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technique is used to reassign shortened addresses to each device on the network to support a dual-addressing mode of the network.
O The dual addressing mode substitutes reduced-length addresses (referred to as a short addresses) for standard addresses (referred to

as long addresses) for traffic whose source or destination is internal to a given virtual network topology. The required length of short
g addresses used for a given virtual topology is dependent on the number of devices reachable within the topology.
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ROUTING SWITCH DETECTING CHANGE IN SESSION IDENTIFIER
BEFORE RECONFIGURING ROUTING TABLE

FIELD OF THE INVENTION ’
This invention relates to communication networks and, in particular, to an

automatic network topology identification technique.

BACKGROUND

Data-carrying capacity in access and long-haul networks is a billable commodity
to service providers. Traditional networks have employed a single static addressing
mode for data link layer and network layer devices in these networks, such as 32-bit
Internet Protocol (IP) addresses or 48-bit Media Access Control (MAC) addresses in
Gigabit Ethernet. The motivation for long addresses is that every device across all
networks worldwide can be assigned a unique data link layer and/or network layer
address, which enables full portability of devices without address duplication conflicts
and with a minimum of management overhead. However, these addresses compose a
large portion of the packet header overhead (roughly 60% for Gigabit Ethernet and
roughly 40% for IP) added to packets at the networking layer or at the data link layer.
Any reduction in this overhead through compression of these addresses increases the
data-carrying capacity of such networks.

In integrated voice and data networks, the average size of IP data packets is
roughly 250 bytes, with over 50% of the packets being only 64 bytes. The average size
of circuit-emulated voice packets is usually smaller than the average size of IP packets to
minimize packetization delay (assume 150 bytes). The 12 bytes of MAC-layer
addressing is a significant fraction (4% of data, 7% of voice) of the overall packet size,
and thus any compression of this addressing will significantly improve the data-carrying
capacity of deployed access and long-haul networks using an Ethernet-like MAC layer.
This directly adds to the billable capacity of the service providers that own such
networks.

Related to the invention described herein of dual-mode addressing is the
identification of the network topology. Topology reconfiguration scenarios include
network initialization, insertion of devices, deletion of devices, topology changes that do

not involve insertion or deletion of devices (such as link breaks, where a link connects a
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pair of devices), and combining of operating networks. In the context of this document,
network initialization does not refer to the internal processes independently used by each
device to initialize itself, but rather to the communication between interconnected
devices required to establish knowledge of network topology and remapping of short
addresses to long addresses.

There are several fundamental requirements that must be met by the mechanisms
used for topology reconfiguration:

1. Ongoing traffic between unperturbed devices on networks undergoing
reconfiguration shall continue to flow, assuming that there are multiple paths available
for such traffic. In the event that the reconfiguration involves the temporary removal of
physical routes on which traffic was flowing, standard protection switching mechanisms
such as SONET-based line or path switching or other mechanisms for packet-switched
networks are used to temporarily reroute the traffic to unaffected physical routes between
nodes.

2. The mechanism shall be plug-and-play, e.g. determination of topology changes
shall occur automatically and shall not require intervention from network management
systems.

3. The communication mechanism between devices shall enable topology change
information detected by a given device to propagate to all other devices on the virtual\
network. This can be done using a standard topology discovery mechanism or using
other mechanisms. The choice of mechanism is based on the specific requirements of the
individual virtual network.

Many current topology discovery mechanisms are distributed in the sense that
each device in the network constructs and stores its own version of the network topology
based on information received from other devices about their own neighboring devices,
referred to in this document as neighbor status messages. A good example of such a
mechanism is the link state protocol for broadcast of topology changes used in the OSPF
routing protocol, described in the book “Interconnections, Second Edition” by Radia
Perlman, Addison Wesley Longman, Inc., 2000, incorporated herein by reference in its
entirety. The link state protocol, along with all other distributed topology discovery
protocols known to the authors, relies on the mechanisms of age-out of topology

information and reliable delivery using acknowledgement messages sent from the device
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receiving a topology message back to the source of the message.

The use of an age-out mechanism means that the topology stored at any device
will become invalid after a configurable period of time. This means that neighbor status
messages must be periodically sent by every device in the network, even if there is no
change in the topology. This is inefficient both in terms of processing at each device and
in terms of network bandwidth because changes in network topology are not frequent
occurrences. A mechanism that removes the necessity for each device to age-out its
topology would therefore be useful. /

The use of reliable delivery of neighbor status messages through tracking of
received acknowledgement messages at each device is a standard approach to ensure that
all transmitted neighbor status messages are received, and thus that all devices construct
a correct network topology. There remain transient scenarios, however, such as devices
going down and coming back up, that can result in some devices not receiving all
messages, and thus constructing an incorrect network topology that can result in other
devices on the network becoming invisible. In packet-switched data networks, there has
traditionally been no guarantee of reliable service, and thus no additional mechanisms to
guarantee construction of a valid network topology at each device have been required. To
transport telco-quality voice‘on DS1 or DS3 leased lines over a packet-switched network,
however, extremely high reliability is required. A mechanism that validates the topology
constructed at each device would therefore be useful.

There are currently no established mechanisms for topology reconfiguration in
networks using dual mode addressing. The concept of dual-mode addressing is described
in the co-pending application entitled “Dual-Mode Virtual Network Addressing,” by
Jason Fan et al., assigned to the present assignee and incorporated herein by reference.
What is needed for this type of networks is a mechanism that:

1. Enables topology reconfiguration and that meets the above general topology
reconfiguration requirements

2. Minimizes (and preferably eliminates) changes to management and control
information (such as provisioning tables and routing tables internal to a device) due to
switching between dual addressing modes necessitated by reconfiguration.

3. Enables re-establishment of short addresses as part of reconfiguration, e.g. that

ensures the elimination of short address duplication when multiple networks are
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SUMMARY

An automatic network topology identification technique is described herein.
Each node (containing a routing switch) in the network periodically or constantly
transmits its unique address to its neighboring node. Once a node receives a different
message from its neighbor, the node identifies a topology change in the network. In one
embodiment, a current topélogy is associated with a session number. When a change in
the topology is detected, the detecting node increments the session number and
broadcasts the change in topology. The other nodes, detecting the changed session
number, now know that there has been a change in the network. In response, the nodes
in the network modify routing tables and other information stored at the node related to
the topology.

In one embodiment, the technique is used to reassign shortened addresses to each
device on the network to support a dual-addressing mode of the network. The dual
addressing mode substitutes reduced-length addresses (referred to as short addresses) for
standard addresses (referred to as long addresses) for traffic whose source or destination
is internal to a given virtual network topology. The required length of short addresses
used for a given virtual topology is dependent on the number of devices reachable within
the topology.

Long addresses are globally unique, while short addresses are locally unique to a
given virtual network. The required length of short addresses used for a given virtual
topology is dependent on the number of devices reachable within the topology. For a
virtual topology with less than 256 addressable devices, for example, 8-bit short
addresses can be used.

When a node within the virtual network sees a packet with a short destination
address in the header, the node understands the address to be within the virtual network
and routes the packet accordingly. A node is defined as a point where traffic can enter or
exit the ring. If a source address is a short address, the virtual network can identify the
source within the virtual network. For packets originating in the virtual network whose
destination is also in the virtual network, both the source and destination addresses can

be short addresses.



