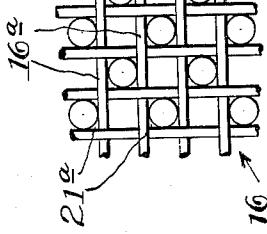
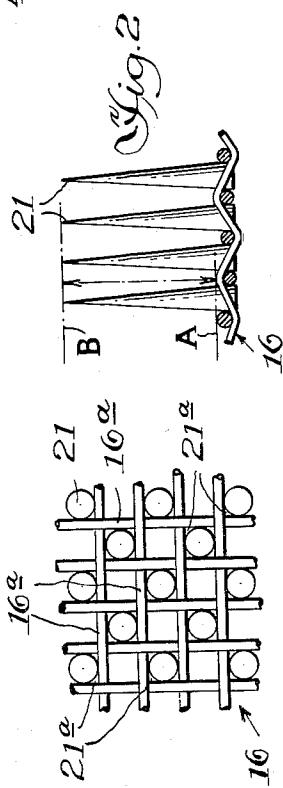
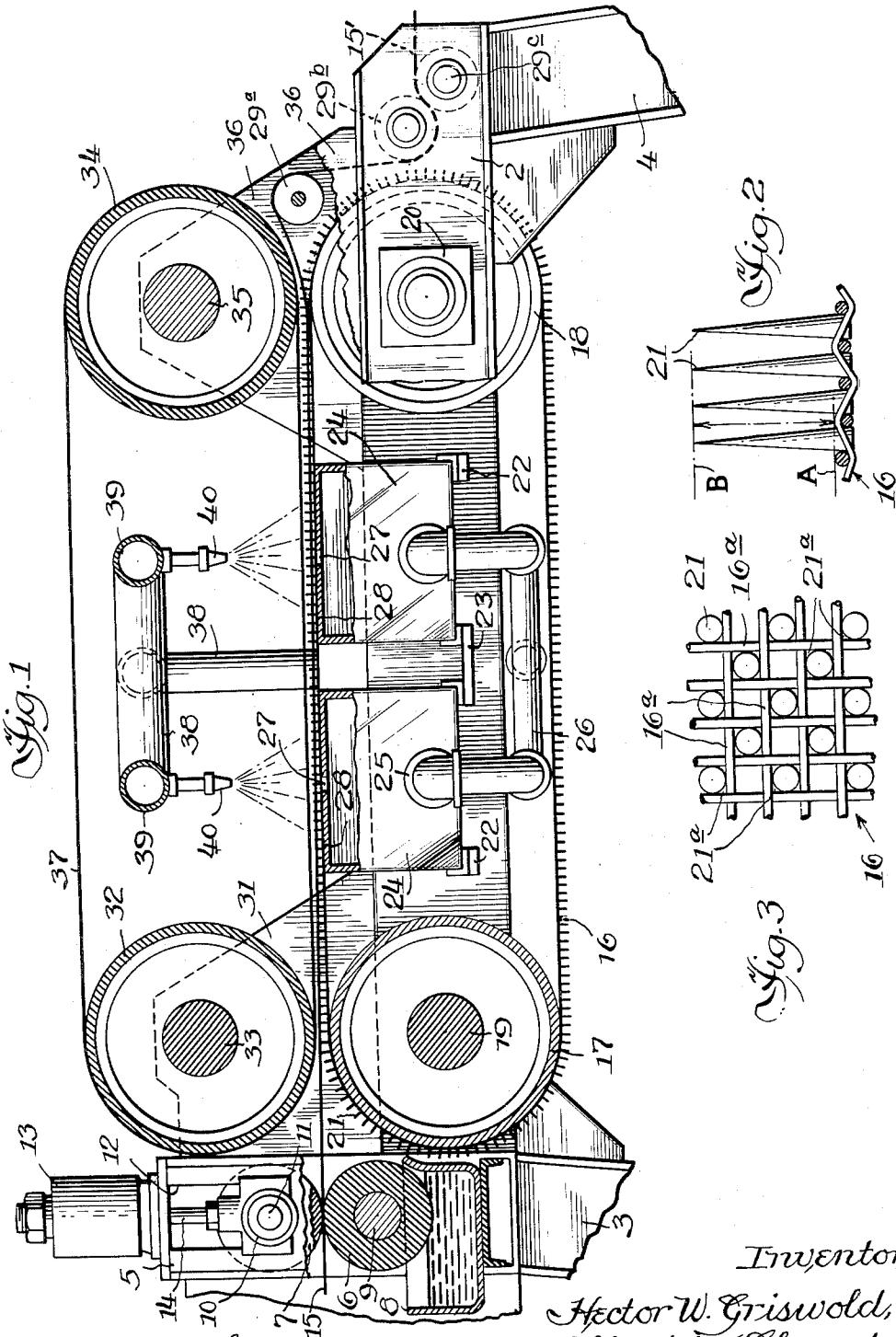


