2017/106:101 A2 I 000 10 00 O O

<

W

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/106101 A2

22 June 2017 (22.06.2017) WIPOI|PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 21/52 (2013.01) GO6F 21/62 (2013.01) kind of national protection available). AE, AG, AL, AM,
. o AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM.
PCT/US2016/066188 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
12 December 2016 (12.12.2016) KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
. MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
(25) Filing Language: English NI NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
(26) Publication Language: English RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,
TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
(30) Priority Data: ZA, ZM, ZW.
62/268,639 17 December 2015 (17.12.2015) us L
62/270,187 21 December 2015 (21.12.2015) Us (84) Designated States (unless otherwise indicated, for every
15/168,689 31 May 2016 (31.05.2016) Us kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(71) Applicant: THE CHARLES STARK DRAPER TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
LABORATORY, INC. [US/US]; 555 Technology Square, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Cambridge, MA 02139-3563 (US). DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
(72) Inventors: DEHON, Andre'; 4743 Sansom St, Phil- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
adelphia, Pennsylvania 19139 (US). BOLING, Eli; 99 Ple- SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
pLa, Y b GW, KM, ML, MR, NE, SN, TD, TG).
assant Street, Manchester, MA 01944 (US). i T P T
(74) Agents: SATURNELLIL, Anne, E. ct al; Muirhead And T UPlished:
Saturnelli, LLC, 200 Friberg Parkway, Suite 1001, West- — without international search report and to be republished
borough, MA 01581 (US). upon receipt of that report (Rule 48.2(g))
(54) Title: TECHNIQUES FOR METADATA PROCESSING

(57) Abstract: Techniques are described for metadata processing that can be used to encode an arbitrary number of security policies
for code running on a processor. Metadata may be added to every word in the system and a metadata processing unit may be used
that works in parallel with data flow to enforce an arbitrary set of policies. In one aspect, the metadata may be characterized as un-
bounded and software programmable to be applicable to a wide range of metadata processing policies. Techniques and policies have
a wide range of uses including, for example, satety, security, and synchronization. Additionally, described are aspects and techniques
in connection with metadata processing in an embodiment based on the RISC-V architecture.

10

15

20

25

WO 2017/106101 PCT/US2016/066188

TECHNIQUES FOR METADATA PROCESSING

CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to US Application No. 15/168,689 filed on May
31, 2016, which claims priority to U.S. Provisional Application Serial No. 62/268,639
filed on December 17, 2015, SOFTWARE DEFINED METADATA PROCESSING,
and U.S. Provisional Application Serial No. 62/270,187 filed on December 21, 2015,
SOFTWARE DEFINED METADATA PROCESSING, all of which are entirely

incorporated herein by reference.

BACKGROUND

This application relates generally to data processing and, more particularly, to
programmable units for metadata processing.

Today’s computer systems are notoriously hard to secure. Conventional
processor architectures, for example, allow various behaviors, such as buffer overflows,
pointer forging and the like, which violate higher level abstractions. Closing the gap
between programming language and hardware may be left to software, where the cost of
enforcing airtight abstractions is often deemed too high.

Some recent efforts have demonstrated the value of propagating metadata during
execution to enforce policies that catch safety violations and malicious attacks as they
occur. These policies can be enforced in software but typically incur high, undesirable
overheads, such as in performance and/or costs, that discourage their deployment or
other motivate coarse approximations providing less protection. Hardware support for
fixed policies may reduce overhead to acceptable levels and prevent a large portion of
undesired code violations, such as may be performed by malicious code or malware
attacks. For example, Intel recently announced hardware for bounds checking and
isolation. While these mitigate many of today’s attacks, fully securing systems will
require more than memory safety and isolation. Attacks rapidly evolve to exploit any

remaining forms of vulnerability.

10

15

20

25

WO 2017/106101 PCT/US2016/066188

SUMMARY OF INVENTION

Thus, there is a need for a flexible security architecture that can be quickly
adapted to this ever-changing landscape. It would be desirable to have such an
architecture provide support for software-defined metadata processing with minimal
overhead. It is desirable that such an architecture is extensible to generally support and
enforce any number and type of policies without placing a visible, hard bound on the
number of bits allocated to metadata. Metadata may be propagated during execution to
enforce policies and catch violation of such policies such as, for example, by malicious

code or malware attacks.

In accordance with one aspect of the techniques described herein is a method of
processing instructions comprising: receiving, for metadata processing, a current
instruction with an associated metadata tag, said metadata processing being performed
in a metadata processing domain isolated from a code execution domain including the
current instruction; determining, in the metadata processing domain and in accordance
with the metadata tag and the current instruction, whether a rule exists in a rule cache
for the current instruction, said rule cache including rules on metadata used by said
metadata processing to define allowed operations; and responsive to determining no
rule exists in the rule cache for the current instruction, performing rule cache miss
processing in the metadata processing domain comprising: determining whether
execution of the current instruction is allowed; responsive to determining the current
instruction is allowed to be executed in the code execution domain, generating a new
rule for the current instruction; writing to a register; and responsive to writing to the
register, inserting the new rule into the rule cache. First metadata used to select the rule
for the current instruction may be stored in a first portion of a plurality of control status
registers used by the metadata processing, and wherein the first portion of the plurality
of control status registers may be used to communicate a plurality of metadata tags for

the current instruction to the metadata processing domain, wherein said plurality of

10

15

20

25

WO 2017/106101 PCT/US2016/066188

metadata tags may be used as data in the metadata processing domain. The register may
be a first control status register of the plurality of control status registers used by the
metadata processing, and wherein the first portion of the plurality of control status
registers may be used to communicate the plurality of metadata tags from the metadata
processing domain to the rule cache. The plurality of metadata tags may be for the
current instruction. The new rule may be inserted into the rule cache responsive to
writing another metadata tag to the first control status register, wherein the another
metadata tag may be placed on a result of the current instruction and the result may be
any of a destination register or a memory location. The plurality of control status
registers may include any one or more of: a bootstrap tag control status register
including an initial metadata tag from which all other generated metadata tags are
derived; a default tag control status register specifying a default metadata tag; a public
untrusted control status register specifying a public untrusted metadata tag used to tag
instruction and data classified as public and untrusted; an opgroup value control status
register including data written to a table including information on opgroups and care
information for different opcodes; an opgroup address control status register specifying
a location in the table to which data of the opgroup value control status register is
written; and a pumpflush control status register wherein a write to the pumpflush
control status register triggers flushing of the rule cache. The plurality of control status
registers may include a tag mode control status register denoting a current mode of
metadata processing. The tag mode control status register may indicate when metadata
processing is disengaged whereby rules of one or more defined policies are not enforced
by metadata processing. The tag mode control status register may be set to one of a
defined set of allowed states to denote the current mode of metadata processing. The
allowed states may include any of: an off state, a state whereby metadata processing
writes a default tag on all results, and a state indicating that metadata processing is
engaged and operational when instructions are executed in the code domain at one or
more specified privilege levels. The rule cache miss processing may be performed in a

first of the defined set of allowed states where metadata processing is disengaged. The

10

15

20

25

WO 2017/106101 PCT/US2016/066188

allowed states may include a first state indicating that metadata processing is engaged
only when instructions execute in the code domain at a user privilege level; a second
state indicating that metadata processing is engaged only when instructions execute in
the code domain at a user or supervisor privilege level; a third state indicating that
metadata processing is engaged only when instructions execute in the code domain at a
user, supervisor, or hypervisor privilege level; and a fourth state indicating that
metadata processing is engaged when instructions execute in the code domain at a user,
supervisor, hypervisor, or machine privilege level. Whether the metadata processing is
engaged or disengaged may be determined in accordance with a current tag mode of the
tag mode control status register in combination with a current privilege level of code
executing in the code domain, wherein rules of one or more defined policies may not be
enforced when metadata processing is disengaged and wherein the rules may be
enforced when metadata processing is engaged. A table may include information that
maps an opcode of an instruction set to a corresponding opgroup and bit vector
information. The opgroup may denote a group of associated opcodes treated similarly
by the metadata processing domain. The bit vector information may denote whether
particular inputs and outputs with respect to the metadata processing domain are used in
connection with processing the opcode. The table may be indexed using a first portion
of opcode bits less than a maximum number of allowable opcode bits, and the
maximum number may denote an upper bound on a number of bits of an opcode of the
instruction set. The first portion of the plurality of control status registers may include
an extended opcode control status register including additional opcode bits, if any, for
the current instruction, wherein the current instruction may be included in an instruction
set having variable length opcodes and wherein each opcode of the instruction set may
optionally include the additional opcode bits and the extended opcode control status
register includes the additional opcode bits, if any, for the current instruction. For each
opcode mapped using the table there is a result bit vector corresponding to said each
opcode, the result bit vector may denote what portion, if any, of the additional opcode

bits in the extended opcode control status register are used with said each opcode for

10

15

20

25

WO 2017/106101 PCT/US2016/066188

metadata processing. The current instruction may be one of multiple instructions stored
in a single word of memory associated with a single metadata tag, and said single
metadata tag may be associated with the multiple instructions included in the single
word. The plurality of control status registers may include a subinstruction control
status register indicating which of the multiple instructions stored in the single word is
the current instruction. The single metadata tag may be a first pointer to a first memory
location including a different metadata tag for each of the multiple instructions in the
single word. At least a first metadata tag stored in the first memory location for a first
instruction of the multiple instructions may include a second pointer to a second
memory location including metadata tag information for the first instruction. The
metadata tag information for the first instruction may include a complex structure. The
complex structure may include at least one scalar data field and at least one pointer field

to a third memory location.

In accordance with another aspect of techniques herein is a non-transitory
computer readable medium comprising code thereon that, when executed, perform a
method of processing instructions comprising: receiving, for metadata processing, a
current instruction with an associated metadata tag, said metadata processing being
performed in a metadata processing domain isolated from a code execution domain
including the current instruction; determining, in the metadata processing domain and in
accordance with the metadata tag and the current instruction, whether a rule exists in a
rule cache for the current instruction, said rule cache including rules on metadata used
by said metadata processing to define allowed operations; and responsive to
determining no rule exists in the rule cache for the current instruction, performing rule
cache miss processing in the metadata processing domain comprising: determining
whether execution of the current instruction is allowed; responsive to determining the
current instruction is allowed to be executed in the code execution domain, generating a
new rule for the current instruction; writing to a register; and responsive to writing to

the register, inserting the new rule into the rule cache.

10

15

20

25

WO 2017/106101 PCT/US2016/066188

In accordance with another aspect of techniques herein is a system comprising
a processor; and a memory comprising code stored thereon that, when executed by the
processor, performs a method of processing instructions comprising: receiving, for
metadata processing, a current instruction with an associated metadata tag, said
metadata processing being performed in a metadata processing domain isolated from a
code execution domain including the current instruction; determining, in the metadata
processing domain and in accordance with the metadata tag and the current instruction,
whether a rule exists in a rule cache for the current instruction, said rule cache including
rules on metadata used by said metadata processing to define allowed operations; and
responsive to determining no rule exists in the rule cache for the current instruction,
performing rule cache miss processing in the metadata processing domain comprising:
determining whether execution of the current instruction is allowed; responsive to
determining the current instruction is allowed to be executed in the code execution
domain, generating a new rule for the current instruction; writing to a register; and
responsive to writing to the register, inserting the new rule into the rule cache. The
processor may be a pipeline processor in a reduced instruction set computing

architecture.

In accordance with another aspect of techniques herein is a method of
processing instructions comprising: receiving a current instruction for metadata
processing performed in a metadata processing domain that is isolated from a code
execution domain including the current instruction; and determining, by the metadata
processing domain in connection with metadata for the current instruction, whether to
allow execution of the current instruction in accordance with a set of one or more
policies, wherein the current instruction accesses a first location of a stack frame of a
first routine, wherein the current instruction and locations of the stack frame have
associated metadata tags, and the set of one or more policies includes a stack protection

policy that provides stack protection and prevents improper access to stack storage

10

15

20

25

WO 2017/106101 PCT/US2016/066188

locations including storage locations of the stack frame of the first routine. The stack
protection policy may include a first rule used in the metadata processing of the current
instruction that accesses the first location of the stack frame of the first routine. The
first rule may allow execution of the current instruction if the first location has metadata
indicating it is a stack location of the first routine and the current instruction is included
in the first routine. The current instruction may be used by a particular invocation
instance of the first routine and wherein the stack protection policy may include a first
rule used in the metadata processing of the current instruction. The first rule may allow
execution of the current instruction if the current instruction is included in the first
routine and is also used by the particular invocation instance of the first routine. The
first rule may include examining metadata, that is associated with a program counter
and denotes any of authority and capability, to determine whether to allow execution of
the current instruction by the particular invocation instance of the first routine. The
stack protection policy may provide any of object level protection wherein different
objects in a single stack frame have different color metadata tags, and hierarchical
object protection for a hierarchical object including multiple subobjects where each of
the multiple subobjects of a single stack frame have a different metadata tag. The
method may include creating a new stack frame for a new routine invocation; and
tagging or coloring memory locations of the new stack frame in accordance with strict
object initialization or lazy object coloring, wherein strict object initialization includes
performing initialization processing that executes one or more instructions triggering
metadata processing of one or more rules that initially tags each memory location of the
new stack frame prior to storing information to the new stack frame, and wherein lazy
object coloring tags a particular memory location of the new stack frame in connection
with metadata processing of a rule triggered responsive to an instruction storing data to
the particular memory location. The one or more policies may include a set of rules for
enforcement of a dynamic control flow integrity policy ensuring that a return to a
particular return location is valid only when made subsequent to a particular invocation.

A first location may include a call instruction transferring control to a called routine

10

15

20

25

WO 2017/106101 PCT/US2016/066188

including a return instruction, and a second location may include a second instruction,
where said second location may denote a return target location to which control is
transferred as a result of executing the return instruction of the called routine. The
method may include tagging the first location including the call instruction with a first
code tag; tagging the second location denoting the return target location with a second
code tag; performing metadata processing of a first rule of the set for the call instruction
tagged with the first code tag, wherein the metadata processing of the first rule for the
call instruction tagged with the first code tag includes tagging a return address register
with a valid return address tag denoting that the return address register includes a valid
return address for the second location, wherein execution of the call instruction updates
the tag on the return address register to denote the capability to return to the second
location; performing metadata processing of a second rule of the set for the return
instruction of the called routine that allows execution of the return instruction to transfer
control to a return address stored in the return address register if the return address
register is tagged with the valid return address capability tag, wherein the second rule
propagates the valid return address capability tag of the return address register to a
program counter tag used for a next instruction following runtime execution of the
return instruction; and performing metadata processing of a third rule of the set for the
second instruction that follows runtime execution of the return instruction, wherein the
metadata processing of the third rule allows execution of the second instruction if the
second instruction has a code tag equal to the second code tag, and if the program
counter tag is the valid return address capability tag, wherein the third rule clears the
program counter tag used for a next instruction following runtime execution of the

second instruction.

In accordance with another aspect of techniques herein is a method of
processing instructions comprising: receiving a current instruction for metadata
processing performed in a metadata processing domain that is isolated from a code

execution domain including the current instruction; and determining, by the metadata

10

15

20

25

WO 2017/106101 PCT/US2016/066188

processing domain in connection with metadata for the current instruction, whether to
allow execution of the current instruction in accordance with a set of one or more
policies, wherein the one or more policies include a set of rules that enforce execution
of a complete sequence of instructions in a specified order from a first instruction of the
complete sequence to a last instruction of the complete sequence. The method may
include mapping a first shared physical page into a first virtual address space of a first
process; and mapping the first shared physical page into a second virtual address space
for a second process, said first shared physical page including a plurality of memory
locations, wherein each of the plurality of memory locations is associated with one of a
plurality of global metadata tags used in connection with rule processing in the
metadata processing domain. The plurality of global metadata tags may denote a set of
metadata tags shared by multiple processes including at least the first process and the
second process, and wherein a same policy may be enforced by the metadata processing
domain for both the first process and the second process. Enforcement of the same
policy by the metadata processing domain may use metadata to allow the first process to
perform an operation that is otherwise not allowed by the same policy for the second
process, and wherein a program counter may have an associated program counter tag,
and different values of the associated program counter tag may be used by rules of the
same policy to allow the first process to perform the operation that is otherwise not
allowed by the same policy for the second process. The method may include
performing first processing by an allocation routine of an application to generate a next
color for the application using a current color for the application, wherein the current
color for the application denotes a current state of an application-specific color
sequence for the application, the next color denotes a next state of the application-
specific color sequence for the application, and the current color is stored in a first
metadata tag on a first atom. The first processing may include executing first one or
more instructions, wherein the first one or more instructions trigger metadata processing
using one or more rules by the metadata processing domain, wherein metadata

processing using the one or more rules by the metadata processing domain generates the

10

15

20

25

WO 2017/106101 PCT/US2016/066188

next color using the current color, and updates the current state of the application-
specific color sequence for the application by storing the next color in the first metadata
tag of the first atom. The first one or more instructions may be included in the allocation
routine of the application, and the first atom may be any of a register and a memory
location. The application-specific color sequence may be an unbounded sequence of
different colors available for use by the application, and the next color may be stored as
a tag value for each of one or more memory locations used by the application, wherein
the one or more memory locations may be allocated by the allocation routine. The set
of rules may include a first rule and a second rule, and wherein the complete sequence
of instructions may include a first instruction and a second instruction, and wherein the
second instruction may be executed immediately following the first instruction. The
method may include performing metadata processing of the first rule for the first
instruction, wherein the metadata processing of the first rule includes setting a program
counter tag of a program counter used for a next instruction following runtime
execution of the first instruction to a special tag value; and performing metadata
processing of the second rule for the second instruction, wherein the metadata
processing of the second rule includes ensuring that execution of the second instruction
is only allowed when the program counter tag of the program counter for the second

instruction is equal to the special tag.

In accordance with another aspect of the invention is a non-transitory computer
readable medium comprising code stored thereon that, when executed, performs a
method of processing instructions comprising: receiving a current instruction for
metadata processing performed in a metadata processing domain that is isolated from a
code execution domain including the current instruction; and determining, by the
metadata processing domain in connection with metadata for the current instruction,
whether to allow execution of the current instruction in accordance with a set of one or
more policies, wherein the current instruction accesses a first location of a stack frame

of a first routine, wherein the current instruction and locations of the stack frame have

10

10

15

20

25

WO 2017/106101 PCT/US2016/066188

associated metadata tags, and the set of one or more policies includes a stack protection
policy that provides stack protection and prevents improper access to stack storage

locations including storage locations of the stack frame of the first routine.

In accordance with another aspect of the techniques herein is a system
comprising: a processor; and a memory comprising code stored thereon that, when
executed by the processor, performs a method of processing instructions comprising:
receiving a current instruction for metadata processing performed in a metadata
processing domain that is isolated from a code execution domain including the current
instruction; and determining, by the metadata processing domain in connection with
metadata for the current instruction, whether to allow execution of the current
instruction in accordance with a set of one or more policies, wherein the current
instruction accesses a first location of a stack frame of a first routine, wherein the
current instruction and locations of the stack frame have associated metadata tags, and
the set of one or more policies includes a stack protection policy that provides stack
protection and prevents improper access to stack storage locations including storage

locations of the stack frame of the first routine.

In accordance with another aspect of techniques herein is a non-transitory
computer readable medium comprising code stored thereon that, when executed,
performs a method of processing instructions comprising: receiving a current instruction
for metadata processing performed in a metadata processing domain that is isolated
from a code execution domain including the current instruction; and determining, by the
metadata processing domain in connection with metadata for the current instruction,
whether to allow execution of the current instruction in accordance with a set of one or
more policies, wherein the one or more policies include a set of rules that enforce
execution of a complete sequence of instructions in a specified order from a first

instruction of the complete sequence to a last instruction of the complete sequence.

11

10

15

20

25

WO 2017/106101 PCT/US2016/066188

In accordance with another aspect of techniques herein is a system comprising: a
processor; and a memory comprising code stored thereon that, when executed by the
processor, performs a method of processing instructions comprising: receiving a current
instruction for metadata processing performed in a metadata processing domain that is
isolated from a code execution domain including the current instruction; and
determining, by the metadata processing domain in connection with metadata for the
current instruction, whether to allow execution of the current instruction in accordance
with a set of one or more policies, wherein the one or more policies include a set of
rules that enforce execution of a complete sequence of instructions in a specified order
from a first instruction of the complete sequence to a last instruction of the complete

sequence.

In accordance with another aspect of techniques herein is a method of generating
and using metadata tags comprising: storing a bootstrap tag in a first specified register
of a plurality of specified registers used in a metadata processing domain that is isolated
from a code execution domain; and performing first processing to derive one or more
additional metadata tags from the bootstrap tag, wherein said first processing includes
executing one or more instructions in the code execution domain that trigger metadata
processing of one or more rules in the metadata processing domain. The bootstrap tag
may be used as an initial seed tag from which all other metadata tags, used by the
metadata processing domain, are derived. The bootstrap tag may hardwired or stored in
a portion of read-only memory. The storing and the first processing may be included in
processing performed by executing a first code portion of a bootstrap program when
booting a system including the metadata processing domain and the code execution
domain. The method may include deriving a default tag from the bootstrap tag stored in
the first specified register; storing the default tag in a second specified register of the
plurality of specified registers; and executing an instruction sequence triggering
metadata processing of rules in the metadata processing domain that write the default

tag from the second specified register as a metadata tag for each of a plurality of

12

10

15

20

25

WO 2017/106101 PCT/US2016/066188

memory locations used by the code execution domain. The first processing may include
generating an initial set of metadata tags derived from the bootstrap tag, wherein each
of the metadata tags of the initial set may be generated by executing a current
instruction in the code execution domain that triggers rule cache miss processing in the
metadata processing domain whereby no rule exists in the rule cache for the current
instruction, the rule cache including rules on metadata used by the metadata processing
domain to define allowed operations. The rule cache miss processing may include
calculating, by a rule cache miss handler executing in the metadata processing domain,
a new rule for the current instruction, wherein the new rule includes a result metadata
tag of the initial set of metadata tags. Each metadata tag of the initial set may be a tag
generator that may be further used to derive other metadata tags. Execution of a first set
of one or more specified instructions may trigger rules and rule cache miss processing
in the metadata processing domain that generates each metadata tag denoted as a tag
generator used to generate a sequence of one or more other metadata tags, and wherein
execution of a second set of one or more specified instructions may trigger rules and
rule cache miss processing in the metadata processing domain the generates each
metadata tag denoted as a non-generating tag that cannot be used to further generate an
additional metadata tag. The bootstrap program may further include instructions that
trigger rules processed in the metadata processing domain that write one or more special
metadata code tags on one or more instructions of designated code portions to provide
an extended privilege, capability or authority to the tagged one or more instructions.
The designated code portions may include one or more of kernel code and loader code.
The one or more special metadata code tags are derived from a first metadata tag of the
initial set of metadata tags, wherein the first metadata tag is a special instruction tag
generator. The initial set of metadata tags may include any one or more of: an initial
instruction metadata tag that is tag generator used to generate a sequence of one or more
code tags used to tag instructions; an initial malloc metadata tag that is a tag generator
used to generate a sequence of one or more other malloc tag generators, wherein each of

the one or more other malloc tag generators is used to generate a sequence of one or

13

10

15

20

25

WO 2017/106101 PCT/US2016/066188

more other metadata tags for a different application in connection with coloring any of
allocated memory cells and pointers to allocated memory cells used by the different
application; an initial control flow integrity tag that is a tag generator used to generate a
sequence of one or more other control flow integrity tag generators, wherein each of the
one or more other control flow integrity tag generators is used to generate a sequence of
one or more other metadata tags for a different application in connection with tagging
control transfer targets of the different application; and an initial taint tag that is a tag
generator used to generate a sequence of one or more other taint tag generators, wherein
each of the one or more other taint tag generators is used to generate a sequence of one
or more other metadata taint tags for a different application in connection with tagging
data items that are used by the different application with a metadata taint tag based on
code that produced or modified the data items. A sequence of metadata tags may be
generated by executing instructions that trigger other processing of rules in the metadata
processing domain. The other processing may include generating a next metadata tag in
the sequence using a current metadata tag in the sequence, wherein the current metadata
tag denotes a current state of the sequence and is stored as a metadata tag associated
with an atom, wherein the atom is any of a register or a memory location; and updating
the current state of sequence by saving the next metadata tag as the metadata tag

associated with the atom.

In accordance with another aspect of techniques herein is a method of obtaining
control flow information for an application comprising: executing a loader that loads the
application for execution by a processor, wherein said executing the loader includes
executing a first code portion including one or more instructions that triggers metadata
processing of a first set of one or more rules in a metadata processing domain, wherein
said metadata processing of the first set of one or more rules includes collecting and
storing the control flow information for the application as application metadata
accessible to the metadata processing domain and inaccessible to a code execution

domain; and executing instructions of the application in the code execution domain,

14

10

15

20

25

WO 2017/106101 PCT/US2016/066188

wherein said executing said instructions of the application triggers metadata processing
of a second set of rules of a control flow policy that use at least a portion of the control
flow information to determine whether to allow a transfer of control in the application
from a first source location to a first target location. The first target location may have a
set of one or more allowable source locations allowed to transfer control to the first
target location. Collecting and storing the control flow information for the application
as application metadata may further comprise the metadata processing domain
performing other processing. The other processing may include tagging the first target
location with first metadata identifying the set of one or more allowable source
locations, wherein the first metadata is stored as a portion of the control flow
information of the application metadata. A first instruction of the application may
transfer control from the first source location to the first target location, and the first
instruction may trigger metadata processing of one or more rules of the control flow
policy that use the first metadata to determine whether to allow execution of the first
instruction by determining whether the first source location is included in the set of one
or more allowable source locations allowed to transfer control to the first target
location. The other processing may also include tagging each allowable source location
of the set with a unique source metadata tag. Each unique source metadata tag of each
allowable source location may be included in a first sequence of source metadata tags
for the application, wherein the first sequence may be a unique sequence of source
metadata tags generated from a control flow generator tag. The control flow generator
tag may be generated from an initial control flow generator tag derived from an initial
bootstrap tag. The initial control flow generator tag may be used to generate a plurality
of additional control flow generator tags and wherein each of the additional control flow
generator tags may be used to generate a sequence of unique source metadata tags for a

different application.

In accordance with another aspect of techniques herein is a non-transitory

computer readable comprise code stored thereon that, when executed, performs a

15

10

15

20

25

WO 2017/106101 PCT/US2016/066188

method of generating and using metadata tags comprising: storing a bootstrap tag in a
first specified register of a plurality of specified registers used in a metadata processing
domain that is isolated from a code execution domain; and performing first processing
to derive one or more additional metadata tags from the bootstrap tag, wherein said first
processing includes executing one or more instructions in the code execution domain
that trigger metadata processing of one or more rules in the metadata processing

domain.

In accordance with another aspect of techniques herein is a system comprising:
a processor; and a memory comprising code stored thereon that, when executed,
performs a method of generating and using metadata tags comprising: storing a
bootstrap tag in a first specified register of a plurality of specified registers used in a
metadata processing domain that is isolated from a code execution domain; and
performing first processing to derive one or more additional metadata tags from the
bootstrap tag, wherein said first processing includes executing one or more instructions
in the code execution domain that trigger metadata processing of one or more rules in

the metadata processing domain.

In accordance with another aspect of techniques herein is a non-transitory
computer readable medium comprising code stored thereon that, when executed,
performs a method of obtaining control flow information for an application comprising:
executing a loader that loads the application for execution by a processor, wherein said
executing the loader includes executing a first code portion including one or more
instructions that triggers metadata processing of a first set of one or more rules in a
metadata processing domain, wherein said metadata processing of the first set of one or
more rules includes collecting and storing the control flow information for the
application as application metadata accessible to the metadata processing domain and
inaccessible to a code execution domain; and executing instructions of the application in

the code execution domain, wherein said executing said instructions of the application

16

10

15

20

25

WO 2017/106101 PCT/US2016/066188

triggers metadata processing of a second set of rules of a control flow policy that use at
least a portion of the control flow information to determine whether to allow a transfer

of control in the application from a first source location to a first target location.

In accordance with another aspect of techniques herein is a system comprising
a processor; and a memory comprising code stored thereon that, when executed,
performs a method of obtaining control flow information for an application comprising:
executing a loader that loads the application for execution by a processor, wherein said
executing the loader includes executing a first code portion including one or more
instructions that triggers metadata processing of a first set of one or more rules in a
metadata processing domain, wherein said metadata processing of the first set of one or
more rules includes collecting and storing the control flow information for the
application as application metadata accessible to the metadata processing domain and
inaccessible to a code execution domain; and executing instructions of the application in
the code execution domain, wherein said executing said instructions of the application
triggers metadata processing of a second set of rules of a control flow policy that use at
least a portion of the control flow information to determine whether to allow a transfer

of control in the application from a first source location to a first target location.

In accordance with another aspect of techniques herein is a method for
performing processor-mediated data transfers between tagged and untagged data
sources comprising: executing, on a processor, a first instruction that loads first data
from an untagged data source, said untagged data source including memory locations
not having associated metadata tags; tagging, by first hardware, the first data with a first
metadata tag denoting the first data is untrusted and from a public data source, wherein
the first data having the first metadata tag is stored in a first buffer; and executing, on
the processor, first code that triggers metadata processing using first one or more rules,
wherein the metadata processing using the first one or more rules performs retagging

that retags the first data to have a second metadata tag denoting the first data is trusted.

17

10

15

20

25

WO 2017/106101 PCT/US2016/066188

The second metadata tag may additionally denote that the first data is from a public
source. The first data having the second metadata tag may be stored in a memory that is
a tagged data source including memory locations each having an associated metadata
tag. The memory may be a trusted memory included data from one or more trusted data
sources. The metadata processing may be performed in a metadata processing domain
isolated from a code execution domain including the first code. The first one or more
rules may be rules on metadata used by the metadata processing to define allowed
operations. The first code may include one or more instructions and each of the one or
more instructions may have a special instruction tag denoting that said each instruction
has authority to invoke the one or more rules that retags the first data to have the second
metadata tag. The first data, having the first metadata tag, may be encrypted, and the
method may include decrypting, by executing one or more instructions on the processor,
the first data having the first metadata tag and generating a decrypted form of the first
data having the first metadata tag; and performing validation processing by executing
one or more additional instructions on the processor, said validation processing using
digital signatures to ensure the decrypted form of the first data is valid, wherein said
retagging is performed after successful validation processing of the first data. The first
data having the second metadata tag may be stored in a decrypted form in a first
memory location of a tagged memory, and the method may include encrypting the first
data to produce the first data in an encrypted form and generating a digital signature in
accordance with the first data, wherein said encrypting and said generating are
performed by executing additional code on the processor; and executing, on the
processor, a second instruction that stores the encrypted form of the first data from the
first memory location of the tagged memory to a destination location of an untagged
memory, wherein the encrypted form of the first data is stored in the destination
location without an associated metadata tag and wherein the second metadata tag is
removed by second hardware prior to storing the encrypted form of the first data in the
destination location. At a first point in time, the first data may be stored in a first

location of an untagged memory portion, and at a second point in time, the first data,

18

10

15

20

25

WO 2017/106101 PCT/US2016/066188

having the first metadata tag, denoting that the first data is untrusted and from a public
data source, may be stored in a second location of a tagged memory portion. The
untagged memory portion and said tagged memory portion may be included in a same
memory serviced by a same memory controller, and wherein second metadata
processing rules may only allow the processor to perform operations that write data,
having an associated metadata tag denoting the data is public, to the untagged memory
portion, and wherein direct memory operations from an external untagged source
operating on untagged data may only be allowed to access the untagged memory
portion of the same memory. At least a portion of the second metadata processing rules
may further only allow the processor to perform operations that write data, having an
associated metadata tag denoting the data is public and additionally untrusted, to the
untagged memory portion. The untagged data source may be connected to a first
interconnect fabric including only untagged data sources, wherein the first data with the
second metadata tag may be stored in a location of a memory connected to a second
interconnect fabric including only tagged data sources. A second processor may be
connected to the first interconnect fabric and may execute other instructions using
untagged data from the untagged data sources. The other instructions may be executed
without performing metadata processing and without using rules on metadata to enforce
allowable operations, wherein execution of said other instructions by said second
processor may include performing one or more operations including any of’ reading
data from an untagged data source of the first interconnect fabric, and writing data to an

untagged data source of the first interconnect fabric.

In accordance with another aspect of techniques herein is a system comprising: a
processor; and one or more tagged memories, wherein each memory location of the one
or more tagged memories has an associated metadata tag; one or more untagged
memories including a first untagged memory, wherein memory locations of the one or
more untagged memories do not have associated metadata tags; a rule cache including

rules on metadata used in performing metadata processing to define allowed operations

19

10

15

20

25

WO 2017/106101 PCT/US2016/066188

in connection with instructions, wherein prior to executing a current instruction by the
processor, metadata processing using one or more rules of the rule cache is performed
to determine whether execution of the current instruction is allowed; a first instruction
that, when executed by the processor, loads first data from the first untagged memory
into a data cache used by the processor, wherein the first data stored in the data cache
has an associated first metadata tag; a second instruction, that, when executed by the
processor, stores second data from the data cache to the first untagged memory, wherein
the second data stored in the data cache has an associated second metadata tag; a first
hardware component that converts untagged data to tagged data used in the system by
the processor, wherein responsive to execution of the first instruction, the first hardware
component receives, from the first untagged memory, the first data without any
associated metadata tag, and outputs the first data having the associated first metadata
tag; and a second hardware component that converts tagged data to untagged data,
wherein responsive to execution of the second instruction, the second hardware
component receives the second data having the associated second metadata tag and
outputs the second data without any associated metadata tag. The first data without any
associated metadata tag may be encrypted and the first hardware component may
convert the first data to a decrypted form, may perform validation processing of the first
data using digital signatures, and upon successful validation processing, may tag the
first data to have the associated first metadata tag denoting that the first data is trusted.
The second data having the second associated metadata tag may be in a decrypted form
and the second hardware component may convert the second data to an encrypted form
and generates a digital signature in accordance with the second data. The first hardware
component may tag the first data to have the associated first metadata tag denoting that
the first data is trusted and also identifying that the first data is from a public source.
One or more cryptographic key sets may be any of encoded in hardware and stored in a
memory. The one or more cryptographic key sets may be used by the first hardware
component in connection with performing decryption and validation processing and

may be used by the second hardware component in connection with performing

20

10

15

20

25

WO 2017/106101 PCT/US2016/066188

encryption and creating digital signatures. The first data may identify a particular one
of the cryptographic key sets used by the first hardware component to decrypt the first
data, and wherein the associated second metadata tag of the second data may identify a
specific one of the cryptographic key sets used by the second hardware component to

encrypt and sign the second data.

In accordance with another aspect of techniques herein is a method of
processing a current instruction comprising: receiving, for metadata processing, the
current instruction; and performing metadata processing for the current instruction in a
metadata processing domain isolated from a code execution domain including the
current instruction, said current instruction referencing a first memory location having a
first metadata tag used in the metadata processing, said metadata processing for the
current instruction including: performing processing to retrieve the first metadata tag
from memory; prior to receiving the first metadata tag for the first memory location
from the memory, determining a predicted value of the first metadata tag of the first
memory location; determining, using the predicted value of the first metadata tag of the
first memory location, a first result metadata tag for a result operand of the current
instruction; and receiving, from the memory, the first metadata tag; determining
whether the first metadata tag matches the predicted value of the first metadata tag; and
responsive to determining the first metadata tag matches the predicted value of the first
metadata tag, using the first result metadata tag as a final result metadata tag for the
result operand. The metadata processing for the current instruction may include
determining, in accordance with the current instruction and a set of input metadata tags
for the current instruction, a first rule for the current instruction, wherein said first rule
includes the predicted value of the first metadata tag of the first memory location and
includes the first result metadata tag, said first rule being included in a rule cache used
for metadata processing in the metadata processing domain; and responsive to
determining the first metadata tag does not match the predicted value of the first

metadata tag, performing rule cache miss processing in the metadata processing domain

21

10

15

20

25

WO 2017/106101 PCT/US2016/066188

for the current instruction. The rule cache miss processing in the metadata processing
domain for the current instruction may include determining whether execution of the
current instruction in the code execution domain is allowed; responsive to determining
execution of the current instruction in the code execution domain is allowed, generating
a new rule for the current instruction, wherein said new rule is generated in accordance
with the current instruction, the set of input metadata tags, and the first metadata tag;
and inserting the new rule into the rule cache used for metadata processing in the
metadata processing domain. The set of other input metadata tags may include a
plurality of other metadata tags for the current instruction, where said set of other
metadata input tags may include metadata tags for any of: a program counter, the
current instruction, and an input operand of the current instruction. The result operand
may be a destination memory location or a destination register storing results of
executing the current instruction. The instruction may be processed in accordance with
a plurality of stages including a first stage and a second stage wherein the first stage
may occur prior to the second stage The predicted value of the first metadata tag of the
first memory location may be determined in the first stage, and the second stage may
include performing said determining whether the first metadata tag matches the
predicted value of the first metadata tag, and the second stage may also include
performing said rule cache miss processing in the metadata processing domain for the
current instruction responsive to determining the first metadata tag does not match the
predicted value of the first metadata tag. The rule cache may be configurable to operate
in either a prediction mode or a normal processing mode in accordance with a
prediction selector mode. The rule cache may be configured to operate in the prediction
mode when performing said metadata processing for the current instruction. When the
rule cache is configured to operate in said prediction mode, the rule cache may generate
first outputs in accordance with the first rule. The first outputs may include a metadata
tag for a program counter of a next instruction, the first result metadata tag for the result
operand of the current instruction, and the predicted value of the first metadata tag as an

output of the first stage. When the rule cache is configured to operate in said normal

22

10

15

20

25

WO 2017/106101 PCT/US2016/066188

processing mode, the rule cache may generate second outputs in accordance with a
second rule different from the first rule, wherein the second outputs may not include the
predicted value of the first metadata tag, and the second outputs may include metadata
tags for result operand of the current instruction and for the program counter of the next
instruction. The rule cache may use a first version of rules of a first policy when
operating in the prediction mode and otherwise may use a second version of rules of the
first policy when operating in the normal processing mode, and wherein the first rule
may be included in the first version of rules and the second rule may be included in the

second version of rules.

In accordance with another aspect of techniques herein is a system comprising:
a pipeline processor including a plurality of pipeline stages, said plurality of stages
including a memory stage and a writeback stage; a programmable unit for metadata
processing (PUMP) integrated that operates prior to completion of the memory stage the
memory stage, wherein the PUMP performs metadata processing for a current
instruction referencing a first memory location having a first metadata tag used in the
metadata processing, wherein the PUMP receives first inputs including first metadata
tags for the current instruction and wherein the PUMP generates first outputs provided
as inputs to the writeback stage, the first outputs including a predicted value of the first
metadata tag of the first memory location and a first result metadata tag for a result
operand of the current instruction, wherein the first result metadata tag is determined by
the PUMP in accordance with the predicted value of the first metadata tag for the first
memory location; and hardware components of said writeback stage that determine
whether the first metadata tag for the first memory location matches the predicted value
of the first metadata tag, and that use the first result metadata tag as a final result
metadata tag for the result operand when the first metadata tag matches the predicted
value of the first metadata tag. The PUMP may be a first PUMP that operates
simultaneously with the memory stage and further operates in a prediction mode and

may determine the predicted value of the first metadata tag of the first memory location,

23

10

15

20

25

WO 2017/106101 PCT/US2016/066188

and wherein the system may include a second PUMP that operates in a normal, non-
prediction mode and may not determine any predicted value for the first metadata tag of
the first memory location. The second PUMP may be integrated as another stage
between the memory stage and the writeback stage. The first PUMP may use a first
version of rules of a first policy for use when operating in the prediction mode, and the
second PUMP may use a second version of rules of the first policy for use when
operating in the normal, non-prediction mode. The first PUMP may determine the first
outputs in accordance with a first rule from the first version, and the second PUMP may
determine second outputs in accordance with a second rule from the second version.
The second outputs may include a second result metadata tag for the first memory
location and said second outputs may be provided as inputs to the writeback stage. The
hardware components of the writeback stage may additionally use the second result
metadata tag as the final result metadata tag for the result operand when the first

metadata tag does not match the predicted value.

In accordance with another aspect of techniques herein is a non-transitory
computer readable medium comprising code stored thereon that, when executed,
performs a method of processor-mediated data transfers between tagged and untagged
data sources comprising: executing, on a processor, a first instruction that loads first
data from an untagged data source, said untagged data source including memory
locations not having associated metadata tags; tagging, by first hardware, the first data
with a first metadata tag denoting the first data is untrusted and from a public data
source, wherein the first data having the first metadata tag is stored in a first buffer; and
executing, on the processor, first code that triggers metadata processing using first one
or more rules, wherein the metadata processing using the first one or more rules
performs retagging that retags the first data to have a second metadata tag denoting the

first data is trusted.

In accordance with another aspect of techniques herein is a non-transitory

24

10

15

20

25

WO 2017/106101 PCT/US2016/066188

computer readable medium comprising code stored thereon that, when executed,
performs a method of processing a current instruction comprising: receiving, for
metadata processing, the current instruction; and performing metadata processing for
the current instruction in a metadata processing domain isolated from a code execution
domain including the current instruction, said current instruction referencing a first
memory location having a first metadata tag used in the metadata processing, said
metadata processing for the current instruction including: performing processing to
retrieve the first metadata tag from memory; prior to receiving the first metadata tag for
the first memory location from the memory, determining a predicted value of the first
metadata tag of the first memory location; determining, using the predicted value of the
first metadata tag of the first memory location, a first result metadata tag for a result
operand of the current instruction; and receiving, from the memory, the first metadata
tag; determining whether the first metadata tag matches the predicted value of the first
metadata tag; and responsive to determining the first metadata tag matches the predicted
value of the first metadata tag, using the first result metadata tag as a final result

metadata tag for the result operand.

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the techniques herein will become more apparent
from the following detailed description of exemplary embodiments thereof taken in
conjunction with the accompanying drawings in which:

Figure 1 is a schematic drawing showing an example of a PUMP cache
integrated as a pipeline stage in a processor pipeline;

Figure 2 is a schematic drawing showing a PUMP Evaluation Framework;

Figure 3A is a graph showing performance results for a single runtime policy

with simple implementation using the evaluation framework depicted in Figure 2;

25

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Figure 3B is a graph showing performance results a single energy policy with
simple implementation;

Figure 4A is a series of bar graphs showing composite policy runtime overhead
of simple implementation with 64b Tags, wherein the composite policy enforces
simultaneously the following policies (i) spatial and temporal memory safety, (ii) taint
tracking, (ii1) control-flow integrity, and (iv) code and data separation;

Figure 4B is a series of bar graphs showing composite policy energy overhead
of simple implementation with 64b Tags;

Figure 4C is a series of bar graphs showing power ceilings with simple
implementation compared to a baseline;

Figure 5A is a comparative bar graph of the number of PUMP rules without
opgroup optimization and with opgroup optimization;

Figure 5B is a series of graphs showing the impact of miss rates of different
opgroup optimizations based on PUMP capacity;

Figure 6A is a graph of the distribution of unique tags for each DRAM transfer
for the gcc benchmark with the composite policy, showing that most words have the
same tag;

Figure 6B is a diagram showing the main memory tag compression;

Figure 7A is a schematic drawings showing translation between 16b L2 tags and
12b L1 tags;

Figure 7B is a schematic drawings showing translation between 12b L1 tags and
16b L2 tags;

Figure 8A is a schematic graph showing the impact of L1 tag length on L1
PUMP flushes (1og10);

Figure 8B is a schematic graph showing the impact of L1 tag length on L1
PUMP miss-rates;

Figure 9A is a series of bar graphs showing miss rates for different policies;

Figure 9B is a line graph depicting a cache hit rate for four exemplary

microarchitecture optimizations;

26

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Figure 9C is a line graph depicting miss service performance;

Figure 9D is a line graph depicting miss handler hit rates based on capacity;

Figure 9E is a series of bar graphs depicting the impact of optimizations for the
composite policy;

Figure 10A is a series of graphs showing runtime overhead of optimized
implementation,;

Figure 10B is a series of bar graphs showing energy overhead of optimized
implementation,;

Figure 10C is a series of bar graphs showing absolute power of optimized
implementation compared to a baseline;

Figure 11A is a series of shaded graphs depicting runtime overhead impact of
tag bit length and UCP- Cache (§) capacity for different representative benchmarks;

Figure 11B is a series of shaded graphs depicting energy overhead impact of tag
bit length and UCP-$ capacity for different representative benchmarks;

Figure 12A is a series of graphs showing runtime impact of optimizations on
representative benchmarks wherein A: Simple; B: A+ Opgrouping, C: B+fDRAM
Compression; D: C+ (10b L1, 14b, L2) short tags; E: D+(2048-UCP; 512-CTAG));

Figure 12B is a series of graphs showing energy impact of optimizations on
representative benchmarks wherein A: Simple; B: A+ Opgrouping; C: B+fDRAM
Compression; D: C+ (10b L1, 14b, L2) short tags; E: D+(2048-UCP; 512-CTAG));

Figure 13A is a series of graphs showing runtime policy impact in composition
for a representative benchmark;

Figure 13B is a series of graphs showing energy policy impact in composition;

Figure 14 is a first table labeled “TABLE 1” providing a summary of
investigated policies;

Figure 15 is a second table labeled “TABLE 2” providing a summary of
taxonomy of tagging schemes;

Figure 16 is a third table labeled “TABLE 3” providing a summary of memory

resource estimates for the baseline and the simple PUMP-extended processor;

27

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Figure 17 is a fourth table labeled “TABLE 4” providing a summary of PUMP
parameter ranges used in experiments;

Figure 18 is a fifth table labeled “TABLE 5” providing a summary of memory
resource estimates for the PUMP-optimized processor;

Figure 19 is a first algorithm labeled “Algorithm 1” providing a summary of the
taint tracking miss handler;

Figure 20 is a second algorithm labeled “Algorithm 2” providing a summary of
the N-policy miss handler;

Figure 21 a third algorithm labeled “Algorithm 3” providing a summary of the
N-policy miss handler with HW support;

Figure 22 is schematic view of the PUMP rule cache dataflow and
microarchitecture;

Figure 23 is a schematic view of the PUMP microarchitecture;

Figure 24 is a schematic view, similar to Figure 1, showing an exemplary PUMP
cache integrated as a pipeline stage in a processor pipeline and its opgroup translation,
UCP and CTAG caches;

Figure 25 is an example of control status registers (CSRs) in an embodiment in
accordance with techniques herein;

Figure 26 is an example of tagmodes in an embodiment in accordance with
techniques herein;

Figure 27 is an example illustrating a separate metadata processing
subsystem/domain with a separate processor in an embodiment in accordance with
techniques herein;

Figure 28 illustrates PUMP inputs and outputs in an embodiment in accordance
with techniques herein;

Figure 29 illustrates inputs and outputs in connection with the opgroup table that
in an embodiment in accordance with techniques herein;

Figure 30 illustrates processing performed by the PUMP in an embodiment in

accordance with techniques herein;

28

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Figures 31 and 32 provide additional detail regarding control and selection of
PUMP inputs and outputs in an embodiment in accordance with techniques herein;

Figure 33 is an example illustrating a 6 stage processing pipeline in an
embodiment in accordance with techniques herein;

Figures 34-38 are examples illustrating subinstructions and associated
techniques in an embodiment;

Figure 36-38 are examples illustrating subinstructions and associated techniques
in an embodiment;

Figures 39-42 are examples illustrating byte level tagging and associated
techniques in an embodiment;

Figure 43 is an example illustrating variable length opcodes in an embodiment
in accordance with techniques herein;

Figure 44 is an example illustrating an opcode mapping table in an embodiment
in accordance with techniques herein;

Figure 45 is an example illustrating shared pages in an embodiment in
accordance with techniques herein;

Figure 46 is an example illustrating transfer of control points in an embodiment
in accordance with techniques herein;

Figure 47 is an example illustrating a call stack in an embodiment in accordance
with techniques herein;

Figures 48-49 are examples illustrating memory location tagging or coloring in
an embodiment in accordance with techniques herein;

Figure 50 is an example illustrating setjmp and longjmp in an embodiment in
accordance with techniques herein;

Figure 51, 52, and 53 are tables of different runtime behaviors and associated
preventive actions and mechanisms used to implement the preventive actions in an

embodiment in accordance with techniques herein;

29

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Figures 54, 55 and 56 are examples illustrating processing that may be
performed to learn or determine policy rules in an embodiment in accordance with
techniques herein;

Figure 57, 58, 59 and 60 are examples illustrating components in an
embodiment in connection with converting between an external version and an internal
tagged version of data;

Figures 61, 62 and 63 are examples illustrating aspects of performing tag
prediction in an embodiment in accordance with techniques herein;

Figures 64-65 illustrate use of coloring memory location techniques herein with
allocated memory in an embodiment;

Figure 66-67 illustrate different components providing hardware rule support in
an embodiment in accordance with techniques herein;

Figures 68-70 are examples illustrating use of techniques herein in an
embodiment where the PUMP returns a value;

Figure 71 is an example illustrating use of techniques herein in an embodiment
with a sequence of instructions;

Figure 72 is a flowchart of processing steps that may be performed in
connection with booting a system in an embodiment in accordance with techniques
herein;

Figure 73 is an example of a tree tag hierarchy in connection with tag generation
in an embodiment in accordance with techniques herein;

Figures 74, 75, 76 and 77 are examples illustrating aspects and features in
connection with an I/O PUMP in an embodiment in accordance with techniques herein,;

Figures 78, 79, 80, 81 and 82 are examples illustrating a hierarchy used in
connection with storing and determining tag values in an embodiment in accordance
with techniques herein; and

Figures 83 and 84 are examples illustrating control flow integrity and associated

processing in an embodiment in accordance with techniques herein.

30

10

15

20

25

WO 2017/106101 PCT/US2016/066188

DETAILED DESCRIPTION

Described in following paragraphs are various embodiments and aspects of a
Programmable Unit for Metadata Processing (PUMP) that indivisibly associates a
metadata tag with every word in the system’s main memory, caches, and registers. To
support unbounded metadata, the tag is large enough to indirect to a data structure in
memory. On every instruction, the tags of the inputs are used to determine if the
operation is allowed, and if so to calculate the tags for the results. In some
embodiments, the tag checking and propagation rules are defined in software; however,
to minimize performance impact, these rules are cached in a hardware structure, the
PUMP rule cache, that operates in parallel with the arithmetic logic unit (ALU) portion
of a processor. In some embodiments, a miss handler, such as may be implemented
using software and/or hardware, may be used to service cache misses based on the
policy currently in effect.

In at least one embodiment using a composition of four different policies, the
performance impact of the PUMP may be measured (See Figure 14) that stress the
PUMP in different ways and illustrate a range of security properties, such as, for
example, (1) a Non-Executable Data and Non-Writable Code (NXD+NWC) policy that
uses tags to distinguish code from data in memory and provides protection against
simple code injection attacks; (2) a Memory Safety policy that detects all spatial and
temporal violations in heap-allocated memory, extending with an effectively unlimited
(260) number of colors (“taint marks”); (3) a Control-Flow Integrity (CFI) policy that
restricts indirect control transfers to only the allowed edges in a program’s control flow
graph, preventing return-oriented-programming-style attacks (fine grained CFI is
enforced, not coarse-grained approximations that are potentially vulnerable to attack),
and (4) a fine-grained Taint Tracking policy (generalizing) where each word can
potentially be tainted by multiple sources (libraries and IO streams) simultaneously.

The foregoing are examples of well-known policies that may be used in an
embodiment in accordance with techniques herein. For such well known policies

whose protection capabilities have been established in the literature, techniques herein

31

10

15

20

25

WO 2017/106101 PCT/US2016/066188

may be used to enforce such policies while also reducing the performance impact of
enforcing them using the PUMP. Except for NXD+NWC, each of these policies needs
to distinguish an essentially unlimited number of unique items; by contrast, solutions
with a limited number of metadata bits can, at best, support only grossly simplified
approximations.

As illustrated and described elsewhere herein, one embodiment in accordance
with techniques herein may utilize a simple, direct implementation of the PUMP which
uses pointer-sized (64b or byte) tags to 64b words thereby at least doubling the size and
energy usage of all the memories in the system. Rule caches add area and energy on top
of this. For this particular embodiment, an area overhead of 190% (See Figure 16) was
measured and geomean energy overhead around 220%; moreover, runtime overhead
may be over 300% on some applications. Such high overheads may discourage
adoption, if they were the best that could be done.

However, as described in more detail below most policies exhibit spatial and
temporal locality for both tags and the rules defined over them. Thus, an embodiment in
accordance with techniques herein may significantly reduce the number of unique rules
significantly by defining them over a group of similar (or even identical) instructions,
reducing compulsory misses and increasing the effective capacity of the rule caches.
Off-chip memory traffic can be reduced by exploiting spatial locality in tags. On-chip
area and energy overhead can be minimized by using a small number of bits to
represent the subset of the pointer-sized tags in use at a time. Runtime costs of
composite policy miss handlers can be decreased by providing hardware support for
caching component policies. Thus, an embodiment in accordance with techniques
herein may include such optimizations to thereby allow the PUMP to achieve lower
overheads without compromising its rich policy model.

An embodiment in accordance with techniques herein may enhance memory
words and internal processor state with metadata that can be used to encode an arbitrary
number of security policies that can be enforced either in isolation or simultaneously.

An embodiment in accordance with techniques herein may achieves the foregoing by

32

10

15

20

25

WO 2017/106101 PCT/US2016/066188

adding, to a "conventional" processor (e.g. RISC-CPU, GPU, Vector processor, etc.), a
metadata processing unit (the PUMP) that works in parallel with the data flow to
enforce an arbitrary set of policies; the present disclosure technique specifically makes
the metadata unbounded and software programmable, such that the techniques herein
may be adapted and applied to a wide range of metadata processing policies. For
example, the PUMP may be integrated as a new/separate pipeline stage of a
conventional (RISC) processor, or can be integrated as a stand-alone piece of hardware
working on parallel with the "host" processor. For the former case, there may be an
instruction level simulator, elaborated policies, implementation optimizations and
resource estimates, and extensive simulations to characterize the design.

Existing solutions trying to enforce policies at the fine (i.e. instruction)
granularity level cannot enforce an arbitrary set of policies. Commonly, only a small
number of fixed policies can be enforced at the instruction level. Enforcing policies at a
higher granularity level (i.e. thread) cannot prevent certain classes of Return Oriented
Programming attacks, thus rendering that type of enforcement limited in its usefulness.
In contrast, embodiments in accordance with techniques herein allow the expression of
an unlimited number of policies (the only limit is the size address space, as the meta-
data is expressed in terms of address pointers that can point to any arbitrary data
structures) that may be enforced at the instruction level singly or simultaneously.

It should be noted that various figures described in following paragraphs
illustrate various examples, methods, and other example embodiments of various
aspects of the techniques described herein. It will be appreciated that, in such figures,
the illustrated element boundaries (e.g., boxes, groups of boxes, or other shapes)
generally represent one example of the boundaries. One of ordinary skill in the art will
appreciate that in some examples one element may be designed as multiple elements or
that multiple elements may be designed as one element. In some examples, an element
shown as an internal component of another element may be implemented as an external

component and vice versa. Furthermore, elements may not be drawn to scale.

33

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Referring to Figure 1, a Programmable Unit for Metadata Processing (PUMP)
10 is integrated into a conventional Reduced Instruction Set Computing or Computer
(RISC) processor 12 with an in-order implementation and a 5-stage pipeline suitable for
energy-conscious applications, which effectively transforms into a 6-stage pipeline with
the addition of PUMP 10. A first stage is a fetch stage 14, a second stage is a decode
stage 16, a third stage is an execute stage 18, a fourth stage is a memory stage 20, and a
fifth stage is a writeback stage 22. Pump 10 is interposed between the memory stage 20
and the writeback stage 22.

Various embodiments may implement the PUMP 10 using electronic logic that
is a mechanism providing policy enforcement and metadata propagation. An
embodiment of the PUMP 10 may be characterized by: (1) an empirical evaluation of
the runtime, energy, power ceiling, and area impacts of a simple implementation of the
PUMP 10 on a standard set of benchmarks under four diverse policies and their
combination; (ii) a set of micro-architectural optimizations; and (iii) measurements of
the gains from these optimizations, showing typical runtime overhead under 10%, a
power ceiling impact of 10%, and typically energy over- head under 60% by using
110% additional area for on-chip memory structures.

In computing, benchmarking may be characterized as the act of running a
computer program, a set of programs, or other operations, in order to assess the relative
performance of an object, normally by running a number of standard tests and trials
against it. The term 'benchmark’' used herein refers to benchmarking programs
themselves. The types of benchmark programs used throughout this application and the
Figures are GemsFDTD, astar, bwaves, bzip2, cactusADM, calculix, deall, gamess, gcc,
gobmk, gromacs, h264ref, hmmer, Ibm, leslie3d, libquantum, mcf, milc, namd,
omnetpp, perlbench, sjeng, specrand, sphinx3, wrf, zeusmp, and mean. See, for
example, Figures 10A, 10B, and 10C.

“Logic”, as used herein, includes but is not limited to hardware, firmware,
software and/or combinations of each to perform a function(s) or an action(s), and/or to

cause a function or action from another logic, method, and/or system. For example,

34

10

15

20

25

WO 2017/106101 PCT/US2016/066188

based on a desired application or needs, logic may include a software controlled
microprocessor, discrete logic like a processor (e.g., microprocessor), an application
specific integrated circuit (ASIC), a programmed logic device, a memory device
containing instructions, an electric device having a memory, or the like. Logic may
include one or more gates, combinations of gates, or other circuit components. Logic
may also be fully embodied as software. Where multiple logics are described, it may be
possible to incorporate the multiple logics into one physical logic. Similarly, where a
single logic is described, it may be possible to distribute that single logic between
multiple physical logics.

In at least one embodiment in accordance with techniques herein, the PUMP 10
may be characterized as an extension to a conventional RISC processor 12. Following
paragraphs provide further details of the ISA (instruction set architecture)-level
extensions that constitute the PUMP’s 10 hardware interface layer, the basic micro-
architectural changes, and the accompanying low-level software that may be used in an
embodiment in accordance with techniques herein.

In an embodiment in accordance with techniques herein, each word in a PUMP-
enriched system may be associated with a pointer-sized tag. These tags are
uninterpreted at the hardware level. At the software level, a tag may represent metadata
of unbounded size and complexity, as defined by the policy. Simpler policies that need
only a few bits of metadata may store the metadata directly in the tag; if more bits are
required, then indirection is used to store the metadata as a data structure in memory,
with the address of this structure used as the tag. Notably, these pointer-sized tags are
one exemplary aspect of the present disclosure and are not to be considered limiting.
The basic addressable memory word is indivisibly extended with a tag, making all value
slots, including memory, caches, and registers, suitably wider. A program counter (PC)
is also tagged. This notion of software-defined metadata and its representation as a
pointer-sized tag extends previous tagging approaches, where only a few bits are used
for tags and/or they are hardwired to fixed interpretations. Some exemplary taxonomies

of tagging schemes are presented in Table 2 which is reproduced in Figure 15.

35

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Metadata tags are not addressable by user programs. Rather, the metadata tags
are addressed by policy handlers invoked on rule cache misses as detailed below. All
updates to tags are realized through PUMP 10 rules.

Besides unbounded metadata, another feature of an embodiment of the PUMP
10 in accordance with techniques herein is hardware support for single-cycle common-
case computation on metadata. These computations are defined in terms of rules of the
form opcode : (PC, CI, OP1, OP2, MR) = (PC,y, R), which should be read: “If the
current opcode is opcode, the current tag on the program counter is PC, the tag on the
current instruction is CI, the tags on its input operands (if any) are OP1 and OP2, and
the tag on the memory location (in case of load/store) is MR, then the tag on the
program counter in the next machine state should be PC,.,, and the tag on the
instructions result (a destination register or a memory location, if any) should be R”.
This rule format, allowing two output tags to be computed from up to five input tags, is
markedly more flexible than those considered in prior work, which typically compute
one output from up to two inputs (see Table 2 in Figure 15). Beyond previous solutions
that only track data tags (OP1, OP2, MR, R), the present disclosure provides a current
instruction tag (CI) that can be used to track and enforce provenance, integrity, and
usage of code blocks; as well as a PC tag that can be used to record execution history,
ambient authority, and “control state” including implicit information flows. The CFI
policy exploits the PC tag for recording the sources of indirect jumps and the CI tag for
identifying jump targets, NXD+NWC leverages the CI to enforce that data is not
executable, and Taint Tracking uses the CI to taint data based on the code that produced
it.

To resolve the rules in a single cycle in the common case, an embodiment in
accordance with techniques herein may use a hardware cache of the most recently used
rules. Depending on the instruction and policy, one or more of the input slots in a given
rule may be unused. To avoid polluting the cache with rules for all possible values of
the unused slots, the rule-cache lookup logic refers to a bit vector containing a “don’t-

care” (See Figure 1) bit for each input slot—opcode pair, which determines whether the

36

10

15

20

25

WO 2017/106101 PCT/US2016/066188

corresponding tag is actually used in the rule cache lookup. To handle these “don’t
care” inputs efficiently, they are masked out before presenting the inputs to the PUMP
10. The don’t-care bit vectors are set by a privileged instruction as part of the miss
handler installation.

Figure 1 generally illustrates one embodiment in accordance with techniques
herein with a revised 5-stage processor 12 pipeline that incorporates the PUMP 10
hardware. The rule cache lookup is added as an additional stage and bypass tag and data
independently so that the PUMP 10 stage does not create additional stalls in the
processor pipeline.

Placing the PUMP 10 as a separate stage (between memory stage 20 and
writeback stage 22) is motivated by the need to provide the tag on the word read from
memory (load), or to be overwritten in memory (store), as an input to the PUMP 10.
Since rules are allowed that depend on the existing tag of the memory location that is
being written, write operations become read-modify-write operations. The existing tag
is read during the Memory stage 20 like a read rule, the read rule is checked in the
PUMP 10 stage, and the write is performed during the Commit stage which may also be
referred to as writeback stage 22. As with any caching scheme, multiple levels of caches
may be used for the PUMP 10. As described in more detail below, an embodiment in
accordance with techniques herein may utilize two levels of caches. The extension to
multiple levels of caches is readily apparent to one having ordinary skill in the art.

In one non-limiting example, when a last-level miss occurs in the rule cache in
the writeback stage 22, it is handled as follows: (1) the current opcode and tags are
saved in a (new) set of processor registers used only for this purpose, and (ii) control is
transferred to the policy miss handler (described in more detail below), which (ii1)
decides if the operation is allowed and if so generates an appropriate rule. When the
miss handler returns, the hardware (iv) installs this rule into the PUMP 10 rule caches,
and (v) re-issues the faulting instruction. To provide isolation between the privileged
miss handler and the rest of the system software and user code, a miss-handler

operational mode is added to the processor, controlled by a bit in the processor state that

37

10

15

20

25

WO 2017/106101 PCT/US2016/066188

is set on a rule cache miss and reset when the miss handler returns. To avoid the need
to save and restore registers on every rule cache miss, the integer register file may be
expanded with 16 additional registers that are available only to the miss handler.
Additionally, the rule inputs and outputs appear as registers while in miss handler mode
(cf. register windows), allowing the miss handler (but nothing else) to manipulate the
tags as ordinary values. Again, these are all non-limiting examples of the writeback
stage 22.

A new miss-handler-return instruction is added to finish installing the rule into
the PUMP 10 rule caches and returns to user code. In this particular non-limiting
example, this instruction can only be issued when in miss-handler mode. While in miss-
handler mode, the rule cache is ignored and the PUMP 10 instead applies a single,
hardwired rule: all instructions and data touched by the miss handler must be tagged
with a predefined MISSHANDLER tag, and all instruction results are given the same
tag. In this way, the PUMP 10 architecture prevents user code from undermining the
protection provided by the policy. Alternatively, the PUMP may be used to enforce
flexible rules on miss-handler access. Tags are not divisible, addressable, or replaceable
by user code; metadata data structures and miss handler code cannot be touched by user
code; and user code cannot directly insert rules into the rule cache.

With reference to Figure 19, Algorithm 1 illustrates the operation of the miss
handler for a taint-tracking policy. To minimize the number of distinct tags (and hence
rules), the miss handler uses a single tag for logically equivalent metadata by
“canonicalizing” any new data structures that it builds.

Rather than forcing users to choose a single policy, multiple policies are
enforced simultaneously and new ones are added later. An exemplary advantage to
these “unbounded” tags is that they can enforce any number of policies at the same
time. This can be achieved by letting tags be pointers to tuples of tags from several
component policies. For example, to combine the NXD+NWC policy with the taint-
tracking policy, each tag can be a pointer to a tuple (s, t), where s is a NXD+NWC tag
(either DATA or CODE) and t is a taint tag (a pointer to a set of taints). The rule cache

38

10

15

20

25

WO 2017/106101 PCT/US2016/066188

lookup is similar, however when a miss occurs, both component policies are evaluated
separately: the operation is allowed only if both policies allow it, and the resulting tags
are pairs of results from the two component policies. However, in other embodiments, it
might be possible to express how the policies are to be combined (not simply as AND
between all the constituent components).

With reference to Figure 20, Algorithm 2 illustrates the general behavior of the
composite miss handler for any N policies. Depending on how correlated the tags in the
tuple are, this could result in a large increase in the number of tags and hence rules. In
order to demonstrate the ability to support multiple policies simultaneously and measure
its effect on working set sizes, a composite policy (“Composite”) was implemented
through experimentation and where the composite policy comprises all four policies
described above. The Composite policy represents the kind of policy workloads that are
supported which are described in further detail below. As seen in Figure 4A and Figure
20, the composite policy enforces simultaneously the following policies (i) spatial and
temporal memory safety, (i1) taint tracking, (ii1) control-flow integrity, and (iv) code
and data separation

Most policies will dispatch on the opcode to select the appropriate logic. Some
policies, like NXD+NWC, will just check whether the operation is allowed. Others may
consult a data structure (e.g., the CFI policy consults the graph of allowed indirect call
and return ids). Memory safety checks equality between address color (i.e pointer color)
and memory region colors. Taint tracking computes fresh result tags by combining the
input tags (Alg. 1). Policies that must access large data structures (CFI) or canonicalize
across large aggregates (Taint Tracking, Composite) may make many memory accesses
that will miss in the on-chip caches and go to DRAM. On average across all of the
benchmarks, servicing misses for NXD+NWC required 30 cycles, Memory Safety
required 60 cycles, CFI required 85 cycles, Taint Tracking required 500 cycles, and
Composite required 800 cycles.

If the policy miss handler determines that the operation is not allowed, it invokes

a suitable security fault handler. What this fault handler does is up to the runtime system

39

10

15

20

25

WO 2017/106101 PCT/US2016/066188

and the policy; typically, it would shut down the offending process, but in some cases it
might return a suitable “safe value” instead. For incremental deployment with UNIX-
style operating systems, assumed policies are applied per process, allowing each
process to get a different set of policies. The recitation of being applied per process is
non-limiting but rather exemplary and one having skill in the art recognizes this. It also
allows us to place the tags, rules, and miss handling support into the address space of
the process, avoiding the need for an OS-level context switch. Longer term, perhaps
PUMP policies can be used to protect the OS as well.

The following details evaluation methodology for measuring runtime, energy,
area, and power overheads and applies it on a simple implementation of the PUMP
hardware and software, using 128b words (64b payload and 64b tag) and the modified
pipeline processor 12 depicted in Figure 1. It is useful to describe and measure the
simple PUMP implementation first, even though the optimized implementation is the
version to which the overheads (relative to the baseline processor) is ultimately desired.
Both are described because it details basic versions of the key mechanisms before
getting to more sophisticated versions.

To estimate the physical resource impact of the PUMP, memory costs were
primarily focused on, since the memories are the dominant area and energy consumers
in a simple RISC processor and in the PUMP hardware extensions. A 32 nm Low
Operating Power (LOP) process is considered for the L1 memories (See Figure 1) and
Low Standby Power (LSTP) for the L2 memories and use CACTI 6.5 for modeling the
area, access time, energy per access, and static (leakage) power of the main memory and
the processor on-chip memories.

A baseline processor (no-PUMP) has separate 64KB L1 caches for data and
instructions and a unified 512KB L2 cache. Delay-optimized L1 caches and an energy-
optimized L2 cache were used. All caches use a writeback discipline. The baseline L1
cache has a latency around 880 ps; it is assumed that it can return a result in one cycle

and set its clock to 1 ns, giving a 1 GHz-cycle target—comparable to modern

40

10

15

20

25

WO 2017/106101 PCT/US2016/066188

embedded and cell phone processors. The parameters for this processor are presented in
Table 3 in Figure 16.

One embodiment of the PUMP rule cache 10 hardware implementation may
include two parts: extending all architectural states in stages 14, 16, 20 with tags, and
adding PUMP rule caches to the processor 12. Extending each 64b word in the on-chip
memories with a 64b tag increases their area and energy per access and worsens their
access latency. This is potentially tolerable for the L2 cache, which already has a multi-
cycle access latency and is not used every cycle. But adding an extra cycle of latency to
access the L1 caches (See Figure 1) can lead to stalls in the pipeline. To avoid this, in
this simple implementation the effective capacity of the L1 caches is reduced to half of
those in the baseline design and then add tags; this gives the same single-cycle access to
the L1 caches, but can degrade performance due to increased misses.

In an embodiment in accordance with techniques herein, the PUMP rule cache
10 utilizes a long match key (5 pointer-sized tags plus an instruction opcode, or 328b)
compared to a traditional cache address key (less than the address width), and returns a
128b result. In one embodiment, a fully associative L1 rule cache may be used but
would lead to high energy and delay (See Table 3 in Figure 16). As an alternative, an
embodiment in accordance with techniques herein may utilize a multi-hash cache
scheme inspired with four hash functions, as depicted in Figure 22. The L1 rule cache is
designed to produce a result in a single cycle, checking for a false hit in the second
cycle, while the L2 rule cache is designed for low energy, giving a multi-cycle access
latency. Again, Table 3 in Figure 16 shows the parameters for 1024-entry L1 and 4096-
entry L2 rule caches used in the simple implementation. When these caches reach
capacity, a simple first-in-first out (FIFO) replacement policy is used, which appears to
work well in practice for the current workloads (FIFO is within 6% of LRU here).

