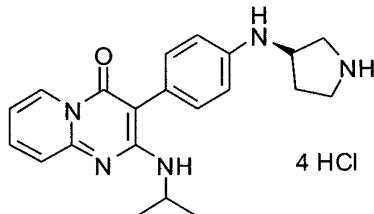
20 Synthesis of 2-(propylamino)-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride



Following the procedure as described in EXAMPLE 7, and making non-critical variations using *tert*-butyl 3-({4-[4-oxo-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenyl}amino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-

pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, 2-(propylamino)-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride was obtained (78%) as a light yellow solid: mp 156-161 °C; ¹H NMR (300 MHz, DMSO-*d*₆/CD₃OD) δ 9.00 (d, *J* = 6.9 Hz, 1H), 8.20 (d, *J* = 3.6 Hz, 2H), 7.51-7.38 (m, 1H), 7.34-5 7.24 (m, 2H), 7.25-7.13 (m, 2H), 5.20 (br, 7H), 3.61-3.37 (m, 4H), 3.38-3.19 (m, 2H), 2.36-2.18 (m, 1H), 2.18-2.03 (m, 1H), 1.60-1.43 (m, 2H), 0.84 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 154.6, 154.3, 148.0, 141.3, 132.8, 129.1, 120.4, 118.8, 116.7, 93.2, 55.7, 48.3, 43.9, 43.7, 29.2, 23.1, 11.5; MS (ES+) *m/z* 364.2 (M + 1).

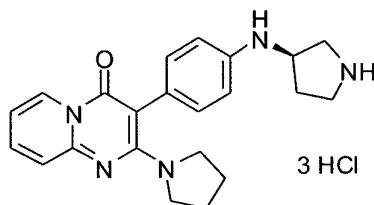
EXAMPLE 7.9


10 Synthesis of 2-[(1-methylethyl)amino]-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride

Following the procedure as described in EXAMPLE 7 and making non-critical variations using *tert*-butyl 3-[(4-{2-[(1-methylethyl)amino]-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl}phenyl)amino]pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, 2-[(1-methylethyl)amino]-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride was obtained (66%) as a yellow solid: mp 232-236 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 10.11 (br, 1H), 9.75 (br, 1H), 9.60 (br, 1H), 8.86 (d, *J* = Hz, 1H), 7.96 (dd, *J* = Hz, 1H), 7.79 (d, *J* = Hz, 1H), 7.26-7.19 (m, 3H), 7.03 (d, *J* = Hz, 1H), 5.86 (br, 1H), 4.53-4.38 (m, 1H), 4.23-4.13 (m, 1H), 3.50-3.31 (m, 2H), 3.27-3.13 (m, 2H), 2.27-2.13 (m, 1H), 2.09-1.96 (m, 1H), 1.09 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 155.4, 155.0, 148.8, 142.5, 139.8, 132.5, 128.6, 125.6, 121.9, 117.2, 115.5, 93.8, 54.6, 48.8, 43.9, 43.5, 29.6, 23.0; MS (ES+) *m/z* 364.2 (M + 1).

EXAMPLE 7.10

Synthesis of (*R*)-2-[(1-methylethyl)amino]-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride



5 Following the procedure as described in EXAMPLE 7, and making non-critical variations using (*R*)-*tert*-butyl 3-[(4-{2-[(1-methylethyl)amino]-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl}phenyl)amino]pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, (*R*)-2-[(1-methylethyl)amino]-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-
10 one hydrochloride (97%) was obtained as a yellow solid: mp 229-234 °C; ¹H NMR (300 MHz, DMSO-*d*₆/CD₃OD) δ 8.96 (d, *J* = 6.7 Hz, 1H), 8.17-8.05 (m, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.41-7.24 (m, 3H), 7.14 (d, *J* = 7.8 Hz, 2H), 5.04 (s, 6H), 4.55-4.38 (m, 1H), 4.32-4.18 (m, 1H), 3.58-3.38 (m, 2H), 3.36-3.19 (m, 2H), 2.36-2.18 (m, 1H), 2.18-2.01 (m, 1H), 1.14 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (75 MHz, DMSO-*d*₆/CD₃OD) δ 154.1, 153.8, 147.6, 141.7, 140.1, 131.9, 128.3, 124.8, 120.3, 116.8, 116.2, 115.6, 92.9, 54.1, 48.2, 43.4, 43.2, 28.9, 22.1; MS (ES+) *m/z* 364.2 (M + 1).

15

EXAMPLE 7.11

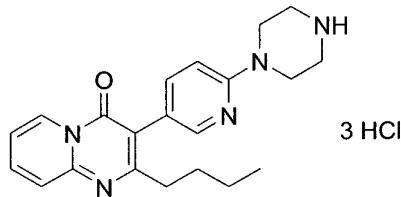
Synthesis of (*R*)-2-pyrrolidin-1-yl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrogen chloride

20

Following the procedure as described in EXAMPLE 7 and making non-critical variations using (*R*)-*tert*-butyl 3-[(4-(4-oxo-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl)amino]pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, (*R*)-2-pyrrolidin-1-yl-

3-[4-[pyrrolidin-3-ylamino]phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (86%) as a yellow solid: mp 177-183 °C; ¹H NMR (300 MHz, DMSO-*d*₆/CD₃OD) δ 8.84 (d, *J* = 6.6 Hz, 1H), 7.95 (dd, *J* = 7.6, 7.6 Hz, 1H), 7.72 (d, *J* = 9.0 Hz, 1H), 7.25-7.14 (m, 3H), 6.93 (d, *J* = 8.1 Hz, 2H), 4.55 (s, 6H), 4.24-4.12 (m, 1H), 5 3.49-3.32 (m, 2H), 3.29-3.05 (m, 6H), 2.27-2.11 (m, 1H), 2.07-1.92 (m, 1H), 1.75-1.57 (m, 4H); ¹³C NMR (75 MHz, DMSO-*d*₆/CD₃OD) δ 156.6, 155.7, 147.3, 143.8, 137.6, 132.3, 127.3, 122.4, 113.6, 113.0, 94.9, 52.4, 49.6, 48.9, 43.4, 29.7, 24.7; MS (ES+) *m/z* 376.2 (M + 1).

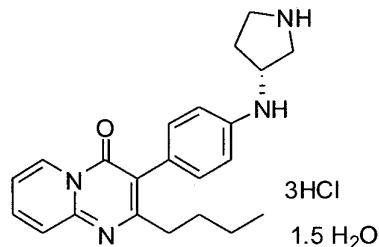
EXAMPLE 7.12


10 Synthesis of 2-butyl-3-(1-(pyrrolidin-3-yl)indolin-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

Following the procedure as described in EXAMPLE 7 and making non-critical variations using *tert*-butyl 3-(5-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)indolin-1-yl)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, 2-butyl-3-(1-(pyrrolidin-3-yl)indolin-5-yl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (92%) as a pale yellow solid: mp 159-163 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.76 (br, 2H), 9.08 (d, *J* = 6.9 Hz, 1H), 8.47-8.37 (m, 2H), 7.72-7.65 (m, 1H), 6.99-6.91 (m, 2H), 6.64 (d, *J* = 8.0 Hz, 2H), 4.43-4.30 (m, 1H), 3.55-3.04 (m, 6H), 2.98-2.87 (m, 2H), 2.73-2.62 (m, 2H), 2.20-1.92 (m, 2H), 1.69-1.54 (m, 2H), 1.27-1.12 (m, 2H), 0.71 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 156.1, 154.8, 151.5, 146.8, 143.9, 130.7, 129.9, 129.6, 126.6, 121.2, 119.8, 118.1, 116.2, 107.2, 55.1, 48.3, 45.0, 44.1, 30.9, 28.0, 26.6, 22.0, 13.9; MS (ES+) *m/z* 389.3 (M + 1). Anal. Calcd. for C₂₄H₂₈N₄O.3HCl.1.5H₂O: C, 54.92; 20 H, 6.53; N, 10.67. Found: C, 54.53; H, 6.55; N, 10.77.

EXAMPLE 7.13

Synthesis of 2-butyl-3-(6-piperazin-1-ylpyridin-3-yl)-4H-pyrido[1,2-a]pyrimidin-4-one hydrochloride

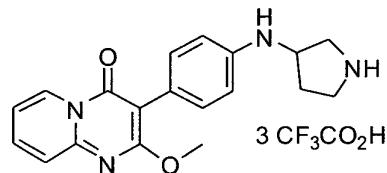

5 Following the procedure as described in EXAMPLE 7, and making non-critical variations using *tert*-butyl 4-(5-(4-oxo-2-butyl-4*H*-pyrido[1,2-a]pyrimidin-3-yl)pyridin-2-yl)piperazine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, 2-butyl-3-(6-piperazin-1-ylpyridin-3-yl)-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride was obtained (67%) as a colorless solid: mp >245 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.82 (s, 2H), 9.12 (d, *J* = 6.9 Hz, 1H), 8.46-8.33 (m, 2H), 8.08-8.07 (m, 2H), 7.84 (d, *J* = 8.7 Hz, 1H), 7.70 (t, *J* = 6.9 Hz, 1H), 7.36 (d, *J* = 8.7 Hz, 1H), 4.00 (s, 4H), 3.25 (s, 4H), 2.82 (t, *J* = 7.6 Hz, 2H), 1.71-1.61 (m, 2H), 1.32-1.20 (m, 2H), 0.79 (t, *J* = 7.3 Hz, 3H); MS (ES+) *m/z* 364.3 (M + 1); Anal. Calcd for C₂₁H₂₅N₅O.3 HCl H₂O: C, 51.38; H, 6.16; N, 14.27. Found: C, 51.31; H, 5.80; N, 14.13.

10

15

EXAMPLE 8

Synthesis of (*R*)-2-butyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride



20 A solution of (*R*)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate (12.05 g, 26.00 mmol) in anhydrous methanol (1500 mL) was bubbled with hydrogen chloride for 15 minutes at ambient temperature. The reaction solution was stirred for 4 h upon which time a yellow precipitate was formed. The mixture was concentrated *in vacuo* to about 350 mL, diethyl ether (100

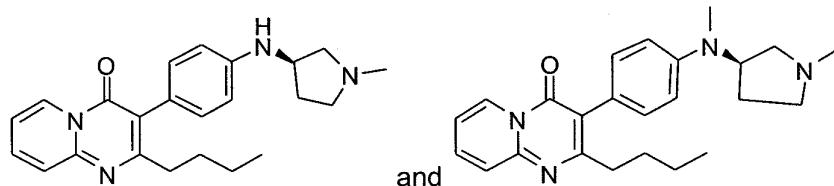
mL) was added to the reaction mixture. The precipitate was filtered under nitrogen, washed with anhydrous ether and dried *in vacuo* to afford (*R*)-2-butyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride (11.25 g, 87%) as a yellow solid: mp 171-174 °C; ¹H NMR (300 MHz, CD₃OD) δ 9.27 (d, *J* = 6.9 Hz, 1H), 8.54-8.49 (m, 1H), 8.07 (d, *J* = 9.0 Hz, 1H), 7.81-7.76 (m, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 4.49-4.42 (m, 1H), 3.69-3.58 (m, 2H), 3.51-3.41 (m, 2H), 2.75 (t, *J* = 8.1 Hz, 2H), 2.53-2.41 (m, 1H), 2.32-2.21 (m, 1H), 1.73-1.63 (m, 2H), 1.40-1.27 (m, 2H), 0.84 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 156.7, 156.0, 148.2, 145.8, 144.1, 133.1, 130.9, 126.4, 120.9, 118.6, 118.2, 116.8, 56.3, 50.3, 45.7, 32.4, 31.9, 30.6, 23.4, 13.8; MS (ES+) *m/z* 363.3 (M + 1).

EXAMPLE 9

Synthesis of 2-methoxy-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one trifluoroacetate

15 To a solution of *tert*-butyl 3-(4-(2-methoxy-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate (0.15 g, 0.34 mmol) in dichloromethane (4.0 mL) was added trifluoroacetic acid (2.0 mL). The reaction solution was stirred at ambient temperature for 1 h. The solution was concentrated *in vacuo* to dryness to afford 2-methoxy-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one trifluoroacetate (0.18 g, 77%) as a yellow solid: mp 56-58 °C; ¹H NMR (300 MHz, DMSO-*d*₆/CD₃OD) δ 8.98 (d, *J* = 6.8 Hz, 1H), 7.95-7.87 (m, 1H), 7.56 (d, *J* = 8.8 Hz, 1H), 7.32-7.24 (m, 3H), 6.63 (d, *J* = 8.6 Hz, 2H), 4.80 (br, 5H), 3.91 (s, 3H), 3.49-3.22 (m, 3H), 3.16-3.07 (m, 1H), 2.31-2.16 (m, 1H), 2.01-1.87 (m, 1H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 164.2, 159.6 (q, *J* = 35.9 Hz), 157.8, 148.5, 146.2, 138.1, 132.0, 128.1, 124.9, 121.2, 116.3 (q, *J* = 290 Hz), 116.0, 112.4, 98.8, 54.3, 52.1, 50.2, 44.2, 30.8; MS (ES+) *m/z* 337.21 (M + 1).