March 20, 1962




H. W. GRISWOLD

3,025,585

APPARATUS AND METHOD FOR MAKING NONWOVEN FABRICS

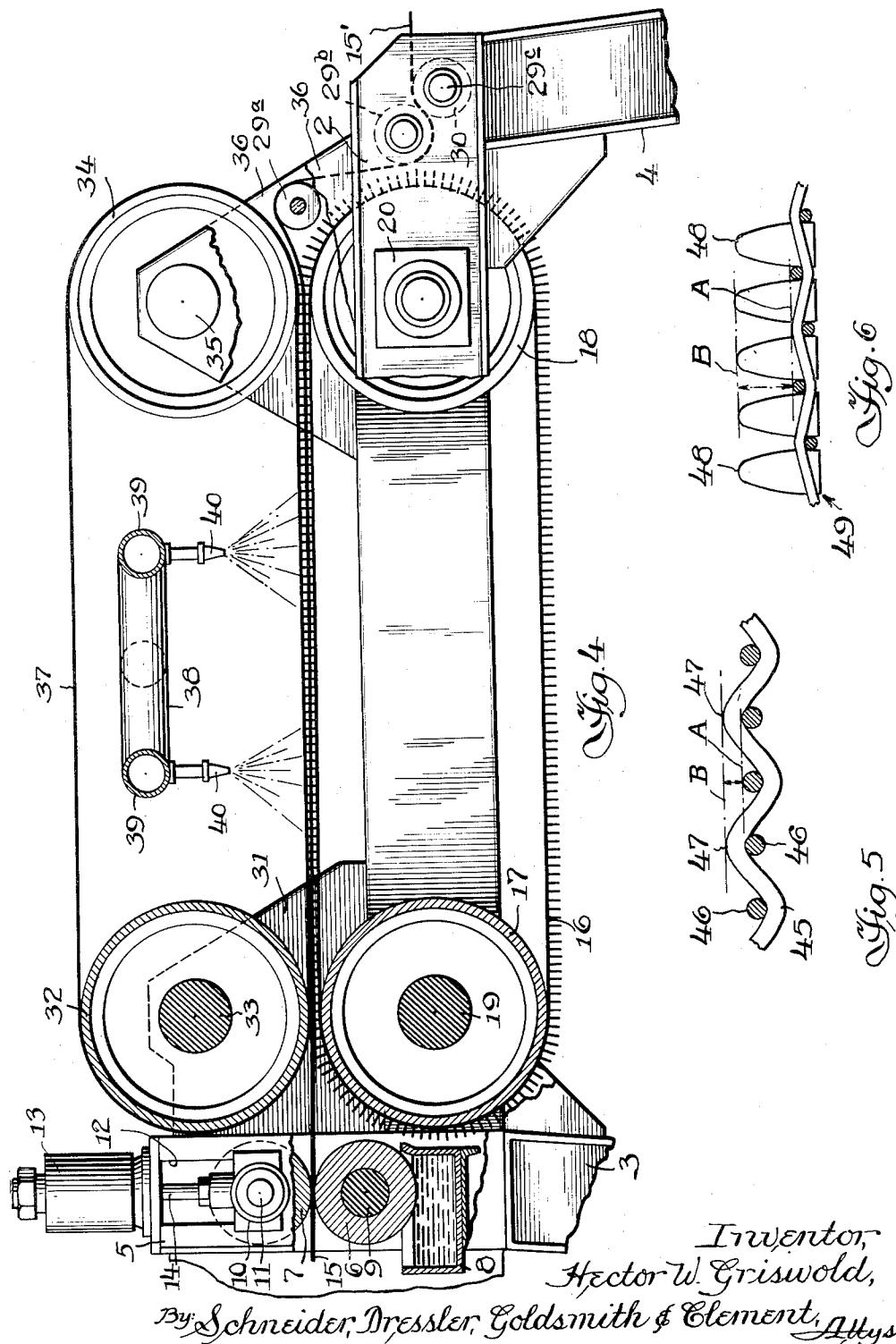
Filed Nov. 19, 1959

2 Sheets-Sheet 1

Inventor

Hector W. Griswold,
By: Schneider, Dressler, Goldsmith & Clement,
Attest.

March 20, 1962


H. W. GRISWOLD

3,025,585

APPARATUS AND METHOD FOR MAKING NONWOVEN FABRICS

Filed Nov. 19, 1959

2 Sheets-Sheet 2

1

3,025,585

APPARATUS AND METHOD FOR MAKING
NONWOVEN FABRICHector W. Griswold, Princeton, N.J., assignor to Chico-
pee Manufacturing Corporation, a corporation of
MassachusettsFiled Nov. 19, 1959, Ser. No. 854,148
23 Claims. (Cl. 28—1)

This invention relates to an apparatus and method for 10 producing nonwoven fabrics directly from fibers without the use of conventional spinning, weaving, or knitting operations.

Heretofore, nonwoven fabrics have been essentially different in structure from fabrics which have been woven or knitted. In a woven or knitted fabric, the fibers of the material making up the fabric do not occur individually, but are twisted into yarns or threads which in turn are woven or knitted into the fabric. In the well known spinning operation, fibers are spun or twisted together tightly into mechanical and frictional engagement with one another to form yarns which are substantially circular in cross section. It is these yarns, not the fibers acting individually, which serve as the structural members of the resulting woven or knitted fabrics. Generally speaking, these fabrics comprise reticular structures of intersecting, intertwining yarns which define interstices between them.

Nonwoven fabrics have been of two main types, felts and bonded webs. In each of these, the fibers making up the fabric occur individually and act individually as structural members. This is true even though the fibers in many felts are so highly interlocked and compressed together that it is difficult to identify individual fibers. Hat felts, for instance, are extremely dense, relatively "hard" fabrics without apparent interstices, which are quite dissimilar in appearance and qualities to woven or knitted structures.

On the other hand, the fibers in bonded webs are usually flatly assembled in layers, more or less oriented in one direction as in a card web or arranged in a random manner as in an air laid isotropic web. Various bonding agents have been used to print a binder pattern on such webs or to impregnate them to hold the individual fibers together. In this type of fabric, the fibers may remain relatively straight and overlapping one another with very little interlocking between them. They are usually arranged in a more or less uniformly spaced condition in the plane of the web, in such a way that only very small randomly occurring interstices are apparent between the overlapped fibers and those fibers between interstices remain spaced and more or less flatly arranged, possessing little similarity to the yarns of woven or knitted fabrics.

The present invention contemplates a nonwoven fabric wherein the fibers are arranged to define a predetermined pattern of holes or openings with most of the fiber segments bordering the holes extending in substantial parallelism with portions of their perimeters. In general, the fibers are arranged in interconnected groupings or web areas extending between the holes in a predetermined pattern corresponding to the aforementioned pattern of holes. The resulting fabric may be made to resemble a particular woven or knitted fabric.

The groupings or groups are connected by fibers extending from one to another in such a way that they are common to a plurality of groupings. It is preferred that the average length of the fibers be considerably greater than the lengths of the groups containing them with the result that the groups predominately comprise only parts or segments of the fibers passing through them. Preferably the fibers average at least about $\frac{1}{4}$ inch in length and are textile-like in nature, i.e., flexible and distinct.

2

Wood pulp fibers may also be used, in which case they should be unbeaten. In general, the groupings are connected at junctures wherein the fibers extend in a plurality of diverse directions, while the fiber segments in the groups are relatively parallelized with respect to one another and more closely assembled than at the junctures.