With reference to Figure 2, the estimation of the performance impact of the
PUMP identifies a combination of ISA, PUMP, and address-trace simulators. A gem5
simulator 24 generates instruction traces for the SPEC CPU2006 programs (omitting
xalancbmk and tonto, on which gemS5 fails) on a 64-bit Alpha baseline ISA. Each

41

10

15

20

25

WO 2017/106101 PCT/US2016/066188

program simulates for each of the four policies listed above and the composite policy
for a warm-up period of 1B instructions and then evaluates the next SOOM instructions.
In gem$5 simulator 24, each benchmark is run on the baseline processor with no tags or
policies. The resulting instruction trace 26 is then run through a PUMP simulator 28
that performs metadata computation for each instruction. This “phased” simulation
strategy is accurate for fail-stop policies, where the PUMP’s results cannot cause a
program’s control flow to diverge from its baseline execution. While address-trace
simulations can be inaccurate for highly pipelined and out-of-order processors, they are
quite accurate for the simple, in-order, 5- and 6-stage pipeline. On the baseline
configuration, the gem5 instruction simulation and address trace generation 30 followed
by custom address-trace simulations in address simulator 32 and accounting were
within 1.2% of gem5’s cycle-accurate simulations.

The PUMP simulator 28 includes miss-handler code (written in C) to implement
each policy, and metadata tags are assigned on the initial memory depending on the
policy. The PUMP simulator 28 allows captures the access patterns in the PUMP 10
rule caches and estimates the associated runtime and energy costs, accounting for the
longer wait cycles required to access the L2 rule cache. Since the PUMP simulator 28
having miss handler code also runs on the processor, separate simulations for the miss
handler on gem5 to capture its dynamic behavior. Since the miss-handler code
potentially impacts the data and instruction caches, a merged address trace is created
that includes properly interleaved memory accesses from both user and miss-handler
code, which is used for the final address-trace simulation to estimate the performance
impact of the memory system.

In following paragraphs, the evaluation of the simple PUMP implementation is
provided in comparison to the no-PUMP baseline.

As one point of evaluation, it should be noted that the overall area overhead of
the PUMP 10 on top of the baseline processor is 190% (See Table 3 in Figure 16). The
dominant portion of this area overhead (110%) comes from the PUMP 10 rule caches.

The unified L2 cache contributes most of the remaining area overhead. The L1 D/I

42

10

15

20

25

WO 2017/106101 PCT/US2016/066188

caches stay roughly the same, since their effective capacity is halved. This high memory
area overhead roughly triples the static power, contributing to 24% of the energy
overhead.

Another points of evaluation relates to runtime overhead. For all single policies
on most benchmarks, the average runtime overhead of even this simple implementation
is only 10% (see Figure 3A and Figure 3B; to read boxplots: bar is the median, box
covers one quartile above and below (middle 50% of cases), dots represent each
individual data point, whiskers denote full range except for outliers (more than 1.5x
respective quartile)), with the dominant overhead coming from the additional DRAM
traffic required to transfer tag bits to and from the processor. For the Memory Safety
policy (Figure 3A and Figure 3B), there are a few benchmarks that exhibit high miss
handler overhead, pushing their total overhead up to 40-50% due to compulsory misses
on newly allocated memory blocks. For the Composite policy Runtime (labeled as
“CPI” or “CPI Overhead” in the Figures), five of the benchmarks suffer from very high
overheads in the miss handler (See Figure 4A), with the worst case close to 780% in the
GemsFTDT and the geomean reaching 50%. For the Composite policy Energy (labeled
as “EPI” or “EPI Overhead” in the Figures) depicted in Figure 4B, three of the
benchmarks (i.e. GemsFTDT, astar, omnetpp) suffer from very high overheads in the
miss handler, with the worst case close to 1600% in the GemsFTDT, 600% in the astar,
and 520% in the omnetpp.

Two factors contribute to this overhead: (1) the large number of cycles required
to resolve a last-level rule cache miss (since every component miss handler must be
consulted), and (2) an explosion in the number of rules, which expands the working set
size and increases the rule cache miss rate. In the worst case, the number of unique
composite tags could be the product of the unique tags in each component policy.
However, the total rules increase by a factor of 3x—5x over the largest single policy,
Memory Safety.

Another point of evaluation is energy overhead. Moving more bits, due to wider

words, and executing more instructions, due to miss handler code, both contribute to

43

10

15

20

25

WO 2017/106101 PCT/US2016/066188

energy overheads, impacting both the single and composite policies (Figure 3B and
Figure 4B). The CFI and Memory Safety policies—and hence also the Composite
policy— access large data structures that often require energy-expensive DRAM
accesses. The worst-case energy overhead is close to 400% for single policies, and
about 1600% for the Composite policy, with geomean overhead around 220%.

For many platform designs the worst-case power, or equivalently, energy per
cycle, is the limiter. This power ceiling may be driven by the maximum current the
platform can draw from a battery or the maximum sustained operating temperature
either in a mobile or in a wired device with ambient cooling. Figure 4C shows that the
simple implementation raises the maximum power ceiling by 76% with lbm driving the
maximum power in both the baseline and simple PUMP implementations. Note that this
power ceiling increase is lower than the worst-case energy overhead in part because
some benchmarks slow down more than the extra energy they consume and in part
because the benchmarks with high energy overhead are the ones consuming the least
absolute energy per cycle in the baseline design. Typically the data working set of these
energy-efficient programs fits into the on-chip caches, so they seldom pay the higher
cost of DRAM accesses.

An embodiment incorporating the foregoing implementation described above
achieves reasonable performance on most benchmarks, the runtime overhead for the
Composite policy on some of them and the energy and power overheads on all policies
and benchmarks seem unacceptably high. To address these overheads, a series of
targeted microarchitecture optimizations may be introduced and also incorporated into
an embodiment in accordance with techniques herein. In Table 4 at Figure 17, these
optimizations are examined for the impact of the architectural parameters associated
with the PUMP components on the overall costs. Groupings of opcodes with identical
rules are used to increase the effective capacity of the PUMP rule caches, tag
compression to reduce the delay and energy of DRAM transfers, short tags to reduce the
area and energy in on-chip memories, and Unified Component Policy (UCP) and

Composition Tag (CTAG) caches to decrease the overheads in the miss handlers.

44

10

15

20

25

WO 2017/106101 PCT/US2016/066188

What will now be described are “opgroups” as may be used in an embodiment in
accordance with techniques herein. In practical policies, it is common to define similar
rules for several opcodes. For example, in the Taint Tracking policy, the rules for the
Add and Sub instructions are identical (See Algorithm 1 in Figure 19). However, in the
simple implementation, these rules occupy separate entries in the rule caches. Based on
this observation, instruction operation codes (“opcodes”) are grouped with the same
rules into “opgroups”, reducing the number of rules needed. Which opcodes can be
grouped together depends on the policy; therefore the “don’t-care” SRAM is expanded
in the Execute stage 18 (Figure 1) to also translate opcodes to opgroups before the rule
cache lookup. For the Composite policy, over 300 Alpha opcodes are reduced to 14
opgroups and the total number of rules by a factor of 1.1x—6%, with an average of 1.5x
(Figure 5A measures this effect across all the SPEC benchmarks). This effectively
increases the rule cache capacity for a given investment in silicon area. Opgroups also
reduce the number of compulsory misses, since a miss on a single instruction in the
group installs the rule that applies to every instruction opcode in the group. Figure 5B
summarizes the miss-rate across all the SPEC benchmarks for different L1 rule cache
sizes for the Composite policy with and without opgrouping. Figure 5B shows that both
the range and the mean of the miss-rates are reduced by opgrouping. Particularly, a
1024-entry rule cache after opgroup optimization has a lower miss rate than a 4096-
entry rule cache without it. A lower miss-rate naturally reduces the time and energy
spent in miss handlers (See Figure 12A and Figure 12B) and smaller rule caches
directly reduce area and energy.

An embodiment in accordance with techniques herein may utilize main memory
tag compression that will now be described. Using 64b tags on 64b words doubles the
off-chip memory traffic and therefore approximately doubles the associated energy.
Typically, though, tags exhibit spatial locality—many adjacent words have the same
tag. For example, Figure 6A plots the distribution of unique tags for each DRAM
transfer for the gcc benchmark with the Composite policy, showing that most words

have the same tag: on average there are only about 1.14 unique tags per DRAM transfer

45

10

15

20

25

WO 2017/106101 PCT/US2016/066188

of an 8-word cache line. This spatial tag locality is exploited to compress the tag bits
that must be transferred to and from the off-chip memory. Since data is transferred in
cache lines, the cache lines are used as the basis for this compression. 128B per cache
line are allocated in the main memory, to keep addressing simple.

However, as depicted in Figure 6B rather than storing 128b tagged words
directly, eight 64b words (payloads) are stored, followed by eight 4b indexes, and then
up to eight 60b tag. The index identifies which of the 60b tags goes with the associated
word. The tag is trimmed to 60b to accommodate the indexes, but this does not
compromise the use of tags as pointers: assuming byte addressing and 16B (two 64b
words) aligned metadata structures, the low 4b of the 64b pointer can be filled in as
zeros. As a result, after transferring the 4B of indexes, all that remains is the need to
transfer the unique 7.5B tags in the cache line. For instance, if the same tag is used by
all the words in the cache line then there is a transfer of 64B+4B=68B in a first read,
then 8B in a second read for a total of 76B instead of 128B. The 4b index can be either
a direct index or a special value. A special index value is defined to represent a default
tag, so that there is no need to transfer any tag in this case. By compressing tags in this
manner, the average energy overhead per DRAM transfer is reduced from 110% to
15%.

The compression scheme presented above may be utilized in embodiment in
accordance with techniques herein, for example, due to its combination of simplicity
and effectiveness at reducing off-chip memory energy. One having skill in the art
clearly recognizes that additional alternative clever schemes for fine-grained memory
tagging exist—including multi-level tag page tables, variable- grained TLB-like
structures, and range caches — and these may also be used to reduce the DRAM

footprint in an embodiment in accordance with techniques herein.

What will now be described is how tag translation may be performed in an
embodiment in accordance with techniques herein. With reference again to Figure 1,

the simple PUMP rule caches are large (adding 110% area) since each cached rule is

46

10

15

20

25

WO 2017/106101 PCT/US2016/066188

456b wide. Supporting the PUMP 10 also required extending the baseline on-chip
memories (RFs and L1/L.2 caches) with 64b tags. Using a full 64b (or 60b) tag for each
64b word here incurs heavy area and energy overheads. However, a 64KB L1-D$ holds
only 8192 words and hence at most 8192 unique tags. Along with a 64KB L1-I$, there
may be at most 16384 unique tags in the L1 memory subsystem; these can be
represented with just 14b tags, reducing the delay, area, energy, and power in the
system. Caches (L1, L2) exist to exploit temporal locality, and this observation suggests
that locality can be leveraged to reduce area and energy. If the tag bits are reduced to
14b, the PUMP rule cache match key is reduced from 328b to 78b.

To obtain the foregoing saving advantage without losing the flexibility of full,
pointer-sized tags, different-width tags may be used for different on-chip memory
subsystems and translate between these as needed. For example, one might use 12b tags
in the L1 memories and 16b tags in the L2 memories. Figure 7A details tag translation
as may be performed between L1 and L2 memory subsystems. Moving a word from L2
cache 34 to L1 cache 36 requires translating its 16b tag to the corresponding 12b tag,
creating a new association if needed. A simple SRAM 38 for the L2- tag-to-L.1-tag
translation, with an extra bit indicating whether or not there is an L1 mapping for the L2
tag. Figure 7B details the translation an L1 tag 40 to L2 tag 42 (on a writeback or an L.2
lookup) performed with a SRAM 39 lookup using the L1 tag as the address. A similar
translation occurs between the 60b main memory tags and 16b L2 tags.

When a long tag is not in the long-to-short translation table, a new short tag is
allocated, potentially reclaiming a previously allocated short tag that is no longer in use.
There is a rich design space to explore for determining when a short tag can be
reclaimed, including garbage collection and tag-usage counting. For simplicity, short
tags are allocated sequentially and flush all caches above a given level (instruction,
data, and PUMP) when the short tag space is exhausted, avoiding the need to track
when a specific short tag is available for reclamation. Caches may be designed with
suitable techniques that making cache flushes inexpensive. For example, in an

embodiment in accordance with techniques herein, all caches may be designed with a

47

10

15

20

25

WO 2017/106101 PCT/US2016/066188

lightweight gang clear, such as known in the art and described, for example, in K. Mai,
R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and M. Horowitz. Architecture and Circuit
Techniques for a 1.1GHz 16-kb Reconfigurable Memory in 0.18um-CMOS.

IEEE J. Solid-State Circuits, 40(1):261-275, January 2005, which is incorporated by
reference herein.

In comparison to Table 3 (reproduced in Figure 16), where each L1 rule cache
access costs 51pJ, techniques herein provide for a reduction down to 10pJ with 8b L1
tags or 18pJ with 16b L1 tags, with the energy scaling linearly with tag length between
these points. The energy impact on the L1 instruction and data caches is small.
Similarly, with 16b L2 tags, L2 PUMP access costs 120pJ, down from 173pJ with 64b
tags. Slimming L1 tags also allows us to restore the capacity of the L1 caches. With 12b
tags, the full-capacity (76KB, effective 64KB) cache will meet single-cycle timing
requirements, reducing the performance penalty the simple implementation incurred
from the reduced L1 cache capacity. As a result, L1 tag length exploration is limited to
12 bits or less. While even shorter tags reduce energy, they also increase the frequency
of flushes.

Figure 8A and Figure 8B depict how flushes decrease with increasing L1 tag
length, as well as the impact on the L1 rule cache miss-rate.

What will now be described are various techniques that may be used in
connection with miss handler acceleration. An embodiment in accordance with
techniques herein may combine four policies into a single Composite policy. With
reference to Figure 20, in Algorithm 2, each invocation of a N-policy miss handler has
to take apart a tuple of tags and rules needed for the Composite policy increases the rule
cache miss rates, which are identified in Figure 9A. Even though the Taint Tracking and
CFI policies individually have a low miss-rate, a higher miss-rate from the Memory
Safety policy drives the miss-rate for the Composite policy high as well. The lower miss
rates of the individual policies suggest that their results may be cacheable even when

the composite rules are not.

48

10

15

20

25

WO 2017/106101 PCT/US2016/066188

In connection with various aspects of the PUMP microarchitecture such as
illustrated in Figure 23, hardware structures may be utilized to optimize composite
policy miss handling. An embodiment in accordance with techniques herein may utilize
a Unified Component Policy (UCP; see Algorithm 3 in Figure 21) cache (UCP $)
where the most recent component policy results are cached. In such an embodiment, the
general miss-handler for composite policies is modified to perform lookups in this
cache while resolving component policies (e.g., see Algorithm 3 of Figure 21, such at
line 3). When this cache misses for a component policy its policy computation is
performed in software (and insert the result in this cache).

As also illustrated in Figure 24, the UCP cache may be implemented with the
same hardware organization as the regular PUMP rule cache, with an additional policy
identifier field. A FIFO replacement policy may be used for this cache, but it may be
possible to achieve better results by prioritizing space using a metric such as the re-
computation cost for the component policies. With modest capacity, this cache filters
out most policy re-computations (Figure 9B; the low hit rate for memory safety is
driven by compulsory misses associated with new memory allocations). As a result, the
average number of miss handler cycles are reduced by a factor of 5 for the most
challenging benchmarks (Figure 9E). It is possible for every policy to hit in the UCP
cache when there is a miss in the L2 PUMP since the composite rules needed could be a
product of a small number of component policy rules. For GemsFDTD, three or more
component policies was hit about 96% of the time.

As also included in Figure 23 and Figure 24, a cache may be added to translate a
tuple of result tags into its canonical composite result tag. The foregoing cache may be
referred to as the Composition Tag (CTAG) cache (CTAG $) which is effective (Figure
9D) because it is common for several component policy rules to return the same tuple of
result tags. For example, in many cases the PC,, will be the same, even though the
result tag is different. Furthermore, many different rule inputs can lead to the same
output. For example, in Taint Tracking set unions are performed, and many different

unions will have the same result; e.g., (Blue, {A, B, C}) is the composite answer for

49

10

15

20

25

WO 2017/106101 PCT/US2016/066188

writing the result of both {A} U {B,C} and {A, B} U {B,C} (Taint Tracking) into a
Blue slot (Memory Safety). A FIFO replacement policy is used for this cache. The
CTAG cache reduces the average miss handler cycles by another factor of 2 (See Figure
9E).

Taken together, a 2048-entry UCP cache and a 512-entry CTAG cache reduce
the average time spent on each L2 rule cache miss from 800 cycles to 80 cycles.

An embodiment in accordance with techniques herein may also improve
performance by prefetching one or more rules which are stored in one or more of the
caches including rules. Thus, it is additionally possible to reduce the compulsory miss
rate with precompute rules that might be needed in the near future. An exemplary
instance has high value for the Memory Safety rules. For example when a new memory
tag is allocated, new rules will be needed (initialize (1), add offset to pointer and move
(3), scalar load (1), scalar store (2)) for that tag. Consequently, all of these rules may be
added to the UCP cache at once. For the single-policy Memory Safety case, the rules
may be added directly into the rule caches. This reduces the number of Memory Safety
miss-handler invocations by 2x.

In connection with an overall evaluation and with reference to Figure 11A, the
architecture parameters monotonically impact a particular cost, providing tradeoffs
among energy, delay, and area, but not defining a minimum within a single cost criteria.
There is the threshold effect that, once the tag bits are small enough, the L1 D/I caches
can be restored to the capacity of the baseline, so that baseline is adopted as the upper
bound to explore for L1 tag length, but beyond that point, decreasing tag length reduces
energy with small impact on performance.

Figure 11B depicts that reducing tag length is the dominant energy effect for
most benchmark programs (e.g. leslie3d, mcf), with a few programs showing equal or
larger benefits from increasing UCP cache capacity (e.g., GemsFDTD, gcc). Ignoring
other cost concerns, to reduce energy, large miss handler caches and few tag bits are
selected. Runtime overhead (see Figure 11A) is also minimized with larger miss handler

caches, but benefits from more rather than fewer tag bits (e.g., GemsFDTD, gcc).

50

10

15

20

25

WO 2017/106101 PCT/US2016/066188

The magnitude of the benefits vary across benchmarks and policies. Across all
benchmarks, the benefit beyond 10b L1 tags is small for the SPEC CPU2006
benchmarks, so 10b are used as the compromise between energy and delay and use a
2048-entry UCP cache and a 512-entry CTAG cache to reduce area overhead while
coming close to the minimum energy level within the space of the architecture
parameters explored.

Figure 12A and Figure 12B depict the overall impact on runtime and energy
overheads of applying the optimizations. Every optimization is dominant for some
benchmark (e.g., opgroups for astar, DRAM tag compression for lbm, short tags for
h264ref, miss handler acceleration for GemsFDTD), and some benchmarks see benefits
from all optimizations (e.g. gcc), with each optimization successively removing one
bottleneck and exposing the next. The different behavior from the benchmarks follows
their baseline characteristics as detailed below.

Applications with low locality have baseline energy and performance driven by
DRAM due to high main memory traffic. The overhead in such benchmarks (e.g., Ibm)
trends to the DRAM overhead, so reductions in DRAM overhead directly impact
runtime and energy overhead. Applications with more locality are faster in the baseline
configuration, consume less energy, and suffer less from DRAM overheads; as a result,
these benchmarks are more heavily impacted by the reduced L1 capacity and the tag
energy in the L1 D/I and rule caches. DRAM optimization has less effect on these
applications, but using short tags has a large effect on energy and removes the L1 D/I
cache capacity penalty (e.g. h264ref).

The benchmarks with heavy dynamic memory allocation have higher L2 rule
cache miss rates due to compulsory misses as newly created tags must be installed in
the cache. This drove the high overheads for several benchmarks (GemsFDTD,
omnetpp) in the simple implementation. The miss handler optimizations as described
herein reduce the common case cost of such misses, and the opgroup optimization
reduces the capacity miss rate. For the simple implementation, GemsFDTD took an L.2

rule cache miss every 200 instructions and took 800 cycles to service each miss driving

51

10

15

20

25

WO 2017/106101 PCT/US2016/066188

a large part of its 780% runtime overhead (See Figure 4A). With the optimizations, the
GemsFDTD benchmark services an L2 rule cache miss every 400 instructions and takes
only 140 cycles on average per miss, reducing its runtime overhead to about 85% (See
Figure 10A).

Overall, these optimizations bring runtime overhead below 10% for all
benchmarks except GemsFDTD and omnetpp (See Figure 10A), which are high on
memory allocation. The mean energy overhead is close to 60%, with only 4
benchmarks exceeding 80% (See Figure 10B).

To illustrate, the performance impact of the PUMP may be measured using a
composition of four different policies (See Table 1 at Figure 14) that stress the PUMP
in different ways and illustrate a range of security properties: (1) a Non-Executable
Data and Non-Writable Code (NXD+NWC) policy that uses tags to distinguish code
from data in memory and provides protection against simple code injection attacks; (2)
a Memory Safety policy that detects all spatial and temporal violations in heap-allocated
memory, extending with an effectively unlimited (260) number of colors (“taint
marks”); (3) a Control-Flow Integrity (CFI) policy that restricts indirect control
transfers to only the allowed edges in a program’s control flow graph, preventing
return-oriented-programming-style attacks (enforce fine-grained CFI, not coarse-
grained approximations that are potentially vulnerable to attack); and (4) a fine-grained
Taint Tracking policy (generalizing) where each word can potentially be tainted by
multiple sources (libraries and 1O streams) simultaneously. As noted elsewhere herein,
these are well-known policies whose protection capabilities have been established in the
literature and description herein may focus on measuring and reducing the performance
impact of enforcing them using the PUMP. Except for NXD+NWC, each of these
policies distinguishes an essentially unlimited number of unique items; by contrast,
solutions with a limited number of metadata bits can, at best, support only grossly
simplified approximations. As also noted above, a simple, direct implementation of the
PUMP may be expensive. For example, adding pointer-sized (64b) tags to 64b words at

least doubles the size and energy usage of all the memories in the system; rule caches

52

10

15

20

25

WO 2017/106101 PCT/US2016/066188

add area and energy on top of this. For this simple implementation, the measured area
overhead is about 190% and geomean energy overhead is around 220%; moreover,
runtime overhead is disappointing (over 300%) on some applications. Such high
overheads would discourage adoption, if they were the best that could be done.

The micro-architecture optimizations such as described herein may be included
in an embodiment in accordance with techniques herein to reduce the impact on power
ceiling to 10% (See Fig-10C), suggesting the optimized PUMP will have little impact
on the operating envelope of the platform. DRAM compression reduces the energy
overhead for Ibm to 20%; since it also slows down by 9%, its power requirement only
increases by 10%.

The area overhead of the optimized design is around 110% (e.g., see Table 5 of
Figure 18) in comparison to 190% of the simple design (e.g., see Table 3 of Figure 16).
Short tags significantly reduce the area of the L1 and L2 caches (now adding only 5%
over the baseline) and of the rule caches (adding only 26%). Contrarily, the optimized
design spends some area to reduce runtime and energy overhead. The UCP and CTAG
caches add 33% area overhead, while the translation memories for short tags (both L1
and L2) add another 46%. While these additional hardware structures add area, they
provide a net reduction in energy, since they are accessed infrequently and the UCP and
CTAG caches also substantially reduce the miss- handler cycles.

One goal of the model and optimizations as described herein is to make it
relatively simple for an embodiment to add additional policies that are simultaneously
enforced. The Composite policy on the simple PUMP design incurred more than
incremental costs for several benchmarks due to the large increase in miss handler
runtime, but these are reduced with the miss handler optimizations.

Figure 13A (for CPI overhead) and Figure 13B (for EPI overhead) illustrate how
incremental addition of policies impacts runtime overhead by first showing the
overhead of each single policy, then showing composites that add policies to Memory
Safety, the most complex single policy. The progression makes it clearer what overhead

comes simply from adding any policy as opposed to adding a higher-overhead policy.

53

10

15

20

25

WO 2017/106101 PCT/US2016/066188

To get a sense of scaling beyond the four policies here, the CFI policy (returns and
computed-jumps/calls) and the taint tracking policy (code tainting and I/O tainting) are
each broken into two parts. It is shown that the runtime overhead of additional policies
tracks incrementally above the first complex policy (Memory Safety), with no
appreciable runtime impact on the non-outliers (worst-case non-outlier rises from 9%
to 10% overhead) and a larger increase (20—40%) in the two outliers as each new kind
of policy is added due mostly to increased miss-handler resolution complexity. Energy
follows a similar trend with modest impact (geomean rises from 60% to 70%) on the
non-outlier policies, which account for everything except GemsFDTD.

A brief summary of related work is identified in Table 2 reproduced at Figure
15.

In accordance with a policy programming model in accordance with techniques
herein, a PUMP policy includes a set of tag values together with a collection of rules
that manipulate these tags to implement some desired tag propogation and enforcement
mechanism. Rules come in two forms: the software layer (symbolic rules) or hardware
layer (concrete rules) of the system.

For example, to illustrate the operation of the PUMP, consider a simple example
policy for restricting return points during program execution. The motivation for this
policy comes from a class of attacks known as return-oriented programming (ROP),
where the attacker identifies a set of “gadgets" in the binary executable of the program
under attack and uses these to assemble complex malicious behaviors by constructing
appropriate sequences of stack frames, each containing a return address pointing to
some gadget; a buffer overflow or other vulnerability is then exploited to overwrite the
top of the stack with the desired sequence, causing the snippets to be executed in order.
One simple way of limiting ROP attacks is to constrain the targets of return instructions
to well-defined return points. This is accomplished by using the PUMP by tagging
instructions that are valid return points with a metadata tag target. Each time a return
instruction is executed, the metadata tag on the PC is set to check to indicate that a

return has just occurred. On the next instruction, the PC tag is check, verify that the tag

54

10

15

20

25

WO 2017/106101 PCT/US2016/066188

on the current instruction is target, and signal a security violation if not. By making the
metadata richer, it is possible to precisely control which return instructions can return to
which return points. By making it yet richer, full CFI checking may be implemented.

From the point of view of the policy designer and the software parts of the
PUMP 10, policies may be compactly described using symbolic rules written in a tiny
domain-specific language. An exemplary symbolic rule and its program language is
described, for example, in the section entitled “PROGRAMMING THE PUMP,
Hardware-Assisted Micro-Policies for Security”.

Symbolic rules may compactly encode a great variety of metadata tracking
mechanisms. At the hardware level, however, a rule is needed for representation that is
tuned for efficient interpretation to avoid slowing down the primary computation. To
this end, a lower level rule format, called concrete rules, may be introduced. Intuitively,
each symbolic rule for a given policy can be expanded into an equivalent set of concrete
rules. However, since a single symbolic rule might in general generate an unbounded
number of concrete rules, this elaboration is performed lazily, generating concrete rules
as needed while the system executes.

For policies with metadata tags (e.g., which are richer than ROP), the translation
from symbolic to concrete rules follows the same general lines, but the details become a
bit more intricate. For example, the taint-tracking policy takes tags to be pointers to
memory data structures, each describing an arbitrarily sized set of taints (representing
data sources or system components that may have contributed to a given piece of data).
The symbolic rule for the load opgroup says that the taint on the loaded value should be
the union of the taints on the instruction itself, the target address for the load, and the
memory at that address. The symbolic rule and its program language is incorporated by
reference from and is available for public inspection in the paper entitled
“PROGRAMMING THE PUMP, Hardware-Assisted Micro-Policies for Security”
which was previously identified.

To reduce the number of distinct tags (and, hence, pressure on the rule cache),

metadata structures may be internally stored in canonical form and since tags are

55

10

15

20

25

WO 2017/106101 PCT/US2016/066188

immutable, sharing is fully exploited (e.g., set elements are given a canonical order so
that sets can be compactly represented sharing common prefix subsets). When no longer
needed, these structures can be reclaimed (e.g., by garbage collection).

An embodiment may utilize composite policies. Multiple orthogonal policies
may be simultaneously enforced by letting tags be pointers to tuples of tags from
several component policies. (In general, multiple policies may not be orthogonal) For
example, to compose the first return opgroup (ROP) policy with the taint-tracking
policy, let each tag be a pointer to a representation of a tuple (r; t), where r is an ROP-
tag (a code location identifier) and t is a taint tag (a pointer to a set of taints). The cache
lookup process is exactly the same, but when a miss occurs the miss handler extracts the
components of the tuple and dispatches to routines that evaluate both sets of symbolic
rules. The operation is allowed only if both policies have a rule that applies; in this case
the resulting tag is a pointer to a pair containing the results from the two sub-policies.

In connection policy system and protection, the policy system exists as a
separate region of memory within each user process. The policy system may include,
for example, the code for the miss handler, the policy rules, and the data structures
representing the policy's metadata tags. Placing the policy system in the process is
minimally invasive with the existing Unix process model and facilitates lightweight
switching between the policy system and the user code. The policy system is isolated
from user code using mechanisms described next.

Clearly, the protection offered by the PUMP would be useless if the attacker
could rewrite metadata tags or change their interpretation. The techniques described
herein are designed to prevent such attacks. The kernel, loader, and (for some policies)
compiler is trusted. In particular, the compiler is relied on to assign initial tags to words
and, where needed, communicate rules to the policy system. The loader will preserve
the tags provided by the compiler, and that the path from the compiler to the loader is
protected from tampering, e.g., using cryptographic signatures.

An embodiment in accordance with techniques herein may use a standard Unix-

style kernel which sets up the initial memory image for each process. (It may be

56

10

15

20

25

WO 2017/106101 PCT/US2016/066188

possible to use micro-policies to eliminate some of these assumptions, further reducing
the size of the TCB). It is further assumed that, in such embodiments, the rule-cache-
miss-handling software is correctly implemented. This is small, hence a good target for
formal verification. One concern is to prevent user code running in a process from
undermining the protection provided by the process's policy. User code should not be
able to (1) manipulate tags directly--all tag changes should be performed

in accordance with the policy/policies rules currently in effect; (i1) manipulate the data
structures and code used by the miss handler; (iii) directly insert rules in the hardware
rule cache.

In connection with addressing, to prevent direct manipulation of tags by user
code, the tags attached to every 64b word are not, themselves, separately addressable. In
particular, it is not possible to specify an address that corresponds only to a tag or a
portion of a tag in order to read or write it. All user accessible instructions operate on
(data, tag) pairs as atomic units--the standard ALU operating on the value portion and
the PUMP operating on the tag portion.

In connection with the miss handler architecture in an embodiment in
accordance with techniques herein, the policy system may only be activated on misses
to the PUMP cache. To provide isolation between the policy system and user code, a
miss-handler operational mode is added to the processor. The integer register file is
expanded with 16 additional registers that are available only to the miss handler, to
avoid saving and restoring registers. Note, the use of 16 additional registers is
illustrative and in practice may need to expand the integer register file to less/more
registers. The PC of the faulting instruction, the rule inputs (opgroup and tags), and the
rule outputs appear as registers while in miss handler mode. A miss-handler-return
instruction is added, which finishes installing a concrete rule into the cache and returns
to user code.

In an embodiment in accordance with techniques herein, the normal behavior of
the PUMP 10 is disengaged while the processor 12 is in miss-handler mode. Instead, a

single hardwired rule is applied: all instructions and data touched by the miss handler

57

10

15

20

25

WO 2017/106101 PCT/US2016/066188

must be tagged with a predefined miss-handler tag that is distinct from the tags used by
any policy. This ensures isolation between miss handler code and data and the user code
in the same address space. User code cannot touch or execute policy system data or
code, and the miss handler cannot accidentally touch user data and code. The miss-
handler-return instruction can only be issued in miss-handler mode, preventing user
code from inserting any rules into the PUMP.

While previous work has used clever schemes to compactly represent or
approximate safety and security policies, this is often a compromise on the intended
policy, and it may trade complexity for compactness. As described herein, it is possible
to include richer metadata that captures the needs of the security policies both more
completely and more naturally with little or no additional runtime overhead. Rather than
imposing a fixed bound on the metadata representation and policy complexity, the
PUMP 10 provides a graceful degradation in performance. This allows policies to use
more data where needed without impacting the common case performance and size. It
further allows the incremental refinement and performance tuning of policies, since
even complex policies can easily be represented and executed.

With evidence mounting for the value of metadata-based policy enforcement,
the present disclosure defines an architecture for software-defined metadata processing
and identifies accelerators to remove most of the runtime overhead. An architecture is
introduced and described herein with no bounds (i.e., free from any bound) on the
number of metadata bits or the number of policies simultaneously supported along with
four microarchitecture optimizations (opgroups, tag compression, tag translation, and
miss handler acceleration) that achieve performance comparable to dedicated, hardware
metadata propagation solutions. The software defined metadata policy model and its
acceleration will be applicable to a large range of policies beyond those illustrated here,
including sound information-flow control, fine-grained access control, integrity,
synchronization, race detection, debugging, application- specific policies, and

controlled generation and execution of dynamic code.

58

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Some non-limiting advantages of the various aspects and embodiments
described herein provide (i) a programming model and supporting interface model for
compactly and precisely describing policies supported by this architecture; (i1) detailed
examples of policy encoding and composition using four diverse classes of well-studied
policies; and (ii1) quantification of the requirements, complexity, and performance for
these policies.

The programming model of an embodiment as described herein may encode a
host of other policies. Information-flow control is richer than the simple taint tracking
models here, but tracking implicit flows can be supported either with RIFLE-style
binary translation or by using the PC tag along with some support from the compiler.
Micro-policies can support lightweight access control and compartmentalization. Tags
can be used to distinguish unforgeable resources. Unique, generated tokens can act as
keys for sealing and endorsing data, which in turn can be used for strong abstraction--
guaranteeing that data is only created and destructured by authorized code components.
Micropolicy rules can enforce data invariants such as immutability and linearity. Micro-
policies can support parallelism as out-of-band metadata for synchronization primitives
such as full/empty bits for data or futures or as state to detect race conditions on locks.
A system architect can apply specific micro-policies to existing code without auditing
or rewriting every line.

The PUMP 10 design as described herein offers an attractive combination of
flexibility and performance, supporting a diverse collection of low-level, fine-grained
security policies with single policy performance comparable to dedicated mechanisms
in many cases while supporting richer and composite policies with mostly graceful
performance degradation as rule complexity grows. Further, the mechanisms provided
by the PUMP may be used to protect its own software structures. An embodiment in
accordance with techniques herein may replace the special miss-handler operational
mode by implementing a “compartmentalization" micro-policy using the PUMP 10 and
using this to protect the miss-handler code. Finally, as described herein, orthogonal sets

of policies may be combined, where the protections provided by each one are

59

10

15

20

25

WO 2017/106101 PCT/US2016/066188

completely independent of the others. But policies often interact: for example, an
information-flow policy may need to place tags on fresh regions being allocated by a
memory safety policy. Policy composition requires analysis in connection with both in
expression and in efficient hardware support.

What will now be described is a further example illustrating implementation of a
memory safety policy in an embodiment in accordance with techniques herein that
identifies all temporal and spatial violations in heap-allocated memory. In at least one
embodiment, for each new allocation processing may be performed to make up a fresh
color-id, ¢, and write ¢ as the tag on each memory location in the newly created memory
block (e.g., such as via memset). The pointer to the new block is also tagged c¢. Later,
when processing is performed to dereference a pointer, processing may include
checking that the pointer’s tag is the same as the tag on the memory cell to which the
pointer references or points. When a block is freed, the tags on all cells of the block
may be modified to a constant F representing free memory. The heap may be initially
tagged F. A special tag, L, may be used for non-pointers. Thus, generally, an
embodiment may write a tag t for a memory location that is either a color ¢ or L.

Because memory cells may contain pointers, in general each word in memory
may be associated with two tags. In such an embodiment, the tag on each memory cell
be a pointer to a pair (¢, t), where c is the id of the memory block in which this cell was
allocated and t is the tag on the word stored in the cell. An embodiment may use
domain-specific language based on the rule function described elsewhere herein for
specifying a policy in terms of symbolic rules. The rules for load and store take care of
packing and unpacking these pairs, along with checking that each memory access is
valid (i.e., the accessed cell is within the block pointed to by this pointer):

load : (——, c1, —, (c2, 1))

— (- n)ifci=c
store: (—,—, t1, €2, (€3, t3))

— (=, (c3, 1)) if ¢ = ¢35

60

10

15

20

25

WO 2017/106101 PCT/US2016/066188

The checking performed in the foregoing and other rules shows up as conditions
under which the symbolic rule is valid (e.g., c; = ¢3 above in the store rule). The “—
symbol indicates the don’t care fields in the rule.

Address arithmetic operations preserve the pointer tag:

add: (——,c¢, L-)—(-0¢)

To maintain the invariant that tags on pointers can only originate from allocation,
operations that create data from scratch (e.g., loading constants) set its tag to L.

In an embodiment implementing the memory safety policy, operations such as
malloc and free may be accordingly modified, for example, to tag memory regions
using the tagged instructions and ephemeral rules (e.g., which may be deleted from the
cache once they are used). In connection with malloc, processing may generate a fresh
tag for the pointer to a new region via an ephemeral rule. For example, the rule for
move may be an ephemeral rule such as:

move: (=, t mattoc, t, = =) — (=, tuewtag)

The arrow with the superscript of 1 (e.g., —') may denote an ephemeral rule. The
newly tagged pointer may then be used to write a zero to every work in the allocated
region using a special store rule:

store: (=, t mallocinit, t1, C2, F) — (= (c2,)
prior to returning the tagged pointer. At a later point in time, free may use a modified
store instruction to retag the region as unallocated:

store: (—, t freeinit, t1, €2, (C3, t4)) — (=, F)

prior to returning the region to the free list.

In such an embodiment using the memory safety policy, opgroups may be used
to describe the rule set as follows:
(D) nop, cbranch, ubranch, ijump, return:) — (=)
(2) ar2sld: --LL)y—=- b
(3) ar2sld: - -c L-)—(0
(4) ar2sld: - Le,)—(0

61

10

15

20

25

30

WO 2017/106101 PCT/US2016/066188

(5) ar2sld: ——cc)—(Db

(6) arlsld: —-t—)—>G01

(7) arlld, dcall, icall, flags: =) — -

8) load : (= ¢, () >)ifa=c

(9) store: (== t1, €2, (€3, 13)) = (=, (3, t1)) if ¢ =¢3 A ¢ & {tmaliocinit, trreeini)
(10) store: (=, tmallocinit, t1, €2, F) — (=, (C2, t1))

(11) store: (=, threeinit, 11, C2, (€3, t4)) — (=, F)

(12) move: (—, tmalloc, t, =) —! (—, toewtag)

(13) move: (= tmaltoc, £, ——,) — (=, 1)

The symbolic rules used above for policy specification may be written using
variables, allowing a few symbolic rules to describe the policy over an unbounded
universe of distinct values. The concrete rules stored in the rule cache, however, refer to
specific, concrete tag values. For example, if 23 and 24 are valid memory block colors,
an embodiment may use concrete rules with concrete instances of symbolic Rule (3)
above in the PUMP rule cache for ¢ = 23 and ¢ = 24. Assuming, for example, an
embodiment encodes | as 0 and marks don’t care fields as 0, the concrete rules are for
symbolic rule (3) above are:

ar2s1d : (0, 0, 23, 0, 0) — (0, 23)

ar2s1d : (0, 0, 24, 0, 0) — (0, 24)

Consistent with discussion elsewhere herein, in at least one embodiment, the miss
handler may obtain the concrete input tags and execute code compiled from the
symbolic rules to produce the associated concrete output tags in order to insert rules into
the PUMP rule cache. When the symbolic rule identifies a violation, control transfers to
an error handler and no new concrete rules are inserted into the PUMP rule cache.

What will now be described is an embodiment in accordance with techniques
herein based on the RISC-V architecture further extended with metadata tags and the
PUMP to support software defined metadata processing (SDMP) consistent with
discussion herein. RISC-V may be characterized as an open source implementation of

reduced instruction set computing (RISC) instruction set architecture (ISA). In such an

62

10

15

20

25

WO 2017/106101 PCT/US2016/066188

embodiment, metadata tags are placed on both instructions and data for each word. In
the RISC-V architecture, words are 64 bits. The RISC-V architecture provides different
word size variants -- RV64 with a word size of 64 bits and RV32 with a word size of 32
bits. The width or size of the registers and user address space may vary with the word
size. Tag size or width may be independent of word size or width but may more
typically be the same in an embodiment. As known in the art, the RISC-V architecture
has 32 bit instructions and thus an embodiment supporting and operating using the 64
bit word size may store 2 instructions in a single tagged word. The foregoing and other
aspects of the RISC-V architecture are discussed elsewhere herein in connection with
use of different techniques and features in connection with extending the RISC-V
architecture for use with metadata tags, the PUMP and SDMP.

The RISC-V architecture includes user-level instructions as described, for
example, in “The RISC-V Instruction Set Manual Vol. I, User-Level ISA, Version 2.0",
May 6, 2014, Waterman, Andrew, et. al., (also referred to as the “RISC-V user level
ISA”) which is incorporated by reference herein, and is publically available, for
example, at the RISCV.ORG website, and through the University of California at
Berkeley as Technical Report UCB/EECS-2014-54. The RISC-V architecture also
incorporates a privileged architecture including privileged instructions and additional
functionality needed for running operating systems, attached external devices, and the
like, as described, for example, in “The RISC-V Instruction Set Manual Volume II:
Privileged Architecture, Version 1.7”, May 9, 2015, also referred to as the “RISC-V
privileged ISA”) which is incorporated by reference herein, and is publically available,
for example, at the RISCV.ORG website, and through the University of California at
Berkeley as Technical Report UCB/EECS-2015-49.

An embodiment of the RISC-V architecture may have four RISC-V privilege
levels as follows: level 0 for user/application (U) privilege level, level 1 for supervisor
(S) privilege level, level 2 for hypervisor (H) privilege level, and level 3 for machine
(M) privilege level. In the foregoing, RISC-V privilege levels may be ranked, highest

to lowest, from 0 to 3 where level O denotes the highest or greatest level of privilege and

63

10

15

20

25

WO 2017/106101 PCT/US2016/066188

level 3 denotes the lowest or minimum privilege level. Such privilege levels may be
used to provide protection between different components and attempts to execute code
that perform operations not permitted by the current privilege level or mode will cause
an exception to be raised such as traps into an underlying execution environment.
Machine level has the highest privileges and is the only mandatory privilege level for a
RISC-V hardware platform. Code run in machine-mode (M-mode) is inherently trusted,
as it has low-level access to the machine implementation. User-mode (U-mode) and
supervisor-mode (S-mode) are intended for conventional application and operating
system usage respectively, while hypervisor-mode (H-mode) is intended to support
virtual machine monitors. Each privilege level has a core set of privileged ISA
extensions with optional extensions and variants. It should be noted that an
implementation of the RISC-V architecture must support at least the M-mode and most
implementations support at least U-mode and M-mode. S-mode may be added to
provide further isolation between code of supervisor-level operating system and other
more privileged code executing in M-mode. User or application code may typically
execute in U-mode until a trap (e.g., supervisor call, page fault) or interrupt occurs
forcing a transfer of control to a trap handler which runs at one of the supported higher
privilege modes or levels (e.g., H, S or M mode). Code of the trap handler is then
executed and control may then be returned to the original user code or application
which caused the trap. Such execution of the user code or application may resume at or
after the original trapped instruction in U-mode that triggered the trap handler
invocation. Various combinations of supported modes in a RISC-V implementation
may include only: the single M mode, two modes -- M and U, three modes -- M, S and
U, or all four modes M, H, S, U. In at least one embodiment described herein, all 4 of
the foregoing privilege levels may be supported. At a minimum, an embodiment in
accordance with techniques herein may support M AND U modes.

The RISC-V architecture has control status registers (CSRs) that may be
atomically read and modified by one or more associated privilege levels. Generally, a

CSR may be accessible at a first of the four privilege levels and any other of the four

64

10

15

20

25

WO 2017/106101 PCT/US2016/066188

privilege levels higher than the first. For example, assume a program is executing in U-
mode (level 3) and a trap, such as a rule cache miss, occurs whereby control is
transferred to a trap handler, such as the rule cache miss handler code, running at a
higher privilege or mode (e.g., any of levels 0-2). Upon the occurrence of the trap,
information may be placed in CSRs accessible to the trap handler executing in M-mode,
for example, that are not otherwise accessible to any other code executing at a lower
privilege level (e.g., not accessible to code in H, S or U mode). In at least one
embodiment, the rule cache miss handler may run at a privilege level above the level of
PUMP protection (e.g., may run in H-mode, S-mode, or M-mode). In such an
embodiment, as described elsewhere herein, the tag definitions and policies may be
global across an operating system (e.g., per virtual machine) at the rule cache miss
handler level whereby the same tag definitions and policies may be applied across all
executing code. In at least one embodiment, per application or process policies may be
supported where such policies are installed globally and the PC (program counter
identifying the current instruction) and/or code may be tagged to distinguish process or
application-specific rules. In an embodiment where virtual machines (VMs) do not
share memory, policies may be defined at a per-VM basis.

Consistent with discussion elsewhere herein, the PUMP may be characterized as
a rule cache for SDMP. There may be a mapping between a set of tags on the
instruction and instruction inputs and tags for the result of the operation. Tag processing
is independent and parallel from the normal operations of the instruction. In at least one
embodiment, the PUMP runs in parallel with the normal RISC-V operations, supplying
the tags for the results of the operation. Since the PUMP is a cache, rule cache misses
occur the first time the PUMP receives a particular instruction, and thus a particular
corresponding set of PUMP inputs (e.g., compulsory) or when the PUMP was unable to
retain a rule in cache (e.g., capacity of cache exceeded therefore the rule was evicted
from the rule cache, or perhaps conflict). Rule cache misses cause a miss trap that is
then handled by code of a miss handler system (e.g., rule cache miss handler). Inputs

may be communicated to the miss handler through PUMP CSRs and rule insertion may

65

10

15

20

25

WO 2017/106101 PCT/US2016/066188

be provided back to the PUMP also through CSRs. This is discussed in more detail
below. A first embodiment is discussed elsewhere herein where there are S PUMP
input tags. As a variation, an embodiment may include a different number of tags and
other PUMP inputs. The particular number of PUMP tag inputs may vary with the
instruction set and operands. For example, the following may be included as PUMP

inputs in one embodiment based on the RISC-V architecture:

1. Opgrp — denotes particular opgroup include a current instruction. Generally, an
opgroup is an abstraction of a group of instructions and is discussed elsewhere herein.
2. PCtag — tag on the PC

Cltag — tag on the instruction
4. OPltag — tag on RS1 input to instruction
5. OP2tag — tag on RS2 input to instruction (or tag on CSR when a CSR

instruction)

6. OP3tag — tag on RS3 input to instruction

7. Mtag — tag on memory input to instruction or memory target of an instruction
8. funct12 (funct7) — extended opcode bits that occur in some instructions as

described elsewhere herein.
9. subinstr — when there are multiple instruction packed in a word, this input
identifies which instruction in the word is the current instruction being operated upon

by the PUMP.

The following may be included as PUMP outputs in one embodiment based on

the RISC-V architecture:

1. Rtag — tag on result: destination register, memory, or CSR
2. newPCtag — tag on the PC after this operation (e.g., sometimes referred to herein
as PCnew tag).

Information may be communicated, for example, from user code executing in U-

66

10

15

20

25

WO 2017/106101 PCT/US2016/066188

mode at the time of the trap occurrence to a trap handler, such as the rule cache miss
handler, executing in M-mode via CSRs. In a similar manner, information may be
communicated between the trap handler in M-mode when resuming program execution
in U-mode via CSRs where information in the CSRs may be placed in corresponding
registers accessible in U-mode. In this manner, there may be mapping between the
CSRs at one privilege level and registers at other privilege levels. For example, in an
embodiment in accordance with techniques herein, a CSR may be defined that is
accessible to the M-mode handler and PUMP where a particular instruction operand tag
is written to the CSR upon the occurrence of a trap to communicate the tag to the
PUMP and rule cache miss handler as an input. In a similar manner, the CSR may be
used to communicate information from the trap handler and/or PUMP (operating at a
privilege level higher than U-mode) to other code executing in U-mode such as when
resuming program execution after a rule cache miss (e.g., where rule cache miss occurs
when a matching rule is not found in the PUMP rule cache for a current instruction).
For example, a CSR may be used to output or propagate PUMP output tags for PCnew
and RD. Additionally, CSRs may be defined where different actions may occur
responsive to writing to a particular CSR. For example, the rule cache miss handler
code may write/insert a new rule into the rule cache of the PUMP by writing to a
particular CSR. The particular CSRs defined may vary with embodiment.

Referring to Figure 25, shown is an example of CSRs that may be defined and
used in one embodiment in accordance with techniques herein. The table 900 includes
a first column 902 with the CSR address in hexadecimal, a second column 904 of
privilege, a third column 906 denoting the CSR name, and a fourth column 908 with a
description of the CSR. Each line of the table 900 may identify information for a
different defined CSR. Different ones of the CSRs in 900 are also described elsewhere
herein in more detail in connection with additional features that may be included in an
embodiment.

Rows 901a-c identify CSRs having special tag values used for tagging code
and/or instructions by the PUMP. In at least one embodiment, the sboottag CSR

67

10

15

20

25

WO 2017/106101 PCT/US2016/066188

defined by entry 901a may include a first initial or starting tag value used in a system.
The foregoing starting tag value may be referred to as a bootstrap tag value. In one
aspect, the bootstrap tag value may be characterized as a “seed” from which all other
tags may be derived or based on. Thus, the bootstrap tag may be used in one
embodiment as a starting point for generating all other tags. In a manner similar to
initial loading of a starting location of bootstrap code in the operating system, hardware
may be used to initialize the CSR 901a to the particular predefined tag value used as the
bootstrap tag. Once the bootstrap tag has been read as part of booting a system in
accordance with techniques herein, the sboottag CSR may be cleared. For example, a
privileged portion of operating system code may include instructions which invoke
rules performing initial tag propagation using the bootstrap tag value. Use of the
bootstrap tag and tag generation and propagation are further described elsewhere herein.
Row 901b identifies a CSR containing the tag value used for tagging data from a public
untrusted source as described elsewhere herein. For Row 901c¢ identifies a CSR
containing a default tag value that may be used as a default tag value when tagging data
and/or instructions.

Rows 901d and e, respectively, denote the address and data for writing to the
opgroup/care table (e.g., also referred to elsewhere herein as a mapping or translation
table including opgroups and care/don’t care bits for opcodes). Writing to the CSR
denoted by row 901e triggers a write to the opgroup/care table. Row 901f identifies a
CSR that may be written to in order to flush the PUMP rule cache. Rows 901g-901m
identify CSRs providing tag inputs for a current instruction to the PUMP and rule cache
miss handler. Rows 901j-m each denote a different operand tag for an operand of the
current instruction being processed causing the rule cache miss whereby an instruction
may include up to 4 such operands (with 3 of the 4 operands being registers (CSRs
901j-1) and a 4™ operand being a memory location with a tag stored in the CSR denoted
by row 901m). Row 901n identifies a CSR holding the extended opcode bits when the
opcode of the current instruction uses the extended func12 field as described elsewhere

herein. Row 9010 identifies a CSR indicating which subinstruction in a word is the

68

10

15

20

25

WO 2017/106101 PCT/US2016/066188

current instruction being referenced. As discussed elsewhere herein, a single tagged
word may be 64 bits and each instruction may be 32 bits whereby two instructions may
be included in a single tagged word. The CSR denoted by row 9010 identifies which of
the two instructions is being processed by the PUMP. Rows 901p-q identify CSRs
including PUMP output tags, respectively, of the new PC (e.g., new PC tag for the next
instruction) and the RD (destination register, address for result of the current
instruction). Writing to the CSR denoted by 901q causes a write of the rule (e.g.,
matching a current instruction that triggered a PUMP rule cache miss) into the PUMP
rule cache. Row 901r identifies a tagmode for PUMP operation. Tagmodes are
described in more detail elsewhere herein.

In at least one embodiment, the one or more tables (e.g. opgroup/care table) used
to store opgroups and care/don’t care bits may be populated by writing to CSR
sopgrpvalue denoted by 901e where the contents of the foregoing CSR 901e is written
to the address stored in the sopgrpaddr CSR denoted by 901d. A rule may be written
or installed into the PUMP rule cache responsive to writing to the srtag CSR define by
entry 901q. The rule written is the rule specifying tag values matching the opcode (or
more specifically the opgroup for the opcode) and tag values for the current instruction
as input to the PUMP via PUMP CSRs (e.g., based on PUMP CSR inputs 901g-0).

To allow tagging and tag protection on CSR operations, the dataflow allows
CSR tags to be inputs to, and outputs from the PUMP. In accordance with the RISC-V
architecture, there are read and write instructions, respectively, to read from, and write
to, CSRs. In connection with a CSR instruction with the PUMP, the R2tag input to the
PUMP is the current CSR tag. The CSR read/write instructions (e.g., CSrrc, CSIrel, CSIrs,
csrrsi, csrrw, csrrwi) write two outputs: (1) RD, and (2) the CSR referenced by the
instruction. In this case, the PUMP output R tag (or RD tag of the destination) specifies
the CSR tag output by the PUMP and copying the CSRtag directly to the register
destination tag:

. RDtag«—CSRtag
. CSRtag«Rtag

69

10

15

20

25

WO 2017/106101 PCT/US2016/066188

In connection with privilege denoted by column 904, CSR mtagmode, defined
by row 901r, is accessible for read/write by code executing at the machine or M-mode
level. The remaining CSRs defined by rows 901a-q are accessible for read/write by
code executing at least at the supervisor or S-mode level. Thus, the privileges indicated
in column 904 for the various CSRs denote a minimum RISC-V privilege level of
executing code in order for the code to access the particular CSR. An embodiment may
assign different RISC-V privilege levels with CSRs used in an embodiment than as
illustrated in the example 900.

An embodiment in accordance with techniques herein may define multiple tag
modes affecting tag propagation performed by the PUMP. The current tag mode is
identified by the value at a current in point in time stored in the CSR mtagmode as
defined by row 901r. In at least one embodiment, tag mode may be used in
combination with the RISC-V defined privileges (e.g., M, H, S and U modes described
above) to define a CSR protection model used in connection with the PUMP.

In order to allow the rule cache miss handler placement to be configurable, a
protection model may be utilized that further extends the RISC-V privileges. Rather
than defining PUMP CSR access entirely by privilege level, CSR access may be further
defined relative to the current tag mode in combination with the RISC-V privilege
levels. Thus, in at least one embodiment in accordance with techniques herein, whether
executing code is allowed to access a CSR may depend on the minimum RISC-V
privilege level of the CSR, the current tag mode and the current RISC-V privilege level
of the executing code. Tag modes are discussed below in more detail.

Referring to Figure 26, shown is an example of tag modes that may be used in
an embodiment in accordance with techniques herein. The table 910 includes the
following columns -- 912 mtagmode bit encoding, 914 operation and 916 tag results.
Each row of table 910 denotes information for a different possible tag mode. When tag
mode is 000 as denoted by 911a, the PUMP is off and is not in use and does not
generate any tag results. When tag mode is 010, the PUMP writes the default tag on all

results (e.g., Rtag for destination or result register or memory location).

70

10

15

20

25

WO 2017/106101 PCT/US2016/066188

In connection with rows 911c¢-f, denoted are different tag modes that may be
specified for engaging or disengaging the PUMP for code executing at different RISC-
V privilege levels. When the PUMP is engaged, the PUMP may be characterized as
active, enabled and providing protection when code is executed whereby the rules of its
policies are enforced during code execution. In contrast, when the PUMP is
disengaged, the PUMP may be characterized as inactive, disabled and not providing
protection when code is executed whereby rules of its policies are not enforced during
code execution. When the PUMP is disengaged, tags may be propagated using one or
more default tag propagation rules rather than have tags propagated based on evaluation
of a rule with tag values matching those of the current instruction. Whether the PUMP
is engaged or disengaged may vary with the particular assumed level of trust and
desired level of protection attributed to code that executes at different RISC-V privilege
levels.

In connection with tag modes 911c-f, all PUMP CSRs of the example 900,
except for the mtagmode CSR denoted by 901r, may be accessible only when the
PUMP is disengaged. That is, PUMP CSRs of the example 900, except for the
mtagmode CSR denoted by 901r, are only accessible to code executing at a current
RISC-V operating privilege or mode that is more privileged than the highest ranked
PUMP privilege denoted by the tag mode (e.g., highest ranked privilege denoted by
911c is U mode, highest ranked privilege denoted by 911d is S mode, highest ranked
privilege denoted by 911e is H mode, and highest ranked privilege denoted by 911f is
M mode).

When tag mode is 100 as denoted by 911c, the PUMP is disengaged and not
operational when the RISC-V privilege level denotes a higher or more elevated
privilege level than U-mode. Thus, tag mode 911c indicates that the PUMP and its
rules providing protection are only engaged and enforced when code executes at U-
mode thereby indicating that code executing at a privilege level higher than U-mode

(e.g., at S, M, or H mode) is trusted. When tag mode is 100 as denoted by 911c¢ and the

71

10

15

20

25

WO 2017/106101 PCT/US2016/066188

RISC-V protection level of executing code is S, M, or H mode, the PUMP is disengaged
and its CSRs are accessible to code that executes only in the S, M or H mode (e.g.,
CSRs are not accessible to code executing in U-mode).

When tag mode is 101 as denoted by 911d, the PUMP is disengaged and not
operational when the RISC-V privilege level denotes a higher or more elevated
privilege level than S-mode. Thus, tag mode 911d indicates that the PUMP and its
rules providing protection are only engaged and enforced when code executes at S-
mode and U-mode thereby indicating that code executing at a privilege level higher
than S-mode (e.g., at M or H mode) is trusted. When tag mode is 101 as denoted by
911d and the RISC-V protection level of executing code is M or H mode, the PUMP is
disengaged and its CSRs are accessible to code that executes only in the M or H mode
(e.g., CSRs are not accessible to code executing in S or U mode).

When tag mode is 110 as denoted by 911e, the PUMP is disengaged and not
operational when the RISC-V privilege level denotes a higher or more elevated
privilege level than H-mode. Thus, tag mode 911e indicates that the PUMP and its
rules providing protection are only engaged and enforced when code executes at H-
mode, S-mode and U-mode thereby indicating that code executing at a privilege level
higher than H-mode (e.g., at M mode) is trusted. When the tag mode is 110 as denoted
by 911e and the RISC-V protection level of executing code is M mode, the PUMP is
disengaged and its CSRs are accessible to code that executes only in the M mode (e.g.,
CSRs are not accessible to code executing in U, H or S mode).

When tag mode is 111 as denoted by 911f, the PUMP is always engaged and
operational for all the RISC-V privilege levels of M, H, S and U. Thus, tag mode 911f
indicates that the PUMP and its rules providing protection are engaged and enforced
when code executes at any of M-mode, H-mode, S-mode and U-mode thereby
indicating that no code is inherently trusted. With tag mode=111 as denoted by 911f, the
PUMP is never disengaged and its CSRs are not accessible to any executing code.

In connection with tag modes denoted by rows 911c-f, when the current RISC-V

privilege level of executing code is higher than the highest engaged PUMP level

72

10

15

20

25

WO 2017/106101 PCT/US2016/066188

denoted by tag mode, the PUMP may be disengaged and tags may be propagated using
one or more default tag propagation rules.

When the tag mode has an encoding of 000 as denoted by row 911a (indicating
the PUMP is off) or when the tag mode has an encoding of 010 as denoted by row 911b
(indicating write default mode), all CSRs of table 900 may only be accessible by code
executing in M mode.

Thus, in at least one embodiment in accordance with techniques herein, whether
executing code is allowed to access a CSR may depend on the minimum RISC-V
privilege level of the CSR (such as specified in column 904 of table 900), the current
tag mode, and the current RISC-V privilege level of the executing code. For example,
in the RISC-V architecture without considering tag mode, code executing at U-mode is
not allowed to access any of the CSRs defined in 900 due to the minimum privilege
levels denoted by 904 for all such CSRs. However, without considering tag mode, code
executing with a privilege of at least H-mode is allowed access to all CSRs of 900
except for 901r and code executing in M mode is allowed to access all CSRs of 900.
Now consider determining CSR access for CSRs of 900 in accordance with the
minimum RISC-V privilege of 904 and tag mode. For example, consider code portion
A executing at H-level. Code portion A is allowed to access CSRs 901a-q (of table
900) when the tag mode is 100 as denoted by 911c or when the tag mode is 101 as
denoted by 911d. Code portion B executing in S mode, however, may not be allowed
access to CSRs 901a-q since it does not have the minimum privilege level specified by
the defined CSR privilege level in 904 for such CSRs. Thus, for example, code portion
A may be the cache miss handler in one embodiment executing at H-level using CSRs
as defined in table 900. As a second example, assume the minimum RISC-V privilege
defined for CSRs 901a-q i1s SRW (denoting S mode as the minimum privilege level to
access such CSRs). Code portion A executing in H mode is allowed to access CSRs
901a-q when the tag mode is 100 as in 911c and when the tag mode is 101 as in 911d,
and code portion B executing in S mode is allowed to access CSRs 901a-q when the tag

mode is 100 as in 911¢. Thus, code portion A or B may be code of the cache miss

73

10

15

20

25

WO 2017/106101 PCT/US2016/066188

handler.

In at least one embodiment, the off tag mode of 911a may be current tag mode
when the PUMP is off such as during appropriate parts of the boot up process. The
default tag tag mode of 911b may be the current tag mode when initializing memory
locations to have the same default tag (e.g., as denoted by CSR 901c). Generally,
although 4 privilege modes are specified in the RISC-V architecture, an embodiment
may alternatively use a different number of privilege modes where a first privilege level
denotes a user mode or unprivileged mode and a second privilege level denotes an
elevated or privileged mode of execution (e.g., similar to kernel mode in a UNIX based
operating system). In such an embodiment, the PUMP may be engaged and enforcing
policy rules when executing code in user or unprivileged mode and the PUMP may be
disengaged (e.g., PUMP protection off or not enforcing rules) when executing code in
the second elevated privilege mode. In this manner, an embodiment may disengage the
PUMP when executing trusted or elevated privilege code such as a miss handler to store
a new rule in the PUMP rule cache.

As noted above, an embodiment may use default propagation rules to determine
PUMP outputs new PC tag and R tag, for example, when the PUMP is disengaged
and/or when the rule specifies don’t care for the PUMP outputs new PC tag and R tag
(e.g., such don’t care values may be indicated by the care vector for a particular opcode
of the current instruction). In one embodiment, the following may denote logic

embodied in default propagation rules used.

. newPCtag is PCtag for default propagation
. Rtag is RS1tag for CSR read and write operations ; RDtag is assigned RS2tag
(CSRtag)

- allows tags to swap along with data values
— RDtag «<— RS2tag < original CSRtag
- CSRtag < Rtag < original RS1tag

74

10

15

20

25

WO 2017/106101 PCT/US2016/066188

. Rtag is RS2tag (CSRtag) for CSRR?I, CSRRS, CSRRC

- keeps CSRtag unchanged
— RDtag «<— RS2tag < original CSRtag
— CSRtag «<— Rtag < original RS2tag < original CSRtag

. Rtag is PCtag for JAL and JALR instructions (this is for the return address)

. Rtag is PCtag for AUIPC instruction. In RISC-V, the AUIPC (add upper
immediate to PC) instruction is used to build PC-relative addresses and uses the U-type
format. AUIPC forms a 32-bit offset from the 20-bit U-immediate, filling in the lowest

12 bits with zeros, adds this offset to the PC, then places the result in register rd.

. Rtag is Cltag for LUI instruction. In RISC-V, the LUI (load upper immediate)
instruction is used to build 32-bit constants and uses the U-type format. LUI places the
U-immediate value in the top 20 bits of the destination register RD, filling in the lowest

12 bits with zeros.

. Rtag is RS1tag for non-memory, non-CSR, non-JAL(R)/AUIPC/LUI operations
. Rtag is RS2tag for memory write operations

. Rtag is Mtag for memory load operations

In at least one embodiment of techniques herein based on the RISC-V
architecture, a new PUMP miss trap may be defined for a rule cache miss occurrence.
The PUMP miss trap may have a lower priority than virtual memory fault or illegal
instructions.

In at least one embodiment in accordance with techniques herein using the
RISC-V architecture, strict separation and isolation between data and metadata may be

maintained where there is separation and isolation between tag metadata processing and

75

10

15

20

25

WO 2017/106101 PCT/US2016/066188

normal instruction processing. Thus, separate execution domains between metadata
rule processing and normal or typical program instruction execution may be maintained.
Metadata processing performed using the PUMP for tags associated with instructions
and data of executing code may be performed. A PUMP rule cache miss results in a
trap causing transfer of control to a rule cache miss handler that generates or retrieves a
rule matching the current instruction and stores the rule in the PUMP rule cache.
Information may be communicated between the above-noted execution domains using
CSRs. When switching from the instruction execution domain of an executing program
to the metadata rule processing domain (such as when the rule cache miss handler is
triggered via rule cache miss trap), tags and other information relevant to the instruction
(causing the trap) may be provided as inputs to the PUMP and also the miss handler
using CSRs. In a similar manner, when transferring control from the metadata rule
processing domain to the instruction execution domain of an executing program (such
as when returning from the rule cache miss handler after handling a rule cache miss
trap), PUMP outputs may be communicated using CSRs where the contents of the CSRs
are then stored in corresponding mapped registers in the instruction execution domain.
Consistent with discussion herein, an instruction which does not map to a rule (e.g., no
matching rule for the instruction is located in the cache and the cache miss handler
determines that no such matching rule exists for the current instruction) indicates that
the rule is not allowed to execute whereby a trap or other event is triggered. For
example, the processor may stop execution of the current program code.

In this manner, there may be strict separation between the foregoing domains
and associated data paths even though the same RISC-V processor and memory may be
used in both domains. Using techniques herein, no instructions of executing code are
allowed to read or write metadata tags or rules. All metadata transformations including
tagging instructions and data may be done through the PUMP. Similarly, rule insertion
into the PUMP cache may be performed only by the rule cache miss handler of the
metadata subsystem. In connection with processing performed by the metadata

subsystem or processing system, the metadata tags of the executing code are placed in

76

10

15

20

25

WO 2017/106101 PCT/US2016/066188

PUMP CSRs and become the “data” input to, and operated upon, by the metadata
system (e.g., pointers are into metadata memory space). The metadata subsystem reads
the PUMP inputs via the PUMP input CSRs for processing in accordance with rules. If
the instruction is allowed to proceed via the rules, the PUMP writes tag results (e.g.,
such as for PC new and R tag) to defined PUMP output CSRs. Rule insertion into the
rule cache may be triggered responsive to writing to a particular CSR (e.g., such as the
srtag CSR in 901q). In this manner, all tag updates are done through rules in the PUMP
and controlled by the metadata subsystem. Only the metadata subsystem can insert
rules into the PUMP cache via the cache miss handler invoked upon occurrence of a
rule cache miss. Additionally, in at least one embodiment as described herein using the
RISC-V architecture, the foregoing separation between metadata processing and normal
instruction processing may be maintained without adding any new instructions beyond
those in the “RISC-V user level ISA” and the “RISC-V privileged ISA”. Consistent
with discussion elsewhere herein, an embodiment in accordance with techniques herein
may maintain strict separation and isolation between data and metadata whereby there is
separation between metadata processing based on tags and normal instruction
processing. In at least one embodiment, such separation may be maintained by having
a separate physical metadata processing subsystem with a separate processor and a
separate memory. Thus, a first processor and a first memory may be used when
processing instructions of an executing program and a second processor and a second
memory may be included in the metadata processing subsystem for use with performing
metadata processing such as when executing code of the rule cache miss handler.
Referring to Figure 27, shown is an example 1000 of components that may be
included in an embodiment in accordance with techniques herein. The example 1000
includes a first subsystem or processor 1002 used in connection with normal processing
for an executing program and a metadata processing subsystem or processor 1004. The
first subsystem 1002 may be characterized as a program execution subsystem used in
connection with normal program execution. The subsystem 1002 is a processor that

includes components used in connection with executing program code and using data

77

10

15

20

25

WO 2017/106101 PCT/US2016/066188

where such code and data includes tags as described elsewhere herein for use with the
metadata processing subsystem 1004. The subsystem 1002 includes memory 1008a,
instruction or I-store 1008b, ALU (arithmetic and logic unit) 1008d, and program
counter (PC) 1008e. It should be noted that the PUMP 1003 may be used in connection
with execution of code in subsystem 1002 but may be considered as part of the
metadata processing subsystem 1004. All code and data in the subsystem 1002 may be
tagged such as generally illustrated by tag 1002a associated with data 1002b where
1002a and 1002b may be stored in memory 1008a. Similarly, element 1001a denotes a
tag on an instruction of the PC 1008e, 1001b denotes tags of instructions 1008b, 1001c
denotes tags of memory locations 1008a, and 1001d denotes tags of registers 1008c.
Metadata processing subsystem 1004 is a processor (also referred to as the
metadata processor) that includes components used in connection with metadata rule
processing using tags of a current instruction and associated data provided as inputs to
the PUMP 1003. The PUMP 1003 may be as described elsewhere herein and includes a
rule cache. For example, in at least one embodiment, the PUMP 1003 may include the
components illustrated in Figure 22. More detailed illustration and example of
components of the PUMP 1003, associated PUMP CSRs used for PUMP inputs and
outputs and associated logic that may be included in at least one embodiment in
accordance with techniques herein are described in more detail below and elsewhere
herein. The subsystem 1004 is a separate processor used for metadata processing and
includes components similar to those of subsystem 1002. The subsystem 1004 includes
memory 1006a, I-store 1006b, register file 1006b, and ALU 1006d. Memory 1006a
may include metadata structures used in connection with metadata rule processing. For
example, memory 1006a may include the structures or data that is pointed to by a tag
that is a pointer. Examples of a pointer tag and structures/data pointed to by the pointer
tag are described elsewhere herein such as in connection with a CFI policy. I-store
1006b and memory 1006a may include instructions or code such as the miss handler
that performs metadata processing. The metadata processor 1004 does not need access

to other components of 1002, such as data memory 1008a used in connection with

78

10

15

20

25

WO 2017/106101 PCT/US2016/066188

program execution, since the metadata processor 1004 only performs metadata
processing (e.g., based on tags and rules). The subsystem 1004 includes its own
components, such as a separate memory 1006a, and does not need to store metadata
processing code and data in the subsystem 1002. Rather, any information, such as tags
of a current instruction that may be used by the PUMP 1003 are provided as inputs
(e.g., PUMP inputs 1007) to the metadata processing subsystem 1004.

The example 1000 illustrates an alternative embodiment having a separate
metadata processing subsystem 1004 rather than performing metadata processing on the
same subsystem as used for normal program execution as described elsewhere herein.
For example, rather than have a separate metadata processor or subsystem 1004, an
embodiment may include only the PUMP 1003 and subsystem 1002. In such an
embodiment with a single processor, CSRs may be used as described herein to
communicate information between the metadata processing and normal processing
mode executing a user program to thereby provide isolation and separation. In such an
embodiment with a single processor rather than a separate metadata processor, code of
the miss handler may be stored in the single memory in a manner so that it is protected.
For example, without a separate metadata processor or subsystem, the code of the miss
handler may be protected using tags as described elsewhere herein to limit access, may
be mapped to a portion of memory that is not addressable by user code, and the like.