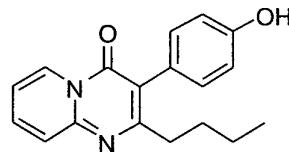
EXAMPLE 9.1


Synthesis of (*R*)-2-propoxy-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one trifluoroacetate

5 Following the procedure as described in EXAMPLE 9 and making non-critical variations using (*R*)-*tert*-butyl 3-(4-(4-oxo-2-propoxy-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-methoxy-4-oxo-4*H*-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, (*R*)-2-propoxy-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one trifluoroacetate was obtained (73%) as a colorless solid: mp >100 °C (dec.); ¹H NMR (300 MHz, DMSO-*d*₆/CD₃OD) δ 8.95 (d, *J* = 7.0 Hz, 1H), 7.96-7.88 (m, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.34-7.25 (m, 3H), 6.58 (d, *J* = 8.6 Hz, 2H), 4.30 (t, *J* = 6.49 Hz, 2H), 4.13-4.03 (m, 1H), 3.46-3.17 (m, 3H), 3.10-2.99 (m, 1H), 2.28-2.13 (m, 1H), 1.95-1.82 (m, 1H), 1.71-1.57 (m, 2H), 0.90 (t, *J* = 7.39 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆/CD₃OD) δ 163.9, 158.9 (q, *J* = 18.1 Hz), 157.8, 148.5, 146.2, 138.1, 132.0, 128.1, 124.8, 121.2, 116.2 (q, *J* = 291.8 Hz), 115.9, 112.2, 98.7, 68.2, 52.0, 50.2, 44.2, 30.8, 22.4, 10.9; MS (ES+) *m/z* 365.3 (M + 1). Anal. Calcd. for C₂₁H₂₄N₄O. 2.5CF₃COOH: C, 48.08; H, 4.11; N, 8.63. Found: C, 48.28; H, 4.14; N, 8.36.

EXAMPLE 10

20 Synthesis of (*R*)-2-butyl-3-(4-[(1-methylpyrrolidin-3-yl)amino]phenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one and (*R*)-2-butyl-3-(4-{methyl[1-methylpyrrolidin-3-yl]amino}phenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one

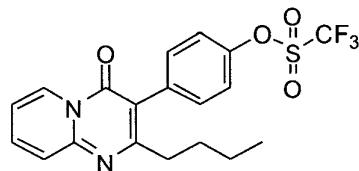


25 To a stirred solution of (*R*)-2-butyl-3-(4-[pyrrolidin-3-ylamino]phenyl)-4*H*-pyrido[1,2-a]pyrimidin-4-one hydrochloride (0.30 g, 0.636 mmol) in tetrahydrofuran (5 mL) were added triethylamine (0.35 mL, 2.5 mmol), 37% formaldehyde (0.15 mL, 2.0

mmol), and sodium boron hydride triacetate (0.43 g, 2.0 mmol) and two drops of acetic acid. The mixture was stirred at ambient temperature for 16 hours. The mixture was evaporated to dryness. The residue was subjected to column chromatography (dichloromethane/methanol/ammonia = 10:1:0.2) to give (*R*)-2-butyl-3-(4-{{[1-
5 methylpyrrolidin-3-yl]amino}phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (0.19 g, 79%) as a colorless solid: R_f = 0.35 (dichloromethane/methanol/ammonia, 10/1/0.2); mp 141-143 °C; 1 H NMR (300 MHz, CDCl₃) δ 9.02 (d, J = 7.2 Hz, 1H), 7.68-7.56 (m, 2H), 7.14 (d, J = 8.4 Hz, 2H), 7.08-7.01 (m, 1H), 6.66 (d, J = 8.4 Hz, 2H), 4.26-4.04 (m, 2H), 2.97-2.32 (m, 10H), 1.85-1.58 (m, 3H), 1.35-1.21 (m, 2H), 0.83 (t, J = 7.5 Hz, 3H); 13 C NMR (75 MHz, CDCl₃) δ 165.6, 158.0, 149.1, 146.6, 134.9, 131.2, 127.4, 125.9, 123.6, 117.1, 114.6, 113.3, 62.9, 55.1, 52.8, 41.9, 35.8, 33.1, 31.2, 22.7, 13.9; MS (ES+) m/z 377.3 (M + 1), and (*R*)-2-butyl-3-(4-{methyl[1-methylpyrrolidin-3-yl]amino}phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (0.035 g, 14%) as a colorless solid: R_f = 0.40 (dichloromethane/methanol/ammonia, 10/1/0.2); mp 64-66 °C; 1 H NMR (300 MHz, CDCl₃) δ 9.01 (d, J = 6.9 Hz, 1H), 7.67-7.55 (m, 2H), 7.23-7.15 (m, 2H), 7.07-7.00 (m, 1H), 6.89-6.83 (m, 2H), 4.60-4.48 (m, 1H), 2.91 (s, 3H), 2.88-2.42 (m, 6H), 2.38 (s, 3H), 2.27-2.13 (m, 1H), 1.95-1.54 (m, 3H), 1.35-1.19 (m, 2H), 0.82 (t, J = 7.2 Hz, 3H); 13 C NMR (75 MHz, CDCl₃) δ 165.5, 158.0, 149.6, 149.1, 134.9, 131.0, 127.4, 125.8, 123.0, 117.0, 114.6, 113.5, 58.9, 58.0, 55.9, 42.2, 35.7, 32.9, 31.2, 29.0, 22.6, 13.9; 20 MS (ES+) m/z 391.3 (M + 1).

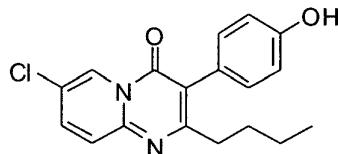
EXAMPLE 11

Synthesis of 2-butyl-3-(4-hydroxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

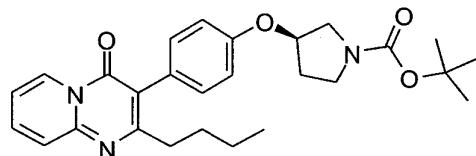


To a stirred solution of 2-butyl-3-(4-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-
25 one (0.28 g, 0.91 mmol) in dichloromethane (5.0 mL) was added 1.0 M boron tribromide in dichloromethane (2.0 mL, 2.0 mmol) dropwise at -78 °C. The mixture was slowly warmed to ambient temperature and stirred for six hours. The reaction mixture was quenched by saturated sodium bicarbonate (2.0 mL) at 0 °C. The resulting mixture was extracted with dichloromethane (3 x 50 mL), the combined
30 organic layers was dried over anhydrous sodium sulfate, then filtered and concentrated

to give the crude product. The crude product was purified by flash chromatography (50% ethyl acetate in hexane) to afford 2-butyl-3-(4-hydroxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (0.096 g, 36%) as a colorless solid: mp 160 °C (dec.); ¹H NMR (300 MHz, CD₃OD) δ 9.26 (d, *J* = 6.9 Hz, 1H), 8.54-8.45 (m, 1H), 8.00 (d, *J* = 8.7 Hz, 1H), 5 7.76-7.73 (m, 1H), 7.25-7.18 (m, 2H), 6.92 (d, *J* = 7.8 Hz, 2H), 2.73 (t, *J* = 7.8 Hz, 2H), 1.73-1.60 (m, 2H), 1.40-1.26 (m, 2H), 0.85 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 159.3, 156.8, 155.9, 148.1, 145.6, 132.7, 130.9, 123.2, 120.8, 118.6, 117.4, 116.6, 32.4, 31.9, 23.4, 13.8; MS (ES+) *m/z* 295.2 (M + 1).


EXAMPLE 12

10 Synthesis of 4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl trifluoromethanesulfonate


To a solution of 2-butyl-3-(4-hydroxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (2.50 g, 8.47 mmol) in dichloromethane (60.0 mL) was added a solution of 15 triethylamine (1.71 g, 16.9 mmol) and trifluoromethanesulfonic anhydride (3.59 g, 12.7 mmol) at 0 °C. The reaction solution was stirred for 3 h and quenched with saturated aqueous ammonium chloride solution (50.0 mL). The organic layer was separated, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated *in vacuo* to dryness. The residue was purified by flash chromatography eluting with ethyl acetate in hexanes (80%) to afford 4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl trifluoromethane sulfonate (2.42 g, 67%) as a pale yellow solid: mp 106-108 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.02 (d, *J* = 7.9 Hz, 1H), 7.71 (dd, *J* = 8.9, 8.9 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 7.43 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.7 Hz, 2H), 7.12 (d, *J* = 6.8 Hz, 1H), 2.56 (t, *J* = 7.5 Hz, 2H), 1.67-1.57 (m, 2H), 1.31-1.18 (m, 2H), 0.79 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 165.7, 157.3, 149.7, 148.9, 136.2, 25 135.4, 132.5, 127.5, 125.9, 121.4, 118.8 (q), 115.5, 114.9, 35.6, 31.1, 22.6, 13.7; MS (ES+) *m/z* 427.16 (M + 1).

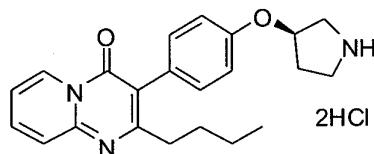
EXAMPLE 13

Synthesis of 2-butyl-7-chloro-3-(4-hydroxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one

To a stirred solution of 2-butyl-7-chloro-3-(4-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (0.50 g, 1.46 mmol) in anhydrous methylene chloride (10 mL) was added boron tribromide (1.0 M in methylene chloride, 2.2 mL, 2.2 mmol) slowly at 0 °C. The mixture was stirred at ambient temperature for 16 h. The reaction mixture was poured into water (100 mL), extracted with methylene chloride (3 × 30 mL). The combined organic layers was washed with saturated sodium carbonate solution and water, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated *in vacuo* to give a white solid. Recrystallization from ethyl acetate/hexanes afforded 2-butyl-7-chloro-3-(4-hydroxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (0.39 g, 81%) as a colorless solid: ¹H NMR (300 MHz, CDCl₃) δ 9.08-9.03 (m, 1H), 7.65-7.51 (m, 2H), 7.15-7.07 (m, 2H), 6.84-6.76 (m, 2H), 5.89 (s, 1H), 2.59 (t, *J* = 7.6 Hz, 2H), 1.68-1.56 (m, 2H), 1.31-1.18 (m, 2H), 0.79 (t, *J* = 7.0 Hz, 3H); MS (ES+) *m/z* 329.1 (M + 1).

EXAMPLE 14

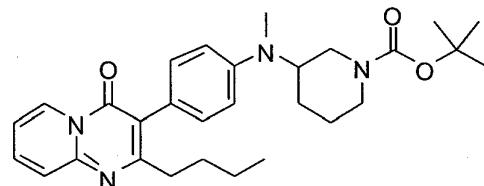
Synthesis of *tert*-butyl (*R*)-3-[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenoxy]pyrrolidine-1-carboxylate


To a solution of 2-butyl-3-(4-hydroxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one (0.38 g, 1.29 mmol) in tetrahydrofuran (10 mL) were added (*S*)-*tert*-butyl 3-hydroxypyrrolidine-1-carboxylate (0.36 g, 1.94 mmol), triphenylphosphine (0.51 g, 1.94 mmol) and diethyl azodicarboxylate (0.35 mL, 1.94 mmol) at ambient temperature. The mixture was stirred at ambient temperature for 16 hours. The mixture was concentrated *in vacuo* to dryness. The residue was purified by flash chromatography to give *tert*-butyl (*R*)-3-[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenoxy]pyrrolidine-1-carboxylate (0.26 g, 44%) as a colorless solid: ¹H NMR (300

MHz, CDCl₃) δ 9.02 (d, *J* = 7.2 Hz, 1H), 7.73-7.58 (m, 2H), 7.30-7.22 (m, 2H), 7.12-6.91 (m, 3H), 4.93-4.89 (m, 1H), 3.72-3.46 (m, 4H), 2.62 (t, *J* = 7.5 Hz, 2H), 2.29-2.05 (m, 2H), 1.71-1.54 (m, 2H), 1.48 (s, 9H), 1.35-1.21 (m, 2H), 0.84 (t, *J* = 7.5 Hz, 3H); MS (ES+) *m/z* 464.3 (M + 1).

