A 0 OO Ot

WO 01/27741 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
19 April 2001 (19.04.2001)

A0 OO0 O

(10) International Publication Number

PCT WO 01/27741 Al

(51) International Patent Classification”:

9/305, 9/445

(21) International Application Number:

(22) International Filing Date:

GO6F 7/20, Vista Terrace, Sunnyvale, CA 94086 (US). BEDICHEK,

Robert; 2951 South Court, Palo Alto, CA 94306 (US).

PCT/US00/40856 (74) Agent: KING, Stephen, L.; 30 Sweetbay Road, Rancho

Palos Verdes, CA 90275 (US).

6 September 2000 (06.09.2000)

(81) Designated States (national): CA, CN, JP, KR.

(25) Filing Language: English
o) (84) Designated States (regional): European patent (AT, BE,
(26) Publication Language: English CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).
(30) Priority Data:
09/417,981 13 October 1999 (13.10.1999) US .
Published:

(71) Applicant: TRANSMETA CORPORATION [US/US];
3940 Freedom Circle, Santa Clara, CA 95054 (US).

— With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-

(72) Inventors: KEPPEL, David; 6852 19th Avenue NE, ance Notes on Codes and Abbreviations” appearing at the begin-
Seattle, WA 98115 (US). CMELIK, Robert; 1024 Chula ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR MAINTAINING CONTEXT WHILE EXECUTING TRANSLATED INSTRUC-

TIONS

Represent context
as invariant

?

Test representation

< Some? >

Yes

Execute

Find another
Translation

(57) Abstract: A method (fig. 1) of maintaining translation context
for instructions translated from instructions designed for a target mi-
croprocessor to run on a host microprocessor including storing trans-
lation context related to each translated host instruction, indicating a
translation context for host instructions presently being executed by
the host processor, comparing (fig. 2) translation context stored for
a next host instruction with the translation context for a host instruc-
tion presently being executed, executing the next host instruction if
the translation context of the next host instruction and the presently
executing host instruction compare, and searching (fig. 2) for an in-
struction with translation context which compares to the translation
context of the host instruction presently executing if the translation
context of the next host instruction and the presently executing host
instruction do not compare.

10

15

20

25

WO 01/27741 PCT/US00/40856

1

METHOD AND APPARATUS FOR MAINTAINING CONTEXT WHILE
EXECUTING TRANSLATED INSTRUCTIONS

BACKGROUND OF THE INVENTION

Field Of The Invention

This invention relates to computer systems and, more particularly, to
apparatus and a method for improving the performance of a
microprocessor in executing programs translated from programs designed

for execution by a different processor.

History Of The Prior Art

Recently, a new microprocessor was developed which combines a simple
but fast host processor (called a “morph host”) and software (referred to as
“code morphing software”) to execute application programs designed for a
target processor having an instruction set different than that of the morph
host processor. The morph host processor executes the code morphing
software which translates the target application programs dynamically
into host processor instructions able to accomplish the purpose of the
target application programs. As the instructions are translated, they are
stored in a translation buffer where they may be accessed without further
translation. Although the initial translation of a program is slow, once
translated, many of the steps normally required for hardware to execute a
program are eliminated. The new microprocessor has demonstrated that
a simple fast processor designed to expend little power is able to execute
translated “target” instructions at a rate equivalent to that of the “target”

processor for which the programs were designed.

Complicating the problem of translation are the various interruptions and

exceptions which are carried out by the hardware of a target computer

10

15

20

25

WO 0127741 PCT/US00/40856

2

and its operating system in order for the computer system to operate.
When a target exception is taken during the operation of a target
computer, state of the computer at the time of the exception must be
saved typically by calling a microcode sequence to accomplish the
operation, the correct exception handler must be retrieved, the exception
must be handled, then the correct point in the program must be found for
continuing with the program. Often this requires that the program revert
to the state of the target computer at the point the exception was taken.
The results provided by the hardware and software of the target computer
to accomplish these operations must somehow be provided by the process
of translation so that the morph host processor is able to correctly

respond to these exceptions.