What will now be described are further details regarding PUMP 1/O
(input/output). It should be noted that PUMP I/O described below applies to
embodiments of the PUMP which may use the same processor or subsystem as for
normal code execution as well as those which may use separate processors or
subsystems such as in the example 1000. Furthermore, the PUMP 1/O described below
may be used with an embodiment based on the RISC-V architecture and may be
generalized for use with other processor architectures.

Referring to Figure 28, shown is an example 1010 summarizing PUMP /O in an
embodiment in accordance with techniques herein. As described elsewhere herein such

as in connection with Figures 1 and 24, the PUMP operates in stages 5 and 6. The

79

10

15

20

25

WO 2017/106101 PCT/US2016/066188

PUMP inputs are used in connection with normal PUMP verification (e.g., verify
whether current instruction is allowed using policy rules) to find a matching rule, if any,
in the rule cache of the PUMP for the current instruction. The normal PUMP
verification may occur for every instruction such as part at stage 5 as described
elsewhere herein with a 6 stage pipeline. Additionally, the PUMP inputs may be used in
connection with controlling rule insertion into the rule cache such as may occur in stage
6 of the 6 stage pipeline. The PUMP /O associated with normal PUMP verification is
denoted in the example 1010 by inputs and outputs in the vertical direction from top
(inputs 1012) to bottom (outputs 1014). The PUMP I/O associated with controlling rule
insertion into the PUMP rule cache is denoted in the example 1010 by inputs and
outputs in the horizontal direction from left (inputs 1016) to right (output 1018)
Additionally, element 1012 denotes additional inputs also used in connection with rule
insertion, as described elsewhere in more detail.

First, consider the PUMP 1/O associated with normal PUMP verification
processing. PUMP inputs 1012 may include tags, such as the PC tag, the CI tag,
instruction operand tags (e.g., OP1 tag, OP2 tag or CSR tag (for CSR-based instructions
in RISC-V), OP3 tag, M Tag (for a memory location tag for memory instructions. Note
that Mtag may also be referred to herein as the MR tag for a memory instruction),
opcode information (e.g., op group denoted by Opgrp input, funct12 (funct7) input for
RISC-V for extended opcodes, subinstr input providing an indicator of which
instruction is the current instruction in an instruction word including multiple
instructions such as in examples 200 and 220) and care input bits. The Opgrp may be
the opgroup for the current instruction where Opgrp may be an output of a prior stage
(e.g., stage 3 or stage 4) as described elsewhere herein. Funct 12 (funct 7) PUMP input
may be the additional opcode bits, if any, for those RISC-V opcodes using additional
bits of the instruction word (e.g., example 400). PUMP outputs 1014 may include Rtag
(e.g., tag for the instruction result register or destination memory location), PC new tag
(denoting the propagated tag placed on the PC used for the next instruction), and an

indicator 1014a denoting whether there has been a PUMP rule cache miss resulting in a

80

10

15

20

25

WO 2017/106101 PCT/US2016/066188

trap to the miss handler in stage 6.

The care bits 1012a may denote which PUMP inputs 1012 and which PUMP
outputs 1014 are cared/not care about (e.g., ignored) for a particular instruction. Care
bits regarding PUMP inputs may include a care bit for funct12 and a second care bit for
funct7. As described elsewhere herein, both of the foregoing care bits denote whether
the particular opcode of the current instruction includes any bits for the extended 12
opcode bit portion for a RISC-V instruction (e.g. 404a of the example 400). If both
funct12 and funct7 care bits are “don’t care”, then all 12 bits of the extended 12 opcode
bit portion are masked out. If funct7 indicates “care”, then all the bottom 5 bits of the
extended 12 opcode bit portion are masked out. If funct12 indicates “care”, then there
is no masking of the extended 12 opcode bit portion.

Now consider the PUMP I/O associated with controlling rule insertion into the
PUMP rule cache. PUMP inputs 1016 may be used in combination with inputs 1012 in
connection with the PUMP cache rule insertion. PUMP inputs 1016 may include
Opldata (an output from the metadata processor or subsystem), the instruction (from
stage 6), and the tag mode (an output from the metadata processor or subsystem) and
privilege (priv denoting the RISC-V privilege). The tag mode and priv inputs of 1016
are used by the metadata processor or subsystem to determine whether code, such as the
miss handler or other code, executing in the metadata processor has sufficient privilege
to access the CSRs described below and elsewhere herein providing the various inputs
to the metadata processor (e.g., such as inputs 1012). Rdata 1018 is an input to the
metadata processor or subsystem for use in stage 6 (e.g., cache miss handler processing
input). It should be noted that Opldata, R data, and other items of the example 1010 are
described in more detail in following paragraphs and figures.

Thus generally, in the example 1010, element 1012 denotes inputs to the PUMP
and metadata processor from the processor executing user code (e.g. non-metadata
processor or subsystem such as 1002), element 1014 denotes outputs generated by the
metadata processor, element 1016 denotes outputs generated by the metadata processor

input to the PUMP, and element 1018 denotes an input to the metadata processor.

81

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Referring to Figure 29, shown is an example 1020 summarizing the I/O in
connection with the opgroup/care table (e.g., element 422 of example 420) in an
embodiment in accordance with techniques herein. As described elsewhere herein, the
opgroup/care table may be used for each instruction to lookup and output an opgroup
and care bits for the opcode of the current instruction. This first flow of I/O is
illustrated in 1020 by inputs and outputs in the vertical direction from top (input 1022)
to bottom (outputs 1024). As described elsewhere herein, the input 1022 may be the
opcode or a portion thereof (e.g., such as described in connection with example of the
opcode portion in the example 420) used an index into the opcode/care table. Input
1022 may be from stage 3. The outputs 1024 may be the opgroup (opgrp) and care bits
for the particular opcode. The outputs 1024 are inputs to stage 5 (e.g., two of the
PUMP inputs oprgrp and care as included in 1012).

A second flow of I/O is illustrated in 1020 by inputs and outputs in the
horizontal direction from left (inputs 1026) to right (output 1028). The second flow of
I/O in 1020 is illustrative of processing performed in connection with controlling the
selection of PUMP output Rdata 1028 which is input to the metadata processor or stage
6. The inputs 1026 are as described above in connection with 1016. The output 1028 is
as described above in connection with 1018.

Referring to Figure 30, shown is an example 1030 abstractly representing
processing performed by the PUMP in an embodiment in accordance with techniques
herein. The example 1030 includes PUMP control 1031 which corresponds to the
PUMP control for rule insertion described above in connection with the horizontal
PUMP I/O flow in the example 1010 (e.g., elements 1012, 1016 and 1018). The
example 1030 includes masking 1032, hash 1034, rule cache lookup 1036 and output
tag selection 1038 which corresponds to the normal PUMP verification path I/O flow
performed for each instruction as described above in connection with the vertical PUMP
I/O flow in the example 1010 (e.g., elements 1012 and 1014). The masking 1032
denotes applying the care bits of 1012 to mask out unused PUMP inputs of 1012. The

82

10

15

20

25

WO 2017/106101 PCT/US2016/066188

hash 1034 denotes computation of the hash used during the rule cache lookup denoted
by 1036. Components that may be used in implementing the logic denoted by 1032,
1034 and 1036 in one embodiment are illustrated and described in connection with
Figure 22. The output tag select 1038 denotes selection of PUMP outputs Rtag and PC
new tag as included in 1014 based on the care vector bits (care included in inputs 1012)
and the htagmode CSR (denoting the current tag mode).

Referring to Figure 31, shown is an example 1040 denoting components that
may be used to implement logic of the output tag select 1038 of the PUMP in an
embodiment in accordance with techniques herein. The example 1040 includes
multiplexers (MUXs) 1043a-b. Generally, MUX 1043a may be used to select the final
tag value for PC new tag 1043 as output by the PUMP (e.g., PC new tag of 1014), and
MUX 1043b may be used to select the final tag value for R tag 1047 as output by the
PUMP (e.g., R tag of 1014). Element 1042 denotes the inputs used as the selector for
MUX 1043a. The inputs 1042 are used are used to select either 1041a or 1041b as the
PC new tag 1043. The inputs 1042 may include the PCnew tag care bit (e.g., from care
bits of 1012) logically ANDed (&&) with engaged (a Boolean denoting whether or not
the PUMP is engaged). Element 1043 denotes the inputs used as the selector for MUX
1043b. The inputs 1043 are used to select one of the inputs denoted by 1045a-1045b as
the R tag 1047. The inputs 1043 may include the Rtag care bit (e.g., form care bits of
1012) logically ANDed (&&) with engaged. Thus, generally the care bits included in
the PUMP inputs 1012 identify which PUMP inputs are don’t cares (are masked out)
and which PUMP outputs (Rtag and PCnew tag) are don’t cares (are masked out).
Also, outputs 1043 and 1047 are treated as “don’t care” values when the PUMP is
disengaged because the processor is running at a higher privilege level than the current
tagmode specifies as the threshold for PUMP operation.

Element 1049 denotes how the Boolean engaged is determined as a function of
current RISC-V privilege and the current tagmode. Element 1049 includes a logical
expression using standard notation known in the art whereby “A==B” denotes if a

logical test for equality between A and B, “A && B” denotes a logical AND operation

&3

10

15

20

25

WO 2017/106101 PCT/US2016/066188

of A and B, and “A||B” denotes a logical inclusive OR operation between A and B.

Element 1041a and 1045a denote inputs to 1043a which are outputs from the
rule cache lookup 1036. PC tag 1041b is the PC tag included in the PUMP inputs 1012.
Other inputs 1041b generally denote multiple other inputs that may be possibly selected
as the final R tag 1047 output by the PUMP. For example, in one embodiment, other
inputs 1041b may include M tag, PC tag, CI tag, OP1 tag, OP2 tag, OP3 tag, and
possibly others depending on the instruction. The particular R tag output 1047 may
vary with the particular RISC-V instruction/opcode.

The following may summarize particular values for R tag 1047 and PC new tag
1043 generated as PUMP output values in one embodiment. It should be noted that
following indicates particular R tag output values for different RISC-V instructions.
Thus, the particular R tag values output as the final PUMP R tag value may vary with
the instructions that utilize such PUMP outputs in connection with subsequent metadata

processing.

1. PCtag does not change when output care bit is off for PC new tag
2. Rtag is Opltag for CSRRW operations

3. Rtagis Op2tag (CSRtag) for CSRR?I, CSRRS, CSRRC operations

4. Rtag is PCtag for JAL and JALR instructions

5. Rtag is PCtag for AUIPC instruction

6. Rtag is Cltag for LUI instruction

7. Rtag is Opltag for non-memory, non-CSR, non-JAL(R)/AUIPC/LUI operations
when output care bit is off (indicates care for Rtag).

8. Rtag is Op2tag for memory write operations when output care bit is off

9. Rtag is Mtag for memory load operations when output care bit is off

Referring to Figure 32, shown is an example 1050 of components that may
be used to control PUMP I/O in an embodiment in accordance with techniques herein.

Generally, referring back to the example 1030, the components of 1050 may comprise

84

10

15

20

25

WO 2017/106101 PCT/US2016/066188

another layer logically on top of 1032 (e.g., interfacing with components of Figure 22).
Elements M1-M14 denote multiplexers used for selection of various inputs thereto.
Element 1052 generally denotes the inputs opcode, PC tag, CI tag, Opl tag, Op2 tag, Op3
tag, and M tag from 1012 for the current instruction. Element 1056 generally refers to a
row of registers used to store the selected outputs of multiplexers M1-M7. In one
embodiment based on the RISC-V architecture, each of the boxes in row 1056 may be a
register, and in particular, a CSR containing a particular value as described elsewhere
herein (e.g. the example 900 denoting CSRs that may be used in one embodiment).

It should be noted that element 1052 of the example 1050 does not include all of
the inputs of 1012. For example, funct12 (funct7) and subinstr inputs of 1012 are not
illustrated in the example 1050 for purposes of simplicity. However, one of ordinary
skill in the art appreciates that the inputs funct12 (funct7) and subinstr from 1012 may
also be included in 1052. More generally, the inputs 1052 may be adapted for the
particular inputs to metadata rule processing that may be used in an embodiment.

When the PUMP is performing processing for an instruction for normal PUMP
verification (e.g., verify whether current instruction is allowed using policy rules), the
inputs 1052 may simply pass through as the outputs 1054. The outputs 1054 in this
case flow through to the PUMP as inputs such as inputs to components of Figure 22 (or
more generally pass through to the metadata processor or subsystem) for metadata
processing. With normal PUMP verification, the PUMP may then produce outputs 1014
(e.g., Rtag and PC new tag if a matching rule for the current instruction is found in the
rule cache and otherwise generating a cache miss 1014a).

Upon the occurrence of a rule cache miss, as a first step, the current values from
1052 for the current instruction are loaded into registers G1-G7 of 1056. Thus, G1-G7
includes a snapshot of the opcode and tag values for the current instruction that caused
the rule cache miss and such values may now be used in connection with subsequent
processing by the cache miss handler reading out the one or more desired values of G1-
G7 as needed for such processing.

Thus, in a second step, the cache miss handler executes, reads as inputs values

85

10

15

20

25

WO 2017/106101 PCT/US2016/066188

from G1-G7 and generates the new rule for the current instruction. Multiplexer M16
may be used to control selection of the various possible inputs from G1-G7 where the
selected output from M10 is denoted as R data 1053 for processing by the cache miss
handler (e.g. which may execute on either the same processor as when executing
program code or may otherwise executed on a separate metadata processor such as in
the example 1000). Given the inputs G1-G7 for the current instruction causing the rules
cache miss, the cache miss handler performs processing to determine the new rule to be
inserted into the cache. The cache miss handler generates outputs R tag and PC new tag
for the new rule just determined, writes the Rtag to the Rtag CSR G8, and writes the PC
new tag to the PC new CSR G9. In the example 1050, Opldata 1051 denotes the
outputs generated by the metadata processor such as the outputs Rtag and PC new tag
for the new rule where such outputs are then stored in CSRs G8 and G9 as described.

At this time, the values in CSRs G1-G9 are the tag values for the new rule just
generated by the cache miss handler and may be inserted/written to the rule cache as the
new rule in a third step. In at least one embodiment using techniques herein with the
RISC-V architecture, writing to the R tag CSR denoted by G8 triggers writing of the
new rule (e.g., contents of CSRs G1-G9) to the rule cache. In connection with rule
insertion, CSRs G1-G7 are provided as output 1052 and CSRs G8 and G9 are provided
as output 1055 to the PUMP for storing into the rule cache. More specifically, in one
embodiment, the outputs 1052 and 1055 may be provided to the components of Figure
22 for rule insertion.

In the simple case, an embodiment may insert one new rule to satisfy the current
rule miss by writing the contents of CSRs G1-G9 for the new rule to the PUMP rule
cache as just described (e.g., via outputs 1052 and 1055). In such an embodiment, the
multiplexers M1-M7 are not needed since Opldata 1051 output by the metadata rule
processor executing the cache miss handler only generates R tag and PC new tag for the
new rule. However, an embodiment may also allow for rule prefetching or inserting
multiple rules into the rule cache. For example, upon the occurrence of a rule cache

miss, the cache miss handler may determine multiple rules to be written to/inserted into

86

10

15

20

25

WO 2017/106101 PCT/US2016/066188

the rule cache rather than just a single new rule for the current instruction. In this case,
the Opldata 1051 may include additional new values for the opcode, PCtag, Cltag,
Opltag, Op2tag, Op3tag and Mtag (written to CSRs G1-G7) as well as new values for
the Rtag and PC new tag (as written to CSRs G8 and G9). In such a case, multiplexers
M1-M7 may be used to select the foregoing new values from Opldata 1051 as inputs,
respectively, for CSRs G1-G7.

Generally, Opldata 1051 denotes output from the metadata processor to the
PUMP and R data 1053 denotes output from the PUMP to the metadata processor.
Also, element 1052 denotes inputs to the PUMP from the processor executing user code
(e.g., as part of normal instruction processing) where values for element 1054 are equal
to those as in 1052 when performing normal PUMP verification (e.g., verify whether
current instruction is allowed using policy rules).

Referring to Figure 33, shown is an example 1060 illustrating PUMP processing
stages in combination with a 6 stage processor pipeline in one embodiment in
accordance with techniques herein with a RISC-V architecture with branch prediction.
The example 1060 illustrates a 6 stage pipeline with stage 1 including fetching the next
instruction to be executed (e.g., storing fetched instruction in I cache 1063a) and branch
prediction, stage 2 denoting the decode instruction stage, stage 3 including obtaining
values from registers (e.g., register read) and branch resolution for the current
instruction, stage 4 including instruction execution (e.g., execute fast ALU operations
and launch multi-stage operations such as floating point (FP), integer multiplication and
division), stage 5 including receiving responses to multi-stage operations and requesting
memory operands, and stage 6 including committing instructions (e.g., storing result to
destination and in data cache 1063b as denoted by 1069), and handling exceptions, traps
and interrupts. Also shown in the example 1060 are the PUMP processing stages.
Element 1062 indicates that the opgrp/care table lookup may be performed in stage 3
with the output 1062a provided as an input in stage 4 to the PUMP hash 1064. Other
inputs to PUMP hash 1064 include the Mtag 1061 (e.g., tag of memory location that is

an operand for the current instruction) and other tag values 1062b whereby inputs 1061

87

10

15

20

25

WO 2017/106101 PCT/US2016/066188

and 1062a-b are used to determine output 1064a denoting a cache address or location in
the PUMP rule cache 1066. Examples of other tag values 1062b of instruction
operands, the PC, current instruction, and the like, are described elsewhere herein and
may be used in connection with determining a location in the rule cache 1066 for the
current instruction (e.g., Figure 22). Element 1068 denotes cache rule miss detection
based on outputs 1066a of the PUMP processing from stage 5. Outputs 1066a may
include an indicator as to whether there was a rule cache miss for the current
instruction. If 1066a reports a potential hit, 1068 determines if the hit is a true hit or a
false hit, turning false hits into misses. Element 1066b denotes the PUMP outputs to
stage 6 in the case where there is no rule cache miss and there is a rule in cache
matching the current instructions. Outputs 1066b may include PC new tag and R tag.
It should be noted that the PUMP stages of the example 1060 may be varied. For
example, the opgroup/care lookup 1062 may be performed in stage 4 rather than stage 3
with determination of a PUMP rule cache location and lookup both done in stage 5
(e.g., depending on the particular PUMP rule cache implementation).

In connection with non-memory operations, the Mtag is not needed as an input
to the PUMP stage and the PUMP may continue performing processing without it. In
the case of a memory operation instruction, the PUMP stalls until the Mtag has been
retrieved from memory. Alternatively, an embodiment may perform Mtag prediction as
described elsewhere herein. Consistent with discussion elsewhere herein, the PC new
tag needs to provided back to the stage 1 such as illustrated and described in connection
with Figure 1. As long as the instruction commits, the PC new tag is the appropriate PC
tag for the next instruction. If the current instruction does not commit (e.g., no rule
cache hit), the PC new tag (as passed back to stage 1) is determined by the rule cache
miss handler. When a trap handler starts or a context switch is performed (e.g., PC
restore), the tag comes from saved PC.

As described herein, an embodiment may associate a single tag with each word.
In at least one embodiment, the word size associated with each tag may be 64 bits. The

contents of the tagged word may contain, for example, an instruction or data. In such

88

10

15

20

25

WO 2017/106101 PCT/US2016/066188

an embodiment, the size of a single instruction. However, an embodiment may also
support instructions which are a different size other than 64 bits. For example, an
embodiment may be based on the RISC-V architecture which, as described in more
detail elsewhere herein, is an open source instruction set architecture (ISA) based on
established reduced instruction set computing (RISC) principles. An embodiment using
the RISC-V architecture may include instructions of multiple different sizes such as, for
example, 32 bit instructions as well as 64 bit instructions. In such a case, an
embodiment in accordance with techniques herein may associate a single tag with a
single 64 bit word where the single word may therefore include one 64 bit instruction or
two 32 bit instructions.

Referring to Figure 34, shown is an example 200 of tags that may be associated
with instructions in an embodiment in accordance with techniques herein. Element 201
illustrates the case noted above where a single tag 202a is associated with a single
instruction 204a. In at least one embodiment, the size of each of 202a and 204a may be
a 64 bit word. Element 203 illustrates an alternative also noted above where a single
tag 202b is associated with two instructions 204b and 204¢. In at least one
embodiment, the size of 202b may be a 64 bit word, and the instructions 204b and 204c¢
may each be 32 bit instructions included in the same 64-bit instruction word 205
associated with tag 202b. More generally, it should be noted that there may be more
than 2 instructions in a single tagged instruction word depending on the instruction
size(s) used in an embodiment. If, as illustrated by element 203, the granularity of
tagging does not match the granularity of instructions, then multiple instructions are
associated with a single tag. In some instances, the same tag 202b may be used for each
of the instructions 204b 204c. However, in some instances, the same tag 202b may not
be used for each of the instructions 204b, 204c. In following paragraphs, each of the
multiple instructions, such as 204b and 204c, included in a single instruction word
associated with a single tagged word may also be referred to as a subinstruction.

Thus what will now be described are techniques that may be used in an

embodiment in connection with multiple subinstructions in the same instruction word

89

10

15

20

25

WO 2017/106101 PCT/US2016/066188

whereby a different tag may be used in connection with each of the multiple
subinstructions.

Referring to Figure 35, shown is an example illustrating instructions and tags
that may be used in an embodiment in accordance with techniques herein. The example
220 includes a single 64-bit instruction word 205 that includes two 32 bit
subinstructions 204b and 204c. Tag 202b may be the tag on the instruction word 205 as
described above in the example 200. In at least one embodiment in accordance with
techniques herein, the tag 202b of the instruction word 205 may be a pointer 221 to
another memory location 222 that includes a pair of tags where the pair includes a tag
for each of the subinstructions 204b-c of the instruction word 205. In this example 220,
the pair of tags 222 includes 222a denoting a first tag, tagl, for substructionl 204b, and
also includes 222b denoting a second tag, tag2, for substruction2 204¢. In at least one
embodiment, each tag 222a-222b of the pair 222 may be a non-pointer tag (e.g., scalar),
may be a pointer tag to yet another memory location including information used by the
PUMP for processing as described herein, or may otherwise be a more complex
structure including one or more non-pointer fields and/or one or more non-pointer
fields. For example, tag 1 222a may be a pointer tag for subinstruction 1 204a and tag2
222b may be a pointer tag for subinstruction 2 204b. As illustrated in 220, element
223a denotes tagl 222a pointing to or identifying another memory location 224a
including information used by the PUMP for processing subinstructionl 204b, and
element 223b denotes tag2 222b pointing to or identifying another memory location
224b including information used by the PUMP for processing subinstruction2 204c. It
should be noted that, depending on the embodiment and the subinstructions, each of
224a and 224b may be a non-pointer, may be yet another pointer to a memory location,
or may be complex structure including some combination of one or more pointers and
one or more non-pointers.

In an embodiment having multiple subinstructions within the same instruction
word 205, an additional input may be provided to the PUMP indicating which of the

subinstructions included in the instruction word 205 is being executed at a point in time.

90

10

15

20

25

WO 2017/106101 PCT/US2016/066188

For example, where there are 2 subinstructions 204b-c in the instruction word 205, the
additional input to the PUMP may be O or 1 indicating, respectively, whether
subinstruction 1 204b or subinstruction2 204c is being executed at a particular point in
time. In at least one embodiment consistent with discussion elsewhere herein based on
the RISC-V architecture, a CSR (such as the ssubinstr CSR described elsewhere herein)
may be defined which records or stores the additional input (denoting which
subinstruction is being executed) to the PUMP. In at least one embodiment, the PUMP
may normally receive the foregoing additional input from the data path (e.g., from the
code execution domain) without use of a CSR. However, on a rule miss, the foregoing
additional input may be recorded in a CSR so that the metadata processing domain in
which the rule miss handler is executing may obtain the foregoing additional input (e.g.,
the CSR value for the foregoing additional input is provided to the PUMP on a rule
insertion).

To further illustrate, an embodiment may include subinstructions which provide
for transfer of control between two locations in a program. Examples of such
subinstructions may be those that provide for jumping, branching, returning or more
generally transferring control from a source location in the code to a target (e.g., sink or
destination) location in the code. In connection with CFI or control flow integrity
described elsewhere herein, it may be desirable to have the PUMP implement rules of a
CFI policy to limit or control transfers between locations to only those supported by the
program. For example, consider a case where a transfer of control is made from a
source location in code having tag T1 to a target location in code having tag T2.
Information used by the PUMP in enforcing the CFI policy may be a list of valid source
locations which are allowed to transfer control to T2. In an embodiment of the CFI
policy, two rules may be used to provide two checks of two instructions or opcodes
when transferring control from the source to the target location. Consider a pseudo-
code representation of the transfer or call as illustrated in the example 230 of Figure 36.
In the example 230, a call may be made transferring control 231a from a source location

in foo routine 231 to a target location in routine bar 233. Specifically, control may be

91

10

15

20

25

WO 2017/106101 PCT/US2016/066188

transferred 23 1a from the source location X1 232 having tag T1 to the target location
X2 234 having tag T2. The target location X2 may be a first instruction in the body of
code 233a of routine bar. The rules of the CFI policy may be used to check with the
transfer from 232 to 234 is allowed or valid. In at least one embodiment, 2 rules of the
CFI policy may be used each performing a check to ensure the transfer of control from
232 to 234 is valid. The instruction at the source location X1 is a branch point or source
point from which control is transferred to the target. At the source (e.g., prior to
executing the instruction at the source location X1 232), a first rule may be used to
mark or set the tag of the PC to denote the source location. For example, the first rule
may mark or set the tag of the PC to be the address X1 to denote the source location.
Subsequently, prior to executing the instruction at the target location X2 234), a second
rule may be used to check whether the source location X1 is a valid source location
from which control is allowed to be transferred to the target location X2.

In at least one embodiment, the check of the second rule may be performed by
determining whether the marked tag of the PC (as set by the first rule) identifying the
source location 232 (e.g., which denotes the source location address X1) identifies a
valid source location from which control may be transferred to target location 234. In
such an embodiment, the second rule may be supplied with a defined list denoting all
valid source locations which are allowed to transfer control to the target location 234.

In at least one embodiment, the defined list may identify valid source locations, for
example, by their addresses such as X1 noted above.

Referring to Figure 37, shown is an example 240 illustrating tags that may be
used in connection with subinstructions of source and target locations in an embodiment
in accordance with techniques herein. The example 240 includes element 203 denoting
the single tag 202b specified for 2 subinstructions 204b-c of a single instruction word as
described above. The tag 202b on the instruction word may point to the tag pair 242
denoting the two tags 242a-b, respectively, for the two subinstructions 204 b-c. Each of
two tags 242a-b may generally be a pointer to information used by PUMP rules for CFI

validation in connection with the source or target location depending on the particular

92

10

15

20

25

WO 2017/106101 PCT/US2016/066188

subinstruction associated with each of the two tags 242a-b.

The example 240 illustrates structures in one embodiment where the two
subinstructions 204b-c are target locations. The subinstruction tag 242a points 243a to
a location of a structure 245 including a source id field 245a and an allowed source set
field 245b. The source id field 245a may be null in the case where the subinstruction
204b is not a source location, such as the case here with subinstructions 204b is a target
location. The source set field 245b may be a pointer to a location including a list
structure 247 identifying one or more valid source locations which are allowed to
transfer control to the particular target location including subinstruction 204b. In at
least one embodiment, the list structure 247 may include a first element denoting a size
or number of valid source locations. Thus size 247a of “n” (n being an integer greater
than 0) denotes the number of source locations denoted by elements 247b-n in the list
247. Each of elements 247b-n may identify a different valid source location which can
transfer control to the target location including subinstruction 204b. In at least one
embodiment, each of the allowed sources 247b-n may be a scalar or non-pointer that is,
for example, the address of one of the valid source locations.

In the example 240, elements 243b, 246 and 248 used with subinstruction 2
204c¢ are respectively similar to elements 243a, 245 and 247 as used with subinstruction
1 204b. Generally, in such an embodiment using the structures of 240, any item that
does not exist may be assigned a null or zero value. If the instruction word 205 includes
a pair of subinstructions 204b-c that are neither source nor destination locations, the tag
202b may be null (e.g., or otherwise identify a non-pointer or other pointer that does not
point to a structure 242). If one of the subinstructions 204b-c is neither a source nor a
target location of a transfer, its associated tag in 242 is null. For example, if
subinstruction 204b is neither a source nor a target location but subinstruction 204 is a
target, then 242a may be null and 242b may be as illustrated in the example 240. If a
subinstruction 204b-c is not a source location, its source id is null (e.g., since 204b-204c¢
in the example 240 are target locations, both 245a and 236a are null). If a

subinstruction 204b-c is not a target location, its allowed source set field pointer is null.

93

10

15

20

25

WO 2017/106101 PCT/US2016/066188

For example, if subinstruction 204b identified a source location rather than a target
location, source id 245a would identify the address of the source location instruction
and 245b would be null.

To further illustrate, reference is made to Figure 38 to another example 250
using the structures such as described in the example 240 with the difference that 251a,
a first of the subinstructions, is neither a source nor a target location, and 251b, a second
of the subinstructions, is a target location where control may be transferred from any of
3 valid source locations. Elements 251a-b may denote two 32 bit subinstructions
included in a single tagged word having tag 251. The tag 251 may be pointer 1228
identifying a location in memory including the structure 252 with a pair of tags for the
subinstructions 251a-b. Element 252 may be similar to 242 of the example 240.
Element 252a may be a tag pointer for the subinstruction 251a and element 252b may
be a tag pointer for sub instruction 251b. Since subinstruction 251a is neither a source
nor a target location, 252a is null as denoted by the zero. Since subinstruction 251b is a
target location, 252b is a pointer 1238 to structure 254. Element 254 may be similar to
246 of the example 240. Element 254a is a source id field (like 246a) and element 254b
is an allowed source set field (like 246b) including a pointer (address 1248) to an
allowed source set structure 256 (similar to 248 of example 240). Since subinstruction
251b 1s only a target location and not a source, 254a source id is null. Element 256 may
be similar to 248 of the example 240. Element 256a may be a size field (like 248a)
denoting a number of valid source locations. Element 256b-d may denote the valid
source ids which may be, for example, addresses of valid source location instructions.
In this example, 256a indicates that there are 3 valid source locations having addresses
50be, 5078, 5100 stored, respectively, in entries 256b-d. In connection with the
foregoing, it should be noted that generally an instruction may be both a target and a
source so that being a target does not mean that source id will always be null. If, for
example, an instruction is both a target and a source, source id will not be null and the

instruction’s tag would include the list of allowable/allowed sources.

94

10

15

20

25

WO 2017/106101 PCT/US2016/066188

It should be noted that the addresses of the source locations such as in entries
256b-d, and more generally, in any allowed source of the allowed source set (e.g., any
of 248b-n of 248 of the example 240) may be a byte level address granularity.

In a manner similar to that just described for multiple instructions (also referred
to as subinstructions) included in a single tagged word, an embodiment may allow
access to data portions which are less than a single tagged word of data. For example,
an embodiment may include instructions which access data at the byte level and it may
be desirable to provide byte level tagging so that each byte may have its own associated
tag in manner similar to providing a different tag for each of the multiple
subinstructions included in a single tagged word. In following examples, reference is
made to providing byte level tagging where each of 8 bytes included in a 64 bit word
may have its own associated tag. However, more generally, techniques herein may be
used to provide for sub-word tagging for any number of multiple data items included in
a single tagged word. In such cases, the tag associated with the tagged data word may
be a pointer to a structure identifying the byte level tags for the bytes of the tagged data
word.

Referring to Figure 39, shown is an example 260 of byte level tagging that may
be used in an embodiment in accordance with techniques herein. Element 262 denotes
a tag 262a associated with a tagged 64 bit word 265 where the word 265 includes 8
bytes denoted as B1-B8. Tag 262a may be a pointer pointing 261 to a memory location
of structure 266 including tags for each of the bytes B1-B8 of the data word 265. The
structure 266 may include a first field 265a that is a size field indicating a number of
remaining entries in the structure. Each subsequent entry in the structure may include a
tag value and denote the one or more bytes of the word 265 having that particular tag
value. In this example, size 265a is 8 where each of the bytes B1-B8 of 265 have a
different tag value. Element 266a-h respectively denote tag values for bytes B1-B8 of
the word 265.

Referring to Figure 40, shown is a second example 267 of byte level tagging that

may be used in an embodiment in accordance with techniques herein. Element 262

95

10

15

20

25

WO 2017/106101 PCT/US2016/066188

denotes a tag 262a associated with a tagged 64 bit word 265 where the word 265
includes 8 bytes denoted as B1-B8. Tag 262a may be a pointer pointing 268a to a
memory location of structure 268b including tags for each of the bytes B1-B8 of the
data word 265. The structure 268b may include a first field 265b that is a size field
indicating a number of remaining entries in the structure. Thus, 265b is similar to 265a
of Figure 39. Each subsequent entry in the structure 268b may include a tag value and
denote the one or more bytes of the word 265 having that particular tag value. In this
example, size 265b is 7 denoting the 7 subsequent entries 266a-226f and 268c. Element
266a-f are as described in connection with the example 260 of Figure 39. Element 268¢
indicates that tag 7 is the tag for both bytes B7 and B8. Thus, the structure 268b
includes one less entry than the structure 266 of Figure 39 since, in the example 267,
both bytes B7 and B8 have the same tag value of tag 7. In this manner, the structure
(e.g., 268b) pointed to by a tag (e.g., 262a) of a data word may have a varying number
of entries as needed depending on the particular byte level tags.

It should be noted that the particular level of data access granularity may vary
with the particular architecture and instruction set in an embodiment. The foregoing
may be used to provide byte level tagging in an embodiment which allows byte level
data access. As a variation, an embodiment may support data access at a different level
of granularity and techniques herein may be readily extended to any subword tagging
level of granularity.

Similarly, the examples 260 and 267 illustrate one example of a data structure
that may be used to hold the byte level or other sub word data tagging. As a variation,
an embodiment may use a tree or other hierarchical structure to specify byte level tags
for bytes of a single tagged data word. The tree or other hierarchical structure
representing the byte level tags may be similar the hierarchical structure described
herein with for storing word-level tags, for example, in connection with elements 100,
120, 130 and 140, respectively of Figures 78-81 described elsewhere herein.

To further illustrate, an embodiment may use a tree structure to represent byte

level tags as in the example 270 of Figure 41. In the example 270, element 262 may

96

10

15

20

25

WO 2017/106101 PCT/US2016/066188

denote a tag 262a associated with tagged word 265 including bytes B1-B8. Tag 262a
may be a pointer or address to a tree structure representing byte level tags for B1-B8
265. For example, tag 262a may point to a location of root node 272 of the tree
structure. The tree structure in this example may include root node 272 at level 1, nodes
274a-b at level 2, nodes 276a-d at level 3 and nodes 278a-h at level 4. Each node of the
tree may be associated with a byte range of one or more bytes. The leaves of the tree
may denote the byte level tags for the bytes B1-B8. A non-leaf node of the tree
therefore does not specify a tag value but rather indicates that one or more descendant
nodes at one or more lower levels need to be consulted to determine the byte level tags
for the byte range associated with the non-leaf node. A leaf node may denote a
homogenous or same tag value for a range of multiple bytes of 265. Each non-leaf node
may include a left pointer to the non-leaf node’s left child node and a right pointer to
the non-leaf nodes’ right child node. Each of the child nodes of a parent node may
represent a partitioning of the byte range associated with the parent node.

The example 270 illustrates a tree structure where there are no homogeneous
byte level tags and each of the bytes B1-B8 of 265 has a different tag value. In a manner
consistent with discussion elsewhere herein (e.g., with elements 100, 120, 130 and 140,
respectively of Figures 78-81), an embodiment may omit descendant nodes from a
subtree if the subtree has as its root a first node denoting a homogeneous tag value for
the byte range associated with the first node. For example, to further illustrate,
reference is made to Figure 42. In the example 280, element 262 may denote a tag 262a
associated with tagged word 265 including bytes B1-B8 as descried above. Tag 262a
may be a pointer or address to a tree structure representing byte level tags for B1-B8
265. In this example 280, each of the bytes B1-B8 has the same tag T1 and therefore
the tree structure need only include the root node 281. As byte level tags for bytes B1-
B8 may be modified or changed over time, the tree structure or other structure pointed
to by tag 262a may be accordingly updated to reflect such byte level tag modifications.

In an embodiment providing byte level tagging, or more generally subword

tagging, within the same data word 265, an additional input may be provided to the

97

10

15

20

25

WO 2017/106101 PCT/US2016/066188

PUMP indicating which one or more byte level tags (corresponding to which one or
more of the bytes included in the word 265) are being referenced. For example, with
byte level tagging where there are 8 bytes B1-B8 in a single tagged data word 265, the
additional input to the PUMP may be a bitmask of 8 bits where each of the 8 bits is
associated with a different one of the bytes B1-B8 and denotes whether to use the byte
level tag for the particular byte of the word 265. As a variation, an embodiment may
denote the one or more bytes by specifying a byte range, such as starting byte and
length or size (e.g., bytes B4-B8 by specifying starting byte B4 and denoting a size or
length of 5). In at least one embodiment consistent with discussion elsewhere herein
based on the RISC-V architecture, a CSR may be defined which records or stores the
additional input denoting which one or more byte level tags for the one or more bytes
B1-B8 are to be used by the PUMP. The additional input may be, for example, the
bitmask or other suitable representation identifying the particular byte level tags used by
the PUMP. In at least one embodiment, the PUMP may normally receive the foregoing
additional input denoting which one or more bytes are to be used as an input from the
data path (e.g., from the code execution domain) without use of a CSR. However, on a
rule miss, the foregoing additional input may be recorded in a CSR so that the metadata
processing domain in which the rule miss handler is executing may obtain the foregoing
additional input (e.g., the CSR value for the foregoing additional input is provided to
the PUMP on a rule insertion).

As discussed elsewhere herein, at the policy level many instructions may be
treated in a similar manner. For example, add and subtract instruction operation codes
or opcodes may typically treat their metadata the same whereby both opcodes may
behave similarly at the rule level for a particular policy by considering the same tag
inputs to the PUMP and the same tag outputs propagated by the PUMP. In such a case,
add and subtraction opcodes may be grouped together in a single operation group or
“opgroup” so that the same set of rules may be used for all opcodes in that particular
opgroup. How opcodes are grouped together is policy dependent and thus may vary

with policy. In one embodiment, a translation or mapping table may be used which

98

10

15

20

25

WO 2017/106101 PCT/US2016/066188

maps a particular opcode to its associated opgroup on a per policy level. In other
words, a different mapping table may be created for each policy (or specified group of
multiple policies having the same opcode to opgroup mappings) since the mappings
may vary per policy.

For a particular opcode, the translation or mapping table may determine the
opgroup as noted above and may also determine additional information for the
particular opcode. Such additional information may include the care/don’t care bit
vectors as also discussed elsewhere herein which may indicate which PUMP inputs and
PUMP outputs (e.g., input tags and propagated output tags) are, respectively, actually
used as inputs for rule processing and propagated as a relevant output of rule processing
for a particular opcode. The don’t care bit vectors may be determined with respect to
any PUMP input and output in an embodiment. In one embodiment, the don’t care bit
vector may indicate which input tags and output tags are relevant and may also indicate
which particular opcode bits are actually used for a particular opcode. This is described
below in more detail with respect to the RISC-V architecture and instruction formats
but may also be more generally used in connection with other suitable instruction
formats of different architectures. The forgoing translation or mapping table including
opgroups and care/don’t care bits for particular opcodes (e.g., element 422 of example
420 discussed below) may also be referred to as the opgroup/care table elsewhere
herein.

RISC-V has multiple different instruction formats each using a different set of
instructions bits for the opcode. Referring to the example 400 of Figure 43, shown are
bits of an instruction that may be included in different bit encodings for different
opcodes in an embodiment using instructions of the RISC-V architecture. Generally,
the RISC-V architecture includes multiple instruction formats where different bits of the
instruction may be used as part of the opcode encoding. With a 32 bit instruction, a
total of up to 22 bits may be used to represent an encoding of an opcode. Element 404
represents portions of an instruction in the RISC-V architecture that may be used to

represent a bit encoding for a particular opcode depending on the instruction format.

99

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Element 404 includes 3 fields of bits — 404a-404c¢ -- that may be used in encoding a
particular opcode. Element 404a indicates a first opcode field, opcode A, of 7 bits.
Element 404b indicates a second opcode field, funct3, of 3 bits. Element 404a indicates
a third opcode field, funct12, of 12 bits. Depending on the instruction (e.g., such as
with system calls), the opcode encoding may include up to all 22 of the bits denoted by
404a-c. More specifically, in RISC-V, an opcode may be encoded using just the 7 bits
of 404c, using 10 bits of only 404b and 404c¢ (exclude 404a), or using all 22 bits of
404a-c. As a further variation, an instruction of the RISC-V architecture may have an
opcode encoding using fields as denoted by 402. Element 402 includes the two fields of
bits 404b and 404c as discussed above. Additionally, rather than use all 12 bits of
funct12 404a in the opcode encoding, an instruction may use only 7 of the 12 bits as
denoted by funct7 402a. Thus, as yet another possibility, an opcode may have an
encoding using fields 402, 404b and 404c as illustrated by element 402.

Mlustrated in Figure 44 is an example 420 illustrating a mapping or translation
table that may be used in an embodiment in accordance with techniques herein. As
discussed above, an opcode 421 may be provided as an input or index into the opcode
mapping table 422 to lookup or determine mapped outputs 424 for the opcode 421. The
mapped outputs 424 may include the opgroup and care/don’t care bit vectors for PUMP
inputs and outputs for the particular opcode 421. In an embodiment based on the RISC
architecture and instruction formats, the opcode may potentially have up to a 22 bit
encoding. However, using such a large 22 bit opcode as an index into the table is
unreasonable due to the large number of entries needed to accommodate the 22 bit
opcode (e.g. table may include an entry for each opcode indicating its associated
opgroup and care/don’t care bit vector information resulting in millions of entries for
the 22 bit opcode). To reduce the size of the table 422 in such an embodiment, the table
422 may be indexed using only a portion of the 22 bit opcode fields. For example, in at
least one embodiment, the opcode 421 input may be 10 bits of the opcode as denoted by
elements 404b and 404c in the example 400. Thus, table 422 may be indexed using
opcode bits of 404b and 404c¢ of an opcode to determine the opcode’s opgroup and

100

10

15

20

25

WO 2017/106101 PCT/US2016/066188

associated care/don’t care bit vectors.

In such an embodiment, the remaining 12 opcode bits of funct 12 404a of an
instruction may be provided as an input to the PUMP where appropriate portions of
404a are masked for the particular opcode. Information regarding which particular bits
of funct12 404a should/should not be masked for a particular opcode may be included
in the care/don’t care bit vector information output from the mapping table 422 lookup
for the opcode. In at least one embodiment based on the RISC-V architecture, the
care/don’t care bit vector information may indicate one of the following with respect to

the 12 opcode bits of funct 12 404a for an opcode:

1. all 12 bits may be masked since no bits of 404a are used;

2. 7 of the 12 bits, as denoted by 402a, are used where the bottom most 5 bits of
404a (e.g., bits 20-25) are masked out; or

3. all 12 bits of 404a are used and therefore there is no masking of an bits of

404a.

Also, in such an embodiment, the 12 opcode bits of funct12 404a may be
recorded or stored in a CSR, such as sfunct12 CSR described elsewhere herein,
provided as a PUMP input in connection with performing rule insertion into the PUMP.
In at least one embodiment, the PUMP may normally receive the foregoing opcode bits
from the data path (e.g., from the code execution domain) without use of a CSR.
However, on a rule miss, the foregoing may be recorded in a CSR so that the metadata
processing domain in which the rule miss handler is executing may obtain the foregoing
as an input (e.g., the CSR value is provided as an input to the PUMP on a rule
insertion).

In at least one embodiment in accordance with techniques herein, multiple user
processes may execute using a virtual memory environment where physical pages are
mapped into a user process address space. Techniques herein may be utilized to allow

sharing of physical pages of memory among multiple user processes where the same set

101

10

15

20

25

WO 2017/106101 PCT/US2016/066188

of one more physical pages that may be simultaneously mapped into multiple user
process address spaces. In at least one embodiment, tags used by such processes for
which the sharing is allowable may be characterized as global having the same value
and meaning or interpretation across user process address spaces.

Referring to Figure 45, shown is an example 430 illustrating sharing of physical
pages between processes in an embodiment in accordance with techniques herein. The
example 430 includes process P1 having address space 434 and process P2 having
address space 436. Element 434 may denote the virtual memory process address space
or range 0 through MAX, where MAX denotes the maximum virtual memory address
used by P1 and 0 denotes the minimum virtual address used by P1. As known in the art,
physical pages of memory 432 may be mapped into a virtual address space such as 434
where the contents of the mapped physical page may be accessed by P1 using the
mapped virtual addresses of such mapped physical pages. For example, physical page
A 432a may be mapped into a subrange X1 of P1’s virtual address space. Process P1
may, for example, read a data item or instruction from a location in page A 432a by
referencing a particular virtual address in the subrange X1.

Similarly, physical pages of memory 432 may be mapped into virtual address
space 436 where the contents of the mapped physical page may be accessed by P2 using
the mapped virtual addresses of such mapped physical pages. For example, physical
page A 432a may be mapped into a subrange X2 of P2’s virtual address space. Process
P2 may, for example, read a data item or instruction from a location in page A 432a by
referencing a particular virtual address in the subrange X2.

The tags 431 may denote the tags on the memory locations of page A 432 where
such tags may be used by the PUMP in connection with rule processing as described
herein. Since page A 432 is shared by both P1 and P2 via the mapping as illustrated, the
same set of tags 431 are also used by the PUMP in connection with executing
instructions of both P1 and P2. In such an embodiment, the tags 431 may be
characterized as global tags shared by both P1 and P2. Additionally, in at least one
embodiment, the global tags 431 shared by multiple processes P1 and P2 are interpreted

102

10

15

20

25

WO 2017/106101 PCT/US2016/066188

in a similar manner such as using the same rules and policies. For example, a first tag
having a value of 100 may be associated with a first memory location in 432a. The first
tag may denote a value representing a coloring of the first memory location used in
connection with rules of policy which determine whether it is allowable for a particular
executing instruction to perform an operation referencing the first memory location, or
its contents. The first tag may be interpreted as the same color by the rules in
connection with instruction execution of both P1 and P2. For example, the tag value of
100 needs to be interpreted as the same color by the rules in connection with both P1
and P2. Furthermore, the same set or instance of policies and rules may be used by the
PUMP for both P1 and P2.

In such an embodiment which uses global tags on shared memory as described
above, it may be desirable to also allow for further differentiating or allowing different
access, authority or operations on a per process basis. For example, assume that page A
432a includes data shared by both P1 and P2. However, it may be desirable to allow
different operations or access with respect to the shared data of 432a on a per process
basis even though global tags are used to tag the shared page A 432a. For example,
process P1 may have write access to page 432a and process P2 may have read-only
access to page 432a. However 432a may be a shared memory page tagged with global
tags. In such an embodiment with global tags on the shared page, the same policy and
set of rules may be used in connection P1 and P2 where different read and write access
capabilities for each process may be differentiated using different tag values on the PC.
For example, process P1 may be include a first instruction which performs a write to a
memory location in 432a and the current PC tag has a value of X. Rules of an access
policy may perform the following logic:

if PCtag = X, then allow write

if PCtag=Y then allow read-only
In such a case, the PC tag has a value of X which is interpreted by the rules to allow
write access for process P1 and thus P1 is allowed to execute the first instruction.

Process P2 may be executing a second instruction which performs also performs a write

103

10

15

20

25

WO 2017/106101 PCT/US2016/066188

to a memory location in 432a and the current PC tag has a value of Y. In such a case,

the PC tag has a value of Y which is interpreted by the rules to not allow write access

and rather allow read-only access for process P2 and thus P2 is not allowed to execute
the second instruction.

Thus, in at least one embodiment, the PC tag may be used to encode privilege,
access or authority that may differ per process whereby the particular allowed privilege,
access or authority may be represented by different PC tag values.

An embodiment may specify a particular PC tag value to be used for each
process in any suitable manner. For example, privileged code may execute as part of
operating system startup or initialization which initially specifies a PC tag value to be
used for a particular process. As a variation, an embodiment may perform a mapping
operation as part of mapping the shared page A 432a into a process address space. The
rules applied by the operating system when performing the mapping may propagate or
produce a particular PC tag as an output that denotes a desired access, privilege or
authority based on the particular process.

In this manner, the same set of rules may be used with shared pages having
global tags where the rules encode the logic for the difference in access, authority or
privilege based on the PC tag. It should be noted that the PC tag may also be a pointer
to a memory location whereby the pointer tag points to a structure including different
tag values for different policies in a manner as described herein in connection with other
tags. In this manner, the same set of PC tag values may be used to denote different
capabilities for a process that may vary with policy. For example, the PC tag value of X
as described above with P1 may have a first use as described above with a memory
safety policy or data access policy for shared regions. The same PC tag value of X may
have a second use and meaning imparted by rules of a second different policy, such as
control flow integrity (CFI).

Aspects of the CFI policy are described herein that may be used in connection
with restricting control transfers based on a static definition of allowable calls, jumps,

return points, and the like. However, an additional aspect or dimension that may be

104

10

15

20

25

WO 2017/106101 PCT/US2016/066188

included in a CFI policy relates to enforcement of dynamic or runtime call information
thereby further refining the conditions under which a control transfer that is a return
may be made. To further illustrate, reference is made to the example 500 of Figure 46
which includes routines foo 502, bar 504 and baz 506. Routine Foo 502 may include a
call instruction at address X1 that calls routine bar resulting in a runtime transfer 501a
of control to bar 504. Routine bar 504 then includes a return instruction which returns
501b control to routine bar to address X2. Thus, X2 denotes the return point address or
location of the instruction in routine foo following the call to routine bar at X1. Routine
Foo 502 may include a second call instruction at address Y1 that calls routine baz 506
resulting in a runtime transfer 501c of control to baz 506. Routine baz 506 then
includes a return instruction which returns 501d control to routine bar to address Y2.
Thus, Y2 denotes the return point address or location of the instruction in routine foo
following the call to routine baz at Y.

A static CFI policy may, for example, allow all potential control flows between
any two transfer points without further restricting control flows or transfers based on the
current runtime stack or call chain reflecting the dynamic runtime control flow aspects.
For example, For example, if foo 502 can call bar 504 as illustrated in 500, there is a
statically allowed control flow from bar back to address X2 of the instruction after the
call of bar at X1 in foo. However, if foo has not been invoked, or has only, so far,
invoked another call to something that should return before the bar call, it should not be
possible to exercise the return link to return to X2. As another example with the runtime
execution as illustrated in the example 500, it should not be possible for a call to Bar
504 through 501a to return to Foo 502 at Y2 through 501d.

What will now be described are techniques that may be used in connection with
extending rules of a CFI policy to enforce a dynamic CFI return policy controlling
return flow path control. For the dynamic CFI return policy to ensure that a return to a
particular return location such as X2 is valid only when made subsequent to a particular
call or invocation, such as the call to bar at X1, the dynamic CFI return policy may store

information, such as in one or more tags, when the call is made in order to rule out an

105

10

15

20

25

WO 2017/106101 PCT/US2016/066188

invalid return. As known in the art, when a call is made, such as using a JAL (jump and
link) instruction of the RISC-V instruction set, a return address is saved in a return
address register, RA. The RISC-V instruction set also includes a JALR (jump and link
register) instruction which is an example of a return instruction. In one aspect, the saved
return address in RA register from a JAL may be characterized as a “capability” to
return to that point. In at least one embodiment, the JAL instruction may be tagged with
a tag that causes a rule to push a suitable tag capability onto the resulting return address.
For example, with RA as the return address register, a rule may place a tag on the RA
register which indicates that the RA register includes a valid or suitable return address
and, at a later point, the address of the RA register may be used as a return point to
which control may be transferred. In other words, the tag on the RA register gives
permission for the address in RA to be used as a return address which is loaded into the
PC to execute the return transfer of control. When loading the PC with the address of
RA, the RA tag may also be stored as the PC tag by rules of the CFI policy.

To further illustrate techniques that may be used to limit control flow on returns,
an embodiment may code tag each return point (e.g., X2, Y2) with a dynamic-CFI-tag,
such as expect-A. Also, code tag each JAL instruction (or call instruction) causing a
rule evaluated for the JAL instruction to tag the return address in the RA register (where
the return address is calculated by the JAL) with the appropriate dynamic- CFI-return-
to-A tag. For each return, such as each JALR instruction that uses the RA register
tagged with the dynamic-CFI-return-to-A tag, a PUMP rule propagates the tag
(dynamic-CFI-return-to-A tag) onto the PC as may be performed in connection with
other static CFI policy rules. The rules of the CFI policy may embody logic that checks
the RA register used for the return instruction. If the RA register used for the return is
not tagged with dynamic-CFI-return-to-A tag, then it is known that the RA register does
not include a valid return address allowed for use with the JALR instruction. At the
return point (e.g., X2 and Y2), rules may embody logic whereby when the expect-A
code tag is encountered (e.g., as the tag on the instruction at X2), check that the PC is
tagged with dynamic- CFI-return-to-A, and clear the CFI-return-to-A tag from the PC.

106

10

15

20

25

WO 2017/106101 PCT/US2016/066188

As a consequence of the above, code is prevented from returning to just any
return address. Furthermore, if the return address is copied to another location, such as
another register, the rules can prevent the copied value from retaining the return
authorization capability; this prevents code form making copies of the return address in
registers that can be used to perform multiple returns for the same call. As another
consequence of the above, if a valid return address (properly tagged) on the stack is
overwritten with a new address (not properly taged) and then an attempt is made to
return to the new address, the return is prevented.

An embodiment may also include rules in order to prevent or further limit the
ability to use the dynamic-CFI-return-to-A tag more than once. As a first
implementation, an embodiment may use rules that restrict where the return address (as
stored in the RA register tagged with the dynamic-CFI-return-to-A tag) may be written
or copied. For example, an embodiment may use rules that only allow the return
address of the appropriately tagged RA register to write the return address to the stack
in properly code-tagged function code. As a second alternative implementation, an
embodiment may include rules that use PC state (e.g., PC tag) and atomic memory
operations to make the return address linear (e.g., follow or occur subsequent to a call).
For example, performing a call sets the PC tag to denote a valid-return-address. Rules
may only allow a return if the PC tag is set to valid-return-address. Additional rules
may be used that, when writing a return address to memory, sets the PC tag to no-
return-address. Rules may be used that, when copying the return address to a target
register, may set the PC tag to no-return-address, and the target register is not tagged as
a valid-return address. Rules may be used that, when an arithmetic operation is
performed using a return address from an RA register, the result is not tagged as a valid
return address. Rules may be used that only allow recovering a return address from
memory with an atomic swap operation with a non-return-address (e.g., where the PC

tag is set to valid-return-address).

107

10

15

20

25

WO 2017/106101 PCT/US2016/066188

An embodiment may further define rules to provide a stack protection policy. In
one aspect, the stack protection policy may, in part, be viewed as an extension of one or
more other policies, such as memory safety where the rules may use tags of both
instructions and data for policy enforcement. It should be note that in following
discussion and elsewhere herein, terms such as routine and procedure may be used
interchangeably and more generally refer to a callable unit of code that, when invoked,
results in creation of a new stack frame on the call stack. Other names that may also be
used for a callable unit of code may include function, subroutine, subprogram, method,
and the like.

Referring to Figure 47, shown is an example 520 illustrating a call stack of
frames for runtime invocations in an embodiment in accordance with techniques herein.
In 520, assume that the routine foo 502 performs a call to G1 which in turn calls G2.
Thus, at a point in execution, routine foo is executing and has made a first call to
routine G1 and G1 has made a call to routine G2. Element 522 may represent the first
call stack frame for routine foo. Element 524 may represent the second call stack frame
for routine G1. Element 526 may represent the third call stack frame for routine G2.

Information stored in a stack frame (such as 522, 524, 526) for a runtime call
instance or invocation may include, for example, return addresses, data used by that call
instance for registers, variables or data items, and the like. Elements 522a and 524a
may denote return addresses, respectively, included in frame 522 for foo and frame 524
for G1. One common attack, such as may be performed by malicious code, may be to
modify return addresses such as 522a and 524a stored on the stack 520. Using the
techniques such as described elsewhere herein for the dynamic CFI return policy (e.g.,
described in connection with Figure 46 in example 500) may prevent improper or
invalid returns such as using a return address from a stack location that has been
improperly modified. However, it may be further desirable to also enforce additional
rules which provide stack protection and prevent improper modification of stack storage
locations, such as return addresses. Thus, such additional rules for a stack frame

protection policy may prevent modification of 522a or 524a rather than allow an

108

10

15

20

25

WO 2017/106101 PCT/US2016/066188

improper modification of 522a and then stop a return using the improperly modified
return address.

As described below in more detail, different levels of stack protection may be
provided. In one aspect, stack protection may be determined based on static procedure
(also referred to as the static authority protection model described elsewhere herein) or
may be determined based on both procedure and also invocation instance of the
particular procedure (also referred to as the instance authority protection model
described elsewhere herein). With the static authority protection model, rules of the
stack protection policy may provide stack protection based on the particular procedure
or routine that creates the frame. For example, rather than the stack including only a
single frame for a single instance of foo as in 520, there may be multiple invocation
instances of foo including in the current call chain at a point in time and thus multiple
call stack frames in the stack for routine foo (e.g., such as based on recursive calls to
foo). Based on the static routine or procedure, any instance of foo may be able to
modify or access information in any call stack frame for an instance of foo. For
example, foo instance 1 may have call stack frame 1 and foo instance 2 may have call
stack frame 2. Based on static routine or procedure for stack protection, code of foo
instance 1 may be able to access stack frames 1 and 2 and code of foo instance 2 may
also be able to access stack frames 1 and 2. In such an embodiment, call stack frames
for all instances of the same procedure or routine foo may be colored with the same tag.
For example, frame 1 for foo instance 1 and frame 2 for foo instance 2 may be both be
colored with tag T1 so that rules of memory safety policy will allow the above-noted
stack frame access across different instances of the same routine or procedure.

As further finer granularity of stack protection, an embodiment may use rules of
the stack protection policy that further limit access of the stack based on static routine
or procedure as well as the particular runtime instance of the routine or procedure (e.g.,
the instance authority protection model). For example, foo instance 1 may have call
stack frame 1 and foo instance 2 may have call stack frame 2 as noted above. Based on

static routine or procedure and also invocation instance for stack protection, code of foo

109

10

15

20

25

WO 2017/106101 PCT/US2016/066188

instance 1 may be able to access stack frame 1 but not stack frame 2, and code of foo
instance 2 may be able to access stack frame 2 but not stack frame 1. In such an
embodiment, call stack frames for each invocation instance of a procedure or routine
may be colored with a different tag. For example, frame 1 for foo instance 1 may be
colored with tag T1 and frame 2 for foo instance 2 may be colored with tag T2 so that
rules of a memory safety policy will allow the above-noted stack frame access based on
each particular invocation and routine or procedure.

An embodiment may further provide a finer level of granularity for different
regions or portions of the stack for a single procedure call instance such as by coloring
different objects or data items in a stack frame each with a different color (also referred
to as the object protection model described elsewhere herein). As described elsewhere
herein, the stack frame may include storage for data items or objects used in a particular
invocation of a routine or procedure where each such data item or object may be tagged
with a different color. For example, referring to Figure 48 shown is example 530
illustrating data items 540 having storage allocated by a routine or procedure foo and
associated tagged memory in a stack frame 531. Element 540 denotes variables 540a-
540c having storage allocated in routine foo and element 531 represents the call stack
frame for this particular invocation instance of routine foo in the call stack. Element
531 includes memory region 532 for variable array 540a, memory region 534 for
variable line 540b and memory region 536 for variable password 540c. Additionally,
frame 531 includes memory region 538 for stored return addresses. Each of the different
regions 532, 534, 536 and 538 may be tagged or colored with a different tag as denoted
by 533. Each word in region 532 may be tagged with Red1. Each word in region 534
may be tagged with Red2. Each word in region 536 may be tagged with Red3. Each
word in region 538 may be tagged with Red4.

As yet a further variation, an embodiment may define different trust regions or
boundaries for sets of code (e.g., routines, procedures, etc.) and provide different levels
of protection. For example, not all routines invoked may have the same level of trust.

For example, a developer may have a first set of routines he/she has written and have a

110

10

15

20

25

WO 2017/106101 PCT/US2016/066188

high level of trust that the operations performed by code of the first set does not contain
any malicious code. However, the first set of routines may make calls into a library that
was provided by a third party or obtained from the internet. The library may be
untrusted. Thus, an embodiment may vary the level of protection based on the different
bodies of code and the particular data items used by each. For example, with reference
to example 550 of Figure 49, assume that routine foo in the trusted user code call
routine evil in the library and passes as a parameter to evil a pointer to region 534
(pointer to data item line 540b). In such a case, rather than color or tag each region of
531 with a different color, regions 532, 536 and 538 may all be colored with the same
color, such as RedS5, and region 534 may be tagged with a different color, such as Red6.
This may be used to further ensure that memory region 534 accessed by routine evil is
tagged with a different color than other regions of 531 as a level of memory safety since
routine evil is considered untrusted code. Additionally, the pointer to region 534 passed
to evil may be colored or tagged with the same color Red6 as the region 534. In this
manner, memory safety policy rules may limit access to memory used by evil to those
tagged with Red6.

Whether a particular routine, library or body or code has a particular level of
trust may be determined based on analysis using one or more criteria and inputs. For
example, based on runtime analysis and usage of code of a library, a level of trust may
be determined. For example, if the library makes calls to yet other unknown or
untrusted external or third party libraries, then the level of trust may be relatively low.
A level of trust for a body of code may be used on the source or location from which the
code was obtained. For example, use of code from a library obtained from the internet
may be considered untrusted. In contrast, code developed by a particular developer
which does not invoke any untrusted code may have a high level of trust.

The foregoing and other aspects of stack frames and stack protection are
described in more detail below.

In connection with stack frames and with reference again to the example 530, a

compiler may create a new stack pointer by adding an integer (the size of the frame) to

111

10

15

20

25

WO 2017/106101 PCT/US2016/066188

the existing stack pointer. The old stack pointer may be pushed onto the stack (into the
frame) and then recovered by reading it back from the stack. The addition to the stack
pointer may represent the total size of a frame that includes many independent objects
such as described above in 531 for the data items 540a-c. The stack needs space for
these 3 data items 540a-c and the compiler is able to determine the total space needed
for the data items 540a-c. In standard usage, the compiler accesses storage 532, 534
and 536, respectively, for these data items 540a-c by computing their addresses off of
the stack pointer (or frame pointer that is created from the stack pointer). Thus, the
compiler, runtime, and calling conventions in an embodiment may create and use
pointers to different regions of the stack call frames by doing simple pointer arithmetic.
The static authority protection model indicates authority over objects belongs to
the static code block, such as routine or procedure that creates the frame. Thus, as
discussed elsewhere herein, procedure foo that creates a frame has authority to create
pointers to things in that frame. In the simplest case, the same authority would allow foo
to access any of the frames it creates, even if they were earlier or later on the stack. Static
authority means tags (e.g., colors for memory cells, colored pointers, code tags (e.g., also
referred to as instruction tags or tags on instructions) that create colored pointers) may be
pre-allocated at load time. Instance authority protection provides authority based on
the depth of the function invocation on the stack. Object protection indicates protection
at the level of objects allocated on the stack, not just stack frames. Thus, object protection
allows for detection and prevention of overflow from one object (e.g., array, buffer)
within a frame into another object on the same frame, which is something not achieved
using simple stack frame granularity PUMP rules with the static authority protection
model or the instance protection model. Object protection can be applied to both the
static authority protection model and the instance protection model. As a variation of
object protection, an embodiment may also employ hierarchical object protection for
hierarchical objects, such as a structure that includes multiple different data items
subobjects, such as an integer, and an array. In at least one embodiment with hierarchical

objects where a first object includes one or more levels each of one or more subobjects,

112

10

15

20

25

WO 2017/106101 PCT/US2016/066188

a first tag may be generated for the first object and then additional subobject tags may be
generated based on the first tag. Each subobject tag may be used to tag a different
subobject. The subobject tag may be a value denoting the particular position of the
subobject in the hierarchy. For example, tag T1 may be generated for use with a structure
including 2 arrays as subobjects 2 and 3. A different subobject tags for each the 2 arrays
may be generated from T1 and used to tag the 2 array subobjects.

What will now be described is processing that may be performed in connection
with stack memory for different stack operations in an embodiment in accordance with
techniques herein. At startup, the stack memory may have all memory cells marked or
tagged using a free-stack frame tag. Consistent with other discussion and techniques
herein, such tagging may be performed by invoking the PUMP rules. It should be noted
that the initial tagging of stack memory cells to the free-stack frame tag may not be
performed for the entire stack at once, but may rather be performed incrementally in the
kernel page fault handlers that expand the stack.

In connection with allocating a new stack frame such as by the compiler, a new
frame tag may be created for the newly allocation frame. A pointer to the new frame may
be tagged with the new frame tag. For example, an embodiment may tag an instruction
(e.g., such as an add instruction performing pointer arithmetic (by adding to the stack
pointer)) that creates a new frame pointer where the tag on the instruction triggers the
policy rule to create the new frame tag. Using rules and tag propagation, a special tag
may be created for and used to tag the stack pointer. Subsequently, for each frame
pointer, a unique frame pointer tag may be derived from the stack pointer special tag, and
the frame pointer may be tagged with its unique frame pointer tag. In such an
embodiment, the frame pointer tag may be created from a tagged copy (e.g., an add or 0)
of the stack pointer.

When a new stack frame is allocated such as for a new invocation of a routine or
procedure, memory cells of the newly allocated stack frame may be tagged or colored
using, for example, a first technique referred to as strict object initialization or a second

technique may be referred to as lazy object coloring.

113

10

15

20

25

WO 2017/106101 PCT/US2016/066188

With the first technique of strict object initialization, free stack frame cells of the
newly allocated frame are all initially colored or tagged to the intended one or more colors
such as based on the static objects of the frame. Such initial coloring may be performed
as part of initialization processing of a newly allocated frame prior to subsequently using
the frame, for example, to store information for the associated invocation. An
embodiment may add code that triggers rules to perform the coloring or tagging of the
free stack frame cells to the intended one or more colors such as based on the static objects
of the frame. Code tags on instructions may be used to authorize and define associated
memory cell coloring. Subsequent stores or reads of colored memory cells of the frame
may be allowed or not based on the frame memory cell color such as in accordance with
memory safety policy rules (e.g., for a memory cell tagged with color C1, a rule allows a
memory operation to access the colored memory cell contents using a pointer having a
tag also of the same color C1 but may not allow the memory operation if the pointer is of
a different color C2). Additionally, a code tag on an instruction may provide authority to
perform the memory operation within a procedure.

With the second technique of lazy object coloring, there is no initial coloring of
all stack objects as with the strict object initialization technique. Rather, with lazy object
coloring, a store to a stack memory location tagged as free stack frame results in triggering
a rule that allows the store and also changes the color of the memory location based on
the writer. A read to a stack memory location tagged as free stack frame is an uninitialized
memory read and may be allowed/not allowed depending on whether the policy
allows/disallows uninitialized memory reads. With lazy object coloring, no initial block
of code is executed that invokes rules to completely initially tag all memory cells of a
frame upon creation. Rather, memory cells are tagged by rules invoked in connection
with store operations.

In at least one embodiment, whether to use strict object initialization or lazy object
coloring may depend on a desired level of protection and an occurrence of untenable

vulnerabilities.

114

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Code within a routine or procedure that directly accesses data from the
stack/frame pointer is code tagged to allow it do so. In connection with lazy object
coloring, storing to a memory cell results in coloring the memory cell based on the writer
as noted above. For example, with reference back to the example 530, a store instruction
of routine foo having frame 531 may write a value to a memory location in array 532. In
accordance with a current stack protection policy in effect, in order for a store instruction
to write to a location in array 532 of the call frame for foo, the store instruction may be
required to have a tag of Red1. A first rule of the policy may be triggered to perform this
check for a store instruction. Thus, an embodiment may have a compiler generate a code
sequence that triggers the first rule to tag the store instruction with Redl. (e.g., As a
variation to the foregoing, the tag on a memory cell, such as Red1, may be related to but
not the same as the tag on the instruction store or other instruction. For example, the
“Redlcode” CI tag may indicate that the instruction having this tag can access Redl
tagged memory cells and may create Red1 tagged memory cells). When the store
instruction is the current instruction, the foregoing first rule may be triggered which
checks the instruction tag to ensure it is Red1. As an output, the rule may tag the memory
location in array 532 with the Red1 tag.

Code within a procedure that creates a pointer to a particular object is tagged to
taint or set the pointer for that object. The pointer may be for the procedure’s own use in
subsequent instructions and/or may be passed to another procedure as an argument.

Storing register values to a frame or restoring register values from a frame may
be based on the frame authority. The memory location(s) of the stack frame storing the
register values may be treated as a unique object in the stack frame. Instruction tagging
provides authority for such tagged store and load instructions. With lazy-object-coloring,
the store instruction tagged with the authority to store data to a memory cell also provides
the authority to tag the memory cell based on the writer (e.g., procedure including the
store instruction).

Procedure arguments passed on the stack may be marked with a tag that allows

both the caller and callee to access. Note that return addresses may be specially tagged

115

10

15

20

25

WO 2017/106101 PCT/US2016/066188

(e.g., the dynamic CFI return policy described elsewhere herein such as in connection
with Figure 46). Thus, if a return address is stored on the stack (e.g., such as in
connection with nested or recursive calls), stores will not be allowed to overwrite return
addresses on the stack due to the tagging on the return addresses). When a stack-derived
pointer is passed to another frame in connection with a call to another procedure, memory
accesses performed using the pointer result in triggering rules of a memory safety policy
as described elsewhere herein. The instruction that created the pointer to a memory
location may be tagged based on the particular memory location’s tag. The instruction
tag may indicate authority to access the memory location. The instruction may trigger a
rule that tags the pointer to denote authority to access the memory location. For example,
the rule may assign the pointer the same tag as the instruction or a variation based on the
instruction tag. Thus, in one aspect, the instruction that created the pointer is also creating
a capability to access the memory location through the pointer and sharing that capability
through the pointer passed as an argument to the called procedure. It should be noted that
with lazy-object-coloring, the pointer will need to have a tag providing authority to tag
free-stack-frame-cells, which may not be allowed on heap memory safety pointers.