5

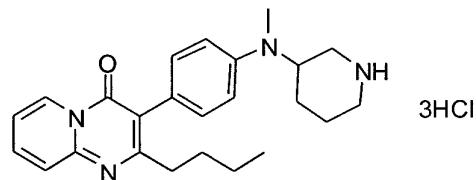
EXAMPLE 15


Synthesis of (*R*)-2-butyl-3-{4-[pyrrolidin-3-yl]oxy}phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

Following the procedure as described in EXAMPLE 6 and making non-critical variations using *tert*-butyl (*R*)-3-{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenoxy}pyrrolidine-1-carboxylate to replace *tert*-butyl 3-{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate, (*R*)-2-butyl-3-{4-[pyrrolidin-3-yl]oxy}phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (85%) as a colorless solid: mp 132-140 °C; ¹H NMR (300 MHz, CD₃OD) δ 9.21 (d, *J* = 6.9 Hz, 1H), 8.37 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.96 (d, *J* = 9.0 Hz, 1H), 7.67 (dd, *J* = 6.9, 6.9 Hz, 1H), 7.37 (d, *J* = 8.7 Hz, 2H), 7.14 (d, *J* = 8.7 Hz, 2H), 5.34-5.28 (m, 1H), 3.66-3.47 (m, 4H), 2.75-2.65 (m, 2H), 2.43-2.33 (m, 2H), 1.73-1.60 (m, 2H), 1.38-1.25 (m, 2H), 0.83 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 158.0, 157.6, 149.1, 143.6, 133.2, 132.8, 130.2, 127.0, 121.0, 119.8, 117.0, 116.9, 116.6, 77.0, 52.1, 45.3, 33.7, 32.0, 31.7, 23.5, 13.9; MS (ES+) *m/z* 364.3 (M + 1).

EXAMPLE 16

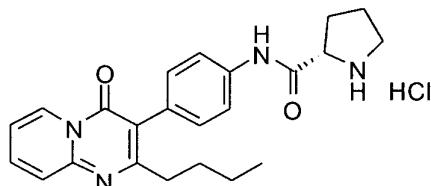
Synthesis of *tert*-butyl 3-{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl](methyl)amino}piperidine-1-carboxylate



25 Following the procedure as described in EXAMPLE 3, making non-critical variations using *tert*-butyl 3-methylaminopiperidine-1-carboxylate to replace *tert*-butyl

3-aminopiperidine-1-carboxylate, *tert*-butyl 3-{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl](methyl)amino}piperidine-1-carboxylate was obtained (31%) as a colorless solid: MS (ES+) *m/z* 491.3 (M + 1).

EXAMPLE 17


5 Synthesis of 2-butyl-3-{4-[methyl(piperidin-3-yl)amino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride

Following the procedure as described in EXAMPLE 6 and making non-critical variations using *tert*-butyl 3-{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl](methyl)amino}piperidine-1-carboxylate to replace *tert*-butyl 3-{[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino}piperidine-1-carboxylate, 2-butyl-3-{4-[methyl(piperidin-3-yl)amino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride was obtained (82%) as a colorless solid: mp 170-185 °C; ¹H NMR (300 MHz, CD₃OD) δ 9.27 (d, *J* = 6.6 Hz, 1H), 8.50 (dd, *J* = 7.5, 7.5 Hz, 1H), 8.04 (d, *J* = 8.7 Hz, 1H), 7.77 (dd, *J* = 6.9, 6.9 Hz, 1H), 7.35 (d, *J* = 8.7 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 4.27-4.14 (m, 1H), 3.46-3.35 (m, 2H), 3.26-3.14 (m, 1H), 3.05-2.91 (m, 1H), 3.00 (s, 3H), 2.82-2.70 (m, 2H), 2.18-1.84 (m, 4H), 1.75-1.62 (m, 2H), 1.41-1.26 (m, 2H), 0.85 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 156.8, 155.8, 149.7, 148.2, 145.7, 132.8, 130.9, 120.8, 118.6, 117.2, 115.9, 55.4, 46.0, 44.8, 33.6, 32.5, 31.9, 27.2, 23.5, 23.1, 13.9; MS (ES+) *m/z* 391.3 (M + 1).

EXAMPLE 18

Synthesis of (S)-*N*-[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]prolinamide hydrochloride

25 Following the procedure as described in EXAMPLE 7, and making non-critical

variations using (S)-*tert*-butyl 2-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]carbamoyl]-pyrrolidine-1-carboxylate to replace *tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate, (S)-*N*-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl)prolinamide hydrochloride was obtained

5 (76%) as a yellow solid: mp 179-187 °C; ¹H NMR (300 MHz, DMSO-*d*₆) δ 11.27 (s, 1H), 10.21 (s, 1H), 9.10 (d, *J* = 6.8 Hz, 1H), 8.70-8.65 (m, 1H), 8.34-8.27 (m, 2H), 7.79 (d, *J* = 8.6 Hz, 2H), 7.66 (d, *J* = 6.2 Hz, 1H), 7.33 (d, *J* = 8.6 Hz, 2H), 4.48-4.45 (m, 1H), 3.29-3.27 (m, 2H), 2.69-2.64 (m, 2H), 2.49-2.43 (m, 1H), 2.05-1.90 (m, 3H), 1.67-1.57 (m, 2H), 1.25-1.17 (m, 2H), 0.74 (d, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 167.0, 156.8, 155.6, 147.0, 142.3, 138.1, 130.9, 128.8, 127.9, 119.4, 119.3, 118.7, 114.8, 59.5, 45.6, 31.3, 30.3, 29.7, 23.6, 21.6, 13.4; MS (ES+) *m/z* 391.3 (M + 1).

10

BIOLOGICAL ASSAYS

Various techniques are known in the art for testing the activity of compounds of the invention. In order that the invention described herein may be more fully understood, the following biological assays are set forth. It should be understood that these examples are for illustrative purposes only and are not to be construed as limiting this invention in any manner.

BIOLOGICAL EXAMPLE 1

20 Guanidine Influx Assay (*in vitro* assay)

This example describes an *in vitro* assay for testing and profiling test agents against human or rat sodium channels stably expressed in cells of either an endogenous or recombinant origin. The assay is also useful for determining the IC-50 of a sodium channel blocking compound. The assay is based on the guanidine flux assay described by Reddy, N.L., et al., *J. Med. Chem.* (1998), 41(17):3298-302.

25 The guanidine influx assay is a radiotracer flux assay used to determine ion flux activity of sodium channels in a high-throughput microplate-based format. The assay uses ¹⁴C-guanidine hydrochloride in combination with various known sodium channel modulators, to assay the potency of test agents. Potency is determined by an IC-50 calculation. Selectivity is determined by comparing potency of the compound for the channel of interest to its potency against other sodium channels (also called 'selectivity profiling').

30 Each of the test agents is assayed against cells that express the channels of

interest. Voltage gated sodium channels are either TTX sensitive or insensitive. This property is useful when evaluating the activities of a channel of interest when it resides in a mixed population with other sodium channels. The following Table 1 summarizes cell lines useful in screening for a certain channel activity in the presence or absence of TTX.

TABLE 1

CELL LINE	mRNA Expression	Functional Characterization
CHO-K1 (Chinese Hamster Ovary; recommended host cell line) ATTC accession number CCL-61	<ul style="list-style-type: none"> • $\text{Na}_v1.4$ expression has been shown by RT-PCR • No other Na_v expression has been detected 	<ul style="list-style-type: none"> • The 18-20-fold increase in [^{14}C] Guanidine influx was completely blocked using TTX. ($\text{Na}_v1.4$ is a TTX sensitive channel)
L6 (rat myoblast cell) ATTC Number CRL-1458	<ul style="list-style-type: none"> • Expression of $\text{Na}_v1.4$ and 1.5 	<ul style="list-style-type: none"> • The 10-15 fold increase in [^{14}C] Guanidine influx was only partially blocked by TTX ($\text{Na}_v1.5$ is TTX resistant)
SH-SY5Y (Human neuroblastoma) ATTC Number CRL-2266	<ul style="list-style-type: none"> • Published Expression of $\text{Na}_v1.9$ and $\text{Na}_v1.7$ (Blum et al) 	<ul style="list-style-type: none"> • The 10-16-fold increase in [^{14}C] Guanidine influx above background. • was partially blocked by TTX ($\text{Na}_v1.9$ is TTX resistant)
SK-N-BE2C (a human neuroblastoma cell line ATCC Number CRL-2268)	<ul style="list-style-type: none"> • Expression of $\text{Na}_v1.8$ 	<ul style="list-style-type: none"> • Stimulation of BE2C cells with pyrethroids results in a 6 fold increase in [^{14}C] Guanidine influx above background. • TTX partially blocked influx ($\text{Na}_v1.8$ is TTX resistant)
PC12 (rat pheochromocytoma a) ATTC Number CRL-1721	<ul style="list-style-type: none"> • Expression of $\text{Na}_v1.2$ expression 	<ul style="list-style-type: none"> • The 8-12-fold increase in [^{14}C] Guanidine influx was completely blocked using TTX. ($\text{Na}_v1.2$ is a TTX sensitive channel)

It is also possible to employ recombinant cells expressing these sodium channels. Cloning and propagation of recombinant cells are known to those skilled in the art (see, for example, Klugbauer, N, et al., *EMBO J.* (1995), 14(6):1084-90; and

Lossin, C., et al., *Neuron* (2002), 34, pp. 877-884).

Cells expressing the channel of interest are grown according to the supplier or in the case of a recombinant cell in the presence of selective growth media such as G418 (Gibco/Invitrogen). The cells are disassociated from the culture dishes with an enzymatic solution (1X) Trypsin/EDTA (Gibco/Invitrogen) and analyzed for density and viability using haemocytometer (Neubauer). Disassociated cells are washed and resuspended in their culture media then plated into Scintiplates (Beckman Coulter Inc.) (approximately 100,000 cells/ well) and incubated at 37 °C/5%CO₂ for 20-24 hours. After an extensive wash with Low sodium HEPES-buffered saline solution (LNHBSS) (150 mM Choline Chloride, 20 nM HEPES (Sigma), 1 mM Calcium Chloride, 5 mM Potassium Chloride, 1 mM Magnesium Chloride, 10 mM Glucose) agents diluted with LNHBSS are added to each well. (Varying concentrations of test agent may be used). The activation/radiolabel mixture contains aconitine (Sigma), and ¹⁴C-guanidine hydrochloride (ARC).

15 After loading the cells with test agent and activation/radiolabel mixture, the Scintiplates are incubated at ambient temperature. Following the incubation, the Scintiplates are extensively washed with LNHBSS supplemented with guanidine (Sigma). The Scintiplates are dried and then counted using a Wallac MicroBeta TriLux (Perkin-Elmer Life Sciences). The ability of the test agent to block sodium channel activity is determined by comparing the amount of ¹⁴C-guanidine present inside the cells expressing the different sodium channels. Based on this data, a variety of calculations, as set out elsewhere in this specification, may be used to determine whether a test agent is selective for a particular sodium channel.

20

IC-50 value of a test agent for a specific sodium channel may be determined using the above general method. IC-50 may be determined using a 3, 8, 10, 12 or 16 point curve in duplicate or triplicate with a starting concentration of 1, 5 or 10 µM diluted serially with a final concentration reaching the sub-nanomolar, nanomolar and low micromolar ranges. Typically the mid-point concentration of test agent is set at 1 µM, and sequential concentrations of half dilutions greater or smaller are applied (e.g. 0.5 µM; 5 µM and 0.25 µM; 10 µM and 0.125 µM; 20 µM etc.). The IC-50 curve is calculated using the 4 Parameter Logistic Model or Sigmoidal Dose-Response Model formula (fit = (A+((B-A)/(1+((C/x)^D))))).

25

The fold selectivity, factor of selectivity or multiple of selectivity, is calculated by dividing the IC-50 value of the test sodium channel by the reference sodium channel, for example, Na_v1.5.

