
Abstract of the disclosure

A pharmaceutical formulation having a synergistic antibacterial activity and comprising

- a) a cephalosporin derivative or a physiologically acceptable salt or ester thereof and
- b) a penem antibiotic of the basic structure (B)

or a physiologically acceptable salt or ester thereof, a process for preparing such a formulation and its use for the treatment of bacterial infections.

or physiologically acceptable salts or esters thereof.

5

Amongst the cephalosporin derivatives, aminothiazole10 cephalosporins and physiologically acceptable salts or
esters thereof are preferred according to the invention,
in particular those having the basic structure (A)

15
$$H_2N - S - C - CONH - S - COO-$$

$$COO-$$

$$COO-$$

in which the =N-O- group is in the syn-position, such as
20 are described, for example, in German Offenlegungsschriften
No. 2,702,501, 2,713,272, 2,715,385, 2,810,922, 2,921,316
and 2.922,036, in EP-A 0,064,740, in U.S. Patents
4,278,793 and 4,501,739 and in GB-A 2,105,334 and
2,105,335. However, other cephalosporins such as, for
25 example, N-acyl-phenylglycine-cephalosporins or those in
which the group -CH₂- takes the place of the -C(≠N-O-)group in the basic structure (A) can also be used according to the invention.

- 30 Penem antibiotics of the basic structure (B) are described, for example, in EP-A 0,069,377, EP-A 0,170,028, GB-A 85.20,631, EP-A 121,502, British Patent 2,097,786 and Belgian Patent 898,603.
- 35 Of the cephalosporin antibiotics of the basic structure

 (A), those of the general formula I are particularly preferred

$$\begin{array}{c|c}
 & H & H \\
 & C & CONH \\
 & N-OR_1 & O \\
 & COOR_3
\end{array}$$

in which

5

10

 R_1 can be hydrogen, C_1-C_4 -alkyl or carboxy- C_1-C_4 -alkyl and the group =N-OR1 is in the syn-position,

R2 can have the meaning of hydrogen, methyl, methoxy, vinyl, acetoxymethyl or carbamoyloxymethyl, of -CH₂S-X, with X =

20 of
$$-CH_2-N$$
 with Y = hydrogen, $C_1-C_4-C_4-C_4$ alkoxy or $C_3-C_5-C_5-C_4$ cycloalkyl,

of (+) -CH₂-N -CH₂-N

it being possible for the fused rings also to be in the 3,4-position and also to be interrupted by oxygen, of

$$-CH_{2} - N$$
or
$$-CH_{2} - N$$

$$-(+)$$

of thienopyridinio-methyl, furopyridinio-methyl or of 5-methyl-tetrazol-2-yl-methyl

and

R3 is hydrogen, a physiologically acceptable cation, a physiologically acceptable ester radical or — if the (+) structure -CH2-IV appears in R2 — can represent a negative charge.

If R $_1$ is C $_1$ -C $_4$ -alkyl, examples are methyl, ethyl and propyl, preferably methyl.

If R₁ is carboxy-C₁-C₄-alkyl, carboxymethyl, carboxy-ethyl, carboxypropyl, preferably the radical -CH₂-COOH, but especially the radical

15

5

$$-C\frac{CH_3}{CH_3}$$
 COOH are examples of interest.

20 Amongst the substituted pyridinium-methyl radicals listed above, 2,3-cyclopenteno- and 2,3-cyclohexeno-pyridinium-methyl and 4-methylthio-, 4-cyclopropyl- and 3-methoxy-pyridinium-methyl as well as 3,4-cyclopenteno- and 3,4-cyclohexeno-pyridinium-methyl are preferred.

25

Those compounds of the formula I are of very particular interest according to the invention in which R_1 is methyl and R_2 is $-CH_2-OCOCH_3$ (cefotaxim),

$$\begin{array}{c} H_3C \\ N-N \\ -CH_2S \\ N-O \end{array}$$
 (ceftriaxon),

(cefmenoxim) or

5

10 R₁ is -CH₂COOH and R₂ is -CH=CH₂ (cefixim), cefodizim, cefpirom, ceftriaxon and especially cefotaxim in turn being in a preferred position within this group.

If R_2 represents a -CH₂-pyridinium compound, the carboxyl group in the general formula I is present as an inner salt $(-C00^{(-)})$.

As cephalosporin derivatives of particular interest, cefotiam from amongst the aminothiazole-cephalosporins which contain -CH2- in place of -C(=N-OR1)- and cefoperazon from amongst the N-acyl-phenylglycine-cephalosporins should also be mentioned.

Of the penem antibiotics of the basic structure B, those of the general formula II are particularly preferred

$$H_3C$$
 OH
 H
 S
 Z
 $COOR_4$

30

د فمرا سد

5

20

30

 $-CH_2-0-CONH_2$, $-S-(CH_2)_2-0-CONH_2$ or $-S-(CH_2)_3-SO_2NH_2$ and

R4 is hydrogen, a physiologically acceptable cation or a physiologically acceptable ester radical. Of the substituted phenoxy and phenyl substituents listed above, the radicals

$$-0$$
 — -0 —

are preferred, and the 3-carbamoyl-phenoxy radical (HRE 664) is to be particularly singled out.

Accordingly, a combination of cefodizim or cefpirom, and especially of cefotaxim and the penem HRE 664, is of particular interest according to the invention.

R3 and R4 can be hydrogen or a physiologically acceptable cation such as, for example, an alkali metal cation, preferably potassium or sodium, in particular sodium, or also other physiologically acceptable salts, known from the literature, with alkaline earth metal ions or organic ammonium ions (cf., for example, U.S. Patent 4,278,793).

Moreover, R₃ and R₄ can be a physiologically acceptable ester radical, of interest especially for enteral administration, such as, for example, an acyloxymethyl or acyloxyethyl radical having 2 to 12, preferably 2 to 6, carbon atoms in the acyl moiety, preferably acetoxymethyl,

1'-(acetoxy)ethyl or pivaloyloxymethyl, 5-methyl-1,3-dioxalen-2-on-4-yl-methyl, or also other physiologically acceptable esters such as are described, for example, in EP-A 0,170,028.