In order to be able to run programs designed for other processors at a
rapid rate, the morph host processor includes a number of hardware
enhancements. One of these enhancements is a gated store buffer which
stores temporarily memory stores resulting from the execution of the
translated sequence of instructions in the translation buffer. A second
enhancement is a set of host registers (in addition to normal working
registers) which store state of the target processor at the beginning of any
sequence of target instructions being translated. Sequences of target
instructions are translated into host instructions and executed. The
sequences begin and end at points at which target state is known. If the
translated instructions execute without raising an exception, the memory
stores generated by the execution of the translated host instructions are
stored in memory (committed to memory) by a commit instruction; and
the registers holding the target state are updated to the target state at the

point at which the sequence completed.

10

15

20

25

WO 0127741 PCT/US00/40856

3

However, if an exception occurs during the execution of the sequence of
host instructions, processing stops; and the entire operation may be
returned to the beginning of the sequence of target instructions at which
known state of the target processor exists. This allows rapid and accurate
handling of exceptions incurred while dynafnically tfanslating and

executing instructions.

It will be noted that the method by which the new microprocessor handles
the execution of translations by placing the effects generated by execution
in temporary storage until execution of the translation has been
completed is effectively a rapid method of speculating. The new
microprocessor, in fact, uses the same circuitry for speculating on the
outcome of other operations. For example, by temporarily holding the
results of execution of instructions reordered by a software scheduler
from naively translated instructions, more aggressive reordering may be
accomplished than has been attempted by the prior. art. When such a
reordered sequence of instructions executes to produce a correct result,
the memory stores resulting from execution of the reordered sequence
may be committed to memory and target state may be updated. If the
reordered sequence generates an exception while executing, then the state
of the processor may be rolled back to target state at the beginning of the
sequence and a more conservative approach taken in executing the

sequence.

One of the most advantageous features of the new microprocessor is its
ability to link together long sequences of translated instructions. Once
short sequences of target instructions have been translated and found to
execute without exception, it is possible to link large numbers of these

short sequences together to form long sequences of instructions. This

10

15

20

25

WO 01/27741 PCT/US00/40856

4

allows a translated program to be executed at great speed because the
microprocessor need not go through all of the steps (such as looking up
each of the shorter translated sequences) normally taken by hardware
processors to execute instructions. Even more speed may be attained
than might be expected because, once long sequences are linked, it is
often possible for an optimizer to eliminate many of the steps from the
long sequences without changing the results produced. Hardware
optimizers have never been able to optimize sequences of instructions
long enough to allow the patterns which allow significant optimization to

become apparent.

Whenever a processor is executing instructions, it is running in some
particular mode which has various characteristics. The instructions of an
application must be executed in the correct mode to consistently produce
the correct results. These characteristics of a mode are effectively
background for the instructions and may be considered to be a part of the
instructions. As a processor executes instructions, certain of those
instructions may change the characteristics and thus the mode of
operation. This requires that a number of characteristics of the
microprocessor be set differently to handle these different modes. The
characteristics of machine state which must be set correctly in order for
instructions to provide the correct result are typically referred to as the
context in which the instructions execute. Context may be said to
summarize the current state of the machine that is necessary to produce

the correct result from the execution of instructions.

A major problem which the new microprocessor faces in translating
sequences of instructions designed for a target processor having a first

instruction set into a sequence of host instructions of a different

10

15

20

25

WO 0127741 PCT/US00/40856

5

instruction set is caused by the need to maintain context while

translating and running.

There are a myriad of different things which can constitute context in
executing a program. The recitation of just a few of the many elements
which can constitute context illustrates just how complicated the problem
is. Those skilled in the art will understand that there are literally

hundreds of possible items of context.

Many microprocessors are designed to function with application programs
having instructions of eight bit, sixteen bit, and thirty-two bit words
lengths depending on the capability of the operating system in use. Often
the same instructions are utilized with applications written with
instructions of different word lengths. However, if the microprocessor
attempts to execute sixteen bit instructions while its characteristics are
set for executing thirty-two bit instructions, the instructions will probably
not execute correctly. Thus, instruction word length can be considered as

target processor context for execution purposes.

As another example, instructions execute at different levels of permission.
Thus, some instructions can only be executed by one having the highest
level of access; other instructions may be executed by users at a lower
level as well as all those at a higher level. If is necessary to maintain the
same access levels when executing translated instructions so that

applications cannot interfere with assets of unrelated applications.