30

Representative compounds of the invention, when tested in the above assay using a known cell line that expresses a sodium channel, demonstrated an IC₅₀ (nM) activity level as set forth below in Table 2 wherein "A" refers to an IC₅₀ activity level of from 1 nM to 100 nM, "B" refers to an IC₅₀ activity level from 100 nM to 1000 nM, "C" 5 refers to an IC₅₀ activity level from 1 μ M to 10 μ M, and "D" refers to an IC₅₀ activity level equal to or greater than 10 μ M. The Example numbers provided in Table 2 correspond to the Examples herein:

TABLE 2

Example	Compound Name	IC ₅₀ Activity Level
1	2-butyl-3-(4-methoxyphenyl)-4H-pyrido[1,2-a]pyrimidin-4-one	D
1.5	3-(4-chlorophenyl)-2-(1-methylethyl)-4H-pyrido[1,2-a]pyrimidin-4-one	D
1.8	2-butyl-3-(4-chlorophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one	D
1.14	2-butyl-3-(4-aminophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one	B
1.15	<i>tert</i> -butyl 4-(2-butyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl)phenylcarbamate	D
1.21	2-butyl-3-(4-chlorophenyl)-8-(trifluoromethyl)-4H-pyrido[1,2-a]pyrimidin-4-one	D
1.24	3-(4-chlorophenyl)-2-methoxy-4H-pyrido[1,2-a]pyrimidin-4-one	D
1.25	2-propoxy-3-(4-chlorophenyl)-4H-pyrido[1,2-a]pyrimidin-4-one	C
2	2-butyl-3-(indolin-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one hydrochloride	D
3.4	(<i>R</i>)- <i>tert</i> -butyl 3-(4-(2-ethyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate	D
3.6	<i>tert</i> -butyl 3-((4-[2-(1-methylethyl)-4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl]phenyl)amino)pyrrolidine-1-carboxylate	D

Example	Compound Name	IC ₅₀ Activity Level
3.10	(<i>R</i>)- <i>tert</i> -butyl 3-{{4-(2-butyl-4-oxo-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-3-yl)-3-methylphenyl}amino}pyrrolidine-1-carboxylate	D
3.19	<i>tert</i> -butyl 3-{{4-(2-methoxy-4-oxo-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-3-yl)phenyl}amino}pyrrolidine-1-carboxylate	D
3.21	<i>tert</i> -butyl 3-({4-[4-oxo-2-(propylamino)-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-3-yl]phenyl}amino)pyrrolidine-1-carboxylate	D
3.22	<i>tert</i> -butyl 3-[(4-{2-[(1-methylethyl)amino]-4-oxo-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-3-yl}phenyl)amino]pyrrolidine-1-carboxylate	D
3.25	2-butyl-3-(4-morpholin-4-ylphenyl)-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
3.26	2-butyl-3-[4-(tetrahydro-2 <i>H</i> -pyran-4-ylamino)phenyl]-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
3.27	(<i>R</i>)-2-butyl-3-(4-{{[tetrahydrofuran-2-ylmethyl]amino}phenyl}-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
3.28	(<i>S</i>)-2-butyl-3-(4-{{[tetrahydrofuran-2-ylmethyl]amino}phenyl}-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
3.29	(<i>R</i>)-2-butyl-3-{{4-[tetrahydrofuran-3-ylamino]phenyl}-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
5	(<i>S</i>)- <i>tert</i> -butyl 2-{{4-(2-butyl-4-oxo-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-3-yl)phenyl}carbamoyl}pyrrolidine-1-carboxylate	D
6	2-butyl-3-[4-(piperidin-3-ylamino)phenyl]-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
6.1	2-butyl-3-[4-(piperidin-4-ylamino)phenyl]-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
6.2	(<i>R</i>)-2-butyl-3-{{4-[piperidin-3-ylamino]phenyl}-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
6.3	(<i>R</i>)-2-methyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D

Example	Compound Name	IC ₅₀ Activity Level
6.4	(<i>R</i>)-2-ethyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
6.5	(<i>R</i>)-2-propyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
6.6	(<i>R</i>)-2-butyl-7-methyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
6.7	(<i>R</i>)-2-butyl-7-fluoro-3-{4-[pyrrolidin-3-ylamino]phenyl}-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
6.8	(<i>R</i>)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-8-(trifluoromethyl)-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
6.9	(<i>R</i>)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4 <i>H</i> -pyrimido[2,1- <i>a</i>]isoquinolin-4-one hydrochloride	D
7	2-butyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
7.1	(<i>S</i>)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
7.2	(<i>R</i>)-2-butyl-3-{3-fluoro-4-[(pyrrolidin-3-ylamino)phenyl]-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
7.3	(<i>R</i>)-2-butyl-3-{2-methyl-4-[pyrrolidin-3-ylamino]phenyl}-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
7.4	2-butyl-3-[3-(pyrrolidin-3-ylamino)phenyl]-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
7.5	2-(1-methylethyl)-3-[4-(pyrrolidin-3-ylamino)phenyl]-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
7.6	(<i>R</i>)-2-isopentyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	D
7.7	(<i>R</i>)-2-(2-cyclopropylethyl)-3-(4-(pyrrolidin-3-ylamino)phenyl)-4 <i>H</i> -pyrido[1,2- <i>a</i>]pyrimidin-4-one hydrochloride	B

Example	Compound Name	IC ₅₀ Activity Level
7.8	2-(propylamino)-3-[4-(pyrrolidin-3-ylamino)phenyl]-4H-pyrido[1,2-a]pyrimidin-4-one hydrochloride	D
7.9	2-[(1-methylethyl)amino]-3-[4-(pyrrolidin-3-ylamino)phenyl]-4H-pyrido[1,2-a]pyrimidin-4-one hydrochloride	D
7.10	(R)-2-[(1-methylethyl)amino]-3-{4-[pyrrolidin-3-ylamino]phenyl}-4H-pyrido[1,2-a]pyrimidin-4-one hydrochloride	D
7.11	(R)-2-pyrrolidin-1-yl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4H-pyrido[1,2-a]pyrimidin-4-one hydrogen chloride	D
7.12	2-butyl-3-(1-(pyrrolidin-3-yl)indolin-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one hydrochloride	D
7.13	2-butyl-3-(6-piperazin-1-ylpyridin-3-yl)-4H-pyrido[1,2-a]pyrimidin-4-one hydrochloride	D
8	(R)-2-butyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4H-pyrido[1,2-a]pyrimidin-4-one hydrochloride	C
9	2-methoxy-3-[4-(pyrrolidin-3-ylamino)phenyl]-4H-pyrido[1,2-a]pyrimidin-4-one trifluoroacetate	D
9.1	(R)-2-propoxy-3-(4-(pyrrolidin-3-ylamino)phenyl)-4H-pyrido[1,2-a]pyrimidin-4-one trifluoroacetate	D
10	(R)-2-butyl-3-(4-{[1-methylpyrrolidin-3-yl]amino}phenyl)-4H-pyrido[1,2-a]pyrimidin-4-one	C
10	(R)-2-butyl-3-(4-{methyl[1-methylpyrrolidin-3-yl]amino}phenyl)-4H-pyrido[1,2-a]pyrimidin-4-one	D
11	2-butyl-3-(4-hydroxyphenyl)-4H-pyrido[1,2-a]pyrimidin-4-one	D
12	4-(2-butyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl)phenyl trifluoromethanesulfonate	D
13	2-butyl-7-chloro-3-(4-hydroxyphenyl)-4H-pyrido[1,2-a]pyrimidin-4-one	D
15	(R)-2-butyl-3-{4-[pyrrolidin-3-yloxy]phenyl}-4H-pyrido[1,2-a]pyrimidin-4-one hydrochloride	D

Example	Compound Name	IC ₅₀ Activity Level
18	(S)-N-[4-(2-butyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl)phenyl]prolinamide hydrochloride	D

BIOLOGICAL EXAMPLE 2

Electrophysiological Assay (*In vitro* assay)

Cells expressing the channel of interest were cultured in DMEM growth media

5 (Gibco) with 0.5 mg/mL G418, +/-1% PSG, and 10% heat-inactivated fetal bovine serum at 37 °C and 5% CO₂. For electrophysiological recordings, cells were plated on 10mm dishes.

Whole cell recordings were examined by established methods of whole cell voltage clamp (Bean et al., *op. cit.*) using an Axopatch 200B amplifier and Clampex 10 software (Axon Instruments, Union City, CA). All experiments were performed at ambient temperature. Electrodes were fire-polished to resistances of 2-4 Mohms. Voltage errors and capacitance artifacts were minimized by series resistance compensation and capacitance compensation, respectively. Data were acquired at 40 kHz and filtered at 5 kHz. The external (bath) solution consisted of: NaCl (140 mM), KCl (5 mM), CaCl₂ (2 mM), MgCl₂ (1 mM), HEPES (10 mM) at pH 7.4. The internal (pipette) solution consisted of (in mM): NaCl (5), CaCl₂ (0.1), MgCl₂ (2), CsCl (10), CsF (120), HEPES (10), EGTA (10), at pH 7.2.

To estimate the steady-state affinity of compounds for the resting and inactivated state of the channel (K_r and K_i, respectively), 12.5 ms test pulses to 20 depolarizing voltages from -60 to +90 mV from a holding potential of -110 mV was used to construct current-voltage relationships (I-V curves). A voltage near the peak of the I-V-curve (-30 to 0 mV) was used as the test pulse throughout the remainder of the experiment. Steady-state inactivation (availability) curves were then constructed by measuring the current activated during a 8.75 ms test pulse following 1 second 25 conditioning pulses to potentials ranging from -110 to -10 mV. To monitor channels at steady-state, a single "diary" protocol with a holding potential of -110mV was created to record the resting state current (10ms test pulse), the current after fast inactivation (5 ms pre-pulse of -80 to -50 mV followed by a 10 ms test pulse), and the current during various holding potentials (35 ms ramp to test pulse levels). Compounds were

applied during the "diary" protocol and the block was monitored at 15 s intervals.

After the compounds equilibrated, the voltage-dependence of the steady-state inactivation in the presence of the compound was determined. Compounds that block the resting state of the channel decreased the current elicited during test pulses from 5 all holding potentials, whereas compounds that primarily blocked the inactivated state decreased the current elicited during test pulses at more depolarized potentials. The currents at the resting state (I_{rest}) and the currents during the inactivated state ($I_{inactivated}$) were used to calculate steady-state affinity of compounds. Based on the Michaelis-Menton model of inhibition, the K_r and K_i was calculated as the concentration of 10 compound needed to cause 50% inhibition of the I_{rest} or the $I_{inactivated}$, respectively.

$$\% \text{ inhibition} = \frac{V_{max} * [\text{Drug}]^h}{[\text{Drug}]^h + K_m^h}$$

15 V_{max} is the rate of inhibition, h is the Hill coefficient (for interacting sites), K_m is Michaelis-Menton constant, and $[\text{Drug}]$ is the concentration of the test compound. At 50% inhibition ($\frac{1}{2}V_{max}$) of the I_{rest} or $I_{inactivated}$, the drug concentration is numerically equal to K_m and approximates the K_r and K_i , respectively.

BIOLOGICAL EXAMPLE 3

20 Analgesia Induced by sodium channel Blockers

Heat Induced Tail Flick Latency Test

In this test, the analgesia effect produced by administering a compound of the invention was observed through heat-induced tail-flick in mice. The test includes a heat source consisting of a projector lamp with a light beam focused and directed to a 25 point on the tail of a mouse being tested. The tail-flick latencies, which were assessed prior to drug treatment, and in response to a noxious heat stimulus, i.e., the response time from applying radiant heat on the dorsal surface of the tail to the occurrence of tail flick, were measured and recorded at 40, 80, 120, and 160 minutes.

For the first part of this study, 65 animals underwent assessment of baseline 30 tail flick latency once a day over two consecutive days. These animals were then randomly assigned to one of the 11 different treatment groups including a vehicle control, a morphine control, and 9 compounds at 30 mg/Kg were administered intramuscularly. Following dose administration, the animals were closely monitored for

signs of toxicity including tremor or seizure, hyperactivity, shallow, rapid or depressed breathing and failure to groom. The optimal incubation time for each compound was determined via regression analysis. The analgesic activity of the test compounds was expressed as a percentage of the maximum possible effect (%MPE) and was

5 calculated using the following formula:

$$\text{% MPE} = \frac{\text{Postdrug latency} - \text{Predrug latency}}{\text{Cut-off time (10 s)} - \text{Predrug latency}} \times 100\%$$

10 where:

Postdrug latency = the latency time for each individual animal taken before the tail is removed (flicked) from the heat source after receiving drug.

15 Predrug latency = the latency time for each individual animal taken before the tail is flicked from the heat source prior to receiving drug.

Cut-off time (10 s) = is the maximum exposure to the heat source.

Acute Pain (Formalin Test)

The formalin test is used as an animal model of acute pain. In the formalin test, animals were briefly habituated to the plexiglass test chamber on the day prior to 20 experimental day for 20 minutes. On the test day, animals were randomly injected with the test articles. At 30 minutes after drug administration, 50 µL of 10% formalin was injected subcutaneously into the plantar surface of the left hind paw of the rats. Video data acquisition began immediately after formalin administration, for duration of 90 minutes.

25 The images were captured using the Actimetrix Limelight software which stores files under the *.lili extension, and then converts it into the MPEG-4 coding. The videos are then analyzed using behaviour analysis software "The Observer 5.1", (Version 5.0, Noldus Information Technology, Wageningen, The Netherlands). The video analysis was done by watching the animal behaviour and scoring each according 30 to type, and defining the length of the behaviour (Dubuisson and Dennis, 1977).