5

The preparation of the components, which can be used according to the invention, in the active compound combination is described by way of example in the patent rights quoted above.

10

15

The combination, according to the invention, of cephalosporins and penems has a strong antibacterial action and is therefore very particularly suitable for the treatment of bacterial infections. The essential fact is that the action of the two components does not show additive behavior but that, rather, an unexpected, strong synergistic effect appears.

Even in the case of pathogens, towards which one indi20 vidual component alone does not have a significant antibacterial action, a synergistic effect can be observed in
combination.

The formulations according to the invention thus cover a spectrum of pathogens at low minimum inhibitory concentrations, which are not reached by the individual components.

For the above reasons, the formulation according to the invention is superior to the individual components in the treatment of bacterial infections. It allows to administer lower dosages of the individual components and nevertheless to achieve a greater therapeutic effect.

- 35 The invention also relates to a process for the preparation of such a formulation, which comprises bringing
 - a) a cephalosporin derivative or physiologically acceptable salts or esters thereof and

 b) a penem antibiotic of the basic structure (B) or physiologically acceptable salts or esters thereof

together with (a) physiologically acceptable excipient(s) and, if appropriate, further auxiliaries or additives into a suitable administration form.

Moreover, the invention relates quite generally to pharmaceutical products which comprise side by side in an unmixed form

- a) a cephalosporin derivative or physiologically acceptable salts or esters thereof and
- b) a penem antibiotic of the basic structure (B) or
 physiologically acceptable salts or esters thereof

as a combination product for simultaneous or separate application or for application spaced out in time in the treatment of bacterial infections.

20

25

30

5

10

The dosages of the cephalosporin derivative and of the penem antibiotic are preferably selected in the formulations according to the invention such that the individual components would not yet shown an adequate or full activity. The daily dose of the combinations according to the invention (sum of the individual components) is between about 1 to 16 g, preferably about 4 to 8 g. The ratio of the individual components in the combination can be between about 1:9 and 9:1, preferably between about 1:5 and 5:1. The dose in one administration unit can be chosen, for example, between about 50 and 2,000 mg.

Since the preparation of the cephalosporin component in general requires less effort and is therefore also less expensive than the preparation of the penem antibiotic, a combination according to the invention in which the ephalosporin proportion is higher than that of the penem will be preferable for this reason alone.

The formulations or products according to the invention can be administered parenterally or orally. Parenteral administration is preferred.

The active compound combinations according to the inven-5 tion, which can be used in chemotherapy, can be used for the preparation of pharmaceutical products which contain an effective amount of the active substances together with excipients and which are suitable for enteral and paren-Injectable solutions are teral administration. 10 preferably isotonic aqueous solutions or suspensions, which may have been sterilized and can contain auxiliaries such as preservatives, stabilizers, wetting agents and/or emulsifiers, solubilizers, salts for regulating the osmotic pressure and/or buffer substances. The pharma-15 ceutical products according to the invention which, if desired, can contain further chemotherapeutically valuable substances, are prepared, for example, by means of conventional processes.

For parenteral administration, the combination according to the invention is preferably dissolved, immediately before use, in sterile water or — if necessary — a buffer solution such as, for example, a phosphate or carbonate buffer such as is conventionally used for these purposes, and subsequently administered.

The examples which follow serve to explain the invention without restricting the latter thereto.

Example 1

20

25

30

Action of the combination of the sodium salt of 5R,6S-6-(1R-hydroxyethyl)-3-(4-carbamoylphenoxy)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-carboxylic acid (HRE 664, marked (1) in the Table) and of the sodium salt of cefotaxim (2) towards Gram-positive and Gram-negative test strains. To determine the synergism, mixtures of compound (1) with compound (2) were prepared in a ratio of 1:1,

1:2 and 1:3. The MIC values were tested by comparison with the individual substances.

Table 1

5			MIC	in mg/l		
		(1)	(2)		(1):(2)	
	Pathogen	alone	alone	1:1	1:2	1:3
	Staph. SG 511	0,062	2	0.125	0.125	0.125
	Staph. 285	0.062	2	0.125	0.125	0.125
10	Staph. 503	0.062	2	0.125	0.125	0.125
	Kl.aerog. 1082E	0.5	1	0.5	0.5	0.5
	Citrob. 82 Cull.	1	2	0.5	0.5	0.25

15 Example 2

Action of the combination of (1) and (2) towards clinical isolates resistant to the cephalosporin component.

20 Table 2

			MIC	in mg/l		
		(1)	(2)		(1): (2))
	<u>Pathogen</u>	alone	alone	1:1	1:2	1:3
25	Staph. 789	4	64	4	4	8
	Staph. 22130	2	32	4	4	4
	Strept. D 756	8	64	4	4	4
	Strept. D Eder	8	64	4	4	4
	Strept.faecium D	8	64	8	16	8
30	Citrob. 2901	8	64	4	4	4
	Ent. cl. M 423	4	64	2	2	4
4.4	Ent. cl. M. 447	16	64	16	8	8
	Ent. cl. P99	2	64	2	2	2

5

Action of the combination of (1) and (2) on anaerobic pathogens

Table 3

			MI	in mg/l		
		(1)	(2)	(·	1):(2)	
1.0	Pathogen	alone	alone	1:1	1:2	1:3
10		0.125	128	0.125	0.25	0.25
	B.fragilis 312	0.125	16	0.125	0.125	0.125
	B.fragilis 960	0.25	8	0.25	0.5	0.25
	B.fragilis 17390	0.25	2	0.25	0.25	0.25
4 -	B.fragilis 18125	0.125	64	0,125	0.125	0.125
15	B.ovatus 103 B.vulgatus 1446	0.125	64	0.125	0.125	0.125
	B. thetaiotaomicro	n			0.405	0.125
	123	0.125	64	0,125	0.125	0,129
	Sph. varius 5262	0.25	64	0.5	1	1
20	Cl. tetani 19406	0.25	8	0.5	0.5	0.5

Example 4

The combination of the potassium salt of the penem compound 5R,6S-3-(2-carbamoyloxy-ethylthio)-6-(1R-hydroxy-ethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-carboxylic acid (3) with compound (2) was tested on 3 strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Table 4

FIC	values	O T	а	comb	ination	O T	the	

	Strain	penem (3)	with the	cephalosporin	(2)
5	E. coli 2136E		0.5		
	E. coli 2137E		0.75*		
	E. coli 2138E		0.5		
	Citrobacter freundi	i 8090	0.281		

10 * The FIC value of 0.75 indicates a hyperadditive action.