In connection with a return or other operation resulting in removing a frame from
the stack (e.g., such as due to completion of a called routine), tagged code may clear the
frame. The tags on such code provides the authority to change any frame object tags
associated with this frame to the free-stack-frame-cell tag.

Code of a program executed in an embodiment of a computer system in
accordance with techniques herein may include code that performs exception handling.
As known in the art, exception handling is processing performed responsive to an
exception denoting an occurrence of an anomalous or exceptional condition requiring
special processing performed by the exception handler. Thus, when an exception occurs
at a first point in a program, the normal flow of program execution may be interrupted so
that control is transferred to an exception handler. Prior to transferring control to the
handler, the current state of execution may be saved in a predetermined location. If

program execution may be resumed after the exception has been processed by the handler,

116

10

15

20

25

WO 2017/106101 PCT/US2016/066188

execution of the program may resume (e.g., control may then be transferred back
following the first point in the program). For example, a divide by zero operation may
result in an exception that is continuable where the program execution may resume after
the exception is handled by the handler. In connection with implementing an exception
handler, an embodiment may use library routines such as setjump and longjump. For
example, setjump and longjump may be standard C library routines, respectively, setjmp

and longymp, defined as follows:

int setymp(jmp_buf env)

where setjmp sets up the local jmp_buf buffer and initializes it for the jump. Setjmp saves
the program's calling environment in the environment buffer specified by the env
argument for later use by longjmp. If the return is from a direct invocation, setjmp returns

0. If the return is from a call to longjmp, setymp returns a nonzero value.

void longimp(jmp_buf env, int value)

where longjmp restores the context of the environment buffer env that was saved by
invocation of the setjmp routine in the same invocation of the program. Invoking longjmp
from a nested signal handler is undefined. The value specified by value is passed from
longymp to setymp. After longjmp is completed, program execution continues as if the
corresponding invocation of setjmp had just returned. If the value passed to longjmp is O,
setjmp will behave as if it had returned 1; otherwise, it will behave as if it had returned
value.

Thus, setjmp may be used to save a current state of a program. The state of a
program depends on, for example, the contents of memory (i.e. the code, globals, heap,
and stack), and the contents of its registers. The contents of the registers includes the stack
pointer, frame pointer and program counter. Setjmp saves the current state of the program

so that longmp may restore the program state and thus return the state of the program

117

10

15

20

25

WO 2017/106101 PCT/US2016/066188

execution to what it was when setymp was called. In other words, longjmp() doesn't
return. Rather, when longjmp is invoked, execution returns or resume to the particular
point denoted by the previously saved program state (as saved by setjimp). Thus,
longymp() may be used to transfer control from a signal handler back to a saved execution
point in a program without using standard calling or return conventions.

For example, reference is made to Figure 50. In the example 560, routine main
562 may call routine first 563, and routine first 563 may call routine second 564. As
illustrated, main 562 may include a call to setymp at point X1 prior to calling routine first.
The first time setjmp is called at point X1, it returns a zero and then routine first is called.
After longjmp is executed, setjmp returns 1. Routine second 564 includes a call to
longymp at point X2 which causes a transfer of control back to main at location X1 where
setjmp was called. Setjmp is now called again and returns a 1 so first is not called and the
control proceeds to NEXT.

In connection with a stack protection policy, it may be desirable to clear the stack
prior to resuming execution to the point X1 previously saved by settmp. For example,
based on the above call chain main-first-second, 3 stack frames may exist in the call stack
and processing may be performed to clear stack memory associated with invocations in
the call chain between the longjmp call and setymp call. In particular, code of longjmp
may include code that clears stack frames for first 563 and second 564 in this example.
What will now be described are techniques that may be used in connection with
performing such stack clearing in accordance with a stack protection policy.

In connection with a stack protection policy when performing a setymp that saves
program state to stack memory, an embodiment may tag the current stack pointer memory
cell with a distinguished tag component so that, in connection with a subsequent longjmp,
rules may check that the stack hasn’t changed since the setjmp. Data may be saved to the
setjmp data structure, jmpbuf, denoting the current program state. The saved data may
include the stack pointer, program counter, a first pointer (tagged as being a pointer that
is allowed to point to a memory location tagged with the distinguished tag component

(e.g. point to the current stack pointer memory cell), and a second pointer (tagged as

118

10

15

20

25

WO 2017/106101 PCT/US2016/066188

longjmp-clearing-authority-pointer to provide authority to perform longjmp processing).
In at least one embodiment, the longjmp-clearing-authority-pointer may only provide
authority to clear tags associated with frames in the set of procedures that could be
recursively called from this procedure.

In connection with a stack protection policy when performing a longjmp, code
may check that the current stack pointer denotes a deeper stack position than the saved
stack pointer of the set jump structure (e.g., setymp data structure, jmpbuf). A rule may
be triggered that checks that the memory cell of the set jump structure containing the
saved stack pointer (as saved by set jmp) has a tag that is compatible with the tagged first
pointer (of the set jump structure). Code may be executed that clears all stack memory
locations between the current stack pointer and the saved stack pointer (as previously
saved by set jump in the set jump structure). Such code may be perform the clearing
using the second pointer noted above that is tagged as the longymp-clearing-authority-
pointer providing the stack clearing authority (e.g., second pointer used to point to stack
locations cleared). Rules may be triggered by the code performing the clearing where the
rules check that the second pointer is tagged as longjmp-clearing-authority-pointer.
Instructions in longjmp are uniquely tagged so that invoked rules allow the uniquely
tagged instructions to use of a pointer tagged as longjmp-clearing-authority-pointer.
Other code that is not in longjmp cannot use a pointer tagged as longjmp-clearing-
authority-pointer (e.g., the other code is not tagged to allow use of longjmp-clearing-
authority-pointer).

In at least one embodiment, tagging of instructions may be performed by having
the compiler generate an instruction sequence that invokes rules to perform desired
instruction tagging and/or memory location tagging. For example, for stack memory
location tagging, the compiler may generate an instruction sequence with store
instructions that trigger rules to initialize or reset the tag of a stack location. For tagging
instructions, the compiler may generate an instruction sequence with store instructions
that trigger rules to tag an instruction where the tag for the instruction may be based on

the color associated with a tagged memory location accessed by the instruction. In

119

10

15

20

25

WO 2017/106101 PCT/US2016/066188

connection with a return from a call having an associated stack frame, code may be added
that clears the frame from the stack. When strict object initialization is employed and a
new frame created in response to a call, code may be added that appropriately tags or
colors objects of the new frame.

What will now be described with reference to Figures 51-53 are examples of
different unauthorized or unintended modifications that may be made to the stack (“stack
attacks” referring to attacks made through stack modifications) such as, for example,
made by malicious code or unintended stack modifications by non-malicious code (e.g.,
accidental overwrites or buffer overflows).

Figures 51-52 illustrate actions that may be taken to prevent stack attacks in
connection with stack modifications made by a code module such as third party code
(e.g., library routine invoked) and may be characterized as an arbitrary attacker model.
Thus, the cases in 570 and 575 may occur, for example, as a result of a called third party
library routine including code that performs the unauthorized or unintended stack
modification. Additionally, the stack modification may also be made by yet another
routine further invoked by code of the called library routine. Each line of 570 and 575
includes 3 columns of information. For each of lines 572a-h, column 1 identifies an item
to prevent denoting undesired runtime execution behavior, column 2 identifies a
preventive action that may be taken to avoid the undesired behavior of column 1, and
column 3 identifies one or more mechanisms that may be used to implement or enforce
the preventive action of column 2. Generally, in column 3, alternate mechanisms are listed
which may be each be implemented independently and separately depending on the
particular system. For example, a conventional system may use separate processes as a
first mechanism while a second system may alternatively use a capability and a second
system may alternatively use coloring or tagging of the particular stack locations.

To further illustrate and consistent with discussion elsewhere herein, code, such
as prolog code executed when a call is made, writes return addresses and registers to the
stack. The prolog code may invoke rules that tag the stack locations with special tags to

limit what code can modify or generally access the stack locations. For example, prolog

120

10

15

20

25

WO 2017/106101 PCT/US2016/066188

code may perform memory writes/stores to store return addresses, registers, and the
like, in a memory cell of a stack frame. Such write/store instructions of the prolog code
may invoke a rule that tags a memory cell of the stack frame with a special tag STACK
FRAME TAG to mark the memory location as special and limit what code can modify
the memory cell. The write/store instructions of the prolog code may also be tagged
with PROLOG STACK TAG to limit the instructions that can perform this tagging.
The following is an example of logic enforced by the rule invoked by the write/store
instructions of the prolog code that tags a memory cell of the stack frame with a special
tag STACK FRAME TAG to mark the memory location as special and limit what code

can modify the memory cell:

If (CI=PROLOG STACK TAG) AND (this is a memory write operation) then
output or Rtag = STACK FRAME TAG

In the foregoing rule logic, output tag refers to the tag placed on the stack location.

In a similar manner, other code, such as epilogue code invoked with performing
a return, may be allowed to clear the stack, or portion thereof. The epilogue code may
be tagged with the special tag of EPILOG STACK TAG (e.g., CI tag) and may be given
authority through access of a pointer tagged with the special tag STACK FRAME TAG.
The epilogue code may perform the foregoing stack clearing using write/store
operations using the pointer specially tagged with STACK FRAME TAG. To further
limit performing stack clearing, the epilogue code may be tagged as noted above. In
such an embodiment, the write/store instructions may invoke a rule implementing the
following logic to enforce the policy where stack clearing may only be performed by
epilogue code using the specially tagged pointer (tagged with STACK FRAME TAG):

if (CI = EPILOG STACK TAG) AND (memory write operation) AND

(Mtag = STACK FRAME TAG) then output or Rtag=Default tag

121

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Code that is intended to restore return addresses and registers from the stack may
be given authority to read these specially tagged memory cells of the stack. Such
authority may be given, for example, by any of’ tagging the code (CI tag) to denote the
code is allowed to access the specially tagged memory cells of the stack, tagging the PC
to indicate the code has the authority, or tagging a pointer used by the code where the
pointer points to the specially tagged memory cells and the tag on the pointer denotes the
access authority. For example, a read/load instruction may be given authority to read the
stack memory cells tagged with STACK FRAME TAG. In one embodiment, the
read/load instruction may be given authority by allowing only read/load instructions using
the specially tagged pointer (tagged with STACK FRAME TAG) to read from a stack
memory location. Rule logic allowing only read/load instructions using the specially
tagged pointer (tagged with STACK FRAME POINTER) to read from the specially
tagged stack memory location (tagged with STACK FRAME TAG) may be:

if (memory read operation) AND (R2tag=STACK FRAME POINTER) AND

(Mtag =STACK FRAME TAG) then Rtag = DEFAULT TAG

As a variation to the foregoing, the read/load instruction may be given authority
by tagging a pointer used by the read/load instructions with the special tag STACK
FRAME TAG.

Rule logic allowing only read/load instructions using the specially tagged
instructions (tagged with STACK FRAME INSTRUCTION) to read from a stack
memory location may be:

if (memory read operation) AND (Cltag=STACK FRAME INSTRUCTION)
AND (Mtag =STACK FRAME TAG) then Rtag= DEFAULT TAG)

Examples of mechanisms are described below and elsewhere in more detail.

Element 572a identifies an undesired runtime behavior of a called routine (callee)
that never returns to the calling routine (caller). To prevent this behavior, an action taken

may be to have a timeout associated with each call where a maximum amount of time

122

10

15

20

25

WO 2017/106101 PCT/US2016/066188

may be allowed to complete the invoked routine. After the maximum amount of time
elapses, runtime execution of the invoked routine is terminated. Mechanisms to
implement the timeout may include having the invoked routine of the third party code be
made from a separate thread that enforces the timeout, or directly limiting the amount of
time of the called routine using a time or instruction limited call.

Element 572b identifies an undesired runtime behavior of resource exhaustion
where the called routine may use up an available resource, such as memory. To prevent
this behavior, an action taken may be to limit resource made available to the called
routine. Mechanisms to implement the timeout may include having the invoked routine
of the third party code be made from a separate thread that enforces the maximum
resource limits, or directly limiting the amount of resource of the called routine using a
special instruction limited call.

Element 572¢ identifies an undesired runtime behavior of the invoked routine
exercising unexpected authority such as by making an expected call to yet another routine.
To prevent this behavior, an action taken may be to limit the authority of the called routine
to the minimum privilege allowable. Mechanisms to implement this may include tagging
the PC with the authority and control capabilities of the callee or called routine and
limiting the portion of the file system or other resources accessible to the called routine,
and limiting the allowable system calls the invoked routine can make.

Element 572d identifies an undesired runtime behavior of the called routine
reading items left in registers by other routines subsequently called by the called routine
(e.g., mycode calls P1 in the library and P1 further calls routine evil and P1 may read data
left in registers by evil). To prevent this behavior, an action may be taken to clear the
non-input and non-return registers. Mechanisms to implement this may include
performing explicit register clearing, coloring portions of the stack including the non-
return and non-input registers so that they cannot be read by the called routine, and having
a separate process invoke the called routine.

Element 572¢ identifies an undesired runtime behavior of the called routine

reading items left on the stack by other routines subsequently called by the called routine

123

10

15

20

25

WO 2017/106101 PCT/US2016/066188

(e.g., mycode calls P1 in the library and P1 further calls routine evil and P1 may read data
left on stack by evil). To prevent this behavior, an action may be taken to make the called
stack inaccessible (e.g., stack region used by the further invoked other routines such as
evil are inaccessible to the first called routine such as P1). Mechanisms to implement this
may include using separate stacks (e.g., for the first called routine P1 and the further
invoked routine evil), capabilities (e.g., tag PC or use specially tagged pointer allowed to
access particular stack regions to limit ability or authority of code allowed to read stack
areas), coloring (e.g., tag data areas of stack to limit what code can access), and having a
separate process invoke the called routine.

Element 572f identifies an undesired runtime behavior of the called routine
writing over items in the stack prefix (e.g., overwriting the return address area identifying
the return address). The stack prefix may be an area of stack that includes information
needed to return to some prior caller. To prevent this behavior, an action taken to make
the stack prefix inaccessible or unwritable to the called routine. Mechanisms to
implement this may include having the called routine and the user code invoking the
called routine use separate stacks, using capabilities (e.g., allow access through specially
tagged code or code provided authority through PC tag or specially tagged pointer), using
coloring (e.g., tagging the data items of the stack prefix with special tags so that called
routine is not allowed to access), and having a separate process invoke the called routine.

Element 572g identifies an undesired runtime behavior of the called routine read
data in the stack prefix. To prevent this behavior, an action taken to make the stack prefix
inaccessible to the called routine using mechanisms similar to those described with 572f.

Element 572h identifies an undesired runtime behavior of the called routine
redirecting control flow in the stack prefix such as by overwriting the pointer to the return
address where the pointer is stored in the stack prefix. To prevent this behavior, action
may be taken to protect the return address stored in the stack prefix. In one aspect, element
572h identifies a particular instance of 572h and thus the mechanisms of 572h are similar
to those of 572f. Mechanisms to implement this may include having the called routine

and the user code invoking the called routine use separate stacks, using capabilities (e.g.,

124

10

15

20

25

WO 2017/106101 PCT/US2016/066188

allow access through specially tagged code or code is provided authority through PC tag
or specially tagged return pointer that is tagged by access authority), using coloring (e.g.,
tagging the memory location of the stack prefix including the return address with a special
tags so that called routine is not allowed to access), and having a separate process invoke
the called routine.

Figure 53 illustrates actions that may be taken to prevent stack attacks in
connection with an arbitrary input attacker model.

Element 581a identifies an undesired runtime behavior of executing code writing
over unintended items in the current frame of the executing routine. To prevent this
behavior, an action taken may be to maintain object integrity. Mechanisms to implement
this may include using capabilities by object (e.g., allow access through capability
provided with specially tagged code or code provided authority through PC tag or
specially tagged return pointer that is tagged by access authority), or color by object (e.g.,
tagging the memory locations of an object).

Element 581b identifies an undesired runtime behavior of reading items in the
current frame of the executing routine. To prevent this behavior, an action taken may be
to maintain object integrity. Mechanisms to implement this may include using capabilities
by object (e.g., allow access through capability provided with specially tagged code or
code provided authority through PC tag or specially tagged return pointer that is tagged
by access authority), or color by object (e.g., tagging the memory locations of an object
with object specific tag).

Element 581c identifies an undesired runtime behavior of executing code (having
current frame) writing over unintended items in the predecessor frame (e.g., of other
routine that invoked the executing code). To prevent this behavior, an action taken may
be to isolate or separate tack frames. Mechanisms to implement this may include using
capabilities by frame(e.g., allow access through capability provided with specially tagged
code or code provided authority through PC tag or specially tagged return pointer that is
tagged by access authority), or color by frame (e.g., tagging the memory locations of

frame with frame-specific tag).

125

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Element 581d identifies an undesired runtime behavior of executing code (having
current frame) reading items in the predecessor frame (e.g., of other routine that invoked
the executing code). To prevent this behavior, an action taken may be to isolate or
separate tack frames. Mechanisms to implement this may include using capabilities by
frame or color by frame as described with element 581c.

Element 581e identifies an undesired runtime behavior of executing code (having
current frame) reading items left of the stack by another routine invoked by the currently
executing code. The preventive action is to make the called stack of the invoked routine
inaccessible to the currently executing code. Mechanisms to implement this may include
using a separate process, a separate stack, capabilities and coloring in a manner similar
to as described in connection with 572g.

Element 581f identifies an undesired runtime behavior of executing code
(having current frame) modifying the return pointer (e.g., location in stack including
return address in routine that invoked executing code). The preventive action is to
protect the return pointer or location in the stack including the return address.
Mechanisms to implement this may include using capabilities and coloring in a manner
similar to as described in connection with 572g.

An embodiment in accordance with techniques herein may use the PUMP rule
metadata processing system as part of another hybrid system to learn and validate new
set of rules. For example, the PUMP rule metadata processing system may be used to
learn (e.g., through logging) allowed control flow and thus determine rules and allowed
valid control transfers for an executing program. The rules and allowed valid control
transfers may be then be used as the rules and set of valid control transfers of a CFI
policy enforced for the program that was executed.

To further illustrate learning rules and control transfers for the program’s CFI
policy, a first training or learning phase may be performed. In this first phase, the
program is executed with all control points (e.g., branch or transfer source and targets)
tagged and a training version of a CFI policy where there are no rules for control

transfer instructions. Thus, each time there is a control transfer, such as a branch or

126

10

15

20

25

WO 2017/106101 PCT/US2016/066188

jump instruction, there is a PUMP rule cache miss causing transfer of control to the
cache miss handler of the PUMP rule metadata system. The cache miss handler may
perform processing to log information regarding the control transfer. The information
logged may include, for example, the source location of the transfer and the target
location of the transfer. Other information may also include, for example, the calling
procedure or routine from which the transfer is made (e.g., and includes the source
location) and the called procedure or routine to which control is transferred (e.g., and
includes the target location). More specifically, in the learning or training phase, the
first time a particular transfer of control occurs, the cache miss handler computes a new
rule of the learned set of rules for that particular transfer of control from a source to a
target. Subsequent runtime transfers of control from the same source to the same target
use this computed rule. In this manner, if the program is presumed bug-free and a non-
attack program (not malicious code) and all control paths are exercised during a
program run, the logged set of control transfers, as indicated by the learned rule set at
the end of program execution, represents as all valid or allowable control transfers for
this particular program. Thus, the learned set of rules may denote an initial or first set
of rules for the CFI policy for the program.

Processing may be performed to validate the learned set of rules denoting the
CFI policy for the program. The validation may include ensuring that none of these
rules allow invalid control transfers. The validation of the learned set of rules may be
performed in any suitable manner. For example, an embodiment may run an analysis
tool that validates each rule. The tool may, for example, examine the binary or object
code, symbol table and original source code, and the like, to validate that each rule
corresponds to an allowed transfer. To further illustrate, validation may examine the
binary code that has all control points (e.g., branch or transfer source and targets)
tagged. In this manner, the tagged binary or source code denotes the valid set of all
potential source and target locations thereby providing a valid set of potential source
and targets that can actually be used in a runtime transfer of control. Any runtime

transfer of control logged should only occur from a source to a target where each of the

127

10

15

20

25

WO 2017/106101 PCT/US2016/066188

source and target are included in the valid set. For example, the tagged binary or
source code may include locations A1, A2 A3 and A4. Any logged transfer of control
should include a source that is A1, A2, A3 or A4, and a target that is A1, A2, A3 or A4.
If a logged runtime control transfer denoted by a first rule is from A1 to B7, the first
rule may be invalidated since B7 should not be a target of a control transfer (e.g., B7 is
not included in the set of statically determined possible control points tagged consistent
of Al, A2 A3 and A4). In one aspect, the learned set of rules may be characterized as a
candidate set of rules which may be further reduced via rule removal as a result of
validation processing.

All rules of the initial or learned set of rules for the CFI policy for the program
that have been validated may then be used as a validated set of rules included in a CFI
policy that is then enforced for the program.

Referring to Figure 54, shown is an example summarizing processing just
described as may be performed by an embodiment in accordance with techniques herein
for learning, validating and using policy rules. In 602, the program may be initially
executed with no CFI policy rules in effect so that each new transfer of control causes a
rule cache miss and triggers the cache miss handler to generate a new rule regarding the
transfer of control encountered at runtime. The new rule may identify a transfer of
control from the source and target and may be included in a first set of learned rules
604. At the end of program execution, the first set of learned rules 604 includes a rule
for each different transfer of control that occurred at runtime. The first set of learned
rules may then be validated in processing of 606 to ensure each rule represents a valid
control transfer. Processing of 606 may use a tool as described above for automated
rule validation and may also include other processing. For example, validation
processing of 606 may include presenting a rule that has been validated by the tool to a
user for further confirmation that the control transfer is valid. The second set of
validate rules 608 may be generated as a result of rule validation processing 606.
Subsequently, the second set of validated rules 608 may be used by the PUMP system

as the CFI policy enforced when executing the program at a second point in time in 610.

128

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Thus, for foregoing first program execution in 602 may be used to determine a
set of valid control transfers for the program. However, it may not be reasonable to
assume that this single program execution exercises all control paths whereby the
control transfers identified in 608 as valid may denote less than all possible valid
control transfers. In this case, processing may be performed as described above in
connection with 610 using the validated set of CFI policy rules. During runtime, if a
control transfer is encountered causing a rule cache miss (e.g., indicating an unforeseen
control transfer not having a rule in 608), additional checking may be performed at
runtime, for example, to validate the control transfer such as described above (e.g.,
using the set of possible control points tagged in binary code or annotated in a source
program). If the control transfer is determined as invalid, a fault or exception may be
triggered.

As an alternative, if a control transfer is encountered causing a rule cache miss
thereby denoting an unexpected runtime control transfer, the cache miss handler may
record the unexpected transfer rule for later validation and also allow the unexpected
transfer of control to proceed with additional or different policies in effect. For
example, for an unvalidated control transfer, the transfer may be considered untrusted
so policies may be modified to reflect a higher level of protection due to the untrusted
nature of the unvalidated control transfer. For example, the unexpected transfer may
transfer control to a library routine. The library routine may be executed using policies
reflecting a higher level of protection and less trust than those in effect prior to the
unexpected transfer. For validated control transfers, a first stack protection policy may
be in effect at a first point in time prior to the unexpected transfer of control and a
second stack protection policy in effect after the unexpected transfer of control. The
first stack protection policy may enforce static procedure authority. The first protection
policy may not include any coloring at the object level as described elsewhere herein
with the object protection model. After the unexpected control transfer, the second

stack protection policy in effect may provide for stack protection in accordance with the

129

10

15

20

25

WO 2017/106101 PCT/US2016/066188

object protection model described elsewhere herein with strict object coloring. Thus,
code executed once the unexpected control transfer is encountered may utilize the more
restrictive second stack protection policy providing a tighter finer level of granularity of
stack protection. Additionally, the program execution may continue with a reduced
level of priority once the unexpected transfer of control occurs.

Referring to Figures 55 and 56, shown are flowcharts 620, 630 of processing
steps that may be performed in an embodiment in accordance with techniques herein
using a set of validated rules, such as the rules of a CFI policy for a program described
above. Flowchart 620 describes a first set of processing steps that may be performed in
connection with an unexpected transfer of control not having a rule in the CFI policy of
an executing program. Flowchart 631 describes a second set of processing steps that
may be performed in connection with an unexpected transfer of control not having a
rule in the CFI policy of an executing program.

Referring to flowchart 620, at step 622 a program may be executed using a set of
validated rules. At step 624 during program execution, a runtime transfer of control is
performed. At step 626, it is determined whether there is a rule cache miss thereby
indicating that the transfer is unexpected. In particular, if there is a rule in the second
set of validated rules for the runtime transfer of control, then the transfer of control is
expected where step 626 evaluates to no and processing continues with step 628 where
the control transfer is performed and the program continues execution.

If step 626 evaluates to yes (e.g,. cache miss indicating an unexpected transfer of
control), processing continues with step 632 where runtime validation processing is
performed for the unexpected control transfer. In particular, the miss handler may
perform processing that attempts to validate the unexpected transfer. Examples of rule
validation processing may include determining whether the runtime source and target
locations are included in a set of potential control transfer points as described above that
may be determined using tagged binary code, the original source program and symbol
table, and the like. At step 634, it is determined whether the validation processing of

step 632 determined the unexpected transfer of control is valid. If step 634 evaluates to

130

10

15

20

25

WO 2017/106101 PCT/US2016/066188

yes, processing continues with step 636 where the new rule is added to the second set
used as the CFI policy for the program and processing of the program continues. If step
634 evaluates to no, program execution may be terminated, for example, by causing a
trap.

Referring to flowchart 631, steps 622, 624, 628 and 628 are as described above
in connection with flowchart 620. If step 626 evaluates to yes, control proceeds to step
639 where the unexpected transfer of control may be recorded (e.g., candidate rule for
unexpected transfer of control recorded) for later validation. In step 639, the program is
allowed to continue execution even when the transfer of control is unexpected.
However, in step 639, program execution continues, for example, using a set of one or
more restrictive policies, reduced execution priority, and the like, such as noted above.

The processing described above of such as described above may be similarly
performed in connection with other policies such as taint tracking. For example, for
taint tracking, a first learning or training phase may be performed to learn rules of a
policy via program execution by having the cache miss handler “log” each cache miss.
As described herein, taint tracking may include tagging data based on the code that
produces or accesses it (e.g., such as using the CI as described elsewhere herein.) One
reason to taint data based on code or source is to make sure that programs are properly
contained and do not perform unwanted or improper data accesses. For example, rules
may be used to assure that data tainted by the JPEG decoder never flows into the
password database, or that credit card data, social security number or other personal
information is only accessed by a particular set of one or more restricted applications.
With determining a taint tracking policy, processing may be performed for a learning or
training phase with no taint tracking rules run on test data that causes a cache handler
miss the first time it sees a particular flow of data (e.g., which routines of a program
access what data, what user input is written to what database, and the like) and records
the rule. In a manner similar to that as described above for the CFI policy, at the end of
a test run of the first learning phase, there is a set of learned rules to apply to protect the

program during operation. Validation processing of the learned set of rules may be also

131

10

15

20

25

WO 2017/106101 PCT/US2016/066188

be performed using a tool or other suitable means as noted above for the CFI learned set
of rules. Such validation processing for taint tracking may include ensuring that each
data flow or access is proper.

Also, in a manner similar to that as described in connection with flowcharts 620
and 631, the validated set of rules may be used with the PUMP system where a cache
miss handler handles processing for any data access that does not have a corresponding
rule in the validated set. Similar to processing of flowchart 620, the cache miss handler
may then also perform runtime validation processing (e.g., similar to step 632) to
determine whether a candidate rule for the data access or data flow is valid and allow
program execution to continue (e.g., similar to steps 634, 636) or not (e.g., similar to
step 638). Alternatively, similar to processing of flowchart 631, the cache miss handler
may record a candidate rule for the unexpected data access or data flow that may be
validated oftline (e.g., not during runtime) and continue program execution using, for
example, more restrictive policies, reduced priority, and the like (e.g., similar to step
639).

The examples above describe a generally binary learning process. An
embodiment in accordance with techniques herein may further support use of statistics
in making a decision about whether or not to allow an event (e.g., control transfer or
data access). In at least one embodiment, a counter may be added to each rule to count
the number of uses of each rule during program execution. When the rule is evicted
from the PUMP cache, processing may add the accumulated rule usage into a global,
software count that may be used to provide additional statistics regarding rule usage.
The count may also be used to allow something to occur a limited number of times.

For example, in connection with taint tracking rules tracking the flow of data from a
source to a target, a limited threshold amount of data may be allowed for unexpected
data flows between a source and target (e.g., X amount of data read from a particular
database by a particular program). Once that threshold amount has been transferred, no
additional data may be transferred between the source and target until the corresponding

candidate rule has been successfully validated. With the limited use case with the

132

10

15

20

25

WO 2017/106101 PCT/US2016/066188

threshold amount, the PUMP system (e.g., miss handler) may allow an instruction
lacking a rule to occur some limited number of times. Aggregation or counting as
applied to the threshold may be done in different ways. For example, consider
unexpected control transfers. Non-aggregated, the cache miss handler may not allow the
same unexpected control transfer without a validated rule to occur more than 5 times.
Aggregated, such as across all unexpected control transfers for a program, the program
may be allowed to make a maximum number of 100 unexpected control transfers. This
may be useful for example, for cases where it is acceptable for a single instance of an
unexpected transfer of control or unexpected data access to occur. For example, a
single query to examine data from a particular source may be allowed. However, if
above a threshold number of queries are performed to the data source (e.g., particular
database), the program should be flagged or stopped.

The more general statistics case may be used for learning the range of normal
behavior. For example, a program may be executed in a learning phase to determine a
relative usage of the different rules of a policy (e.g., ratio of usage of each rule). For
example, relative usage of each rule invoked for a runtime control transfer may be
recorded. Ideally, such execution may be performed for the program using many
different data sets to learn what may be considered average or normal program
behavior. Rule learning and validation may then result in a set of rules for the validated
control transfers (as described above) and additionally a ratio indicating a relative usage
of each validated rule. Both the validated rules and associated usage ratios may be used
during subsequent processing as the enforced policy rules. During subsequent program
execution when the policy is enforced, the PUMP system may check if current rule
usage is out of line with the expected ratio. An embodiment may include, for example,
a range or maximum expected usage for the rule where control transfers invoking the
rule more than the maximum may be flagged. For example, the program invoking the
particular control transfer rule more than the maximum may be flagged for further
inspection or analysis. Using this mechanism, program runtime behavior can be

monitored similar to the way network behavior is monitored to generate firewall rules.

133

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Statistical learning algorithms can be used to capture rule usage, and perhaps other
standard runtime characteristics like main-memory traffic and cache miss rates, to learn
normal case versus attack behavior. In embodiment applying the limited-use threshold
as described above, if a program exhibits other runtime behavior that is anomalous or
otherwise may be considered untrusted, the use limits may be greatly reduced or
otherwise set to zero. Alternatively, if a program exhibits normal runtime behavior or
otherwise may be considered trusted, the use limits may be set much higher or increased
in comparison the untrusted scenario.

The techniques above may be used to determine a set of valid rules of a policy,
such as valid control transfers reflected in rules of a CFI policy, without having a
compiler output any additional information. Thus, an embodiment in accordance with
techniques herein may have two version of each policy—one used for the learning
phase and another used for subsequent enforcement. The learning phase may be used as
an automated diagnostic mode to discover allowable data accesses or flows for taint
tracking, discover control transfers for a CFI policy, and the like.

What will now be described are examples of architectures that may be used in
embodiments in accordance with techniques herein using a RISC-V processor.
Additionally, described below are techniques that may be used in connection with
performing processor-based mediated data transfers between untagged and tagged data
sources used by the processor. Such techniques provide for tagging external untrusted
data that may be brought into the system for use by the processor and also removing
tags from tagged data used within the system to generate untagged data for use outside
of the system.

Referring to Figure 57, shown is an example of components that may be used in
an embodiment in accordance with techniques herein to mediate between tagged and
untagged data. The example 700 includes a RISC-V CPU 702, PUMP 704, L1 data
cache 706, L1 instruction cache 708, interconnect fabric 710 used internally within the
system for tagged data transfers, boot ROM 712a, DRAM controller (ctrl) 712b, and
external DRAM 712¢ storing tagged data. Also included are add tag 714a and validate

134

10

15

20

25

WO 2017/106101 PCT/US2016/066188

drop tag 714b which are hardware components, interconnect fabric 715 used for
transferring external untagged data in from untagged memory 716 for use by the
processor 702 and transferring untagged data out to the untagged memory 716. It
should be noted that other sources 701 of external untagged data, besides untagged
memory 716, may be connected to the untagged fabric 715. For example, element 701
may include untagged data stored in flash memory, untagged data accessible from the
network, and the like. The DRAM controller (ctrl) 712b is a controller used for reading
data from and writing data to DRAM 712¢. Boot ROM 712a may include boot code
used when booting the system.

The example 700 illustrates a separate tagged fabric 710 and untagged fabric
with the processor 702 used for moving data between the two. Add tag 714a takes as an
input untagged data and tags it with a tag indicating that the data is public (can be used
outside the system described herein) and untrusted (since the source may be unknown
or otherwise not from a known trusted source). In at least one embodiment, the
untagged data of untagged memory 716 may be received by 714a. The received
untagged data from 716 may be encrypted whereby add tag 714a simply adds an
untrusted tag to the received encrypted data. The received data may be encrypted using
asymmetric cryptography, such as public key cryptography using a public-private key
pair, or other suitable encryption technique known in the art. The received data may be
stored in an encrypted form. As known in the art, for a public-private key pair of an
owner, the private key is known only to the owner but the public key is made public and
used by others. A third party may encrypt information sent to the owner using the
owner’s public key. The owner may then decrypt the received encrypted information
using its private key (not shared with anyone else). In a similar manner, the owner may
encrypt information using his private key where the encrypted information is sent to a
third party that decrypts the encrypted information using the owner’s public key.

Validate drop tag 714b may receive tagged encrypted data and remove the tag
thereby resulting in untagged encrypted data that is being exported to the untagged
memory 716. Such untagged encrypted data stored in memory 716 may be used, for

135

10

15

20

25

WO 2017/106101 PCT/US2016/066188

example, on another system and processor not using tags and associated metadata rule
processing as performing using the PUMP described herein.

In at least one embodiment, the untagged data received at 714a may be
encrypted, as noted above, and also signed to provide integrity of the data.
Furthermore, signatures may be used in validating the received data item to ensure
authentication and data integrity (e.g., has not been modified since sent by the original
sender that signed, ensure data was sent by the sender signing the data). For example,
an owner may hash a message to produce a hash value or "digest," and then encrypt the
digest with the owner’s private key to produce a digital signature. The owner may send
the message and signature to a third party. The third party may validate the received
data using the signature. First, the third party may decrypt the message using the
owner’s public key. The signature may be verified by computing the hash or digest of
the decrypted message, decrypting the signature with the owner’s/signer's public key to
obtain an expected digest or hash, and comparing the computed digest with the
decrypted expected digest or hash. Matching digests confirms the message has not been
modified since it was signed by the owner.

In operation, an instruction, such as a load instruction, may reference data stored
in the untagged memory 716 which is then transferring into the data cache 706 for use
in instruction execution. For such a load instruction, the data may be transferred from
716 over 715 for processing by 714a which outputs the tagged data (tagged as untrusted
and public). The tagged data output by 714a is stored in the L1 data cache 706 for
processing. In a similar manner, a store instruction may store data from the data cache
706 to a location in untagged memory 716. For such a store instruction, the data may be
transferred from 706 over 710 to validate drop tag 714b which outputs the untagged
data. The untagged data output by 71ba is then transmitted over 715 for storage in 716.

Code may be executed on the processor 702 to import the untagged data from
716 into the system for storage, for example, on DRAM 712¢. The following may be
denote logic of the code that imports the untagged data:

1. the tagged data output by add tag 714a may be stored in untrusted buffer (tagged

136

10

15

20

25

WO 2017/106101 PCT/US2016/066188

as public, untrusted).

2. decrypt the tagged data stored in untrusted buffer and store in decode buffer.
Thus decode buffer includes decrypted data that is tagged as public, untrusted.

3. perform validation processing to ensure that the decode buffer includes valid
uncompromised data. Such validation processing may use digital signatures as
described elsewhere herein and known in the art.

4. if the decode buffer includes validate data, a second portion of trusted code may
be executed to convert the data of decode buffer tagged as public, untrusted, to data that
is tagged as trusted. The trusted code portion may include one or more instructions that,
when executed, invoke rules to retag the data of decode buffer as trusted, public. The
retagged data now tagged as trusted, public may be stored in a trusted buffer located in
external DRAM 712c.

The trusted code may include a memory instruction tagged with a special
instruction tag giving it the authority to, when executed, invoke a rule that retags a
referenced memory location. For example, the trusted code may include a specially
tagged store instruction that stores the data tagged as public, untrusted (untrusted
buffer) in a destination memory location (trusted buffer) with a new tag of public,
trusted. The foregoing store instruction of trust may be specially tagged, for example,
by a loader.

The following may be denote logic of the trust code that retags data from public,
untrusted, to public trusted:

fori=1toN

temp = *untrusted buffer [i];

trusted buffer [i] = temp;
where N is the length of the untrusted buffer and temp is a temporary buffer used for the
retagging performed. The first instruction, temp = *untrusted buffer [1], may result in a
load instruction that loads a first element of untrusted buffer from untagged memory
716 into temp. The second instruction, trusted buffer [i] = temp, may be a store

instruction that stores the data tagged in temp as public, untrusted to trusted buffer [i]

137

10

15

20

25

WO 2017/106101 PCT/US2016/066188

with a new tag of public, trusted. Thus, the second instruction is the instruction that is
specially tagged as noted above to have authority to perform the data retagging from
untrusted to trusted.

In a similar manner, when tagged data of 712c¢ is being exported or stored in
untagged memory 716 (or any untagged memory source 701), code is executed by the
processor 702 that encrypts the data item and generates a signature where the encrypted
data item and signature may be sent to 714b where the tag is removed before
transmission over 715 for storing in 716.

As a variation to the example 700, the memories 716 and 712¢ may be unified
and also the interconnect fabric 710 and 715 may be unified. In such an embodiment,
the address range that the untagged memory source 701 is allowed to access may be
limited. For example, reference is made to the example 720 of Figure 58. The example
720 includes components similar to those numbered as in 700 with the difference that
components 714a-b, 715 and 716 are eliminated and memory 712c¢ includes a portion U
722 denoting a region of memory 712¢ used for storing untrusted, public tagged data.
The untagged memory source 701, such as an untrusted DMA and I/O subsystem, may
be limited to using the bottom 16 or 256 MB of memory 722. In one embodiment, data
stored in U 722 may not be explicitly tagged but rather all data stored in U having an
address in this limited range may be implicitly tagged and treated as public and
untrusted. As a variation, an embodiment may pretag portion U 722 with permanent
tags indicating untrusted public data and the foregoing associated permanent metadata
tag cannot be modified. Rules may prevent the processor from storing other data into
region U 722. Untrusted DMA operations, for example, performed by a DMA included
in 701 may be limited to writing into region U 722.

An embodiment needing to run unported I/O processing code may be executed
on a dedicated I/O processor on the untrusted side of components. For example,
reference is made to the example 730 of Figure 59. The example 730 includes
components similar to those numbered as in 700 with the difference of the addition of

components 732, 732a and 732b. Element 732 is the additional RISC-V processor that

138

10

15

20

25

WO 2017/106101 PCT/US2016/066188

runs without the PUMP and metadata rule processing. Element 732a denote the data
cache for the second processor 732 and element 732b denotes the instruction cache for
the second processor 732. The data cache 732 may be connected to the untagged
interconnect fabric 715.

As described elsewhere herein in more detail, a separate [/O PUMP may be used
as another alternative to mediate between the untagged data sources (e.g., 701, 716) and
tagged memory 712¢ used by the processor 702.

Referring to Figure 60, shown is another embodiment of components that may
be included in a system herein used in connection with techniques herein to mediate
between the untagged data sources (e.g., 701, 716) and tagged memory 712¢ used by
the processor 702. The example 740 includes components similar to the example 700
with the difference that components 714a-b are removed and replaced with intern 742
and extern 744. In this embodiment, intern 742 and extern 744 may be hardware
components that perform the processing described above. In particular, intern 742 may
include hardware that processes received untagged data and outputs a validated data
item tagged as trusted, public. The trusted, public tagged data item may be
communicated to over fabric 710 for storage in the data cache 706 used by the
processor 702 in connection with executing instructions. Intern 742 may include
hardware that performs validation processing of the untagged encrypted data, and,
assuming successful validation, further tags the received untagged data as trusted,
public. Extern 744 may include hardware that processes tagged unencrypted data and
outputs a signed encrypted data item. Extern may remove the tag prior to encryption if
the signed encrypted data item is going to be used on another processor that does not
perform metadata rule processing as described herein.

In a simplest case, the hardware of intern 742 and extern 744 may host a single
public-private key set where the signing and cryptography are also performed using the
single key set. The key set may be encoded in hardware used by 742 and 744. In a
further variation, the hardware of intern 742 and extern 744 may host multiple public-

private key sets where the signing and cryptography are also performed using one of the

139

10

15

20

25

WO 2017/106101 PCT/US2016/066188

multiple key sets (each set including a different public-private key pair). The multiple
key sets may be encoded in hardware used by 742 and 744. Clear data included with
the incoming untagged data tells the intern unit 742 which set of keys to use. Thus,
intern 742 may perform a lookup in a hardware data store (e.g., associative memory)
including the multiple key sets to select the desired key set. Each of the multiple key
sets may be associated with a different tag so the particular key set indicated by the
clear data also indicates the particular tag that the tagged data will include. In this
manner, the tag of the tagged data item output by 742 denotes that the data item is
public and trusted and also that the data item is encrypted/decrypted using a particular
one of the multiple key sets. In the embodiment with multiple key sets, extern 744
may examine the tag to determine which particular one of the multiple key sets is used
in connection with encrypting and signing a data item. Thus, the intern unit 742
processing provides an isolated hardware component that verifies received untagged
data and performs tagging thereby avoiding the need to have a portion of code, such as
the trust code portion noted above, with the capability to tag data.

With reference back to Figures 1 and 24, inputs to the PUMP 10 in stage 5
include tags as described elsewhere herein. For an instruction including a memory
location as an operand of the instruction, obtaining the memory input and associated
tag, MR tag (also sometimes referred to herein as the Mtag), may cause an extra
pipeline stall whereby PUMP 10 at stage 5 cannot proceed until it has all its inputs
including the MR tag. Rather than wait to retrieve the actual MR tag value read from
memory, processing may be performed in accordance with techniques herein to
determine an expected or predicted MR tag which can then be used to determine the R
tag, the tag value for the instruction’s result (e.g., destination register or memory
location, if any). In such an embodiment, a final check may be done in stage 6, the
writeback or commit stage (e.g., see element 22 of Figure 1 and commit stage as last
stage 6 in Figure 24) to determine whether the predicted MR tag matches the action MR
tag retrieved from memory for the operand of the instruction. The foregoing selection

and use of a predicted MR tag to determine Rtag for an instruction having a memory

140

10

15

20

25

WO 2017/106101 PCT/US2016/066188

location as an operand may be referred to as an Rtag prediction accelerator
optimization.

Referring to Figure 61, shown is an example 800 illustrating components of an
embodiment in accordance with techniques herein for the Rtag prediction accelerator
optimization. The example 800 includes the PUMP 802 corresponding to the PUMP 10
at stage 5 as described elsewhere herein (e.g., Figures 1 and 24) with the additional
features for performing the Rtag prediction accelerator optimization. The PUMP 802
includes as inputs the MR tag 804a as well as other PUMP inputs 804 as described
elsewhere herein. The PUMP 802 also includes another input, a prediction selector
mode 804b, which denotes whether the PUMP 802 runs in normal processing mode
(non- prediction mode where MR tag prediction processing is not performed) or
otherwise runs in a prediction mode (where MR tag prediction processing is
performed). In at least one embodiment, the prediction mode selector 804b may either
be 0, denoting normal processing mode for the PUMP where no predicted MR tag value
is determined, or 1, denoting prediction mode for the PUMP where a predicted MR tag
value is determined. When the prediction mode selector is 1, the PUMP 802 may
execute in prediction mode where the MR tag 804a input may be masked out or ignored
and the PUMP 802 produces as an output the predicted MR tag 805¢c. When the
prediction mode selector is 0, the PUMP 802 may execute in a normal processing mode
such as described elsewhere herein wherein MR tag 804a is an input to the PUMP 802
and there is no output 805¢ generated.

As illustrated in the example 800, additional outputs of the PUMP 802 in stage 5
include R tag 805a and PC new tag 805b. When using a predicted MR tag, a rule for
the predicted MR tag may be determined where the rule specifies an associated tag for
R tag. When operating in prediction mode, the predicted MR tag 805¢ is an additional
input to stage 6 808 of the pipeline. Element 808 may denote the commit or writeback
stage as described elsewhere herein (e.g., Figures 1 and 24). Thus, element 808a may

generally denote other stage 6 inputs, besides 805a-c, as described elsewhere herein.

141

10

15

20

25

WO 2017/106101 PCT/US2016/066188

In stage 6 808, additional processing 808b may be performed when the PUMP
802 operates in prediction mode. Element 808b indicates that a check may be
performed in stage 6 808 which compares the predicted MR tag to the action MR tag
obtained from memory for the operand of the instruction. In other words, 808b
evaluates whether the PUMP 802 correctly predicted the MR tag value by determining
whether the predicted MR tag matches the MR tag obtained from memory. If the
predicted MR tag does not match MR tag as obtained from memory, then an incorrect
rule was triggered and used by PUMP 802 in determining R tag 805a with the incorrect
predicted MR tag. The correct rule must now be selected (in accordance with the actual
MR tag) and used in determining a revised R tag. Thus, if the predicted MR tag does
not match MR tag, a rule cache miss is determined and cache miss handling is
performed. Consistent with description elsewhere herein, cache miss handling may
include processing to select and evaluate the correct rule using MR tag.

Load/read and store/write instructions are examples of instructions in an
embodiment that may include a memory location as an operand benefiting from use of a
predicted MR tag. Other inputs 804 to the PUMP include a set of other or remaining
input tags besides MR tag 804a. For example, one embodiment as illustrated in
connection with Figure 23 may have 5 input tags — PC tag, CI tag, OP1 tag, OP2 tag,
and MR tag — and 2 output tags — PC new and R tag. Thus the set of remaining input
tags (besides MR tag) includes the following 4 tags of PC tag, CI tag, OP1 tag, OP2 tag.
Determining a predicted MR tag or an instruction may include determining a set of one
or more rules having tags values that match the 4 tags (e.g., for PC tag, CI tag, OP1 tag,
OP2 tag) of the instruction. In some instances, only a single rule may include matching
tag values for the 4 input tags. In this case, the single matching rule also specifies a
value to MR tag which may be used as the predicted MR tag 805c. Additionally, the
rule may be evaluated using the 4 inputs tags and the predicted MR tag to further
determine the R tag 805a.

For example, consider a memory safety policy with typical load and store

operations. A load operation may load data from a source memory location using a

142

10

15

20

25

WO 2017/106101 PCT/US2016/066188

pointer where a first rule indicates that the tag or color on the source memory location
should match the tag or color of the pointer. A store operation may store data to a
target memory location using a pointer where a second rule indicates that the tag or
color on the target memory location should match the tag or color of the pointer. For a
load instruction, the first rule may be the only rule having tag values matching the 4
input tags for PC tag CI tag, OP1 tag and OP2 tag of the load instruction. The MR tag
of the first rule may be used as the predicted MR tag 805c. Additionally, the R tag of
the first rule may be determined using the set of 4 input tags and the predicted MR tag.
In a similar manner, for a store instruction, the second rule may be the only rule having
tag values matching the 4 input tags for PC tag CI tag, OP1 tag and OP2 tag of the store
instruction. The MR tag of the second rule may be used as the predicted MR tag 805c.
Additionally, the R tag of the second rule may be determined using the set of 4 input
tags and the predicted MR tag.

In other instances, the set of rules of the policy having tags matching the input
tags for PC tag CI tag, OP1 tag and OP2 tag of an instruction may include multiple
matching rules with each matching rule identifying a different allowable or candidate
MR tag that may be used as the predicted MR tag 805¢. An embodiment may use any
suitable technique to select one of the multiple allowable MR tags to use as the
predicted MR tag. For example, an embodiment may select the MR tag of the set of
allowable MR tags that is the most common or likely to occur. The MR tag that is most
likely to occur may be based on previous observations or rule profiling. As an
alternative, an embodiment may set the predicted MR tag to be the previous or most
recent MR tag. In the worst case, if the predicted MR tag does not match the actual MR
tag once received, cache miss handling may be performed as described herein to
determine the correct rule using the actual MR tag along with the other inputs tags of
the instruction.

In at least one embodiment, a class of rules for memory operations may be
created which are used when the PUMP operates in prediction mode. The class of rules

may be referred to as a class of “predict memory tag” rules. For the “predict memory

143

10

15

20

25

WO 2017/106101 PCT/US2016/066188

tag” rules, the MR tag 804a is not used as an input to the PUMP 802 and is thus not
used in connection with various lookups performed by the PUMP. For example, the
care/don’t care bit vector for the “predict memory tag” rules may treat the MR tag as a
don’t care. Additionally, the “predict memory tag” rules may omit the MR tag as an
input and rather specify predicted MR tag as an output. As described above, if there are
multiple matching normal rules matching a particular set of input tags for PC tag, CI
tag, OP1 tag and OP2 tag, the single “predict memory tag” rule corresponding to the set
of matching rules may specify a predicted MR tag as an output that is the most common
or expected MR tag. In one embodiment, the single “predict memory tag” rule
corresponding to the set of matching rules may specify, as the predicted MR tag, the last
or previous MR tag that was received by the PUMP 802.

Policy logic may decide whether to insert or use “predict memory tag” rules or
not. An embodiment may keep 2 versions of each policy where a first version includes
policy “predict memory tag” rules for use when operating in prediction mode and a
second version includes normal or non-prediction policy rules for use when operating in
normal processing mode or non-prediction mode. If the check performed in 808b of
stage 6 fails for a given instruction when using a “predict memory tag” rule, the cache
miss handling may perform processing to determine a matching rule for the instruction
using the normal rule set (e.g., second version of rules described above).

In an embodiment using a RISC-V processor and architecture, the prediction
mode selector 804b may have a corresponding PUMP CSR. Use of CSRs in an
embodiment using the RISC-V architecture is described elsewhere herein in more
detail.

Referring to Figure 62, shown is a flowchart of processing steps that may be
performed in an embodiment in accordance with techniques herein. The flowchart 840
summarizes processing as described above in connection with the example 800. As
noted above, the PUMP 802 illustrated in the example 800 denotes the PUMP at stage 5
providing inputs to stage 6 of the processor pipeline. In at least one embodiment steps

842, 844, 846, 848 and 852 of the flowchart 840 may denote processing steps

144

10

15

20

25

WO 2017/106101 PCT/US2016/066188

performed in stage 5 as described above embodied within the PUMP and the particular
policy rules used, and steps 854, 856 and 858 may be performed in stage 6 as described
above.

At step 842, a determination is made as to whether prediction mode is
on/enabled thereby denoting that the PUMP is operating in prediction mode using
“predict memory tag” rules. If step 842 evaluates to no, control proceeds to step 846
where the PUMP operates in normal or non-prediction mode using normal rules. If
step 842 evaluates to yes, control proceeds to step 844 where a determination is made as
to whether the current instruction is a memory input operation instruction. If step 842
evaluates to no, control proceeds to step 846. If step 844 evaluates to yes, control
proceeds to step 848 where the PUMP operates in prediction mode using “predicted
memory tag” rules. In step 848, a matching “predicted memory tag” rule for the
instruction may be determined. In step 852, the R tag for the current instruction may be
determined using the matching “predicted memory tag” rule from step 848. At step
854, a determination is made as to whether the predicted MR tag matches the actual MR
tag. If step 854 evaluates to no, control proceeds to step 856 to perform rule cache miss
processing by invoking the rule miss handler. If step 856 evaluates to yes, control
proceeds to step 858 where the R Tag, as determined with the rule including the
predicted MR tag, is used as the R tag PUMP output.

As a variation from the of the example 800, reference is made to Figure 63
illustrating components of an embodiment including PUMP 802 running in normal non-
prediction mode and also a second PUMP 822 that runs in prediction mode. In this
example, PUMP 822 running in prediction mode may also be referred to as the MR tag
prediction PUMP where the prediction mode selector 822b is always ON (e.g., 1).
Similarly, for the PUMP 802 the prediction mode selector 804b may also be OFF (e.g.,
0). The MR tag prediction PUMP 822 may only use the “predict memory tag” rules and
the PUMP 802 may only use the normal or non-prediction version of the policy rules.

In such an embodiment, the PUMPs 802 and 822 may operate in parallel in stage 5.

Element 828 may denote the stages 5 and 6 processing and components associated with

145

10

15

20

25

WO 2017/106101 PCT/US2016/066188

the MR tag prediction PUMP 822. Element 829 may denote the stages 5 and 6
processing and components associated with the PUMP 802 operating in normal mode.
In 829, the PUMP 802 outputs are as in connection with the example 800 with the
difference that the predicted MR tag 805c¢ is no longer output by PUMP 802.
Additionally, stage 6 808 does not perform the check 808b. Element 828 may include
components that perform processing in a manner similar to the example 800 with a
difference being that the MR tag prediction PUMP 822 only uses “predict memory tag”
rules as noted above.

Stage 6 (808) is revised to take PUMP outputs Rtag 805a and PCnewtag 805b
from MR tag prediction PUMP 822 and outputs Rtag 805d and PCnew tag 805e from
PUMP 802. Additionally, in stage 6, selection is made between Rtags 805a and 805d
and also slection is made between PCnew tags 805c and 805e based on whether or not
the predicted MR tag matches the actual MR tag (e.g., as denoted by 808a). If thereis a
match between the predicted MRtag and the actual MRtag (e.g., 808a evaluates to 1 or
true), the tags (e.g., Rtag 805a and PCnew tag 805b) from the predicted PUMP 822 are
used and the tags (e.g., Rtag 805d and PCnew tag 805¢) from the non-predicted PUMP
802 are discarded. If there is a mismatch between the predicted MRtag and the actual
MRtag (e.g., 808a evaluates to O or false), the tags 805a-c from the predicted PUMP
822 are discarded and the tags 805d-e from the non-predicted PUMP 802 are used. The
non-predicted PUMP 802 provides its output outputs 805d-e a cycle later than the
outputs 805a-c of predicted PUMP 822, so when PUMP outputs from stage 5 regarding
PCnewtag and MRtag are needed as inputs to stage 6 for processing, this introduces a
stall into stage 6 waiting on the foregoing stage 6 inputs. The non-predicted PUMP 802
may also experience a PUMP rule cache miss when it is selected, in which case, this is
handled like a typical rule cache miss as described elsewhere within this disclosure.

Referring to the stage 6 808, elements 850 and 852 represent multiplexers.
Element 808a may denote a selector used to select an input from each of 850 and 852
based on the logical result of whether MRtag predicted matches MRtag. If the

foregoing two tag values match, Rtag 805a is selected as the input into 850 provided as

146

10

15

20

25

WO 2017/106101 PCT/US2016/066188

the selected Rtag 850a denoting the in final Rtag output of stage 6; otherwise if the
foregoing two tag values do not match, Rtag 805d is selected as the input into 850
provided as the selected Rtag 850a. Additionally, if the foregoing two tag values
match, PCnew tag 805b is selected as the input into 852 provided as the selected PCnew
tag 852a denoting the in final PCnew tag output of stage 6; otherwise if the foregoing
two tag values do not match, PCnew tag 805e is selected as the input into 852 provided
as the selected PCnew tag 852a.

What will now be described are techniques using coloring allocated memory
that may be used in an embodiment in accordance with techniques herein.

A user program, such as one coded in the C programming language, may
include calls to routines used in connection with memory allocation and deallocation.
For example, malloc and free are routines in the C standard library and may be linked
into an executable of a user program. Thus, malloc and free execute as routines in the
user process address space along with other user code that may invoke malloc and free.
Malloc is invoked for dynamic memory allocation to allocate a block of memory used
by executing code. In at least one embodiment, malloc may have an input specified on
the invocation denoting the size of the memory block to be allocated whereby malloc
returns a pointer to the allocated memory block. A program accesses the allocated
memory block using the pointer returned by malloc. In at least one embodiment, free is
invoked to free or deallocate memory previously allocated with malloc. When a
memory block allocated using malloc is no longer needed, the pointer (as returned by
malloc) may be passed to free as an input argument whereby free deallocates the
memory (located as the address denoted by the pointer) so that it may be used for other
purposes. User code executing on a processor in an embodiment in accordance with
techniques herein may perform such calls to malloc and free or other routines or
functions similarly performing memory allocation and deallocation. Routines such as
malloc and free that perform dynamic memory allocation may utilize memory
management metadata regarding the allocated memory. In following paragraphs, such

metadata used for memory management may be referred to as malloc metadata and is

147

10

15

20

25

WO 2017/106101 PCT/US2016/066188

distinct and in addition to tag-based metadata described herein including tags and other
metadata pointed to by pointer tags (e.g., where tag-based metadata that is inaccessible
to executing user code and is processed by the metadata processor or subsystem such as
described in connection with the example 1000 and elsewhere herein). Malloc metadata
may include, for example, information about the allocated memory block such as the
size of an allocated memory block, and a pointer to the malloc metadata portion for a
subsequently allocated memory block.

Referring to Figure 64, shown is an example illustrating memory allocation such
as in connection with malloc. In the example 1100, a program may perform a first call
to malloc to allocate a first block of memory of a requested size. In response, malloc
may allocate memory block 1102b of the requested size and return pointer P1 denoting
the starting address for the memory block 1102b. The user program may then store data
to, and read data from the allocated memory block 1102b using the pointer P1 or
another address based on an offset from P1. Additionally, for purposes of dynamic
memory management, malloc may also allocate storage 1102a for its own malloc
metadata for each memory block allocated. Element 1102a denotes the memory portion
allocated and used by malloc for storing the malloc metadata for the allocated memory
block 1102b. In a similar manner, the user program may subsequently perform a
second call to malloc to allocate a second memory block. Element 1104a denotes the
memory portion allocated by malloc responsive to this second call where 1104a is used
for storing malloc metadata. Element 1104b denotes the second memory block allocated
where P2 is the pointer returned to the user program to access the second memory
block. In a similar manner, the user program may subsequently perform a third call to
malloc to allocate a third memory block. Element 1106a denotes the memory portion
allocated by malloc responsive to this third call where 1106a is used for storing malloc
metadata. Element 1106b denotes the third memory block allocated where P2 is the
pointer returned to the user program to access the third memory block.

After an allocated block of memory, such as 1102b, is no longer needed by the

executing code, the code may perform a call to free to free the memory block 1102b so

148

WO 2017/106101 PCT/US2016/066188

that such memory block 1102b is deallocated and may be used for other purposes.
Pointer P1 may be returned when making such a call to free. In a similar manner, when
memory blocks 1104b-c are no longer needed, calls to free may be made specifying,
respectively, pointers P2 and P3.

Through a pointer such as P1 returned by malloc to executing user code, the user
code may inadvertently or intentionally access the malloc metadata since the address of
the memory portion 1102a holding the malloc metadata is mapped into the executing
code’s address space. For example, the user code may assign another pointer P4 an
address in memory portion 1102a (e.g., P4 = P1-2) and then read or write to the
memory location identified by the pointer P4. Thus, the user code may, for example,
overwrite the malloc metadata stored in 1102a and read malloc metadata stored in
1102a. In this manner, performing a write to the memory location at the address
identified by P4 may corrupt the malloc metadata portion 1102a. More generally, the
foregoing may be performed by user code in connection with any of the malloc
metadata portions 1102a, 1104a and 1106a.

In connection with a call to free, user code may specify a pointer that does
correspond to the starting address of an allocated memory block previously allocated
using malloc. For example, the user code may perform a call to free specifying the
foregoing pointer P4 as an argument rather than P1, P2 or P3. Assume, for example,
malloc allocates an X byte block (e.g., X being a non-zero integer) for each malloc
metadata portion 1102a-c in connection with a call to malloc. The routine free may
perform processing under the assumption that memory locations from the first address
(P4-X) to the second address (P4-1) denote, respectively, starting and ending address
spanning a malloc metadata portion such as 1102a. In this case, processing performed
by free may be using a corrupted malloc metadata portion 1102a resulting in, for
example, unexpected runtime performance and/or dynamic memory management errors.

An embodiment may use techniques described herein to protect the malloc
metadata portions 1102a, 1104a and 1106a to avoid corruption through overwrites

performed by other executing code, such as the user code. Such techniques may include

149

10

15

20

25

WO 2017/106101 PCT/US2016/066188

tagging code and/or data with particular colors or tags and enforcing rules to allow only
desired access and operations such as described elsewhere herein.

With reference to Figure 65, in at least one embodiment, memory portions used
by malloc and free may be colored or tagged with a first tag used by metadata
processing as described herein and other memory portions used by user code (as
allocated by malloc) may be colored or tagged with a second different tag used by
metadata processing as described herein. In the example 1100, data portions used by
malloc and free (containing malloc metadata) may be colored or tagged red, and user
data portions (memory blocks allocated by malloc for use by user code) may be colored
or tagged blue. An embodiment may have at least one tag or color reserved exclusively
for use in coloring or tagging memory locations used by malloc and free. In this
example, red is the reserved color used for tagging memory locations used by malloc
and free. As described elsewhere herein, an embodiment may also reserve one or more
colors or tags for executing user code. In at least one embodiment, all memory
allocated for use by a user program may be tagged with the same color. As a variation,
an embodiment may use a different tag for each call to malloc and thus a different color
for each separate memory block allocated. In this example 1110, for simplicity of
illustration, only a single color blue is used to tag all memory blocks allocated by
malloc for a user program.

Element 1111 may denote tags specified for corresponding memory locations
1113. Elements 1112a, 1114a and 1116a respectively denote tags for malloc metadata
portions 1102a, 1104a and 1106a. Elements 1112b, 1114b and 1116b respectively
denote tags for memory blocks 1102b, 1104b and 1106b allocated by malloc for user by
user code via calls made to malloc as described above.

Elements 1112a, 1114a and 1116a denote that each memory location,
respectively in 1102a, 1104a and 1106a is tagged as red. Elements 1112b, 1114b and
1116b denote that each memory location, respectively in 1102b, 1104b and 1106b is
tagged as blue.

Generally, an embodiment may use instruction tagging, colored pointers, or a

150

10

15

20

25

WO 2017/106101 PCT/US2016/066188

combination of the foregoing, in connection with triggering rules that color the memory
blocks of 1113 with tags denoted by 1111, and also enforce a memory safety policy
whereby only malloc and free are able to access malloc metadata areas 1102a, 1104a
and 1106a and user code cannot.

In a first embodiment, code of malloc and free may be tagged (e.g., instruction
tagging) such as by a loader, with a special instruction tag (e.g., CI tag). Both malloc
and free may be tagged with the same unique or special instruction tag (e.g., malloc and
free code tagged with the same CI tag of tmem) or may each be tagged with their own
unique or special instruction tag (e.g., malloc code tagged with tmalloc and free code
tagged with tfree). Code of malloc may include store instructions that, when executed,
trigger rules that perform coloring such as in the example 1110. Code of free may
include store instructions that, when executed, trigger rules that reinitialize or deallocate
a malloc metadata portion (e.g., 1102a, 1104a and 1106a) or a previously malloced
memory block (e.g., 1102b, 1104b and 1106b) such as by retagging each memory cell
of the block or malloc metadata portion with an F tag representing free memory. Also,
in the first embodiment, the memory safety policy may include rules triggered by
execution of particular instructions, such as the load and store instructions, whereby the
rules only allow instructions tagged with the special instruction tag(s) noted above to 1)
access malloc metadata portions 1102a, 1104a and 1106a and 2) perform the memory
block coloring as in the example 1110. Such rules may generally check the CI tag to
ensure that each instruction coloring or accessing a memory cell in any of 1102a, 1104a
and 1106a has the special instruction tag denoting malloc or free.

In a second embodiment, rather than use special instruction tags, an embodiment
may use colored pointers with rules of the memory safety policy triggered by execution
of particular instructions, such as the load and store instructions. The loader may tag
pointers of malloc and free that reference malloc metadata portions 1102a, 1104a and
1106a with the color red. Code of malloc may include store instructions that, when
executed, trigger rules that perform coloring such as in the example 1110. Code of free

may include store instructions that, when executed, trigger rules that reinitialize or

151

10

15

20

25

WO 2017/106101 PCT/US2016/066188

deallocate a malloc metadata portion (e.g., 1102a, 1104a and 1106a) or a previously
malloced memory block (e.g., 1102b, 1104b and 1106b) such as by retagging a memory
cell with a tag F representing free memory. The memory safety policy may include
rules triggered by execution of particular instructions, such as the load and store
instructions, whereby the rules only allow access to malloc metadata portions 1102a,
1104a and 1106a with instructions referencing a memory cell using a red colored
pointer. Such rules may generally check the MR tag to ensure that the memory
instruction accessing a memory cell in any of 1102a, 1104a and 1106a uses a pointer
with a first color that matches a second color of the memory cell.

In a third embodiment, both special instruction tags and colored pointers as
described above may be utilized in combination. Following is an example of
instructions and rules that may be used in such a third embodiment. Consistent with
other discussion herein, following examples use rules based on 5 input tags to metadata
processing for PC (program counter), CI (current instruction), OP1 (operand 1 of the
current instruction), OP2, operand 2 of the current instruction), MR (memory location,
if any, referenced in the current instruction), and two propagated or generated tags for
PCnew (new PC tag for next PC for next instruction) and R(tag for result of current
instruction; used to tag destination register or memory location into which the result of
the current instruction is stored). Additionally, “-“ denotes a don’t care for a tag. In
such an embodiment, the loader may tag instructions of malloc with the special tag
tmalloc and may tag instruction of free with the special tag tfree. Colored pointers may
be created using triggered rules noted below.

In connection with malloc, metadata rule processing triggered by executing the
code portion of malloc may generate a tag for the pointer to a newly allocated memory
block such as 1102b via a first rule invoked as a result of a store instruction in the code
portion of malloc. For example, malloc C code may be “P1= next free” where next free
is a pointer to the next free memory location in 1113 and the store instruction may be
“move R1, R2”, where register R1 is the source register that contains the address next

free and register R2 is the destination register that is the pointer P1. Register R1 may be

152

10

15

20

25

WO 2017/106101 PCT/US2016/066188

OP1 (having OP1 tag) and register R2 may be the result or destination register (having
R tag propagated or generated as a result of a fired rule). The code portion of malloc
may include instructions, such as the foregoing move instruction, also tagged with a
special tag, tmalloc, denoting the instruction is included in malloc code. In at least one
embodiment, the loader may tag instructions of malloc with the special code tag,
tmalloc. The first rule may tag pointer P1 to the allocated memory block 1102b with the
tag blue. The first rule triggered as a result of the above move instruction in malloc may
be:

mv rulelA: (-, t malloc, blue-predecessor, —, =) — (-, blue)

The above rule only fires when the CI tag is tmalloc and thus for tagged move
instruction in malloc. Assuming that the pointer used by malloc is P1, the above mv
rule 1A tags P1 stored in register R2 with the tag or color blue to denote it is a pointer to
a blue memory location (e.g., memory location tagged with blue tag).

The pointer P1 tagged with blue may then be used with another second store
instruction of malloc to write a O or some other initial value to each word in the
allocated memory block 1102b. For example “*P1 = 0” may be included in malloc C
code resulting in “Store R3, (R2)” where R3 is a source register operand OP1
containing zero (0), and R2 is the OP2 register that contains the address P1. In this
store instruction, “(R2)” is operand MR and also denotes a memory location that is the
target or destination of the store instruction. Additionally, the above store instruction in
malloc may also be tagged tmalloc and may result in triggering a second special store
rule as follows:

store 2A: (—, t malloc, -, blue, F) — (—, blue)
prior to returning the tagged pointer P1 to user code that invoked malloc.

The above store rule 2A only fires when CI tag is tmalloc, the pointer or address
in R2 (denoting P1) is tagged as blue, and when the memory location MR pointed to by
P1 has an F tag. The foregoing memory location *P1 is assumed tagged with “F” prior
to coloring the memory location blue. In this example, F denotes a free memory

location. The resulting MR tag for the memory location denotes a blue tag for the

153

10

15

20

25

WO 2017/106101 PCT/US2016/066188

memory location.

Thus, malloc may include code that results in triggering the above-noted second
rule for each memory location of a memory block being allocated.

Malloc may also include code that triggers additional rules described below (e.g.
that are similar to move (mv) rule 1A and store rule 2A above) for use in initializing
malloc metadata portions 1102a, 1104a, and 1106a. For example, malloc C code may be
“(P1-2)= MD area” where MD area is a pointer into the malloc metadata area 1102a and
the move instruction may be “move R7, R8”, where register R7 is the source register
that contains the address “P1-2” and register R8 is the destination register that is the
pointer MD area. The rule triggered by the above move instruction may be:

mv rule 1B: (-, tmalloc md, -, —, —) — (-, red)
to tag the MD area pointer red.

Malloc may also include code that triggers store rule 2B noted below (that is
similar to the store 2A rule above) to tag each memory location of a malloc metadata
portion such as to store tags 1112a, 1114a, 1116a, respectively for malloc metadata
portions 1102a, 1104a and 1106a. For example assume size is an integer denoting the
size of the malloced memory block 1102b and that “*(P1-2) = size” is included in
malloc C code resulting in “Store R6, (R7)” where R6 is a source register operand OP1
containing the size value), and R7 is the OP2 register that contains the address P1. In
this store instruction, “(R7-2)” is operand MR and also denotes a memory location in
MR 1102a that is the target or destination of the store instruction. The store rule 2B
may be:

store 2B: (—, t malloc_md, -, red, F) — (—, red)

store 2D: (—, t malloc_md, -, red, red) — (—, red)
which performs the store if the store instruction is tagged tmalloc, if the R7 register
containing address P1 is tagged red, and if the MR operand is tagged as F. It should be
noted that an embodiment may also include store rule 2D (store 2D) noted above that is
a variation of store 2B rule noted above whereby store 2D rule may be used in cases

where updating the metadata value is desired.