Scored behaviours include: (1) normal behaviour, (2) putting no weight on the paw, (3) raising the paw, (4) licking/biting or scratching the paw. Elevation, favoring, or excessive licking, biting and scratching of the injected paw indicate a pain response.

Analgesic response or protection from compounds is indicated if both paws are resting 35 on the floor with no obvious favoring, excessive licking, biting or scratching of the

injected paw.

Analysis of the formalin test data is done according to two factors: (1) Percent Maximal Potential Inhibitory Effect (%MPIE) and (2) pain score. The %MPIEs was calculated by a series of steps, where the first is to sum the length of non-normal behaviours (behaviours 1, 2, 3) of each animal. A single value for the vehicle group was obtained by averaging all scores within the vehicle treatment group. The following calculation yields the MPIE value for each animal:

$$\text{MPIE (\%)} = 100 - [(\text{treatment sum}/\text{average vehicle value}) \times 100\%]$$

10

The pain score is calculated from a weighted scale as described above. The duration of the behaviour is multiplied by the weight (rating of the severity of the response), and divided by the total length of observation to determine a pain rating for each animal. The calculation is represented by the following formula:

15

$$\text{Pain rating} = [0(\text{T0}) + 1(\text{T1}) + 2(\text{T2}) + 3(\text{T3})] / (\text{T0} + \text{T1} + \text{T2} + \text{T3})$$

Compounds of the present invention were shown to be efficacious within a range of 30 mg/Kg and 0.1 mg/Kg.

CFA Induced Chronic Inflammatory Pain

20

In this test, tactile allodynia was assessed with calibrated von Frey filaments. Following a full week of acclimatization to the vivarium facility, 150 μL of the "Complete Freund's Adjuvant" (CFA) emulsion (CFA suspended in an oil/saline (1:1) emulsion at a concentration of 0.5 mg/mL) was injected subcutaneously into the plantar surface of the left hind paw of rats under light isoflurane anaesthesia. Animals were allowed to recover from the anaesthesia and the baseline thermal and mechanical nociceptive thresholds of all animals are assessed one week after the administration of CFA. All animals were habituated to the experimental equipment for 20 minutes on the day prior to the start of the experiment. The test and control articles were administrated to the animals, and the nociceptive thresholds measured at defined time points after drug administration to determine the analgesic responses to each of the six available treatments. The time points used were previously determined to show the highest analgesic effect for each test compound.

Thermal nociceptive thresholds of the animals were assessed using the Hargreaves test. Animals were placed in a Plexiglas enclosure set on top of an

elevated glass platform with heating units. The glass platform is thermostatically controlled at a temperature of approximately 30 °C for all test trials. Animals were allowed to accommodate for 20 minutes following placement into the enclosure until all exploration behaviour ceases. The Model 226 Plantar/Tail Stimulator Analgesia Meter 5 (IITC, Woodland Hills, CA) was used to apply a radiant heat beam from underneath the glass platform to the plantar surface of the hind paws. During all test trials, the idle intensity and active intensity of the heat source were set at 1 and 45 respectively, and a cut off time of 20 seconds was employed to prevent tissue damage.

The response thresholds of animals to tactile stimuli were measured using the 10 Model 2290 Electrovonfrey anesthesiometer (IITC Life Science, Woodland Hills, CA) following the Hargreaves test. Animals were placed in an elevated Plexiglas enclosure set on a mire mesh surface. After 10 minutes of accommodation, pre-calibrated Von Frey hairs were applied perpendicularly to the plantar surface of both paws of the animals in an ascending order starting from the 0.1 g hair, with sufficient force to cause 15 slight buckling of the hair against the paw. Testing continues until the hair with the lowest force to induce a rapid flicking of the paw is determined or when the cut off force of approximately 20 g is reached. This cut off force was used because it represents approximately 10% of the animals' body weight and it serves to prevent raising of the entire limb due to the use of stiffer hairs, which would change the nature of the 20 stimulus. The compounds of the present invention were shown to be efficacious within a range of 30 mg/Kg and 0.1 mg/Kg.

Postoperative Models of Nociception

In this model, the hyperalgesia caused by an intra-planar incision in the paw is measured by applying increased tactile stimuli to the paw until the animal withdraws its 25 paw from the applied stimuli. While animals were anaesthetized under 3.5% isofluorane, which was delivered via a nose cone, a 1 cm longitudinal incision was made using a number 10 scalpel blade in the plantar aspect of the left hind paw through the skin and fascia, starting 0.5 cm from the proximal edge of the heel and extending towards the toes. Following the incision, the skin was apposed using 2, 3-0 30 sterilized silk sutures. The injured site was covered with Polysporin and Betadine. Animals were returned to their home cage for overnight recovery.

The withdrawal thresholds of animals to tactile stimuli for both operated (ipsilateral) and unoperated (contralateral) paws can be measured using the Model 2290 Electrovonfrey anesthesiometer (IITC Life Science, Woodland Hills, CA).

Animals were placed in an elevated Plexiglas enclosure set on a mire mesh surface. After at least 10 minutes of acclimatization, pre-calibrated Von Frey hairs were applied perpendicularly to the plantar surface of both paws of the animals in an ascending order starting from the 10 g hair, with sufficient force to cause slight buckling of the hair

5 against the paw. Testing continued until the hair with the lowest force to induce a rapid flicking of the paw is determined or when the cut off force of approximately 20 g is reached. This cut off force is used because it represents approximately 10% of the animals' body weight and it serves to prevent raising of the entire limb due to the use of stiffer hairs, which would change the nature of the stimulus.

10 Compounds of the present invention were shown to be efficacious within a range of 30 mg/Kg and 0.1 mg/Kg.

Neuropathic pain model; Chronic Constriction Injury

Briefly, an approximately 3 cm incision was made through the skin and the fascia at the mid thigh level of the animals' left hind leg using a no. 10 scalpel blade.

15 The left sciatic nerve was exposed via blunt dissection through the *biceps femoris* with care to minimize haemorrhage. Four loose ligatures were tied along the sciatic nerve using 4-0 non-degradable sterilized silk sutures at intervals of 1 to 2 mm apart. The tension of the loose ligatures was tight enough to induce slight constriction of the sciatic nerve when viewed under a dissection microscope at a magnification of 4 fold.

20 In the sham-operated animal, the left sciatic nerve was exposed without further manipulation. Antibacterial ointment was applied directly into the wound, and the muscle was closed using sterilized sutures. Betadine was applied onto the muscle and its surroundings, followed by skin closure with surgical clips.

The response thresholds of animals to tactile stimuli were measured using the

25 Model 2290 Electrovonfrey anesthesiometer (IITC Life Science, Woodland Hills, CA). Animals were placed in an elevated Plexiglas enclosure set on a mire mesh surface. After 10 minutes of accommodation, pre-calibrated Von Frey hairs were applied perpendicularly to the plantar surface of both paws of the animals in an ascending order starting from the 0.1 g hair, with sufficient force to cause slight buckling of the

30 hair against the paw. Testing continues until the hair with the lowest force to induce a rapid flicking of the paw is determined or when the cut off force of approximately 20 g is reached. This cut off force is used because it represents approximately 10% of the animals' body weight and it serves to prevent raising of the entire limb due to the use of stiffer hairs, which would change the nature of the stimulus. Compounds of the

present invention were shown to be efficacious within a range of 30 mg/Kg and 0.1 mg/Kg.

Thermal nociceptive thresholds of the animals were assessed using the Hargreaves test. Following the measurement of tactile thresholds, animals were 5 placed in a Plexiglass enclosure set on top of an elevated glass platform with heating units. The glass platform is thermostatically controlled at a temperature of approximately 24 to 26 °C for all test trials. Animals were allowed to accommodate for 10 minutes following placement into the enclosure until all exploration behaviour ceases. The Model 226 Plantar/ Tail Stimulator Analgesia Meter (IITC, Woodland 10 Hills, CA) was used to apply a radiant heat beam from underneath the glass platform to the plantar surface of the hind paws. During all test trials, the idle intensity and active intensity of the heat source were set at 1 and 55 respectively, and a cut off time of 20 seconds was used to prevent tissue damage.

BIOLOGICAL EXAMPLE 4

15 Aconitine Induced Arrhythmia Test

The antiarrhythmic activity of compounds of the invention can be demonstrated by the following test. Arrhythmia is provoked by intravenous administration of aconitine(2.0 µg/Kg) dissolved in physiological saline solution. Test compounds of the invention are intravenously administered 5 minutes after the administration of 20 aconitine. Evaluation of the anti-arrhythmic activity is conducted by measuring the time from the aconitine administration to the occurrence of extrasystole (ES) and the time from the aconitine administration to the occurrence of ventricular tachycardia (VT).

In rates under isoflurane anaesthesia (1/4 to 1/3 of 2%), a tracheotomy is performed by first creating an incision in the neck area, then isolating the trachea and 25 making a 2 mm incision to insert tracheal tube 2 cm into the trachea such that the opening of the tube is positioned just on top of the mouth. The tubing is secured with sutures and attached to a ventilator for the duration of the experiment.

Incisions (2.5 cm) are then made into the femoral areas and using a blunt dissection probe, the femoral vessels are isolated. Both femoral veins are cannulated, 30 one for pentobarbital anaesthetic maintenance (0.02-0.05 mL) and one for the infusion and injection of drug and vehicle. The femoral artery is cannulated with the blood pressure gel catheter of the transmitter.

The ECG leads are attached to the thoracic muscle in the Lead II position (upper right/above heart – white lead and lower left/below heart – red lead). The leads

are secured with sutures.

All surgical areas are covered with gauze moistened with 0.9% saline. Saline (1-1.5 mL of a 0.9% solution) is supplied to moisten the areas post-surgery. The animals' ECG and ventilation are allowed to equilibrate for at least 30 minutes.

5 The arrhythmia is induced with a 2 μ g/Kg/min aconitine infusion for 5 minutes. During this time the ECG is recorded and continuously monitored.

BIOLOGICAL EXAMPLE 5

Ischemia Induced Arrhythmia Test

Rodent models of ventricular arrhythmias, in both acute cardioversion and 10 prevention paradigms have been employed in testing potential therapeutics for both atrial and ventricular arrhythmias in humans. Cardiac ischemia leading to myocardial infarction is a common cause of morbidity and mortality. The ability of a compound to prevent ischemia-induced ventricular tachycardia and fibrillation is an accepted model for determining the efficacy of a compound in a clinical setting for both atrial and 15 ventricular tachycardia and fibrillation.

Anaesthesia is first induced by pentobarbital (i.p.), and maintained by an i.v. bolus infusion. Male SD rats have their trachea cannulated for artificial ventilation with room air at a stroke volume of 10 mL/Kg, 60 strokes/minute. The right femoral artery and vein are cannulated with PE50 tubing for mean arterial blood pressure (MAP) 20 recording and intravenous administration of compounds, respectively.

The chest is opened between the 4th and 5th ribs to create a 1.5 cm opening such that the heart is visible. Each rat is placed on a notched platform and metal restraints are hooked onto the rib cage opening the chest cavity. A suture needle is used to penetrate the ventricle just under the lifted atrium and exited the ventricle in a 25 downward diagonal direction so that a >30% to <50% occlusion zone (OZ) would be obtained. The exit position is ~0.5 cm below where the aorta connects to the left ventricle. The suture is tightened such that a loose loop (occluder) is formed around a branch of the artery. The chest is then closed with the end of the occluder accessible outside of the chest.

30 Electrodes are placed in the Lead II position (right atrium to apex) for ECG measurement as follows: one electrode inserted into the right forepaw and the other electrode inserted into the left hind paw.

The body temperature, MAP, ECG, and heart rate are constantly recorded throughout the experiment. Once the critical parameters has stabilized, a 1-2 minute

recording is taken to establish the baseline values. Infusion of a compound of the invention or control substance is initiated once baseline values are established. After a 5-minute infusion of compound or control, the suture is pulled tight to ligate the LCA and create ischemia in the left ventricle. The critical parameters are recorded 5 continuously for 20 minutes after ligation, unless the MAP reached the critical level of 20-30 mmHg for at least 3 minutes, in which case the recording is stopped because the animal would be declared deceased and is then sacrificed. The ability of compounds of the invention to prevent arrhythmias and sustain near-normal MAP and HR is scored and compared to control.

10

BIOLOGICAL EXAMPLE 6

In Vivo Assay for Benign Prostate Hyperplasia (BPH)

The effectiveness of the compounds of the present invention for treating BPH can be demonstrated by the following *in vivo* assay.