Example 5

- The combination of the potassium salt of the penem compound 5R,6S-6-(1R-hydroxyethyl)-3-(4-formamidophenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (4) with compound (2) was tested on 3 strains of E. coli and one strain of Citrobacter freundii. The
- 20 "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values
- 25 of 1 show an additive interaction.

Table 5

	F	IC values of a combination of the
30	Strain p	enem (4) with the cephalosporin (2)
	E. coli 2136E	0.5
	E. coti 2137E	0.375
	E. coli 2138E	0.5
	Citrobacter freundii	3090 0.091

...

35

Example 6

The combination of the sodium salt of the penem compound 5R,6S-3-(3-carbamoylphenyl)-6-(1R-hydroxyethyl)-7-oxo-4-

thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (5) with compound (2) was tested on 3 strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

10

25

5

Table 6

	FIC	values of a combination of the
	Strain per	nem (5) with the cephalosporin (2)
15	E. coli 2136E	0.375
	E. coli 2137E	0.5
	E. coli 2138E	0.375
	Citrobacter freundii 80	90 0.125

20 Example 7

The activity of cephalosporins, such as are indicated above as an example, towards Gram-positive pathogens such as staphylococci and towards Gram-negative anaerobic pathogens is in most cases lower than that towards Gram-negative aerobic pathogenic organisms (see also Seibert et al., Infection, Volume 11 (1983) 5, 275-279).

By contrast, penems have as a rule a higher antibacterial activity towards Gram-positive cocci and anaerobics than towards Gram-negative pathogens (see also Bauernfeind, J. Antimicrob. Chemother 15, 111, 1985).

Taking a combination of one part of a penem and three

parts of a cephalosporin as an example, Table 7 shows a

superiority of the antibacterial activity of the combina
tion as compared with the individual components. The

combination product evens out the weakness in the anti
bacterial spectrum of the two products and thus has a

broader antibacterial spectrum which makes it particularly suitable for a therapy of bacterial infections without preceding isolation of the causative organism.

5

Table 7

	Strain	HRE 664	MIC in mg/l Cefotaxim (2)	(1):(2) 1:3
10	Strept. D 756	8	64	4
	Strept. D Eder	8 .	64	4
	Strept. D 21777	8	64	4
	Strept. D 26777	8	64	4
	Citrob. 2901	8	64	4
15	Citrob. 82 Cull.	1	2	0.25
	Ent. cl. M 447	16	64	8
	Ent. cl. 2240 Cull.	2	0.062	0.015
	E. coli 2139E	1	0.031	0.015
	Kl. pneu. 1976E	1	0.062	0.031
20	B. vulgatus 1446	0.125	64	0.125
	B. distasonis 1366	0.25	0.125	0.125

Example 8

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(4-carbamoyl-phenoxy)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (1) with cefotaxim was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index	
E. coli 2136E	0.312	
E. coli 2137E	0.312	
E. coli 2138E	0.249	
Citrobacter freundii 8090	0.094	

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(4
methyl-sulfinylphenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (6) with cefotaxim (2) was tested
on three strains of E. coli and one strain of Citrobacter
freundii. The "fractional inhibitory concentration" (FIC
index) as a measure of the synergistic activity was deter
mined by the method of Berenbaum, J. Infect. Dis. 137
(1978), 122-136. According to this publication, FIC
values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

O Strain	FIC index
E. coli 2136E	0.379
E. coli 2137E	0.5
E. coli 2138E	0.282
Citrobacter freundii 8090	0.5

Example 10

25

The combination of sodium 5R,6S-3-(4-methylsulfinylphen-oxy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo
[3.2.0]hept-2-ene-2-carboxylate (7) with cefotaxim (2) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J.

Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

	Strain	FIC index	
	E. coli 2136E	0.379	
	E. coli 2137E	0.320	
	E. coli 2138E	0.374	
5	Citrobacter freundii 8090	0.047	

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3
(3-sulfamoyl-propylthio)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (8) with cefotaxim (2) was tested
on three strains of E. coli and one strain of Citrobacter
freundii. The "fractional inhibitory concentration"
(FIC index) as a measure of the synergistic activity was
determined by the method of Berenbaum, J. Infect. Dis.
137 (1978), 122-136. According to this publication, FIC
values of ≤ 0.5 are characteristic of a synergistic
activity, and FIC values of 1 show an additive interaction.

20

Strain	FIC index
E. coli 2136E	0.379
E. coli 2137E .	0.379
E. coli 2138E	0.379
Citrobacter freundii 8090	0.312

Example 12

The combination of potassium 5R,6S-6-(1R-hydroxyethyl)-3
(3-methylsulfinylphenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (9) with cefotaxim (2) was tested
on three strains of E. coli and one strain of Citrobacter
freundii. The "fractional inhibitory concentration"
(FIC index) as a measure of the synergistic activity was
determined by the method of Berenbaum, J. Infect. Dis.
137 (1978), 122-136. According to this publication, FIC
values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index
E. coli 2136E	0.383
E. coli 2137E	0.383
E. coli 2138E	0.185
Citrobacter freundii 8090	0.0935

5

The combination of sodium 5R,6S-3-(4-cyanophenoxy)-6-(1R-10 hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (10) with cefotaxim (2) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index	_
	E. coli 2136E	0.5	
	E. coli 2137E	0.25	
	E. coli 2138E	0.25	
	Citrobacter freundii 8090	0.75	