154

10

15

20

25

WO 2017/106101 PCT/US2016/066188

At a later point in time, free may include code, such as “*P = 0” that results in
triggering store rule 3 noted below to retag a memory location of a previously malloced
memory block (e.g., memory block allocated for user code use), such as when freeing or
deallocating blue colored block 1102b. The loader may color or tag instructions of free
with tfree. The routine free may include the C code statement “*P=0" that results in
“Store R4, (R1)” where R4 is source register operand OP1 containing zero, R1 is the
OP2 register containing the address of the memory location to be initialized, and “(R1)”
denotes a memory operand MR with R1 containing the address to the memory location.
The store rule 3 may be:

store rule 3: (—, t free, -, blue, blue) — (-, F)

Thus, free may include code that results in triggering the above-noted third rule
for each memory location of a memory block being deallocated, where the memory
block was previously allocated using malloc for use by user code (e.g., used for storing
data other than malloc metadata). Store rule 3 checks to ensure that the CI tag =t free
and that both the memory location and pointer thereto have the same color, blue.

It should be noted that the MR tag of “blue” may generally be any color
previously used by malloc to color an allocated user memory block.

Code of free may also include code that triggers move (mv) rule 1C and store
rule 4 described below in connection with retagging each memory location of a malloc
metadata portion such as 1112a. Code of free may include code that triggers move (mv)
rule 1C noted below which is similar to move (mv) rule 1B above. Move (mv) rule 1C
may be:

mv rulelC: (-, tfree, -, —, —) — (—, red)
to tag a red pointer for use by free in connection with retagging using store rule 4.

Store rule 4 below (that is similar to the store rule 3 above) may be triggered to
retag each memory location of a malloc metadata portion such as retag 1112a, 1114a,
1116a, respectively for metadata portions 1102a, 1104a and 1106a. The store rule 4 may
be:

155

10

15

20

25

WO 2017/106101 PCT/US2016/066188

store rule 4. (—, t free, -, red, red) — (-, F)
which performs the store if the store instruction is tagged tfree, and if the MR operand
uses a pointer tagged as red. The memory location is tagged with “F” to now denote it
as free.

In a fourth embodiment, PC tagging may be used to provide malloc and free to
provide malloc and free with sufficient privilege, access or authority to read data from
and write data to malloc metadata portions 1102a, 1104a and 1106a and also exclude
other code from accessing the foregoing metadata portions. PC tagging is described
elsewhere herein, for example, in connection with the example 430 with providing
different privilege, access or authority on a per process basis using different PC tag
values. In a similar manner, a special or unique PC tag value may be used to provide
malloc and free with authority to perform load and store operations with respect to
malloc metadata portions 1102a, 1104a and 1106a. To further illustrate, malloc may
include instructions tagged with tmalloc (e.g. CI tag=tmalloc when instruction is
executed). Malloc may also include code that, when executed, triggers application of a
rule that propagates or produce a particular PC tag as an output denoting a privilege or
authority to access malloc metadata portions 1102a, 1104a and 1106a. Malloc may
include a first instruction INS1 such as:

Add 0,R2
where R2 is an address in the malloc metadata portion, such as address P6 in area
1102a, and (R2) denotes the memory location having address P6 in 1102a that is
colored red. The foregoing instruction INS1 when executed, may result in generating
PCnew having a tag value such as X1 where X1 denotes the privilege needed to access
1102a. In this case, the rule triggered for the above first instruction INS1 may be:

add: (-, tmalloc, --, red, -)=2> (X1, red)
to color R2 with the color red and also set the PC to X1 to denote read/write access to
the memory location having the address stored in R2 (e.g., address P6). Subsequently,
malloc may include a second instruction, INS2, of “store R3, (R2)” to store a value

from register R3 (e.g., OP1) into the memory location having address P6 (P6 is stored in

156

10

15

20

25

WO 2017/106101 PCT/US2016/066188

R2). The rule triggered for the above second instruction INS2 may be:

store: (X1, tmalloc,-, red, red) = (PCdefault, red)
where PCnew is cleared or reset to be PCdefault, a default PC tag that does not denote
privilege to access malloc metadata portion 1102a. Thus, in this particular example, the
first ADD instruction triggers a rule to grant malloc the privilege or authority for
read/write access to 1102a. After the above second instruction of malloc is executed that
performs a write, the PC tag propagated removes the privilege or authority from malloc
for read/write access to 1102a. As a variation, an embodiment may include a version of
malloc with a prolog including an instruction that triggers a rule to grant malloc
read/write access to 1102a by generating a PCnew tag of X1 (e.g, prolog includes Add
instruction INS1 that triggers the rule noted above). At the end of malloc before
returning, an epoligue may be executed that includes an instruction that, when executed,
triggers a rule to remove malloc’s read/write access to 1102a by generating a PCnew tag
of PCdefault (e.g., epilogue includes store instruction INS2 that triggers the rule noted
above).

In a similar manner, free may include instructions that invoke rules to generate
or propagate a PCnew tag value to provide free with access to 1102a. The rules applied
may propagate or produce a particular PC tag as an output that denotes a desired access,
privilege or authority based on the particular process whereby the particular allowed
privilege, access or authority may be represented by different PC tag values.

It should be noted that the foregoing illustrates a single color of blue for all
malloced memory blocks and a single color of red for all malloc metadata portions.
More generally, as described elsewhere herein, malloc may be provided with the
authority to generate an unbounded number of new colors as may be needed for
coloring different portions of heap memory. As discussed elsewhere herein, for
example, malloc may be given and initial predetermined set of one or more colors or
tags and may generate subsequently needed tags from the initial predetermined set. For
example, malloc’s initial predetermined set may include yellow or Y and red or R. For

an executing process, malloc may generate a fresh Y-based tag (e.g., Y1, Y2, Y3, ...)

157

10

15

20

25

WO 2017/106101 PCT/US2016/066188

for each call to malloc to allocate a new memory block used by user code (e.g., other
than for malloc metadata storage). Thus, a different Y-based tag may be used to color
each malloced memory block 1102b, 1104b and 1106b (e.g., 1102b colored with Y1,
1104b colored with Y2, 1106b colored with Y3). Malloc may generate a fresh R-based
tag (e.g., R1, R2, R3, ...) for each different malloc metadata portion created for each
call to malloc. Thus, R-based tags may be used to color malloc metadata portions

1102a, 1104a, 1106a each with a different R-based tag (e.g., 1102a colored with R1,
1104a colored with R2, 1106a colored with R3). The current or last R-based tag and the
current or last Y-based tag used by malloc may be stored as state information via rules
triggered when executing malloc instructions. For example, malloc may include an
instruction which triggers a rule that stores the last Y-based tag, Y9, as the tag of a first
memory location. Y9 may be generated as the Rtag. A subsequent instruction may again
reference the same first memory location tagged with the saved last Y-based tag, Y9,
where the subsequent instruction triggers a rule that 1) generates a new tag, Y10, based
on the last Y-based tag, Y9, and 2) saves the tag Y10 as the tag on the first memory
location. Y10 may be generated as the Rtag. The rule triggered by the subsequent
instruction may indicate to determine Rtag, for example, as MRtag +1, where MRtag is
YO for the subsequent instruction.

What will now be described are techniques that may be used as an optimization
in connection with metadata processing using hardware accelerated miss handling.
Generally, some policies used in embodiment herein may cause frequent rule cache
misses and the cache miss handlers for such policies may take many cycles to run. In
some policies, the relationships between various rule inputs may be rather simple in
terms of logically determining a result or outcome and may therefore be hardwired and
resolved quickly with dedicated hardware.

As a result, such policies implemented using hardware (HW) rule cache miss
handler may be resolved in a much shorter amount of time than others not using such
hardware acceleration. In such an embodiment, policy components, such as the cache

miss handler for one or more selected policies, may be implemented with dedicated

158

10

15

20

25

WO 2017/106101 PCT/US2016/066188

hardware. Thus, an embodiment in accordance with techniques herein may use such
hardware-supported policies alone, or in combination with, software-defined policy
components using a software rule cache miss handler.

As one example, consider a memory safety policy that uses memory safety
coloring. In connection with a memory safety policy such as described elsewhere
herein, memory cells and pointers may be colored whereby rules invoked in connection
with both load and store operations may only allow a memory reference where a pointer
color matches that of the memory cell. For example, rules triggered for a load
instruction may be used to enforce a policy where the pointer color (e.g., of a register
tag where the register is an operand such as OP1) is equal to a memory-cell color (e.g.,
memory location tag such as Mtag). The memory safety policy may challenge capacity
by filling the PUMP rule cache with many different concrete rules that simply capture
this equal color relationship for many colors, increasing the capacity miss rate. In some
embodiments as described herein without preloading the rule cache, compulsory rule
cache misses are required to insert every one of these rules. Since memory safety policy
rules may be commonly triggered in connection with executing user code, memory
safety policy rules may be supported using HW rule cache miss handler rather than a
software rule cache miss handler.

In such an embodiment, the HW rule cache miss handler may generate or
calculate a new rule inserted into cache upon the occurrence of a rule cache miss. For
example, the miss handler for memory safety may be implemented using hardware as a
HW rule cache miss handler that, for load instructions, compares OP1tag to the Mtag If
OPltag equals Mtag, the HW rule cache miss handler may generate a new rule with
Rtag assigned Mtag. For example, if the pointer PTR is red and the memory cell
pointed to by PTR is red, the instruction invoking the rule is allowed and the resulting
tag Rtag should be red. To generate the foregoing as a new rule to be inserted in the rule
cache, the HW cache miss handler may first compare OP1tag to Mtag. If they are not
equal, there has been a rule violation and the instruction is not allowed (e.g., cause

processor to stop execution). If the HW rule cache miss handler determines OP1tag is

159

10

15

20

25

WO 2017/106101 PCT/US2016/066188

equal to Mtag, the HW rule cache miss handler may generate as outputs of hardware the
new rule including opcode=load, OP1tag=red, Mtag=red, and Rtag=red (all other tag
inputs and outputs of the rule may be don’t cares), where the generated rule may then be
inserted into the rule cache.

Referring to Figure 66, shown is an example illustrating a hardware
implemented cache miss handler in an embodiment in accordance with techniques
herein. The example 1300 includes 1301 which illustrates inputs 1302a input to the
PUMP rule cache 1302 (e.g., Figure 22) to perform a lookup to determine whether a
rule matching the inputs 1302a is in the cache. If so, the outputs 1302b are determined
based on the rule stored in the cache. Consistent with discussion elsewhere herein, the
inputs 1302a may include the opcode and input tags — PCtag, Cltag, OP1tag, OP2tag,
Mtag. The outputs 1302b may include output tags of the rule such as PCnew tag and
Rtag. In connection with an embodiment in accordance with techniques herein
implementing the cache miss handler in software, upon the occurrence of a rule cache
miss, the software cache miss handler may be invoked whereby code of the miss
handler executes and calculates a new rule for the inputs 1302a causing the current rule
cache miss. The cache miss handler first determines whether the inputs coincide with
an allowable rule (e.g., for memory safety load rule, does OP1tag equal Mtag), and if
so, calculate the outputs for the particular inputs 1302a (e.g., determine the Rtag as
Mtag) thereby generating a rule for the inputs 1302a. The new rule (which is based on
the combination of the inputs 1302a and the calculated outputs of the miss handler) is
inserted into the rule cache. Consistent with discussion elsewhere herein, the new rule
may include the opcode, input tags -- PCtag, Cltag, OP1tag, OP2tag, Mtag — and output
tags — PCnewtag, Rtag.

Element 1303 illustrates the HW rule cache miss handler 1304 that may be used
in an embodiment in accordance with techniques herein rather than the software rule
cache miss handler. In such an embodiment, the HW rule cache miss handler 1304 may
be implemented using dedicated hardware including, for example, gate-level logic and

other hardware components. In such an embodiment, the HW miss handler 1304 may

160

10

15

20

25

WO 2017/106101 PCT/US2016/066188

take the same inputs 1302a as the PUMP rule cache 1302 and may generate, using its
hardware, the same outputs 1302b that would be output the PUMP rule cache.
Subsequently, a new rule may be formed by combining the opcode, input tags and
output tags as noted above. The new rule may then be stored in the PUMP rule cache
(e.g. Figure 22).

In at least one embodiment, the HW rule cache miss handler for the memory
safety policy may be implemented as described above in hardware (e.g., using gate level
logic) that, to load a rule into cache, may simply copy the memory-cell tag from the
Mtag to the Rtag and immediately perform the PUMP rule insertion. Note in this simple
case, there is no need to dereference memory and perform any data structure operations
in memory.

Additionally, in at least one embodiment, memory safety may implement the
memory cell’s tag as a pair of tags: (1) memory-cell color tag, (2) pointer-color tag on
pointer in the memory cell. Memory-safety acceleration may include dedicated caches
to perform the combination of the Mtag and OP2tag into the new Rtag on a store, and to
perform the extraction of the pointer-tag from an Mtag pair to place onto the Rtag for a
load. Misses to these caches may use simpler, dedicated software handlers. While the
foregoing is described for a single (non-composite) policy such as memory safety, the
same general technique may be applied to a component of a composite policy on the
UCP.

An embodiment may also perform hardware acceleration using HW rule cache
miss handler for a limited common subset of rules such as those that are expected to be
commonly referenced. For example, in memory safety, the rules for load/store and
propagation during arithmetic are the most standard and stylized. Other, uncommon
rules exist for initially coloring memory regions and reclaiming memory regions on
free. Such uncommon rules may result in using the typical rule miss handler as
described herein rather than being implemented with hardware support.

In at least one embodiment, a HW rule cache miss handler may directly

implement a mapping function as gate-level logic. For example, such gate level logic

161

10

15

20

25

WO 2017/106101 PCT/US2016/066188

may map an input tag to an output tag for rule such as mapping Mtag to Rtag for store
instruction rules of the memory safety policy. As another example, a HW rule cache
miss handler for a CFI (control flow integrity) policy may use gate level logic to make
the tag of the control flow target or destination be a pointer to the set of allowed callers
(e.g., source locations or addresses allowed to transfer control to the tagged particular
control flow target or destination), allowing the CFI HW rule cache miss handler to read
through the set for a match. As yet another example, a stack protection policy may
encode the stack-frame-code tag and the associated stack-frame-memory-cell tag in a
manner that allows hardware derived one from the other (e.g. they could differ by only
a few bits, and this could be arranged even if the tags were pointers by allocating the
stack-frame-code tag pointer and the stack-frame-memory-cell tag pointer together);
consequently, a HW rule cache miss handler enforcing a stack protection policy would
be able to determine the tag to create (in case of creating a tag from the stack pointer),
or demand on the memory reference (in the case of a read or write) within such code.

As a variation from using HW rule cache miss handlers to calculate or determine
a new rule which is then inserted into the PUMP rule cache, an embodiment may
actually hardwire the logic of one or more rules of a policy where such rules are
completely embodied and enforced in hardware and therefore not stored in the PUMP
rule cache. For example, rather use a HW rule cache miss handler and PUMP rule
cache for a policy, an embodiment may use hardware to enforce and encode the rules of
the policy (e.g., rules of policy embodied in hardware such as gate level logic and
circuits). In such an embodiment using both the PUMP rule cache and HW specified
rules, a rule lookup may be performed of both the PUMP rule cache and also the HW
specified rules. In this case, a miss handler (e.g., either a HW rule cache miss handler
or a software miss handler) may be invoked to determine/calculate a new rule
responsive to not finding a rule for the particular inputs in either the PUMP rule cache
or the HW specified rules.

Composite policies present additional challenges and opportunities. Consistent

with discussion elsewhere herein, a composite policy includes multiple policies

162

10

15

20

25

WO 2017/106101 PCT/US2016/066188

simultaneously enforced for an instruction. The challenge is that the composite policies
need resolution of several different policy components. The opportunity is that the
entire sequence of resolution for the composite policy may be hardware supported using
HW rule cache miss handlers for all the different policy components of the composite
policy with the data cache, UCP caches (per UCP cache per policy component in the
composite policy), and CTAG cache. From prior experience, a common challenge is
where newly allocated memory (e.g., using malloc), hence new memory color tags,
causes compulsory rule cache misses. In these cases, the memory safety policy
component needs new rules, but the other components may likely already have their
rules in the UCP caches. With hardware acceleration through HW rule cache miss
handlers for the top-level composite policy and for the memory-safety color matching,
memory rule resolution may be performed with a small finite state machine running in
hardware and consulting the caches (e.g., data cache, UCP caches and CTAG cache)
rather than requiring hundreds-to-thousands of cycles to resolve the rules running
software-based miss handler code.

In at least one embodiment, the UCP caches may be decomposed by component
policy and all resolved in parallel to produce the composite set of tag results to then be
fed back into the CTAG cache. If all the policies may be resolved either by their UCP
cache or by a simple hardware rule like the one for memory safety, the total time for
lookup for the UCP caches would be that of a single policy rather than being
proportional to the number of policies. This works perfectly if the number of component
policies is fixed and matched to the hardware provided. Nonetheless, a slight variant
simply distributes the component policies across the fixed, available number of UCP
caches, so that the number of sequential UCP cache resolutions is only the ratio of the
number of component tags to physical UCP caches.

Referring to Figure 67, shown is an example 1310 illustrating use of HW rule
cache miss handlers in connection with a composite policy that may be used in an
embodiment in accordance with techniques herein. In this particular example, 3

policies comprise the composite policy whereby all 3 policies are simultaneously

163

10

15

20

25

WO 2017/106101 PCT/US2016/066188

enforced for the same instruction although more generally a composite policy may
include any number of policies and is not limited to 3. Elements 1314a-c are HW rule
cache miss handlers for the 3 policies comprising the composite policy. Inputs 1312
may be provided to each of the HW rule cache miss handlers 1314a-c¢ which,
respectively, determine or calculate rule outputs 1316a-c for the particular policy (e.g.,
HW rule cache miss handler 1314a determines outputs 1316a including Rtag and
PCnew tag for policy A; HW rule cache miss handler 1314b determines outputs 1316b
including Rtag and PCnew tag for policy B). Subsequently, the outputs 1316a-c may be
combined into a single composite result 1318 denoting a composite Rtag and PCnew
tag for the 3 policies. The combining of the outputs 1316a-c to determine composite
results 1318 may also be implemented using hardware or software. A new rule may be
inserted into the cache where the new rule includes the inputs 1312 (e.g., opcode and
inputs tags) for the particular instruction triggering the rule cache miss handling along
with the composite results 1318 (e.g., composite values for Rtag and PCnew tag).
Additionally, although not illustrated in the example 1310, an embodiment may
use the UCP caches and CTAG cache in combination with the HW rule cache miss
handlers 1314a-c in an embodiment in accordance with techniques herein. As described
elsewhere herein (e.g., in connection with Figures 21, 23 and 24), each of the policies
A, B and C may have its own UCP cache caching results of the most recent policy result
tags (e.g., UCP cache for policy A stores recently calculated result tags by miss handler
1314a--- PCnewtag and Rtag results—based on the combination of opcode and input
tags of an instruction). As described elsewhere herein (e.g., in connection with Figures
21, 23 and 24), the CTAG cache may store composite results for Rtag for a particular
combination of individual Rtag values as may be output from multiple composite
policies such as policies A, B and C. The CTAG cache may also store composite results
for PCnewtag for a particular combination of individual PCnew tag values as may be
output from multiple composite policies such as policies A, B and C. Thus, the
hardware that generates the composite results 1318 from outputs 1316a-c may use

information from the CTAG cache to determine the composite results 1318.

164

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Additionally, the HW rule cache miss handlers 1314a-c may also have as inputs
information from the UCP caches for the policies A, B and C.

As an alternative to having HW rule cache miss handlers for all 3 policies of the
composite policy as in the example 1310, an embodiment may selectively choose to
implement HW rule cache miss handlers for one or more, but less than all, such policies
comprising the composite policy. In such an embodiment, a portion of the rule cache
miss handlers may be implemented in hardware and the remaining portion of the rule
cache miss handlers of the composite policy may be implemented in software as
described elsewhere herein.

It should be noted that some policies as described herein may allocate new tags
such as, for example, in connection with a memory safety policy. In at least one
embodiment, the HW rule cache miss handler for a policy such as memory safety that
may allocate new tags may be provided with a FIFO-based cache of new tag values that
the HW-based handler may use (e.g., cache of tags that may be used as the newly
allocated tag values generated. If the tag allocated is a pointer denoting an address, then
the cache includes addresses or pointers rather than the tag values). In this manner, the
HW rule cache miss handler may perform allocation simply by reading the top entry
from the FIFO-based cache. Periodically, software handlers may be executed the
metadata processing domain to refill the FIFO-based cache with new tags available for
allocation.

Embodiments are described herein where there is complete and strict isolation
between the metadata processing domain and the “normal” code processing of the user
code or execution domain. As a variation, an embodiment may take a more relaxed
approach and expand the foregoing strict isolation model which still does not allow
modification or writing of information by the user code or execution domain to the
metadata processing domain but may allow information/values to be returned by the
metadata domain to the user code or execution domain.

What will now be described are techniques that may be included in at least one

embodiment which may utilize the foregoing more relaxed approach whereby the

165

10

15

20

25

WO 2017/106101 PCT/US2016/066188

metadata processing domain returns a value that may be used or referenced by code
executing in the normal code processing or execution domain (e.g., metadata processing
returns a value that is an input to the normal or user code execution domain). For
example, as described elsewhere herein, an embodiment may use malloc and free
routines where such routines have their code tagged with instruction tags providing
them with unique capabilities needed so that code of malloc and free, when executed,
trigger rules which allow malloc and free the ability to perform their processing
accessing malloc metadata, generating new color tags, tagging user data areas with such
new color tags, and the like. The foregoing provides such privileges or abilities
uniquely assigned to malloc and free at the exclusion of other code, such as user code.
Now consider such an embodiment where malloc and free perform their processing and
code tagging is utilized to specially tag malloc and free code by the loader with a
special code tag(s) uniquely identifying such code as belonging to malloc and free with
special execution privileges. In such an embodiment, it may be the case that user code
making a call to free, for example provides a pointer PTR1 which has been corrupted or
otherwise does not point to the beginning of the previously allocated storage area which
is now being deallocated. PTR1 may be presumed, by free, to point to the first location
of the user data area previously allocated by malloc. Free may assume a predetermined
structure to the user data area and associated memory locations of the memory heap
such as described in connection with Figures 64 and 65, for example, where the malloc
metadata is stored in a predetermined location relative to the allocated user data area.

What will now be described are techniques that may be used in an embodiment
to have the PUMP return a value to the code execution domain.

With reference to the example 1200 of Figure 68 shown are elements 1111 and
1113 as described in connection with example 1110 of Figure 65 further annotated with
pointers PTR1 and PTR2 discussed below. Assume that user code invokes free with
PTR1 with the intent to deallocate memory block 1102b. P1 may denote the pointer or
address expected by free. However, PTRI1 in this example may denote a corrupted or

incorrect address that generally denotes a different address other than P1 (e.g., PTR1

166

10

15

20

25

WO 2017/106101 PCT/US2016/066188

may identify a location in memory 1102b, or may denote an address not even pointing
into the heap). Although PTR1 has been corrupted or otherwise does not point to the
correct memory location P1, free may perform processing using PTR1 to access malloc
metadata using relative addressing relative to PTR1 where the malloc metadata is
assumed to exist in its predefined structure, format or layout. For example, the malloc
metadata area used by free may be presumed to be located immediately prior to the
allocated user data portion as in Figures 64 and 65. In such a case, the code of free may
determine the malloc metadata it uses in processing to deallocate a particular memory
block is located at a particular offset OFF1 prior to PTR1 based on a predetermined
layout. For example, with reference to Figure 68, free may presume that PTR1=P1
where PTR1 may be provided by the user code on the call to free. Free may use relative
addressing as described above based on a predefined data layout that the corresponding
malloc metadata 1102a for the memory block 1102b to be deallocated should begin at
the memory location with address PTR2 =PTR1 — OFF1. In this example, PTR1 does
not equal P1 and PTR1 actually points to somewhere in the allocated memory block
1102b so that the address calculation PTR2 = PTR1-OFF1 is also in the user allocated
memory block 1102b (PTR2 denotes the expected beginning of the associated malloc
metadata used by free).

In such a case where PTR1 provided by the user code on the free invocation
does not point to the expected location P1 and whereby PTR2 denotes the presumed
beginning of malloc metadata used by free, code of free may incorrectly access data
stored in memory block 1102b using such data as its malloc metadata which causes a
violation, interrupt or trap (e.g., may be due to a rule violation detected by the PUMP,
or other code execution error condition during execution of free). Thus, the execution
of code executing in the user process space or domain may be aborted due to the
foregoing violation during execution of the routine free as invoked in the call to free
using PTR1 from user code. Rather than have routine free cause the foregoing abort of
user code, it may be desirable to allow code of free to query the PUMP, or more

generally, the metadata processing to return a value. The returned value may be, for

167

10

15

20

25

WO 2017/106101 PCT/US2016/066188

example, a Boolean denoting whether the color associated with PTR2 (as will be used
by code of free to access malloc metadata) actually points to a valid or expected malloc
metadata area. Using such a returned PUMP or metadata processing value allows free
to perform different conditional processing based on the whether the color associated
with the memory location at address PTR2 denotes a valid malloc metadata color, such
as red. Routine free may perform some recovery or other action if PTR2 identifies an
invalid malloc metadata area as determined through the color of PTR2. Such action
may be more desirable than having the user code aborted due to a rule violation, trap,
interrupt or other execution error.

In at least one embodiment using the RISC-V instruction set, to implement
returning a metadata processing value, a new instruction, gmd (get-metadata-info), may
be added to the RISC-V instruction set such as:

gmd R1, R2, R3
where

R1 contains the result value returned by the PUMP or metadata processing;

R2 contains the address PTR2 which is tagged with the color of the memory
location having address PTR2; and

R3 is tagged with the valid color as expected for a valid malloc metadata area.

Thus, R2 and R3 may be registers that are input or source operands, and R1 may be the
register containing the result or output. In this particular example, R3tag may be red
denoting the color of a valid malloc metadata area and R2tag may be blue. The rule
invoked by the new instruction may output a return value as a Boolean in this example
denoting whether R2tag=R3tag where the foregoing Boolean result may be the return
value output by metadata rule processing (e.g., PUMP output) stored in register R1
accessible to free included in the address space of user executing code. It should be
noted that R1 may be tagged with Rtag as the result tag consistent with discussion

elsewhere herein.

168

10

15

20

25

WO 2017/106101 PCT/US2016/066188

The following describes logical processing that may be performed by code of
free using a C-like pseudo code description with PTR1, PTR2, and OFF1 as described
above:
free (char *PTRI1)

PTR2 = PTR1 - OFF1; /** PTR

if (IS RED (PTR2)) then

PTR2 points a validly colored malloc metadata area. Perform processing
to deallocate.

else

PTR2 does not point to a validly colored malloc metadata area. Perform

recovery processing.

In the above logical processing, IS RED may check to see if PTR2 is the color

The recovery processing performed by code of the above-noted else block may,
for example, try to locate the beginning of a valid malloc metadata area by searching
backward or forward from PTR2. Code of the above-noted else block may allow
termination of user code in a more defined an expected manner such as with a runtime
error message/condition denoting the invalidly colored pointer PTR2.

The new instruction Get metadata info R1, R2, R3 may be included in
instructions generated, for example, as a result of compilation and linking code of a free
routine written in C to perform the above-noted logical processing. An embodiment
may want to control or restrict what particular code portions may be allowed to execute
this new instruction. PUMP rules may be used to mediate or restrict when this new
instruction is allowed to be executed by what routine. For example, code of free or
malloc may be allowed to execute the new Get metadata info instruction but not user
code. Any suitable technique, some of which are described herein, may be used to
provide the routine free with the needed privilege or authority to execute the new

instruction returning a PUMP value. For example, code of free may be tagged with a

169

10

15

20

25

WO 2017/106101 PCT/US2016/066188

special instruction tag denoting that free is allowed to execute the new instruction. For
example, a loader may tag the new instruction appearing in free code with a special tag
NI. Rules may be used to mediate or restrict what code may be allowed to invoke the
new instruction to those having an instruction tag (CI tag) of NI

Referring to Figure 69, shown is an example 1210 illustrating inputs and outputs
of metadata rule processing in an embodiment in accordance with techniques herein.
Element 1212 may generally denote metadata processing as described herein. Inputs
1212a to metadata processing may include, for example, the various tags and opcode
information as described herein. Outputs 1214 generated by metadata processing 1212
may include the Rtag 1214a and PCtag 1214b as described elsewhere herein.
Additionally, metadata processing may generate a new output that is the return value
1214c¢. The return value 1214c may be placed in a register, such as R1 denoted above
with the new instruction, which is in the set of registers accessible to user process
space/code execution. Consistent with description elsewhere herein, 1214a and 1214b
denote tags which are placed, respectively, on a result (e.g., result register or memory
location) and the PC, whereby 1214a-b are not accessible to user process space/code
execution. It should be noted that whether metadata processing returns the return value
1214¢ may be conditional on the particular instruction or opcode. For example, as
described elsewhere herein, the metadata processing outputs may be filtered as
described in connection with Figures 27-33 based on opcode using a multiplexer to
enable/disable outputting return value 1214c. Value 1214c¢ in this example denotes a
logical result of whether or not R2tag=R3tag when the opcode is that of the new
instruction. Otherwise, if the opcode does not denote the new instruction opcode, a
default value may be conditionally returned by metadata processing as the return value
1214c.

Referring to Figure 70, shown is an example 1220 illustrating components and
processing that may be performed in an embodiment in accordance with techniques
herein when returning a value by metadata processing to the user execution domain,

such as when executing the new instruction included in code of free as described above.

170

10

15

20

25

WO 2017/106101 PCT/US2016/066188

For simplicity of illustration, the example 1220 illustrates logic and components of
metadata processing employed only with the destination or result register R1 for this
new return value and the associated result register. Element 1222a may generally
represent PUMP inputs (e.g., tags such as the R2tag and R3tag in this example, opcode)
as described elsewhere herein for metadata processing. PUMP 1222 may include rules
for the new instruction which check if the code tag is NI, and outputs a logical result
denoting whether R2tag=R3tag (e.g., OP1 denoting the first input source operand R2
and OP2 denoting the second input source operand R3 in this example). The rule results
in outputting the foregoing logical result 1221a. Element 1225 may denote a
multiplexer with the opcode used as the selector 1225a for the multiplexer 1225. When
the opcode of the current instruction denotes the particular opcode for the new
instruction Get metadata info, 1225a results in selecting 1221a to be output as the return
value 1214c¢. Otherwise, if the opcode is not that of the new instruction, 1225a results in
selecting a default return value 1222a as the return value 1214c¢. The return value 1214c¢
is a PUMP output stored in the destination register, RD, 1228 (e.g., 1214c is stored in
D1 1228b denoting the contents stored in register RD accessible to code executing in
the user process address space). Since RD 1228 is the result register, the rule may also
result in tagging RD with Rtag (e.g., Rtag is stored in tag portion T1 1228a where T1 is
the tag word of the RD register). In at least one embodiment, Rtag may be a special tag
SPECI denoting that RD contains the output of the new instruction. Based on symbolic
logic as described elsewhere herein where tag inputs to the rule are (PCtag, Cltag,
OP1ltag, OP2tag, MR tag) and rule outputs are (PCtag, Rtag) along with a third output,
NEWOUT denoting the new return value 1214c, the rule may be expressed as:

gmd: (-, NI, t1, t2, -) = (-, SPEC1, NEWOUT)
where NEWOUT = 1 if t1=t2 and NEWOUT=0 otherwise.

More generally, the foregoing use of a new instruction may be used in an
embodiment in accordance with techniques herein to return a value that is any suitable
and desirable value that may be used by code specially tagged (e.g., with NI) to denote

those occurrences of the new instruction that are allowable via invoked metadata

171

10

15

20

25

WO 2017/106101 PCT/US2016/066188

processing rule(s).

Alternate embodiments may avoid adding a new instruction. This can be done
by code-tagging an existing instruction to control this behavior and setting the care-bit
to select the value output in this case. Another alternative may add a value-output-care-
bit that is also an output of the PUMP so that the rule can determine the cases in which
the value output should flow to the RD value result. This second case allows the
opcode to behave normally when not tagged, and only exhibit this special behavior
when given the appropriate code tag.

What will now be described are techniques that may be used to guarantee that a
particular sequence of instructions is performed atomically as a single unit or complete
sequence in a specified order from the first instruction to the last instruction of the
sequence. Additionally, such techniques guarantee that there is no transfer of control
into the sequence of instructions other than to the first instruction of the sequence and
that there is no transfer or exit out of the sequence other than through the last specified
instruction of the sequence. For example, consider the simple instruction sequence of
Figure 71.

In the example 1400, shown is a sequence of 2 instructions 1402 and 1404. The
first instruction 1402 reads or loads contents from a memory location (where the
address of the memory location is stored in R2) to R1. The second instruction writes or
stores a zero (0) to the same memory location (the memory location having the address
stored in R2). Such an instruction sequence may provide for ensuring that a value read
from a memory location (having the address specified in R2) is used only once whereby
the old value is erased or zeroed out from the memory location immediately after the
value is read from the memory location. Thus, the zeroing out of the memory location
is performed by the second instruction 1404 of the sequence and is required to be
performed as the next instruction in the sequence after the first instruction 1402 that
reads the value from the memory location.

In at least one embodiment in accordance with techniques herein using a RISC

architecture, rules may be used to enforce the foregoing linearity of a data item and

172

10

15

20

25

WO 2017/106101 PCT/US2016/066188

atomicity of the instruction sequence of 1400. In such an embodiment, the PC tag (PC
new tag) may be updated to communicate the state of the sequence of the next expected
instruction in the sequence. In at least one embodiment, one solution is to tag the
instruction 1402 with a CI tag denoting it as a linear read instruction. Additionally,
(R2), denoting the memory location having the address stored in R2, may be typed and
tagged as a linear variable with a unique metadata id X1 (e.g., X1 uniquely identifies
this linear variable from all other linear variables). A first rule may be triggered as a
result of the first instruction 1402. The first rule may indicate that only instructions
tagged as linear reads are allowed to read from linear variables. Additionally, the
resulting PCnew tag may be clear-linear-variable-X1-next to denote that the next
instruction executed needs to clear the linear variable X1. A second rule may be
triggered as a result of executing the second instruction 1404 where the value of the
operand, zero (written to the memory location), is tagged with a special EMPTY tag
denoting the special value used to initialize or clear the memory location. Additionally,
the memory location is required to be the linear variable X1 denoting the particular
tagged linear variable from the immediately preceding instruction 1402. If the second
instruction following 1402 does anything other than write an EMPTY value to linear
variable X1, a trap is caused. Thus the second rule enforces the desired sequentially
and atomicity of the sequence of instructions in 1400.

More specifically, assume the first instruction 1402 is a load instruction that
loads into R1 the contents from the memory location having the address stored in R2.
The load instruction may be as follows:

load R1, (R2)

Additionally, assume the second instruction 1404 is a move instruction that move zero
(0) into the memory location having the address stored in R2. The move instruction
may be as follows:

move 0, (R2)

Following conventions noted elsewhere herein a rule may be defined as an opcode,

input tags -- PCtag, Cltag, OP1tag, OP2tag, Mtag — and output tags — PCnewtag, Rtag.

173

10

15

20

25

WO 2017/106101 PCT/US2016/066188

Based on the foregoing rule conventions, for the first load instruction, OP1 is R1, OP2
is R2 and (R2) is the memory location tagged as Mtag. The first rule triggered by the
first load instruction may be:

load: (-, linear read linear variable X1) =

(clear-linear-variable-X1-next, -)
Based on the foregoing rule conventions, for the second store instruction, OP1 is 0, OP2
is R2 and (R2) is the memory location tagged as Mtag. The second rule triggered by the
second move instruction may be:

move: (clear-linear-variable-X1-next, - EMPTY, -, linear variable X1) =2

(default tag, -)

This example shows how tags and rules can be used to guarantee the
indivisibility of a particular instruction sequence. One skilled in the art can readily see
that this general technique can be applied in many other scenarios where it is desirable
to enforce that data may only be accessed in a particular way as part of a specific
sequence of instructions. One skilled in the art can also readily see that this technique
can be adopted for any case where strict enforcement of an instruction sequence is
required. As noted above, the general technique involves tagging the new PC (e.g.,
PCnew tag) from instruction N in the sequence with a special tag that is checked as the
PC tag in a rule triggered by the next expected instruction N+1 in the glued sequence.

What will now be described are techniques that may be performed as part of
booting or starting up a system in an embodiment in accordance with techniques herein
based on the RISC-V architecture. Following paragraphs may refer to various CSRs
described elsewhere herein such as in connection with the example 900 where such
CSRs may be used in connection with the metadata processing domain.

As described elsewhere herein, a bootstrap tag may be hardwired or a value
stored in a particular ROM location. As part of booting the system, a segment of
bootstrapping code may be executed that generally performs initialization including

initializing different CSRs, memory and the like. As part of initializing, such processing

174

10

15

20

25

WO 2017/106101 PCT/US2016/066188

also initially tags memory locations with a default tag value derived from an initial
bootstrap tag. In at least one embodiment, a CSR such as the boottag CSR (e.g.,
sboottag CSR as in the example 900) may be initialized with a special bootstrap tag
used as the initial “seed” tag from which all other tags in the system are derived.
Different code entities, such as a loader, may have their instructions specially tagged
(e.g., Cl tags set to special instruction tag) to thereby designate the loader as having
particular privileges or authority to perform tasks that other code not having the special
instruction tag is not allowed to do. The foregoing may be enforced using rules
triggered by code of the loader that examine the CI tag to ensure it is the special tag in
order to have the triggered rule perform a desired tagging operation. Thus, for example,
the special CI tag used to tag instructions of the loader may be generated or derived
from the bootstrap tag as a result of special rules triggered by executing code as part of
the startup process. Generally, once some portion of code or stored instructions are
tagged, rules may be triggered by execution of such tagged code to generate more
desired tags and also place such generated tags on code and data. The foregoing and
other aspects are described in more detail below.

At startup or booting of the system, the tag mode such as stored in the tagmode
CSR (e.g., 901r of the example 900) may initially be off (e.g., 911a of the example
910). A bootstrap ROM program may be executed that first directly sets the default tag
CSR (e.g., 901c of the example 900) to a special default tag value. Subsequently, the
bootstrap program may set the tagmode CSR to a mode whereby the metadata
processing domain writes the default tag as stored in the default tag CSR on all results.
In other words, while in defaulttag tag mode (e.g., 911b of the example 900), the PUMP
output Rtag is always the default tag value.

Subsequently, after memory locations have been initialized and tagged with the
default tag, processing may be performed to generate an initial set of tags that will be
used to further generate or derive all other subsequent tags (e.g., the initial set may be
further used to derive one or more other generations of tags in an unbounded manner) .

Such processing may include executing an instruction sequence or code segment that

175

10

15

20

25

WO 2017/106101 PCT/US2016/066188

triggers rules to generate the initial set of tags. In this case, the tag mode may be set to
an appropriate tag mode level that engages the PUMP during execution of the code
segment. For example with reference to the example 910 if boot code is executing in
hypervisor mode, the tag mode may be set to either x110 as denoted by 911e or x111 as
denoted by 911f to engage the PUMP during execution of the code segment whereby
rules are triggered and enforced as a result of the code segment instructions.

It should be noted that prior to executing the above-noted code segment,
processing may be performed to verify or validate the code segment. For example, in at
least one embodiment, the above-noted code segment may be stored in an encrypted
form where, prior to executing, the code segment is decrypted and verified or validated
(e.g., such as using a digital signature) to ensure the code segment has not been
tampered with or modified.

To further illustrate, the bootstrap program may include in the above-noted code
segment 4 instructions executed while the PUMP is engaged to thereby generate an
initial set of tags:

1. R1 € read boottag CSR

2. AddR2 € R1+1

3.AAdR3 € R2+1

4 AddR4 €< R3+1

In instruction 1 above, R1 is a general-purpose register. Instruction 1 reads the
boottag CSR, transferring both the value stored in the boottag CSR and the tag stored in
the boottag CSR onto R1. The boottag CSR was either set to hold a particular tag
during processor reset or by privileged mode write of the CSR, including its tag. The
read from the boottag CSR may also clear the boottag CSR so that it is not available to
be retrieved after this initial retrieval during boot..

In each of the add instructions forming instructions 2-4 of the above of the form
“Add Rn € Ry +1” wherein Rn denotes the target or result register to store the results

of the Add, and wherein Ry also denotes a register a source operand. Instruction 2 of the

176

10

15

20

25

WO 2017/106101 PCT/US2016/066188

foregoing code segment may trigger a second rule that generates a second tag from the
first tag and places the second tag on the memory location pointed to by R2. Instruction
3 of the foregoing code segment may trigger a third rule that further generates a third
tag from the second tag and places the third tag on the memory location pointed to by
R3. Instruction 4 of the foregoing code segment may trigger a fourth rule that further
generates a fourth tag from the third tag and places the fourth tag on the memory
location pointed to R4. In this manner the foregoing code segment may be used to
generate an initial set of 4 tags stored as tag values on registers. The foregoing general
technique may be further extended in a similar manner to generate any desired number
of tags of the initial set.

Generally, in generating an initial set of tags in at least one embodiment, the
particular number of tags in the initial set may be a predefined number. Each of the
special tags may be generated as a result of a different unique rule triggered when
executing an instruction. Each instruction, such as in the code segment above, may
result in a cache miss and thereby result in execution of the cache miss handler to
calculate the Rtag as part of the rule outputs for the particular instruction, where Rtag is
one of the tags of the initial set. In a manner similar to the instructions of the code
segment above, a different code sequence may be executed at different points in time to
further generate other tags using one of the tags of the initial set. Thus, each tag in the
initial set may denote a tag generator used to further generate another sequence of tags.
In the foregoing example, the Add instruction may be used in generating a next tag
generator that may be used to generate another entire sequence of tags. As discussed
below, a tag generator of the initial set (which is itself a further tag generator used as a
starting point to generate another sequence) may be distinguished from a regular or non-
generating tag which cannot be further used as a generator to generate another sequence
of tags. Thus, particular instructions such as ADD may be used to trigger rules and
miss handling to generate a set or sequence of tag generators. This may be contrasted
with another instruction, such as MOVE, which may trigger rules and miss handling to

generate a non-generating tag in a sequence. In connection with code such as malloc, an

177

10

15

20

25

WO 2017/106101 PCT/US2016/066188

ADD instruction may be similarly used to generate a new application tag color
generator used to generate a sequence of different colors for a first application (e.g.,
new application tag color generator may be APP1 used to generate a sequence of
different colors RED-APP1, BLUE-APP1, GREEN-APP1, etc for the particular
application). A tagged ADD instruction may then be used to obtain the next tag in the
particular applications specific sequence, such as one of RED-APP1-gen, BLUE-APPI-
gen, or GREEN-APP1-gen. Then a tagged MOVE instruction may be used to generate
the actual colors, RED-APP1, BLUE-APP1, or GREAN-APP1 from RED-APP1-gen,
BLUE-APP1-gen, or GREEN-APP1-gen, respectively, (where RED-APP1, BLUE
APP1, GREEN-APP1 cannot be used to further generate additional tag sequences).

The code segment of the bootstrap program that is executed while the PUMP is
engaged may also include additional code that, when executed, triggers rules to tag
kernel code/instructions and additionally tag other code modules or entities with any
desired special instruction tags to enable such specially tagged code to have desired
privileges or capabilities. For example, the code segment may include instructions that
trigger rules to tag the loader code, and code of routines malloc and free with special
instruction tags extending privileges or authority to such code to perform privileged
tagging operations. The special code tags may be generated from the initial set of tags
in a manner similar to that as noted above using a predetermined code sequence/set of
instructions that triggers rules to generate further desired tags and also appropriately tag
additional code and/or data with the generated tags.

In at least one embodiment, additional measures or techniques may be taken in
connection with portions of the above-noted code segment. For example, the above
noted 4 instructions used to generate the initial set of tags may be included in a first
instruction sequence using rules of a “glue” policy to enforce sequentiality and
atomicity such as described elsewhere herein (e.g., example 1400).

After the code segment noted above has been executed to generate the initial set
of tags and further specially tag kernel code and any other desired instructions, control

may be transferred to additional boot code. In at least one embodiment based on the

178

10

15

20

25

WO 2017/106101 PCT/US2016/066188

RISC-V architecture, the additional boot code may be executed at a hypervisor privilege
level. Such additional boot code may, for example, include instructions triggering
loading of an initial set of rules into the PUMP. Once booting has been completed, the
PUMP tag mode as denoted by the tagmode CSR may be set to suitable level to engage
the PUMP in connection with user code such as executes at the user privilege level
(e.g., set tag mode as in 911c¢ of the example 910 to denote PUMP is engaged and
operations in U (user) mode or privilege level only).

Referring to Figure 72, shown is a flowchart of processing steps that may be
performed in an embodiment in accordance with techniques herein. The flowchart 1600
summarizes processing described above. At step 1602, tag mode is set to off where the
tagmode CSR denotes the PUMP off state as described elsewhere herein in connection
with 911a of the example 910. At step 1604, the boottag CSR is initialized to the
special bootstrap tag. At step 1606, execution of the bootstrap program is commenced.
At step 1608, the bootstrap program may set the defaulttag CSR to the default tag. At
step 1610, the tagmode CSR may be modified to a mode that writes the default tag on
all results (e.g., each Rtag = default tag while in this tag mode). At step 1612,
instructions may be executed that trigger rules to initialize memory locations and tag the
memory locations with the default tag. At step 1614, the tagmode CSR may be changed
to a mode that engages the PUMP during execution of subsequent code segment in step
1616. At step 1616, the subsequent code segment is executed with the PUMP engaged.
The code segment includes instructions that trigger rules to generate an initial set of
tags, clear boottag CSR, tag kernel code, and tag additional code portions with special
code tags providing such tagged code with extended capabilities, authorities and
privileges as desired. At step 1618, control may be transferred to additional boot code
that is executed. When the boot process is complete, the system is now ready to execute
user code with the PUMP engaged and operational for executing user code.

What will now be described in more detail is how to generate tags from the
bootstrap tag. The tag generation processing commencing with the bootstrap tag may

also be referred to as a tag tree or tree of life. More generally, the tag generation process

179

10

15

20

25

WO 2017/106101 PCT/US2016/066188

forms a hierarchical structure as illustrated in the example 1620 of Figure 73.

The example 1620 illustrates the boottag 1621 as the root of the tag generation
process. Element 1621a-d may denote the initial set of tags such as generated as
described above. In this example, the initial set of tags 1621a-d may include an initial
OS special instruction tag 1621a used to further generate a sequence 1622 of an
unbounded number of special instruction tags which may then be applied 1623 to tag
instructions of different code portions or modules 1624. From the initial OS special
instruction tag 1621a, additional tags 1622 may be generated for the different modules
to be tagged. For example, a first OS special instruction tagl 1622a may be generated
for malloc which is applied 1623a to malloc code whereby instructions of malloc are
tagged 1624a with the special instruction tag 1 1622a. In this manner, malloc code may
be tagged with a special instruction tag identifying malloc as a tag generator (e.g,
denoting that malloc code has privileges to further generator other new tags and further
use the newly generated tags to tag other memory cells).

In this example regarding malloc, 1621b may be the initial malloc tag used to
further generate malloc tag generator application tags 1626, one per user application
since an instance of malloc is included in each user application. We want to give each
such malloc instance in each user application the privilege to generate different colored
tags as included in 1625.

Generally, the example 1620 illustrates an initial set of tags 1621a-d for Special
Instruction tags 1621a, Malloc 1621b, CFI 1621¢, and Taint 1621d. Thus, each of the
tags 1621a-d in the vertical display of tags in the first row (other than boottag 1621)
denotes a different initial tag used for a generating an unbounded tag sequence. For
example, the value 1621a is used in further deriving or generating an unbounded
number of special instruction tags 1622. The value 1621b is used in further deriving or
generating an unbounded number of values 1626. Each instance of 1626 may be further
used as a generator of another unbounded sequence of tags for each application. For
example, 1626a denotes a generator value used to further generate another unbounded

sequence 1629 of different colors used for a single application appl. In a similar

180

10

15

20

25

WO 2017/106101 PCT/US2016/066188

manner, each different generator value of 1626 may be used to further generate an
unbounded number of colors for each application.

The value 1621¢ may be used as a generator in further generating an unbounded
number of values 1627. Element 1627 is similar to 1626 in that each occurrence of CFI
tag generator n for a particular application or app N denotes a privilege or ability to
further generate another unbounded sequence. For example, 1627a denotes a generator
value used to further generate another unbounded sequence 1630 of different colors
used for a single application appl. In a similar manner, each different generator value
of 1627 may be used to further generate an unbounded number of colors for each
application.

The value 1621d may be used as a generator in further generating an unbounded
number of values 1628. Element 1628 is similar to 1626 and 1627 in that each
occurrence of a tag generator n for a particular application or app N denotes a privilege
or ability to further generate another unbounded sequence. For example, 1628a denotes
a generator value used to further generate another unbounded sequence 1631 of
different colors used for a single application appl. In a similar manner, each different
generator value of 1628 may be used to further generate an unbounded number of colors
for each application.

As illustrated sequences or subtrees for CFI and Taint originating, respectively,
from 1621c-d are similar to the Malloc subtree originating from 1621b. In the example
1620, nxtTag or TInxtTag is used to denote a next element in a generated unbounded
sequence, and getTag to extract a next tag from a sequence member. Generally, getTag
may be used to denote extracting a tag to use which is, itself, not a tag generator. If the
usable tag is going to be given to a particular code portion to use, we don’t to want to
also give the code portion the ability to generate tags. For example, we want to give
each application a Malloc Tag Generator for that application (e.g. ApplColorTagX), but
do not want to give the application the ability to generate the Malloc Tag Generator for
other applications. So, getTag changes the type from generator to instance. The

distinction between nxtTag and TInxtTag is that nxtTag is usable without a “tagged

181

10

15

20

25

WO 2017/106101 PCT/US2016/066188

instruction”, but TInxtTag is one that is only usable by a suitably tagged instruction.

The Malloc Application Tag sequence 1626 allows the operating system or
loader to generate Color Tag generators for each application. For example, element
1626a denotes an application specific color tag generator value used to generate tags of
the application color sequence 1629. Within an application, the AppYColorTag
sequence 1629 allows malloc to generate an Authority for each color. That color
authority can be used to: color the cells for allocated memory, color a pointer for the
allocation and free cells of that color (e.g., when free is invoked). The use of colors
such as with malloc and free are described elsewhere herein.

In this manner, different tags may be reserved for different uses. From initially
tagged kernel instructions as noted above, kernel code may be executed that further tags
other code portions with different capabilities or authority. For example, kernel code of
the operating system may further tag other code entities, such as a loader, with special
privileges such as granting the loader the ability to further tag other code and data,
generate additional tag generators, and the like. The loader when loading a user
program including malloc may further tag malloc code with special instruction tag(s)
denoting it as malloc code giving it the capability to further generate other tags used to
color different memory regions. A particular instruction tag placed on code of the
loader thus provides the loader with one set of privileges. Placement of a second
different instruction tag on malloc code provides malloc code with another different set
of privileges. Generally, when performing tag generation of a sequence a current tag in
the sequence is saved as state information which is referenced and used in connection
with generating a next tag in the sequence. As described herein, such state information
regarding the current tag in the sequence may be saved and used in the metadata
processing domain. The current tag, or more generally metadata processing state
information, may be saved and restored as a result of rule processing and cache miss
processing. The current tag in a sequence, such as the last color allocated for use for a
particular application, may be saved as a current state of the sequence as a tag on a

specified memory location. When a new next color for the application needs to be

182

10

15

20

25

WO 2017/106101 PCT/US2016/066188

allocated, code of malloc may trigger rules which retrieve the last allocated color for the
application and use the last allocated color to determine the next color in the
application-specific color sequence. Generally, generating a unique sequence of tags
may include executing instructions that trigger rules that perform the following:

1. storing/saving sequence state in a tag portion of an atom (e.g., register,
memory location);

2. executing an instruction that triggers a rule which generates the next tag of the
sequence using the saved/stored sequence state; and

3. storing/saving the next tag of the sequence (generated from 2) in the tag
portion of an atom where the next tag is now the updated current state of the sequence.

With reference back to the example 1620, the loader may allocate for each
application using malloc a particular one of the malloc tag generator application tags of
1626. The loader may, for example, execute code triggering a rule which generates the
next malloc tag generator tag, such as 1626a, and then stores this tag as state
information via tagging a memory location. Subsequently, on a first call to malloc by
the application, code of malloc may execute that triggers a rule which then retrieves the
saved malloc tag generator tag, uses the saved tag to generate the first color for the
application, and then updates the saved state information to store the first color as the
last or most recent color generated for the application. On a second call to malloc by
the application, code of malloc may execute that triggers a rule which then retrieves the
previously saved first color, uses the saved first color to generate a second color for the
application, and then updates the saved state information to now store the second color
as the last or most recent color generated for the application. In a similar manner, other
subsequent calls to malloc may be trigger other rules to allocate additional colors based
on the saved state information (e.g., most recently allocated color) for the application.

What will now be described are aspects of a direct memory access (DMA)
architecture that may be included in an embodiment in accordance with technique
herein. Generally, described in following paragraphs is use of an I/O PUMP to mediate

DMAs issued from a source, such as an untrusted device connected to a first

183

10

15

20

25

WO 2017/106101 PCT/US2016/066188

interconnect fabric that uses untagged data, to access data stored in memory of a second
interconnect fabric that uses tagged data.

Referring to Figure 74, shown is an example of components that may be
included in an embodiment in accordance with techniques herein. The example 1500
includes components similarly numbered to those of the example 700 and others (e.g.,
Figures 57-60) described elsewhere herein. Additionally, the example 1500 also
includes I/O PUMP 1502 and additional actors, DMA request sources or initiators
1504a-c that may issue DMA requests to access data stored in memory 712¢. The
example 1500 includes Ethernet DMA device A 1504a, Ethernet DMA device B 1504b,
and UART (universal asynchronous receiver/transmitter) or serial communications
device 1504c¢ connected to the untagged fabric 715. A DMA request to read or write
data may originate from one of the devices 1504a-c. The request is sent to the /O
PUMP 1502 which performs processing to determine whether the DMA request is
allowed and if so, allows the request to proceed. Thus, the I/O PUMP 1502 may be
characterized as mediating DMA requests received from over the untagged fabric 715
whereby the general assumption is that devices connected to 715 issuing such DMA
requests may be untrusted.

In at least one embodiment, the I/O PUMP 1502 may be an instantiation of the
PUMP as described herein (e.g., Figure 22) with a difference that the rules enforced are
those of a DMA policy controlling DMA access into memory 1712¢. The foregoing use
of the I/O PUMP 1502 is line with the general architecture of assuring that all
instructions, including memory operations, are mediated by rules. If autonomous DMA
devices 1504a-c were allowed direct, unmediated access to memory, the DMA devices
1504a-c may undermine the invariants and safety properties that the rules are enforcing.
Consequently, to allow DMA, an embodiment in accordance with techniques herein
may also enforce rules on DMA access into the memory 712c¢. Analogous to the PUMP
that enforces rules for processor instructions, the I/O PUMP 1502 enforces rules for
memory loads and stores from DMA devices, such as 1504a-c. Generally, the I/O

PUMP mediates all loads and stores. In at least one embodiment described herein based

184

10

15

20

25

WO 2017/106101 PCT/US2016/066188

on the RISC-V architecture, the I/O PUMP uses CSRs and performs rule cache miss
handling in a manner similar to that as described elsewhere herein in connection with
the PUMP used in a RISC-V architecture. The /O PUMP 1502 has a set of CSRs
similar to the PUMP, but accesses them via memory mapped addresses. Accesses to
I/O PUMP CSRs such as described in following paragraph in connection with the
example 1520 may also be tag protected using rules. Rule cache misses encountered
when attempting to locate a rule in the I/O PUMP trigger an interrupt to be serviced by
the processor, RISC-V CPU 702. The I/O PUMP uses the same rule resolution process
as the processor 702 but there is a single DMA policy including only rules for DMA
loads and stores to access data in memory 712¢. The I/O PUMP writes atomically into
memory 712c¢ (e.g., writes the tag and value as a single atomic operation). However, in
some embodiments, the complete process from reading the Mtag to writing the Mtag
(e.g., processing to perform a tag check or validate and write) may not be atomically
with a standard store.

The I/O PUMP 1502 is a rule cache for SDMP. The I/O PUMP provides a
mapping between a set of tags involved in a DMA operation and the result of the
operation. In at least one embodiment, the I/O PUMP runs independent of the processor
702. Since the I/O PUMP 1502 is a cache, it will take misses when it has never seen a
set of inputs before (compulsory) or when it was unable to hold onto a rule (capacity, or
perhaps conflict). This results in a rule cache miss with respect to the /O PUMP in a
manner similar to rule cache misses as described herein for the PUMP. Misses with
respect to the I/O PUMP rule cache 1502 raise an interrupt that is then handled by in
software by a rule cache miss handler system—the same one that services processor 702
miss traps. On a rule miss with respect to the /O PUMP 1502, inputs are
communicated to the Miss Handler (such as executed on code of the processor 702 in
the metadata processing domain) through I/OPUMP CSRs described below (e.g.,
example 1520), and rule insertion is provided back to the I/O PUMP through CSRs.
I/OPUMP misses cause the [/O PUMP to be disable until serviced by the processor 702.
In at least one embodiment, the disabled state of the I/O PUMP means all DMA

185

10

15

20

25

WO 2017/106101 PCT/US2016/066188

transfers mediated by the I/O PUMP are stalled until the I/O PUMP miss is serviced.
Consistent with discussion elsewhere herein with the PUMP, I/O PUMP inputs
include an opgroup (opgrp), tags for the DMA instruction and its operands (e.g. PCtag,
Cl tag, OP1 tag, OP2 tag, Mtag (also referred to sometimes herein as the MRtag). 1/O
PUMP outputs may include the Rtag and PCnew tag (tag for the PC of the next
instruction) as described herein. In connection with the I/O PUMP, such inputs and

outputs may have further meaning and values as described below in one embodiment.

Following are I/O PUMP inputs in one embodiment:

1. Opgrp — there are current two: load and store

2. PCtag — state of the DMA 10 device (analog to the PCtag for code)

3. Cltag — tag identifying the DMA 10 device (analogous to instruction tags on a
designated region of code)

4. OP1ltag — assume always “public, untrusted” (not physically represented in
IOPUMP cache, but used for rules)

5. OP2tag — same as OPItag

6. Mtag — tag on memory input to DMA operation

7. byteenable— which bytes are being read/written?

Following are I/O PUMP outputs in one embodiment:
8. Rtag — tag on memory result for a store

10. PCnew tag — state of the DMA I/O device after this operation

With the I/O PUMP, there may be no programmable opgroup mapping table
(e.g., example 420). Rather, an opgroup used by the I/O PUMP to look up a rule may be
a fixed opcode denoting a single opgroup for DMA load and DMA store operations. In
at least one embodiment, there is no care masking for the I/O PUMP.

When there is a rule cache miss in connection with the PUMP as described

herein such as in Figure 22, it may be expected that the processor 702 will automatically

186

10

15

20

25

WO 2017/106101 PCT/US2016/066188

reissue the instruction that caused the miss after its corresponding rule has been inserted
into the PUMP rule cache. As a result, rule insertion simply places the rule in the PUMP
cache and expects the instruction to be re-issued in order to get the tagged result.
However, behavior with DMA operations varies from the foregoing. DMA operations
are not expected to be interrupted and to require retry operations. In order to support
these DMA operations, rule insertion may be handled differently for the /O PUMP. In
particular, once the I/O PUMP has faulted due to a miss, processing may hold the
pending DMA operation and wait for the processor 702 (e.g., performing rule miss
handling to calculate the output tag Rtag and PC new tag for the new rule) to supply the
missing output tags for the rule (assuming it will be allowed). When the outputs are
supplied, in addition to triggering a rule write into the IOPUMP, the outputs are
forwarded to the DMA pipeline (e.g., described in connection with example 1540
below) just as if they had come from the /O PUMP so the operation can continue
without forcing the operation to be re-issued to the /O PUMP. Rule violations may be
handled by supplying a designated disabled-DMA-device tag for the updated PCtag,
PCnew tag, that will signal that the operation is not allowed and no further DMA
operations will be allowed from that particular DMA device 1504a-c until its PCtag is
reset. Generally device tags for a particular DMA device, such as one of 1504a-c,
issuing a DMA operation or request may be the particular values of the CI uniquely
identifying the issuing DMA device (e.g. source of the DMA request), and the PC tag
denoting the current state of the DMA device. In at least one embodiment, the PC tag
may be set to a particular value at a point in time disabling further processing of DMA
requests from the particular DMA device identified by the CI tag.

Referring to Figure 75, shown is a table of CSRs that may be used in by the /O
PUMP in an embodiment in accordance with techniques herein. The table 1520
includes an address column 1524 (denoting the memory mapped address of a CSR), a
name column 1526 and a description column 1528. Each row of the table 1520
corresponds to one of the defined CSRs used by the /O PUMP. Row 1522a indicates

that CSR transaction id has address 0x00. A write to the transaction id CSR increments

187

10

15

20

25

WO 2017/106101 PCT/US2016/066188

the current transaction id stored (e.g., for prefetch) and reading from the transaction id
CSR return the current transaction id stored in the transaction id CSR. Row 1522b
indicates that CSR opgrp has address Ox01. The opgrp CSR contains the opgroup for
the current DMA instruction and is used on a rule miss as an input to the rule miss
handler. Row 1522c¢ indicates that CSR byteenable has address 0x02. The byteenable
CSR indicates which of the bytes in a word the DMA operation effects and is used on a
rule miss as an input to the rule miss handler. Consistent with other discussion herein,
this allows policies to provide byte-level protection; a rule triggered may check to
ensure that the bytes of the DMA requested data are allowed to be accessed by a
particular DMA device initiating the request such as by specially tagging memory
portions accessible to the different DMA devices. Row 1522d indicates that CSR pctag
has address 0x03. The pctag CSR contains the PC tag for the current DMA instruction
and is used on a rule miss as an input to the rule miss handler. Row 1522¢ indicates that
CSR citag has address 0x04. The citag CSR contains the CI tag for the current DMA
instruction and is used on a rule miss as an input to the rule miss handler. Row 1522f
indicates that CSR mtag has address 0x07. The mtag CSR contains the M tag for the
current DMA instruction and is used on a rule miss as an input to the rule miss handler.
Row 1522¢ indicates that CSR newpctag has address 0x08. The newpctag CSR
contains the PC new tag placed on the PC after completion of the current DMA
instruction (e.g. output of PUMP and cache miss handling). Row 1522h indicates that
CSR rtag has address 0x09. The rtag CSR contains the tag placed on the memory result
of the current DMA instruction (e.g. output of PUMP and cache miss handling). Row
15221 indicates that CSR commit has address OxOA. Writing to the commit CSR results
in a comparison between the value written to the commit CSR and the current
transaction id (as stored in the transaction id CSR). If the foregoing two match, the
match triggers a write of a rule to the I/O PUMP. The rule written includes an opcode
and tag inputs and outputs (as determined by miss handling) for the current DMA
instruction. Row 1522 indicates that CSR status has address OxOE. The status CSR

contains a value denoting a status of the I/O PUMP. For example in one embodiment as

188

10

15

20

25

WO 2017/106101 PCT/US2016/066188

described herein, the status CSR may denote whether the /O PUMP is enabled or
disabled. It may be disabled in the case of a PUMP I/O rule cache miss as described
elsewhere herein. Row 1522k indicates that CSR flush has address OxOF. The flush
CSR, when written to, triggers a flush of the I/O PUMP (e.g., flushes or clears rules
from the I/O PUMP cache).

In at least one embodiment, if bit O of the status CSR is 1, it means the I/O
PUMP is disabled and if the bit O otherwise has a value of 0, it means the I/O PUMP is
disabled. PUMP I/O misses disable the pump. Bit 1 of the status CSR indicates whether
the PUMP has faulted and is waiting for service (e.g., Bitl=1 implies I/O PUMP
faults/cache miss and waiting for service). Bit 2 of the status CSR indicates whether an
I/O PUMP rule miss is currently being resolved by a rule cache miss handler and, if the
transaction id matches, will provide the inserted results directly to the pending miss
operation. All the foregoing bits of the status CSR are reset (e.g., bit O=enabled, bit
1=no fault, bit 2=no pending miss) by a commit operation (successful or unsuccessful).
Writing to the status CSR may also be performed to reset the foregoing bits, for
example, as needed on startup to initially enable the /O PUMP. Reset of the status CSR
for an unsuccessful write allows the DMA device to retry the operation and retrigger the
fault.

Load/store memory operations by the processor 702 to the I/O PUMP CSRs
should be tagged with the iopump CI tag. Policy rules should be in place to restrict
operations to instructions having the iopump CI tag. Individual I/O PUMP CSRs do not
have tags.

Each device 1504a-c on the untagged or untrusted fabric 715 may be configured
with its own tag that is presented as a device tag when the processor performs loads or
stores to the device (e.g., see 1534b where the device tag is stored in the device register
file described below and specified as the CI tag when the particular device performs a
DMA load or store). This allows fine-grained control over which code and authorities
can access which devices directly. The same tag is presented on all loads and stores to

the device, and the tag does not change based on load and store operations. The

189

10

15

20

25

WO 2017/106101 PCT/US2016/066188

particular device tag associated with, and identifying, each device 1504a-c may be
stored in a device register file. A particular device tag specified for a device 1504a-c
may only be changed by modifying the device register file. The device register file may
denote, for each device 1504a-c, a unique target device id (used to identify the device
on the untagged or untrusted fabric 715) and a target-device specific tag for the unique
target device id. In at least one embodiment, the device register file may itself be
accessed as a device on the untrusted fabric 715 with its own device tag. To bootstrap
the use of the device register file, the device tag register file’s own tag (stored in the
device register file) may be written to the file during startup before the PUMP is
enabled. For example, the device tag register file’s own tag may be written to the file as
part of boot processing while the PUMP is off (e.g., tagmode denoting by 911a of the
example 910). The CI tag of an instruction may identify the target id of the DMA target
device performing a load or store instruction where the CI tag may be used in rules
triggered by such load and store operations to restrict (e.g., allow or not allow) a
particular load or store operation by the specified DMA device. Additionally, if a
particular DMA device performs load and/or store operations which are not allowed, a
state associated with the particular DMA device may be modified to disabled so that
further requests (e.g., DMA loads and stores) are ignored.

As noted above, a DMA device that initiates or is a source of DMA requests or
instructions may have an associated status indicated by the PCtag of the DMA device.
In particular, a unique PCtag may be used to denote a disabled status with respect to
DMA operations being allowed from a DMA device (identified by the CI tag). Disabled
initiators have their DMA requests rejected at the start of the DMA or Trustbridge
pipeline described below (e.g., examples 1530 and 1540).

It should be noted that an embodiment may have a single /O PUMP mediating
all DMA traffic, an I/O PUMP per DMA engine, or multiple I/O PUMPs that mediates
DMA trafffic for multiple DMA engines. Illustrated in the example 1510 is a single I/O
PUMP for a single DMA engine (e.g., single memory 712c¢). Use of a single /O PUMP

as in the example 1500 may become a bottleneck and thus an embodiment may choose

190

10

15

20

25

WO 2017/106101 PCT/US2016/066188

to have multiple I/O PUMPs mediate I/O traffic. In such an embodiment where there
are multiple /O PUMPs, each may be enabled or disabled independently so that even
though a first portion of one or more of the multiple /O PUMPs may be disabled (due
to an I/O PUMP miss), the remaining second portion of the multiple /O PUMPs may be
enabled and continue to service DMA requests.

In at least one embodiment, different DMA devices acting as initiators or
sources of the DMA operations may each be allowed to access only specified portions
of memory 712¢. Different portions of memory 712¢ accessible via DMAs may each
be tagged with a distinct tag. For example, device 1504a may have access to a first
range of addresses of memory 712¢ and device 1504b may have access to a different
second range of addresses of memory 712¢. Memory locations of 712¢ corresponding
the first range may be tagged with a first tag and memory locations of 712¢
corresponding to the second range may be tagged with a second tag. In this manner,
rules may be used to enforce or restrict access of device 1504a to memory locations in
the first range and enforce or restrict access of device 1504b to memory location in the
second range. As a variation, different tags may be associated with a type of allowed
access (e.g., read only, write only read and write). In a similar manner, in an
embodiment having multiple DMA engines accessing the same memory 712c, different
portions of the single memory 712¢ accessible exclusively to each of the DMA engines
may be uniquely tagged whereby rules enforce or restrict access of each DMA engine to
its specified address range of memory locations.

Referring to Figure 76, shown is an example illustrating data flow between
trusted fabric 1532 (e.g., corresponding to tagged interconnect fabric 710) and untrusted
fabric 1536 (e.g., corresponding to untagged interconnect fabric 715) in an embodiment
in accordance with techniques herein. Element 1534 generally represents processing
performed by the I/O PUMP 1534a in connection with DMA mediation between 1532
and 1536. Element 1534 may denote a trust bridge or DMA pipeline 1534c¢ performed
to validate and service a DMA operation as part of the DMA mediation. Element 1538a

may denote the output channels from the untrusted fabric 1536 (e.g., such as to the

191

10

15

20

25

WO 2017/106101 PCT/US2016/066188

DMA devices 1504a-c in the example 1500). Element 1538b may denote the input
channel to the untrusted fabric 1536 (e.g., from one of the devices 1504a-c). Generally,
the I/O PUMP 1534a will need to issue read requests during DMA read and write
operations to validate that the tag on the target memory allows the requested DMA
access. The I/O PUMP will need to buffer requests (as described below in the example
1540 between processing stages) and perform master control of tagged communication
operations.

Element 1537 denotes values provided as inputs to load (or retrieve) the I/O
PUMP CSRs as described in the example 1520. Additionally device state information
for the different DMA device initiators may be stored in the untrusted fabric device
register file 1534b including the PCtag (e.g., state of the DMA device such as whether
requests from this DMA device are disabled) and Cltag (e.g., DMA device unique
identifier) for the DMA device initiator (e.g., such as 1504a-c on the untrusted fabric
715). The entry in the device register file 1534b for a particular DMA device
performing a DMA load or store may provide the CI tag and PCtag values for the
current DMA load or store. Element 1535a may denote the channel used for devices on
the untrusted fabric 1536 to make mediated DMA processing requests of 1534.
Element 1535b may denote the channel used for returning the results of mediated DMA
requests of 1534 to the untrusted fabric 1536.