Intel X86 based microprocessors allow applications to designate where the
various portions (segments) of code and data are stored in memory. For
example, a program may designate base addresses and lengths for

segments of the program so that a code segment starts at one base

10

15

20

25

WO 01/27741 PCT/US00/40856

6

address and continues through some amount of memory while a data
segment starts at a different base address and includes a different
amount of memory. Alternatively, a program may designate a single flat
segment to be used for storing all instructions, data, and other elements
of the program. Further, all segments for one program may start at the
same base address yet run to different ending addresses. Consequently,
the arrangement of base addresses being utilized is a very important
characteristic in executing instructions. A confusion in the areas of
memory allotted for different uses will probably keep a program from
executing instructions with the proper results. Thus, this may be an

important element of context.

If an application is designed to execute with paging enabled, then the
application must allow for paging exceptions which may occur. If an
application is designed with paging off, then no paging exceptions can

occur. Paging may thus be an important element of context.

There are many other characteristics that must be the same whenever the
instructions are executed as when the instructions were compiled for the

instructions to produce the correct results. With complicated instruction
sets such as those used by Intel X86 processors, the number of

characteristics which constitute context is quite large.

As with execution of instructions by the target processor, it is necessary
that host instructions translated from target instructions maintain the
context of the original processor for which the target instructions were
designed when those translated instructions are executed in order for the
same results to be produced by the host system. Since those items of

context which may effect different results from the instructions need to

10

15

20

25

WO 01/27741 PCT/US00/40856

7

remain constant from translation to execution, this would seem to require
that literally hundreds of elements of context would need to be made a
part of each translation in order to assure that the results produced be

correct.

While it is critical when executing instructions on a processor to produce
correct results, it is also desirable to execute instructions as rapidly as
possible. This is generally accomplished by producing code which runs as
efficiently as possible. The context or machine state controls just how
efficient the code may be made. There are many characteristics of the
machine state in which instructions execute which affect the efficiency of
translation and execution and may make the instructions run faster or
have some other desirable effect on the execution. In all cases, it is
important that instructions which are executed in a particular mode on
the target microprocessor be executed in an environment having
characteristics set to execute instructions in the safne mode in the host
system. Furthermore, it is important that the translation context in
which optimizing translation of the target code is carried out be

maintained when that optimized code is executed.

Consequently, it is desirable to provide apparatus and methods by which
a microprocessor which executes instructions translated from
instructions designed for a target processor having a different instruction
set can maintain context of the target processor so that execution of the

translated instructions provides correct results.

It is equally desirable that the speed secured through the dynamic

translation and optimizing practiced by the new microprocessor be

10

15

20

WO 01/27741 PCT/US00/40856

8

maintained in the process of assuring that the translation is executed in

the same context as that for which it was originally designed.

Summary Of The Invention

It is therefore an object of the present invention to assure that the
translated instructions are executed in the same translation context as
that in which they were originally translated and to do this, whenever

possible, without slowing execution of the translated instructions.

This and other objects of the present invention are accomplished by a
method which maintains the translation context for each portion of
translated instructions, compares the translation context in which the
morph host is functioning whenever a new portion of translated
instructions is to be executed with the translation context at translation
of the portion of translated instructions, allows execution if the
translation contexts are the same, and forces a search for a different
translation or a retranslation of the original instructions from which the
portion of translated instructions was derived if the.translation contexts

differ.

These and other objects and features of the invention will be better
understood by reference to the detailed description which follows taken
together with the drawings in which like elements are referred to by like

designations throughout the several views.

Brief Description Of The Drawings

Figure 1 a flow chart illustrating a method in accordance with the

invention.

10

15

20

WO 01/27741 PCT/US00/40856

9

Figure 2 is a diagram illustrating the steps necessary to carry out one

particular instruction.
Figure 3 is a flow chart illustrating a method of practicing the invention.

Figure 4 is a flow chart illustrating a portion of the method of the present

invention.

Figure 5 is a flow chart illustrating another portion of the method of the

present invention.

Figure 6 is a diagram illustrating representations of context in accordance

with the present invention.