Example 14

25

The combination of the sodium salt of 5R,6S-6-(1R-hydroxy-ethyl)-3-(4-carbamoyl-phenoxy)-7-oxo-4-thia-1-azobicyclo
[3.2.0]hept-2-ene-carboxylic acid (1) with cefodizim (11) was tested on three strains of E. coli. and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of < 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index	
E. coli 2136E	0.49	
E. coli 2137E	0.5	
E. coli 2138E	0.37	
Citrobacter freundii	0.186	

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3
(4-methyl-sulfinylphenyl)-7-oxo-4-thia-1-azabicyclo
[3.2.0]hept-2-ene-2-carboxylate (6) with cefodizim (11)

was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of < 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20

Strain	FIC index
E. coli 2136E	0.155
E. coli 2137E .	0.498
E. coli 2138E	0.374
Citrobacter freundii 8090	0.375

Example 16

The combination of sodium 5R,6S-3-(4-methylsulfinylphen-oxy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo-[3.2.0]hept-2-ene-2-carboxylate (7) with cefodizim (11) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

S	Strain	FIC index
 E	E. coli 2136E	0.5
E	. coli 2137E	0.5
	. coli 2138E	0.249
	Citrobacter freundii 8090	0.140

The combination of potassium 5R,6S-6-(1R-hydroxyethyl)3-(3-methylsulfinylphenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (9) with cefodizim (11)
was tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic
activity was determined by the method of Berenbaum, J.
Infect. Dis. 137 (1978), 122-136. According to this
publication, FIC values of ≤ 0.5 are characteristic of
a synergistic activity, and FIC values of 1 show an
additive interaction.

20

	Strain	FIC index
	E. coli 2136E	0.125
	E. coli 2137E	0.187
	E. coli 2138E	0.375
25	Citrobacter freundii 8090	0.093

Example 18

The combination of sodium 5R,6S-3-(4-cyanophenoxy)-6-(1R
hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2ene-2-carboxylate (10) with cefodizim (11) was tested on
three strains of E. coli and one strain of Citrobacter
freundii. The "fractional inhibitory concentration"
(FIC index) as a measure of the synergistic activity was
determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC
values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index	
E. coli 2136E	0.75	
E. coli 2137E	0.373	
E. coli 2138E	0.498	
Citrobacter freundii 8090	0.062	

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(3sulfamoyl-propylthio)-7-oxo-4-thia-1-azabicyclo[3.2.0]-10 hept-2-ene-2-carboxylate (8) with cefodizim (11) was. tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. 15 Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20

25

30

5

Strain	FIC index
E. coli 2136E	0.498
E. coli 2137E .	0_498
E. coli 2138E	0.624
Citrobacter freundii 8090	0.281

Example 20

The combination of sodium 5R,6S-3-(3-carbamoylphenyl)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2ene-2-carboxylate (5) with cefodizim (11) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was 35 determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of \leq 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index	
E. coli 2136E	0.75	
E. coli 2137E	0.496	
E. coli 2138E	1	
Citrobacter freundii 8090	0.187	

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(2-carbamoyl-oxyethylthio)-7-oxo-4-thia-1-azabicyclo-[3.2.0]hept-2-ene-2-carboxylate (3) with cefodizim (11) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of < 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20

25

30

35

5

10

15

Strain	FIC index
E. coli 2136E	0.498
E. coli 2137E	0.498
E. coli 2138E	0.5
Citrobacter freundii 8090	0.249

Example 22

The combination of potassium 5R,6S-6-(1R-hydroxyethyl)-3-(4-formamidophenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (4) with cefodizim (11) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index
E. coli 2136E	0.5
E. coli 2137E	0.75
E. coli 2138E	0.5
Citrobacter freundii 8090	0.125

5

25

The combination of the sodium salt of 5R,6S-6-(1R-hydroxy-ethyl)-3-(4-carbamoyl-phenoxy)-7-oxo-4-thia-1-azabicyclo-[3.2.0]hept-2-ene-2-carboxylic acid (1) with cefpirome (12) was tested on three strains of E. coli. and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index	
	E. coli 2136E	0.5	
	E. coli 2137E	0.66	
	E. coli 2138E	. 0.315	
	Citrobacter freundii	0.5	

Example 24

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3(4-methylsulfinylphenyl)-7-oxo-4-thia-1-azabicyclo
[3.2.0]hept-2-ene-2-carboxylate (6) with cefpirome (12)
was tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic
activity was determined by the method of Berenbaum, J.

Infect. Dis. 137 (1978), 122-136. According to this
publication, FIC values of < 0.5 are characteristic of
a synergistic activity, and FIC values of 1 show an
additive interaction.

	Strain	FIC index	
	E. coli 2136E	0.374	
	E. coli 2137E	0.249	
·	E. coli 2138E	0.187	
5	Citrobacter freundii 8090	0.126	

The combination of sodium 5R,6S-3-(4-methylsulfinylphenoxy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (7) with cefpirome (12) was
tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic
activity was determined by the method of Berenbaum, J.
Infect. Dis. 137 (1978), 122-136. According to this
publication, FIC values of ≤ 0.5 are characteristic of
a synergistic activity, and FIC values of 1 show an
additive interaction.

20

Stra	in	FIC index	
E. c	oli 2136E	0.629	-
E. c	oli 2137E	0.5	
E. c	oli 2138E	0.5	
25 Citr	obacter freundii 8090	0.126	

Example 26

The combination of potassium 5R,6S-6-(1R-hydroxyethyl)30 3-(3-methylsulfinylphenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (9) with cefpirome (12)
was tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic
35 activity was determined by the method of Berenbaum, J.
Infect. Dis: 137 (1978), 122-136. According to this
publication, FIC values of ≤ 0.5 are characteristic of
a synergistic activity, and FIC values of 1 show an
additive interaction.