Due to their structure and appearance and other qualities, fabrics produced by the method and apparatus of this invention are particularly adapted for use in surgical dressings, absorbent dressings such as sanitary napkins and diapers, most suitably for covering sanitary napkins and diapers, in wiping cloths, toweling, filter materials, lining materials, industrial base fabrics, as a substitute for gauze-like fabrics in general, and a variety of other applications.

The present invention contemplates a method and an apparatus for producing the fabric herein described from a layer of irregularly arranged fibers. The layer may be a nonwoven web of fibers, for example, fibers of rayon or cotton. The individual fibrous elements of the layer are capable of movement under the influence of applied fluid forces. In general, any of the starting materials described in the following commonly assigned patent and copending applications may be used as starting materials in the method of this invention: Kalwaites Patent No. 2,862,251; Griswold application S.N. 503,871, filed April 26, 1955; and Griswold and Pearce application S.N. 503,872, filed April 26, 1955. The preferred starting material is an unbonded nonwoven fibrous web, suitably a card web.

The method of this invention involves the application of fluid streams, preferably water, against the exposed surface of a layer of irregularly arranged fibers of the type referred to above which are supported in overlapping and frictional engagement with one another upon the free ends 30 of a group of tapered projections arranged in a predetermined pattern upon a permeable backing member with interconnected fiber accumulating spaces between them. It is essential that the backing member be permeable to the passage of the fluid from the applied streams, so that the fluid may pass freely through the backing member and away from the layer of fibers rather than having some or all of the fluid reflected back in the same general direction from which it is applied. Any substantial amount of backing up of the fluid would interfere with, and in an extreme case completely prevent, the desired rearrangement of fiber segments to form a nonwoven fabric of a predetermined pattern.

The forces from the spaced fluid streams may or may 50 not be combined with the forces from one or more suction boxes exerting suction against the side of said permeable backing member opposite the side on which the projections are arranged.

Portions of the fluid rearranging forces employed in the 55 method of this invention are deflected, upon striking the projections upon which the starting layer is supported, in directions having components parallel to the layer. These deflected portions combine to form streams of rearranging fluid which also flow in directions having components parallel to the fibrous starting layer and adjacent streams thus formed exert opposed components of force upon groups of fiber segments lying between them. As a result, the fiber segments in each group are moved into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around the bases of the projections supporting the fibrous layer. Since the projections are arranged in a predetermined pattern, the nonwoven fabric resulting from the method of this invention contains spaced holes arranged in the same predetermined pattern, being defined by the groups of consolidated and parallelized fiber segments that have been moved as just described into

the interconnected fiber accumulating zones around the bases of the projections.

The fiber rearranging forces which move segments of the fibers into the spaces between the tapered projections also move individual fiber segments along the paths of their respective center lines, relative to the other fibers in the layer, to move them into positions in which they lie in relaxed and tensionless condition and in mechanical equilibrium. The fiber segments thus rearranged remain in their new positions, with no tendency to return to their original positions, after the layer of fibers has been removed from engagement with the tapered projections.

The individual projections upon which the fibrous starting layer is supported must be shaped so that the transverse cross-sectional area of each projection increases progressively for at least the top portion of the projection as one moves from the free end thereof towards its base. The projections may be, for example, a plurality of prongs, the projections formed by wires of a woven wire screen as they weave over and under successive cross wires, or sharp tapered implements such as needles.

It is important to select the dimensions and spacing of the projections and the size of the holes in the permeable backing member so as to fall within certain general ranges, all with respect to the denier and length of the individual fibers and the density of the fibrous layer as a whole.

The transverse cross-sectional dimensions of each individual projection must obviously be large enough compared to the diameter of each individual fiber that the projection will be able to push the fiber aside from its starting position and thereby exert a significant rearranging effect on the fiber. On the other hand, it is apparent that the cross-sectional dimensions and the spacing of the projections must not be so large compared to the length of the individual fibers that the majority of the mass of the fibers will be caused to lie in helter-skelter fashion in a plastic mass between the projections rather than lying in a plurality of groups of consolidated and parallelized fiber segments. It has been found that projections having cross-sectional dimensions, measured parallel to the fibrous starting layer, of the order of magnitude ranging from about three to five times the diameter of individual fibers as a minimum and about two times the length of the majority of the individual fibers as a maximum, and spaced no farther apart than a distance equal to about half said length, are suitable for use with the method of this invention.

Each projection must have a height great enough to enable the projection to exert a significant rearranging force on the fibers affected. If the projections are too low, the fibers will not follow the predetermined pattern of distribution of the projections, but will be rearranged according to a distribution of forces determined by other factors. It has been found that the projections used with this method must have as a minimum a free height of the order of magnitude of about three times the diameter of the coarsest fibers in the fibrous starting layer. The term "free height" is used to mean the vertical distance between the effective bottom (i.e., where the consolidated fiber segments are accumulated) of the spaces between the rearranging projections and the crests of the adjacent projections.

In order for the projections to exert a rearranging force on all the fibers in the fibrous layer, including those in the top portion of the layer, the projections must be high enough that their free ends will protrude at least a short distance above the top surface of the rearranged fabric which is the product of this method. Or, to put it another way, the projections must have a certain minimum height indirectly related to the density of the fibrous starting layer, which will ordinarily be packed down in its rearranged form into a more dense final product.

The openings in the permeable backing member must obviously not be so large that the individual fibers may

be urged through them, thereby destroying the integrity of the nonwoven fabric being produced, as the fluid rearranging streams pass through the fibrous layer and then through the backing member. The openings in a flat foraminous backing member should preferably be no wider than the approximate diameter of the finest fibers in the layer, but wider openings are preferred when a wire screen is used as a backing member. In any case the openings may be wider if the length of the fibers is considerably greater than the distance between the high points on adjacent projections.