Detailed Description

As has been described in some detail above, the new microprocessor
executes code morphing software which translates sequences of target
instructions into sequences of host instructions, stores those sequences
of translated instructions in a translation buffer for reuse, attempts to
execute those sequences of translated instructions, updates state and
memory when translated sequences execute to produce a correct result,
and discards the effects of attempted execution of sequences of translated
instructions which do not execute to produée a correct result. The stored
sequences of translated instructions may be optimized and often linked to
one another to produce long sequences of translated instructions. These
long sequences may be further optimized to reduce their length and
increase their efficiency of execution so that the new processor may often

execute operations much faster than the original translations.

10

15

20

25

WO 01/27741 PCT/US00/40856

10

In order for a sequence of translated instructions to produce the result
produced by the original target instructions, the new processor must
decode each of the target instructions correctly. This means that the new
processor must assure that the translated instructions include all of the
context of the original instructions so that the meaning of those original
instructions is completely translated. For example, a translation must be
able to determine information defining the segment type, its base address,
and extent so that proper memory accesses may be executed. A
translation must be able to determine whether paging is enabled during
execution to know how addresses are computed and whether page
exceptions should be accepted. A translation must be able to determine
all other elements of context which allow the result accomplished by the
target sequence from which it was translated to be accomplished when

the translated sequence is executed by the host processor.
For example, an instruction such as the following for a X86 processor:
add $eax, 4($ebp);

commands an X86 processor to add four to the value in the “ebp” register
to determine a segment offset. This segment offset is checked to
determine whether it lies within the segment boundaries for the memory
segment being accessed (the stack segment). In addition, the X86
processor checks whether the instruction is allowed to read and/or write
the memory segment being accessed; and, finally, the segment offset is
added to the segment base to produce a linear address, which is in turn
used to determine the physical address of the memory position accessed

by the instruction. The physical address is then used to fetch the value

10

15

20

25

WO 01127741 PCT/US00/40856

11

stored in the memory position and to add the memory value to the value

in the “eax” register.

However, in addition to these elements of the instruction, there are a large
number of implied elements. For example, the use of the “ebp” register
here implies the use of the stack segment. The use of a different register

might imply the use of a different segment.

X86 segments can “grow up” or “grow down.” Stack segments frequently
grow down while other segments usually grow up. The determination of
whether a segment offset is valid for a particular segment depends on
whether the segment being accessed grows up or grows down. For a
grow-up segment, the valid offsets range from O to the segment limit. For
a grow-down segment, the valid offsets range from the segment limit to
the largest possible offset (216 - 1) for 16 bit segments and (232 - 1) for 32

bit segments.

When the linear address has been computed, a determination is made
whether paging is enabled. If not, the linear address is the physical
address of the memory data; if paging is enabled, then the physical
address must be computed. In either case, the limits of the memory
segment must be tested to determine whether the address is legal; and

finally the data is accessed and added to the value in the eax register.

Thus, for this simple instruction, the knowledge that the ebp register is a
stack register, the base address of the stack in memory, the range of valid
offsets for the segment depending on whether the segment grows up or
down, whether paging is enabled, the type of memofy segment being

addressed, and its base address are all characteristics which constitute

10

15

20

25

WO 01/27741 . PCT/US00/40856

12

context and must be known for the translated instructions to be able to

properly carry out the operation when executed.

In fact, when an interpreter executes a target instruction, it must carry
out all of these implicit (i.e., background) steps and checks in order to
execute the instruction correctly. The implicit steps and checks must be
carried out explicitly at potentially great expense. The same would be

true of a naive translation of a target instruction into host instructions.

As those skilled in the art will appreciate, instructions can change the
context in which instructions execute by changing one of the
characteristics which constitutes a mode of operation. Consequently, the
new processor must track instructions and assure that elements of
context change within the translated sequence when a target instruction
varies the context in which the sequence of translated instructions is to
execute. In this way, the context of the translated sequence will be
correctly represented for the new processor when the translated sequence

completes executing.