	Strain	FIC index	_
	E. coli 2136E	0.125	
	E. coli 2137E	0.5	
	E. coli 2138E	0.186	
5	Citrobacter freundii 8090	0.258	

 \bigcirc

The combination of sodium 5R,6S-3-(4-cyanophenoxy)-6-(1R-10 hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (10) with cefpirome (12) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined 15 by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of \leq 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index
	E. coli 2136E	0.5
	E. coli 2137E	0.5
	E. coli 2138E	. 0.5
	Citrobacter freundii 8090	0.062

Example 28

25

35

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(3-sulfamoyl-propylthio)-7-oxo-4-thia-1-azabicyclo[3.2.0]-30 hept-2-ene-2-carboxylate (8) with cefpirome (12) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

	Strain	FIC index	
	E. coli 2136E	0.75	
	E. coli 2137E	0.62	
	E. coli 2138E	0.5	
;	Citrobacter freundii 8090	0.5	

The combination of sodium 5R,6S-3-(3-carbamoyl-phenyl)-6
(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3,2.0]hept-2ene-2-carboxylate (5) with cefpirome (12) was tested on
three strains of E. coli and one strain of Citrobacter
freundii. The "fractional inhibitory concentration"
(FIC index) as a measure of the synergistic activity was
determined by the method of Berenbaum, J. Infect. Dis.
137 (1978), 122-136. According to this publication, FIC
values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20

25

()

5

Strain	FIC index	
E. coli 2136E	0.5	
E. coli 2137E	0.75	
E. coli 2138E	0.372	
Citrobacter freundii 8090	0.390	

Example 30

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(2carbamoyloxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept2-ene-2-carboxylate (3) with cefpirome(12) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration"

(FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

26214

	strain	FIC Inde
	E. coli 2136E	0.366
	E. coli 2137E	0.496
	E. coli 2138E	0.372
5	Citrobacter freundii 8090	0.366

Example 31

(1

The combination of potassium 5R,6S-6-(1R-hydroxyethyl)
3-(4-formamidophenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (4) with cefpirome (12) was tested
on three strains of E. coli and one strain of Citrobacter
freundii. The "fractional inhibitory concentration"
(FIC index) as a measure of the synergistic activity was
determined by the method of Berenbaum, J. Infect. Dis.
137 (1978), 122-136. According to this publication, FIC
values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index
	E. coli 2136E	0.5
	E. coli 2137E	0.5
	E. coli 2138E	0.312
	Citrobacter freundii 8090	0.125

Example 32

25

The combination of the sodium salt of 5R,6S-6-(1R-hy-droxyethyl)-3-(4-carbamoyl-phenoxy)-7-oxo-4-thia-1-aza-bicyclo[3.2.0]hept-2-ene-2-carboxylic acid (1) with ceftriaxon (13) was tested on three strains of E. coli. and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978),

122-136. According to this publication, FIC values of © 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

	Strain	FIC index	
	E. coli 2136E	0.5	
	E. coli 2137E	0.379	
	E. coli 2138E	0.75	•
5	Citrobacter freundii 8090	0.075	

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3
(4-methylsulfinylphenyl)-7-oxo-4-thia-1-azabicyclo
[3.2.0]hept-2-ene-2-carboxylate (6) with ceftriaxon (13) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20

Strain	FIC index	
E. coli 2136E	0.5	-
E. coli 2137E	0.498	
E. coli 2138E	0.374	
Citrobacter freundii 8090	0.187	

Example 34

The combination of sodium 5R,6S-3-(4-methylsulfinylphenoxy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (7) with ceftriaxon (13) was
tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic
activity was determined by the method of Berenbaum, J.
Infect. Dis. 137 (1978), 122-136. According to this
publication, FIC values of ≤ 0.5 are characteristic of a
synergistic activity, and FIC values of 1 show an additive interaction.

	Strain	FIC index
	E. coli 2136E	0.5
	E. coli 2137E	0.5
	E. coli 2138E	0.75
5	Citrobacter freundii 8090	0.091

The combination of potassium 5R,6S-6-(1R-hydroxyethyl)3-(3-methylsulfinylphenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (9) with ceftriaxon (13) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of \leq 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20

	Strain	FIC index	
	E. coli 2136E	0.125	
	E. coli 2137E	0.75	
	E. coli 2138E	0.077	
25	Citrobacter freundii 8090	0.034	

Example 36

The combination of sodium 5R,6S-3-(4-cyanophenoxy)-6-(1R-30 hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]-hept-2-ene-2-carboxylate (10) with ceftriaxon (13) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978½; 122-136. According to this publication, FIC values of, ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index	
E. coli 2136E	0.5	
E. coli 2137E	0.5	
E. coli 2138E	0.5	
Citrobacter freundii 8090	0.182	

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3
(3-sulfamoyl-propylthio)-7-oxo-4-thia-1-azabicyclo
[3.2.0]hept-2-ene-2-carboxylate (8) with ceftriaxon (13) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20

30

35

	Strain	FIC index	
	E. coli 2136E	0.5	-
	E. coli 2137E	0.5	
	E. coli 2138E	0.5	
25	Citrobacter freundii 8090	0.186	

Example 38

The combination of sodium 5R,6S-3-(3-carbamoyl-phenyl)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (5) with ceftriaxon (13) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of < 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index
E. coli 2136E	0.318
E. coli 2137E	0.31
E. coli 2138E	0.75
Citrobacter freundii 8090	0.06

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(2
carbamoyloxyethylthio)-7-oxo-4-thia-1-azabicyclo[3.2.0]
hept-2-ene-2-carboxylate (3) with ceftriaxon (13) was

tested on three strains of E. coli and one strain of

Citrobacter freundii. The "fractional inhibitory con
centration" (FIC index) as a measure of the synergistic

activity was determined by the method of Berenbaum, J.

Infect. Dis. 137 (1978), 122-136. According to this

publication, FIC values of ≤ 0.5 are characteristic of

a synergistic activity, and FIC values of 1 show an

additive interaction.