Advantages of the invention other than those generally described above will be apparent from the following description and claims taken together with the drawings wherein:

FIGURE 1 is a side view, partly in section and partly in elevation, of a machine embodying the invention, with the feed end of the machine at the left of the figure and the discharge end at the right;

FIG. 2 is a fragmentary detail elevation of a plurality of tapered projections carried by a permeable backing member in the form of a screen having sharply tapered implements welded to the wires of the screen adjacent the base of the tapered implements;

FIG. 3 is a fragmentary top elevation of the same structure on which the fibers are rearranged;

FIG. 4 is a view similar to FIG. 1, showing an embodiment of the machine in which the suction boxes are omitted;

FIG. 5 is a fragmentary detail elevation of a plurality of tapered projections formed by wires of a wire screen as they weave over and under successive cross wires; and

FIG. 6 is a fragmentary detail elevation of a plurality of prongs carried by a permeable backing member as in the case of the embodiment shown in FIGS. 2 and 3.

Referring to the drawings, the machine comprises horizontal frame members 2 supported by upright legs 3 and 4. At the feed end of the machine, a pair of vertical frame members 5 extend upwardly above the horizontal frame members 2. A pair of wet-out rolls 6 and 7 are rotatably mounted between the vertical frame members 5. The wet-out rolls 6 and 7 extend transversely of the machine and are in vertical alignment with each other. The roll 6 is partially immersed in a water pan 8 and its shaft 9 is journaled in bearings (not shown) fixed to the vertical frame member 5. The bearings 10, in which the shaft 11 of wet-out roll 7 is journaled, are slidably mounted in recesses 12 extending vertically downward from the upper edge of the vertical frame members 5.

The vertical position of wet-out roll 7 is adjustable, and is regulated by hydraulic positioning cylinders 13 mounted on the top of each vertical frame member 5. Each positioning cylinder has a two-way piston (not shown) carrying a piston rod 14 connected at its lower end to the bearing 10. By applying hydraulic pressure through conventional control means (not shown) to one side or the other of the piston of each positioning cylinder, the pressure at the nip between wet-out rolls 6 and 7 may be varied as desired.

The pair of wet-out rolls 6 and 7 cooperate to control the moisture content of a layer 15 of irregularly arranged fibers, of a type such as mentioned above as being a suitable starting material, which is fed through the nip between the wet-out rolls. The position of roll

7 relative to roll 6 determines the quantity of water that is applied to the layer 15 as it passes through the nip between the wet-out rolls. The fibers of layer 15 are in overlapping and frictional engagement with one another as the layer passes through the nip between the wet-out rolls. Preferably the moisture content of the layer of fibers as it is moved from the wet-out rolls is in the neighborhood of from 150 to 200 percent. The term "percent moisture," when used in this specification, refers to percentage of moisture by weight of the dry web.

The layer of fibers moves from the nip of the wet-out

rolls to the fiber rearranging portion of the apparatus to effect the rearrangement of the fibers in the starting web or layer 15, to produce a rearranged fibrous web or layer 15' having an arrangement of fibers and openings as above described. Thus the starting layer of fibers moves from the wet-out rolls to a feraminous surface in the form of a permeable endless belt 16 which extends around a pair of parallel rolls 17, 18, rotatably mounted adjacent opposite ends of the frame. Each of the rolls 17, 18 is mounted on a shaft 19, the ends of which are journaled in bearings 20 carried on the horizontal frame members 2. Conventional driving means (not shown) are connected to either one of the shafts 19.

The permeable endless belt 16 is shown in FIGS. 1 through 3 in the form of a woven wire screen having the bases of a plurality of tapered implements 21 welded thereto in any desired predetermined arrangement. The wire screen is preferred because it provides adequate support for the tapered implements 21, sufficient unobstructed space through which the fluid rearranging streams may pass and the applied vacuum may act, and the flexibility required in an endless belt operation. The tapered projections in this embodiment may be needles or other similar sharp, pointed projections. As seen in FIG. 3, spaces 21a between the side walls of the bases of tapered implements 21 and wires 16a comprising the elements of woven screen belt 16 are preferably filled by some solid material, such as the weld through which the needles are affixed to belt 16.

It is seen from FIGS. 2 and 3 that the transverse cross-sectional area of each tapered projection 21 increases progressively for at least the top portion of the projection as one moves from the free end thereof to the base of the projection. The tapering walls of the projections assist in the rearrangement of the fibers into a nonwoven fabric in a manner to be described below.

Each projection 21 in the embodiment shown in FIGS. 1 through 3 is well over the minimum free height expressed above of about three times the diameter of the coarsest fiber in the fibrous starting material. The effective bottom of the interconnected fiber accumulating spaces between rearranging projections 21 is the general level at which it is observed from FIG. 2 the groups of consolidated and parallelized fiber segments will lie in the final nonwoven fabric produced by this method. The effective bottom of the fiber accumulating spaces is shown by dashed and dotted line A in FIG. 2 and the crests of the adjacent tapered projections 21 are shown by dashed and dotted line B. The vertical distance between these lines, indicated by the dashed and dotted arrow, is the "free height" of projections 21.

A plurality of brackets 22, 23, mounted on horizontal frame members 2, support a pair of suction boxes 24 which extend transversely of frame members 2 between rolls 17 and 18 which carry the permeable endless belt 16. It will be obvious that the number of suction boxes may be varied. Each suction box is closed on all sides except for an opening 25 to which a vacuum line 26 is connected, and a slot or group of perforations 27 which extend longitudinally of the top wall 28 of the suction box. The top wall of each suction box is positioned adjacent the underside of the upper reach of permeable endless belt 16.

The fabric 15', after rearrangement but before reaching the position where permeable endless belt 16 starts to track around the roll 18, is lifted off the belt by causing it to pass upwardly and over a horizontal cylindrical doffing member 29a which extends transversely of the machine and is supported at its ends in the side frames. The fabric then passes downwardly and around through the nip between guide rolls 29b and 29c on its way to a suitable drying area not shown. Guide rolls 29b and 29c are parallel to doffing member 29a, and like it are supported at their ends in the side frame members of the machine.