Not only should each sequence of translated instructions include the
information from which all of the necessary characteristics which
constitute context may be determined, whenever any sequence of
translated instructions is correctly executed and a next sequence is to be
executed, the new processor should ensure that the context in which it is
presently operating is the context required for correctly executing the
beginning of the next sequence. Thus, the new processor should test the
context existing at the end of the first sequence of translated instructions
to assure that it is the same as the context required by the next sequence

of translated instructions before it can begin executing the next sequence.

10

15

20

25

WO 01/27741 PCT/US00/40856

13

In a similar manner, in order to link two sequences of translated
instructions together into a single sequence, the new processor should
ascertain that the context in which the first sequence finishes executing is
the same as the context in which the sequence to which it will be linked

will begin executing.

As will be seen, the need to include all of the elements of context in each
sequence of translated instructions and check the context of each new

sequence before it begins to execute does not produce efficient code.

The present invention overcomes these problems and produces code
which executes efficiently at a rate which challenges the rate at which a
target processor executes the same code. The present invention relies on

the property of locality to generate code which executes more efficiently.

More particularly, in most cases, the instructions which a processor
executes in any process or program tend to be executed more than once
or to be executed with other instructions most of the time. This has the
effect of causing the context to be similar or identical from one sequence
of instructions to the next. For example, many elements of context
depend on the particular memory segment being accessed; a segment
base address and extent, whether the segment grows up or down, and
whether the segment is writable or may only be read are all elements
which depend on the segment being accessed. These elements are the
same if the segment is the same from one sequence to the next. In most
cases, a memory segment used for a first sequence is the same as the
segment used for a next sequence. Other elements of context also display

the characteristic of locality. The property of locality allows the present

10

15

20

25

WO 01/27741 PCT/US00/40856

14

invention to presume that the context will be the same from sequence to

sequence.

The presumption that the context is the same allows the new processor in
translating a sequence of instructions to represent the context for a
translation to execute properly in some fashion as an invariant. Then,
rather than stepping through each of the tests required to determine that
the context for the translation is correct, the processor merely checks the
representation to determine that the entire context is the same. If it is the
same, then the translated sequence may be executed. If it is not the
same, ‘then the processor looks for another translation which meets the
criteria. If none is found, then a new translation must be generated. The

general method is illustrated in the flow chart of Figure 1.

It will be seen that this use of the property of locality allows a sequence of
translated instructions to be reduced by those instructions implied by the
elements of context which are being treated as invariants. Figure 2
illustrates a sequence of operations representing the steps necessary for
an interpreter to carry out the steps of the add function described above.
As may be seen, at least ten of those steps are steps required by context
to be inserted into the sequence to assure that the operation is carried out
to give the same result as the add function. Those operations which are
marked with an asterisk may be removed from the instruction sequence
and represented in some manner at the beginning of the translated
sequence. For example, elements of context which might be of one or the
other of two states might each be represented by a single bit in some
designated position of a first representation of context (e.g., a quad word),

while characteristics having a larger number of states might require a

10

15

20

25

WO 01/27741 PCT/US00/40856

15

larger number of bits in some other designated positions of the quad

word.

Figure 3 is a flow chart illustrating the operation of the new processor
upon completing execution of a first sequence of translated instructions
and beginning a next sequence. The first step illustrated is a test of the
context of the next sequence of instructions. The new processor looks at
its present representation of context (the context at which the machine
was operating when the first sequence completed) and compares that
context to the representation of the context of the next sequence. If the
context is entirely the same, the next sequence of translated instructions
is executed in the same context as the prior sequence. This eliminates all
of the steps required in an earlier sequence to determine if the context
was correct. Rather than executing the steps of Figure 2 marked by an
asterisk, the new processor assumes that each condition is met and

executes the following steps accordingly.

If the entire context is not the same, the next sequence of instructions is
not executed. Instead, the new processor searches for another sequence
of translated instructions which meets the criteria for the next sequence.
Typically, this will be another translation of the same sequence of target
instructions having however the same context representation as the
context representation of the sequence last executed. It is possible that
such a sequence does not exist. If so, the new processor executes the
code morphing software to create such a translation and stores the
translation in the translation buffer with its context representation for

further use.