20

25

5

Strain	FIC index
E. coli 2136E	0.75
E. coli 2137E	0.75
E. coli 2138E	0.629
Citrobacter freundii	0.0625

Example 40

The combination of potassium 5R,6S-6-(1R-hydroxyethyl)30 3-(4-formamidophenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (4) with ceftriaxon (13) was
tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concencentration" (FIC index) as a measure of the synergistic
activity was determined by the method of Berenbaum, J.
Infect. Dis. 137 (1978), 122-136. According to this
publication, FIC values of ≤ 0.5 are characteristic of
a synergistic activity, and FIC values of 1 show an
additive interaction.

Strain	FIC index	
E. coli 2136E	0.5	
E. coli 2137E	0.125	
E. coli 2138E	0.5	
Citrobacter freundii 8090	0.372	

The combination of the sodium salt of 5R,6S-6-(1R-hydroxy-ethyl)-3-(4-carbamoyl-phenoxy)-7-oxo-4-thia-1-azabicyclo-[3.2.0]hept-2-ene-2-carboxylic acid (1) with cefotiam (14) was tested on three strains of E. coli. and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index	
	E. coli 2136E	0.49	
	E. coli 2137E	0.5	-
	E. coli 2138E	_0.372	
	Citrobacter freundii	0.077	

Example 42

25

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(4-methylsulfinylphenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]
hept-2-ene-2-carboxylate (6) with cefotiam (14) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration"

(F.C. index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

	Strain	FIC index	
	E. coli 2136E	0.312	
	E. coli 2137E	0.375	
	E. coli 2138E	0.374	
;	Citrobacter freudii 8090	0.312	

The combination of sodium 5R,6S-3-(4-methylsulfinylphen0xy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (7) with cefotiam (14)
was tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic
activity was determined by the method of Berenbaum, J.
Infect. Dis. 137 (1978), 122-136. According to this
publication, FIC values of ≤ 0.5 are characteristic of
a synergistic activity, and FIC values of 1 show an
additive interaction.

20

25

5

Strain	FIC index
E. coli 2136E	0.498
E. coli 2137E	.0.5
E. coli 2138E	0.374
Citrobacter freundii 8090	0.077

Example 44

The combination of potassium 5R,6S-6-(1R-hydroxyethyl)-3(3-methylsulfinylphenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (9) with cefotiam (14) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index
E. coli 2136E	0.75
E. coli 2137E	0.75
E. coli 2138E	0.5
Citrobacter freundii 8090	0.125

5

The combination of sodium 5R,6S-3-(4-cyanophenoxy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (10) with cefotiam (14) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of © Comparison-color: 20.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20 Strain	FIC index
E. coli 2136E	1
E. coli 2137E	0.375
E. coli 2138E	0.375
Citrobacter freundi	i 8090 0.186

Example 46

25

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(3-sulfamoylpropylthio)-7-oxo-4-thia-1-azabicyclo[3.2.0]
hept-2-ene-2-carboxylate (8) with cefotiam (14) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC values of \(\leq \) 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

	Strain	FIC index	
	E. coli 2136E	0.63	
	E. coli 2137E	0.75	
	E. coli 2138E	0.5	
5	Citrobacter freundii 8090	0.265	

The combination of sodium 5R,6S-3-(3-carbamoyl-phenyl)-6
(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept2-ene-2-carboxylate (5) with cefotiam (14) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index
	E. coli 2136E	0.75
	E. coli 2137E	0.5
	E. coli 2138E	0.5
	Citrobacter freundii 8090	0.186

Example 48

25

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(2-carbamoyloxyethylthio)-7-oxo-4-thia-1-azabicyclo[3.2.0]
hept-2-ene-2-carboxylate (3) with cefotiam (14) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC values, of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index	
E. coli 2136E	0.5	
E. coli 2137E	0.498	
E. coli 2138E	0.498	
Citrobacter freundii 8090	0.124	•

5

The combination of potassium 5R,6S-6-(1R-hydroxyethyl)-3-(4-formamidophenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-10 2-ene-2-carboxylate (4) with cefotiam (14) was tested on . three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 15 137 (1978), 122-136. According to this publication, FIC values of \leq 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index	
	E. coli 2136E	0.5	
	E. coli 2137E	0.5	-
	E. coli 2138E	0.624	
	Citrobacter freundii 8090	0.156	

Example 50

25

30

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(4-carbamoyl-phenoxy)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (1) with cefoperazon (15) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this 35 publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

	Strain	FIC index	
	E. coli 2136E	0.5	
	E. coli 2137E	0.5	
	E. coli 2138E	0.278	
5	Citrobacter freundii 8090	0.09	

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(4
10 methylsulfinylphenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]
hept-2-ene-2-carboxylate (6) with cefoperazon (15) was

tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic

15 activity was determined by the method of Berenbaum, J.

Infect. Dis. 137 (1978), 122-136. According to this
publication, FIC values of < 0.5 are characteristic of
a synergistic activity, and FIC values of 1 show an
additive interaction.

20

25

Strain	FIC index
E. coli 2136E	0.25
E. coli 2137E	Q.75
E. coli 2138E	0.498
Citrobacter freundii 8090	0.056

Example 52

The combination of sodium 5R,6S-3-(4-methylsulfinylphenoxy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (7) with cefoperazon (15)
was tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic
activity was determined by the method of Berenbaum, J.
Infect. Dis. 137 (1978), 122-136. According to this
publication, FIC values of ≤ 0.5 are characteristic of
a synergistic activity, and FIC values of 1 show an
additive interaction.

Strain	FIC index	_
E. coli 2136E	0.75	
E. coli 2137E	0.75	
E. coli 2138E	0.374	
Citrobacter freundii 8090	0.077	

The combination of potassium 5R,6S-6-(1R-hydroxyethyl)-3
(3-methylsulfinylphenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (9) with cefoperazon (15) was
tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic
activity was determined by the method of Berenbaum, J.
Infect. Dis. 137 (1978), 122-136. According to this
publication, FIC values of ≤ 0.5 are characteristic of
a synergistic activity, and FIC values of 1 show an
additive interaction.