10

15

20

25

30

WO 2005/119958 PCT/US2005/018559

5

A node within the virtual network that is also connected to an outside network
may, optionally, receive a packet with long source and destination addresses from an
outside network and look up a corresponding short address of the destination node in a
Jook-up table memory. The node then replaces the long address with the short address
and forwards the packet to the destination node in the virtual network. Similarly, a node
in the virtual network transmitting a packet outside the network can use a short source
address while the traffic is being routed within the virtual network. Thus, devices within
a virtual network topology are addressable in a dual manner on the data link layer and/or
network layer by traffic flowing internal to, or private to, the virtual network.

The dual-mode addressing feature results in roughly a 50% reduction in overhead
for a Gigabit Ethernet-like MAC header, and a 30% reduction in overhead for an IP
header. The use of a compressed MAC header results in, for example, an average
increase in data-carrying capacity of 4% for Ethernet-based metropolitan-area rings
carrying IP packets.

An address type field in the packet header allows the dual address formats to be
distinguished by the transmitting and receiving devices so that both formats can be used
interchangeably from packet to packet in a robust manner.

Also described is a technique for detecting a topology change in the network and

automatically assigning source addresses to devices within the virtual network.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 illustrates multiple, interconnected virtual networks, with certain nodes
also connected to the internet.

Fig. 2 is a flowchart of events when packets from outside a virtual network are
transmitted within the virtual network. Address length values used are representative of
Ethernet-length long addresses and 1-byte short addresses.

Fig. 3 is a flowchart of events when packets from inside the virtual network are
transmitted outside the virtual network.

Fig. 4 is a flowchart of events when packets from inside the virtual network are
destined for a node within the virtual network.

- Fig. 5 illustrates pertinent functional units in a node of a virtual network.

Fig. 6 illustrates additional detail of the switching card of Fig. 5.
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Fig. 7 illustrates a virtual network topology.

Fig. 8 is a software representation of the topology of Fig. 7.

Fig. 9 is a flowchart illustrating the steps leading to the broadcast of a neighbor
status message initiating topology discovery.

Fig. 10 is a flowchart illustrating the steps taken when a neighbor status message
is received.

Fig. 11 is a flowchart illustrating the steps taken when the topology discovery
timer expires.

Fig. 12 is a flowchart illustrating the steps taken during topology validation.

DETAILED DESCRIPTION OF THE EMBODIMENTS

The inventions described herein provide a flexible, dual addressing mechanism
for devices in a defined virtual network topology. The devices within the virtual network
may be routing/multiplexing devices with a short/long address translation mechanism.
The entire virtual network may be private in the sense that it is isolated from the external
world by a routing device or set of routing devices with a short/long éddress translation
mechanism. Thus, the term “virtual network™ could apply equally to, for example, the
nodes of a metropolitan area fiber ring or a private corporate network isolated behind a -
corporate router. Virtual networks can optionally utilize private addressing (not visible
to the rest of the world). For example, use of a specific header containing such addresses
may be limited to use within the virtual network. (

In addition, the inventions described herein provide a general topology discovery
mechanism (not specific to virtual networks) that is reliable and that does not require
rediscovery of the topology if no change has occurred. This mechanism utilizes a session
identifier that devices in the network place on all neighbor status messages sent on the
network. All devices store the current session number and update it based on session
numbers used in messages received from the network. Any device that, for example,
detects a change in its neighbor status information increments its stored session number
and uses that number on a transmitted neighbor status message. The detection of an
incremented session number signals to other devices on the network that a new round of
topology discovery has started. The mechanism also utilizes a topology validation

algorithm that protects against the construction of an invalid topology. If the validation
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fails, the valid topology currently stored at the node is not perturbed. This is essential to
ensure that telco-grade leased line connections are not impacted unnecessarily.

In addition, the inventions described herein provide a mechanism for
management and assignment of dual-mode network addresses in topology
reconfiguration scenarios.

Examples of two types of virtual networks are shown in Fig. 1. A metropolitan
area fiber ring, or more generally, a virtual network 20 interconnecting high-speed
routing/multiplexing (R/M) devices, is shown along with private virtual networks 21, 22
isolated behind routing devices. The private virtual networks 21, 22 may be a ring of
nodes that have routing capability. The three virtual networks 20-22 are candidates for
application of the present invention.

Nodes 24 and 25 in network 20 are connected to open, public internets 26 and 27,
respectively. Since the internets 26 and 27 are large, constantly changing, and composed
of many independent and diverse modules, the internets 26 and 27 are not good
candidates for the present invention.

Packets passed within a single virtual network 20-22 can be addressed using

compresséd addressing (short addresses) to increase data-carrying efficiency. Packets

‘that leave the virtual network 20-22 will have their virtual network (short) addresses

stripped or replaced with externally valid (long) addresses. In the event of virtual
network reconfiguration, such as the combining of metropolitan area fiber rings, it must
be possible for devices in the virtual network to simultaneously understand both short

and long addresses to facilitate management and reconfiguration of such networks.

Dual Addressing

The purpose of dual addressing for each device in a virtual network is to enable

optional reduction of packet header overhead for traffic passing between such devices.
Specifically, nodes within the virtual network can choose to use short addresses for
certain classes of traffic under certain conditions, and long addresses for the same or
other classes of traffic under other conditions. A possible set of rules could include use
of short addresses for data packets when the virtual network topology is stable under
some criterion and use of long addresses for control packets under all conditions and for

data packets when the virtual network topology is in flux. This causes overhead savings
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for the vast majority of packets passing between nodes in the virtual network without
giving up the unique device addressing provided by long addresses. Any device in the
virtual network must therefore be able to distinguish between short and long addresses
on a packet-by-packet basis.

The length of short addresses in bits is determined most simply by the number of
bits needed to provide a unique short address to each device in the maximum-sized
virtual network. For example, in a virtual network containing up to 256 devices, 8 bits is
sufficient as the length of the short address.

The overhead savings that result from usage of an 8-bit short address are
illustrated through the following example. 48-bit Ethernet addresses are assumed as the
long address format on the data link layer. The average length of IP packets is roughly
250 bytes, and the average length of circuit-emulated voice packets is assumed to be 150
bytes. The distribution of IP data and voice packets is assumed to be 50% each. Then
the average packet length before encapsulation in an Ethernet frame is 200 bytes. The
encapsulation of each packet in an Ethernet frame results in the addition of a minimum
of 19 bytes of MAC-layer overhead to the IP packet. A change from 48-bit MAC
addresses to 8-bit MAC addresses results in roughly a 50% reduction in MAC-layer
overhead, and an average increase in data-carrying capacity of roughly 4.5%. It is
assumed in the above calculation that control traffic is a minimal percentage of the total
traffic in the network. A similar type of calculation can be easily done for compressed IP

addresses.

Algorithm and Packet Header for Dual Addressing

In one embodiment, the packet header used in virtual networks that support dual
addressing includes an address type field prior to each of the source and destination
addresses. This address type field can be as short as 1 bit in length. In one embodiment,
the address type field is one-half byte and precedes both addresses.