Elements 1531a-b denote channels for forwarding DMA requests from the
untrusted fabric 1536 (via the DMA mediation processing of 1534) to the trusted fabric
1532. In particular, channel 1531a is a channel for forwarding initial tag read
(unvalidated) DMA requests to the trusted fabric 1532 and channel 1531b is a second
channel for forwarding the final write of data with tags updated. Use of the two
channels may become more apparent given further discussion of the DMA or
trustbridge pipeline described below in connection with the example 1540. Element
1531¢ denotes a channel from the trusted fabric 153 1¢ to the untrusted fabric via the
DMA mediation processing 1534.

In one embodiment, element 1534 may represent a DMA processing pipeline as

192

10

15

20

25

WO 2017/106101 PCT/US2016/066188

illustrated in the example 1540 of Figure 77. The example 1540 denotes a 4 stage
processing pipeline for servicing a DMA operation as made by a DMA device 1504a-c
from the untrusted or untagged fabric (e.g., 1506 in the example 1500 and 1536 in the
example 1530). Elements 1542, 1544, 1546 and 1548 may denote rules triggered as a
result of a DMA request. Element 1545 denotes the I/O PUMP such as described in
connection with other figures (e.g., 1502 of the example 1500). Element 1543 denotes
the stages of the DMW processing pipeline. In a first stage 1541a, the DMA request is
received from the untrusted fabric and an unvalidated request is made via rules 1542 in
a second memory fetch stage 1541b to obtain the requested DMA data and its
associated tags from the memory 712¢. The fetched tag information from the memory
for the DMA requested data is provided as an input to the third validate stage 1541c¢
where a lookup is performed in the I/O PUMP cache 1545 for a rule corresponding to
the current DMA request. If no rule is found in the I/O PUMP, the /O PUMP
processing may be stalled and disabled in stage 1541¢ while a rule miss handler
executes in the processor 702 to either calculate the outputs Rtag and PCnew tag for the
DMA request or otherwise determine that the current DMA request is not allowed
(thereby triggering a fault or trap). Assuming that a rule for the current DMA request is
located in the I/O PUMP, it is determined that the DMA request is allowed to be
performed. If the DMA request is a write request, the write data of the DMA request,
along with its tag information, is written back to memory 712c in stage 4 1541d. For
DMA write operations, a response 1548a may be provided to the untrusted fabric (and
then to the DMA device that initiated the DMA request) once the write has completed.
For DMA read operations, a response 1546a may be returned to the untrusted fabric
(and then to the DMA device that initiated the DMA request) where the response
includes the requested data fetched in stage 2 1541b.

Element 1542 may denote the rules that pass along a request from the untrusted
fabric and pass along information (from stage 1 1541a) regarding the I/O request for the
I/O PUMP 1545 (in stage 3 1541c) while the memory fetch is performed in stage 2
1541b. Elements 1544 may denote the rules that gather up tag responses from the

193

10

15

20

25

WO 2017/106101 PCT/US2016/066188

trusted fabric, formulate the actual rule input to the I/O PUMP, and propagate
information from stage 1541b to the writeback stage 1541d to be merged with the
output of the I/O PUMP.

As a variation to the foregoing embodiment, reference is made back to the
example 1500. In at least one embodiment, rather than have rules stored in an I/O
PUMP cache as described above, the /O PUMP may be implemented as a hardwired
I/O PUMP where the rules may be implemented using dedicated hardware such as logic
gates wired to embody a fixed set of I/O PUMP load and store DMA rules.

As further variation, the I/O PUMP may alternatively be defined in yet another
embodiment as a cache that is programmable as described in connection with the
example 1500 with the difference that the I/O PUMP as a rule cache has a finite
capacity and is filled with a fixed set of rules that are all stored in the I/O PUMP cache.
In this latter embodiment, the /O PUMP may be populated with the complete set of all
DMA rules so that there is never a rule cache miss for the /O PUMP. Thus, there is
never a need to service an I/O PUMP rule cache miss.

What will now be described are techniques that may be used in connection with
initializing, setting or resetting tags such as may be associated with memory locations.
Consistent with description elsewhere herein, a tag used in connection with such
techniques may denote a non-pointer tag (where the non-pointer tag is the actual tag
value for the associated memory location) or a pointer tag (where the pointer tag is a
pointer or address of another memory location including the actual tag value or values).
For example, a pointer tag associated with a memory location may be used in
connection with composite tags where the pointer identifies an address in memory
including multiple tag values such as for a plurality of composite policies implemented
in parallel. As described elsewhere herein, example composite policies that may be
supported in parallel include a memory safety policy and a control flow integrity (CFI)
policy described elsewhere herein.

Processing performed in connection with memory safety and stack policies, for

example, may include setting or initializing a large number of tags associated with

194

10

15

20

25

WO 2017/106101 PCT/US2016/066188

memory locations to a particular value. For example, when allocating a region of
memory such as may be associated with a particular color, each tag associated with a
memory location in the region needs to be initialized to have the particular color value.
As another example, when reclaiming a region of memory such as when freeing the
memory region, all memory locations of the freed or unallocated region may be
initialized to a particular tag value denoting the memory locations as free or
unallocated.

Processing performed to initialize or reset tags of all memory locations in a
region may consume an unacceptable amount of time and becomes particularly
unacceptable as the size of memory region to be tagged increases. Thus, described in
following paragraphs are techniques that provide for efficiently initializing or setting
tags (e.g., tagging) of memory locations. In at least one embodiment, tag initialization
or setting may be performed, for example, in connection with allocation a region of
memory or freeing a region of memory. Such techniques described herein are scalable
for use with large memory regions. Although such techniques are illustrated below in
connection with tags of memory location, more generally, such techniques may be used
in connection with initializing, setting or resetting values each associated with a data
item or entity.

In at least one embodiment, the tags and associated memory locations of a
region of memory may be represented in a hierarchical structure or arrangement where
the leaves of the hierarchy denote the tags for the memory locations. For purposes of
illustration, following discussion makes reference to a tree as the hierarchical structure.
However, more generally, any suitable hierarchical structure may be used to represent
an address space associated with a region of memory locations.

In an extreme case, in one embodiment, the leaves of the tree or hierarchical
structure may represent individual words in memory and hold the tags. However, if an
entire subtree is homogeneously tagged with the same tag value, techniques herein may
simply store the tag value at that particular node and associated level in the tree without

further representing any descendant nodes of the subtree. In this case, the tag value of

195

10

15

20

25

WO 2017/106101 PCT/US2016/066188

the node specifies a tag value for multiple memory locations of a particular region (e.g.,
such as a range of consecutive or contiguous memory addresses). In this manner,
storage may be saved in storing tag values if there are large homogenously tagged
regions. In a worst case scenario where there is no homogeneous tag value (e.g., no two
memory locations having consecutive addresses have the same tag value), the leaves of
the tree each represent a tag value for a single memory location, such as a single word
in the region.

With such a hierarchical structure such as a tree as described in following
paragraphs, processing may be performed to retag or initialize a power-of-two memory
region by simply rewriting one node in the tree. For a non-power-of-two region,
processing may be performed to partition the region into a minimum set of power-of-
two regions (e.g., at most 2*log, (region size) such regions in the minimum set). When
a tag of a particular word or memory location is needed (e.g., read the tag for an
associated memory location), processing may be performed to determine the tag using
the tree. In at least one embodiment described below, a hierarchy of cache memories
may be utilized for the different levels of the tree. The tag value may be provided by
the cache associated with the highest level in the tree having a cache hit with respect to
the desired memory location (e.g., perform a cache lookup for the tag value for the
address of the desired memory location). In connection with processing performed to
write or modify a tag value associated with a memory location, processing may include
performing a single write to mark a subtree, or multiple writes (e.g., 2*log; (region size)
log writes). Such multiple writes may be performed, for example, responsive to
modifying or setting the tag of a first memory location included in a first memory
region that is homogenously tagged prior to such modifying or setting the tag value. In
this case, setting or modifying the tag value causes the first memory region to no longer
be homogenously tagged and the hierarchical structure denoting the tag values for the
first memory region is accordingly updated to further decompose a subtree denoting tag
values for the first memory region.

Referring to Figure 78, shown is an example of a hierarchical structure that may

196

10

15

20

25

WO 2017/106101 PCT/US2016/066188

be used to represent tag values for an address space corresponding to a region of
memory in an embodiment in accordance with techniques herein. The example 100
illustrates a tree as a hierarchical structure used to represent a memory region including
8 memory locations for purposes of simplicity of illustration. More generally,
techniques herein may be used to represent tag values for any address space or memory
region using any suitable hierarchy having any number of levels, any suitable number of
nodes at each level, any suitable number of child nodes per parent node, and the like.

The example 100 illustrates a binary tree representation of tag values for 8
memory locations having addresses O through 7, inclusively. The tree in this example
may include up to 4 levels of nodes, depending on which of the 8 memory locations, if
any, are homogeneously tagged using a same subtree of the structure 100. In this
example, the entire memory region of 8 memory locations may be partitioned
repeatedly into power of two smaller memory regions where each such partitioning of
smaller memory regions corresponds to a different level of nodes in the tree. For
example, level 1 104 includes node A1 corresponding to the entire address space O
through 7 which is partitioned into two smaller regions each represented by a node
(nodes B1 and B2) at level 2 106. Level 2 106 includes node B1 associated with
addresses 0-3 and node B2 associated with addresses 4-7.

Each of the nodes B1 and B2 at level 2 106 may be further partitioned into two
smaller regions each represented by a node at level 3 108. Node B1 and its associated
address range 0-3 is partitioned into two regions represented by nodes C1 and C2,
where C1 is associated with address range 0-1 and C2 is associated with address range
2-3. Similarly, node B2 and its associated address range 4-7 is partitioned into two
regions represented by nodes C3 and C4, where C3 is associated with address range 4-5
and C4 is associated with address range 6-7.

Each of the nodes C1-C4 at level 3 108 may be further partitioned into two
smaller regions each represented by a node at level 4 110. In this example, nodes at
level 4 each represent a tag value for a single word or memory location. Node C1 and

its associated address range 0-1 is partitioned into two regions represented by nodes D1

197

10

15

20

25

WO 2017/106101 PCT/US2016/066188

and D2, where D1 is associated with address 0 and D2 is associated with address 1.
Node C2 and its associated address range 2-3 is partitioned into two regions represented
by nodes D3 and D4, where D3 is associated with address 2 and D4 is associated with
address 3. Node C3 and its associated address range 4-5 is partitioned into two regions
represented by nodes D5 and D6, where DS is associated with address 4 and D6 is
associated with address 5. Node C4 and its associated address range 6-7 is partitioned
into two regions represented by nodes D7 and D8, where D7 is associated with address
6 and D8 is associated with address 7.

All the nodes A1, B1-B2, C1-C4 and D1-D8 may represent the maximum
number of possible nodes that may exist in the hierarchical representation of tag values
for the region of 8 memory locations. However, as described in more detail below, the
particular nodes included in the tree denoting the tag values stored in the memory
locations 0-7 may vary depending on the particular tag values and homogenous and
non-homogeneous tag regions represented at various points in time. Levels of the
hierarchy may be ranked from a highest level corresponding to the root or level 1 104
node to the lowest level corresponding to the bottom most level 4 110.

In connection with techniques herein with a first example, reference is made to
120 of Figure 79. In this first example, assume all memory locations associated with a
node at a particular level in the hierarchy 120 have the same tag value, T1, thereby
denoting a subtree of homogenously tagged memory locations, the node at the particular
level has the tag value for all such memory locations and no further descendant nodes in
the subtree need to be consulted to determine the tag value for any of the homogenously
tagged memory locations. For example, if all memory locations 0-7 include the same
tag value T1 such as in connection with initializing the region of memory with the same
tag, the tag value T1 for memory locations 0-7 may be stored at node Al (e.g., as
denoted by the “tag=T1” indication by node A1). In at least one embodiment, there is
no further need to store additional tag values for other nodes of the tree since the tag
values for the entire region for addresses 0-7 is represented by the single node Al. In

this case, element 122 denotes the single node that may be included in the hierarchical

198

10

15

20

25

WO 2017/106101 PCT/US2016/066188

representation of tag values stored at memory locations with addresses 0-7 and the
remaining nodes B1, B2, C1-C4 and D1-D8 may be omitted from the hierarchical
representation.

In a second example, reference is made to 130 of Figure 80. In this second
example, assume that memory locations 0-3 have the same first tag value T1 and
memory locations 4-7 have the same second tag value T2 (first and second tag values
being different). In this case, node Al may include an indicator (e.g., denoted by the
“TAG VALUE=NO TAG VALUE” indication by node A1) denoting that node A1 does
not specify a homogeneous tag for memory locations 0-7 and tag values for memory
locations 0-7 are specified by nodes at one or more lower levels of the hierarchy. At
level 2 of the hierarchy, the first tag value, T1, may be stored at node B1 (as denoted by
the “TAG VALUE=T1 indication by node B1) and the second tag value T2 may be
stored at node B2 (as denoted by the “TAG VALUE=T2 indication by node B2). The
subtree (B1, C1, C2, D1-D4) of which B1 is the root denotes a set of homogenously
tagged memory locations 0-3. The subtree (B2, C3, C4, D5-D8) of which B2 is the root
denotes another set of homogenously tagged memory locations 4-7. In at least one
embodiment, there is no further need to store additional tag values for other nodes of the
tree at levels 3 and 4 (e.g., nodes C1-C4 for level 3 and nodes D1-D8 for level 4) since
the tag values for the entire region for addresses 0-7 are represented by nodes B1 and
B2 atlevel 2. In this case, element 132 denotes the nodes that may be included in the
hierarchical representation of tag values stored at memory locations with addresses 0-7
and the remaining nodes C1-C4 and D1-D8 may be omitted from the hierarchical
representation.

At a first point in time, the tag hierarchy may be as described in connection with
the example 120 with only the single node 122 since all tags have the same tag value.
At a subsequent second point in time, tag values for addresses 0-3 may be modified to
be the same first tag value T1 and addresses 4-7 may be modified to be the same second
tag value T2. As a result of the foregoing tag modifications, two addition nodes B1 and

B2 as described above in the example 130 may be added to the hierarchy. Assume now

199

10

15

20

25

WO 2017/106101 PCT/US2016/066188

at a subsequent third point in time tag values for addresses 0-3 remain the same as in the
example 130. However, tag values for addresses 4-7 may be modified as described
below in connection with Figure 81 whereby additional nodes C3-C4 and D5-D6 are
added to the tag hierarchy.

In a third example, reference is made to 140 of Figure 81. In this third example,
assume that memory locations 0-3 have the same first tag value T1 as described above
(where the first tag value T1 may be stored at node B1 and the subtree (B1, C1, C2, D1-
D4) of which B1 is the root denotes a set of homogenously tagged memory locations 0-
3). Further, assume that the memory locations 4-5 each include a different tag value
where memory location 4 has tag value T3 and memory location 5 has tag value T4, and
that memory locations 6-7 are homogeneously tagged and include the same tag value
T5. In this case, consistent with description above, nodes Al, B2, and C3 may each
include an indicator (e.g., TAG =NO TAG) that the particular node does not specify a
tag value whereby nodes at one or more lower levels in the hierarchy specify tag values
for the particular memory locations associated with nodes A1, B2 and C3. For
example, node C3 corresponding to memory locations 4-5 may include an indicator that
the node C3 does not specify a tag value whereby nodes at one or more lower levels in
the hierarchy specify tag values for memory locations 4-5. Node D5 at level 4 may
specify the tag value T3 (e.g., TAG=T3 indicator by node D5) for memory location 4
and node D6 and level 4 may specify the tag value T4 (e.g., TAG=T4 indicator by node
D6) for memory location 5. Node C4 corresponding to memory locations 6-7 may
specify the tag value TS (e.g., TAG=TS indicator by node C4), the homogeneous tag
value common to memory locations 6-7 and indicate there is no further need to store
additional tag values in nodes D7 and D8 (e.g., no need to further examine descendant
nodes D7, D8 of C4). In this case, element 142 denotes the nodes that may be included
in the hierarchical representation of tag values stored at memory locations with
addresses 0-7 and the remaining nodes C1-C2, D1-D4 and D7-D8 may be omitted from

the hierarchical representation.

200

10

15

20

25

WO 2017/106101 PCT/US2016/066188

The foregoing illustrations of 120, 130 and 140 may denote the hierarchical
representation of tag values for the memory region for addresses or memory locations
0-7 at different points in time as tag values associated with the memory locations may
change over time. In a manner similar to adding nodes to the hierarchy as described
above, nodes may be removed from the hierarchy as needed as subtrees of existing
nodes are modified to all have the same tag value (e.g., if descendants of a node all have
the same tag value then all descendant nodes may be removed from the hierarchy and
the node may be used as the sole node of a subtree to denote the single homogeneous
tag value of the node and its descendants).

In at least one embodiment, when a first node at a level in the tree specifies a
value for one or more memory locations associated with the first node, there is no need
to further represent descendant nodes of the first node (e.g. no need to further represent
nodes of the subtree beyond the first node). To further illustrate, reference is made to
the first example noted above in 120 of Figure 79 where only a tag value of node Al is
needed to represent the single homogeneous tag value for the memory region 0-7. To
further illustrate, reference is made to the third example 140 of Figure 81 noted above
where an embodiment may not further represent nodes C1-C2, D1-D4, and D7-D8. In
this manner, using such a hierarchical representation of memory locations and
associated tag values may save storage in connection with tag values for the memory
locations. In other words, in at least one embodiment, rather than always allocate and
store individual tag values for each of the memory locations, storage may be allocated
where a single tag value in the hierarchy denote a homogeneous tag value for multiple
memory locations having consecutive or contiguous addresses. With reference to the
first example noted in 120, rather than allocate storage for 8 tag values for memory
locations 0-7 each including the same tag value, memory may be allocated for storing
the single tag value of node Al.

In a worst case scenario assuming there are no homogeneously tagged memory
locations in the memory region having addresses 0-7, the entire hierarchical structure of

nodes of Figure 78 is used to represent the tag values stored at the addresses 0-7. For

201

10

15

20

25

WO 2017/106101 PCT/US2016/066188

example, each of the leaves of the hierarchy may represent a different word in memory.
Thus, the bottom level 4 110 of the hierarchy may denote the tag values for the address
space 0-7.

Referring back to Figure 78, assume there is an 8 bit address space used to
represent the addresses of the memory locations 0-7. In at least one embodiment, the
entire 8 bit address space may be partitioned into different memory regions each
including 8 memory locations where each of the different memory regions may have tag
values represented by a different instance of a tag value hierarchy. Thus, for the
memory region of addresses 0-7 just described, the highest or top 5 bits are all=0 and
the addresses 0-7 may be represented in the remaining lower 3 bits. The highest or top
5 bits =0 may thus be used to indicate the memory region of addresses 0-7. In such an
embodiment, each memory region of 8 memory locations may have a separate tag value
hierarchy such as illustrated in Figure 78 denoting tag values of the particular memory
region. In this example, each of the different memory regions denoting a different
range of 8 addresses or memory locations may be differentiated by examining the top 5
bits of the 8 bit address of a memory location.

In at least one embodiment in accordance with techniques herein, a series of tag
cache memories may be used where the number of tag caches may correspond to the
number of levels in the hierarchy of nodes denoting tag values. Continuing with the
example discussed above and with reference back to 100 of Figure 78, each instance of
a tag hierarchy for a memory region of 8 memory locations has 4 levels. In such a case,
an embodiment may use 4 tag cache memories 152, 154, 156 and 158 as illustrated in
the example 150 of Figure 82 to store tags for memory locations. Generally, each of the
4 tag cache memories 152, 154, 156 and 158 is associated with a different level in the
tag value hierarchy and may store information about each node in the associated
different level of the tag value hierarchy. For example, tag level cache 152 may
include information for level 1 104 nodes or the roots of the tag value hierarchies for
each of the memory regions (which in this particular example as noted above is a

memory region of 8 memory locations). Tag level cache 154 may include information

202

10

15

20

25

WO 2017/106101 PCT/US2016/066188

for level 2 106 nodes of the tag value hierarchies for each of the memory regions. Tag
level cache 156 may include information for level 3 108 nodes of the tag value
hierarchies for each of the memory regions. Tag level cache 158 may include
information for level 4 108 nodes of the tag value hierarchies for each of the memory
regions. The lowest or bottom most level in the hierarchy, which is level 4 110 in this
example, may correspond to cache lines for memory locations that may be stored in the
data cache (e.g., denotes as L1-D$ such as denoted by element 20 of Figure 1). An
embodiment may have a level 4 158 of the tag cache and additionally have metadata
tags that may be separately stored in the cache lines of the data cache. Each of the
caches 152, 154, 156 and 158 of nodes have an associated representation in main
memory.

In connection with the example embodiment described herein with an 8 bit
address space, the top or highest 5 bits 152a of the address of a memory location may be
used by level 1 cache 152 to lookup whether the cache 152 includes any level 1 node
for the address of the memory location. The top or highest 6 bits 154a of the address of
the memory location may be used by level 2 cache 154 to lookup whether the cache 154
includes any level 2 node for the address of the memory location. The top or highest 7
bits 156a of the address of a memory location may be used by level 3 cache 156 to
lookup whether the cache 156 includes any level 3 node for the address of the memory
location. The 8 bits 154a of the address of the memory location may be used by the
level 4 cache 158 to lookup whether the cache 158 includes any level 4 node for the
address of the memory location.

For a particular address, each of the caches associated with a level other than the
bottom most level, may return:

1). the tag value for the particular address (denoting that this is a homogeneous
tag value at that level for multiple addresses);

2). an indicator that the cache does not specity a tag value for the particular
address and a cache at a lower level in the hierarchy needs to be consulted to obtain the

tag value for the particular address (this particular level does not specify a

203

10

15

20

25

WO 2017/106101 PCT/US2016/066188

homogeneous tag value for the particular address); or

3). null or a second indicator denoting that there is no cache location in that
particular level cache including node or tag information corresponding to the particular
address. The second indicator also denotes that no cache at a lower non-bottom level
cache includes a node or tag information for the address. This is discussed below in

more detail.

Consistent with discussion above, the indicator returned in item 2) above may be
the “NO TAG” indicator associated with a node such as illustrated in examples 120,
130 and 140. For example, with reference to the illustration 130 of Figure 80, assume
processing is performed to determine the tag for memory location 5. In this case, level
1 cache 152 may return the NO TAG indicator indicating that the tag value for memory
location 5 is specified by one of the other lower level caches 154, 156, or 158. Level 2
cache 154 may return the tag value T2 for memory location 5 illustrating returned cache
item 1) above. To illustrate returned item 3) above where the second indicator is
returned, consider the level 3 cache 156. The level 3 cache 156 may not include any
node information corresponding to the memory location 5 (e.g., no cache location
includes node or tag information associated with memory location 5 lookup) and so the
second indicator described above in 3) may be returned indicating that there is no node
information for the memory location 5 in this level 3 cache. In such an embodiment,
processing may generally utilize the tag value returned from the highest tag level cache.
For example, in connection with memory location 5 with reference to the example 130,
level 2 cache 154 is the highest level of the tag caches returning a tag value for memory
location 5.

For contents of a memory location stored in an L1 (level 1) data cache, cached
information may include the current tag value and also the level in the tag cache
hierarchy where the tag value is defined. Referring again to the example above for the
memory location 5 using the hierarchy 130 of Figure 80, if the contents of memory

location 5 is also stored in the data cache, the data cache may include the tag value T2

204

10

15

20

25

WO 2017/106101 PCT/US2016/066188

and also information that the current tag value T2 is defined by a level 2 node (e.g. B2)
having its node information stored in the level 2 cache 154. Thus, the example 150
illustrates 4 tag caches in the tag cache hierarchy where tag values may be stored and
the embodiment may additionally include a tagged data cache (e.g., L1 data cache)
separate from any tag information stored in the tag cache hierarchy.

In an embodiment in accordance with techniques herein, processing may be
performed by the PUMP to resolve or determine a tag value for a particular memory
location having a particular address. When performing processing to obtain a tag value
and contents for a particular memory location, there may be a data cache hit whereby
the memory location contents and its tag are stored in the data cache. Upon the
occurrence of a data cache hit for a memory location, processing may be performed to
consult the stored level of the tag cache hierarchy which defines the tag value for this
memory location to make sure the first cached tag value obtained from the tag caching
level matches the second tag value of the memory location as stored in the data cache.
If the two do not match, this indicates that the second cached tag value as stored in the
data cache is stale, out of date and has been modified. In this case if the second cached
tag value stored in the data cache for the memory location and the first tag value as
obtained from the tag cache for the memory location do not match, processing may be
performed including updating the second cached tag value as stored in the data cache
for the memory location (e.g., to match that as stored in the tag cache hierarchy). In at
least one embodiment, for a memory location having its data and thus its tag cached in
the data cache, information may be tracked in the data cache for the memory location’s
tag including the level of the tag cache hierarchy where the tag is defined. The
foregoing storing of the level in the cache tag hierarchy may be an optimization
whereby the stored level may be used to readily access the tag value from the tag
hierarchy (e.g., rather than having to consult all tag level caches or otherwise search the
hierarchy of existing nodes such as in a search from the root or top of hierarchy
downward toward the leaf nodes). Thus, upon the occurrence of a data cache hit and

where the tag value stored in the data cache for a memory location does not match the

205

10

15

20

25

WO 2017/106101 PCT/US2016/066188

tag value stored in the tag hierarchy for the memory location, processing may include
updating the tag value as stored in the data cache and additionally updating the
hierarchy level information stored in the data cache as to where the memory location’s
tag is defined in the tag hierarchy. Subsequently, processing performed by the PUMP
for resolving or determining the tag value for the memory location may be restarted.

Upon the occurrence of a data cache miss for a memory location (e.g., where the
memory location contents and tag are not found in the data cache), processing may be
performed to perform a tag cache lookup for the tag value in levels of the tag cache
(e.g., other than the bottom most tag cache level) in parallel. For example, a lookup for
the tag value for the memory location may be performed by consulting the 4 caches
152, 154, 156 and 158, respectively, for levels 1, 2, 3 and 4 of the tag caches in
parallel. As discussed above, the tag value returned by the highest level of the tag
caches 152, 154, 156 and 158 is used as the tag value for the memory location.
Additionally, it should be noted that in a properly represented tag value hierarchy, only
a single one of 152, 154,156 and 158 may return a tag value for the memory location.
In at least one embodiment, the caches 152, 154, 156 and 158 may be indexed to allow
for parallel access.

An embodiment may also not perform a parallel lookup or search for a particular
memory location’s tag with respect to all 4 tag caches 152, 154, 156 and 158. Asa
variation an embodiment may traverse the tag caches of the hierarchy from the root
node level (level 1) downward toward the leaf nodes (e.g., level 4). For a tag cache
miss at a level N, the tree or hierarchy may be traversed inserting nodes into the
different levels of tag caches for the particular memory access. In connection with a
level cache miss for a parallel search of the tag caches, an embodiment may choose to
only insert nodes into the level caches when there is a tag. So as some level cache
provides a tag, it is not required that all other level caches have a NO TAG entry.

As discussed elsewhere herein, a tag of a memory location may be modified. In
response to modifying a tag of a memory location, processing may be performed to

accordingly update the hierarchy specifying a tag value for the memory location. Such

206

10

15

20

25

WO 2017/106101 PCT/US2016/066188

updating may include invalidating any one or more levels of the hierarchy which are no
longer homogeneous. Additionally, processing may be performed to accordingly
update the levels of caches such as illustrated in the example 150 of Figure 82.

When performing an operation to set or initialize a tag of a memory location,
such processing may include the PUMP checking for the validity of performing the
desired operation. For example, consider the case with retagging all memory locations
in the memory region with a new tag. Processing may include obtaining the current tag
values of all memory locations in the region and checking via PUMP processing for
validity of the retag. The processing may include clearing the tags of the memory
locations in the region, if allowed, and then updating the tag values for the memory
locations in the region, if allowed. Consistent with discussion above, updating,
modifying, or setting tags of a memory region may include accordingly modifying the
hierarchy and associated nodes to reflect the tag values for different memory locations
in the memory region (e.g., decomposing portions of the region which are homogeneous
prior to the modification and non-homogeneous after the modification whereby there
may be additional children or descendant nodes added to reflect the tag value
modification(s)).

In at least one embodiment, the hierarchical representation of tag values for a
memory region may be a tree. For example, the tree may be a binary tree where each
node has either O, 1 or 2 children. As a variation, the hierarchical representation may be
a tree but not a binary tree. For example, each node in the tree may be allowed to have
any suitable number of child nodes up to a specified maximum. The hierarchical
representation may include any suitable number of levels, nodes at each level, children
per parent node, and the like. As known in the art, there is a tradeoff between various
parameters of the hierarchical representation such as depth or number of levels and
nodes at each level/number of children per parent node). For example, the larger the
number of nodes at each level, the fewer the number of levels and thus the shorter
amount of time/levels to be consulted when determining a tag value for a memory

location. However, in such a case, more writes need be performed to clear a region.

207

10

15

20

25

WO 2017/106101 PCT/US2016/066188

What will now be described are techniques that may be performed, such as by
rules triggered as a result of loader code, in connection with a CFI policy in an
embodiment in accordance with techniques herein. To enforce the CFI policy using
metadata processing rules accessing tag information, information regarding allowable
control flow needs to be communicated to the metadata processing domain. To this
end, an embodiment in accordance with techniques herein may use an approach
described in following paragraphs. Generally, a transfer of control is made from a
branch source to a target or destination. In connection with allowable control flow, for
a particular control flow target or destination, a set of sources that are allowed to
transfer control to the particular control flow target or destination may be identified.
The set of sources for each possible control flow target may be communicated to the
metadata processing domain, such as stored metadata tag information, which may then
be used by rules of the CFI policy in connection with CFI policy enforcement during
runtime execution of user code (e.g., code executing in the code execution domain or
non-metadata processing domain).

The processing performed may include uniquely tagging each source and then
tagging each target with the set of allowable sources (e.g., address of the sources)
permitted to transfer control to that particular target. For example, reference is made to
Figure 83. In the example 1700, element 1701 may denote a code portion of
instructions of an application executed in the code execution or non-metadata
processing domain. Element 1702a and 1704a-c denote locations of instructions in the
code portion. Element 1702a denotes a control flow target A. Elements 1704a-c denote
control flow sources that are allowed to transfer control to target A 1702a. Such
transfer of control from each of 1704a-c is denoted by the JMP (jump) A instruction.
Element 1706 denotes the set of allowable sources that are permitted to transfer control
to the target A. D7 denotes the unique source tag of instruction 1704a. C3 denotes the
unique source tag of instruction 1704b. E8 denotes the unique source tag of instruction

1704c¢. As illustrated by 1710, the JMP (jump) instructions 1704a-c are tagged,

208

10

15

20

25

WO 2017/106101 PCT/US2016/066188

respectively, as D7, C3 and E8. As also illustrated by 1710, the instructions 1704a-c
are also stored, respectively, at addresses 1020, 1028 and 1034. The target location A
has address 800. In this case, the set of allowable sources, or addresses of the source
instructions allowed to transfer control to the target A, may be the set {1020,
1028,1034} denoted by 1706. Thus, the set 1706 is an example of the allowable control
flow information that needs to be communicated to the metadata processing domain
where such allowable control flow information is stored as tag metadata for use by rules
of the CFI policy. In at least one embodiment in accordance with techniques herein,
code of the loader may fire rules that perform processing to collect the control flow
information needed by the metadata processing domain to enforce the CFI policy for the
application include code portion 1701. The loader code may be executed in connection
with loading the application (e.g., loading executable code for the application) whereby
the loader code, while executing to load the application, triggers rules that perform the
necessary processing to collect the control flow information (as subsequently used by
the metadata processing to enforce the CFI policy during execution of the application).
In at least one embodiment consistent with description elsewhere herein,
execution of kernel code may trigger rules that tag code of the loader with special
instruction tags enabling the tagged instructions of the loader, when executed, to trigger
rules that generate a sequence of source tags (each tag of the sequence being unique)
used to tag the sources (e.g., generate source tags D7, C3 and E8). For example,
reference is made to Figure 84 including logical processing performed by rules fired as
a result of executing code of the loader. The logical processing is described in 1720
using a C-like pseudo code description where such processing may be performed for
each control flow target such as A 1702a. At step 1721, the source set is initialized to
the empty set. At step 1722, for each source that is allowed to transfer control to the
target, steps 1723, 1724 and 1725 may be performed. At step 1723, t is assigned a
newly allocated CFI source tag. At step 1724, a source location (of an instruction that
transfers control to the target) is tagged with the newly allocated tag t generated in step

1723. In step 1725, the source set is updated to also include tag t. In one aspect, the

209

10

15

20

25

WO 2017/106101 PCT/US2016/066188

operation of step 1725 may be characterized as forming a set union of allowable sources
for the target where the union operation is performed in 1725 for each iteration of the
loop processing, that begins at 1722, as performed for each source. Step 1726 tags or
marks the target with the source set.

Element 1723 may be the following instruction included in loader code that
triggers a rule that generates or allocated the new CFI source tag:

ADD R1< R1 +RI
where the ADD instruction (e.g., such as ADDI in the RISC-V instruction set) has been
tagged by the kernel code with the special CI tag of CFI-alloc-tag marking this
instruction as an allowable tag generator instruction. In at least one embodiment a
different sequence of source tags may be generated by the loader for each application in
connection with a CFI policy (e.g., in the example 1620, the loader may use a different
sequence of CFI tags 1630 as the unique sequence of CFI source tags for an application
where the sequence of CFI tags may be generated from a particular one of the CFI tag
generator App-n tags of 1627). The CFI-alloc-tag is the CI tag placed on the loader
ADD instruction above denoting that the ADD instruction is allowed to allocate or
generate a next tag in the application specific CFI sequence. CFI-alloc-tag may be one
of the special instruction types of 1624 as described in connection with the example
1620. The ADD instruction above indicates that the tag on R1 holds the state of the
CFI sequence where the state may be the last tag of the sequence previously generated.
Execution of the above ADD instruction triggers a rule that generates the next new tag
in the CFI sequence and updates the tag on R1 to now be the newly generated tag.
Using rule conventions as described elsewhere herein, the following ADD rule may
denote the rule triggered by the above ADD instruction:

ADD: (-, CFlI-alloc-tag, t1, t1, --) = (-, tInext)
which ensures that the CI tag for the ADDI instruction is CFI-alloc-tag. In this ADD
rule, t1 denotes the previous tag in the sequence (saved as the current state of the CFI
tag sequence for the application) which is used to generate the next tag, t1next, in the

sequence, where tlnext is then stored as the tag for RD (the destination or result

210

10

15

20

25

WO 2017/106101 PCT/US2016/066188

register) . The foregoing tag, tInext, in the CFI sequence may be used as the unique
CFI source tag placed on a source point.

Element 1724 may be an instruction of the loader code, such as a ST (store)
instruction below, used to trigger a rule that tags a source location with the unique CFI
source tag:

ST R1 2R3
where R3 is a pointer to the control flow source location in the user program code (e.g.,
1704a in the example 1700) being tagged, and the tag on R1 is the unique CFI source
tag to be placed on the source location. The above ST instruction may also be tagged
with a special CI tag, such as CI-LDR, denoting the ST instruction is included in loader
code triggering rule ST below:

ST: (-, CI-LDR, t1, -, codetag) = (-, t1)
where CI tag=CI-LDR, t1 is the CFI source tag currently stored as the tag on R1, and
codetag is an instruction tag on the source location at address R3 (e.g., ensuring that the
source location is currently tagged as code). As a result, the destination (R3) is tagged
with t1, the unique CFI source tag.

Element 1725 may be an instruction of the loader code, such as an ADD
instruction below, used to trigger a rule that adds the address of the source (e.g.,
currently pointed to by R3, where R3 contains the address of the source) to an
accumulated set of CFI source tags denoting allowable source locations that can transfer
control to the target:

ADD R2< R2+R3
where the tag on R2 points to a memory location denoting the accumulated set of
allowable source locations. The above ADD instruction may be tagged with a special
CFI UNION instruction tag denoting that this ADD instruction is performing a union
operation of CFI sources and the union is stored as a tag on R2. The following rule for
ADD may be fired as a result of the above ADD instruction:

ADD: (-, CFI UNION, tset, tsrc, -) = (-, tunion)
which checks to ensure that the CI tag is CFI UNION, tset is a target set, and tsrcis a

211

10

15

20

25

WO 2017/106101 PCT/US2016/066188

source tag. It produces a new CFI set, tunion, that represents the addition of tsrc to tset.

Element 1726 may be an instruction of the loader code, such as a ST instruction
below, used to trigger a rule that tags the target with the union or accumulated list of
allowable source locations that can transfer control to the target:

ST R2 »>R17
R17 may be a register containing the address of the target location, and R2 may be, as
noted above, a register tagged with the current accumulated set union of allowable
source locations (e.g., tag on R2 denotes the set of allowable source locations for the
target location whose address is contained in R17). The above ST instruction may be
tagged with a special instruction tag CFI MARK TARGET denoting the instruction as a
special one that is allowed to tag a control transfer target location (e.g., this STORE
instruction 1726 of the loader code may have been tagged by kernel code in a manner
similar to other code tags on load code instructions that trigger rules to perform
processing of 1720). The following ST rule may be triggered as a result of the above
STORE instruction for 1726:

ST: (-, CFI MARK TARGET, tset,-,codetag) = (-, tset)
which triggers when CI tag is CFI MARK TARGET and the target (pointed to by R17,
wherein R17 includes the target address) is tagged with codetag indicating an
instruction, and places the tset annotation onto the target.

Different tag structures or layouts that may be defined for use with sources,
targets and the set of allowable source locations are described elsewhere herein as well
as any other suitable structure definition (e.g., see examples 240, 250, 260, 267, 270 and
280 describing tag layouts for use with tagged source and target locations that may be
used more generally with any instruction as well as in connection with multiple
instructions per tagged word).

Thus, the processing steps described above as in the example 1720 may be
performed by having code of the loader properly tagged so that when such loader code
is executed, rules are fired which cause the steps of the example 1720 to be performed

by the metadata processing domain in an embodiment in accordance with techniques

212

10

WO 2017/106101 PCT/US2016/066188

herein. It should be noted that the foregoing sequence of instructions and fired rules as
a result of the instructions are merely one examples of instructions and rules that may
be used in an embodiment using techniques herein. For example, an embodiment may
include a different instruction other than an ADD in loader code that triggers a rule

performing processing as described above (e.g., element 1725).

213

10

15

WO 2017/106101 PCT/US2016/066188

In the foregoing description, certain terms have been used for brevity, clearness,
and understanding. No unnecessary limitations are to be implied therefrom beyond the
requirement of the prior art because such terms are used for descriptive purposes and
are intended to be broadly construed. Moreover, the description and illustration of the
preferred embodiment of the present disclosure are an example and the present
disclosure is not limited to the exact details shown or described.

Various aspects of techniques described herein may be performed by executing
code which is stored on any one or more different forms of computer-readable media.
Computer-readable media may include different forms of volatile (e.g., RAM) and non-
volatile (e.g., ROM, flash memory, magnetic or optical disks, or tape) storage which
may be removable or non-removable.

While the invention has been disclosed in connection with various embodiments
shown and described in detail, their modifications and improvements thereon will
become readily apparent to those skilled in the art. Accordingly, the spirit and scope of

the present invention should be limited only by the following claims.

214

WO 2017/106101 PCT/US2016/066188

Programming the PUMP

Hardware-Assisted Micro-Policies for Security

ABSTRACT

A wide range of security policies can be formulated as rules on metadata at the
ISA-level and enforced efficiently in programmable hardware. We elaborate a
programming model for such policies based on the Programmable Unit for Meta-
data Processing (PUMP) architecture, which supports flexible rule evaluation on
uninterpreted metadata alongside the main computation. We illustrate the
model's generality by implementing a diverse set of safety and security policies
of varying complexity, in four specific domains—spatial and temporal memory
safety, taint tracking, control-flow integrity, and primitive typing. We characterize
the performance of these policies for a simple RISC ISA, both singly and in
combination. The average runtime overhead for most policies is only 8%. This
shows that the PUMP model can achieve the flexibility and adaptability of

software enforcement with the performance of dedicated hardware.

1. INTRODUCTION

It is far too easy for attackers to subvert a program’s in- tent. Modern
processors, designed to be agnostic to the intended high-level semantics of the
operations they perform, are complicit in this state of affairs—a legacy of the
technology era when transistors were expensive and the primary design goal was
runtime performance. With computer systems increasingly entrusted with critical
tasks, system security has finally become a key design goal. At the same time,
processors are now small compared to even modest system-on-a-chip dies,
making it feasible and inexpensive to augment them with security-enhancing
hardware. For to- morrow’s computers to adequately protect the privacy and

integrity of the data they manage, we must re-architect the entire computing stack

215

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

with security mechanisms consistent with modern threats and hardware costs.

The security literature offers a vast range of runtime policies that can reduce
vulnerabilities due to malicious and erroneous code. These policies often encode
high-level language abstractions (this is a numeric array, this is a code pointer,
...) or user-level security invariants (this string came from the network) into
metadata annotations on the program’s data and code. High-level semantics or
policies are enforced by propagating this metadata as computation proceeds and
dynamically checking for violations at appropriate points. We call these low-level,
fine-grained enforcement mechanisms micro-policies (or informally just “policies”).

Software realizations of micro-policies can define arbitrary metadata and
arbitrarily powerful computations over them. Software implementation facilitates

fast deployment of new policies, but it can be prohibitively expensive in terms

of runtime and energy costs (1.5x-10x) [42], leading to unfavorable security-

performance trade-offs. Simple micro-policies can be supported in hardware with
low overhead [41, ?]; However, hardware customized to support a single policy can
take years to deploy and is slow to adapt. Today's dynamic cyber-attack
landscape calls for mechanisms that support rapid in-field responses to evolving

threats.

The desire for greater flexibility has prompted a number of recent efforts to

make policy-enforcement hardware more programmable [18, 45, 19, 13] (see §5).

Here, we consider a design called the PUMP [7], a “Programmable Unit for
Metadata Processing” that allows a wide range of low-level runtime policies to
be defined in terms of instruction-grained computation on arbitrary metadata. At
the hardware level, every word of data is associated with a word-sized metadata
fag. These tags are not interpreted by the hardware; in soft- ware, they can be
mapped to representations of information such as the type, provenance,
classification level, or trust- worthiness of the data to which they are attached.
Since tags are large enough to represent pointers, they can refer to data

216

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

structures of arbitrary size and complexity, including tuples of metadata, allowing
multiple orthogonal policies to be enforced in parallel. The program counter is
tagged to support tracking the history of the program’s control state; program
code is tagged to support policies on code provenance, control flow, and
compartmentalization. The processor core is augmented with a rule cache that
allows for high-performance rule resolution synchronously with instruction
execution and a special operational mode for fast context switch to the policy
handling code when lookups miss in this cache. This allows the PUMP to facilitate
enforcement of a wide range of low-level policies with the expressiveness and

adaptability of software and the performance of hardware.

Our goal in this paper is to show both that PUMP-like tagging and rule
processing is useful against real threats and that writing policies in the form of
rules is tractable. We do this by elaborating how the PUMP can be programmed
to support a diverse collection of low-level security and safety policies. We
present detailed implementations and evaluations of four families of policies (all
familiar in the literature): (i) primitive types, enforcing a weak form of type safety;
(i) spatial and temporal memory safety, catching bounds and use-after-free
errors for heap-allocated data, (iii) control-flow integrity (CFI) [2], preventing code-
reuse attacks; (iv) taint tracking, where taints can represent data sources or
components that may have contributed to a given piece of data. Most of these
policies go beyond what current systems can efficiently support in software.
Finally, we show how these policies can be applied simultaneously. Since these
policies have been well-studied in the existing literature, our main focus is not on
the security guarantees they provide, but rather on exploring how they can be
expressed as rules and enforced with the PUMP. We use instruction trace
simulations to estimate the runtime impact of these policies across the SPEC
CPU2006 Benchmark Suite when the PUMP is attached to a simple, in-order
RISC processor (an Alpha [1]). We show that the PUMP can support policies

with a wide range of

217

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

complexities and quantify the performance impacts. This range illustrates
the ability to refine the policies as threats evolve and how this evolution may

impact performance.

This paper is an extended, enriched, and refocused version of [7], a
short paper to be presented at a workshop later this summer. The previous
paper focuses on a straightforward hardware integration of the PUMP into a
RISC processor, establishes reasonable performance on most benchmarks,
and identifies areas for improvement. In the present work we eschew
microarchitectural considerations, which are well explained in [7], focusing
instead on the programming model and on a much more detailed explanation
and evaluation of the policies themselves. We also explain how the PUMP

software services protect themselves from abuse. The performance we report

improves on [7] due to: (i) the use of opgroups (§2), (ii) a more accurate

estimation of miss costs (§3) and, (iii) the reduction of DRAM accesses by

using pointer tags only where needed (§4).

In summary, the main contributions of this work are (i) a programming
model and supporting interface model for compactly and precisely describing
policies supported by this architecture (§2 and §3); (ii) detailed examples of
policy encoding and composition using four diverse classes of well-studied
policies; and (i) quantification of the requirements, complexity, and
performance for these policies (§4). In §5 and §6, we discuss related and
future work. Several additional materials are available in anonymized form at
http://git.io/8K7IKA. These include: an appendix with complete definitions

for the studied policies, the source code of our experiments, and an
anonymized version of [7].

2, POLICYPROGRAMMINGMODEL

218

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

A PUMP policy consists of a set of fag values together with a collection of rules
that manipulate these tags to implement some desired tracking and
enforcement mechanism. Rules come in two forms, depending on whether
we are talking about the software layer (symbolic rules) or hardware layer

(concrete rules) of the system.

Example. To illustrate the operation of the PUMP, let's consider a simple
example policy for restricting return points during program execution. The
motivation for this policy comes from a class of attacks known as return-
oriented programming (ROP) [39], where the attacker identifies a set of
‘gadgets” in the binary executable of the program under attack and uses these
to assemble complex malicious behaviors by constructing appropriate
sequences of stack frames, each containing a return address pointing to some
gadget; a buffer overflow or other vulnerability is then exploited to overwrite
the top of the stack with the desired sequence, causing the snippets to be
executed in order.

One simple way of limiting ROP attacks is to constrain the targets of
return instructions to well-defined return points. We can do this using the
PUMP by tagging instructions that are valid return points with a metadata
tag target. Each time we execute a return instruction, we set the metadata
tag on the PC to check to indicate that a return has just occurred. On the
next instruction, we notice that the PC tag is check, verify that the tag on
the current instruction is target, and signal a security violation if not. We
will see later in this section that, by making the metadata richer, we can
precisely control which return instructions can return to which return

points. By making it yet richer, we can implement full-blown CFI checking

[2] (see §4.3).

Symbolic Rules. From the point of view of the policy designer and the

software parts of the PUMP, policies are compactly described using

219

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

symbolic rules written in a tiny domain-specific language. Each symbolic rule
has the form:

opgroup : (PC, CI, OP1,0P2, MR) — (PC , R if guard ?

which says that the rule matches on a set of instruction opcodes
(opgroup) together with the metadata tags on the program counter (PC),
the current instruction (C/), up to two operands from the register file
(OP1, OP2), and the memory location referenced by the instruction
(MR), if any. The rule applies if all relevant tag expressions match and the

guard? predicate holds. In this case, the right-hand side determines how

/

to update the tags on the PC (PC /) and on the result of the operation (R).

We use opgroups instead of opcodes since, in most policies, there will be

many opcodes with identical rules. We write “—" to indicate input or output

fields that are ignored (“wildcard”). When the guard? condition is just
true, we elide it.

For the simple ROP policy just sketched, we split the opcodes into

two opgroups— return (containing just a single opcode) and return (all the

rest); the possible tag values are check, target, and L. The PC will
always be tagged either check or 1, and each instruction will be tagged
either target or L. (Instruction tags are supplied by a trusted loader; see

§3.) The symbolic rules are:

retum: (L, —, —, —, —) — (check, —) (1)

return : (check, target —, —, —) = (L, —) (2)

return: (L, — — — —)—=> (L, -) (3)

return . (check, target, —, —, —) = (check, =) (4)
220

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

Rule 1 says that, when the current operation is a return (and the PC is
not already tagged check), we change the tag on the PC to check. When
we run an instruction with the PC tagged check (Rule 2), we check that the

instruction tag, C/, is target; if so, we allow the operation and clear the tag

on the PC. If the current operation is not a return and the PC tagis 1, we

simply proceed (Rule 3). Rule 4 handles the special case where a valid
target of a return is itself a return. If no rule applies, the operation is not

allowed (e.g., the configuration PC = check and C/ = L is not allowed).

We assume that the symbolic rules do not overlap.

Next, let’'s consider a more precise variant of this policy, where we make
sure not only thatevery returnreaches some valid return target, but that it
targets a code point from which it could actually have been called. This
policy assumes that the compiler has full knowledge of return points and
can analyze, for each one, which call sites it could potentially return to.
Using this information, we can attach a unique tag to each return and to
each potential return tar- get. Upon encountering a return, the PUMP
copies the tag on the instruction (rather than the generic tag check) onto
the PC (Rules 1" and 4’). On the next step, it checks that the actual return
pointis among the expected ones—i.e., thata return from PC to Cl/ is
allowed (Rules 2" and 4).

return: (L, ci, —, —, =) = (ci, -) (1)

return: (pc,ci,—, —, —)—> (L, —)if(pc,ci) € x (2°)

return: (L, — —, — =) (L, -) (3)

return: (pc, ci, —, —, —) — (ci, —) if (pc, ci) € x 4)
221

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

In these rules we use x (a set of pairs of code location identifiers provided by
the compiler) to denote the allowed indirect control flows via return in the
code. As shown here, the expressions describing tags in symbolic rules
are not limited to constant values: we can write more general expressions

that compactly describe large sets of tags.

Concrete Rules. Symbolic rules can compactly encode a great variety of
metadata tracking mechanisms. At the hard- ware level, however, we need
a rule representation that is tuned for efficient interpretation to avoid slowing
down the primary computation. To this end, we introduce a lower- level
rule format called concrete rules. Intuitively, each symbolic rule for a given
policy can be expanded into an equivalent set of concrete rules. However,
since a single symbolic rule might in general generate an unbounded number
of concrete rules, we perform this elaboration /azily, generating concrete
rules as needed while the system executes.

The PUMP hardware includes a cache of concrete rules that can be
consulted in parallel with the processor's ALU operations. When an
instruction is issued, the rule cache performs an associative match of the
tags from the current machine state (the current PC tag, tags on the
operands of the current instruction, etc.) against all the concrete rules in
the cache. If a match is found, the cache returns the new tag for the PC
and a tag for the instruction’s result. Otherwise, the processorfaultstoa
rule miss handler—a software routine that consults the symbolic rules of
the policy and determines whetherthe faulting machine state should be al-
lowed to proceed; if 50, it generates an appropriate concrete rule, installs it
in the cache, and restarts the faulting instruction. Otherwise, it invokes a

suitable security fault handler. The general format for concrete rulesiis:

222

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

opgroup - (PC, CI, OP1,0P2, MR) = (PC ,R))

where the input and output fields are fixed tags. Note that the “guard ?” field
in the symbolic rule format is not needed, since the miss handler checks the

corresponding condition before adding any concrete rules into the cache.

One handy encoding trick greatly reduces the number of concrete rules.
We observe that it is very common for all the symbolic rules for a given
opgroup to mark a particular input or output as “wildcard.” For example,
in our ROP policy, the rules for the return and return opgroups do
not need to match on the OP71, OP2 and MR inputs and do not need to
produce an R’ result. To avoid generating concrete rules for all possible
values of the unused input fields, we define a bit vector containing a don’t-
care bit for each opgroup and input field, which determines whether the
corresponding tag is actually used in the rule cache lookup. Similarly, the
don’t-care vector marks unused outputs, for which a default tag is returned

(below we use L for this).

For example, since for the ROP policy the return opgroup has don't-

care bits set for OP1, OP2, MR, and R7’, Rule 2'results in just two
concrete rules
return : (11,12, 4, 4, 1) =(L, 1)
return . (11,3, L, £, 1) =(d4, 1)
if the compiler knows that the return instruction tagged #1 is the only return

in the code and it can only return to the return targets tagged 2 and 3.

The “don’t-care” positions were masked to L. On the other hand,

symbolic rule 3’ corresponds to four concrete rules:

223

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

return . (L, 4, 4, L, 1) =(L, 1)

return . (L, H, L, £, 1) =(L, 1)

return | (L, 12, 4, 1, 1) =(L, 1)

return . (L, 83,4, 4, 1) = (4, 1)
Since C/ is not a “don’t-care” position for return (while Rule 3' does mark
Cl as a wildcard, Rule 2" does not, and both rules are about the same
opcode), we get a different concrete rule for each of the possible values it
can take—_ plus all identifiers (in this example, just {1, {2 and £3).

The mapping from opcodes to opgroups and don’t-care vectors is
programmable. The ROP policy uses only two opgroups (return and
return), but other policies may need more; for example, the primitive types
policy (§4.1) uses ten.

Structured Tags. For policies with richer metadata tags than ROP,
the translation from symbolic to concrete rules follows the same general
lines, but the details become a bit more intricate. For example, the taint-

tracking policy (§4.4) takes tags to be pointers to memory data structures,
each describing an arbitrarily sized set of taints (representing data
sources or system components that may have contributed to a given
piece of data). The symbolic rule for the load opgroup says that the taint

on the loaded value should be the union of the taints on the instruction
itself, the target address for the load, and the memory at that address:

load : (—,ci,op1, —, mn —(—,civopl vmrm

Suppose that, at some moment, (i) the next instruction to be executed is
Id rO r1 and its tag is tcj, register rO contains a pointer p tagged tp, and

the memory at address p contains a value tagged tz; (ii) fci points to a

data structure (an array of taint ids, say) representing the set {TA, TB

224

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

#; (iii) tp points to a representation of {TC, TD }; and (iv) = points to

the empty set. Furthermore, suppose that we have never before

encountered the taint {TA, TB, TC, TD }— i.e., there is currently no data

structure in memory that represents the set that we should use to taint the
result of the load. In this case, the rule cache lookup will miss and
execution will fault into the rule miss handler, which will generate an
appropriate concrete rule andinstall it in the cache, perhaps evicting

another rule to make space. This will require allocating new memory

(say, ataddress thew) and initializing it to represent {TA, TB, TC, TD }.

The generated concrete rule will then be:

load : (L, fci, tp, 1, t) = (L, thew)

After the instruction is restarted, the next cache lookup will succeed,

and the loaded value in r1 will be tagged tnew .

To reduce the number of distinct tags (and, hence, pressure on the
rule cache), metadata structures are internally stored in canonical form and
since tags are immutable sharing is fully exploited (e.g., set elements are
given a canonical order so that sets can be compactly represented sharing
common prefix subsets). When no longer needed, these structures can be
reclaimed (e.g., by garbage collection).

Composite Policies. Going one step further, we can simultaneously enforce
multiple orthogonal policies by letting tags be pointers to tuples of tags
from several component policies. (In general, multiple policies may not be

orthogonal; we return to this point in §6.) For example, to compose the

first ROP policy with the taint-tracking policy we’ve just

225

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

sketched, we would let each tag be a pointer to a representation of a tuple (r,

f), where r is an ROP-tag (a code location identifier or L) and t is a taint

tag (a pointer to a set of taints). The cache lookup process is exactly the
same, but when a miss occurs the miss handler extracts the components
of the tuple and dispatches to routines that evaluate both sets of symbolic
rules. The operation is allowed only if both policies have a rule that applies;
in this case the resulting tag is a pointer to a pair containing the results
from the two sub-policies.

Instruction Modifiers and Ephemeral Rules. Some policies (e.g., memory safety)
require fresh tags to be generated dynamically. One way to achieve this effect
is to use the tag on aninstruction such as move as a modifier to communicate
a request for a fresh tag to the policy management system.

1
Move : (—,tpolicygen, —, —, —) = (—,tnewtag)
This says that a move instruction tagged with {policygen is interpreted as
a request to generate a fresh tag. The result, tnewfag , is a unique tag
associated with the specified policy. The tag on the instruction, tpolicygen ,
also serves as an authorization or capability for this service request; without

that tag, it is not possible to make the call; the trusted loader ensures that

only specially designated code regions (e.g., the malloc routine, in the

memory safety policy in §4.2) are annotated with this tag. The “1” indicates

an ephemeral rule, whose result is not persistently stored in the hardware
rule cache (since it changes on every invocation).

Code for initializing tags may also need to override the “steady-state”
rules. For example, in the memory safety policy, malloc will need to

226

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

initialize the tags on the newly allocated memory region. The standard
rule is that a pointer can only write into a memory region that is suitably
tagged to match the pointer. But malloc must be allowed to override this
rule while writing the newly minted tag onto each word in the new region.
We do this by giving the store operation a special modifier tag (used only

in malloc):

store :(—, tmallocinit, t1,¢c2, F) — (—, (c2, 1))

3. POLICY SYSTEM AND PROTECTION

The policy system exists as a separate region of memory within each user
process. It includes the code for the miss handler, the policy rules, and the
data structures representing the policy’s metadata tags. Placing the policy
system in the process is minimally invasive with the existing Unix process
model and facilitates lightweight switching between the policy system and
the user code. The policy system is isolated from user code using
mechanisms described next.

Metadata Threat Model. Clearly, the protection offered by the PUMP would
be useless if the attacker could rewrite metadata tags or change their
interpretation. Our system is designed to prevent such attacks. We trust
the kernel, loader, and (for some policies) compiler. In particular, we
depend on the compiler to assign initial tags to words and, where needed,
communicate rules to the policy system. We assume the loader will preserve
the tags provided by the compiler, and that the path from the compiler to
the loader is protected from tampering, e.g., using cryptographic sig-
natures. We assume a standard Unix-style kernel, which sets up the initial
memory image for each process. (It may be possible to use micro-policies

227

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

to eliminate some of these assumptions, further reducing the size of the TCB—

see §6.)We further assume that the rule-cache-miss-handling software is

correctly implemented. This is small, hence a good target for formal
verification; recent work [8] demonstrates feasibility for a programming
model similar to the PUMP.

Our primary concern is to prevent user code running in a process from
undermining the protection provided by the process’s policy. User code
should not be able to (i) manipulate tags directly—all tag changes should
be performed in accordance with the policy rules currently in effect; (i)
manipulate the data structures and code used by the miss handler; (iii)

directly insert rules in the hardware rule cache.

Addressing. To prevent direct manipulation of tags by user code, the tags
attached to every 64b word are not, them- selves, separately addressable.
In particular, it is not possible to specify an address that corresponds only
to a tag or a portion of a tag in order to read or write it. All user-accessible
instructions operate on (data,tag) pairs as atomic units—the standard ALU
operating on the value portion and the PUMP operating on the tag portion.

Miss-Handler Architecture. The policy system is only activated on misses to
the PUMP cache. To provide isolation between the policy system and
user code, we add a miss-handler operational mode to the processor; we
also expand the integer register file with 16 additional registers that are
available only to the miss handler, to avoid saving and restoring registers.
The PC of the faulting instruction, the rule inputs (opgroup and tags), and
the rule outputs ap- pear as registers while in miss handler mode. We also
add a miss-handler-return instruction, which finishes installing a concrete

228

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

rule into the cache and returns to user code.

The normal behavior of the PUMP is disengaged while the processor is
in miss-handler mode. Instead, a single hardwired rule is applied: all
instructions and data touched by the miss handler must be tagged with a
predefined miss-handler tag that is distinct from the tags used by any policy.
This ensures isolation between miss handler code and data and the user
code in the same address space. User code cannot touch or execute policy
system data or code, and the miss handler cannot accidentally touch user
data and code. The miss-handler-return instruction can only be issued in
miss-handler mode, preventing user code from inserting any rules into the
PUMP.

4. POLICIES AND EXPERIMENTS

In this section, we show how to use the PUMP to implement four
families of policies enforcing a diverse set of security invariants. For each
family, we first sketch a threat model. We then describe policies and
corresponding rules that mitigate it. Using examples from a public
vulnerability suite [10], we show how each policy would catch a typical
exploit. Most importantly, we describe the loads that each policy puts on
the system. We close by comparing with similar policies from the literature.

To evaluate policy loads, we use 28 C, C++, and Fortran applications
from the SPEC CPU2006 [25] benchmark suite and simulate them for a
64-bit Alpha ISA [1] with the gem5 simulation environment [9] (we exclude
the tonto and xalancbmk benchmarks, on which gem5 fails). The gems
simulation does not directly model the PUMP; rather, it produces

instruction traces that we run through a separate

229

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

ANIHBY

Fiorans T Robuinsg sl Ohvinctannfos {oeraps annns 38 SRED ORN musemwka)

PUMP simulator. This phased simulation is sufficient for the policies
described here, since their only impact on the computation is to abort
execution when a policy violation occurs. We simulate a 4096-entry pre-

miss-handler rule cache.

The abstract programming model described in §2 places no limits on the

number of unique tags, the number of concrete rules, or the size of the
data structures used to represent metadata at the software level. To
understand how the PUMP performs in practice, a number of questions must
be considered. How many uniqgue metadata tags do a given policy,
application, and dataset actually generate? With O opgroups and T tags,

in theory a program could require O - T9 concrete rules, but what is the

typical case? How do the total number of metadata tags and the size of
metadata representations impact performance? How much locality is there
to tag and rule usage? How costly is concrete rule resolution, and how do
rule cache misses impact performance? Does performance degrade

230

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

gracefully as tags, rules, meta- data size, or rule resolution time increase?

To begin to understand these effects, we measure, for each of the policies,
a number of characteristics besides runtime overhead—see Fig. 1. Tag
usage shows which tags are not used by any of the rules in the policy.
Opgroups is the minimum number of opgroups needed to capture the policy;
the fewer opgroups we use, the greater compression we get for concrete
rules and hence the greater is the effective PUMP capacity. Symbolic rules
is the number of symbolic rules we wrote to express the policy. Initial tags
is the number of tags in the initial memory image before execution begins.
During execution more tags will be dynamically allocated (dyn. alloc. tags).
Furthermore, policies like taint tracking will create tags to represent unions
of sets of taints, and composite policies will form tuples of individual policy
tags. Final tags identify the number of tags that exist at the end of the one
billion instruction simulation period; this gives some sense of policy
complexity and can be used to infer the rate of tag creation. Concrete rules,
the number of unique concrete rules generated during the simulation period,
characterizes the number of compulsory misses needed to resolve symbolic
rules to concrete rules and, effectively, the compulsory miss rate. Metadata
struct, the average size in words of the data structure pointed to by each
tag, illustrates the value of having unbounded metadata. Metadata space,
the number of words required for all of the data structures holding policy-
related information to which the metadata tags point, characterizes the
memory overhead beyond the tags themselves. Policy-depend instrs is the
total number of instructions required for the code that resolves symbolic rules
to concrete ones; this is useful in understanding the complexity of the
policy. Policy-depend instrs (dynamic) is the average number of policy-
dependent instructions executed to resolve from a symbolic rule to a concrete

rule; this is indicative of the runtime complexity of the miss handler for each

231

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

of the policies. The impact of the policy-dependent portion depends on the
complexity of the rules, the metadata data structures, the locality of the
metadata data structures, and the need to allocate new result tags. The

policy-independent part of the miss handler requires only a few tens of

instructions (see column ®in Fig. 1). Runtime overhead is the ratio of wall-

clock runtime for the application running the policy compared to a baseline
Alpha with no PUMP. There is some runtime overhead just for adding
hardware structures for tags and PUMP even if Bo policy is used. In
particular, the L1 caches on the tag-augmented processor are half the
effective capacity of the PUMP-less baseline Alpha in order to achieve the
same cycle time while accommodating the larger tagged word width. This

results in a higher L1 miss rate for the tag-augmented processor. This

overhead is captured in the first column (®) where all tags are default,

there is a single rule, and the miss handler is effectively never invoked.

The average numbers in Fig. 1 are necessarily simplfications for
compactness. The benchmarks exhibit a range of effects. These are shown
in Fig. 3-6 where we use boxplots to show the distribution of characteristics
across the applications in the SPEC CPU2006 benchmark set. Fig. 6 plots

runtime overhead in excess of ®.

We measure only runtime performance, leaving aside some other nontrivial

costs. In particular, in a naive implementation, adding a word-sized tag to

every word of cache and memory imposes a minimum of 2X area overhead.

Adding the impact of PUMP caches and larger memories, this can translate

into 4x energy overhead. We are optimistic that

232

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

careful optimizations can reduce these numbers to around 30% area and
50% energy, or perhaps even lower; we are working to demonstrate this

claim.

4.1 Primitive Types

Threat Model. Data misinterpretation is a common way to trick processors
into performing unintended operations. Here we are concerned with a form
of low-level type confusion where code running on behalf of an adversary can
try to use any data value as a pointer or execute a word as an instruction. we
enforce that data cannot be executed and code cannot be created or modified

at run time (see also §4.3).

Policy and Rules. In policy © we use tags to separate instructions (tagged

insn), addresses (addr), and all other data (other). Instructions cannot be
created or modified, and only instructions can be executed. Only addresses
can be used with memory access instructions. The other type tag is used
as a catch-all for words that are not instructions or addresses. The following
rule validates that a nop (for example) is indeed tagged insn before it is

executed:
nop : (—,insn,—, — —)—> (-, —) ()

Address arithmetic is allowed—for instance, when one of the arguments to

add is an address the result is an address:

add : (-, insn, addr, other, —) — (—, addr) (6)

We also enforce that load and store instructions dereference only pointers,

and do not read or write instructions:

load : (—,insn,addr, — f) > (=, H)if t/=insn (7)

233

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

store : (—,insn, t addr, =) = (—, H) if t /=insn (8)

To help prevent attacks where a return address is over- written (e.g.,

through stack smashing), we consider an ex- tended policy (©) that adds

a forth tag for return addresses (retaddr). We use this to tag the return
address of calls (Rule 9). Calls in the Alpha ISA put the return address
in reg26, while a return transfers control to the address in this register (the
register is spilled to the stack on further calls). Rule 10 checks that the

value in reg26 is typed retaddr when the return instruction is executed.

call : (—,insn, addr, —, =) = (—, retaddr) (9)
return: (—,insn, retaddr, —, =) = (—, —)(10)

An instrumented compiler could infer these type tags and apply them to
the initial memory image of a binary—all the generated instructions get
tagged insn, pointers to stack- allocated memory get tagged addr, and
everything else gets tagged other, new addr-typed words come into
existence through dynamic memory allocation. However, since we currently
do not have such a compiler, we use a different method to deduce these tags
forour simulations and analyses. First, we tag all the instructions in the binary
executable insn. To deduce words that should tagged addr, we use an after-
the- fact analysis of the execution trace, keeping track of when and from
where each register is loaded and whether it is later used as the pointer
operand to a load or store. Everything else is tagged other. This method
of obtaining the inital tags allows us to measure the runtime impact of the
typing policies on the SPEC benchmarks. However, this setup does not allow
us to make any claim about whether our typing policy would be premissive
enough to accept all the bench- marks without raising unnecessary alarms.

This is caused by the tight compiler integration needed for typing, and does

234

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

not occur for the other policies we present below.

Protection Demonstration. We use an instance of CWE- 843 (Type
Confusion) [30] in which the programmer type- casts an integer to a
function pointer and later invokes this function. This translates into loading
an immediate value tagged as other int® a register, and, at a later point,

jumping to the address pointed to by that register. Using policy © we are

able to catch the faulting instruction since the policy allows indirect jumps
only to values tagged addr.

Characteristics. Policies ©and © do not create new tags. © can be

encoded with 15 symbolic rules that generate only 17 concrete ones, while

© requires 16 symbolic rules and 19 concrete ones. Since the total number

of rules is small, we only see a negligible runtime overhead (less than 0.01%

compared to the no-miss-handler policy ®). Thus, the PUMP provides the

performance of simple, hard-wired type tags, without baking the policy into

hardware.

Related Work. One of the first uses of tags in computer architectures was
to distinguish the types of the words in the machine [34, 23]. The
Symbolics LISP Machines [31] allocated 2-8b for tagging out of their 36b
primitive word to distinguish a set of primitive types including instructions,
several flavors of pointers, integers, floats, and uninitialized values; the
Berkeley SPUR [43] used a 6b object-type tag.

4.2 Spatial and Temporal Memory Safety

Threat Model. The next group of policies target the memory safety of heap-

235

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

allocated data, preventing attackers from exploiting programming errors
such as referencing beyond an object's bounds (spatial violation),
referencing through a pointer after the region has been freed, or freeing an
invalid pointer (temporal violation). This includes typical heap- based
attacks such as heap smashing and pointer forging. The policies we study
here only guard heap-allocated data, for which calls to malloc and free
tell us how to set up and tear down memory regions; we do not deal with
stack allocation or unboxed structs. These could in principle also be

handled, assuming some compiler support (see [32]).

Policy and Rules. Intuitively, for each new allocation we make up a fresh
block id, say c (for “color’), and write ¢ as the tag on each memory
location in the newly created memory block (a /a memset). The pointer to
the new block is also tagged c¢. Later, when we dereference a pointer, we
check that its tag is the same as the tag on the memory cell to which it
points. When a block is freed, the tags on all its cells are changed to a
constant F representing free memory.

We use an additional tag 1 for non-pointers, and write ¢ for a tag

that is either a color c or L. We take care of one additional detail—

memory cells may contain pointers. So a word in memory has to be
associated with fwo tags. We handle this by making the tag on each memory
cell be a pointer to a pair (c, {), where ¢ is the id of the memory block in
which this cell was allocated and ¢ is the tag on the word stored in the cell.
The rules for load and store take care of packing and unpacking these
pairs, along with checking that each memory access is valid (i.e., the

accessed cell is within the block pointed to by this pointer):

load : (— —c1,—, (2, R)—=>(—t2)ffc1=c2 (11)

236

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

store : (-, —, t,c2,(c3,13)) (12)

— (—,(c3,H1))ifc2 =c3

Address arithmetic operations preserve the pointer tag:
add : (=, —-,¢c 1, -)—> (-0 (13)
To maintain the invariant that tags on pointers can only originate from
allocation, operations that create data from scratch (like loading constants) set its

tag to L.

We augment malloc and free to tag memory regions using the instruction

modifiers and ephemeral rules described at the end of §2. In malloc we generate

a fresh tag for the pointer to the new region via an ephemeral rule. We then use
the newly tagged pointer to write a zero to every word in the allocated region

using a special store rule

store : (—, tmallocinit, t1,c2, F) = (—, (c2, 1)) (14)

before returning the tagged pointer. Conversely, free uses a modified store
instruction to retag the region as unallocated.

store : (—, tfreeinit, t1, ¢2, (€3, t4)) = (—, F) (15)

before returning the memory region to the free list.
We implemented several variants of tHis policy, illustrating different

performance/security tradeoffs. In the first (®), we assign a single color to all

memory regions allocated by a given source module. This sandboxing policy
provides per- module isolation within a process, similar to software-based fault

isolation [46]. In the next variants we use different numbers of colors to tag

regions returned by successive calls to malloc—from just a single color (®)—

237

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

this provides the weakest form of spatial and temporal memory safety, only

distinguishing allocated from unallocated memory—to 8 (@) and 32 (®) colors.