While not necessary to the formation of a rearranged

fabric in accordance with the invention as herein described, it may be desirable in some instances, in order to obtain greater diffusion of liquid in the fabric rearranging area, to interpose a permeable spray diffusion belt in the path of the liquid discharged from the nozzles. 5 While such a diffusing member could be stationary, its preferred form, shown in the embodiment disclosed in the drawing, is a permeable endless belt 37 arranged to track around a pair of rollers 32 and 34 arranged parallel 10 with rollers 17 and 18 and which may be mounted on shafts 33 and 35 journaled for rotation in side frame members 31 and 36 of the machine. Rollers 32 and 34 are arranged so that the lower reach of belt 37 is adjacent to and just above the upper ends of the tapered projections 15 extending upwardly from the upper reach of permeable endless belt 16.

Rollers 17, 18, 32 and 34 are preferably operated so that permeable endless belt 16 has the same linear speed as spray diffusing belt 37. This may be desirable to prevent any longitudinal displacement of diffusing belt 37 relative to the layer 15 of fibers which moves longitudinally through the machine in engagement with the tapered projections 21 on endless belt 16 while the fibers are being rearranged to form the nonwoven fabric. The 20 machine is designed to utilize fluid rearranging forces, and any mechanical forces introduced into the operation by a difference in speed between permeable backing belt 16 and spray diffusing belt may only interfere with the desired rearrangement. Specifically, longitudinal displacement of spray diffusing belt 37 relative to the layer of fibers may to some degree prevent the desired movement of the fibers by exerting a frictional pull on the individual fibers.

A water pipe 38, mounted in any suitable manner, supports a pair of headers 39 above the lower reach of spray diffusing belt 37. The number of headers may be varied, but whenever suction boxes 24 are provided, as in the embodiment being described, it is preferred to have a header positioned over each suction box. Each header 40 extends transversely of belt 37 and has a row of jet nozzles 40 to provide water sprays across the width of diffusing belt 37. The water sprays strike the upper surface of the lower reach of belt 37 and the water is diffused by the permeable belt as it passes through the belt and into contact with the fibers.

The water sprays cooperate with the suction boxes to move fiber segments into consolidated and parallelized groups between the tapered projections, and downwardly to the surface of belt 16. The water present from the sprays and from the wet-out device also acts as a lubricant to facilitate movement of individual fibers longitudinally of their respective center lines with respect to other fibers of the layer 15 and to help rearrange them in relaxed, tensionless condition in the interconnected fiber accumulating spaces around the bases of projections 21.

The layer 15 of irregularly arranged fibers is fed from any suitable source to the machine where it is positioned on top of the sharp, tapered projections 21 projecting 60 upwardly from the belt 16. If it is desired to wet out the web before it enters the rearranging zone this may be done by initially passing the layer through the nip between wet-out rolls 6 and 7 arranged adjacent the entering end of the machine in the embodiment shown in 65 the drawings, although it should be understood that the use of such rolls is not essential to the proper operation of the machine.

The engagement of the pointed ends of the tapered projections 21 is sufficient to move the layer 15 with the 70 permeable endless belt 16 across the tops of the suction boxes 24. It is seen from FIG. 1 that as the layer of fibers 15 passes the first row of nozzles 40 and the first slot 27, the force of the water and the force of the vacuum cooperate to move the fibers downwardly along the tapered sides of the needles 21 toward the permeable

end less belt 16, and the force of the water from the second row of nozzles 40 cooperates with the force of the vacuum at the second slot 27 to complete the downward movement of the fibers to form nonwoven fabric 15'. It is preferable to carry out the fiber rearrangement in a plurality of stages to enhance the uniformity of the product and to increase its speed of formation.

The fiber rearranging forces applied by the water sprays from nozzles 40 and by the suction from slots 27 are of various types. Among these are the forces resulting from the deflection, in directions having components parallel to the fibrous starting layer, of portions of the laterally and longitudinally spaced streams of water of which the water sprays are comprised, as those streams strike tapered projections 21 and then pass on through the fibrous layer and permeable backing belt 16. Portions of adjacent streams thus deflected exert opposed components of force upon groups of fibers lying between the projections, moving segments in each group into closer proximity to and increased parallelism with each other, and the fiber groups are at the same time moved down into the fiber accumulating spaces around the bases of projections 21.

Another type of rearranging force is exerted by the water sprays and suction in cooperation with the tapered sides of needles 21. The sprays and suction press the fibers downward around the tapered sides of the projections, and thereby produce translatory forces acting parallel to the plane of fibrous layer 15, to help push the fibers laterally into the fiber accumulating spaces around projections 21.

As the water particles and air streams bounce off projections 21 and are sucked down between the individual fibers into the screen belt openings and from there into suction boxes 24, they will tend to agitate the fibers somewhat, resulting in a certain amount of vibration in the individual fibers which also helps produce fiber rearrangement. Additional vibration will be produced by the impact of any water particles that pass directly through the openings in spray diffusing belt 37 and impinge upon the fibers of web 15 without having the force due to their ejection from spray nozzles 40 reduced by intervention of the land areas of the diffusing belt. The vibration of the fibers caused in these two ways will assist in producing the sliding movement of fibers along their respective longitudinal center lines which is essential to bring the fibers into the positions in which they lie in mechanical equilibrium and relaxed, tensionless condition in the rearranged nonwoven fabric.

From this discussion of the various types of rearranging forces exerted by the streams of water and by the applied suction, it is seen that it is essential that backing belt 16 be sufficiently permeable that the water and air can pass freely through it. The rearranging forces depend upon the efficient movement of the two fluids not only through the fibrous layer but also away from it on the side opposite the entry of the fluids. There must be no "flooding" or other backing up or turbulence of either fluid of proportions great enough to destroy the integrity of the fibrous starting layer or rearranged web, or even to oppose to any serious extent the effect of the forces tending to rearrange the fibers into the pattern desired for the resulting nonwoven fabric.

The individual fibers are of such length compared to the dimensions of the openings in permeable belt 16 between projections 21 that they will not be washed through the belt by the water streams from the sprays nor will they be pulled through the belt by the force of the applied vacuum, but will simply be held against the screen wire of belt 16 by the water flow and the air suction.