Fig. 2 is a flowchart of steps taken when a packet generated external to the virtual
network is destined for a device within the virtual network, and the dual addressing
capabilities are used. A 48-bit long address is assumed.

In Fig. 2, an original packet generated by a device external to the virtual network

contains a conventional header with a source address of 48 bits and a destination address
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At the interface between the external network and the virtual network, where the
dual addressing conversion occurs, a processor in the interface node, such as in a packet
processor in node 24 in Fig. 1 connected to the internet 26, performs the following tasks.
The interface node may also be the node coupled to either of the private virtual networks
21 and 22.

The processor looks up, in a look-up table, a short address (e.g., 1 byte)
corresponding to the long destination address in the header. A corresponding short
address means that the destination device is within the virtual network associated with
the interfacing device. The processor may also replace the long source address with a
correqunding short address; however, replacing the long source address with a short
source address prevents identification of the source device in the external network.
However, if the source only needs to be known as the interfacing device, then the short
source address may replace the long source address.

After the look up, the long addresses in the packet header are replaced by the
corresponding short addresses, and the address type (long or short) is identified in the
header. Accordingly, the 6 bytes of the long source or destination address are replaced
by a single byte address in the header.

The packet with the shortened header is then forwarded to the destination node
within the virtual address using the short address. Basically, each node in the virtual
network forwards the packet until it reaches the destination node, where the short
destination address matches the short address of the node. The node then removes the
packet from the network. Of course, if using a short address is not appropriate for any
reason, the virtual network does not replace the long address with the short address.

If the virtual network is acting as a connection between two external networks
coupled together via the virtual network, the ingress node into the virtual network may
convert the long addresses, as necessary, to the short addresses, and the egress node of
the virtual network can convert the short addresses back to the long addresses for
forwarding outside of the virtual network.

As seen, the number of bits transmitted within the virtual network for each packet
is reduced, thus giving the virtual network greater capacity.

Fig. 3 is a flowchart of steps taken when a packet generated internal to the virtual
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network is destined for a device outside of the virtual network. This applies even when
the packet is destined for a different virtual network with dual addressing capabilities.

An original packet generated at a node within the virtual network contains the
long source and destination addresses. This original packet is typically output from a
tributary interface card within a node. A packet proceésor within the node receives the
original packet and, using a look-up table, identifies the corresponding short source
address, replaces the long source address in the header with the short address, and
identifies the address type. This also may be done with the destination address if
appropriate. The packet with the short address in the header is then forwarded around
the virtual network to the node that interfaces with the external network. At this point,
the short address must be converted into the long address before transmitting the packet
outside of the virtual network. To this end, a packet processor in the interface node |
looks up the corresponding long address and replaces the header containing the short
address with a header containing the long address.

The resulting packet is then forwarded outside the virtual network. Thus, while
the packet is being transmitted around the virtual network, the size of the packet is
reduced, effectively increasing the capacity of the virtual network.

Fig. 4 is a flowchart of steps taken when a packet generated internal to the virtual
network is destined for a device also within the virtual network. In Fig. 4, an original
packet from a tributary interface card in a node within the virtual network will typically
have a header with conventional long source and destination addresses.

A packet processor in the node identifies a corresponding short address, if any, in
a look-up table for each of the long addresses in the header and replaces the packet
header with a header containing the short addresses and the address type. Since both the
source address and destination address can be reduced in this step, the header is reduced
by about 10 bytes, resulting in an approximately 50% reduction in overhead for a Gigabit
Ethernet-like MAC header and a 30% reduction in overhead for an IP header.

The packet with the shortened header is then forwarded in the virtual network to
the destination node identified by the short address. The packet is then consumed by the
node if the node’s short or long address matches the destination address in the virtual
network header. If the transmission around the virtual network is in the broadcast mode,

the packets are consumed by each node and forwarded by the node if the node’s short or
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long address matches the destination address in the virtual network header. If neither the
node’s short or long address matches the destination address in the virtual network
header, the node then forwards the packet to its adjacent node via an electrical or optical
link connecting the nodes. In one embodiment, the virtual network is a ring of nodes
with one ring of optical fiber or electrical cable transmitting in a clockwise direction and
another ring transmitting in a counter-clockwise direction.

There may be other criteria that impact whether packets are consumed and/or
forwarded or dropped by a given device. The above algorithm addresses the use of short
and long addresses only.

Each node has a table of all devices within the virtual network containing, for

each device, at least its long address and its short address.

Description of Hardware

Fig. 5 illustrates the pertinent functional units within a single node, such as node
24 within the virtual network of Fig. 1. Such a node in a ring may also be found in the
private virtual networks 21 and 22 in Fig. 1. Each node is connected to adjacent nodes
by ring interface cards 30 and 32. These ring interface cards convert the incoming
optical signals on fiber optic cables 34 and 36 to electrical digital signals for application
to a switching card 38. , ‘

Fig. 6 illustrates one ring interface card 32 in more detail showing the optical
transceiver 40. An additional switch in card 32 may be used to switch between two
switching cards for added reliability. The optical transceiver may be a Gigabit Ethernet
optical transceiver using a 1300 nm laser, commercially available.

The serial output of optical transceiver 40 is converted into a parallel group of
bits by a serializer/deserializer (SERDES) 42 (Fig. 6). The SERDES 42, in one example,
converts a series of 10 bits from the optical transceiver 40 to a parallel group of 8 bits
using a table. The 10 bit codes selected to correspond to 8 bit codes meet balancing
criteria on the number of 1°s and 0’s per code and the maximum number of consecutive
I’s and 0’s for improved performance. For example, a large number of sequential logical
1’s creates baseline wander, a shift in the long-term average voltage level used by the
receiver as a threshold to differentiate between 1’s and 0’s. By utilizing a 10-bit word

with a balanced number of 1°s and 0’s on the backplane, the baseline wander is greatly
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reduced, thus enabling better AC coupling of the cards to the backplane.

When the SERDES 42 is receiving serial 10-bit data from the ring interface card
32, the SERDES 42 is able to detect whether there is an error in the 10-bit word if the
word does not match one of the words in the table. The SERDES 42 then generates an
error signal. The SERDES 42 uses the table to convert the 8-bit code from the switching
card 38 into a serial stream of 10 bits for further processing by the ring interface card 32.
The SERDES 42 may be a model VSC 7216 by Vitesse or any other suitable type.

A media access controller (MAC) 44 counts the number of errors detected by the
SERDES 42, and these errors are transmitted to the CPU 46 during an interrupt or
pursuant to polling mechanism. The CPU 46 may be a Motorola MPC860DT
microprocessor. The MAC 44 also removes any control words forwarded by the
SERDES and provides OSI layer 2 (data-link) formatting for a particular protocol by
structuring a MAC frame. MACs are well known and are described in the book
“Telecommunication System Engineering” by Roger Freeman, third edition, John Wiley
& Sons, Inc., 1996, incorporated herein by reference in its entirety. The MAC 44 may a
field programmable gate array.