Increasing the number of colors reduces the aliasing effect that arises due to re-

use of colors. Finally, we implement a precise full memory safety policy (O),

using the entire 64-bit tag space for colors.

Protection Demonstration. We use two attacks from the Juliet suite [10]. The first is
a case of CWE-416 (Use After Free) [28] where the application is caught using

policy O trying to load from a memory location tagged F. The second is a case

of CWE-122 (Heap-Based Buffer Overflow) [27] in which a buffer is allocated

and later written beyond its bounds (using strcpy), overwriting a valid region.

Using D, the PUMP halts the instruction that tries to put a characterin a

memory location tagged F.

Characteristics. Sandboxing (®) and the policies with a small number of colors

(®®@and ®) only allocate a few tags and create a small number of rules (less

than 600 for the 32-color case). These do not add runtime overhead— the rules

all fit in the cache. Full memory safety ((D) is more expensive: it allocates one

tag per memory allocation, for which new concrete rules must be added to the
cache. This requires more trips through the miss handler and means that, in some
of the benchmarks, the set of concrete rules is bigger than the cache.
Nonetheless, rule locality is high (See Fig. 7), and the average runtime overhead
is only 13%. We see the largest overhead of about 130% for GemsFDTD.

Related Work. Clause et al. [16] first demonstrated spatial and temporal memory
protection using metadata tainting. Deng et al. [19, 20] supported this tainting

238

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

with hardware tag management. HardBound [21] is an approach to spatial
memory safety that places the bounds information in a shadow space to
maintain data structure layout compatibility between monitored and unmonitored
code. HardBound’s runtime overheads are 10-20%. Watchdog [32] is a follow-up
of HardBound that additionally prevents temporal violations by generating a
unique identifier for each allocation; it has 24% average runtime overhead.
SoftBound [33] is a software approach that, like HardBound, provides spatial
memory safety for C, but at a cost of increased runtime overhead (67% on
SPEC and Olden benchmarks). Baggy Bounds [3] also targets only spatial

violations and achieves 60% runtime overhead on SPEC2000.

4.3 Control-FlowIntegrity

Threat Model. This group of policies targets code-reuse attacks. WWe make the

standard assumption [2] that the attacker can neither execute data nor inject or
modify code. (We can use the primitive types policy from §4.1 to enforce this
assumption, as we do in §4.5 with our composed policies.) Instead, the attacker

tries to chain together existing code snippets (gadgets) to induce malicious

behavior.

Policy and Rules. A common element of all code-reuse attacks is to introduce
control flows that do not exist in the original binary. We implement a family of
CFI policies that validate each indirect control flow (computed jumps) against the
program’s control-flow graph. Since the code is fixed, direct jumps do not need to
be checked dynamically [2]. First we implement the coarse-grained CFl policies

of [2, 511 (Q® and ©). @tags all indirect call, indirect jump, and return

instructions and their potential targets with a single tag {f}. Upon executing

an instruction that is the source of an indirect control flow, we transfer this tag to

239

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

the PC:
indir : (=t} ——-)=>{f}-) (16)

All other instructions are tagged @. Whenever the PC is tagged{f}, the
current instruction must have the same tag:

mdir . (pc, ci, —, —, =) = (B, =) if pc S i (17)

Policy ® uses more tags (@, {7}, {¢}, and {r, ¢}) to separately track the control

flows originating from returns (whose tag contains r) from the ones originating
fromindirect calls and jumps (whose tag contains ¢). Policy © extends ®

with two additional tags ({p} and {p, ¢}) for returns into privileged code (whose
tag contains p), allowing additional protection for critical code snippets [51].

As the attack of Goktas et al. [22] shows, these loose CFI policies are not ©
a sufficient protection against sophisticated code-reuse attacks. We also

implemented a set of fine- grained CFI policies, which Gbktag et al. described as

“ideal CF1.” We first infroduce two orthogonal policies: PUMP JOP (&), which

precisely tracks the association between indirect jumps and calls and their targets;

and PUMP ROP (®), which does the same for returns, as presented in §2 (Rules

1-4’). We finally merge these two policies into PUMP CFl (©)—a single policy

precisely tracking and validating all indirect control flows. In all these policies,
the compiler or linker is assumed to compute a sound overapproximation of

indirect control flows and tag instructions accordingly.

Protection Demonstration. We tested these policies against a specially crafted
program consisting of a single call to an “innocuous” function. The code also
includes a “bad” function that is never called, mimicking dormant gadgets not

240

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

part of the execution path but that can be exploited to cause unintended
behavior. To simulate a return-oriented attack, inlined assembly in the
innocuous function overwrites the stack pointer with the address of the bad

function, tricking the execution into returning into the bad function. Policy ®

detects this simulated attack by noticing that the bad return is not in the set

of valid control flows.

Characteristics. Each of the CFl policies above can be encoded very compactly

with only 2—-4 symbolic rules. The simpler policies (©),®and ©) also require a

very small number of tags and concrete rules. As shown in Fig. 1, the largest of

these

(©), uses 6 constant tags and requires no more than 21 concrete rules. With such

small working set sizes these policies do not incur observable runtime overhead

over the empty policy. Applying the stronger CFI policies (,®,©) to the

SPEC benchmarks produces up to a few thou- sand concrete rules for these
policies, which fit completely into the 4096 entry, pre-miss-handler PUMP cache.
Consequently, we gain the added protection of ideal CFl with no additional

runtime overhead. The complete CFl (©) policy requires an average of 28K

words to store the control-flow graph for the application (for this simulation, we
extract it from the instruction trace generated by gem5; in practice, it will take
more space than shown including allowed control flow paths that are never

exercised in our simulations).

Related Work. CFI [2] offers an attractive defense against common code reuse
attacks, but it has often been considered too expensive. Recent work [51] has
demonstrated a low-overhead CFI scheme that uses “springboards” both to provide

branch target checking and to randomize as a further defense against successfully
241

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

constructing gadgets. However, this work only locks down allowed call and retumn

targets, similar to the single-target example in Rules 1-4 from §2, not specific
return points with specific targets as policies ®, @, and © do, leaving it

vulnerable to attacks [22]; nor does it address intra-procedural CFlas our & and

© do.

4.4 Taint Tracking

Threat Model. This policy addresses cases where an attacker inputs malformed
data to a program that does no input sanitization, invoking unintended or

malicious behavior (e.g., SQL or OS command injection).

Policy and Rules. Taint tracking mitigates these threats by detecting when
untrusted data may flow into sensitive operations. The PUMP facilitates fine-
grained taint tracking with an unlimited number of sources, a separate taint
per source, and multiple taints on each piece of data, al- lowing each tag to
be a pointer to a set of source ids. The taint on a value is the union of taints on

the values used to compute it. Typical taint propagation rules include:

add: (-, ci,op1,0p2,-)— (-, civuopl uop2) (18)
load: (-, ci, op1, =, mr) — (-, ci U op1 U mr) (19)
store: -, ci, op1, op2, -) — (-, ci U op1 U op2) (20)

All the policies we study use the same set of symbolic rules, differing only in

the number and sources of initial taints. We introduce taints in two different

ways: by input sources (® and @) and by code regions (®), ® and @). In

® we use a single taint for all input sources (i.e., standard I/O streams and

input files, for the SPEC programs). This is similar to most previous work [41],
242

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

where a single-bit taint ¢ simply indicates whether or not any data from an

untrusted source has been used in computing a value tagged ¢. Policy @

extends ® by assigning each input stream a unique taint id; there is no limit

on the number of streams. Tainting by program code protects against
untrusted libraries and buggy components. We vary the granularity by using an

unique taint for (i) each library (®), (ii) each included header file (), or (i)
each function in the code ()). These policies require the compiler to tag the
instructions with relevant taint identifiers. Finally, we combine @ and® to

form policy © .

Protection Demonstration. We consider a case of CWE- 78 (OS Command
Injection) [29] where a useris only allowed to parametrize the arguments of an Is
command passed to the system system call. The malicious user adds a parameter
string that starts with the command terminator character, along with an arbitrary
command. This translates into data that are post-sanitization tagged as

“untrusted” to be passed as arguments to the execve system call. Using policy © ,

the PUMP stops execution when it sees it is about to combine untrusted with
system-call taints.

Characteristics. All these policies use the same set of 8 symbolic rules,

defined in terms of 7 opgroups. The first two (® and @) use the input streams

as taint sources. For @, across all the SPEC programs, we only see 2 sources on

average, and we need just 10 and 14 concrete rules. Consequently, these policies

incur no noticeable runtime overhead. For policies ®-©), we see larger working

sets.

243

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

The taint by function experiment (D) deliberately pushes the mechanism to

an extreme, providing finer-grained tagging than is probably useful in practice.
Its large number of taints result in an order of magnitude more rules than the
PUMP cache can hold at once. Furthermore, the tag-handling overhead
becomes large (4110 instructions). These factors result in an average runtime

overhead of 314%. This shows the PUMP mechanism does strain under

complex policies but can still support them. Taint per file (®) is also finer-

grained than s likely useful and it achieves low runtime overhead at 9% due to
the smaller rule set and tighter miss handler resolution.

Policies ® and @, where we assign taints to whole libraries, represent a

more reasonable usage. Here, the average runtime overhead remains
indistinguishable from the no-miss-handler case. This shows that the PUMP is
able to represent and support much richer models (compared to prior work using

1b- or 4b-taints) with essentially no additional runtime overhead. Furthermore,
across these various taint cases, the final tags are only 2-3X the initial and

dynamically allocated tags; this shows that, while we do create non-singleton tag

sets, we see nothing close to the theoretical worst-case power set effects.

RelatedWork. Vulnerabilitiesthat have been addressed using taint tracking include
format string attacks [48, 17, 41, 18, 12], cross-site scripting [48, 18, 12], memory
exploits [48, 17, 41, 14, 18, 36, 12], code injection [48, 17, 18, 12] and others [49,
18]. Most existing work focuses on software techniques, where programs are

instrumented. Typically, these introduce significant runtime overheads (often over

2x, some up to 20x), apart from other obstacles (e.g., handling race conditions

in dynamic binary translations [15]).

244

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

Hardware approaches like DIFT [41], Minos [17], and SIFT [35] use a single
taint bit. Raksha—both on-core [18] and dedicated-coprocessor [26]
variants—supports up to four concurrent policies using 4-bit tags. In
contrast, we allow arbitrary sets of taints, corresponding to multiple untrusted

sources, perhaps with different levels of trustworthiness. More flexible tagging

schemes are discussed in §5.

4.5 Composite Policies

Each of these policies is potentially useful, but it would be a shame if one
had to pick only a single policy to enforce at a time—e.g., make a choice
between protecting against buffer overflow or command injection
vulnerabilities. Instead, one typically wants the protection that comes from
composing multiple policies. In fact, some of our individual policies require
mutual protection to guard against full threats (CFl depends on types
protection for ensuring that data cannot be executed and code cannot be
created or modified).

Composition can potentially increase the number of tags as well as the
number of rules created, thereby considerably degrading performance. In
order to characterize the combinatorial effect, we implement two composite
policies. First we implement a fairly minimal one based on the simplest

instances of each of the four protection classes: 3 primitive types (©), a

simple memory safety (®), CCFIR (©), and, single-bit input-taint (®).

Second, we implement a more complete and powerful protection that is the

composition of 4 primitive types (@), full spatial and temporal memory

safety ((D), PUMP CFI (©), and the composition of per stream input-

245

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

taint and per library code-taint (©).

Characteristics. The simple composite policy) fits in the cache and has

the same performance as the constituent policies. For the larger composite

policy @, the need to resolve all the policies increases the number of

instructions required for rule resolution in the miss handler substantially, raising

it from 38 to 710. The increase in final tags is only 2.5x suggesting there are

some product set effects from composite tags, but it is nowhere near the worst-

case scenarios. Furthermore, the concrete rules only grow about 3X, both

due to the larger set of tags and the additional opgroups. The combination of
the larger concrete rule set (now much larger than the PUMP cache capacity)
and increased miss handler cost, results in an average overhead of 38% with
the worst-case overhead going as high as 280% (GemsFDTD). This shows that the
PUMP can handle the large set of rules resulting from the composite at the
expense of an impact on performance. For many applications, the overhead

remains modest, but for some it becomes unreasonably large. This, along with

the taint by function experiment ()), points to the need for additional

software and microarchitectural optimizations to reduce miss handler service
times in order to achieve reasonable performance on rich composites such as

this, which is a focus of our ongoing work.

4.6 Discussion
The total number of rules doesn’t completely capture the locality of rules
and consequently the effective working set sizes. Fig. 7 shows a cumulative
distribution function (CDF) of the number of unique rules used within each one

million instruction sequence within the one billion instruction simulation for the

246

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

gcc benchmark. This shows that full memory safety ((D) has a very tight

working set (mostly less than 3000); this is significant since it has the largest
number of concrete rules of any non-composite policy. This locality helps

explain why the performance overhead remains low despite the much larger

set of rules. Complete CFI (©) has a larger working set, but the complete

set of rules fits completely in the 4096 entry cache, so there is no eviction.

While previous work has used clever schemes to compactly represent or
approximate safety and security policies (e.g. [42]), this is often a compromise
on the intended policy, and it may trade complexity for compactness. We show
that it is possible to include richer metadata that captures the needs of the
security policies both more completely and more naturally with little or no
additional runtime overhead. Rather than imposing a fixed bound on the
metadata representation and policy complexity, the PUMP provides a graceful
degradation in performance. This allows policies to use more data where
needed without impacting the common case performance and size. It further
allows the incremental refinement and performance tuning of policies, since

even complex policies can easily be represented and executed.

4.7 Other Micro-Policies

We believe our programming model can encode a host of other policies.
Information-flow control (e.g., [6, 37, 40, 24, 8]) is richer than the simple
taint tracking models here, but tracking implicit flows can be supported either
with RIFLE-style binary translation [44] or by using the PC tag with some
support from the compiler. Micro-policies can support lightweight access
control and compartmentalization [47]. Tags can be used to distinguish
unforgeable re- sources [50]. Unique, generated tokens can act as keys for
sealing and endorsing data, which in tum can be used for strong

247

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

abstraction—guaranteeing that data is only created and destructured by
authorized code components. Micro- policy rules can enforce data invariants
such as immutability and linearity. Micro-policies can support parallelism as
out-of-band metadata for synchronization primitives such as full/empty bits
for data or futures (e.g. [5]) or as state to detect race conditions on locks
(e.g., [38, 52]). A system architect can apply specific micro-policies to

existing code without auditing or rewriting every line.

5. RELATED WORK

Work related to our example policies has been covered in §4. Here, we

discuss work related more generally to hardware tag checking and
propagation. With a few exceptions noted below, most of the prior work uses
a small set of tag bits with hardwired or highly restricted policies (See Fig. 2).
The first wave of taint hardware supported a single taint bit attached to each
word, with hardwired taint propagation logic. Later systems added the
ability to handle multiple, independent taint tags (e.g., [18]), multiple bit
tags (e.g., [45]), and more flexible policies (e.g., [19]). The only de- sign to
support more than one policy at a time, Raksha, supported at most four
taint tracking policies [18].

The prior systems closest to ours are Aries [11], FlexiTaint [45], Log-
Based Architecture (LBA) [13], and Harmoni [20], all of which propose
programmable rule caches backed by software handlers. Only FlexiTaint and
LBA detail specific example security policies that use the programmable
rule cache. In all cases except LBA, the rule cache is based on two inputs for
the two operands of an operation and produce a single output, while the

PUMP potentially takes up

248

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

. 2
00T 2y arnl ada s O

FRRERNITY

Pl @ Mepghwears Toagoiing Spponaniag

to five inputs and produces two outputs: Fig. 1 summarizes how these tag
sources and destinations are used in our security policies. LBA potentially
takes multiple inputs, but it does nothandle production of metadatain
hardware. Some of the innovations in LBA (e.g., the restriction of general
propagation tracking to unary inheritance tracking including giving up on

taint combining) that made it fast specifically give up generality that our

solution provides. Even with these restricted policies, LBA has ~50%

runtime overhead compared to our average overheads of 8% for most single
policies. The policies we show here are richer than the ones supported by
FlexiTaint, due both to the extra tag inputs and outputs and to the richer

tag metadata.

6. FUTURE WORK

The PUMP design offers an attractive combination of flexibility and
performance, supporting a diverse collection of low-level, fine-grained
security policies with single policy performance comparable to dedicated
mechanisms in many cases while supporting richer and composite policies
with mostly graceful performance degradation as rule complexity grows. To

more thoroughly understand this design space, a number of issues will

249

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

require further investigation. First, once we have a running hardware
implementation, we will need to integrate the PUMP hardware and low-level
software with a host operating system and software toolchain (e.g.,
compilers, linkers, and loaders). Second, we wonder whether the mechanisms
provided by the PUMP can be used to protect its own software structures. We
believe we can replace the special miss-handler operational mode by
implementing a “compartmentalization” micro-policy using the PUMP and
using this to protect the miss-handler code. Finally, we have seen here that it
is easy to combine orthogonal sets of policies, where the protections
provided by each one are completely independent of the others. But policies
ofteninteract: for example, an information-flow policy may need to place
tags on fresh regions being allocated by a memory safety policy. Policy

composition requires more study both in expression and in efficient hardware

support.
® - QW &
=y &
8 & LS SO0 S Y bl
ey BT { bg 3
5 eme a= B
& 4
\"2\ w
§§ - * - -
¥ 3]
AN SN S A A S At TR A A S A A MAE AN M QN EHNS S
LRER O M oA L R R W OF RO T W OW
Figurs & Distribatton of Indsial Tags
. £ .
RS :\ -t 3
g\ g i ! . N
. § oo & "
§ ¥ @i -
O U p S - -
8 — ’%t Pt -
S o e 5 g §M
% ‘\; w - et)
0 S A S St R N AN M S A T S S ™

COWOEE S H PN L RN SRR S Y YW

Figure 4 Ddstribagion of Final Thes

250

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

;
s e R

(s B BETRYE §

Figure & Ristribation of Coanevete Rades

SEREAS

N
2
{%

g\\\ =

Cror

1333

-

¥ Hant

R} £ 38 &5

-

eed
Lo
AL
R

AT

T

g DU BUEE Y,

prolioy &)

3

[AR % B

BRGZN

»

% H
X %
H
%
;
: H
:]
. i
i
. H
.
: i
) i
“ i
> H
s]
P, 4
% o , ‘
% \\\\\\\\\VN\\\.\\\\
7 Z

Y
.
§

A M St
B] AL

4

}
ot
b
bosocd
o5,
7,
S
oy
&
Ess
i
e
e
Faaacd

251

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

7. REFERENCES
[1] Alpha Architecture Handbook. Digital Equipment Corporation,
1992,

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow

integrity. In Proc. ACM CCS, pages 340-353,2005.

[3] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds

checking: an efficient and backwards-compatible defense against out-of-

bounds errors. In Proc. USENIX Security, pages 51-66, 2009.

[4] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha. Architectural

support for run-time validation of program data properties. IEEE Trans.

VLSI Sys., 15(5):546-559, May 2007.

[5] Arvind, R. S. Nikhil, and K. K. Pingali. |-structures: Data structures for
parallel computing. In Proc. Wkshp on Graph Reduction (Springer-
Verlag LNCS 279), Sept. 1986.

[6] T. H. Austin and C. Flanagan. Efficient purely-dynamic
information flow analysis. In Workshop on Programming
Languages and Analysis for Security (PLAS), PLAS, pages 113—

124. ACM, 2009.

[7] (authors removed for anonymity). PUMP — A Programmable Unit for
Metadata Processing, 2014. To appear.

[8] A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange, C. Hrifcu,

D. Pichardie, B. C. Pierce, R. Pollack, and A. Tolmach. A verified

information-flow architecture. In POPL, pages 165-178. ACM, Jan. 2014.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.

Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.

SIGARCH Comput. Archit. News, 39(2):1-7, Aug. 2011.

[10] T. Boland and P. E. Black. Juliet 1.1 C/C++ and Java test suite.
Computer, pages 88-90, 2012.

[11] J. Brown and T. F. Knight, Jr. A minimally trusted computing base for
252

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

dynamically ensuring secure information flow. Technical Report 5, MIT
CSAIL, November2001. Aries Memo No. 15.
[12] H. Chen, X. Wu, L. Yuan, B. Zang, P.-c. Yew, and F. T. Chong. From
Speculation to Security: Practical and Efficient Information Flow Tracking
Using Speculative Hardware. In

Proc. ISCA, pages 401-412, 2008.

[13] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. C.
Mowry, V. Ramachandran, O. Ruwase, M. P. Ryan, and E. Vlachos.
Flexible Hardware Acceleration for Instruction-Grain Program
Monitoring. In Proc. ISCA, pages 377-388, 2008.

[14] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. lyer. Defeating

memory corruption attacks via pointer taintedness detection. In Proc. IEEE

DSN, pages 378-387,2005.

[15] J. Chung, M. Dalton, H. Kannan, and C. Kozyrakis. Thread-safe

dynamic binary translation using transactional memory. In HPCA, pages

279-289. IEEE, 2008.

[16] J. A. Clause, |. Doudalis, A. Orso, and M. Prvulovic. Effective memory

protection using dynamic tainting. In Proc. ASE, pages 284-292. ACM,

2007.

[17] J. R. Crandall and F. T. Chong. Minos: Control data attack prevention
orthogonal to memory model. In Proc. IEEE MICRO, pages 221-232,
2004,

[18] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: a flexible
information flow architecture for software security. In Proc. ISCA, pages
482-493, 2007.

[19] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh. Flexible
and Efficient Instruction-Grained Run-Time Monitoring Using On-Chip
Reconfigurable Fabric. In Proc. IEEE MICRO, pages 137-148, 2010.

[20] D. Y. Deng and G. E. Suh. High-performance parallel accelerator for

253

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

flexible and efficient run-time monitoring. In Proc. IEEE DSN, pages 1-
12, 2012,

[21] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic.

HardBound: Architectural support for spatial safety of the C programming

language. In S. J. Eggers and J. R. Larus, editors, ASPLOS, pages 103-

114. ACM, 2008.

[22] E. Goktags, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out Of

Control: Overcoming
Control-Flow Integrity. In Proc. IEEE S&P, 2014. [23] C. J. Haley, S.

M. Luera, M. D. Schanken, and W. B. Geer. Final evaluation report unisys

a series mcp/as release 3.7. Technical Report CSC-EPL-871003, Library

No. S-228,515, National Computer Security Center, Fort Meade, MD,

August 5 1987.

[24] D. Hedin and A. Sabelfeld. Information-flow security for a core of
JavaScript. In 25th IEEE Computer Security Foundations Symposium
(CSF), CSF, pages 3-18. IEEE, 2012.

[25] J. L. Henning. SPEC CPU2006 benchmark descriptions. SIGARCH
Comput. Archit. News, 34(4):1-17, Sept. 2006.

[26] H. Kannan, M. Dalton, and C. Kozyrakis. Decoupling Dynamic
Information Flow Tracking with a Dedicated Coprocessor. In Proc. IEEE
DSN, pages 105-114, 2009.

[27] MITRE Corp. CWE-122: Heap-based buffer overflow. [28] MITRE

Corp. CWE-416: Use after free.

[29] MITRE Corp. CWE-78: Improper neutralization of special
elements used in an OS command (OS command injection).

[30] MITRE Corp. CWE-843: Access of resource using incompatible
type (type confusion).

[31] D. A. Moon. Architecture of the Symbolics 3600. In Proc. ISCA,
pages 76-83, Los Alamitos, CA, USA, 1985. IEEE Computer Society.

254

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

[32] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Hardware-
Enforced Comprehensive Memory Safety. IEEE Micro, 33(3):38—-47, May-
June 2013.

[33] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic.

SoftBound: highly compatible and complete spatial memory safety for C. In

Proc. PLDI, pages245-258. ACM, 2009.

[34] E. I. Organick. Computer System Organization: The B5700/B6700
Series. Academic Press, 1973.

[35] M. Ozsoy, D. Ponomarev, N. B. Abu-Ghazaleh, and T. Suri. SIFT: a

low-overhead dynamic information flow tracking architecture for SMT

processors. In Conf. Computing Frontiers, page 37, 2011.

[36] F. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. LIFT: A low-

overhead practical information flow tracking system for detecting security

attacks. In Proc. IEEE MICRO, pages 135-148, 2006.

[37] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security

analysis. In Proc. CSF, pages 186-199,2010.

[38] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.

Eraser: A dynamic race detector for multi-threaded programs. ACM Trans.

Comp. Sys., 15(4),1997.

[39] H. Shacham. The Geometry of Innocent Flesh on the Bone: Retumn-
into-libc without Function Calls (on the x86). In Proc. ACM CCS, pages
552-561, Oct. 2007.

[40] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazieres. Flexible dynamic

information flow control in Haskell. In 4th Symposium on Haskell, pages 95—

106. ACM, 2011.

[41] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure Program

Execution via Dynamic Information Flow Tracking. In Proc. ASPLOS, pages

85-96, 2004.

[42] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal war in

255

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

memory. In Proc. IEEE S&P, pages 48-62, 2013.

[43] G. S. Taylor, P. N. Hilfinger, J. R. Larus, D. A. Patterson, and B. G.
Zorn. Evaluation of the SPUR lisp architecture. In Proc. ISCA, pages
444-452, 1986.

[44] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A.

Blome, G. A. Reis, M. Vachharajani, and D. I. August. RIFLE: An

architectural framework for user-centric information-flow security. In Proc.

IEEE MICRO, 2004.

[45] G. Venkataramani, |. Doudalis, Y. Solihin, and M. Prvulovic. FlexiTaint:

A programmable accelerator for dynamic taint propagation. In Proc. HPCA,

pages 173-184, Feb. 2008.

[46] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In SOSP, pages 203-216, 1993.

[47] E. Witchel, J. Cates, and K. Asanovic. Mondrian memory protection.
In Proc. ASPLOS, pages 304-316, New York, NY, USA, 2002. ACM.
[48] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: a
practical approach to defeat a wide range of attacks. In Proc. USENIX

Security, Berkeley, CA, USA, 2006.

[49] H. Yin, D. X. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama:

capturing system-wide information flow for malware detection and analysis.

In Proc. CCS, pages 116-127. ACM, 2007.

[50] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis. Hardware

enforcement of application security policies using tagged memory. In

Proceedings of the 8th USENIX conference on Operating systems design and

implementation, OSDI, pages 225-240. USENIX Association, 2008.

[51] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D.

Song, and W. Zou. Practical Control Flow Integrity & Randomization for

Binary Executables. In Proc. IEEE S&P, 2013.

[52] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-assisted

lockset-based race recording. In Proc. HPCA, 2007.
256

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

8. SYMBOLIC RULES

8.1 Primitive Types

nop, ubranch :

(= insn, =, —, =) = (=,) (1)

ar2s1d : (—, insn, other, other, =) = (—, other) (2)
ar2s1d: (—, insn, addr, other, —) = (—, addr) (3)
ar2s1d: (—, insn, other, addr, —) = (—, addr) (4)
ar2s1d: (—, insn, addr, addr, —) — (—, other) (5)
arisi1d: (—,insn, other, —, —) = (—, other) (6)
ar1s1d: (—,insn,addr, —, —) — (—, addr) (7)
ar1d, flags :

(—, insn, —, —, —) = (—, other) (8)
cbranch: (-, insn, other, other, =) = (—, —) (9)
jjump, return :

(—, insn, addr, —, =) = (—, —) (10)
dcall, icall:

(=, insn, addr, —, =) = (— ,addr) (11)
load : (-, insn, addr, =, t) — (-, t) if t # insn (12)
store : (=,insn, t, addr, =) — (-, t) ift Zinsn (13)
move . (-, insn, other, -, =) — (-, other) (14)
move . (-, insn, addr, -, =) — (-, addr) (19)

Alternate rules for checking return address:

jump: (-, insn, addr,-, =) — (-, -) (10)
return: (-, insn, retaddr, -, =) — (-, -) (10)
dcall, icall:

(-, insn, addr, -, =) — (-, retaddr) (11)

257

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

8.2 Memory Safety
N -coloring with N = 264 _ for full memory safety. We write colors as ¢, and

use them to tag pointers to the heap. We assume a special tag L that is different
than the colors, and which is used to tag all data that is not pointers to the heap.
The tags for registers are colors or L (written {). The tags for memory are pairs of
a color and either a color or L (written (¢1, £2)) or F (unallocated). The heap is

initially all tagged F. Finally the tags on instructions are drawn from
the set: {tmalloc, tmallocinit, tfreeinit , tsomething else }.

nop, cbranch, ubranch, ijump, return :

(=== =")=(=") (1)
ar2s1d: (-, — 1, 1,—)—= (- 1) (2)
ar2sid: (-, L, =)= (-0 (3)
ar2s1d: (-, —, L,¢c,—)—>(-,0) 4)
ar2s1d: (-, c,—)— (- 1) (5)
arts1d: (=, —t — =) > (=) (6)
ar1d, dcall, icall, flags :
(== —=-)=(1) (7)
load : (—, —,c1, —,(c2,t2)) > (—, t2)if c1 =c2 (8)
store : (—,ci t1,c2,(c3, t3)) 9)

— (=, (c3,t1))if c2 =c3 A ci /e {tmallocinit, tfreeinit }
store: (—, tmallocinit, t1,¢c2, F) = (—, (c2, t1)) (10)

store: (—, tfreeinit, t1, c2, (c3, t4)) = (—, F) (11)
1
move: (-, tmalloc ,t, -, -) — (-, thewtag) (12)
move: (-, tmalloc ,t,—, =) > (-, 1) (13)
258

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

primitive_malloc=malloc;
malloc (int size) {
void *p=primitive_malloc(size); // orig ptr
void *tp; // tagged ptr
void *tmp; // tagged ptr to individual words
asm: malloc move r1=p, r2=tp // alloc fresh tag
tmp=tp;
for (int i=0;i<size;i++) {
// set region tag on word in new region asm mallocinit
store r1=0,r2=tmp
tmp++;
3
return(tp);

}

primitive_free=free;
free (void *p) {
size =size(p); // size of pointer region
void *tmp=base(p), // base of pointer region
for (int i=0;i<size;i++) {
// set region tag on word in freed region
asm freeinit store r1=0r2=tmp

tmp++;
}
return;
}
8.3 CFI

831 CFI-1ID[2]

We use 2 tags written as sets: @ and {f}. The tag {f} is used for tagging all

indirect control flows, as well as all their potential destinations. The tag @ is

used for everything else.

259

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

return, ijump, icall:

(=A==)= {f}) (1)

return, yump, icall :

(pc, ci, =, —, =) — (@, -)if pc €ci (2)

832 CFI-2ID[2]
In this policy r is used for marking returns and their potential targets, and ¢ is
used forindirect calls and jumps and their potential targets. Since these two cases

can overlap, we're using 4 tags written as sets: ¢, {r}, {c}, and {r, c}.
return : (pc, ci, -, =, =) (1)

2> ({r},—)ifrecipccci
ijump, icall:

(pc,ci,—, —, —)—=> ({c},—)ifcecipccSci (2)

return, yump, wcall

(pC, Ci, =, —, =)= (9, —)if pc € ci 3)

833 CCFIR[51]

r is the return-id, ¢ is the call-id, p is the return-into- privileged-code-id.
Assuming 6 tags written as the sets: 2, {r}, {p}, {¢}, {r,c}, and {p, c}.
return : (pc, ci, -, =,) (1)
2> ({r},—)ifrecipccci

return : (pc, ¢i, -, —, -) (2)
> {p}t —)ifpecipccci

ijump, icall:

(pc,ci,—, —, —)—=> ({c},—)ifcecipcSci (3)

return, yump, icall

(pc, ci, —, —, =)= (2, —)if pc € ci (4)

260

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

8.3.4 CFI-ROP
We are assuming an allowed control-flow graph x, containing pairs of a
return ID and a possible destination ID. We write IDs as ¢i or pc below. Tags are

either valid IDs or L.

return: (L,ci,—, —, =)= (ci,-) (1)
return . (pc, ci,—, —, -) — (L, -)if(pc, ci) e X (2)
return @ (L,-,--,-)=>(L,-) (3)
return: (pc, ci, —, —, —) —(ci, =) if (pc, ci) e X (4)
8.3.5 CFI-JOP

Assuming an allowed control-flow graph, x.
jjump, icall:

(L, ¢, = = —)—(ci,) (1)
jjump, icall:

(pc, ¢i, —, —, =) — (ci, —) if (pc, ci) EX (2)

yump,call :
(L==--)=>(L-) (3)

yump, call :
(pc, ¢, -, -, —) — (L, -)if(pc,ci)ex (4)

8.3.6 Complete-CFi
We assume an allowed control-flow graph x.

return, ijump, icall:
(L,ci,—, —, —)—>(ci,—) (1)
return, ijump, icall:

(pc, ci, —, —, —) =>(ci, =) if (pc, ci) e X (2)

return, yump, icall :

(L===-)=>(L-) (3)

261

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

return, yump, wcall :

(pc, ci,—, =, -) —= (L, -)if(pc, ci) € X 4)

8.4 Taint Tracking

nop, cbranch, ubranch, ijump, return :

ar2s1d:. (—,ci,op1,0p2,—)—>(—,CiV opl VU op2) (2)

aris1d: (—,¢,op1,—,—) = (—,civopl) (3)
ar1d, dcall, icall, flags :
(= ¢, = — =)= (=,ci (4)

load : (—, ci,op1, —, mr) = (—,ciVopl Y mr))

store : (—, ¢i, 0p1, 0p2, =) —> (—, ¢i U op1 U 0p2) (6)
1

move :(—, ttaint, —, —, —) = (—, tnewtag) (7)

move :(—, ¢i # ttaint, op1, —, —) = (—, ci U op1) (8)

8.5 Subwordoperations

The rules above, which we used in our experiments, do not account for
subword operations. To properly support subword operation we would need to
break up the load and store opgroups into two opgroups for word operations
(wload and wstore) and two opgroups byte operations (bload and bstore).

The rules for all policies which explicitly talk about loads or stores would need to
change (simple types, memory safety, and taint tracking). Here is how the (no
retaddr variant of the) simple types policy would change (the w opgroups
correspond to the previous rules):

1
2
3

wload: (- (
(- (
(- (

wstore: (-, insn, addr, addr, -) — (-, addr) (4
(- (
(- (
(- (

, insn, addr, -, other) — (-, other)
wload: , insn, addr, —, addr) — (-, addr)
wstore: , insn, other, addr, -) — (-, other)
bload: 5
bload: 6

bstore: 7

, insn, addr, -, other) — (-, other)
, insn, addr, -, addr) — (-, other)

)
)
)
)
)
)
, insn, other, addr, -) — (-, other))

262

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

bstore: (-, insn, addr, addr, =) — (-, other) (8)

Here are the b rules for memory safety:
bload: (=, -, ¢c1,-,(c2, Cgl) — (=, 1)ifcl =c2 (1)

bstore: (- ci, €1, ¢2, (¢3, €7) 2)

— (=, (€3, 1)) ifc2 = c3 A ci ¢ {tmallocinit, tfreeinit }
Here is the bstore rule for taint tracking:

bstore: (-, ci, op1, op2, mr) 1

— (=, ciuop1 uop2umr)

263

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

What is Claimed is
1. A method of processing instructions comprising:
receiving, for metadata processing, a current instruction with an associated
metadata tag, said metadata processing being performed in a metadata processing
domain isolated from a code execution domain including the current instruction;
determining, in the metadata processing domain and in accordance with the
metadata tag and the current instruction, whether a rule exists in a rule cache for the
current instruction, said rule cache including rules on metadata used by said metadata
processing to define allowed operations; and
responsive to determining no rule exists in the rule cache for the current
instruction, performing rule cache miss processing in the metadata processing domain
comprising:
determining whether execution of the current instruction is allowed;
responsive to determining the current instruction is allowed to be
executed in the code execution domain, generating a new rule for the current
instruction;
writing to a register; and
responsive to writing to the register, inserting the new rule into the rule

cache.

2. The method of Claim 1, wherein first metadata used to select the rule for the current
instruction 1s stored in a first portion of a plurality of control status registers used by the
metadata processing, and wherein the first portion of the plurality of control status
registers are used to communicate a plurality of metadata tags for the current instruction
to the metadata processing domain, wherein said plurality of metadata tags are used as

data in the metadata processing domain,

3. The method of Claim 2, wherein the register is a first control status register of the

plurality of control status registers used by the metadata processing, and wherein the

264

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

first portion of the plurality of control status registers are used to communicate the

plurality of metadata tags from the metadata processing domain to the rule cache.

4. The method of Claim 3, wherein the plurality of metadata tags are for the current

instruction.

5. The method of Claim 4, wherein the new rule is inserted into the rule cache
responsive to writing another metadata tag to the first control status register, wherein
the another metadata tag is placed on a result of the current instruction, said result being

any of a destination register or a memory location.

6. The method of Claim 2, wherein the plurality of control status registers includes any
one or more of’

a bootstrap tag control status register including an initial metadata tag from
which all other generated metadata tags are derived;

a default tag control status register specifying a default metadata tag;

a public untrusted control status register specifying a public untrusted metadata
tag used to tag instruction and data classified as public and untrusted;

an opgroup value control status register including data written to a table
including information on opgroups and care information for different opcodes,;

an opgroup address control status register specifying a location in the table to
which data of the opgroup value control status register is written; and

a pumpflush control status register wherein a write to the pumpflush control

status register triggers flushing of the rule cache.

7. The method of Claim 2, wherein the plurality of control status registers includes a

tag mode control status register denoting a current mode of metadata processing.

8. The method of Claim 7, wherein the tag mode control status register indicates when

265

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

metadata processing is disengaged whereby rules of one or more defined policies are

not enforced by metadata processing.

9. The method of Claim 8, wherein the tag mode control status register is set to one of a
defined set of allowed states to denote the current mode of metadata processing, the
allowed states including: an off state, a state whereby metadata processing writes a
default tag on all results, and a state indicating that metadata processing is engaged and
operational when instructions are executed in the code domain at one or more specified

privilege levels.

10. The method of Claim 9, wherein the rule cache miss processing is performed in a

first of the defined set of allowed states where metadata processing 1s disengaged.

11. The method of Claim 9, wherein the allowed states include a first state indicating
that metadata processing is engaged only when instructions execute in the code domain
at a user privilege level; a second state indicating that metadata processing is engaged
only when instructions execute in the code domain at a user or supervisor privilege
level; a third state indicating that metadata processing is engaged only when instructions
execute in the code domain at a user, supervisor, or hypervisor privilege level; and a
fourth state indicating that metadata processing is engaged when instructions execute in

the code domain at a user, supervisor, hypervisor, or machine privilege level.

12. The method of Claim 7, wherein whether the metadata processing is engaged or
disengaged is determined in accordance with a current tag mode of the tag mode control
status register in combination with a current privilege level of code executing in the
code domain, wherein rules of one or more defined policies are not enforced when
metadata processing is disengaged and wherein the rules are enforced when metadata

processing is engaged.

266

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

13. The method of Claim 2 wherein a table includes information that maps an opcode
of an instruction set to a corresponding opgroup and bit vector information, the opgroup
denoting a group of associated opcodes treated similarly by the metadata processing
domain, the bit vector information denoting whether particular inputs and outputs with
respect to the metadata processing domain are used in connection with processing the
opcode, wherein the table is indexed using a first portion of opcode bits less than a
maximum number of allowable opcode bits, the maximum number denoting an upper

bound on a number of bits of an opcode of the instruction set.

14. The method of Claim 13, wherein the first portion of the plurality of control status
registers includes an extended opcode control status register including additional
opcode bits, if any, for the current instruction, wherein the current instruction is
included in the instruction set having variable length opcodes, wherein each opcode of
the instruction set optionally includes the additional opcode bits and the extended
opcode control status register includes the additional opcode bits, if any, for the current

instruction.

15. The method of Claim 14, wherein, for each opcode mapped using the table there is
a result bit vector corresponding to said each opcode, the result bit vector denoting what
portion, if any, of the additional opcode bits in the extended opcode control status

register are used with said each opcode for metadata processing.

16. The method of Claim 2, wherein the current instruction is one of multiple
instructions stored in a single word of memory associated with a single metadata tag,
said single metadata tag associated with the multiple instructions included in the single

word.

17. The method of Claim 16, wherein the plurality of control status registers includes a

subinstruction control status register indicating which of the multiple instructions stored

267

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

in the single word is the current instruction.

18. The method of Claim 17, wherein the single metadata tag is a first pointer to a first
memory location including a different metadata tag for each of the multiple instructions

in the single word.

19. The method of Claim 18, wherein at least a first metadata tag stored in the first
memory location for a first instruction of the multiple instructions includes a second
pointer to a second memory location including metadata tag information for the first

instruction.

20. The method of Claim 19, wherein the metadata tag information for the first
instruction includes a complex structure, the complex structure comprising at least one

scalar data field and at least one pointer field to a third memory location.

21. A non-transitory computer readable medium comprising code thereon that, when
executed, perform a method of processing instructions comprising:

receiving, for metadata processing, a current instruction with an associated
metadata tag, said metadata processing being performed in a metadata processing
domain isolated from a code execution domain including the current instruction;

determining, in the metadata processing domain and in accordance with the
metadata tag and the current instruction, whether a rule exists in a rule cache for the
current instruction, said rule cache including rules on metadata used by said metadata
processing to define allowed operations; and

responsive to determining no rule exists in the rule cache for the current
instruction, performing rule cache miss processing in the metadata processing domain
comprising:

determining whether execution of the current instruction is allowed,

responsive to determining the current instruction is allowed to be

268

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

executed in the code execution domain, generating a new rule for the current
instruction;

writing to a register; and

responsive to writing to the register, inserting the new rule into the rule

cache.

22. A system comprising:
a processor; and
a memory comprising code stored thereon that, when executed by the processor,
performs a method of processing instructions comprising:
receiving, for metadata processing, a current instruction with an
associated metadata tag, said metadata processing being performed in a metadata
processing domain isolated from a code execution domain including the current
instruction;
determining, in the metadata processing domain and in accordance with
the metadata tag and the current instruction, whether a rule exists in a rule cache for the
current instruction, said rule cache including rules on metadata used by said metadata
processing to define allowed operations; and
responsive to determining no rule exists in the rule cache for the current
instruction, performing rule cache miss processing in the metadata processing domain
comprising:
determining whether execution of the current instruction is
allowed;
responsive to determining the current instruction is allowed to be
executed in the code execution domain, generating a new rule for the current
instruction;
writing to a register; and
responsive to writing to the register, inserting the new rule into

the rule cache.

269

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

23. The system of Claim 22, wherein the processor is a pipeline processor in a reduced

instruction set computing architecture.

24. A method of processing instructions comprising:

receiving a current instruction for metadata processing performed in a metadata
processing domain that is isolated from a code execution domain including the current
instruction; and

determining, by the metadata processing domain in connection with metadata
for the current instruction, whether to allow execution of the current instruction in
accordance with a set of one or more policies, wherein the current instruction accesses a
first location of a stack frame of a first routine, wherein the current instruction and
locations of the stack frame have associated metadata tags, and the§ set of one or more
policies includes a stack protection policy that provides stack protection and prevents
improper access to stack storage locations including storage locations of the stack frame

of the first routine.

25. The method of Claim 24, wherein the stack protection policy includes a first rule
used in the metadata processing of the current instruction that accesses the first location
of the stack frame of the first routine, the first rule allowing execution of the current
instruction if the first location has metadata indicating it is a stack location of the first

routine and the current instruction is included in the first routine.

26. The method of Claim 24, wherein the current instruction is used by a particular
invocation instance of the first routine and wherein the stack protection policy includes
a first rule used in the metadata processing of the current instruction, the first rule
allowing execution of the current instruction if the current instruction is included in the

first routine and is also used by the particular invocation instance of the first routine.

270

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

27. The method of Claim 26, wherein the first rule includes examining metadata, that is
associated with a program counter and denotes any of authority and capability, to
determine whether to allow execution of the current instruction by the particular

invocation instance of the first routine.

28. The method of Claim 24, wherein the stack protection policy provides any of
object level protection wherein different objects in a single stack frame have different
color metadata tags, and hierarchical object protection for a hierarchical object
including multiple subobjects where each of the multiple subobjects of a single stack

frame have a different metadata tag.

29. The method of Claim 24, further comprising:

creating a new stack frame for a new routine invocation; and

tagging or coloring memory locations of the new stack frame in accordance with
strict object initialization or lazy object coloring, wherein strict object initialization
includes performing initialization processing that executes one or more instructions
triggering metadata processing of one or more rules that initially tags each memory
location of the new stack frame prior to storing information to the new stack frame, and
wherein lazy object coloring tags a particular memory location of the new stack frame
in connection with metadata processing of a rule triggered responsive to an instruction

storing data to the particular memory location.

30. The method of Claim 24, wherein the one or more policies include a set of rules for
enforcement of a dynamic control flow integrity policy ensuring that a return to a

particular return location is valid only when made subsequent to a particular invocation.

31. The method of Claim 30, wherein a first location includes a call instruction
transferring control to a called routine including a return instruction, and a second

location includes a second instruction, said second location denoting a return target

271

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

location to which control is transferred as a result of executing the return instruction of
the called routine, and the method further comprising:

tagging the first location including the call instruction with a first code tag;

tagging the second location denoting the return target location with a second
code tag;

performing metadata processing of a first rule of the set for the call instruction
tagged with the first code tag, wherein the metadata processing of the first rule for the
call instruction tagged with the first code tag includes tagging a return address register
with a valid return address tag denoting that the return address register includes a valid
return address for the second location, wherein execution of the call instruction updates
the tag on the return address register to denote the capability to return to the second
location;

performing metadata processing of a second rule of the set for the return
instruction of the called routine that allows execution of the return instruction to transfer
control to a return address stored in the return address register if the return address
register is tagged with the valid return address capability tag, wherein the second rule
propagates the valid return address capability tag of the return address register to a
program counter tag used for a next instruction following runtime execution of the
return instruction; and

performing metadata processing of a third rule of the set for the second
instruction that follows runtime execution of the return instruction, wherein the
metadata processing of the third rule allows execution of the second instruction if the
second instruction has a code tag equal to the second code tag, and if the program
counter tag is the valid return address capability tag, wherein the third rule clears the
program counter tag used for a next instruction following runtime execution of the

second instruction.

272

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

32. A method of processing instructions comprising:

receiving a current instruction for metadata processing performed in a metadata
processing domain that is isolated from a code execution domain including the current
instruction; and

determining, by the metadata processing domain in connection with metadata
for the current instruction, whether to allow execution of the current instruction in
accordance with a set of one or more policies, wherein the one or more policies include
a set of rules that enforce execution of a complete sequence of instructions in a
specified order from a first instruction of the complete sequence to a last instruction of

the complete sequence.

33. The method of Claim 32, further comprising:

mapping a first shared physical page into a first virtual address space of a first
process; and

mapping the first shared physical page into a second virtual address space for a
second process, said first shared physical page including a plurality of memory
locations, wherein each of the plurality of memory locations is associated with one of a
plurality of global metadata tags used in connection with rule processing in the

metadata processing domain.

34. The method of Claim 33, wherein the plurality of global metadata tags denotes a set
of metadata tags shared by multiple processes including at least the first process and the
second process, and wherein a same policy is enforced by the metadata processing

domain for both the first process and the second process.

35. The method of Claim 34, wherein enforcement of the same policy by the metadata
processing domain uses metadata to allow the first process to perform an operation that
is otherwise not allowed by the same policy for the second process, and wherein a

program counter has an associated program counter tag, and different values of the

273

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

associated program counter tag are used by rules of the same policy to allow the first
process to perform the operation that is otherwise not allowed by the same policy for

the second process.

36. The method of Claim 32, further comprising:

performing first processing by an allocation routine of an application to generate
a next color for the application using a current color for the application, wherein the
current color for the application denotes a current state of an application-specific color
sequence for the application, the next color denotes a next state of the application-
specific color sequence for the application, and the current color is stored in a first

metadata tag on a first atom.

37. The method of Claim 36, wherein the first processing comprises:

executing first one or more instructions, wherein the first one or more
instructions trigger metadata processing using one or more rules by the metadata
processing domain, wherein metadata processing using the one or more rules by the
metadata processing domain generates the next color using the current color, and
updates the current state of the application-specific color sequence for the application

by storing the next color in the first metadata tag of the first atom.

38. The method of Claim 37, wherein the first one or more instructions are included in
the allocation routine of the application, the first atom is any of a register and a memory
location, the application-specific color sequence is an unbounded sequence of different
colors available for use by the application, and the next color is stored as a tag value for
each of one or more memory locations used by the application, wherein the one or more

memory locations are allocated by the allocation routine.

274

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

39. The method of Claim 32, wherein the set of rules includes a first rule and a second
rule, and wherein the complete sequence of instructions includes a first instruction and a
second instruction, wherein the second instruction is executed immediately following
the first instruction, the method including;

performing metadata processing of the first rule for the first instruction, wherein
the metadata processing of the first rule includes setting a program counter tag of a
program counter used for a next instruction following runtime execution of the first
instruction to a special tag value; and

performing metadata processing of the second rule for the second instruction,
wherein the metadata processing of the second rule includes ensuring that execution of
the second instruction is only allowed when the program counter tag of the program

counter for the second instruction is equal to the special tag.

40. A non-transitory computer readable medium comprising code stored thereon that,
when executed, performs a method of processing instructions comprising:

receiving a current instruction for metadata processing performed in a metadata
processing domain that is isolated from a code execution domain including the current
instruction; and

determining, by the metadata processing domain in connection with metadata
for the current instruction, whether to allow execution of the current instruction in
accordance with a set of one or more policies, wherein the current instruction accesses a
first location of a stack frame of a first routine, wherein the current instruction and
locations of the stack frame have associated metadata tags, and the set of one or more
policies includes a stack protection policy that provides stack protection and prevents
improper access to stack storage locations including storage locations of the stack frame

of the first routine.

41. A system comprising;

a processor, and

275

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

a memory comprising code stored thereon that, when executed by the processor,

performs a method of processing instructions comprising:

receiving a current instruction for metadata processing performed in a
metadata processing domain that is isolated from a code execution domain including the
current instruction; and

determining, by the metadata processing domain in connection with
metadata for the current instruction, whether to allow execution of the current
instruction in accordance with a set of one or more policies, wherein the current
instruction accesses a first location of a stack frame of a first routine, wherein the
current instruction and locations of the stack frame have associated metadata tags, and
the§ set of one or more policies includes a stack protection policy that provides stack
protection and prevents improper access to stack storage locations including storage

locations of the stack frame of the first routine.

42. A non-transitory computer readable medium comprising code stored thereon that,
when executed, performs a method of processing instructions comprising;

receiving a current instruction for metadata processing performed in a metadata
processing domain that is isolated from a code execution domain including the current
instruction; and

determining, by the metadata processing domain in connection with metadata
for the current instruction, whether to allow execution of the current instruction in
accordance with a set of one or more policies, wherein the one or more policies include
a set of rules that enforce execution of a complete sequence of instructions in a
specified order from a first instruction of the complete sequence to a last instruction of

the complete sequence.

43. A system comprising;
a processor; and

a memory comprising code stored thereon that, when executed by the processor,

276

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

performs a method of processing instructions comprising:

receiving a current instruction for metadata processing performed in a
metadata processing domain that is isolated from a code execution domain including the
current instruction; and

determining, by the metadata processing domain in connection with
metadata for the current instruction, whether to allow execution of the current
instruction in accordance with a set of one or more policies, wherein the one or more
policies include a set of rules that enforce execution of a complete sequence of
instructions in a specified order from a first instruction of the complete sequence to a

last instruction of the complete sequence.

44. A method of generating and using metadata tags comprising:

storing a bootstrap tag in a first specified register of a plurality of specified
registers used in a metadata processing domain that is isolated from a code execution
domain; and

performing first processing to derive one or more additional metadata tags from
the bootstrap tag, wherein said first processing includes executing one or more
instructions in the code execution domain that trigger metadata processing of one or

more rules in the metadata processing domain.

45. The method of Claim 44, wherein the bootstrap tag is used an initial seed tag from

which all other metadata tags, used by the metadata processing domain, are derived.

46. The method of Claim 44, wherein the bootstrap tag is hardwired or stored in a

portion of read-only memory.

47. The method of Claim 44, wherein said storing and the first processing are included
in processing performed by executing a first code portion of a bootstrap program when

booting a system including the metadata processing domain and the code execution

277

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

domain.

48. The method of Claim 44, further comprising:

deriving a default tag from the bootstrap tag stored in the first specified register;

storing the default tag in a second specified register of the plurality of specified
registers; and

executing an instruction sequence triggering metadata processing of rules in the
metadata processing domain that write the default tag from the second specified register
as a metadata tag for each of a plurality of memory locations used by the code execution

domain.

49. The method of Claim 44, wherein said performing the first processing includes
generating an initial set of metadata tags derived from the bootstrap tag, wherein each
of the metadata tags of the initial set is generated by executing a current instruction in
the code execution domain that triggers rule cache miss processing in the metadata
processing domain whereby no rule exists in the rule cache for the current instruction,
the rule cache including rules on metadata used by the metadata processing domain to

define allowed operations.

50. The method of Claim 49, wherein rule cache miss processing includes:
calculating, by a rule cache miss handler executing in the metadata processing
domain, a new rule for the current instruction, wherein the new rule includes a result

metadata tag of the initial set of metadata tags.

51. The method of Claim 49, wherein each metadata tag of the initial set is a tag

generator that may be further used to derive other metadata tags.

52. The method of Claim 51, wherein execution of a first set of one or more specified

instructions triggers rules and rule cache miss processing in the metadata processing

278

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

domain that generates each metadata tag denoted as a tag generator used to generate a
sequence of one or more other metadata tags, and wherein execution of a second set of
one or more specified instructions triggers rules and rule cache miss processing in the
metadata processing domain the generates each metadata tag denoted as a non-

generating tag that cannot be used to further generate an additional metadata tag.

53. The method of Claim 49, wherein the bootstrap program further includes
instructions that trigger rules processed in the metadata processing domain that write
one or more special metadata code tags on one or more instructions of designated code
portions to provide an extended privilege, capability or authority to the tagged one or

more instructions.

54. The method of Claim 53, wherein the designated code portions include one or more

of kernel code and loader code.

55. The method of Claim 53, wherein the one or more special metadata code tags are
derived from a first metadata tag of the initial set of metadata tags, wherein the first

metadata tag is a special instruction tag generator.

56. The method of Claim 51, wherein the initial set of metadata tags includes any one
or more of;

an initial instruction metadata tag that is tag generator used to generate a
sequence of one or more code tags used to tag instructions;

an initial malloc metadata tag that is a tag generator used to generate a sequence
of one or more other malloc tag generators, wherein each of the one or more other
malloc tag generators is used to generate a sequence of one or more other metadata tags
for a different application in connection with coloring any of allocated memory cells
and pointers to allocated memory cells used by the different application;

an initial control flow integrity tag that is a tag generator used to generate a

279

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

sequence of one or more other control flow integrity tag generators, wherein each of the
one or more other control flow integrity tag generators is used to generate a sequence of
one or more other metadata tags for a different application in connection with tagging
control transfer targets of the different application; and

an initial taint tag that is a tag generator used to generate a sequence of one or
more other taint tag generators, wherein each of the one or more other taint tag
generators 18 used to generate a sequence of one or more other metadata taint tags for a
different application in connection with tagging data items that are used by the different
application with a metadata taint tag based on code that produced or modified the data

items.

57. The method of Claim 44, wherein a sequence of metadata tags s generated by
executing instructions that trigger other processing of rules in the metadata processing
domain, the other processing comprising:

generating a next metadata tag in the sequence using a current metadata tag in
the sequence, wherein the current metadata tag denotes a current state of the sequence
and 1s stored as a metadata tag associated with an atom, wherein the atom is any of a
register or a memory location; and

updating the current state of sequence by saving the next metadata tag as the

metadata tag associated with the atom.

58. A method of obtaining control flow information for an application comprising:
executing a loader that loads the application for execution by a processor,
wherein said executing the loader includes executing a first code portion including one
or more instructions that triggers metadata processing of a first set of one or more rules
in a metadata processing domain, wherein said metadata processing of the first set of
one or more rules includes collecting and storing the control flow information for the
application as application metadata accessible to the metadata processing domain and

inaccessible to a code execution domain; and

280

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

executing instructions of the application in the code execution domain, wherein
said executing said instructions of the application triggers metadata processing of a
second set of rules of a control flow policy that use at least a portion of the control flow
information to determine whether to allow a transfer of control in the application from a

first source location to a first target location.

59. The method of Claim 58, wherein the first target location has a set of one or more

allowable source locations allowed to transfer control to the first target location.

60. The method of Claim 59, wherein said collecting and storing the control flow
information for the application as application metadata further comprises the metadata
processing domain performing other processing including:

tagging the first target location with first metadata identifying the set of one or
more allowable source locations, wherein the first metadata is stored as a portion of the

control flow information of the application metadata.

61. The method of Claim 60, wherein a first instruction of the application transfers
control from the first source location to the first target location, the first instruction
triggering metadata processing of one or more rules of the control flow policy that use
the first metadata to determine whether to allow execution of the first instruction by
determining whether the first source location is included in the set of one or more

allowable source locations allowed to transfer control to the first target location.

62. The method of Claim 61, wherein the other processing further includes:
tagging each allowable source location of the set with a unique source metadata

tag.

63. The method of Claim 62, wherein each unique source metadata tag of each

allowable source location is included in a first sequence of source metadata tags for the

281

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

application, wherein the first sequence is a unique sequence of source metadata tags

generated from a control flow generator tag.

64. The method of Claim 63, wherein the control flow generator tag is generated from

an initial control flow generator tag derived from an initial bootstrap tag.

65. The method of Claim 64, wherein the initial control flow generator tag is used to
generate a plurality of additional control flow generator tags and wherein each of the
additional control flow generator tags is used to generate a sequence of unique source

metadata tags for a different application.

06. A non-transitory computer readable comprise code stored thereon that, when
executed, performs a method of generating and using metadata tags comprising;

storing a bootstrap tag in a first specified register of a plurality of specified
registers used in a metadata processing domain that is isolated from a code execution
domain; and

performing first processing to derive one or more additional metadata tags from
the bootstrap tag, wherein said first processing includes executing one or more
instructions in the code execution domain that trigger metadata processing of one or

more rules in the metadata processing domain.

67. A system comprising:

a processor; and

a memory comprising code stored thereon that, when executed, performs a
method of generating and using metadata tags comprising:

storing a bootstrap tag in a first specified register of a plurality of specified
registers used in a metadata processing domain that is isolated from a code execution
domain; and

performing first processing to derive one or more additional metadata tags from

282

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

the bootstrap tag, wherein said first processing includes executing one or more
instructions in the code execution domain that trigger metadata processing of one or

more rules in the metadata processing domain.

68. A non-transitory computer readable medium comprising code stored thereon that,
when executed, performs a method of obtaining control flow information for an
application comprising:

executing a loader that loads the application for execution by a processor,
wherein said executing the loader includes executing a first code portion including one
or more instructions that triggers metadata processing of a first set of one or more rules
in a metadata processing domain, wherein said metadata processing of the first set of
one or more rules includes collecting and storing the control flow information for the
application as application metadata accessible to the metadata processing domain and
inaccessible to a code execution domain; and

executing instructions of the application in the code execution domain, wherein
said executing said instructions of the application triggers metadata processing of a
second set of rules of a control flow policy that use at least a portion of the control flow
information to determine whether to allow a transfer of control in the application from a

first source location to a first target location.

09. A system comprising:

a processor; and

a memory comprising code stored thereon that, when executed, performs a
method of obtaining control flow information for an application comprising:

executing a loader that loads the application for execution by a

processor, wherein said executing the loader includes executing a first code portion
including one or more instructions that triggers metadata processing of a first set of one
or more rules in a metadata processing domain, wherein said metadata processing of the

first set of one or more rules includes collecting and storing the control flow

283

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

information for the application as application metadata accessible to the metadata
processing domain and inaccessible to a code execution domain; and

executing instructions of the application in the code execution domain,
wherein said executing said instructions of the application triggers metadata processing
of a second set of rules of a control flow policy that use at least a portion of the control
flow information to determine whether to allow a transfer of control in the application

from a first source location to a first target location.

70. A method for performing processor-mediated data transfers between tagged and
untagged data sources comprising;

executing, on a processor, a first instruction that loads first data from an
untagged data source, said untagged data source including memory locations not having
associated metadata tags;

tagging, by first hardware, the first data with a first metadata tag denoting the
first data is untrusted and from a public data source, wherein the first data having the
first metadata tag is stored in a first buffer; and

executing, on the processor, first code that triggers metadata processing using
first one or more rules, wherein the metadata processing using the first one or more
rules performs retagging that retags the first data to have a second metadata tag

denoting the first data is trusted.

71. The method of Claim 70, wherein the second metadata tag additionally denotes that

the first data is from a public source.
72. The method of Claim 70, wherein the first data having the second metadata tag is
stored in a memory that is a tagged data source including memory locations each having

an associated metadata tag.

73. The method of Claim 72, wherein the memory is a trusted memory including data

284

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

from one or more trusted data sources.

74. The method of Claim 70, wherein the metadata processing is performed in a
metadata processing domain isolated from a code execution domain including the first

code.

75. The method of Claim 74, wherein the first one or more rules are rules on metadata

used by the metadata processing to define allowed operations.

76. The method of Claim 70, wherein the first code includes one or more instructions
and each of the one or more instructions has a special instruction tag denoting that said
each instruction has authority to invoke the one or more rules that retags the first data to

have the second metadata tag.

77. The method of Claim 70, wherein the first data, having the first metadata tag, is
encrypted, and the method further comprising:

decrypting, by executing one or more instructions on the processor, the first data
having the first metadata tag and generating a decrypted form of the first data having
the first metadata tag; and

performing validation processing by executing one or more additional
instructions on the processor, said validation processing using digital signatures to
ensure the decrypted form of the first data 1s valid, wherein said retagging is performed

after successful validation processing of the first data.

78. The method of Claim 70, wherein the first data having the second metadata tag is
stored in a decrypted form in a first memory location of a tagged memory, and the
method further comprises:

encrypting the first data to produce the first data in an encrypted form and

generating a digital signature in accordance with the first data, wherein said encrypting

285

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

and said generating are performed by executing additional code on the processor; and

executing, on the processor, a second instruction that stores the encrypted form
of the first data from the first memory location of the tagged memory to a destination
location of an untagged memory, wherein the encrypted form of the first data 1s stored
in the destination location without an associated metadata tag and wherein the second
metadata tag is removed by second hardware prior to storing the encrypted form of the

first data in the destination location.

79. The method of Claim 70, wherein, at a first point in time, the first data is stored in a
first location of an untagged memory portion, and at a second point in time, the first
data, having the first metadata tag, denoting that the first data is untrusted and from a
public data source, is stored in a second location of a tagged memory portion, wherein
said untagged memory portion and said tagged memory portion are included in a same
memory serviced by a same memory controller, and wherein second metadata
processing rules only allow the processor to perform operations that write data, having
an associated metadata tag denoting the data is public, to the untagged memory portion,
and wherein direct memory operations from an external untagged source operating on
untagged data are only allowed to access the untagged memory portion of the same

memory.

80. The method of Claim 79, wherein at least a portion of the second metadata
processing rules further only allow the processor to perform operations that write data,
having an associated metadata tag denoting the data is public and additionally untrusted

2

to the untagged memory portion.

81. The method of Claim 70, wherein the untagged data source is connected to a first
interconnect fabric including only untagged data sources, wherein the first data with the

second metadata tag is stored in a location of a memory connected to a second

286

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

interconnect fabric including only tagged data sources.

82. The method of Claim 81, wherein a second processor connected to the first
interconnect fabric executes other instructions using untagged data from the untagged
data sources and wherein said other instructions are executed without performing
metadata processing and without using rules on metadata to enforce allowable
operations, wherein execution of said other instructions by said second processor
includes performing one or more operations including any of: reading data from an
untagged data source of the first interconnect fabric, and writing data to an untagged

data source of the first interconnect fabric.

83. A system comprising;

a processor;

one or more tagged memories, wherein each memory location of the one or
more tagged memories has an associated metadata tag;

one or more untagged memories including a first untagged memory, wherein
memory locations of the one or more untagged memories do not have associated
metadata tags;

a rule cache including rules on metadata used in performing metadata processing
to define allowed operations in connection with instructions, wherein prior to executing
a current instruction by the processor, metadata processing using one or more rules of
the rule cache is performed to determine whether execution of the current instruction is
allowed;

a first instruction that, when executed by the processor, loads first data from the
first untagged memory into a data cache used by the processor, wherein the first data
stored in the data cache has an associated first metadata tag;

a second instruction, that, when executed by the processor, stores second data
from the data cache to the first untagged memory, wherein the second data stored in the

data cache has an associated second metadata tag;

287

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

a first hardware component that converts untagged data to tagged data used in
the system by the processor, wherein responsive to execution of the first instruction, the
first hardware component receives, from the first untagged memory, the first data
without any associated metadata tag, and outputs the first data having the associated
first metadata tag; and

a second hardware component that converts tagged data to untagged data,
wherein responsive to execution of the second instruction, the second hardware
component receives the second data having the associated second metadata tag and

outputs the second data without any associated metadata tag.

84. The system of Claim 83, wherein the first data without any associated metadata tag
is encrypted and the first hardware component converts the first data to a decrypted
form, performs validation processing of the first data using digital signatures, and upon
successful validation processing, tags the first data to have the associated first metadata
tag denoting that the first data is trusted; and

wherein the second data having the second associated metadata tag is in a
decrypted form and the second hardware component converts the second data to an

encrypted form and generates a digital signature in accordance with the second data.

85. The method of Claim 84, wherein the first hardware component tags the first data
to have the associated first metadata tag denoting that the first data is trusted and also

identifying that the first data is from a public source.

86. The system of Claim 84, wherein one or more cryptographic key sets are any of
encoded in hardware and stored in a memory, the one or more cryptographic key sets
being used by the first hardware component in connection with performing decryption
and validation processing and being used by the second hardware component in
connection with performing encryption and creating digital signatures, wherein the first

data identifies a particular one of the cryptographic key sets used by the first hardware

288

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

component to decrypt the first data, and wherein the associated second metadata tag of
the second data identifies a specific one of the cryptographic key sets used by the

second hardware component to encrypt and sign the second data.

87. A method of processing a current instruction comprising;
receiving, for metadata processing, the current instruction; and
performing metadata processing for the current instruction in a metadata
processing domain isolated from a code execution domain including the current
instruction, said current instruction referencing a first memory location having a first
metadata tag used in the metadata processing, said metadata processing for the current
instruction including;
performing processing to retrieve the first metadata tag from memory;
prior to receiving the first metadata tag for the first memory location
from the memory, determining a predicted value of the first metadata tag of the first
memory location;
determining, using the predicted value of the first metadata tag of the
first memory location, a first result metadata tag for a result operand of the current
instruction; and
recetving, from the memory, the first metadata tag;
determining whether the first metadata tag matches the predicted value
of the first metadata tag; and
responsive to determining the first metadata tag matches the predicted
value of the first metadata tag, using the first result metadata tag as a final result

metadata tag for the result operand.

88. The method of Claim 87, wherein the metadata processing for the current
instruction further comprises:
determining, in accordance with the current instruction and a set of input

metadata tags for the current instruction, a first rule for the current instruction, wherein

289

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

said first rule includes the predicted value of the first metadata tag of the first memory
location and includes the first result metadata tag, said first rule being included in a rule
cache used for metadata processing in the metadata processing domain; and

responsive to determining the first metadata tag does not match the predicted
value of the first metadata tag, performing rule cache miss processing in the metadata

processing domain for the current instruction.

89. The method of Claim 88, wherein said rule cache miss processing in the metadata
processing domain for the current instruction includes:

determining whether execution of the current instruction in the code execution
domain is allowed,

responsive to determining execution of the current instruction in the code
execution domain is allowed, generating a new rule for the current instruction, wherein
said new rule is generated in accordance with the current instruction, the set of input
metadata tags, and the first metadata tag; and

inserting the new rule into the rule cache used for metadata processing in the

metadata processing domain.

90. The method of Claim 88, wherein the set of other input metadata tags include a
plurality of other metadata tags for the current instruction, said set of other metadata
input tags including metadata tags for any of: a program counter, the current instruction,

and an input operand of the current instruction.

91. The method of Claim 87, wherein said result operand is a destination memory

location or a destination register storing results of executing the current instruction.

92. The method of Claim 88, wherein the instruction is processed in accordance with a
plurality of stages including a first stage and a second stage wherein the first stage

occurs prior to the second stage, wherein the predicted value of the first metadata tag of

290

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

the first memory location is determined in the first stage, and the second stage includes
performing said determining whether the first metadata tag matches the predicted value
of the first metadata tag, and the second stage also includes performing said rule cache
miss processing in the metadata processing domain for the current instruction
responsive to determining the first metadata tag does not match the predicted value of

the first metadata tag.

93. The method of Claim 88, wherein the rule cache is configurable to operate in either
a prediction mode or a normal processing mode in accordance with a prediction selector
mode, said rule cache being configured to operate in the prediction mode when

performing said metadata processing for the current instruction.

94. The method of Claim 93, wherein, when the rule cache is configured to operate in
said prediction mode, the rule cache generates first outputs in accordance with the first
rule, the first outputs including a metadata tag for a program counter of a next
instruction, the first result metadata tag for the result operand of the current instruction,
and the predicted value of the first metadata tag as an output of the first stage, and
wherein, when the rule cache is configured to operate in said normal processing mode,
the rule cache generates second outputs in accordance with a second rule different
from the first rule, wherein the second outputs do not include the predicted value of the
first metadata tag, and the second outputs include metadata tags for result operand of

the current instruction and for the program counter of the next instruction.

95. The method of Claim 93, wherein the rule cache uses a first version of rules of a
first policy when operating in the prediction mode and otherwise uses a second version
of rules of the first policy when operating in the normal processing mode, and wherein
the first rule 1s included in the first version of rules and the second rule is included in

the second version of rules.