Dogs are dosed orally with compounds of the present invention at oral doses of 15 between 0 mg/Kg and 100 mg/Kg for a period of 4 weeks. A control group receives placebo. The animals are sacrificed and the prostate glands dissected out, dabbed dry and then weighed.

BIOLOGICAL EXAMPLE 7

In Vivo Assay for Antihypercholesterolemia Efficacy and Antiatherosclerotic Efficacy

20 Dogs have cardiovascular systems similar to that of humans, making them ideal for studying the effects of medicinal compounds designed to treat cardiovascular disorders.

Dogs are dosed orally at a range of 0 mg/Kg to 100 mg/Kg daily with 25 compounds of the present invention for a period of 2- 4 weeks. After 2 and 4 weeks the animals are bled and their serum collected for total cholesterol analysis and compared to the animals dosed with vehicle alone (0 mg/Kg).

The measurement of cholesterol is one of the most common tests performed in the clinical laboratory setting. Simple fluorometric methods for the sensitive 30 quantitation of total cholesterol in plasma or serum are commonly used. In one assay, cholesterol esters in the sample are first hydrolyzed by cholesterol esterase. All cholesterol, whether previously esterified or existing free in the circulation, is then oxidized by cholesterol oxidase to the corresponding ketone and hydrogen peroxide. ADHP (10-acetyl-3,7-dihydroxyphenoxazine) is utilized as a highly sensitive and stable

probe for hydrogen peroxide. Horseradish peroxidase catalyzes the reaction of ADHP with hydrogen peroxide to yield the highly fluorescent product resorufin, which can be monitored using excitation wavelengths of 565-580 nm and emission wavelengths of 585-595 nm.

5

BIOLOGICAL EXAMPLE 8

In Vivo Assay for Treatment of Pruritis

The compounds of the invention can be evaluated for their activity as antipruritic agents by *in vivo* test using rodent models. One established model for peripherally elicited pruritus is through the injection of serotonin into the rostral back area (neck) in hairless rats. Prior to serotonin injections (e.g., 2 mg/mL, 50 µL), a dose of a compound of the present invention can be applied systemically through oral, intravenous or intraperitoneal routes or topically to a circular area fixed diameter (e.g. 18 mm). Following dosing, the serotonin injections are given in the area of the topical dosing. After serotonin injection the animal behaviour is monitored by video recording for 20 min-1.5 h, and the number of scratches in this time compared to vehicle treated animals. Thus, application of a compound of the current invention could suppress serotonin-induced scratching in rats.

* * * * *

20 All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification are incorporated herein by reference in their entireties.

25 Although the foregoing invention has been described in some detail to facilitate understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Accordingly, the described embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

WHAT IS CLAIMED IS

1. A compound of formula (I):

wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

or two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other R¹'s, if present, are as described above;

R² is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

R³ is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl,

heteroarylalkynyl, $-R^6-N(R^4)R^5$, or $-R^6-N(R^4)C(O)OR^4$;

wherein the cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclalkenyl, heterocyclalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heteroarylalkynyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclalkenyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)_2R^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)_tR^4$, $-R^6-N[S(O)_tR^4]_2$, $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)CN$, $-R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, $-R^6-N(R^5)-R^7-N(R^4)R^5$, $-R^6-N=C(OR^4)R^5$, $-R^6-N=C(R^4)R^5$, $-R^6-N(R^5)-R^6-OR^5$, $-R^6-S(O)_pR^4$, and $-R^6-S(O)_tN(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; each R^6 is a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain or an optionally substituted straight or branched alkynylene chain; and

R^7 is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;
as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;
or a pharmaceutically acceptable salt, solvate or prodrug thereof.

2. The compound of Claim 1 wherein:

n is 1, 2, 3 or 4;

each R^1 is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-N(R^4)R^5$, $-R^6-S(O)_pR^4$, $-R^6-C(O)R^4$, $-R^6-C(S)R^4$, $-R^6-C(R^4)_2C(O)R^5$, $-R^6-C(O)OR^4$, $-R^6-OC(O)R^4$, $-R^6-C(S)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-C(S)N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(S)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(S)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)C(S)N(R^4)R^5$, $-R^6-N(R^5)S(O)_tR^4$, $-R^6-N(R^5)S(O)_tN(R^4)R^5$, $-R^6-S(O)_tN(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, and $-R^6-N(R^5)C(N=C(R^4)R^5)N(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

or two adjacent R^1 groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other R^1 's, if present, are as described above;

R^2 is hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, $-R^6-OR^5$ or $-R^6-N(R^4)R^5$;

R^3 is hydrogen, alkyl, alkenyl, haloalkyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, $-R^6-N(R^4)R^5$, or $-R^6-N(R^4)C(O)OR^4$;

wherein the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl,

optionally substituted heteroarylalkyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$,
 $-R^6-OC(O)R^4$, $-R^6-OS(O)_2R^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$,
 $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$,
 $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)_tR^4$, $-R^6-N[S(O)_tR^4]_2$,
 $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)CN$,
 $-R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, $-R^6-N(R^5)-R^7-N(R^4)R^5$,
 $-R^6-N=C(OR^4)R^5$, $-R^6-N=C(R^4)R^5$, $-R^6-N(R^5)-R^6-OR^5$, $-R^6-S(O)_pR^4$, and
 $-R^6-S(O)_tN(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t
is independently 1 or 2;

each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;

each R^6 is a direct bond or an optionally substituted straight or branched alkylene chain; and

R^7 is a straight or branched alkylene chain.

3. The compound of Claim 2 wherein:

n is 1, 2, 3 or 4;

each R^1 is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-N(R^4)R^5$,
 $-R^6-S(O)_pR^4$, $-R^6-C(O)R^4$, $-R^6-C(S)R^4$, $-R^6-C(R^4)_2C(O)R^5$, $-R^6-C(O)OR^4$,
 $-R^6-OC(O)R^4$, $-R^6-C(S)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-C(S)N(R^4)R^5$,
 $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(S)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(S)OR^4$,
 $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)C(S)N(R^4)R^5$, $-R^6-N(R^5)S(O)_tR^4$,
 $-R^6-N(R^5)S(O)_tN(R^4)R^5$, $-R^6-S(O)_tN(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$ and
 $-R^6-N(R^5)C(N=C(R^4)R^5)N(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

R^2 is hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl,

heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, $-R^6-OR^5$ or $-R^6-N(R^4)R^5$;

R^3 is alkyl, alkenyl, haloalkyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, $-R^6-N(R^4)R^5$, or $-R^6-N(R^4)C(O)OR^4$;

wherein the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)_2R^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)_tR^4$, $-R^6-N[S(O)_tR^4]_2$, $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)CN$, $-R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, $-R^6-N(R^5)-R^7-N(R^4)R^5$, $-R^6-N=C(OR^4)R^5$, $-R^6-N=C(R^4)R^5$, $-R^6-N(R^5)-R^6-OR^5$, $-R^6-S(O)_pR^4$, and $-R^6-S(O)_tN(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;

each R^6 is a direct bond or an optionally substituted straight or branched alkylene chain; and

R^7 is a straight or branched alkylene chain.

4. The compound of Claim 3 wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵ and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

R² is hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

R³ is aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl or heteroarylalkyl, wherein the aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, and -R⁶-S(O)_pR⁴, -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted N -heterocycl or an optionally substituted N -heteroaryl; each R^6 is a direct bond or an optionally substituted straight or branched alkylene chain; and

R^7 is a straight or branched alkylene chain.

5. The compound of Claim 4 wherein:

n is 1, 2, 3 or 4;

each R^1 is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-N(R^4)R^5$, $-R^6-S(O)_pR^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)_tR^4$, $-R^6-N(R^5)S(O)_tN(R^4)R^5$, $-R^6-S(O)_tN(R^4)R^5$ and $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, and wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

R^2 is alkyl, haloalkyl, cycloalkylalkyl, aralkyl, heterocyclalkyl or heteroarylalkyl;

R^3 is aryl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)_2R^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)_tR^4$, $-R^6-N[S(O)_tR^4]_2$, $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)CN$, $-R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, $-R^6-N(R^5)-R^7-N(R^4)R^5$, $-R^6-N=C(OR^4)R^5$, $-R^6-N=C(R^4)R^5$, $-R^6-N(R^5)-R^6-OR^5$, $-R^6-S(O)_pR^4$, and $-R^6-S(O)_tN(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocycl or an optionally substituted N-heteroaryl; each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

6. The compound of Claim 5 wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;

R² is alkyl, haloalkyl or cycloalkylalkyl;

R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocycl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R^7 is a straight or branched alkylene chain.

7. The compound of Claim 6 wherein:

n is 1, 2, 3 or 4;

each R^1 is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;

R^2 is alkyl, haloalkyl or cycloalkylalkyl;

R^3 is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)R^4$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$ and $R^6-N(R^5)C(=NR^5)N(R^4)R^5$;

each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl; and

each R^6 is a direct bond or an optionally substituted straight or branched alkylene chain.

8. The compound of Claim 7 selected from the group consisting of:

2-butyl-3-(4-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(4-aminophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(4-hydroxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

tert-butyl 3-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino]pyrrolidine-1-carboxylate;

(*S*)-*tert*-butyl 2-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]carbamoyl]-pyrrolidine-1-carboxylate;

tert-butyl 4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylcarbamate;

2-butyl-3-(3-chloro-4-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-(3-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-butyl-3-(4-chloro-3-fluorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl trifluoromethanesulfonate;
(*S*)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-
yl)phenylamino)pyrrolidine-1-carboxylate;
(*R*)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-
yl)phenylamino)pyrrolidine-1-carboxylate;
tert-butyl 3-(3-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-
carboxylate;
tert-butyl 3-(4-[2-(1-methylethyl)-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-
yl]phenylamino)pyrrolidine-1-carboxylate;
(*R*)-*tert*-butyl 3-(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)-2-
fluorophenylamino)pyrrolidine-1-carboxylate;
2-butyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
(*S*)-*N*-[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]-*L*-prolinamide;
(*S*)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
(*R*)-2-butyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
(*R*)-2-butyl-3-{3-fluoro-4-[(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-butyl-3-[3-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-(1-methylethyl)-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-methyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-ethyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-butyl-3-(2-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-butyl-3-(4-chloro-2-methylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-butyl-3-(4-chloro-3-methylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-butyl-3-(4-chloro-3-(trifluoromethyl)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-isopentyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-(2-cyclopropylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-butyl-3-(4-chlorophenyl)-7-methyl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-butyl-3-(4-chlorophenyl)-7-fluoro-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-butyl-3-(4-chlorophenyl)-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-butyl-7-chloro-3-(4-methoxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
tert-butyl 3-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl]amino)piperidine-1-

carboxylate;

(*R*)-*tert*-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}piperidine-1-carboxylate;

tert-butyl 4-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}piperidine-1-carboxylate;

(*R*)-*tert*-butyl 3-(4-(2-methyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;

(*R*)-*tert*-butyl 3-(4-(2-ethyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;

(*R*)-*tert*-butyl 3-(4-(4-oxo-2-propyl-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;

(*R*)-*tert*-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)-3-methylphenyl}amino}pyrrolidine-1-carboxylate;

(*R*)-*tert*-butyl 3-(4-(2-isopentyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;

(*R*)-*tert*-butyl 3-(4-(2-(2-cyclopropylethyl)-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenylamino)pyrrolidine-1-carboxylate;

tert-butyl 3-{{4-(2-butyl-7-methyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}pyrrolidine-1-carboxylate;

tert-butyl 3-{{4-(2-butyl-7-fluoro-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl}amino}pyrrolidine-1-carboxylate;

(*R*)-*tert*-butyl 3-({4-[2-butyl-4-oxo-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl]phenyl}amino)pyrrolidine-1-carboxylate;

2-butyl-3-(4-morpholin-4-ylphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-[4-(tetrahydro-2*H*-pyran-4-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*R*)-2-butyl-3-(4-{{tetrahydrofuran-2-ylmethyl}amino}phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*S*)-2-butyl-3-(4-{{tetrahydrofuran-2-ylmethyl}amino}phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*R*)-2-butyl-3-{4-[tetrahydrofuran-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one hydrochloride;

2-butyl-3-[4-(piperidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

2-butyl-3-[4-(piperidin-4-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*R*)-2-butyl-3-{4-[piperidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(*R*)-2-methyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;

(R) -2-ethyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R) -2-propyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R) -2-butyl-7-methyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R) -2-butyl-7-fluoro-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R) -2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R) -2-butyl-3-{2-methyl-4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R) -2-isopentyl-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R) -2-(2-cyclopropylethyl)-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R) -2-butyl-3-(4-[(1-methylpyrrolidin-3-yl]amino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
 (R) -2-butyl-3-(4-{methyl[1-methylpyrrolidin-3-yl]amino}phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-butyl-7-chloro-3-(4-hydroxyphenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
tert-butyl (R) -3-[4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenoxy]pyrrolidine-1-carboxylate;
 (R) -2-butyl-3-{4-[pyrrolidin-3-yl]oxy}phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
tert-butyl 3-[(4-(2-butyl-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-yl)phenyl](methyl)amino)piperidine-1-carboxylate; and
2-butyl-3-{methyl(piperidin-3-yl)amino}phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one.