A packet processor 48 associates each of the bits transmitted by the MAC 44 with
a packet field, such as the header field or the data field. The packet processor 48 then
detects the header field of the packet structured by the MAC 44 and may modify
information in the header for packets not destined for the node. Examples of suitable
packet processors 48 include the XPIF-300 Gigabit Bitstream Processor or the EPIF 4-
L3C1 Ethernet Port L3 Processor by MMC Networks, whose data sheets are
incorporated herein by reference.

The packet processor 48 interfaces with an external search machine/memory 47

(a look-up table) that contains routing information to route the data to its intended

destination.

A memory 49 in Fig. 6 represents other memories in the node, although it should
be understood that there may be distributed SSRAM, SDRAM, flash memory, and
EEPROM to provide the necessary speed and functional requirements of the system.

The packet processor 48 provides the packet to a port of the switch fabric 50,
which then routes the packet to the appropriate port of the switch fabric 50 based on the
packet header. If the destination address in the packet header corresponds to the address
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of node 24 (the node shown in Fig. 6), the switch fabric 50 then routes the packet to the
appropriate port of the switch fabric 50 for receipt by the designated node 24 tributary
interface card 52 (Fig. 5). If the packet header indicates a destination address other than
to node 24, the switch fabric 50 routes the packet through the appropriate ring interface
card 30 or 32 (Fig. 5). Control packets are routed to CPU 46. Such switching fabrics
and the routing techniques used to determine the path that packets need to take through
switch fabrics are well known and need not be described in detail.

One suitable packet switch is the MMC Networks model nP5400 Packet Switch
Module, whose data sheet is incorporated herein by reference. In one embodiment, four
such switches are connected in each switching card for faster throughput. The switches
provide packet buffering, multicast and broadcast capability, four classes of service
priority, and scheduling based on strict priority or weighted fair queuing,

A packet processor 54 associated with one or more tributary interface cards (e.g.,
tributary interface card 52) receives a packet from switch fabric 50 destined for
equipment (e.g., a LAN) associated with tributary interface card 52. Packet processor 54
is bi-directional, as is packet processor 48. Packet processors 54 and 48 may be the same
mode] processors. Generally, packet processor 54 detects the direction of the data
through packet processor 54 as well as accesses a routing table memory 55 for
determining some of the desired header fields and the optimal routing path for packets
heading onto the ring, and the desired path through the switch for packets heading onto
or off of the ring. When the packet processor 54 receives a packet from switch fabric 50,
it forwards the packet to a media access control (MAC) unit 56, which performs a
function similar to that of MAC 44, which then forwards the packet to the SERDES 58
for serializing the data. SERDES 58 is similar to SERDES 42.

When the packet processor 54 receives packets from switch fabric 50, processor
54 identifies the address type field, if any, in the header and, if an address is a short
address, processor 54 looks up the corresponding long address in memory 55 (or a
different memory). The processor 54 then replaces the short address with the long
address and forwards the packet to the MAC unit 56. In the other direction, packet
processor 54 receives packets originating from one or more tributary interface cards via
MAC 56. The packets contain a long destination address. Processor 54 then performs a

lookup to determine the correct short address to use to replace the long address. This
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lookup may use a hash function to increase lookup speed. If it is necessary for other
reasons to balance loading between packet processor 54 and other similar packet
processors on, for example, the tributary interface cards, the determination of the correct
short address to use may also be performed in a packet processor located on a tributary
interface card. All traffic that packet processor 54 receives via MAC 56 also passes
through one or more packet processors on the tributary interface card. Since the packet
processor 54 is programmable, one skilled in the art could easily write a program for
controlling processor 54 to carry out the present invention.

Packet processor 48 is programmed to route traffic based on either the long
address or short address. If processor 48 were in a node that interfaced between a dual-
addressing virtual network and an external network, then processor 48 would be
programmed to perform the long/short address replacement, using memory 47, as
previously described.

In another embodiment, processor 48 performs all the long/short address
conversions instead of processor 54.

The output of the SERDES 58 is then applied to a particular tributary interface
card, such as tributary interface card 52 in Fig. 5, connected to a backplane 59. The
tributary interface card may queue the data and route the data to a particular output port
of the tributary interface card 52. Such routing and queuing by the tributary interface
cards may be conventional and need not be described in detail. The outputs of the
tributary interface cards may be connected electrically, such as via copper cable, to any
type of equipment, such as a telephone switch, a router, a LAN, or other equipment. The
tributary interface cards may also convert electrical signals to optical signals by the use
of optical fransceivers, in the event that the external interface is optical.

When the packet processor 54 receives a packet originating from one of the
tributary interface cards 52 in the node, the packet processor 54 replaces the long
addresses with short addresses, as appropriate, using memory 55, as previously
described. In one embodiment, packet processor 54 first determines the route in the
routing table memory 55 using the long address before converting the short address to
avoid having to change the routing table when the short addresses are changed for any
reason.

The CPU 46, in one embodiment, is always addressed by control packets having



10

15

20

25

30

WO 2005/119958 PCT/US2005/018559

15

the long address for reliability considerations. CPU 46 manages the ring control
functions, such as setting up new addresses in case there is a change in the virtual
network.

For example, if rings are combined, new virtual short addresses need to be
assigned. Each of the nodes periodically transmits their full address to an adjacent node.
If there is a change in topology of the network, the node broadcasts the change. A
master CPU 46 in the network then reallocates the short addresses to all the nodes in the
network, or each CPU 46 can perform this on a distributed basis. All the nodes then
update their memories with the new topology addresses.

In addition, the CPU 46 stores the session number in memory along with all
received neighbor status messages numbered with the current session number as part of
ongoing topology discovery. The CPU 46 executes the software application(s) that
manage all aspects of topology discovery, including session number management and
topology validation.

The system controller 62 obtains status information from the node and interfaces
with a network management system. This aspect of the node is not relevant to the
invention. The system controller can be programmed to report on various tests of the
network.

In one embodiment, the above-described hardware processes bits at a rate greater
than 1Gbps.

A further description of the hardware in Figs. 5 and 6 is found in the co-pending
application entitled “Dynamically Allocated Ring Protection and Restoration
Technique,” Serial No. , filed herewith, by Robert Kalman et al., assigned to the
present assignee and incorporated herein by reference.

The above description of the hardware used to implement one embodiment of the
invention is sufficient for one of ordinary skill in the art to fabricate the invention since
the general hardware for packet switching and routing is very well known. One skilled
in the art could easily program the MACs, packet processors, CPU 46, and other
functional units to carry out the steps describe herein. Firmware or software may be
used to implement the steps described herein.

Dual-Mode Network Address Assignment in Topology Reconfiguration

Scenarios
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This section describes how the short addresses are automatically assigned to
devices in the virtual network when the topology is reconfigured. This is referred to as
plug-and-play.

It is assumed that all inserted devices made visible to the virtual network are
intended to be part of the virtual network. If this is not the case, then the devices must be
preconfigured, or use commanding from a management system, to indicate which
devices are to use the dual-addressing feature.