With the embodiment of permeable endless belt 16 and tapered projections 21 shown in FIG. 3, there will be no forces tending to move the fibers in web 15 into the small spaces 21a defined by the base walls of each projection 21 and the wires 16a surrounding it, for these

spaces are filled with solid material. Thus the fibers will tend to be packed in uniform bundles extending from one open space bounded by a set of four elements 16a to the next adjacent similar open space.

5 The embodiment of the invention shown in FIG. 4 is the same as that of FIG. 1 except that the suction boxes are omitted. Otherwise the structure shown in FIG. 4 is identical with the corresponding structure in FIG. 1 and therefore the specific description will not be repeated.

10 10 The same reference numerals are used in both figures to identify the structure. With the structure shown in FIG. 4, the rearrangement of the fibers is effected by the water from sprays 40 without the application of any suction against the underside of the layer of fibers 15.

15 15 Omission of spray diffusing belt 37 is preferred when nozzles 40 are of a quality good enough to produce a uniform fine spray. In such case, the velocity at which the water spray leaves nozzles 40 should be reduced below that normally employed when the diffusing belt is present.

FIG. 5 illustrates another embodiment of tapered projections that may be employed with this invention. A single wire 45 of a woven wire screen is shown in FIG. 5 as it passes over and under successive cross wires 46 to form tapered projections 47. Since both the longitudinal and transverse dimensions of each projection 47 increase progressively for at least the top portion of the projection as one moves from the free end thereof toward the cross-sectional center of the screen, it follows that the transverse cross-sectional area of each projection increases progressively at the same time.

The effective bottom of the fiber accumulating spaces between tapered projections 47 is indicated by dashed and dotted line A in FIG. 5, and the level of the adjacent crests is shown by dashed and dotted line B. The arrow showing the vertical distance between lines A and B represents the "free height" of projections 47 formed by the protruding wires of the woven screen.

FIG. 6 illustrates another embodiment of tapered projections usable with this invention. In this embodiment prongs 48 are welded to wire screen 49 in the same manner as needles 21 are welded to screen 16 of FIGS. 2 and 3. The effective bottom of the fiber accumulating spaces between the prongs is shown by line A, the crests of the adjacent prongs by line B, and the "free height" of the prongs by the arrow between lines A and B.

The above detailed description of this invention has been given for clearness of understanding only. No unnecessary limitations should be understood therefrom, as modifications will be obvious to those skilled in the art.

What is claimed is:

1. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied fluid forces, which comprises: supporting the layer upon the free ends of a plurality of tapered projections arranged in said predetermined pattern upon a permeable backing member with interconnected fiber accumulating spaces between them, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each projection being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, applying fluid streams to the fibrous starting layer so as to cause the fluid to pass first through said layer supported on the tapered top portions of said projections, then through the interconnected spaces between said projections and thereafter through the permeable backing member, deflecting portions of said fluid, after it has struck said projections, into streams flowing in directions having components

55 60 65 70

parallel to the fibrous starting layer as it is supported upon the free ends of said projections, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments laying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said projections.

2. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied liquid forces, which comprises: supporting the layer upon the free ends of a plurality of tapered projections arranged in said predetermined pattern upon a permeable backing member with interconnected fiber accumulating spaces between them, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each projection being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, applying streams of liquid to the fibrous starting layer so as to cause the liquid to pass first through said layer supported on the tapered top portions of said projections, then through the interconnected spaces between said projections and thereafter through the permeable backing member, deflecting portions of said liquid, after it has struck said projections, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon the free ends of said projections, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said projections.

3. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied fluid forces, which comprises: supporting the layer upon the free ends of a plurality of tapered projections arranged in said predetermined pattern upon a permeable backing member with interconnected fiber accumulating spaces between them, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each projection being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, while creating a reduced pressure on the side of the permeable backing member opposite the side on which the projections are arranged simultaneously applying fluid streams to the fibrous starting layer so as to cause the fluid to pass first through said layer supported on the tapered top portions of said projections, then through the interconnected spaces between said projections and thereafter through the permeable backing member, deflecting portions of said fluid, after it has struck said projections, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon the free ends of said projections, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said projections.

4. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from

a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied liquid forces, which comprises: supporting the layer upon the free ends of a plurality of tapered projections arranged in said predetermined pattern upon a permeable backing member with interconnected fiber accumulating spaces between them, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each projection being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, while creating a reduced pressure on the side of the permeable backing member opposite the side on which the projections are arranged simultaneously applying streams of water to the fibrous starting layer so as to cause the water to pass first through said layer supported on the tapered top portions of said projections, then through the interconnected spaces between said projections and thereafter through the permeable backing member, deflecting portions of said water, after it has struck said projections, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon the free ends of said projections, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said projections.

5. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied fluid forces, which comprises: supporting the layer upon the free ends of a plurality of tapered prongs arranged in said predetermined pattern upon a permeable backing member with interconnected fiber accumulating spaces between the prongs, the transverse cross-sectional area of each of said prongs increasing progressively from its top downwardly for at least a portion of the prong, the free height of each prong being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, applying fluid streams to the fibrous starting layer so as to cause the fluid to pass first through said layer supported on the tapered top portions of said prongs, then through the interconnected spaces between said prongs and thereafter through the permeable backing member, deflecting portions of said fluid, after it has struck said prongs, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon the free ends of the prongs, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said prongs.

6. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied liquid forces, which comprises: supporting the layer upon the free ends of a plurality of tapered prongs arranged in said predetermined pattern upon a permeable backing member with interconnected fiber accumulating spaces between the prongs, the transverse cross-sectional area of each of said prongs increasing progressively from its top downwardly for at least a portion of the prong, the free height of each prong being greater than the thick-

11

ness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, applying streams of liquid to the fibrous starting layer so as to cause the liquid to pass first through said layer supported on the tapered top portions of said prongs, then through the interconnected spaces between said prongs and thereafter through the permeable backing member, deflecting portions of said liquid, after it has struck said prongs, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon the free ends of the prongs, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said prongs.

7. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied liquid forces, which comprises: supporting the layer upon the free ends of a plurality of tapered prongs arranged in said predetermined pattern upon a permeable backing member with interconnected fiber accumulating spaces between the prongs, the transverse cross-sectional area of each of said prongs increasing progressively from its top downwardly for at least a portion of the prong, the free height of each prong being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, while creating a reduced pressure on the side of the permeable backing member opposite the side on which the prongs are arranged simultaneously applying streams of water to the fibrous starting layer so as to cause the water to pass first through said layer supported on the tapered top portions of said prongs, then through the interconnected spaces between said prongs and thereafter through the permeable backing member, deflecting portions of said water, after it has struck said prongs, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon the free ends of the prongs, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said prongs.

8. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied fluid forces, which comprises: supporting the layer upon a woven wire screen having projections formed by wires thereof as they weave over and under successive cross wires, said projections having interconnected fiber accumulating spaces therebetween, the free height of each projection being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, applying fluid streams to the fibrous starting layer so as to cause the fluid to pass first through said layer supported on said projections, then through the interconnected spaces between said projections and thereafter through said screen, deflecting portions of said fluid, after it has struck said projections, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon said projections, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with

12

each other and into the interconnected fiber accumulating spaces around said projections.

9. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied liquid forces, which comprises: supporting the layer upon a woven wire screen having projections formed by wires thereof as they weave over and under successive cross wires, said projections having interconnected fiber accumulating spaces therebetween, the free height of each projection being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, applying streams of liquid to the fibrous starting layer so as to cause the liquid to pass first through said layer supported on said projections, then through the interconnected spaces between said projections and thereafter through said screen, deflecting portions of said liquid, after it has struck said projections, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon said projections, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said projections.

10. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied liquid forces, which comprises: supporting the layer upon a woven wire screen having projections formed by wires thereof as they weave over and under successive cross wires, said projections having interconnected fiber accumulating spaces therebetween, the free height of each projection being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, while creating a reduced pressure on the side of the screen opposite the side on which the layer is supported simultaneously applying streams of water to the fibrous starting layer so as to cause the water to pass first through said layer supported on said projections, then through the interconnected spaces between said projections and thereafter through said screen, deflecting portions of said water, after it has struck said projections, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon said projections, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said projections.

11. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied fluid forces, which comprises: supporting the layer upon a plurality of sharp, tapered projections arranged in said predetermined pattern upon a permeable backing member with interconnected fiber accumulating spaces between the projections, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each tapered projection being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, applying fluid streams to the fibrous starting layer so as to cause the fluid to pass first through

13

said layer supported on the sharp, tapered top portions of said projections, then through the interconnected spaces between the projections and thereafter through said permeable backing member, deflecting portions of said fluid, after it has struck said projections, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon the free ends of said projections, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said projections.

12. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied liquid forces, which comprises: supporting the layer upon a plurality of sharp, tapered projections arranged in said predetermined pattern upon a permeable backing member with interconnected fiber accumulating spaces between the projections, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each tapered projection being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, applying streams of liquid to the fibrous starting layer so as to cause the liquid to pass first through said layer supported on the sharp, tapered top portions of said projections, then through the interconnected spaces between the projections and thereafter through said permeable backing member, deflecting portions of said liquid, after it has struck said projections, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon the free ends of said projections, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said projections.

13. A method of producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied liquid forces, which comprises: supporting the layer upon a plurality of sharp, tapered projections arranged in said predetermined pattern upon a permeable backing member with interconnected fiber accumulating spaces between the projections, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each tapered projection being greater than the thickness of the fibrous starting layer and at least about three times the diameter of the coarsest fibers in said layer, while creating a reduced pressure on the side of the permeable backing member opposite the side on which the projections are arranged simultaneously applying streams of water to the fibrous starting layer so as to cause the water to pass first through said layer supported on the sharp, tapered top portions of said projections, then through the interconnected spaces between the projections and thereafter through said permeable backing member, deflecting portions of said water, after it has struck said projections, into streams flowing in directions having components parallel to the fibrous starting layer as it is supported upon the free ends of said projections, and directing portions of adjacent streams thus formed in opposed directions against groups of fiber segments lying between said adjacent streams, so as to move the

14

fiber segments of said groups into closer proximity to and increased parallelism with each other and into the interconnected fiber accumulating spaces around said projections.

5 14. A machine for producing a nonwoven fabric having
spaced holes arranged in a predetermined pattern from a
layer of irregularly arranged fibers in overlapping and
frictional engagement with one another and which are cap-
able of individual movement under the influence of ap-
plied fluid forces, which comprises: a permeable endless
10 belt carrying a plurality of tapered projections arranged
thereon in said predetermined pattern, the transverse
cross-sectional area of each of said projections increasing
progressively from its top downwardly for at least a por-
15 tion of said projection, the free height of each projection
being greater than the thickness of the fibrous layer to be
rearranged and at least about three times the diameter of
20 the coarsest fibers in said layer, and means for projecting
layer as it is supported on the tapered top portions of said
projections.

15 15. A machine for producing a nonwoven fabric having
spaced holes arranged in a predetermined pattern from a
layer of irregularly arranged fibers in overlapping and
25 frictional engagement with one another and which are cap-
able of individual movement under the influence of ap-
plied fluid forces, which comprises: a permeable endless
30 belt carrying a plurality of tapered projections arranged
thereon in said predetermined pattern, the transverse
cross-sectional area of each of said projections increasing
progressively from its top downwardly for at least a por-
35 tion of said projection, the free height of each projection
being greater than the thickness of the fibrous layer to be
rearranged and at least about three times the diameter of
the coarsest fibers in said layer, and means for projecting
40 liquid streams against the outer surface of said starting
layer as it is supported on the tapered top portions of said
projections.

45 16. A machine for producing a nonwoven fabric hav-
ing spaced holes arranged in a predetermined pattern from a
layer of irregularly arranged fibers in overlapping and
frictional engagement with one another and which are cap-
able of individual movement under the influence of ap-
50 plied fluid forces, which comprises: a permeable endless
belt carrying a plurality of tapered projections arranged
thereon in said predetermined pattern, the trans-
verse cross-sectional area of each of said projections in-
creasing progressively from its top downwardly for at
55 least a portion of said projection, the free height of each
projection being greater than the thickness of the fibrous
layer to be rearranged and at least about three times the
diameter of the coarsest fibers in said layer, spray means
for projecting liquid streams toward said starting layer
60 as it is supported on the tapered top portions of said
projections, permeable spray diffuser means interposed
between said spray means and said projections so that
streams of liquid from the spray means pass through
said spray diffuser means before striking the fibrous start-
65 ing layer, and means for moving said endless belt and
said spray diffuser means in the same direction and at
substantially the same rate.