10

15

20

25

WO 01/27741 PCT/US00/40856

16

In order to assure that the context in which a sequence of translated
instructions execute is correct, it is necessary for the code morphing
software to track predictable changes of context and to change the
representation of context to a correct representation when any change
occurs. In this manner, the context in which the host processor is
presently executing will be correctly represented when a test of context of

a next sequence is accomplished.

It is also important for the code morphing software to detect an
instruction which unpredictably changes the context. For example, if an
instruction loads a new segment register, then all of the criteria which
may vary with a segment may change. After loading the segment register,
there is a new context in effect; and the new context should be used for
execution of instructions from that point on in the sequence. Any
subsequent instruction that depends on the affected portions of the
context (e.g., any instruction that accesses the loaded segment register)
cannot be executed without verifying that the new context is appropriate.
The code morphing software can terminate the translation at any point
between the two and/or arrange for the context to be verified between the
point where it is modified and the point where the subsequent instruction

depends on the updated value.

Because significant acceleration in execution is obtained by linking
different translated sequences together so that they function as a single
longer sequence, the use of the linking process is quite desirable. As will
be understood, when two sequences are to be linked, it is necessary that
each portion of the longer sequence execute correctly. Consequently, it is
necessary that the context be appropriate for each of the portions of the

longer sequence to execute correctly. This may be accomplished in one

10

15

20

25

WO 01/27741 PCT/US00/40856

17

embodiment of the invention by linking a first translated sequence to a
second through the use of the address of the second transiated sequence.
In the new processor, the address is typically held in a program control
unit. When one sequence is to be linked to another, the first sequence
ends by pointing to the address in the program control. When the second
sequence is entered, the translation checks the representation of context
to assure that it is the same as the context required by the second

sequence.

Testing the context of the host against the representation of context
required by the second sequence for each linked sequence takes some
number of operation cycles. Consequently, a more advanced embodiment
of the invention removes the context test from the translation and places
it in the original linking process as illustrated in Figure 4. That is, when
a determination is first made that two sequences are to be linked, the
context in which the first sequence is executing as it ends is compared to
the context in which the second sequence begins executing by comparing
the representations of context for each. If the context representations are
the same, the link is accomplished. Thereafter, when the longer sequence
is executed, it is no longer necessary to test for context at the point at
which the two sequences are linked. The end of the first sequence merely
points to the address of the second sequence and the link is
accomplished. The execution of instructions is accelerated by checking
context only at the time of the original linking rather than each time the

linked sequences are executed.

In a similar manner, whenever a search for a translation is conducted,
one embodiment looks for both a particular translation and for a

particular context. In this manner, the check of machine operating

10

15

20

25

WO 01/27741 PCT/US00/40856

18

context to the required translation context is completely removed from the
translated sequences and placed in the dispatch function of the code
morphing software as illustrated in Figure 5. The dispatch function
essentially looks for a next sequence of translated instructions to execute
by searching the translation buffer for a correct translation and a correct
context whenever either a next translation is needed or a proposed linking

is to be accomplished.

The present invention provides extensions to further increase the speed of
execution of instructions. One extension provided by the present
invention allows linking to occur in cases in which an instruction changes
context unpredictably. The operation allows a link to the address held by
the program controller followed by a test of the new context against the
present context. If the representations of the contexts are the same, then

the link may be continued.

Another extension (also shown in Figure 5) depends on the fact that it is
not always necessary for a new translated sequence to have context
identical to the present context in which the host is executing in order to
produce a correct result. Some translated sequences depend on fewer
elements of context or less limiting elements of context than that in which
the host is executing. Such sequences may be executed and linked to
previous sequences so long as that context necessary for correct
execution of the yet-to-be-executed sequence is present. This may be
tested by comparing the representation of the context of a translated
sequence to be executed with the representation of present context of the
host to determine those elements of context which differ. Then the
elements which differ are reviewed to determine whether they are

necessary to the sequence to be executed and, if necessary, whether the

10

15

20

25

WO 01/27741 PCT/US00/40856

19

difference is that they are less restrictive in the sequence to be executed.
If the context elements are not needed or are less restrictive, then the

sequence may be executed or linked.