Some of the components of the plug-and-play technique include:

1. An algorithm for mapping addressing modes to different types of network
traffic on the data link and/or network layer internal to, or private to, the
virtual network;

2. An address mapping mechanism that allows knowledge of short addresses
to be isolated to a minimum of components within each device, thus
enabling fast and simple re-mapping of long addresses to short addresses
upon virtual network topology changes;

3. An efficient algorithm for network topology construction at each device

based on status messages from each device in the network;

An automatic, plug-and-play algorithm for virtual network initialization;

An automatic, plug-and-play algorithm for insertion of devices to the

virtual network;

6. An automatic, plug-and-play algorithm for deletion of devices from the
virtual network;

7. An automatic, plug-and-play algorithm for handling virtual network
topology changes that do not involve insertion of devices in or deletion of
devices from the network; and

8. An automatic, plug-and-play algorithm for combining of networks, each
of which contains devices with previously assigned short addresses and
which contains ongoing traffic connections.

vk

Dual mode addressing in virtual networks, described above, derives the benefit of
greater data-carrying efficiency through the optional use of a short addressing mode per
device, while at the same time maintaining the convenience of globally unique long
addresses per device for management of topology reconfiguration scenarios. Topology
reconfiguration scenarios include network initialization, insertion of devices, deletion of
devices, topology changes that do not involve insertion o\r deletion of devices, and
combining of operating networks. In the context of this document, network initialization
does not refer to the internal processes independently used by each device to initialize
itself, but rather to the communication between interconnected devices required to

establish knowledge of network topology and remapping of short addresses to long
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addresses.

There are several fundamental requirements that should be met by the
mechanisms used for topology reconfiguration:

Ongoing traffic between unperturbed nodes on networks undergoing
reconfiguration shall continue to flow, assuming that there are multiple paths available
for such traffic. In the event that the reconfiguration involves the temporary removal of
physical routes on which traffic was flowing, standard protection switching mechanisms
such as SONET-based line or path switching or other mechanisms for packet-switched
networks are used to temporarily reroute the traffic to unaffected physical routes between
nodes.

The mechanism shall be plug-and-play, e.g., determination of topology changes
and resulting short address changes shall occur automatically and shall not require
intervention from network management systems.

The mechanism shall minimize (and preferably eliminate) changes to
management and control information (such as provisioning tables and routing tables
internal to a device) due to switching between dual addressing modes necessitated by
reconfiguration.

The communication mechanism between devices shall enable topology change
information detected by a given device to propagate to all other devices on the virtual
network. This can be done using a standard mechanism such as the link state protocol
for broadcast of topology changes used in the OSPF routing protocol, or using other
mechanisms. The choice of mechanism is based on the specific requirements of the
individual virtual network.

What is needed is a mechanism that enables topology reconfiguration and enables
re-establishment of short addresses as part of reconfiguration to ensure the elimination of
short address duplication when multiple networks are combined together.

To ensure robust network behavior during topology reconfiguration, it is
important that control messages containing topology information use the unique long
addresses, both for source and destination information (delivery of the control messages)
as well as for references to topology information within the messages. The use of long
addresses for control functions guarantees that there is never address duplication when

devices are inserted to an operating network, or when multiple operating networks are
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combined. Since control messaging takes up a small percentage of total traffic during
normal network operations, the simplest and most reliable approach is to always use long
addresses for control messaging.

For regular data delivery, it is important that an addressing mode be provided for
data delivery during periods when the network topology is not stable and known. These
periods correspond to the waiting time required to ensure that the topology has
restabilized and that short addresses have been reassigned (after a control message
indicating a change in topology is received by a device). In particular, if two operating
networks are combined and there is any duplication in the complete set of short
addresses used across both networks, the mapping of short addresses to long addresses
will need to be redone for at least the nodes for which short address duplication has
occurred. To ensure that data is not lost or delivered to an incorrect destination during
the period of short address remapping, data either from or destined to the affected nodes
must switch to use of long addresses for data delivery. This is the case irrespective of
whether the short address remapping is done in a distributed fashion (independently at
each device) or by a global master device and then distributed to all other devices in the
network. If such a mechahism is not provided, loss or incorrect delivery of some packets
is unavoidable during the transition period.

A simple implementation option is to remap all short addresses to long addresses
upon any topology change based on a standard algorithm, such as: (short address 1,
smallest long address in a sorted list), (short address 2, 2nd smallest long address in a
sorted list), etc. The disadvantage of this approach is that some network capacity is
temporarily lost because all traffic in the network must switch to 48-bit addresses for a
short period. The advantage of this approach is its simplicity, since the same action
(remapping of short addresses) is done after any topology change.

Another simple implementatibn option is to do address mapping on a distributed
basis (at each device) rather than at a global master device. The disadvantage of this
approach is that all networks must then have knowledge of the network topology, which
is not required in SONET networks but which is required in capacity-efficient packet-
switched networks where each node routes packets to destinations on a least-cost path.
The advantage of this approach is that there is then no need to handle election of a new

global master device in the event that the original global master goes down.
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When changes in addressing modes need to be made at a device, it is strongly
desirable from a reliability perspective to minimize the number of independent
components that are impacted (in terms of changing data in memory, etc.). This is
equivalent to minimizing the number of components that have knowledge of short
addresses. In one embodiment, packet processor 54 (Fig. 6) performs the short/long
address conversion using a table, such as memory 55. The programmable packet
processor, in addition to enabling interchange of long and short addresses, is controllable
based on the previously stated rules. For packets exiting a device onto the virtual
network, it determines whether to change long addresses (used in creation of virtual
network headers elsewhere in the device) to short addresses based on whether the packet
is a control packet or a data packet, and based on whether short addresses are in the
process of being remapped to long addresses.

Packet processor 48 is controllable as follows based on the previously stated
rules. For packets entering a device from the virtual network, it recognizes any valid
combination of short and long addresses. For example, it must be able to seamlessly
accept interleaved data packets from the same source, some using long addresses and
others using short addresses.

Other than this packet processor 54, packet processor 48, and CPU 46, no other
entity within a device needs to have any knowledge of short addresses. For example,
configuration/provisioning tables and routing tables stored within the device should use
only long addresses to eliminate perturbation in the event of topology reconfiguration. It
is important that configuration/provisioning tables stored in memory accessible to packet
processors on the tributary interface cards not be impacted, since an address change in
such tables may result in the re-initialization of network traffic connections and thus the
disturbance of ongoing traffic. Other embodiments may choose to perform interchange
of long addresses and short addresses in packet processors located on the tributary
interface cards. This interchange may be done in separate operations independent of

configuration/provisioning tables.

Topology Construction/Reconfiguration Algorithm
A topology construction/reconfiguration algorithm using topology status

information provided by devices in the network is required to determine the long
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addresses of all devices in the virtual network, to check if the topology is complete, and
to then map short addresses to each of the long addresses in the topology. Our specific
approach, which handles all cases (initialization, insertion of devices, deletion of devices,
span status changes, and combining of networks) has the following steps:

Each device finds out the long address of each of its neighboring devices via a
control packet sent from each device to each of its neighbors. This neighbor information
packet can be sent either periodically, on request (in response to a neighbor request
packet), or upon detection of a topology change impacting the contents of the neighbor
information packet. It is important to note that each device is responsible for reporting
only on ingress neighbors, e.g., neighbors that send data received by the device. The
device does not necessarily have two-way physical connectivity with its neighbors.