291

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

96. A system comprising:

a pipeline processor including a plurality of pipeline stages, said plurality of
stages including a memory stage and a writeback stage;

a programmable unit for metadata processing (PUMP) integrated that operates
prior to completion of the memory stage the memory stage, wherein the PUMP
performs metadata processing for a current instruction referencing a first memory
location having a first metadata tag used in the metadata processing, wherein the PUMP
receives first inputs including first metadata tags for the current instruction and wherein
the PUMP generates first outputs provided as inputs to the writeback stage, the first
outputs including a predicted value of the first metadata tag of the first memory location
and a first result metadata tag for a result operand of the current instruction, wherein the
first result metadata tag is determined by the PUMP in accordance with the predicted
value of the first metadata tag for the first memory location; and

hardware components of said writeback stage that determine whether the first
metadata tag for the first memory location matches the predicted value of the first
metadata tag, and that use the first result metadata tag as a final result metadata tag for
the result operand when the first metadata tag matches the predicted value of the first

metadata tag.

97. The system of Claim 96, wherein the PUMP is a first PUMP that operates
simultaneously with the memory stage and further operates in a prediction mode and
determines the predicted value of the first metadata tag of the first memory location,

and wherein the system includes a second PUMP that operates in a normal, non-
prediction mode and does not determine any predicted value for the first metadata tag of
the first memory location, the second PUMP integrated as another stage between the

memory stage and the writeback stage.

98. The system of Claim 97, wherein the first PUMP uses a first version of rules of a

292

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 2017/106101 PCT/US2016/066188

first policy for use when operating in the prediction mode, the second PUMP uses a
second version of rules of the first policy for use when operating in the normal, non-
prediction mode, the first PUMP determines the first outputs in accordance with a first
rule from the first version, the second PUMP determines second outputs in accordance
with a second rule from the second version, said second outputs include a second result
metadata tag for the first memory location and said second outputs are provided as
inputs to the writeback stage, and wherein the hardware components of the writeback
stage additionally use the second result metadata tag as the final result metadata tag for

the result operand when the first metadata tag does not match the predicted value.

99. A non-transitory computer readable medium comprising code stored thereon that,
when executed, performs a method of processor-mediated data transfers between tagged
and untagged data sources comprising:

executing, on a processor, a first instruction that loads first data from an
untagged data source, said untagged data source including memory locations not having
associated metadata tags;

tagging, by first hardware, the first data with a first metadata tag denoting the
first data is untrusted and from a public data source, wherein the first data having the
first metadata tag is stored in a first buffer; and

executing, on the processor, first code that triggers metadata processing using
first one or more rules, wherein the metadata processing using the first one or more
rules performs retagging that retags the first data to have a second metadata tag

denoting the first data is trusted.

100. A non-transitory computer readable medium comprising code stored thereon that,
when executed, performs a method of processing a current instruction comprising:
receiving, for metadata processing, the current instruction; and
performing metadata processing for the current instruction in a metadata

processing domain isolated from a code execution domain including the current

293

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

instruction, said current instruction referencing a first memory location having a first
metadata tag used in the metadata processing, said metadata processing for the current
instruction including:
performing processing to retrieve the first metadata tag from memory;
5 prior to receiving the first metadata tag for the first memory location
from the memory, determining a predicted value of the first metadata tag of the first
memory location;
determining, using the predicted value of the first metadata tag of the
first memory location, a first result metadata tag for a result operand of the current
10 instruction; and
receiving, from the memory, the first metadata tag;
determining whether the first metadata tag matches the predicted value
of the first metadata tag; and
responsive to determining the first metadata tag matches the predicted
15 value of the first metadata tag, using the first result metadata tag as a final result

metadata tag for the result operand.

20

294

SUBSTITUTE SHEET (RULE 26)

T—OId
N

PCT/US2016/066188

1/90

WO 2017/106101

Npm ovﬁ OM wM wM Uﬁ
YorgallMA i dINNd i Aowa i aInoaxg i 2po29(] i yoyo4
| S et -
- -1 l-{ sBe | "1 sbe| --{ sBe |
Yore [=7] [~=—{dINnd [= pl |
dANNd b= -1 |7 |- 31| | 3] [$I- L7
| et
Il A A *
| [oe0 | | 9d
LuoQg
- —=—{ 6e10d
B L)) -

[N

SUBSTITUTE SHEET (RULE 26)

FIG—-3A

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 2 /90 PCT/US2016/066188
24 26 28
(Instr.(trace (
Program —e= -
Arch Alpha ISA PUMP params —s={ PUMPSIim
params__> (gem5) PO“Cy——» (C)
Address L—30 Miss Handler
g1 trace invocations
Address ——
—={ Trace Sim <—é< Address trace Alpha ISA
(C) (gemb)
Miss
D/l $ Handler PUMP $
Misses Costs l Misses
Runtime/Energy Cost Model
.
Y
50 -
8 40 — 8 350 —
(O]
< 2 300
g 30 E
o > 250 — . :
= 20 _I_ T _I_ _I_ 2 — .
& ! $: : & 2001 | - . .
2 1091 [L < 150 La g flz 1l
o4 == X === 100 4 + 4+ &
@) AR O A
S ‘\é§ C§< & N s@§ C§< &
4 & & P &
S & & S &
SN S < S S
W o ¥ <~
N J N
Y Y

FIG—-3B

WO 2017/106101

[_] Miss Handler
A L2 PUMP-$

Y DRAM

=
[]
-—
L
2
€

&
Y
_

%009

%0¢c€
%08.

SUBSTITUTE SHEET (RULE 26)

3/90

M,DN

OO

150 —

|
))
S
=

PESUIAN0 |dD %

PCT/US2016/066188

Composite Policy Runtime

FIG—4A

WO 2017/106101
—
Sow
oo
T ==
IS>s
-
= Il T A

4/90

%025

%009

%0091

Va4

500 —

SUBSTITUTE SHEET (RULE 26)

| |

o o

o (@]

(4p] N
PEUIBNO |dT %

400 —

|
)
S
=

PCT/US2016/066188

Composite Policy Energy
Y

FIG—-4B

WO 2017/106101

) Tagged

[] Baseline

|
)
S

400 —
300 —

(epphoprd) Jamod

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

Absolute Power

FIG—-4C

WO 2017/106101 6/90 PCT/US2016/066188

Number of PUMP rules

1e+07 : .
& 1e+06 —
>
)
8 : ;
= 1e+05 :
o @ G——15X
= .
D L]
& 1e+04 . :
1e+03 — —
Without With
Opgroup Optimization
.
Y
L1 PUMP-$ Miss-rate
1e-01 o,
1T . . .
S 1e-034)
(@)] b i .
O
= . y '
i) _
© T . . Y
T 1e-05 | : . N
3 of -l I’IM 'l Fl+
E ? G.\ - . . .
- el
5 1e-07 |. : o T ; . —.-
r :
1e-09 II - = = el
512 1024 2048 4096
L1 PUMP Capacity
.

~
FIG—-95B

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 7/90

Unique tags per
DRAM transfer for gcc

1.0
0.8

0.6 1

Probability

0.4

0.2

00— TTTTTT1

PCT/US2016/066188

FIG—-6A

Cache line compression in DRAM

|< Payloads >| |< Tags ’|
: . 1M M Mo m oMM Mm@ o,
| M 0O MO M M MO m M | v v v v v w nu w |
(e 0] (e 0] (e 0] (e 0] (e 0] (e 0] (e 0] (e 0] M~ M~ M~ M~ M~ M~ M~ M~
Wyl Wi Wy | wy | W | ws | W | Wy t0 tI t2 t3 t4 t5 t6 t7
Tag Indexes:
Q9 9 9 9 9 9 9 9
<+ & & 84 8 S <

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188
8/90

L1 miss, L2 hit
L2.CachelLine
16b new L1 tag ::“’ flush?
invalic Y
38— L2tag—’l-1tag T L1tag—’l-2tag
SRAM SRAM
<_ _____
valid
12b
L1D.CachelLine
.
Y
L1 to L2 writeback
L2.CachelLine
16b
39— L1tag—’l-2tag
SRAM
12b
L1D.CachelLine
.

<
FIG-7B

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 9/9 O PCT/US2016/066188

10000 —
81000—
g T .
PY +
(O]
% 100
=
A [iy
¥ 10+ na T
~o-l_ T
s"ﬁ
14 L=
8 9 10 11 12
L1 Tag Length
.
Y
H
— T
S 1e-03- =
8 = . I, =
[O)
B :
5-316—05— : :
= &\S__
o
= ' Al ln
a O]
= NIK
ool L T TT
8 9 10 11 12 64
L1 Tag Length
.

g
FIG—-8B

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

omnetpp

10/90
gcc

Per policy miss-rates

GemsFDTD

astar

WO 2017/106101

Q
N

@

—
4””

-

/
——
—

— NXD+NWC
———— Memory Safety

-~ CFI
—-— Taint Tracking

-

a—

X _rdopent

S
FIG-9A

-

UCP Cache Hit-rate

-

J I ! I ! I
/) o =)) o o) o
4 o o oe) ~ © 0
-

| | | | | | | |
N O ® © <t N O (%) Aollod Jad arey 1H
- - « o ©o ©o o o

(%) ares-ssiw $-dINNd L1

4096

2048

UCP-$ Capacity
FIG—-9B

1024
SUBSTITUTE SHEET (RULE 26)

512

FIG-9D

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188
Miss Service Performance
87 —
86— — 220
9
o 857 Y
< 200 £
L g4 =
& 84 3
= E
I -
83 —180 9
o
(7]
82 =
— 160
81—
f T T |
512 1024 2048 4096
UCP-$ Capacity
. J
Y
Miss-Handler CTAG-$
98 —
97 - ,,/ ———————————
S 96 T /
N - GemsFDTD
9 . L
& 95 — /’/ astar
= e gce
= 94—~ / —-— omnetpp
J—
93 —
92— I I |
128 256 512 1024
CTAG-$ Capacity
. J
Y

PCT/US2016/066188
12/90

WO 2017/106101

Miss Handler Cost

Y #4b7

B RIS @@MQQ *

XXX XXX

omnetpp

\]
“““““““““““‘%
T TS
000 %0 %0 %6 %6 %6 %0 % %6 %6 % %% %% %% %% % %% %% %% %% %}

gcc

X

Y 5

B T I 4
0000070 %0 %0 %0 %000 %6 06 6 %6 %0 %6 %0 %0 %0 % %090 %6.%6.%6%6%0%0 %% %% @%@Q\v %%

astar
Y

o
0 %5
e S ¢k
e BRI DR o521y *
4] @% *®
)

| | | I | I

o o © < N o

-— o o o o o

aWll| 92IAI9S SSI

FIG-9E

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101

R DRAM

[Miss Handler
v L2 PUMP-$

%G8

1 3 /91{(}?T/US2016/066188

A | misfetch

B L2-$

(o)

~—

PESUIANO |dD %

(@

~—

|
=)
N

30 —
25—

SUBSTITUTE SHEET (RULE 26)

Runtime Overhead

~

FIG-10A

dOT—-DId
A

PCT/US2016/066188

14/90

WO 2017/106101

peaysanQ ABiauz

&
$
NN
NANNYNNNANRNNYN NNNN NN
NNNYNNNARNNY NNNN NN
NANNYNNNANRNANYN NN NN NN
AN AN AN RN SNNN ||Aum
NANNYAUNNARNNY NN NN RN
NANNYNNNARNNYN NNN N NN
RN AR Y RSN NN
NANNAR NN N NN
NNNNFNNNNRNNYN AR AR
RS SRS SY NN NN
N NN NN NN
NN NN NN

— 001

\ —0G1

$-dNNd 2129 —00Z

$-11 $-don PZ1

$-271 B $-ov10 2]
NI RY eleisuel] Bel NN
$-dINNd L T2z JelpueH ssiN [

%0€¢

PESUIaN0 |43 %
SUBSTITUTE SHEET (RULE 26)

WO 2017/106101

[] Baseline
) Tagged

| | |
)))
Ts) S Ts)

250 —
200 —

(epphoprd) Jamod

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

15/90

Absolute Power

~

FIG—-10C

000000000000000000000000000000

11111

\
m @)
|
=
9 g

00000000000000000000000000000

L1 Tag Length

Energy Overhead
Y

FIG-11B

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

18/90

WO 2017/106101

A
3008V 30908V 3008V 3008V
TR .F%I PR
| . = VIE DX 05
0z — 001 00
— 0l S
—0¢ — | Fost S
el | gop O
— Gl 1| or 0oy £
— — 002 g
1 o5 - ®
—0¢ — 062 — —009 &
— 09 —]
—g2 ol | [—ooe i
— 008
wq 121792y 296 seyse aLgdsweo

yojajsiw |
$-271 B

Wi Y
$-dNNd 21 2
JajpueH ssiN [_]

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

19/90

WO 2017/106101

deo1—DId

— 09

— 08

wq|

— 001

AN MANAN

AN MANAN

NN BMNN

NN PMNNN AN

NN PMNNRNANN

NN PMNNRNANYN

NN PMNNRNANYN

NN PMNNRNANY

NN PMNNRNANY

NN PMNYNN AN
N\
AN
AN
AN
ANAN
ANAN
N\
N\
AN
AN
e —

$94¥9¢Y

— 0G

— 001
— 0G1
— 00¢
— 0G¢
— 00€
— 0G¢E

AR
AR

— 05

\— OOF

s

IS aad
/ /S S
4
/

;

w051

— 00¢

226

$11

$271 B

NV Y
$-dANd 17 B
$-dNNd 21 I

uonejsues] be| [777]

Jo|pueH ssIN [_|

e
1

4
-

ANRN

NN NN

NN\ NN

NN NN
NN
ANAN
_———

Jejse

Il
IS aaad

\

— 001

— 00¢

— 00€

— 00%

— 00G

(&)
m
<<

NN NN NN NN NN
NN NN NN

—— NN NN NN
NN

T N\

alLg4swa9

— 00G

— 0001

— 00G 1

/

pesayssng Idd %

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101

PCT/US2016/066188

20/90

(o]
o
]

(o2
o
]

% CPI overhead
) I
o o
| |

|ootsmenms

S OO F LSS
Qx x'\oégong\g x x__\
e C)Obz’@@o XC) ><e
.
Y
250
< 200
©
2
S 150
3
= 100
0+
OO .3 N 09 O
N 503@\‘;&?’9;&‘;3@‘\5\ cﬁ‘l@A
Qx N N Obzv N
N S S
C)O Q@ X X
Y N\
Y

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

21/90

V1—0ld

N

(7=N yim zB1y) anoqe sy jo e aAoge Jo Jonpoud SJUBLIAJD § YIm BInjonss anogeayjoje | susodwos
2 | Spomuosprurey ndut j018s ‘0 | O wiod eyep Awbsjui-mo|
vl | swnazdonidonio — Y ¥09Uo pauyap-iasn | (SPIO+3PO%#)” | pue suoponssul uo pi-juiel-eainos ‘ap0d pajsnuun | Bumyoes] juie]
(winyas ‘e Buipnjour) yied moy-jo5uod 5 1ob1e) pue 2inos mop-onucd | (asnal aped/doY/dor)
] sdwn(j0811puI U0 j) —== 9d sweiboid 3 (/9'9d) SlaIB SO J08JIpul Yoea uo pi anbiun Bumoely moy-jonuod 149
Peo| uo(&) peopfed —m- Y 10j09 Uoibay (soojew) suoieso| Alowsaw uo 4ojod peojfed | desy uo uonejoin fisjes
[21] ‘QNS/PPB/AO U0 jJ0 —= Y | poouslajel == Jojod Jajuiod | ¢ + Jojoo uoifies ‘siayuiod o Jojod | Aiowsw [eiodwisyjeneds | Ayajeg Aiowap
8lUM U0 3000= /A SUOREI0|
ou 3009=10 ¢ Rowaw uo 3009 Jo ¥1vd uoRoaul apod | OMN+AXN
. S9Ny , sbe]|
joy uonebedoiq Be| (¢ moje) yaay9 be] anbiun Xe ejepejop Jeay) foijod

saloljod pajebysaau] jo Aewwng - | 319V1L

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

22/90

GT—OId
A

pajebedouid 1o paxoayo syndul asayy uo bey si = YW 7240 ‘1do

pajebedoud Jo payoayd Bey uononiisul JuaInd sl = |9
Jajunod welboud uo Be) sjgewwelbold = g
}nsau jo bBej sjoeduwi Aoljod = Y

suoneltado Buimolesip/buimole 1o} 2160| = ¢MO||e
(X) ssaJppe Alowaw jo Aliadoud e siJo () ejep yum sajebedoud Bey = ajebedold

N

sbey pazis-sopuiod ‘siqewwebod Ang | AV A | A £~ | 2~ pauLop aIemyos /| pepunogup
sadA} ‘moy uonewuour | A N N rlo2 PaULap IEMYOS N 90
Bununoa aouaisyel ‘Bupjosyo Aowsw ‘yuie) ‘ojqewwesbord | A N N X X X paulap JeMyos N z
weygaxap| A | A | A | X X X paulop aIemyos /N "oedsun
uonejostwiey | A | A | A X X X poxy "Boad pajjui) A 0l
uorjejosi nej ‘uoisodiajul ey | X | A | A | X X X AyewiuresBosd paywi A 14
weyw A A A X X X poxy paxy s |
Buijoayo JueLeAul auo Ajuo ajebedoud X pauLap SJEMYOS N 0
foges fowaw | A | X ,r X X X fdoo paxy N 8zl
sady| X [A | A | X | X | X poxy pex) A 8¢
safiiqedes | X X| /M| X X X X paxy A |
uoneziuoiyoufs pauesb-auy | A | X X X X X poxy paxy X A
uonelos! ‘ejepajqesbioun [A | X | X | X [X | X X "Boad pajjui) X 4
uoiejos! ‘yoejs ‘ausibAy Aowew | A X X X X X X ‘Boud payiuw X PIOM
uoposjoud Auowsw | A | X X X X X X 10s X A
abesqy YN 1201 o1 10 | od | od 1(nsai)y | ¢molle |iajebe| g q fp)
syndu| s)nding -doud

sowayasg buibbe] jo Awouoxe] - z 319VL

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

23/90

WO 2017/106101

O1—-DId
N

(suljeseq Jano %061 +) wwigLe'y ealy pabbey-qyg [ejo)
ZWwiGgy’| ealy auljsseq [ejoL

¥ 00€€ G80'0 yryieL) ¥66°0 Jno gz, ‘yojew qgze ‘Anus 9607 ysey-wnw | Beyapg ¢-dNnd 21
! 008 4% 29/18 €89°0 Jno ggz), ‘yojew qgze ‘Anus #z0) ysey-pinw

(8ous1ayai Joj Ajuo umouys pasn jou)
14 000€ - 006/0S. 00G°} | Inoagz) ‘yorew qgze ‘Aus g0 sayewosse Ay | Be) qpg ¢-dind 11
ock - - 000°LE - | (sessuex sad su gy9 ‘o) sull g8z} ssea0e ‘go), | pepusixe Be g9
00} - - 000'GL - Josuey} sad sul g9 sseaoe ‘go) | auleseq AYNa

(apue)

! 008 Z G'v/9°C ¥0°0 '008Se 108 Aem-g gy} EhiE| gl
G 0c6Y v12°0 £2C1/85. 05€'C (oul/ay9 ‘ae)s 4e) sulyggz fem-g ‘A | popusia Beyqyg | (payun)
G 000¥ LLL0 L 8Y/E6E 102} oul/gyg ‘femg ‘gyzlg | suleseg $-71
) 088 Syl 161 4ZA (oungyg ‘ayze o) aulyage) “Aem-y ‘Gxyg | popusixe Beyayg | (g pue)
) 088 a4y’ VUL 9€Z°0 aulgyg ‘fem-y ‘ayy9 | - suleseg ¢-11
) G6¢ €20 vLI0L 1000 {Buneoyd z¢ ‘IaBejul 8y} ‘MiNZ '8z} | Papusixe Bey g9 | (d pue i)
! ¥92 800 G0/€°0 2000 {Buneoyq z¢ ‘ebojul ze} ‘MiNz ‘ap9 | ouieseg | oy Jeisibey
%9 | fovener | somoq opers | Ao seoan | Gony uopezuEBI0 ubisaq | yun

9pOoU WUZE Je S10SSa01d papuaixs-diNNnd ajdwis pue suljeseg ayj Joj sajewisy 32inosay Alows| - € 37GVL

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101

24/90

PCT/US2016/066188

TABLE 4 - PUMP Parameter Range Table

Unit Parameter Range Final

L1 PUMP-$ Capacity 512-4096 1024
Tag Bits 8-12 10

L2 PUMP-$ Capacity 1024-8192 | 4096
Tag Bits 13-16 14

UCP-$ Capacity 512-4096 2048
CTAG-$ Capacity 128-1024 512

FIG—-17

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

25/90

WO 2017/106101

81—OId

A

(Suljaseq Jan0 %01 | +) 7WWIQZL'E BBV [eJ0L

4 004} 6000 6€1/9S 1010 Ryue-Z).G yseyninw | sBey qpg 84289 OY19
£ 0€.2 Ge00 6.7/961 L1180 Jno qgz), ‘yojew qgze ‘Anus-gy0g yseunnw | sbe) apg 949 doNn

! 08. ¥000°0 1180 000 WYS 7L XL | dp) <—dp) | Be1-g] —=—bey)]
4 if4 4! ¥00°0 L7188 8€0°0 WYNS 1L XY9) | Q0L =—0pl | Bel)] <=— Be)-
4 004} 1200 G'1€/6°6S 9120 WYHS 79X Y9l | Q79 =—0pl | (I —=— Be)gT
¥ 00¥€ 2500 9€7/991 v yseymnw ;o Gy ‘yolew 9 ‘Anua yg [qy) -—ayg | Belg] —e— i
£ 0082 200 192/7'66 1820 Jno qgg ‘yojew qg, ‘Anus-960 yseyninw | Bey z1qp) 84289 diNd 71
l 02s 444 2'evIS) $60°0 Jn0 407 ‘yojew qgg ‘Anus-yg0) yseuymnw | Bey 1740} 84289 diNnd |1
Zhl - - 00§'ZL - (892 8row) suj g8z} $S9008 ‘g9)} Ber-qr9 L

! 008 4 G'y/9°¢ 070°0 "008se-jos fem-Z ‘gy) - g1l

S 009% €eL0 0v9/EYE A (oul/gy9 ‘G)zIS ‘Ho) sulydg, ‘fem-g ‘axzes Bey-qp) 84289 71

| Gl6 79l L6l 20 (oun/gyg ‘axy9 4e) aulay. ‘Aem-y ey, | Bel-q0) 8. |1

| 09¢ €0 S00 5000 {Buneold z¢ ‘1ebeju) gy} ‘MIYZ ‘avL | 0I Papusix3 9]l4 Jejsiboy
k9 >ko%~._ ho%ﬂw\mmvﬂm m%.wmﬁﬁwwwﬂ WMGV uopezjuebio ubjseg nin

9pOoU WuZE Je S10SS990.d paziwndo-dINNd 943 10} sojewn}sg 99i1nosay Alowa - § 379VL

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 26 / 90 PCT/US2016/066188

Algorithm 1 Taint Tracking Miss Handler (Fragment)

1: switch (op)

2: case add, sub, or:

3: PCpew =— PC

4: R -=— canonicalize (CI ¢/ OP1(OP2)
5. (... cases for other instructions omitted ...)
6: default: trap to error handler

A4
FIG—-19

Algorithm 2 N - Policy Miss Handler

1: for i=1toN do

2 M; <—{op, PC[1],CI[1], OP1[1],OP2[I1], MR[I]}
3: {pc;, res;} -«— policy; (M;)

4: PCpey —=— canonicalize ([pc,, pc,, ..., pcy])

5! R —=— canonicalize ([res,, res, , ..., resy])

N
FIG-20

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188

27/90

Algorithm 3 N - Policy Miss Handler with HW support

1: for i=1toN do

2 M; <«—{op, PC[i1],CI[I], OP1[i],OP2[1], MR[I]}
3 {hit, pc; , res;} <«— UCP-$ (i, M;)

4 if 1 hit then

5: {pc;, res;} -— policy; (M;)

6 insert {i, pc;, res; } into UCP-$

7: pc[1..N]=—{pc,, pc,, ..., pcy\}

8: {hit, PC.o, } =— CTAG-$ (pc[1...N])

if thit then

10: PCpew —+— canonicalize (pc[1...N])
11: insert {pc[1...N], PCpey } into CTAG-$
12: res[1..N]=— {res,, res, , ..., resy}

13: {hit, R} <+— CTAG-$ (res[1...N])

14: if ' hit then

15: R -=— canonicalize (res[1...N])

16: insert {res[1...N], R} into CTAG-$

©

~
FIG-21

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188
28/90

WO 2017/106101

A
I =
“ _ 1 apoodo
o ‘0d — Q Wwa h \ -
“ 19 [" [
[L _ =
(|
| | (—
“ I \ Od
“ Wa\ M m (N
1 — @ | \ —
I — //,whﬁm_mﬁ ¢O £ 1
! e /7 sujadid “ (
! T o / _ . HM—ll—1do
=
ez s (|
BEs = 8] \ —L0—1¢2d0
SSIN/IH—H & = J
|2 : (
L diN
“I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I“ /f XSEeN
(DHWP Moys sj|iejop) Alowa|y aARIDOSSY aJe) juoQq

91N}23JIYJJIROIDIN pUue moljjejeq ayaded a|ny diNNd

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101 PCT/US2016/066188
29/90

PUMP Microarchitecture

opgroupl
P‘?tag—» - L1 = PCtag
Cc?
1tag—> mask = PUMP-$
< %Pltag—w= out - —— TeSt40
op?2 logic
Potag—m ™ [Fast-Value
MTE g —] = AMHC(4,2)]
L1 Miss i—ﬂ:— Lﬂ:
> >
3 - L2 B 3
3 - PUMP$ [] =N
3 f - — |}
>
S ™ [Two-Level |—m 3
B o AMHC(4,2)] |—a=| &
< | N

— = b)
ks s ucP$ || CTAGS £
© o~
c o 3
£5 % |
n = g> *
é’ R [Two-Level | | [Two-Level ~
3 dMHC(4,2)] | | dMHC(4,2)] E
tag compression T T l tag decompression
from/to siw from/to s/w

L1 Hit

L2 Hit

A4
FIG-23

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

30/90

WO 2017/106101

Ye—Old

Al
—| BUO|<-Z] | SSol |[—e=
dANd 271 $271 payiun -dwod NVdd
t— 7<-BUO| |u—| (3Q) |wu—
Hwwo? dnnd] Aows |\ 9)noax]] apoo9(]] 4l
V1<-21| | 21<- 11 17 <-271
R I
~— ~— sbe | sbe | sbe |
UOIEN | w— dANd |<a— I i
dnd =— 17— $Q-11 = dd8 [T $I-11
 —] | — *
- don - dnoibdo
~-— oJe) Od
~—— OV 10 [=— Luoed bel0d

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

31/90

T DIA

1106
uonerodo JINNd 10F PO opowiSejwr MAIN 00Lx0 V7
dINNd ©1 2N JO LM SIS WS SIYL 0] LM — P106
SUOTIONIISUI WOLJ 1JNS2I ATOWSW 10 I9SIFAI (T uo aoe[d 01 Sej, geus NS 1ASX0

uononisut Jo uonadwos uo H4 uo 20e[d 03 Sey, Sejodmous NS 0dsx0 4106

(u2A2/ppo

ST STU] “H9=1[JSUS[PIOM PIT3Te) ‘7E=UISUD] UOIIINIISUT UDYM)

(Dd 21 JO S31Q M3J B) (SUNNIIXD 9M 2JE JUO [PIYM
‘suononnsur ojdnnu 03 sarjdde Sey o1Suis © uaym nsurqnss AMAS ASX0 — 0106
uononnsur wolj gouny c1vungs MAS LASX0 — uro6
SSIW 9Nt 10} S} Alowouw Sejuws RIS 9SX() w06
SsIwi 9[nI 10} 58} €Sy SeygsIs AAS cAX0 — 1106
SSIW Q[N 10} o8 Y OBYCSIS MAS PASX0 — Y106
SSIW o1 10J e} 1S Seyysis MAS £deX0 |— rro6
SSIW O] 10} S&) (UoNoNIISUL JUSLIND) 1)) Seyos NS 7dsx0 |— J 06
SSTWI 971 10J Se1 DJ seyads ANIS 1asxo 4— 5 06
SSIW 9N 10} dnorsdQ) drsdos MAS 0d¢X0 +— S106
Usnjj dINNd SIS YSD SIYI 01 NI ysnpduwnds MIS DISX0 +—1106

9[qe3 OJUI UONIISUI SIASSLI) S SIY} 01 AJLIM
‘o1qe ares/dnoiSdo o1 oyum I0F BIR(onpeadiSdos NS 62sX0 127106
(¢1oung|(¢ > >opooado)) o[qel 21es/dnorsdo 01 LM J0J SSAAPPY 1ppedigdos RIS gYcxn +P106
SeJ imejoq Senmejops AS 70¢x0 2106
Surpoouy ey, paisnnup) “onqng Jsnpungnds AMS 1DSX0 14106
(peo1 uo paresyd) SO 10§ ey densioog Senooqs IS 00Sx0 F— ®B106

uondLosaqg oweN ogoaud SSOIPPY
/
N 806 N 906 706

/ <06
J\oom

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

32/90

9¢ DIA

/7

1ndino diind Jo "doid ynejep | N ‘s ‘H ‘N leuonesado pue pabebus JINNA | LLL
1ndino 4iiNd Jo "doud jnejop N ‘s ‘H |euonesado pue pabebua Jinnd | oLL
indino diiNnd Jo "doud jnejop N ‘s |euonesado pue pabebua dINNd | LOL
indino diiNd Jo "doud jnejap Ajuo n jeuonesado pue pabebus JINNG | 00L
Beninelop s)ynsal |je uo Bej ynejop auum | 0L0
palepdn jou 4o | 000

Buipooug

s)ynsoy bBe| uonelado opowbelw

// 916 vio clo

JIL6
2116
PLIOG

2116
qri6

BLI6

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

33/90

WO 2017/106101

Lo Ol

NOLLYIOIA
AIHN03S
Bey 0d mau .\ -co0y T M
f H
bey jnse. m m\ !
diNnd I !
e i:/ w
N LR 1T LI |
3 L. i by i
e e 0 -
N oo D900 |
V| ~Psool ! e M
! ! O m j
f { i \ VAN !
P o i Bg00 I % % % “
. M AHOWIN i m !
T f 1 i
{4y i i
_ R 00000 |
3800~ =Ll pLoos 14 _
Tii4 o m P $ wlsomy |
SERREN e 1 | || |
] S BE 0
qeo0 | — L mn [y o 4 5 aLoot _
THOLS- i =] M
i t
m — 3600} m
i §
o oor i
eiep | Bey P AELSASENS _
\\ \\ m ONISSID0Hd m
qzool”’ ezool T e
— v ﬂ
o 0001

<00}
WALSASENS

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

yloL
A

8¢ i

VR
EyifL

(dnusiug

SSIN

ﬁ

Bey mau Od

W

-

ey

w

%

W

HVd (NGILLYOIHIHTA dWNG TYINEON

w

w

(NOILHASNE

3

TOHINGD

diNiNd

!

!

!

|

w

!

!

w

%

!

BZI01 Asuigns {ouny) dibdo Beyw Beycdo Bejgdo Beyido Beyo Bend

2UeD

S

zZioung

10
Be1NsD

e

AL

%fawow

opow)
be
Alid
Asul

mwmwﬁo\

9101

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

35/90

6 ‘Did

5201
A
- s
alen diBdo (5 ebers oy
bt j
% | S
.. (9ebes oy FTOMINOD
8001 oo HIVA dHOOT WAHON INOILYISNI ~e— Ul (7 808)8 Wiowy)
Elepd | 318YLd0
w m ~— E1ep1do
ﬂ m ’
Ze01 {c afiers wioyy)
clouny{e>»epondo)

%fmmmw

S 9701

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

36/90

0¢ OIA

8€01 1099s Sey indinQ

9¢01 dnjoof ayoed 9y

€0l yseH

Z€01 SunyseN

€01
[onuo)

dN(1d

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

37/90

1€ DIA

(((NSH dINNd == dpowse}) 2979 (IN==2411d) ||

(NSHN dINNd ‘NSH dINNd) Ut opowsSel) 2279 (H==A1d)) ||

(NSHW dINNd ‘NSH dINNd ‘NS dINNJ) Ut spowiSey) 7979 (S==aud))|

(NSHIN dINNd ‘NSH dINNd ‘NS dINNd ‘1 dINN) Ut spowide}) 279 ((1==Ald)))= peSeSuyg N ool

(((spowSeraud)posesud)

»®
D1ed SeIMAU D “F9)

L TPOl 1039998

LYOT (((epowsSe: ‘aud) paSeSus) ¢rOl
Se1 y % Se1 mou HJ #
31qQ 218D Sey “59) 1q
P01 BEROL
BlSLEIEIN
A A A F
qst01 qIr0l1
sindur 1010 mwmmﬂovw 581 Dd Se; BMWWOO.W

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

38/90

€901

R 4

¢ DA

CGOlI FSO1
A
[\ \
Beiodmen Deyd Bepy Begdp Bepdp Pendo Beyp Bmnd epoodp
i i
OTIN
>,
. | |
| o] [® o O [(P B s]
| | T~ ocor
SO SN, JES TR SR Swes AR
M W m * ~ m m " Enido
feyy Bepdo Bmgdp Bepdp Beyn Baipg epovdp

\ \

448

J\oﬁ:

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

39/90

Lo i

\\mmmow

= ¢a ™
1601 2eo
dd e bew \\ £SO
B0 |~
&
MG e M
i
3IOVLS JOVLS JOVIS IOVILS IDVLS IDVLS
% 4990} | ~az90L
STy 9
890} —""1 awnd diind /x
o Syt
SIe3/0I030
29901 \\\ By80L dwind /
9901

ﬂmwom\

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

40/90

¢ "DIA

$0¢

o107 7 uonodnnsuigns | G0 1 vonsnnsuIqns
qz0T SeL
ononys uononnsuy
/aononnsuy / N\ oz
B0 7 UONONIISU] »Z0Z SRL
N\ 10z

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

41/90

¢ DIA

~
ByCT
[~~~
arcc
BETT
qeceT
BTCT
qcee
Z uonoNIISuUIQnS 103 Z Se. [uvononysuiqns 103 [Sey, [<CC
S0cT
> | ¥44
o uononnsuiqns | GF0T [uononysuiqns
et o qz0z Se,

juonoannsuy juononnsuy

N €0

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

42/90

WO 2017/106101

71 S Suiaey

\\\\\
pEZ TX UONEOO] 1051e)

9¢

‘DIA

——

vEET JBq |
Jo opoo)
|_— ‘O1eq R0 —
| ;
}1eq 3§) o0
~ AN
€€T Lez

[.L Se1 Sulaey
TET 1X UONBOO[90INOS

J\omm

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

43/90

WO 2017/106101

8¥¢C

LE DIA

LyT

ULyCT
(9Z18) 20INOS PAIMOIY

qL¥C
[92IN0S PAMO[[Y

©LHT
oz1g

[~~~

ugyc q8t¢ BRYT
(9z15) 90INOS PAIMOI[Y| =~ ° [1991n0S pomo[y 271§
49T 398 201008 | ([INN) BOVT [~ o7 QS 198 901n0s | ([[NN) BSHT
PIMOTIY [p1o2IN0S POMOIIY | P192In0yg
qevre <_
BEYT
qzHT wmvm iz
7 uononisuiqns Joj g Sef, [UORONISUINS IO T SEL
$0T :
A 14T
o107 T uononnsuigns | 40C [uononnsuigns
qz0T SeL
ononns uonINIISUL
/uonsnnsuy / N oz

44

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188
44/90

WO 2017/106101

8¢ "Dl
pPogT 9967 qosc NAN
DOLY 8205 SO N

SUBSTITUTE SHEET (RULE 26)

ST
; ¥ qzse
ST . ©ZST
ifs,ei;fse
:ﬁf.;.??
geEL o — OsC
,.‘}f//v
qi<c BICT 371
Z uononnsuigns | 1 uononnsuiqng 157 Sey.

PCT/US2016/066188

WO 2017/106101

45/90

6 DIA
yooz | 899z Jooz 9997 P99z 2997 Q9927 ©99T
3 103 g Sel |, 105 £ Se1|od 105 9 SeL| g 10F § SeL| g 103 + Ser| cg 103 ¢ Sel| g 103 ¢Ser| 19403 [Ser | (8 =29715)
BGOT 9ZIS
997
Soz
A
8d | L9 |od | sd| vd | €d |zd | 19 ©z9o7 Sel,

N\ zoz

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

46/90

q89¢

0oy DIA
5307
gd pue [J99T 299C p99T 299T Q997 89T | (£ = oz15)
L€ 10} L Se]| 99 103 9 Sel| € 10F ¢ S| v4 10F t Sel| €4 10F € Se] Td 103 3R 19103 1 SBL | qeg7 ozig
$9T
A
8d |La [od | sa| va | ¢a |zd| 14 ©797 Sel.

N\ zoz

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

47/90

{1 :onyea Sel.

R oFur1 914g

L1 on[eA el
Lg oSue1 a1Ag

/swhm

\ Sg/7

91, ®

og :oSur1 914g

Iv DIA

1 :onpea Sex,
g 98urI MAg

\ pssz

nea sejy.

G1 'onpea ey,
¢g :oSue1 91Ag

nd Emi bm 1391
duou :anfea Sex,

89d-,9 :oSurl 91Ag ,/_wohN

T~

\ 1812

\ og/z

€1 :onyea Sey,
g o8urI NAg

\ og/7

Z1 on[eA el
zg oSue1 91Ag

[1L :9npea Sey,
19 oSue1 91Ag

ndysry nd woA
Quou :onyeA Sel
og-sg :oSue1 34g

ndiySry nd ﬁ.oq
suou :onyea SeJ,

pa-€d P8ue 9314g [Sq9, 7

/

nd Sty nd %oq
Quou :9nyeA 3eJ.
89-Sg :oSuel 91Ag

ERY%

avLT

N\

\ qg/7

\ eg/z

nd Ewa nd tmq
duou :onyea FeJ,

79-19 :95ur1 91Ag

[~~~
BOLT

—

ndiysSny nd ﬁoA

Quou :onyea SejJ,

yg-19 oSue1 914g
»>

eHLT
Bdysrg nd yo]
Quou :dnyea Jey,
8g-14 Surr a4g [N 7.7
9z Lz
A
s L9 | og | sa| va | c¢d |za| 14 vzo7 Sel
N\ zoz

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

48/90

¢oC

v DId

eg-19g :98ueIl 914g

[INN -Bd 1ys Ty
[INN :nd 1397
[L :onpea Ser,

/wN

8d

Ld

od

¢d

vd

£d

cd

1d

©Z9T Sl

N\ zoz

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

49/90

¢v DId

wop |- COF

eor |- YOV

H0r qv o
Vv opoodo gpuny beoy Liouny
IT 2L 1 SI YT ¢z
OF0f oy arov¥
V apoodo grpuny Z1Iouny
IT 2L ¥1 SI 61 0T

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

50/90

(sindino pue
sindur JINNd 10J 10199A 11q 9I8D 1, UOP/2IEeD
‘dnoi3dQ)

¢ siding

v "DIA

(444
91qe1 Surddew apoddQ

«— 1P
opo2dQ

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

51/90

Sv DIA

XVIN SS21ppyY
eoEY Sy
1 A @Sueiqng v ofeq
0 SSOIPPVY

N

9¢t 20kds SSOIPPE [BNUIA 7J SS900IJ

XVIN SS2Ippy -7
\\\
\\
\\
erey e
[X 2SurIgng v oSeq \\\\
~
0 SSaIpPV /

p et oords ssoIppe [eNUIA [SSO00I1J

BZEY K94
V 98ed sSey.

\

7€t sosed
[edIsAyq

J\omq

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

52/90

9% "DIA

uImey

/%

~

90§ zed °10s

uImey

, qr0¢

A\\\g\\

N\

0¢ Ied

™~

20S 004

/.VA||

T 7RG [[P) <—

> -«

| rgED <«

A

LA

X

IX

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

53/90

plemumop
SMOIS MOuIS [[ed

Ly 'DIdA

BOTS VY

Q7S dwely Jor)S
183 CH

ByTS VI

7S Qwely yoe)s
[ILERES)

BT VI

7T S Qwelj yorlS
[0 0o

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

54/90

¥pd

epd

(4%

8¢S ($9)ssaippe uInmdy

9¢S piomssed

pes aury

[P -

Z€C Aeiry

|

£¢G saeL

N I€S

87 'DIA

promssed ju1 |
[08] oury reys]

[01] Aeaae 1ur —

AN

L— 201§

— q0vS

|_——E0T ¢

012

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

55/90

8¢S ($9)ssaippe uInmdy

Spay
0€G pIomssed
opoy A reg aurg
spoy Z€C Aeiry
ﬁ N I€S
£¢G saeL

6y "DIA

promssed ju1 |
[08] oury reys]

[01] Aeaae 1ur —

AN

L— 201§

— q0vS

|_——E0T ¢

012

SUBSTITUTE SHEET (RULE 26)

0¢ 'DIA

&
2
S
&
=
)
=2
=
@)
=™
— dwlSuoT :ZX
. +9O¢
puoo9yg
N -
~
\O
L
puodag coc
[1ed ISILg
A
=
< ———— L XHAN
= 1811 [[e2 udy)
= dwhosi) 11
S ((dwfosj) Jr:1x z9¢
= UrejN

SUBSTITUTE SHEET (RULE 26)

I/ 1TV

PCT/US2016/066188

WO 2017/106101

1S DId

3uLI0[0)

SSTTIEde))

yoels djereday

ssd001d 9eredag

O[QISSOOOBUI RIS PI[[BD BN

9pod
Sy} AQ pa[[eO suonouny Aq
3OBIS UO 1JI[SWId)I peay

SuLI0[0))

SuLead 19151521 J1[dxg

ssao01d aeredag

SISISI
uinjai-uoundur-uou Ied)

9poo
s} AQ pa[red suonouny Aq
SIDISISAI UT 1JO] SWII peY

opeu 9q UBD JBY] S[[BO WIISAS JTWIT
9[qISS20® WAISAS 1 JO uorpod rwg

<

99]eo 01 9[qISIA sanIjiqedes
[011u0d pue AJLIOYINe se DJ el

939[1A11d 1SBJ[01 AJLIOYINE JIWI |

Auoymny
pajoadxoun asoIoxyg

[[BD PR1LWI] 90INOSAY

peoiys .Q#KLGCA—&U

00[]BD JO SOOINOSY W]

$92INOSAI Isneyxyq

[[e2 PWI] UOTIONISUL/QWIL],

pealyl areredag

INOdWIL]

UINOY I0AIN

|~

WSTUBYIIA

UOTIOY QATIUSASIJ

1uaA21d 01
JOTARYQQ SWITIUNI/WI]

- 9TLS

- PTLS

ICTLS

- qzLS

BCLS

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

58/90

WO 2017/106101

¢S DIA

Auoyne
$$909¢ Aq 191ur0d uImal Sy - Ayiqede))

SSOIpPE UINIdI
SULIOIS UONRIOT YIk1S §P] -SULIOJ0)

Soels eredas

ssoo0ad ojeredog

SSOIPPE UINIDI 199)01J

(1urod
UINIAI IMIDAO “°F9) X1Jo1d
Ul MO[J [OJIUOD JOIIPY

| uzLS

SULIOJ0)

sopiiqede)

yoels djeredog

ss9001d ojeredag

orqissoodeur xigaid yoels e

x13o1d
JOrlS Ul SWA}I peay

_~ STLS

SUI0[0)

soniiqede)

SOBTS JTeTedag

ss9501d 9jeredag

9[qeILIMUN ISIMIYIO
Io 9[qIssooorul x1jo1d yorls oeA

xpyaxd yoels
UO SWIDIT JOAO ILIM

| JTLs

WSTUBYIIA

UOTIOY QATIUSASIJ

1uaA21d 01
JOTARYQQ SWITIUNI/WI]

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

59/90

¢S DIA

Auoyne
$5900® Aq 19jutod uinidx 3el - Ajjiqede)
SSQIppE UINIAI

SULI0]S UONBIO[JOrIS SB) -5ULIO[0)) urod wnar 199101 1orutod wmar Ajipoyy p— 3185
SULI0[0))
sanifiqeden) 2pod 918
jyoels deredag Sy} AqQ pa[red suonouny Aq —
ssao01d a1eredeg 9]qISS900BUI JOBIS [[BD BN 3O€IS UO 1J9[SWId)I peay
owely Aq SULI0[0d
WY | _ PISS
owely Aq sanIiqeden SowRIy AR[OS] | JOSssaoapard ur swIl peay
owel) Aq SULIO[OD owrely - 2I8S
10$S929pa1d ur swar
awrelJ Aq sanIfiqeded SoWIRI] 9JB[OS] POPUSUIUN JSAO LIA
103[qo AQ 100D q18¢
-
107100 Aq sanipiqedes ASo1u1 3109[qO UrRIUIRIN PWEILJ JUSLIND UT SWA)I PeY
109[qo AQ 10[0D QUWIBIJ JUIIND UT STUII - ®BISS

1921q0 AQ sanijiqedes

AIS2au1 103[qo ureuTeN

POPUSIUTUN JOAO LI

WSTUBYIIA

UOTIOY QATIUSASIJ

1uaA21d 01
JOTARYQQ SWITIUNI/WI]

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

60/90

019

sanu Aorjod 1)) palepifea
JO 19s puoo3s Suisn
uonNnNIIXd WeIsold puoddg

809 Ssont

palepI[eA JO 195 PUODS

909

SuIssa001d uonepIA oY

09 sanl
pPoUIRS[JO 19S ISIT]

"sotnu Aa1jod 14D ou yim weisord umy

vS DIA

209
sa[nr Adrjod 14D ou yam
uonnNoIxd wersoid 1si1g

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

61/90

‘uoNNdIXd wessSold anunuod put

¢¢ DIA

‘uonnodxd wessold doys /
8¢9

19§ PUODSS O} NI MAU PPV

< (I_Jsuen prjeA

y

~
959 SHA €9

"IQJSURI) [OIJUOD

uonnNdIXd wersoid anunuod
pue I9JSuBI} [ONUOD WIOJIdJ
"JQJSURI} [OXJUCD IOF SISIX [Ny

pa102dxoun 10J Suissad01d uonNEPIRA WIOJIDJ [~ e
SHA
(poroadxaun
SSIUW YOBD A[NY
~
8¢9
ON 979
‘powiogiad [0nuod Jo IoJsuen swnuny L 79

y

"S9[NI pajepIeA JO 13s puoods Suisn weiSoid ajnoaxyg S

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

62/90

WO 2017/106101

9¢ 'DIA

039 ‘Ayronrd paonpas ‘sarorjod SANOLIISIT 2I0W JO JUO JO 198
Sursn uonnNoIxd weisoid anuuo)) "UONBPI[RA IB]

JI0J [0J1UO0D JO J9JSueI) PIIdAdXauUN pIoddY [~~~ 6€9
ﬂ SEA
'$9101[0d JO 198 1SI1J SUISN AINDIXD
pue I9JsueI) JOJUO0D ULIOJIoJ ,pa1oadxaun
J9Jsue) JONUOD JOJ SISIXD Iy [SSTW SYOLD [Ny
89 9T9
ON
"pawrogiad [01U0d JO JoFsURL) dWRUNY [+70
r
"SOINI PIIBPI[BA JO 19S puodas Sursn werisoid a1ndaxg .

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

63/90

0L
$92IN0S

Azowow
pag3eIun

1410

A

91L
AIOWON

pasS3elu)

SIL
(po8SeIUun)

A4

oLIqR,]
109UUODINU]

qt- 1,51
doip

SELIN

2CIL

e[/ Se)
PPV

VHd [euleixy BlRP

pasSse

qcIL 1D
NVdda

LS

DIA

01L

A

BCIL
NOY
1009

(po83e1)

oLIqe]
199U U021} U]

h 4

80L

($1 171) yoed
uononnsuy 1

90L ($A1D |«

oyoeo vle(q 11

vOoL

dNd

<0L N1dD
A-OSTH

J\oon

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

64/90

oTIL
NV [euIxyg

\\D

L

BIEP
pasSse

qcIL 1D
NVdda

8¢ DIA

01L

A

BCIL
NOY
1009

(po83e1)

oLIqe]
199U U021} U]

h 4

10
$92INOS

Azowow
paSSeiun

P10

80L

($1 171) yoed
uononnsuy 1

90L ($A1D |«
oyoed vle(11

vOoL

dNd

<0L N1dD
A-OSTH

J\oﬁ

SUBSTITUTE SHEET (RULE 26)

6¢ DIA

PCT/US2016/066188

65/90

WO 2017/106101

qTEL 9YO®I|e o
10L uonoNISuy
$90INOS z€L (pa33eIun)
Atowaw Ndd A-OSTd
paS3eun [&—> BTEL | e—p
PO <+ oyoBd BIR(Q
SIL Q1,581
(poS3eIun) doip
91L ouqed || srepren |
AJOWAIN J99UUO0dIAU]
pasSSeiuny [ep1/ S@1 80L
] PPV «>| GITDWEN, o
uononNnsuy 1
9TIL aiLm | o
NV [BUIIXT BIRp Wvdaa | (po55e1) 90L ($d1D |e
paSse) ouqe, (¢ ayoed vl 11
159UU02IIU]
BCIL
WO¥ > 0L <0L N1dD
100g dNnd | A-OSTH

J\omn

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

66/90

0L
$92IN0S

Azowow
pag3eIun

1410

A

91L
AIOWON

pasS3elu)

SIL
(po8SeIUun)

A4

oLIqR,]
109UUODINU]

vvL
wI)xXyg

2CIL

(445
wIuy

VHd [euleixy BlRP

pasSse

qcIL 1D
NVdda

09 DIA

01L

A

BCIL
NOY
1009

(po83e1)

oLIqe]
199U U021} U]

h 4

80L

($1 171) yoed
uononnsuy 1

90L ($A1D |«

oyoeo vle(q 11

vOoL

dNd

<0L N1dD
A-OSTH

J\oﬁ

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

67/90

SSIW 9YOLD 9N udYy}
(Se1 YN = 101pard Ser YIN)LON J

19 DIA

eg0g sindui 9
aSe1s 10410

908

I0J99[0S opow

/ 4808 308
ORI

JAIL1IRRIV)

9 9%5e1g

9608 PAIPaId
Se1 N

qs08 Se1 mauDd

A

es0g Sery

08
dINNd

H uonoIpald

08 sindur
dINd 1PY0

<

BH08 581 YN

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

68/90

9 DIA

Se ‘Se) YN Pa1oIpaid syl Sulpndoul 9N yIm PIULWLIDIRP SB ‘el Y 9s)

ndino JINNd 581 ¥ 2y

Id[puURY SSIW J[NI SUJOAUL
Su1s$2001d SSTW AYOLD I[N WIOFIJ

ON
/@mw

SHA

(e
=381 YIN PawIpad

‘861 YN pa1o1paad o) Surpnour o7n1 Suisn Se) 3y duTwIdR g

a Niss

d[nI Sy Azowdw pajoIpaid, Surydlew suTwIRg

‘opow
Suissaooad [euIoN

7'y
/ovw

SHA / 818

A0 110TLI)SUl uonerado
mdur Ajowd

P8

SUBSTITUTE SHEET (RULE 26)

69/90

PCT/US2016/066188

WO 2017/106101

]

S

o

7

BZS] Sl MouDd T cs8

€9 DIA

a+08
AI0=10193[0s apowr

,h uonoIpaI]

A

9608 el mauDd

== pajoipaid el YIA) e808

808
OB ATUIIO)
0 981,Ig

pPsog Se1 y

eg0g sindur 9
oSe1s 19110

08 sindur
JdINNd P40
708
dINNd
BH08 581 YN
qzzs

NO=10199[os opow
ﬁ uonoIpald

A

9608 padIpald
581 N

TT8 \4
dNNd 08 sindut

4

qs08 Se1 maudd

uonoIPaId dN[1d PY10
SRR

A

2508 Se1 y

— O6C8

___ 878

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

70/90

ed

79 DIA

<d

Id

qo011 L1owan

BOOI1

Q011 AJOWRN

011

qzOo11 Arouwdn

EZOL1

b/\oo:

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

71/90

€9 DIA

€d ad Id oq
R v v &
qoOTT ATowapy ¥9011 QbO11 AIOWSA erOTI qzor1 Kowopy [~
CIT1I
qo111 °2njg BOITL qr111onyd BPITI qziiieng °ZI11
@OJNH o /
pad p=A ITTL

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

72/90

qcoct
sindino

qzocl
sindino

99 DIA

YO€l
IQpuRY SSTW AYOBD S[NI

(MH) orempreyq

o€l
oyoed 9[NI

dINNd

BZOC1
sindur

'Z0€1
sindur

—

—

€0cl

10¢T

b/\oomﬁ

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

73/90

L9 DIA

(Se1 mauDJ “Tery “S9) &1 ¢ snsaz asodwo))

A

(8e1 moudg
‘Sery 59)
091 ¢1 smding

$

Il
0 Aorjod 10 19|puey
SSTW YoBd 9[NI MH

(81 moudg
‘Sery 89)
q91¢1 sindingo

$

(8er mauDg
‘Sery ‘§9)
eo[¢1 snding

1

ariel
g Ao1j0d 10} 19|puey

SSTW 27oBd o[NI M H

Bylcl
v Ao1jod 103 19[puey

SSTW 9UOBD 9[NI MH

(sSe1 ndur ‘opoodo “3-9) z1¢1 sindug

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

74/90

89 DIA

dLd

cdld Id

-

qoOTT ATowapy ¥9011 QbO11 AIOWSA erOTI qzor1 Kowopy [~
¢ITl
qo111 °2njg BOITL qr111onyd BPITI qziiieng °ZI11
@OJNH o /
p=d p=d ITT1I

b/\oomﬁ

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

75/90

v1CI

—

T TT ONeA UWINISY

Q121 Semaudd

ey 1Z1 Sery

69 DIA

-«

-«

-«

444!
Suissadoad

BlePRIOIN

(uoneuLIOyuUl
opoodo ‘sSey “S9) ezIZI
sinduy

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

76/90

0L DIA

egCCI
IL

—

q8<7Cl1
1a

8CCI 1Y

WITI
anyeA uIndY

eCTll , €Tl
10109108/ \

opoadQ
epT1 Sery
®ZTTI
SNJBA UIMSy
HhEFRd e[l
((Sergyg=5e17Y)
ceea
dNNd
®ZTT1

SUBSTITUTE SHEET (RULE 26)

WO 2017/106101

77190

1400/\'

R
5%
SO:
o]

s ©
~ R
Voo
—_ =
v =
1
N <
o O
<t <
— e

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

FIG. 71

PCT/US2016/066188

WO 2017/106101

78/90

L DA

‘Teuoneiado
pue pPaSeSud JINN YIM 9POD I3SN INJIX 01 Apeal 919[dwod
S1 559001d 100q UBYAN "OPOD 100q [BUOIIPPE O} [OJJUOD JQJSURIL],

A

— 8191

"Pa11sap sk sa331aLd pue sanuoyine ‘sanifiqeded papuIIxd YImM pOd pasSel yons Suipraoid s3e) opod [eroads
yim suoniod 9pod [euocnIppe Sel pue Opod [puldy Sl YS) FeN00q Jed[d ‘sSe} JO 19S [B1IUL UB 9)BIdUdT

0} SOTNJI JOFF 11} JBY} SUOTIONIISUI SIPN[OUT JUDWSIS dP0d Y], PITeIud JINNJ YHM JUWSIS OPOd NIIXT | 9191

U2 WIS

9po9 1uanbasqns Jo UOTINIIX FULINP JINd SOSBIUD 1Byl ApOoW 01 Y powisel d3uey))

— ¥I191

q

"Se) 1INeJOP SYI YIIM SUOTIBIO] AToWwRW Se) Jey) so[nI SuLI33L
SUOIONIISUI SUNNJIXS AQ SB) 1[NBJIP Y1 YIIm PaSSTel 21 SUONBIO] AIOWSJA Sl INBISP Yl Im
SuoI1Bd0] AlowowW sSe) pue A1OWLW SAZI[RIIIUL JBY] 90u9nDbas uononusul 9)ndaxyg

—~ CI91

y

h

"$][NSaI [[e uO sSe} }[NRIOP SILIM JBY} PO 0} S apowiSe) aSuey)) |

~ 0191

%

Se11nejop = YSD SeNNBJOP ~ 8091

A

A

‘wessold densjooq Jo uonnodxd els

— 9091

¥

‘Se1 densiooq= Ys) senooq T~ 091

4

3

‘Jo=opouw Se],

— <2091

b/\oof

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

79/90

¢L DIA

o 019
R Sepixu 1L ﬂ
Sepixu [, »
zddy 101R10U23 3B JUIR) SO 9701
z ey 1ddy [T€91 B 019
sermury 4 seppartr f 4
nuey 1ddy _le¢— 1ddv 1010003 JB) JUIR) SO < gey ey SO
e = Seno8 X Y PIZOI
e8791 _ 1
010 219
Se1ixu
sepury 4 |
zddy 1o1e1sus3 Sy 14D L LT91
7 1981e) 1ddw [0€91
seixu [T, % SeLXu L %
110818 1dd 1ddy 101810093 3B) [| < 3eyy m.r wO/
3eno3 A o1ZoT
BLTO1
— foile)]
919 SeIxu L % Felixu
Se1ixu
LIULL % 7ddy 101B10U53 3B 20[[BIA
192 AT0UIOWI 991, g I070o 1ddy MNE 9091
SeIxu IL 4 Seixu L, a
nd 10105 110705 1ddy4 1ddv 10gerouss Sey soqrey | € —— Jeyooyewr SO~
o«/SNE _ o A qareot
1192 10]0D)
o9 Se1ixu
~N Sexu % —
apour 19sn ¢Z97
¢ad A1 Jo uononnsul pagse], <4—— ¢ I933e) uononnsui feroads SO
Arddy Se1ixu %
291 7od £ yo uononnsur pog3e], <— 7 198Se) uononnsut reads SO ot
Arddy Seqixu »
12d.4 yo uononysur pagae], <4— [1933e) uonponnsur [eoads SO |€4—— 3ey uononnsut [erdads SO ~
pd Addy —5enes B9
epTol \ a
BETI1 S),\
moog
BzT91 1701 0¢91

€091

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

80/90

VL

DIA

2H0S | 9IIAIP [BLIOS
10 LIV
c0¢61
qQr0S1 € 901A9P dN(1d ¢—>
vINg pwemg [O/1
BROS 1Y 921A9p
ving reuweyg [ar1L5®
doip
SIL dlepIjeA
91L (paeSSeiun) P
AIOWON |<4—» ouqeJ 3
pasSeiun 199UUODIU] Er1L o8 —»
PPV
oTiL |, iLmo | o
NV [eUIIXT rlRp WVIa | @ME @MN
o53e :
p ! 199UUO0D I U]
ECIL
NOY >
1009

80L

($1 171) yoed
uononnsuy 1

oyoed vIR(T 11

90L ($A1D |«

vOoL

dNd

<0L N1dD
A-OSTH

b/\oomﬁ

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

81/90

SL DIA

ysnii dWNdOI siebbily ssaippe siy} 0} ajlnA ysnij 40X0 —leest
dINNdOI 0 shiels jinej/s|qeus sniels 30X0 | rrzeq
dINNdOI 8u} 0} 8jn. jo apim sisbbu)
‘Pl UCI}oBSURI} JUBJIND 38U} SBYdleW anjeA ajlum ay) usym HWW09 YoXg [feest
uolnonJisul Wouj Jjnsas Alowaw uo a2eld o} be| beu 60X0 — yzzer
uoionJisul Jo uoia|dwod uo Nd uo soed oy be| beodmau Q0X(k—Scest
ssiw ajnJ Jo} Be} Alowsw Bejw Joxor 2¢est
SSIUW 8|nJ Joj Be} (uononuisul Jusdind) |9 Belo POXOA— ozzs1
SSIW oI Jo] OB} g oepd O]
SSIW 3|nJ o} sa|geus a)Ag g|qeuaaifg 20X0 07zl
ssiW ajnJ Jo} dnoibdp dibdo LOXQ f— d9cest
Pl UoioBSURI) JUBLINd By} Uinjal speay —
'(yoiayaud Joy) uonoesuel; sy} SjusWialoul $SaIppe SIYL 01 Bl | PI uoljoesuel) 00X0
uonduassQ slweN | ssalppy
8¢CSI1 9¢Csl1 144!

b/\ommﬁ

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

82/90

q8¢sIT

9L DIA

BRECT

9¢GT duIqe paisnnun

qQsest

BCesl

-

PECT

O EGT 93pLg Isni],

qresl
sSe) 90149

By eSSl
dN1d O/1

2LEST %

qQr€ST sisanb3i
Pa1epIfeA

B €S| sisanbau
pailepleAur)

CEGT SHqe palsniy

N, LEST
$USO

b/\ommﬁ

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

83/90

LL DIA
BREST
PIYST oFels JIHS] € o8eIs
YORGIILIM BpPIEA
A A

qIHS1 T o3els BIHST 195818
Yoo} A1owpN 1sonbal 9A1909y

{ |

. } B
y _ |

oligey oeprea 10y do 2aes
epreA 10y dsi oaes
JepieA 10J bar aaes

dwndor 10y do oaes
ouge)

pajsniiun o}

dumdor 10y bor oaes
pajsnijun

asuodsal

woJj

pasnnun psisnaun

01 parsnn_dsr B 01 pajsn dINNdOI
_PoIEPI[EA” TRULy ds1 9jepipe
3491 \
3¥sl 1sanbal Mwﬂ
(o3m)
pajepliea

oluge4 pajsni|

1sanbal
ﬂﬁ _

- pajsni}

paisnjun _
01 paisniy dsl 0] pelsniun

123! 123!

1senbal
psjeplieaun

olge4 paysni]

b/\o#mﬁ

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

84/90

8L 'DIA

011 S9POU { [9A9]

L SsaIppe
8d

801 € [°A97]

9 ssarppe ¢ ssaIppe ssaippe g

oL [[9A97]

T SsaIppe

I ssoIppe
[44

0 SsoIppe
1

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

85/90

L SsaIppe
8d

9 ssaIppe
L(]

¢ ssoIppe
9d

o ——
——

~—
—_—
———

 SsaIppe

6L DIA

£ SSaIppe T SsaIppe
14€ ca

¢d

I ssoIppe
[44

0 SsoIppe
1

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

86/90

L SsaIppe
8d

9 ssaIppe
L(]

08 'DIA

¢ ssaippe
14¢

¢ SsaIppe ¥ SsaIppe
9od s

T e

—
——— ——

T SsaIppe
£d

I ssoIppe
[44

0 SsoIppe
1

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

87/90

18 DIA

I ssoIppe
[44

0 SsoIppe
1

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

88/90

¢8 DI

81
oYOED § [9A]

9¢1
OUOBD ¢ [9Ad]

% BOC1

(s11q £ doy) ssa1ppy

ﬁ BgC1

(119 8) $SAIPPY

A

122!
oUOBD T [9A9]

G491

(5119 9 do) ssaippy

43!
oUORD | [9A9T]

% BZS1

(s11q ¢ doy) ssaIppy

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

89/90

€8 DIA

{#£01 pue 8201 “0TO1} SUONEBOO] 90INOS
dIqeMO[[e SBY 008 SSAIPPER Ik Y 193Ie],

N\ 90L1

008 SSIIPPE SBY ¥ UONBIO] J9518)
€01 SSQIppe sty g PaSSel uonedso] 92In0s
Q701 SSQIPpE seY ¢ PaSSe) uoneIO[90INOS
0Z01 SSaIppe sey £ PIS3e] UOBIO] 22INOS

N
OTLT

VANL BTN

VAL €D ~
™ avoLl

VAL LA~
™ eH0LT

VoOd
N/:, ™ ezoLl

10L1

b/\oo:

SUBSTITUTE SHEET (RULE 26)

PCT/US2016/066188

WO 2017/106101

90/90

78 DIA

"J9S 92IN0S [}Im 1931} 3]
{1} + 195 90INOS = 19S 22INOS
1 J3m 92IN0S Y} el

‘Se) 90IN0S [,]) MU 9JBIO[[B =1

139818} 0] [O1IUOD JIJSULI} O} PIMO[[E ST Jey] 92INOS (2B J0J

‘{} =195 201N0S

9Ll
GCLI
VLl
£€CLT
CCLl
I12L1

bH\ON:

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - description
	Page 113 - description
	Page 114 - description
	Page 115 - description
	Page 116 - description
	Page 117 - description
	Page 118 - description
	Page 119 - description
	Page 120 - description
	Page 121 - description
	Page 122 - description
	Page 123 - description
	Page 124 - description
	Page 125 - description
	Page 126 - description
	Page 127 - description
	Page 128 - description
	Page 129 - description
	Page 130 - description
	Page 131 - description
	Page 132 - description
	Page 133 - description
	Page 134 - description
	Page 135 - description
	Page 136 - description
	Page 137 - description
	Page 138 - description
	Page 139 - description
	Page 140 - description
	Page 141 - description
	Page 142 - description
	Page 143 - description
	Page 144 - description
	Page 145 - description
	Page 146 - description
	Page 147 - description
	Page 148 - description
	Page 149 - description
	Page 150 - description
	Page 151 - description
	Page 152 - description
	Page 153 - description
	Page 154 - description
	Page 155 - description
	Page 156 - description
	Page 157 - description
	Page 158 - description
	Page 159 - description
	Page 160 - description
	Page 161 - description
	Page 162 - description
	Page 163 - description
	Page 164 - description
	Page 165 - description
	Page 166 - description
	Page 167 - description
	Page 168 - description
	Page 169 - description
	Page 170 - description
	Page 171 - description
	Page 172 - description
	Page 173 - description
	Page 174 - description
	Page 175 - description
	Page 176 - description
	Page 177 - description
	Page 178 - description
	Page 179 - description
	Page 180 - description
	Page 181 - description
	Page 182 - description
	Page 183 - description
	Page 184 - description
	Page 185 - description
	Page 186 - description
	Page 187 - description
	Page 188 - description
	Page 189 - description
	Page 190 - description
	Page 191 - description
	Page 192 - description
	Page 193 - description
	Page 194 - description
	Page 195 - description
	Page 196 - description
	Page 197 - description
	Page 198 - description
	Page 199 - description
	Page 200 - description
	Page 201 - description
	Page 202 - description
	Page 203 - description
	Page 204 - description
	Page 205 - description
	Page 206 - description
	Page 207 - description
	Page 208 - description
	Page 209 - description
	Page 210 - description
	Page 211 - description
	Page 212 - description
	Page 213 - description
	Page 214 - description
	Page 215 - description
	Page 216 - description
	Page 217 - description
	Page 218 - description
	Page 219 - description
	Page 220 - description
	Page 221 - description
	Page 222 - description
	Page 223 - description
	Page 224 - description
	Page 225 - description
	Page 226 - description
	Page 227 - description
	Page 228 - description
	Page 229 - description
	Page 230 - description
	Page 231 - description
	Page 232 - description
	Page 233 - description
	Page 234 - description
	Page 235 - description
	Page 236 - description
	Page 237 - description
	Page 238 - description
	Page 239 - description
	Page 240 - description
	Page 241 - description
	Page 242 - description
	Page 243 - description
	Page 244 - description
	Page 245 - description
	Page 246 - description
	Page 247 - description
	Page 248 - description
	Page 249 - description
	Page 250 - description
	Page 251 - description
	Page 252 - description
	Page 253 - description
	Page 254 - description
	Page 255 - description
	Page 256 - description
	Page 257 - description
	Page 258 - description
	Page 259 - description
	Page 260 - description
	Page 261 - description
	Page 262 - description
	Page 263 - description
	Page 264 - description
	Page 265 - claims
	Page 266 - claims
	Page 267 - claims
	Page 268 - claims
	Page 269 - claims
	Page 270 - claims
	Page 271 - claims
	Page 272 - claims
	Page 273 - claims
	Page 274 - claims
	Page 275 - claims
	Page 276 - claims
	Page 277 - claims
	Page 278 - claims
	Page 279 - claims
	Page 280 - claims
	Page 281 - claims
	Page 282 - claims
	Page 283 - claims
	Page 284 - claims
	Page 285 - claims
	Page 286 - claims
	Page 287 - claims
	Page 288 - claims
	Page 289 - claims
	Page 290 - claims
	Page 291 - claims
	Page 292 - claims
	Page 293 - claims
	Page 294 - claims
	Page 295 - claims
	Page 296 - drawings
	Page 297 - drawings
	Page 298 - drawings
	Page 299 - drawings
	Page 300 - drawings
	Page 301 - drawings
	Page 302 - drawings
	Page 303 - drawings
	Page 304 - drawings
	Page 305 - drawings
	Page 306 - drawings
	Page 307 - drawings
	Page 308 - drawings
	Page 309 - drawings
	Page 310 - drawings
	Page 311 - drawings
	Page 312 - drawings
	Page 313 - drawings
	Page 314 - drawings
	Page 315 - drawings
	Page 316 - drawings
	Page 317 - drawings
	Page 318 - drawings
	Page 319 - drawings
	Page 320 - drawings
	Page 321 - drawings
	Page 322 - drawings
	Page 323 - drawings
	Page 324 - drawings
	Page 325 - drawings
	Page 326 - drawings
	Page 327 - drawings
	Page 328 - drawings
	Page 329 - drawings
	Page 330 - drawings
	Page 331 - drawings
	Page 332 - drawings
	Page 333 - drawings
	Page 334 - drawings
	Page 335 - drawings
	Page 336 - drawings
	Page 337 - drawings
	Page 338 - drawings
	Page 339 - drawings
	Page 340 - drawings
	Page 341 - drawings
	Page 342 - drawings
	Page 343 - drawings
	Page 344 - drawings
	Page 345 - drawings
	Page 346 - drawings
	Page 347 - drawings
	Page 348 - drawings
	Page 349 - drawings
	Page 350 - drawings
	Page 351 - drawings
	Page 352 - drawings
	Page 353 - drawings
	Page 354 - drawings
	Page 355 - drawings
	Page 356 - drawings
	Page 357 - drawings
	Page 358 - drawings
	Page 359 - drawings
	Page 360 - drawings
	Page 361 - drawings
	Page 362 - drawings
	Page 363 - drawings
	Page 364 - drawings
	Page 365 - drawings
	Page 366 - drawings
	Page 367 - drawings
	Page 368 - drawings
	Page 369 - drawings
	Page 370 - drawings
	Page 371 - drawings
	Page 372 - drawings
	Page 373 - drawings
	Page 374 - drawings
	Page 375 - drawings
	Page 376 - drawings
	Page 377 - drawings
	Page 378 - drawings
	Page 379 - drawings
	Page 380 - drawings
	Page 381 - drawings
	Page 382 - drawings
	Page 383 - drawings
	Page 384 - drawings
	Page 385 - drawings