20

	Strain	FIC index	
	E. coli 2136E	0.5	-
	E. coli 2137E	0.5	
	E. coli 2138E	0.75	
25	Citrobacter freundii 8090	0.312	

Example 54

The combination of sodium 5R,6S-3-(4-cyanophenoxy)-6-(1R-30 hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (10) with cefoperazon (15) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of \(\leq 0.5 \) are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index
E. coli 2136E	0.5
E. coli 2137E	0.25
E. coli 2138E	0.28
Citrobacter freundii 8090	0.091

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(3
sulfamoyl-propylthio)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (8) with cefoperazon (15) was
tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic
activity was determined by the method of Berenbaum, J.
Infect. Dis. 137 (1978), 122-136. According to this
publication, FIC values of ≤ 0.5 are characteristic of
a synergistic activity, and FIC values of 1 show an
additive interaction.

20

25

30

35

Strain	FIC index
E. coli 2136E	0.75
E. coli 2137E	075
E. coli 2138E	0.373
Citrobacter freundii 8090	0.281

Example 56

The combination of sodium 5R,6S-3-(3-carbamoylphenyl)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (5) with cefoperazon (15) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of \leq 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

	Strain	FIC index
	E. coli 2136E	0.31
	E. coli 2137E	0.374
	E. coli 2138E	0.308
5	Citrobacter freundii 8090	0.124

The combination of sodium 5R,6S-6-(1R-hydroxyethyl)-3-(2-carbamoyloyxethylthio)-7-oxo-4-thia-1-azabicyclo[3.2.0]-hept-2-ene-2-carboxylate (3) with cefoperazon (15) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis. 137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20

25

Strain	FIC index
E. coli 2136E	0.563
E. coli 2137E	1.
E. coli 2138E	0.5
Citrobacter freundii 8090	0.366

Example 58

The combination of potassium 5R,6S-6-(1R-hydroxyethyl)3-(4-formamidophenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (4) with cefoperazon (15) was
tested on three strains of E. coli and one strain of
Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic
activity was determined by the method of Berenbaum, J.
Infect. Dis. 137 (1978), 122-136. According to this
publication, FIC values of ≤ 0.5 are characteristic of a
synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index
E. coli 2136E	0.75
E. coli 2137E	0.75
E. coli 2138E	0.372
Citrobacter freundii 8090	0.248

The combination of sodium 5R,6S-3-(4-formamido-phenoxy)6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept2-ene-2-carboxylate (16) with cefotaxim (2) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.
137 (1978), 122-136. According to this publication, FIC values of < 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index	
	E. coli 2136E	0.383	
	E. coli 2137E	0.5	-
	E. coli 2138E	0.374	
	Citrobacter freundii 8090	0.122	

25

Example 60

The combination of sodium 5R,6S-3-(4-formamido-phenoxy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (16) with cefodizim (11) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index	
E. coli 2136E	0.5	
E. coli 2137E	0.5	
E. coli 2138E	0.125	
Citrobacter freundii 8090	0.047	

5

25

The combination of sodium 5R,6S-3-(4-formamido-phenoxy)6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept2-ene-2-carboxylate (16) with cefpirome (12) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration"
(FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.
137 (1978), 122-136. According to this publication, FIC values of < 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index
	E. coli 2136E	0.5
	E. coli 2137E	0.5
	E. coli 2138E	0.5
	Citrobacter freundii 8090	0.273

Example 62

.

The combination of sodium 5R,6S-3-(4-formamido-phenoxy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (16) with ceftriaxon (13) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index	
E. coli 2136E	0.5	
E. coli 2137E	0.5	
E. coli 2138E	0.36	
Citrobacter freundii 8090	0.122	

5

The combination of sodium 5R,6S-3-(4-formamido-phenoxy)6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept2-ene-2-carboxylate (16) with cefotiam (14) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration"
(FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.
137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index
	E. coli 2136E	0.5
	E. coli 2137E	0.374
	E. coli 2138E	0.374
	Citrobacter freundii 8090	0.257

Example 64

25

The combination of sodium 5R,6S-4-(4-formamido-phenoxy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (16) with cefoperazon (15) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137.(1978), 122-136. According to this publication, FIC values of 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index	
E. coli 2136E	0.5	
E. coli 2137E	0.75	
E. coli 2138E	0.5	
Citrobacter freundii 8090	0.093	

The combination of sodium 5R,6S-3-(carbamoyloxymethyl)-6
(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept2-ene-2-carboxylate (17) with cefotaxim (2) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration"

(FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index
	E. coli 2136E	0.5
	E. coli 2137E	0.37
	E. coli 2138E	0.5
	Citrobacter freundii 8090	0.122

Example 66

25

The combination of sodium 5R,6S-3-(carbamoyloxymethyl)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (17) with cefodizim (11) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration" (FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC values of ≤ 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index	
E. coli 2136E	0.5	
E. coli 2137E	0.5	
E. coli 2138E	0.75	
Citrobacter freundii 8090	0.125	

5

The combination of sodium 5R,6S-3-(carbamoyloxymethyl)-6
(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept2-ene-2-carboxylate (17) with cefpirome (12) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration"

(FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC values of < 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

20	Strain	FIC index
	E. coli 2136E	0.37
	E. coli 2137E	0.5
	E. coli 2138E	0.5
	Citrobacter freundii 8090	0.062

Example 68

25

The combination of sodium 5R,6S-3-(carbamoyloxymethyl)-6(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept
2-ene-2-carboxylate (17) with ceftriaxon (13) was tested on three strains of E. coli and one strain of Citrobacter freundii. The "fractional inhibitory concentration"

(FIC index) as a measure of the synergistic activity was determined by the method of Berenbaum, J. Infect. Dis.

137 (1978), 122-136. According to this publication, FIC values of < 0.5 are characteristic of a synergistic activity, and FIC values of 1 show an additive interaction.