The neighbor request packet must contain at least an indication of message type,
a source device address, a destination device address, and a time-to-live identifier. It may
optionally contain (but not be limited to) an indication of which software application is
the receiving application, an indication of message priority and/or class, an error
detection or error correction code (such as a frame error checksum), an address type field
(for networks using dual mode addressing), a source port address distinct from the source
device address, and a destination port address distinct from the destination device
address. This information may be contained in a generic packet header used for control
messages only, or may be contained in a generic packet header that is common to all
packets transmitted in the network, or may be contained in a control message header
following a generic packet header. The neighbor request packet, when sent, can be
generically sent out on all egress interfaces of a device. Since a device cannot be
assumed to know the device addresses of its neighbors, the time-to-live field is essential.
The destination device address may be set to a generic broadcast address, but the time-to-
live identifier must be set to a single hop so the packet is not forwarded beyond the
immediate neighbors of the sending device.

The neighbor information packet contains the identical information to the
neighbor request packet except that it additionally must contain the session identifier and
the interface identifier of the sending device. The inclusion of the session number
provides the mechanism for a newly inserted device (or a device just powering up from a

failure) to find out the correct session identifier to use on the neighbor status message



10

15

20

25

30

WO 2005/119958 PCT/US2005/018559

21

described next. The inclusion of the interface identifier is necessary for resolution of all
topology change scenarios for two-device networks, since the addresses of the devices
themselves are not sufficient to distinguish between multiple interfaces during failure
scenarios. A further description of this is scenario is found in the co-pending application
entitled ‘Dynamically Allocated Ring Protection and Restoration Technique,” by Robert
Kalman et al., assigned to the present assignee and incorporated herein by reference.
The neighbor information packet also needs a time-to-live field set to a single hop. This
is because if a device has an egress interface to a neighbor but no ingress interface from
that neighbor, it must send the neighbor information packet periodically to that neighbor
without necessarily having knowledge of that device’s address. It would then use a
generic broadcast address as the destination device address, as for the neighbor request
packet.

Upon collection of information from neighbor information packets, each device
may broadcast at least the following information in a neighbor status message: all
information contained in the neighbor information packet, and, for each ingress
neighbor, the 48-bit address of that neighbor and the status of the physical span
interconnecting the neighbor to the device. Optionally, the neighbor status message may
also contain a port address distinct from the device address for each ingress neighbor.
The time-to-live field is set to a configurable value (usually much larger than 1,
depending on the size of the network). The broadcast is removed from the network by
any device that has already sent out the same message on all of its ingress interfaces.
This can be handled using the same approach as used in the OSPF link state protocol,
described in the book “Interconnections, Second Edition” by Radia Perlman, Addison
Wesley Longman, Inc., 2000, incorporated herein by reference in its entirety. In a mesh
network, the broadcast can be managed with a state at each device interface indicating
whether a neighbor status message from a given source for a given session was received
on that interface or transmitted on that interface (to ensure that broadcast storms do not
occur). In aring network, it is not essential that such a state be employed, since there is
no harm in duplicate neighbor status messages being received twice as handling of such
messages is idempotent.

The information must be broadcast upon change in topology from the previously

transmitted neighbor status message with a session number larger than the largest
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detected by the node based on received messages from other nodes. The incrementing of
the session number above the current value indicates whether a topology change is newly
detected by a device. The number of bytes allocated to the session number in the
neighbor status message should be at least two to render session number rollovers
infrequent. When a rollover does occur, it can be handled using the well-known circular
sequence number wraparound algorithm used in the OSPF routing protocol. This
algorithm is described in the book “Interconnections, Second Edition” by Radia Perlman,
Addison Wesley Longman, Inc., 2000, incorporated herein by reference in its entirety.
The status is a number that indicates not only whether the span is “up” or “down,” but
also the level of degradation of span bit error rate performance, if such degradation
exists.

The broadcast may or may not be reliable. It is not essential that the broadcast be
reliable because broadcasts that are not received can be detected as part of topology
validation, described later in this section. For situations where speed of response is
essential (such as during rerouting scenarios in the event of link failures), the broadcast
may be sent multiple times.

Any device that receives a neighbor status message with a session number greater
than its current session number will increment its session number to the received session
number, and broadcast its neighbor status information. If the session number is equal to
the current session number, the device will not broadcast but may send an
acknowledgement of receipt of the neighbor status message. If the session number is
less, the device may do nothing or may notify the source device that its session number is
out of date.

Upon broadcast or receipt of a neighbor status message with a new session
number, each device switches to use of long addresses for data if dual-mode addressing
is used. (Each device is already using long addresses if dual-mode addressing is not
used.) This step may occur for any type of topology change for simplicity of
implementation.

Each device buffers all received neighbor status messages of the current session.
(It does not yet discard the last complete topology constructed from a previous session.)
Starting with itself, each device constructs an internal software representation of the

topology. There are many possible internal representations, one of which is given here.
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Each element of the internal software representation contains the following fields:
original device long address, long address of neighboring device on each ingress
interface, ingress span status on each ingress interface, pointer from the original device
to each neighboring device on each neighbor span, ingress distance from source device
(device doing the topology construction) to device contained in the element, reverse
pointer from the original device to each neighboring device that has the original device
on an ingress span, and egress distance from device contained in the element to source
device.

An example of a network topology and its completed topology representation are
shown in Figs. 7 and 8, respectively. This representation is a general representation that
can be used to map out a mesh topology. For a ring network, a simplified representation
not necessarily requiring any pointers can be used to maximize processing speed.

The internal software representation is created starting with the element for the
source device (A). Based on the ingress spans contained in the neighbor status message,
elements for each ingress neighbor (B and C) of the source device (A) are created, along
with creation of the pointers from the source to each neighbor. A similar process is
followed for each ingress span of B and C, etc. until the entire network is mapped out.
Upon mapping out the entire network, a reverse pointer is allocated to point in the
reverse direction of each ingress pointer.

The topology representation is determined to be final for a session upon a
topology discovery timeout measured from the time of original receipt of a message for
that session. When the timeout occurs, a check of topology stability is performed. The
topology stability time is quantified as the time period during which there has been no
received message from other devices corresponding to the current session, e.g. no
received neighbor status messages, and no internal notification of any link status change.
If the topology stability time exceeds a configurable threshold, the topology is
considered to have converged, and topology validation takes place. (The topology
stability time threshold must of course be set large enough to ensure that topology
discovery is not terminated prematurely under normal operating conditions.) Otherwise,
the topology discovery timer may be reset, or if some maximum topology discovery time
has been exceeded, topology discovery may be considered to have failed.