The manner of representing context may vary across a wide spectrum as
is shown in Figure 6. For example, if all of the context elements when
concatenated together take up no more bits than are readily available in a
machine register (e.g., 32 or 64 bits), the context can then be represented
by such concatenation; and the tests can be easily accomplished by
performing simple bit operations on the representations (e.g., XOR and
AND). Alternatively, where the number and size of the elements in the
context exceed the number of bits readily available in a register, the
context elements may be stored in a data structure in memory; and the
pointers into the data structure can be used to compare for exact context
matches. The pointers are then the representation of the context. More
involved comparisons (not exact matches) depending on the individual

elements of context would have to access the data structures in memory.

Another method of representing context is a hybrid of these two
techniques. Some of the elements can be directly represented, while
others are stored in memory. The remainder of the representation is a
pointer/index to the data structure in memory. Again, exact comparisons
are straightforward, while element-dependent comparisons would be more

involved.

Although the present invention has been described in terms of a preferred
embodiment, it will be appreciated that various modifications and

alterations might be made by those skilled in the art without departing

WO 01/27741 PCT/US00/40856

20

from the spirit and scope of the invention. The invention should therefore

be measured in terms of the claims which follow.

What Is Claimed Is:

10

11

12

14

15

WO 01/27741 PCT/US00/40856

21

Claim 1. A method of maintaining translation context for instructions
translated from instructions designed for a target microprocessor to run

on a host microprocessor comprising the steps of:
storing translation context related to each translated host instruction,

indicating a translation context for host instructions presently being

executed by the host processor,

comparing translation context stored for a next host instruction with the

translation context for a host instruction presently being executed,

executing the next host instruction if the translation context of the next
host instruction and the presently executing host instruction compare,

and

searching for an instruction with translation context which compares to
the translation context of the host instruction presently executing if the
translation context of the next host instruction and the presently

executing host instruction do not compare.

Claim 2. A method as claimed in Claim 1 in which the step of storing
translation context related to each translated host instruction comprises
storing a representation of translation context as a part of translated host

instructions.

Claim 3. A method as claimed in Claim 2 in which the representation

is a pointer to an address at which translation context is stored.

Claim 4. A method as claimed in Claim 2 in which the representation

is a set of bits indicating translation context.

WO 01/27741 PCT/US00/40856

22

Claim 5. A method as claimed in Claim 2 in which the representation
is a set of bits indicating translation context and a pointer to an address

at which additional translation context is stored .

Claim 6. A method as claimed in Claim 1 in which the step of storing
translation context related to each translated host instruction comprises
storing a representation of translation context apart from translated host

instructions.

Claim 7. A method as claimed in Claim 1 in which the step of
comparing translation context stored for a next host instruction with the
translation context for a host instruction presently being executed is

accomplished when a translation is accessed.

Claim 8. A method as claimed in Claim 1 comprising the further step
of linking a first sequence of translated host instructions to a succeeding
sequence of translated host instructions if the translation context of the
first sequence of translated host instructions and the translation context

of the succeeding translated host instructions compare.

Claim 9. A method as claimed in Claim 8 in which the step of
comparing translation context stored for a next host instruction with the
translation context for a host instruction presently being executed is
accomplished when a first translation sequence is linked to a succeeding

translation sequence.

Claim 10. A method as claimed in Claim 1 comprising the further step
of linking a first translated host instruction to a succeeding translated

host instruction if the translation context of the first translated host

WO 01/27741 PCT/US00/40856

23

instruction affecting the succeeding translated host instruction and the

translation context of the succeeding translated host instruction compare.

Claim 11. A method which comprises maintaining translation context
for each portion of translated instructions, comparing the translation
context in which a morph host processor is functioning whenever a new
portion of translated instructions is to be executed with the translation
context at translation of the portion, allowing execution if the translation
contexts are the same, and forcing a search for a different translation if

the translation contexts differ.

Claim 12. A method which maintains translation context as claimed in
Claim 11 in which forcing a search for a different translation if the
translation contexts differ includes retranslating the original instruction

from which the portion of translated instructions was derived.