9. The compound of Claim 4 wherein:

n is 1, 2, 3 or 4;

each R^1 is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-N(R^4)R^5$, $-R^6-S(O)_pR^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$, $-R^6-N(R^5)S(O)N(R^4)R^5$, $-R^6-S(O)N(R^4)R^5$ and $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, and wherein each *p* is independently 0, 1, or 2 and each *t* is independently 1 or 2;

R^2 is $-R^6-OR^5$ or $-R^6-N(R^4)R^5$;

R^3 is aryl optionally substituted by one or more substituents selected from the group

consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N[S(O)R⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)R⁴, and -R⁶-S(O)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

10. The compound of Claim 9 wherein:

n is 1, 2, 3 or 4;

each R¹ is hydrogen;

R² is -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴,

$-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$,
 $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$, $-R^6-N[S(O)R^4]_2$,
 $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)CN$,
 $-R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, $-R^6-N(R^5)-R^7-N(R^4)R^5$,
 $-R^6-N=C(OR^4)R^5$, $-R^6-N=C(R^4)R^5$, $-R^6-N(R^5)-R^6-OR^5$, $-R^6-S(O)_pR^4$, and
 $-R^6-S(O)_tN(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is
independently 1 or 2;
each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl,
alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted
cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl,
optionally substituted aralkyl, optionally substituted heterocyclyl, optionally
substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally
substituted heteroarylalkyl;
or R^4 and R^5 , together with the nitrogen to which they are both attached, form an
optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;
each R^6 is a direct bond or an optionally substituted straight or branched alkylene
chain; and
 R^7 is a straight or branched alkylene chain.

11. The compound of Claim 10 wherein:

n is 1, 2, 3 or 4;
each R^1 is hydrogen;
 R^2 is $-R^6-OR^5$ or $-R^6-N(R^4)R^5$;
 R^3 is phenyl optionally substituted by one or more substituents selected from the group
consisting of halo, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)_2R^4$, $-R^6-N(R^4)R^5$,
 $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$
and $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$;
each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl,
alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted
cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl,
optionally substituted aralkyl, optionally substituted heterocyclyl, optionally
substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally
substituted heteroarylalkyl;
or R^4 and R^5 , together with the nitrogen to which they are both attached, form an

optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl;
and

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene
chain.

12. The compound of Claim 11 selected from the group consisting of:

3-(4-chlorophenyl)-2-[(1-methylethyl)amino]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-methoxy-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-(1-methylethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
(*R*)-*tert*-butyl 3-[(4-(4-oxo-2-pyrrolidin-1-yl-4*H*-pyrido[1,2-*a*]pyrimidin-3-
yl)phenyl]amino}pyrrolidine-1-carboxylate;
tert-butyl 3-[(4-[4-oxo-2-(propylamino)-4*H*-pyrido[1,2-*a*]pyrimidin-3-
yl]phenyl]amino}pyrrolidine-1-carboxylate;
tert-butyl 3-[(4-[2-[(1-methylethyl)amino]-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-
yl]phenyl)amino}pyrrolidine-1-carboxylate;
(*R*)-*tert*-butyl 3-[(4-{2-[(1-methylethyl)amino]-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-
yl}phenyl)amino}pyrrolidine-1-carboxylate;
2-methoxy-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
(*R*)-2-pyrrolidin-1-yl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-(propylamino)-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
(*R*)-2-[(1-methylethyl)amino]-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
2-[(1-methylethyl)amino]-3-[4-(pyrrolidin-3-ylamino)phenyl]-4*H*-pyrido[1,2-*a*]pyrimidin-4-
one;
2-propoxy-3-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
3-(4-chlorophenyl)-2-(2-methoxyethyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one;
tert-butyl 3-[(4-(2-methoxy-4-oxo-4*H*-pyrido[1,2-*a*]pyrimidin-3-
yl)phenyl]amino}pyrrolidine-1-carboxylate;
(*R*)-*tert*-butyl 3-(4-(4-oxo-2-propoxy-4*H*-pyrido[1,2-*a*]pyrimidin-3-
yl)phenylamino}pyrrolidine-1-carboxylate; and
(*R*)-2-propoxy-3-(4-(pyrrolidin-3-ylamino)phenyl)-4*H*-pyrido[1,2-*a*]pyrimidin-4-one.

13. The compound of Claim 4 wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N(R⁵)S(O)N(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵ and -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

R² is alkyl, haloalkyl, aralkyl, heterocyclalkyl or heteroarylalkyl;

R³ is aralkyl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

14. The compound of Claim 4 wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵ and -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

R² is alkyl, haloalkyl, cycloalkylalkyl, aralkyl, heterocyclalkyl or heteroarylalkyl;

R³ is heteroaryl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

15. The compound of Claim 14 wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;

R² is alkyl, haloalkyl or cycloalkylalkyl;

R³ is pyridinyl, indolyl or indolinyl, wherein the pyridinyl, indolyl and indolinyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

16. The compound of Claim 15 wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo

and haloalkyl;
 R² is alkyl, haloalkyl or cycloalkylalkyl;
 R³ is pyridinyl, indolyl or indolinyl, where the pyridinyl, indolyl and indolinyl are each optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴ and R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵;
 each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;
 or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;
 and
 each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain.

17. The compound of Claim 16 selected from the group consisting of:
 2-butyl-3-(6-chloropyridin-3-yl)-4H-pyrido[1,2-a]pyrimidin-4-one;
 2-butyl-3-(1H-indol-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one;
tert-butyl 4-(5-(4-oxo-2-butyl-4H-pyrido[1,2-a]pyrimidin-3-yl)pyridin-2-yl)piperazine-1-carboxylate;
 2-butyl-3-(indolin-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one;
 (R)-*tert*-butyl 3-(5-(2-butyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl)pyridin-2-ylamino)pyrrolidine-1-carboxylate;
tert-butyl 3-(5-(2-butyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-3-yl)indolin-1-yl)pyrrolidine-1-carboxylate;
 2-butyl-3-(1-(pyrrolidin-3-yl)indolin-5-yl)-4H-pyrido[1,2-a]pyrimidin-4-one; and
 2-butyl-3-(6-piperazin-1-ylpyridin-3-yl)-4H-pyrido[1,2-a]pyrimidin-4-one.

18. The compound of Claim 4 wherein:
 n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵ and -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

R² is alkyl, haloalkyl, aralkyl, heterocyclalkyl or heteroarylalkyl;

R³ is heteroarylalkyl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

19. The compound of Claim 1 wherein:

n is 2, 3 or 4;

two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other R¹'s, if present, are independently selected from the group consisting of hydrogen, alkyl, halo, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

R² is hydrogen, alkyl, alkenyl, haloalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

R³ is hydrogen, alkyl, alkenyl, haloalkyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl, heteroarylalkyl, -R⁶-N(R⁴)R⁵, or -R⁶-N(R⁴)C(O)OR⁴;

wherein the cycloalkyl, cycloalkylalkyl, aryl, aralkyl, heterocyclyl, heterocyclylalkyl, heteroaryl and heteroarylalkyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t

is independently 1 or 2;
 each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;
 or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocycl or an optionally substituted N-heteroaryl;
 each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and
 R⁷ is a straight or branched alkylene chain.

20. The compound of Claim 19 wherein:

n is 2, 3 or 4;
 two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form an optionally substituted aryl, and the other R¹'s are independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;
 R² is alkyl, haloalkyl, cycloalkylalkyl, aralkyl, heterocyclalkyl, heteroarylalkyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;
 R³ is aryl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocycl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and

R⁷ is a straight or branched alkylene chain.

21. The compound of Claim 20 wherein:

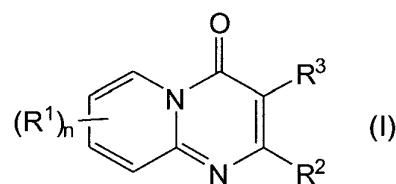
n is 2, 3 or 4;

two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form an optionally substituted phenyl, and the other R¹'s are independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;

R² is alkyl, haloalkyl, cycloalkylalkyl, aralkyl, heterocyclylalkyl, heteroarylalkyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of alkyl, halo, haloalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)R⁴, -R⁶-N[S(O)]R⁴, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)R⁴, and -R⁶-S(O)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl,


alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;
or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;
each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain; and
R⁷ is a straight or branched alkylene chain.

22. The compound of Claim 21 wherein:

n is 2, 3 or 4;
two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form an optionally substituted phenyl, and the other R¹'s are independently selected from the group consisting of hydrogen, alkyl, halo and haloalkyl;
R² is alkyl, haloalkyl, cycloalkylalkyl, aralkyl, heterocyclylalkyl, heteroarylalkyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;
R³ is phenyl optionally substituted by one or more substituents selected from the group consisting of halo, alkyl, haloalkyl, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)₂R⁴ and R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵;
each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;
or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl; and
each R⁶ is a direct bond or an optionally substituted straight or branched alkylene chain.

23. The compound of Claim 22 selected from the group consisting of:
 2-butyl-3-(4-chlorophenyl)-4*H*-pyrimido[2,1-*a*]isoquinolin-4-one;
 (*R*)-*tert*-butyl 3-{{4-(2-butyl-4-oxo-4*H*-pyrimido[2,1-*a*]isoquinolin-3-yl)phenyl}amino}pyrrolidine-1-carboxylate; and
 (*R*)-2-butyl-3-{4-[pyrrolidin-3-ylamino]phenyl}-4*H*-pyrimido[2,1-*a*]isoquinolin-4-one.

24. A pharmaceutical composition comprising a pharmaceutically acceptable excipient and a therapeutically effective amount of a compound of formula (I):

wherein:

n is 1, 2, 3 or 4;

each *R*¹ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each *p* is independently 0, 1, or 2 and each *t* is independently 1 or 2;

or two adjacent *R*¹ groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other *R*¹'s, if present, are as described above;

R^2 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, $-R^6-OR^5$ or $-R^6-N(R^4)R^5$;

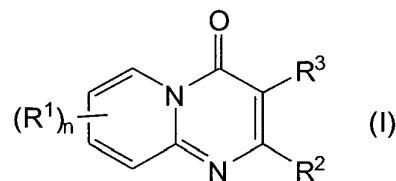
R^3 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, $-R^6-N(R^4)R^5$, or $-R^6-N(R^4)C(O)OR^4$;

wherein the cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heteroarylalkynyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)_2R^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)_pR^4$, $-R^6-N[S(O)_pR^4]_2$, $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)CN$, $-R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, $-R^6-N(R^5)-R^7-N(R^4)R^5$, $-R^6-N=C(OR^4)R^5$, $-R^6-N=C(R^4)R^5$, $-R^6-N(R^5)-R^6-OR^5$, $-R^6-S(O)_pR^4$, and $-R^6-S(O)_pN(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl,

optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;


each R⁶ is a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain or an optionally substituted straight or branched alkynylene chain; and

R⁷ is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;

as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;

or a pharmaceutically acceptable salt, solvate or prodrug thereof.

25. A method of treating, preventing or ameliorating a disease or a condition in a mammal selected from the group consisting of pain, depression, cardiovascular diseases, respiratory diseases, and psychiatric diseases, and combinations thereof, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclalkyl, heterocyclalkenyl, heterocyclalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴,

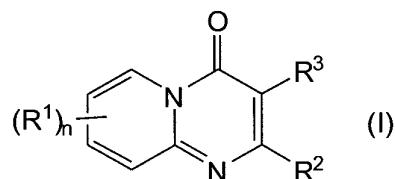
$-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)C(S)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$,
 $-R^6-N(R^5)S(O)N(R^4)R^5$, $-R^6-S(O)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, and
 $-R^6-N(R^5)C(N=C(R^4)R^5)N(R^4)R^5$, wherein each p is independently 0, 1, or 2 and
each t is independently 1 or 2;

or two adjacent R^1 groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other R^1 's, if present, are as described above;

R^2 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, $-R^6-OR^5$ or $-R^6-N(R^4)R^5$;

R^3 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, $-R^6-N(R^4)R^5$, or $-R^6-N(R^4)C(O)OR^4$;

wherein the cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heteroarylalkynyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)_2R^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$, $-R^6-N[S(O)R^4]_2$,


-R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN,
-R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵,
-R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and
-R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t
is independently 1 or 2;
each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl,
alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted
cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl,
optionally substituted aralkyl, optionally substituted heterocyclyl, optionally
substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally
substituted heteroarylalkyl;
or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an
optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;
each R⁶ is a direct bond, an optionally substituted straight or branched alkylene chain,
an optionally substituted straight or branched alkenylene chain or an optionally
substituted straight or branched alkynylene chain; and
R⁷ is a straight or branched alkylene chain, a straight or branched alkenylene chain or
a straight or branched alkynylene chain;
as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;
or a pharmaceutically acceptable salt, solvate or prodrug thereof.