Topology validation ensures that: (a) No messages have been lost. This is
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guaranteed if a neighbor status message has been received from every node that is
mentioned as a neighbor or as a source by any neighbor status message (with the current
session ID) or neighbor information message received by a node; (b) No invalid or
mismatched node addresses are included in the topology. This is easily determined by
checking that each pair of adjacent nodes in the topology report each other as neighbors.
In the event that a single fiber link connects adjacent nodes, the node on the receiving
end of the fiber link must report a neighbor, and the node on the transmitting end of the
fiber link (with an address equal to the neighbor address reported) must report an
undefined neighbor address; (c) The topology is not invalid. No node in a valid topology
with multiple nodes can report that it sees no neighbors. This indicates that a node is
cannot receive any messages from any other node in the network. If topology validation
passes, then the topology is determined to be valid. Upon finalization of the topology,
distances (or more generally, weights or costs) corresponding to routes between nodes
can be computed using standard routing algorithms such as Dijkstra’s algorithm. The
pointers and reverse pointers are laid out in such a way that processing speed for such
algorithms is maximized. Again, for a ring network, simpler algorithms that further
maximize processing speed can be used.

If dual-mode addressing is used, the long address of all nodes in the topology are
sorted in increasing order and are then mapped in order to the corresponding short
addresses (excluding any reserved short addresses, such as for broadcast). Once this
mapping is complete, each device starts to use the new short addresses on data packets
generated by that device. As stated earlier, this mapping is redone for each topology
change for simplicity of implementation. It may be necessary, for reasons of minimizing
loading on the control path from CPU 46 to packet processor 54, to remap short
addresses only when necessary to resolve duplication. This requires a variety of
additional functions running on CPU 46 to detect where duplication occurs and to
determine which of a set of nodes with identical short addresses will modify their short
addresses.

The above re-mapping technique is carried out in software or firmware using the
hardware previously described. One skilled in the art is knowledgeable about
programming the described hardware.

Figs. 9-12 are flow charts summarizing the actions performed by software
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running on CPU 46 during the different stages of topology reconfiguration. Fig. 9
describes the scenarios that lead to an active device sending out a neighbor status
message. CPU 46 may monitor ingress links from adjacent devices based on error
counting by MAC 44 (previously described) or based on the detection of a loss of optical
power on ingress fiber 36. This detection is performed by a variety of commercially
available optical transceivers such as the Lucent NetLight transceiver family. The loss of
optical power condition can be reported to CPU 46 via direct signaling over the
backplane (such as via I2C lines), leading to an interrupt or low-level event at the CPU.
CPU 46 stores the latest neighbor information on all ingress interfaces in memory, along
with the latest session number. If any of the neighbor information and/or link status
information changes, CPU 46 increments the session number and generates the neighbor
status message for broadcast on the network.

Fig. 10 describes the session number scenarios for a received neighbor status
message. The information contained in Fig. 10 has been described previously. The
essential point is that CPU 46 stores in memory all neighbor status message information
on a device-by-device basis for the current session number. There are many well-known
ways to perform this storage in memory, and those need not be described here. If the
éession number is updated, CPU 46 removes the information currently stored in memory
and begins collection of information anew for the new session number. It is important to
note that the implementation of mechanisms to prevent broadcast storms by managing
state information at each device interface is best managed at packet processor 48, since it
is not desirable to require the CPU to be involved in forwarding of broadcast messages.

Fig. 11 describes the actions performed within the CPU software when the timer
for topology discovery has expired. The topology discovery timer is trivially
implemented as a basic feature of real-time operating systems such as VxWorks by
WindRiver Systems. When the topology discovery timer expires, the topology stability
time is checked against a configurable threshold. This time is easily determined by
keeping track of the time of the last received neighbor status message or internal
notification of a link status change. Topology construction and validation is then
performed. During this process, the valid topology currently stored in memory is not
perturbed. If the topology is determined to be valid, then the valid topology is replaced.

If the topology is determined to be invalid, a new round of topology discovery is started.
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Fig. 12 describes in detail the steps in the topology validation software. The
topology validation software running on a given device starts with the neighbors of that
device on each ingress interface. It walks through the topology along ingress interfaces
in either a depth-first or breadth-first manner until the full topology is constructed. As it
constructs the topology, it checks for conditions that indicate an invalid topology. Step 2
indicates that a single node topology is considered valid, so long as no neighbors have
been identified via received messages. However, a received neighbor status message that
indicates that the source device has no neighbors signals an invalid topology. Step 3
indicates that whenever an interface is found where no neighbor is detected, this is an ‘
acceptable condition and sirﬁply indicates that no neighbor is connected. Step 4 indicates
that if a neighbor device address is shown as being a neighbor of a device in a received
neighbor status message, there must be a neighbor status message from that neighbor. If
none has been received, that indicates that the message has been lost and that the
topology is invalid. Step 5 indicates that the topology construction loops through all
devices and all interfaces of each device to construct a data structure such as that shown
in Fig. 8. Step 6 indicates that if the loops have completed and no invalid conditions have
been found, then final checks can be performed.’Step 7 indicates that if there are still
unused neighbor status messages, e.g. device information stored in memory that is
unlinked to any other device, then messages have been lost and the topology is invalid.
Step 8 indicates that every node (device) must have at least one egress interface for the
topology to be valid. This is an optional condition, depending on the network. If all of
these checks are completed, then the topology is considered to be valid.

While particular embodiments of the present invention have been shown and
described, it will be obvious to those skilled in the art that changes and modifications
may be made without departing from this invention in its broader aspects and, therefore,
the appended claims are to encompass within their scope all such changes and

modifications as fall within the true spirit and scope of this invention.
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CLAIMS
What is claimed is:
1. A routing switch for use in a communications network, said network

comprising routing switches interconnected by communication links, said routing switch
comprising:

one or more transceivers for being connected to associated links to one or more
other routing switches in neighboring nodes;

a switch fabric for routing information to and from said one or more transceivers;
and

one or more processors, said one or more processors for controlling said routing
switch to:

monitor a message from a neighboring node identifying attributes of said
neighboring node;

detect a change in said message from a previous message so as to identify a
change in attributes of said neighboring node, corresponding to a topology change in said
network;

increment a session identifier, each said session identifier being associated with a
different topology of said network; and

communicate to other nodes in said network said change in said topology by
identifying an incremented session identifier along with information identifying said

change in said topology of said network.

2. A routing switch for use in a communications network, said network
comprising routing switches interconnected by communication links, said routing switch
comprising:

one or more transceivers for being connected to associated links to one or more
other routing switches in neighboring nodes;

a switch fabric for routing information to and from said one or more transceivers;
and

one or more processors, said one or more processors for controlling said routing
switch to:

detect messages from other nodes in said network related to a topology of said
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network, said messages including a session identifier, each said session identifier being
associated with a different topology of said network;
detect a change in said topology by detecting a changed session identifier; and
if said session number has changed, revise said routing table based on said

5 change in topology.

3. A method performed by a communications network, said network
comprising nodes interconnected by communication links, said method comprising:
monitoring by each node a message from a neighboring node identifying
10 attributes of said neighboring node;
detecting by a first node a change in said message from a previous message so as
to identify a change in attributes of said neighboring node, corresponding to a topology
change in said network;
incrementing a session identifier, each said session identifier being associated
15 with a different topology of said network; and
communicating to other nodes in said network said change in said topology by
identifying an incremented session identifier along with information identifying said

change in said topology of said network.
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7A. NODES CONSTANTLY OR
PERIODICALLY MONITOR LINKS WITH 1B. ,?,’g%;;_’,g %0,"/\,’,[8%5%0’ c
»{  NEIGHBORING NODES. MAC 44 MESSAGES FROM NEIGHBORING
™ COUNTS ERRORS OR TRANSCEIVER SoNaES FROM NEIGHBOR!
40 DETECTS CHANGE IN RECEIVED :
OPTIC. POWER. INECRIATION REQUESTS THEM WITH NEIGHBOR

IS COMMUNICATED TO CPU 46. REQUEST MESSAGES.