Strain	FIC index
E. coli 2136E	0.375
E. coli 2137E	0.125
E. coli 2138E	0.5
Citrobacter freundii 8090	0.093

5

10

Preparation of a parenteral formulation

1.5 g of cefotaxim (2) and 0.5 g of HRE 664 (1) are dissolved in 10 ml of water ad injec. and then administered.

Depending on the solubility properties, similar quantity 15 ratios are also applicable to the other illustrative examples described above.

Compounds of the illustrative examples

20

H₃

Compound number

(1)

HRE 664

5R,6S-6-(1R-Hydroxyethyl)-3-(4-carbamoyl-phenoxy)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (sodium salt)

$$H_3C \longrightarrow S-CH_2-CH_2-O-CO-NH_2$$

5R,6S-3-(2-Carbamoyloxyethylthio)-6-(1R-hydroxyethyl)-7
oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic

acid (potassium salt)

5R,6S-6-(1R-Hydroxyethyl)-3-(4-formamidophenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (potassium salt)

 $H_3C \xrightarrow{OH} S \xrightarrow{CONH_2} (5)$

5

15

5R,6S-3-(3-Carbamoyl-phenyl)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (sodium salt)

H₃C \longrightarrow SOCH₃ (6)

5R,6S-6-(1R-Hydroxyethyl)-3-(4-methylsulfinyl-phenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (sodium salt)

5R,6S-3-(4-Methylsulfinyl-phenoxy)-6-(1R-hydroxyethyl)-75 //oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic
acid/(sodium salt)

10

15

35

5R,6S-6-(1R-Hydroxyethyl)-3-(3-sulfamoyl-propylthio)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (sodium salt)

5R,6S-6-(1R-Hydroxyethyl)-3-(3-methylsulfinyl-phenyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (potassium salt)

H₃C
$$\longrightarrow$$
 CN (10)

25 5R,6S-3-(4-Cyanophenoxy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (sodium salt)

5R,6S-3-(4-Formamido-phenoxy)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (sodium salt)

(2)

Cefotaxim (sodium salt)

Cefodizim (sodium salt)

Cefpirom

5

<u>Ceftriaxon</u> (disodium salt)

- 89-

Cefotiam

5

15

<u>Cefoperazon</u> (sodium salt)

H₃C
$$\longrightarrow$$
 CH₂OCONH₂ (17)

5R,6S-3-(Carbamoyloxymethyl)-6-(1R-hydroxyethyl)-7-oxo-4-thia-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (sodium salt)

5

10

- 1. An improved pharmaceutical formulation having a synergistic antibacterial activity, comprising
 - a) a cephalosporin derivative of the formula

$$H_{2}N = GOOR_{1} = GOOR_{3}$$

$$H_{1}N = GOOR_{3}$$

$$H_{2}N = GOOR_{3}$$

in which

 R_1 denotes $c_1 - c_{\mu} - \text{alkyl and the}$ $= H - 0R_1 \text{ group is in the syn position,}$ $R_2 \text{ has the meaning of acctoxymethyl,}$ $- 0H_2S - X,$ with X =

$$\underbrace{ \begin{array}{c} N \\ S \end{array} }^{\text{CH}_{3}} \text{CH}_{2} \text{CCCH}, \underbrace{ \begin{array}{c} N \\ N \end{array} }^{\text{N}} \text{CH}_{3}, \underbrace{ \begin{array}{c} N \\ N \end{array} }^{\text{N}} \text{CH}_{2} \text{-CH}_{2} \text{-N} \\ \end{array} }^{\text{CH}_{3}}$$

and

5

 R_3 is hydrogen, a physiologically acceptable cation, a physiologically acceptable enter radical or - if the structure -CH₂-(+)
appears in R_2 - represents a negative charge, and

$$H_3^{C} \xrightarrow{OH} H S Z$$

$$C GOCR_{l_k}$$

$$(11)$$

in which

 $-\text{CH}_2$ -0-COIM₂, $-\text{S}-(\text{CH}_2)_2$ -0-COIM₂ or $-\text{S}-(\text{CH}_2)_3$ -SO₂IM₂ and

 κ_{h} is hydrogen, a physiologically acceptable cation or a physiologically acceptable ester radical.

in a ratio between 1:9 and 9:1.

- 2. A formulation as claimed in claim 1, wherein the cephalosporin derivative is an h-acyl-phonylly-cinecephalosporin.
- 3. A formulation as claimed in claim 1, wherein $-\mathrm{OH}_2-\text{ takes the place of }-\mathrm{O}(=n-\mathrm{Oh}_1)\text{ in formula (1).}$

PHILIPPINE PATENT [19]

[11] No.: [45] Issued:

26214 MAR 1 8 1892

Title: FHARMAGEUTICAL FORMULATION FOR THE TREATMENT OF BACTERIAL INFECTIONS [54]

[75] Inventor (s):

MICHAEL LIMBERT, of Hofheim am Taunus, ELMAR SCHRINNER, of Wiesbaden and GERHARD SEIBERT, of Darmstadt, all of the Federal Republic of Germany

Assignee (s):

HOECHST AKTIENGESELLSCHAFT, of Frankfurt am Main, Federal Republic of Germany, a company of the Federal Republic of Germany

[22] Filed: June 2, 1987

[21] Application Serial No: 35356

FOREIGN APPLICATION PRIORITY DATA

[31] Number (s) P 36 18813.1

[32] Date (s) June 4, 1986

Country (ies) Federal Republic of Germany

PH Class 514/195

[51] Int. Class A61K 31/43; A61K 31/545

58] Field of Search 514/195

56] Reference (s) Cited and/or Considered: None

57]

ABITRACT

A pharmaceutical formulation having a synergistic antibacterial activity and comprising a) a cephalosporin terivative or a physiologically acceptable salt or ecter thereof and b) a penem antibiotic of the basic structure (3)

or a physiologically acceptable salt or ester thereof, a process for preparing such a formulation and its use for the treatment of bacterial infections.

_	No.