PCT/US00/40856

WO 0127741

uonDISUDJ} MaU cyzooxu_

uo1DjsuD.}

M3U 810}

f

UONDISUDJ} M3U 8)D3J7)

1/2

suos
alow

SoA

©N

ouwIDs
Auy

¢ bi4

IX8JUOD MAU UO
Buipuadap uoronIysul
4oDa jJo IXajuod Ayusp

uoRNO3Xa 3)OUILLIB}

sabupyd Jxaju0d
a|qojoipasdun 308)3Q

SoA

{X9JU0d
awing

¢ uonojsupL)

awpog

|

sabubyo xayuod
a|qpyoipasd %o04)

]

X8JU0d BWDS U
aouanbas Jxsu 8yndexy

saA

UOND|SUDJ} M3U pul4

ouwng
ON

Xaju0d

aimponns 0jop o} Jajuiod R

bunussaidal
ainjoniys
Djo(

Xejuos bunuasaidas syg

——&__ T

2InjoNnss DOP 0} Jojutod

aouanbas jxau Jo
uonpjuasasdal Ixajuod Yym
X809 jussaid auodwo)

(T

Xajuod bunuasaidas syg

| b4

8jnoex3

sa\

uoiDjsuDl)
ssyoup puy[— o

uonpjuasaidas }sa)

JUDLIDAUI SD
X8ju0d jussaiday

WO 01/27741 PCT/US00/40856

2/2

Add 4 to value]

in ebp register Check read/write |,
} statys if segment

Determine type * 1

of segment Add result to -
V segment base to
Determine . give linear address

base address 1

| Is paging enabled? |*

Determine . {
segment boundaries

If yes, use linear
Y address to compute
Does segment grow |, physical address
up or grow down? 1

Y i no, linear address
If grow up, . is physical address

determine boundaries 1

| Fetch value at
If grow down, . physical address
determine boundaries {

| Add value fetched to

Check offset & size |, value in eax register

to determine if within *

segment boundaries
I

Fig. 2

Compare context
Compare context of first and
of first and second sequences
second sequences

No |pon't
link

Yes

Use
Link translation

Fig. 4 Fig. 5

Use
transiation

INTERNATIONAL SEARCH REPORT International application No.
PCT/US00/40856

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOGF 7/20, 9/305, 9/445

US CL : 712/209; 703/26. 20. 28. 27. 24, 23
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 712/209: 703/26, 20. 28. 27, 24. 23

Documentation searched other than minimum documentation to the extent that such documents are included in the ficids searched

none

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

APS USPAT. APS JPOABS. APS EPOABS

C. DOCUMENTS CuUNSIDERED TO BE RELEVANT

Category* Citation of document. with indication. where appropriate, of the relevant passages Relcvant to claim No.
gory pprop passag

Y US 5,926,832 A (WING ET AL.) 20 July 1999, col.10, lines 50-| 1-12
65.

Y US 4,951,195 A (FOGG, JR. ET AL.) 21 August 1990, col.13,| 1-12
lines 25-68, col.16, lines 20-33, lines 60-68, col.17, lines 1-5.

Y US 4,456,954 A (BULLIONS, III ET AL.) 26 June 1984, col.14, | 1-12
lines 26-50.

D Further documents are listed in the continuation of Box C. D See patent family annex.

. Special categories of cited documents: "T* later document published after the internauional filing date or priority
date and not 1n conflict with the apphcation but cited to understant
"A* document defining the general state of the art which 1s not considered the principle or theory underlying the tnvention

to be of particular relevance

. "X document of particular relevance. the claimed mention cannot b
B earlier document published on o after the international filing date considered novel or cannot be considered to wnvoive an inventive ste
"L* document which may throw doubts on prionty claim(s) or which 1s when the document 1s taken alone

cited to establish the publication date of another citation or other

special reason (as specified) Y document of particular relevance. the claimed nvenuon cannot !
considered to nvolve an mventve step when the document
o document referring 10 an oral disclosure. use. exmbition or other combined with one or more other such documenis stichi combunati
means being obvious to a person skilled in the ant
"P" document published prior to the international [iling date but tater than «g document member of the same patent famuly
the priornty date claimed)
Date of the actual completion of the intemational search Date of mailing of the intemational search report
09 JAN 2001
08 DECEMBER 2000
]
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks . _ T
Box PCT DANIEL PAN L‘qcm Nt
Washington. D.C. 20231
Faneimile No. (703) 305-3230 Telephone No. (703) 303-3900

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