/

2B. IS THERE A CHANGE |
NEIGHBOR ADDRESS ON ANY
~ INGRESS IAVTEBFACE P

2A. IS THERE A CHANGE IN
STATUS OF AngACENT LINK

| YES

Y

3. GPU 46 DETERMINES WHAT SESSION
NUMBER IT WILL USE IN THE NEIGHBOR
STATUS MESSAGE TO BE BROADCASTED ON
THE NETWORK. THE SESSION NUMBER IS
TYPICALLY 1 LARGER THAN THE HIGHEST
SESSION NUMBER SEEN BY THE NODE SO -
FAR (NOT COUNTING ROLLOVERS).

A

4. CPU 46 GENERATES NEIGHBOR STATUS
MESSAGE AND BROADCASTS IT ON THE
NETWORK VIA TI;S /IZ;%G élgTERFACE CARDS

FIG. 9
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1. CPU 46 RECEIVES NEIGHBOR
STATUS MESSAGE.

PCT/US2005/018559
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2A. IS THE SESSION
NUMBER SMALLER THAN THE
STORED SESSION NUMBER? (CHECKED
BASED ON CIRCULAR
WRAPAHOUN[; ALGORITHM)

3A. IS THE SESSION -
NUMBER GREATER THAN THE STORED

SESS/ON?NUMBER

4A. IS THE SESSION
NUMBER EQUAL TO THE STORED
SESSIONyNUMBER

YES

2B. CPU 46 DISCARDS NEIGHBOR
STATUS MESSAGE.

YES

3B. CPU 46 STORES INFORMATION
FROM NEIGHBOR STATUS MESSAGE
IN NEW DATA STRUCTURE IN MEMORY
AWAITING VALIDATION. IT DISCARDS
ANY MESSAGES CURRENTLY STORED.
IT SENDS OUT A NEIGHBOR STATUS
MESSAGE VIA RING INTERFACE CARDS
30 AND 32 WITH THE NEW SESSION
NUMBER.

4B. IF TOPOLOGY DISCOVERY IS IN
PROGRESS, CPU 46 STORES
INFORMATION FROM THE NEIGHBOR
STATUS MESSAGE IN THE CURRENT
DATA STRUCTURE IN MEMORY.
OTHERWISE, CPU 46 DISCARDS
THE MESSAGE.

FIG. 10
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1. CPU 46 RECEIVES NOTIFICATION
THAT TOPOLOGY DISCOVERY TIMER
HAS EXPIRED.

2A. DOES TOPOLOGY NO

PCT/US2005/018559
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STABILITY TIME EXCEED

THRESHOLD
2

3. CPU 46 PERFORMS TOPOLOGY
CONSTRUCTION AND VALIDATION.

4A. IS THE TOPOLOGY

VALID
?

5. CPU 46 DISCARDS DISCOVERED
TOPOLOGY. IT REINITIALIZES
COUNTERS, ETC. FOR NEXT

ROUND OF TOPOLOGY DISCOVERY.

IT SENDS OUT A NEIGHBOR STATUS

MESSAGE WITH AN INCREMENTED
SESSION NUMBER TO FORCE A NEW
ROUND OF TOPOLOGY DISCOVERY.
THIS MAY BE DONE INDEFINITELY, OR
A MAXIMUM OF A CONFIGURABLE
NUMBER OF TIMES.

2B. CPU 46 RESETS TOPOLOGY
DISCOVERY TIMER AND CONTINUES
WITH TOPOLOGY DISCOVERY. IF
TOPOLOGY DISCOVERY TIMER
EXCEEDS MAXIMUM LIMIT, CPU
46 STOPS TOPOLOGY DISCOVERY
AND REPORTS AN ERROR.

4B. CPU 46 REPLACES CURRENTLY
STORED TOPOLOGY WITH NEW
TOPOLOGY. IT REINITIALIZES
COUNTERS, ETC. FOR NEXT ROUND
OF TOPOLOGY DISCOVERY. IF DUAL-
MODE ADDRESSING IS USED, IT
DETERMINES THE MAPPING FROM
LONG ADDRESSES TO SHORT

ADDRESSES.

FIG. 11
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1. STARTING FROM ALL RECEIVED
NEIGHBOR INFORMATION, THE
TOPOLOGY VALIDATION
APPLICATION CHECKS THE
TOPOLOGY AS IT IS CONSTRUCTED.
THE SEARCH APPROACH CAN BE
EITHER DEPTH-FIRST OR
BREADTH-FIRST.

2A. FOR THE NODE:
ARE THE INGRESS NEIGHBORS
ON ALL INTERFACES o~
UNDE;'INED ~

2B. UPDATE THE TEMPORARY
TOPOLOGY DATA STRUCTURE AND
DECLARE THE TOPOLOGY VALID IF
THERE ARE NO NEIGHBOR STATUS
MESSAGES RECEIVED, E.G. A SINGLE
NODE IN THE ENTIRE NETWORK.
ELSE DECLARE THE TOPOLOGY
INVALID.

YES

3A. FOR EACH
INTERFACE K: IS THE

UNDEFINED, E.G. NO NEIGHBOR
INFORMATION MESSAGE
RECEIVED FROM
INT] ER!;ACE K,

4A. IS THERE A RECEIVED
NEIGHBOR STATUS MESSAGE
AVAILABLE FROM THE NEIGHBOR
SHOWN ON THAT
INTE@FACE

YES

3B. DO NOT CHECK FURTHER ON
THE BRANCH OF THE TOPOLOGY
CORRESPONDING T0 THAT
INTERFACE. PROCEED ON TO
OTHER INTERFACES.

4B. DECLARE THE TOPOLOGY INVALID.

5. UPDATE THE TEMPORARY
TOPOLOGY DATA STRUCTURE WITH
THE NEIGHBOR ON THAT INTERFACE.
PROCEED ON TO THAT NODE AND

FOLLOW THE SAME STEPS AS ABOVE.

b

FIG. 124
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6. IF THE RECEIVED NEIGHBOR STATUS
MESSAGES ON ALL CONNEGTED NODES
AND INTERFACES ARE EXHAUSTED AND
THE TOPOLOGY HAS NOT YET BEEN
DECLARED, THEN PROCEED.

7A. HAS
EVERY NEIGHBOR STATUS
MESSAGE gEEN USED.

8A. DOES EVERY

NODE HAVE AT LEAST ONE
EGRESS INTERFACE?

(OPTIONA?L CHECK)

PCT/US2005/018559
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7B. DECLARE THE TOPOLOGY INVALID.

8B. DECLARE THE TOPOLOGY INVALID.

9. DECLARE THE TOPOLOGY VALID.
UPDATE THE PERMANENT TOPOLOGY
DATA STRUCTURE.

FIG. 12B
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