26. The method of Claim 25 wherein said disease or condition is selected
from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer
pain, chemotherapy pain, trauma pain, surgical pain, post-surgical pain, childbirth pain,
labor pain, neurogenic bladder, ulcerative colitis, chronic pain, persistent pain,
peripherally mediated pain, centrally mediated pain, chronic headache, migraine
headache, sinus headache, tension headache, phantom limb pain, peripheral nerve
injury, and combinations thereof.

27. The method of Claim 25, wherein said disease or condition is selected
from the group consisting of pain associated with HIV, HIV treatment induced
neuropathy, trigeminal neuralgia, post-herpetic neuralgia, eudynia, heat sensitivity,
tosarcoidosis, irritable bowel syndrome, Crohns disease, pain associated with multiple
sclerosis (MS), amyotrophic lateral sclerosis (ALS), diabetic neuropathy, peripheral

neuropathy, arthritic, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxin related illnesses, familial erythermalgia, primary erythermalgia, familial rectal pain, cancer, epilepsy, partial and general tonic seizures, restless leg syndrome, arrhythmias, fibromyalgia, neuroprotection under ischaemic conditions caused by stroke or neural trauma, tachy-arrhythmias, atrial fibrillation and ventricular fibrillation.

28. A method of treating pain in a mammal by the inhibition of ion flux through a voltage-dependent sodium channel in the mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

or two adjacent R¹ groups, together with the carbon atoms to which they are directly

attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other R¹'s, if present, are as described above; R² is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵; R³ is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-N(R⁴)R⁵, or -R⁶-N(R⁴)C(O)OR⁴; wherein the cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heteroarylalkynyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;

each R⁶ is a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain or an optionally substituted straight or branched alkynylene chain; and

R⁷ is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;

as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;

or a pharmaceutically acceptable salt, solvate or prodrug thereof.

29. A method of decreasing ion flux through a voltage-dependent sodium channel in a cell in a mammal, wherein the method comprises contacting the cell with a compound of formula (I):

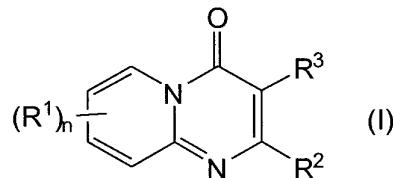
wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴,

$-R^6-N(R^5)C(S)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(S)OR^4$,
 $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)C(S)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$,
 $-R^6-N(R^5)S(O)N(R^4)R^5$, $-R^6-S(O)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, and
 $-R^6-N(R^5)C(N=C(R^4)R^5)N(R^4)R^5$, wherein each p is independently 0, 1, or 2 and
each t is independently 1 or 2;

or two adjacent R^1 groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other R^1 's, if present, are as described above;


R^2 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, $-R^6-OR^5$ or $-R^6-N(R^4)R^5$;

R^3 is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, $-R^6-N(R^4)R^5$, or $-R^6-N(R^4)C(O)OR^4$;

wherein the cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heteroarylalkynyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)_2R^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$,

$-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)R^4$, $-R^6-N[S(O)]_2R^4$,
 $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)CN$,
 $-R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, $-R^6-N(R^5)-R^7-N(R^4)R^5$,
 $-R^6-N=C(OR^4)R^5$, $-R^6-N=C(R^4)R^5$, $-R^6-N(R^5)-R^6-OR^5$, $-R^6-S(O)_pR^4$, and
 $-R^6-S(O)N(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t
is independently 1 or 2;
each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl,
alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted
cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl,
optionally substituted aralkyl, optionally substituted heterocycl, optionally
substituted heterocyclalkyl, optionally substituted heteroaryl and optionally
substituted heteroarylalkyl;
or R^4 and R^5 , together with the nitrogen to which they are both attached, form an
optionally substituted *N*-heterocycl or an optionally substituted *N*-heteroaryl;
each R^6 is a direct bond, an optionally substituted straight or branched alkylene chain,
an optionally substituted straight or branched alkenylene chain or an optionally
substituted straight or branched alkynylene chain; and
 R^7 is a straight or branched alkylene chain, a straight or branched alkenylene chain or
a straight or branched alkynylene chain;
as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;
or a pharmaceutically acceptable salt, solvate or prodrug thereof.

30. A method of treating hypercholesterolemia in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

wherein:

n is 1, 2, 3 or 4;
each R^1 is independently selected from the group consisting of hydrogen, alkyl,
alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl,

cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

or two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other R¹'s, if present, are as described above;

R² is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

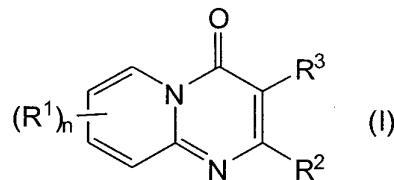
R³ is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-N(R⁴)R⁵, or -R⁶-N(R⁴)C(O)OR⁴;

wherein the cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heteroarylalkynyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl,

optionally substituted heterocyclalkenyl, optionally substituted heterocyclalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl;


each R⁶ is a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain or an optionally substituted straight or branched alkynylene chain; and

R⁷ is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;

as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;

or a pharmaceutically acceptable salt, solvate or prodrug thereof.

31. A method of treating benign prostatic hyperplasia in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

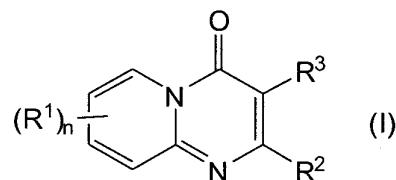
wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

or two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other R¹'s, if present, are as described above;

R² is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;


R³ is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-N(R⁴)R⁵, or -R⁶-N(R⁴)C(O)OR⁴; wherein the cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl,

heterocyclalkenyl, heterocyclalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heteroarylalkynyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heterocyclalkenyl, optionally substituted heterocyclalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_pR⁴, -R⁶-N[S(O)_pR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_pN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl; or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted N-heterocyclyl or an optionally substituted N-heteroaryl; each R⁶ is a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain or an optionally substituted straight or branched alkynylene chain; and R⁷ is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;

or a pharmaceutically acceptable salt, solvate or prodrug thereof.

32. A method of treating pruritis in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

wherein:

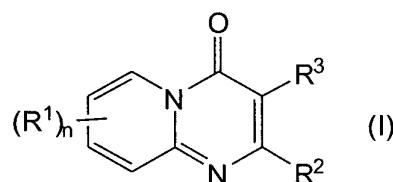
n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

or two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally substituted heteroaryl, and the other R¹'s, if present, are as described above;

R² is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵;

R³ is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl,


cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, $-R^6-N(R^4)R^5$, or $-R^6-N(R^4)C(O)OR^4$;
wherein the cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heteroarylalkynyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, $-R^6-CN$, $-R^6-NO_2$, $-R^6-OR^5$, $-R^6-OC(O)R^4$, $-R^6-OS(O)_2R^4$, $-R^6-C(O)R^4$, $-R^6-C(O)OR^4$, $-R^6-C(O)N(R^4)R^5$, $-R^6-N(R^4)R^5$, $-R^6-N(R^5)C(O)R^4$, $-R^6-N(R^5)C(O)OR^4$, $-R^6-N(R^5)C(O)N(R^4)R^5$, $-R^6-N(R^5)S(O)_tR^4$, $-R^6-N[S(O)_tR^4]_2$, $-R^6-N(R^5)C(=NR^5)N(R^4)R^5$, $-R^6-N(R^5)C(=NR^5)N(R^4)CN$, $-R^6-N(R^5)C[=NC(O)OR^4]-N(R^4)-C(O)OR^4$, $-R^6-N(R^5)-R^7-N(R^4)R^5$, $-R^6-N=C(OR^4)R^5$, $-R^6-N=C(R^4)R^5$, $-R^6-N(R^5)-R^6-OR^5$, $-R^6-S(O)_pR^4$, and $-R^6-S(O)_tN(R^4)R^5$, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

each R^4 and R^5 is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R^4 and R^5 , together with the nitrogen to which they are both attached, form an optionally substituted N -heterocyclyl or an optionally substituted N -heteroaryl;

each R⁶ is a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain or an optionally substituted straight or branched alkynylene chain; and R⁷ is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain; as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof; or a pharmaceutically acceptable salt, solvate or prodrug thereof.

33. A method of treating cancer in a mammal, wherein the methods comprise administering to the mammal in need thereof a therapeutically effective amount of a compound of formula (I):

wherein:

n is 1, 2, 3 or 4;

each R¹ is independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-N(R⁴)R⁵, -R⁶-S(O)_pR⁴, -R⁶-C(O)R⁴, -R⁶-C(S)R⁴, -R⁶-C(R⁴)₂C(O)R⁵, -R⁶-C(O)OR⁴, -R⁶-OC(O)R⁴, -R⁶-C(S)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-C(S)N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(S)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(S)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)C(S)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N(R⁵)S(O)_tN(R⁴)R⁵, -R⁶-S(O)_tN(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, and -R⁶-N(R⁵)C(N=C(R⁴)R⁵)N(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2;

or two adjacent R¹ groups, together with the carbon atoms to which they are directly attached, form a fused ring selected from optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocyclyl, or optionally

substituted heteroaryl, and the other R¹'s, if present, are as described above; R² is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-OR⁵ or -R⁶-N(R⁴)R⁵; R³ is hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, -R⁶-N(R⁴)R⁵, or -R⁶-N(R⁴)C(O)OR⁴; wherein the cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkynyl, aryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, heteroaryl, heteroarylalkyl, heteroarylalkenyl, and heteroarylalkynyl are each optionally substituted by one or more substituents selected from the group consisting of alkyl, alkenyl, alkynyl, halo, haloalkyl, haloalkenyl, haloalkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted cycloalkylalkenyl, optionally substituted cycloalkylalkynyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted aralkenyl, optionally substituted aralkynyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heterocyclylalkenyl, optionally substituted heterocyclylalkynyl, optionally substituted heteroaryl, optionally substituted heteroarylalkyl, optionally substituted heteroarylalkenyl, optionally substituted heteroarylalkynyl, -R⁶-CN, -R⁶-NO₂, -R⁶-OR⁵, -R⁶-OC(O)R⁴, -R⁶-OS(O)₂R⁴, -R⁶-C(O)R⁴, -R⁶-C(O)OR⁴, -R⁶-C(O)N(R⁴)R⁵, -R⁶-N(R⁴)R⁵, -R⁶-N(R⁵)C(O)R⁴, -R⁶-N(R⁵)C(O)OR⁴, -R⁶-N(R⁵)C(O)N(R⁴)R⁵, -R⁶-N(R⁵)S(O)_tR⁴, -R⁶-N[S(O)_tR⁴]₂, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)R⁵, -R⁶-N(R⁵)C(=NR⁵)N(R⁴)CN, -R⁶-N(R⁵)C[=NC(O)OR⁴]-N(R⁴)-C(O)OR⁴, -R⁶-N(R⁵)-R⁷-N(R⁴)R⁵, -R⁶-N=C(OR⁴)R⁵, -R⁶-N=C(R⁴)R⁵, -R⁶-N(R⁵)-R⁶-OR⁵, -R⁶-S(O)_pR⁴, and -R⁶-S(O)_tN(R⁴)R⁵, wherein each p is independently 0, 1, or 2 and each t is independently 1 or 2; each R⁴ and R⁵ is independently selected from group consisting of hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, alkoxyalkyl, optionally substituted

cycloalkyl, optionally substituted cycloalkylalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heterocyclyl, optionally substituted heterocyclylalkyl, optionally substituted heteroaryl and optionally substituted heteroarylalkyl;

or R⁴ and R⁵, together with the nitrogen to which they are both attached, form an optionally substituted *N*-heterocyclyl or an optionally substituted *N*-heteroaryl;

each R⁶ is a direct bond, an optionally substituted straight or branched alkylene chain, an optionally substituted straight or branched alkenylene chain or an optionally substituted straight or branched alkynylene chain; and

R⁷ is a straight or branched alkylene chain, a straight or branched alkenylene chain or a straight or branched alkynylene chain;

as a stereoisomer, enantiomer, tautomer thereof or mixtures thereof;

or a pharmaceutically acceptable salt, solvate or prodrug thereof.