70 17. A machine for producing a nonwoven fabric hav-
ing spaced holes arranged in a predetermined pattern from a
layer of irregularly arranged fibers in overlapping and
frictional engagement with one another and which are cap-
able of individual movement under the influence of ap-
75 plied fluid forces, which comprises: a permeable endless
belt carrying a plurality of tapered projections arranged
thereon in said predetermined pattern, the trans-
verse cross-sectional area of each of said projections in-
creasing progressively from its top downwardly for at
least a portion of said projection, the free height of each
projection being greater than the thickness of the fibrous
layer to be rearranged and at least about three times the
diameter of the coarsest fibers in said layer, means for

creating a reduced pressure on the side of said permeable belt opposite the side on which said projections are carried, and means for projecting fluid streams against the outer surface of said starting layer as it is supported on the tapered top portions of said projections.

18. A machine for producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied fluid forces, which comprises: a permeable endless belt carrying a plurality of tapered projections arranged thereon in said predetermined pattern, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each projection being greater than the thickness of the fibrous layer to be rearranged and at least about three times the diameter of the coarsest fibers in said layer, means to wet out the fibrous starting layer, and means for projecting fluid streams against the outer surface of said wet starting layer as it is supported on the tapered top portions of said projections.

19. A machine for continuously producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied fluid forces, which comprises: a pair of rotatably mounted parallel rollers, an endless foraminous belt mounted on said rollers for movement therewith, tapered projections extending outwardly from said belt in said predetermined pattern, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each projection being greater than the thickness of the fibrous layer to be rearranged and at least about three times the diameter of the coarsest fibers in said layer, means for positioning a layer of irregularly arranged fibers in engagement with the free ends of said tapered projections, means to wet out said fibrous layer, spray means directing streams of water towards said wet layer of fibers, and means to move said foraminous belt carrying said wet fibrous starting layer through the zone beneath said spray means, the streams of water from said spray means moving individual fibers into fiber accumulating spaces around the bases of adjacent tapered projections as the belt and wet fibrous layer move beneath said spray means.

20. A machine for continuously producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied fluid forces, which comprises: a pair of rotatably mounted parallel rollers, an endless foraminous belt mounted on said rollers for movement therewith, tapered projections extending outwardly from said belt in said predetermined pattern, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each projection being greater than the thickness of the fibrous layer to be rearranged and at least about three times the diameter of the coarsest fibers in said layer, means for positioning a layer of irregularly arranged fibers in engagement with the free ends of said tapered projections, means to wet out said fibrous layer, spray means directing streams of water towards said wet layer of fibers, a second pair of parallel rollers rotatably mounted in vertical alignment with said first mentioned pair of rollers, a permeable

spray diffuser belt mounted on said second pair of rollers, a suction box adapted to exert suction through its top wall, the top wall of said suction box being positioned adjacent the under surface of the upper reach 5 of said projection-carrying foraminous belt, and means for moving said endless projection-carrying belt and said spray diffuser belt in the same direction and at substantially the same rate between said spray means and said suction box, said spray means and suction box co-operating to move individual fibers into fiber accumulating spaces around the bases of adjacent tapered projections as the belts and wet fibrous layer move between them.

21. A machine for producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence of applied fluid forces, which comprises: a permeable endless belt carrying a plurality of tapered prongs arranged thereon in said predetermined pattern, the transverse cross-sectional area of each of said prongs increasing progressively from its top downwardly for at least a portion of said prong, the free height of each 20 prong being greater than the thickness of the fibrous layer to be rearranged and at least about three times the diameter of the coarsest fibers in said layer, and means for projecting fluid streams against the outer surface of said starting layer as it is supported on the tapered top 25 portions of said prongs.

22. A machine for producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence 35 of applied fluid forces, which comprises: a permeable endless belt comprising a woven wire screen having projections formed by wires thereof as they weave over and under successive cross wires, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each projection being greater than the thickness of the fibrous layer to be rearranged and at least about three times the diameter 40 of the coarsest fibers in said layer and means for projecting fluid streams against the outer surface of said starting layer as it is supported on the tapered top portions of said projections.

23. A machine for producing a nonwoven fabric having spaced holes arranged in a predetermined pattern from a layer of irregularly arranged fibers in overlapping and frictional engagement with one another and which are capable of individual movement under the influence 50 of applied fluid forces, which comprises: a permeable endless belt carrying a plurality of sharp, tapered projections arranged thereon in said predetermined pattern, the transverse cross-sectional area of each of said projections increasing progressively from its top downwardly for at least a portion of said projection, the free height of each projection being greater than the thickness of the fibrous layer to be rearranged and at least about three times the diameter 55 of the coarsest fibers in said layer, and means for projecting fluid streams against the outer surface of said starting layer as it is supported on the tapered top portions of said projections.

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

270

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

430

435

440

445

450

455

460

465

470

475

480

485

490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

1160

1165

1170

1175

1180

1185

1190

1195

1200

1205

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

1260

1265

1270

1275

1280

1285

1290

1295

1300

1305

1310

1315

1320

1325

1330

1335

1340

1345

1350

1355

1360

1365

1370

1375

1380

1385

1390

1395

1400

1405

1410

1415

1420

1425

1430

1435

1440

1445

1450

1455

1460

1465

1470

1475

1480

1485

1490

1495

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

1630

1635

1640

1645

1650

1655

1660

1665

1670

1675

1680

1685

1690

1695

1700

1705

1710

1715

1720

1725

1730

1735

1740

1745

1750

1755

1760

1765

1770

1775

1780

1785

1790

1795

1800

1805

1810

1815

1820

1825

1830

1835

1840

1845

1850

1855

1860

1865

1870

1875

1880

1885

1890

1895

1900

1905

1910

1915

1920

1925

1930

1935

1940

1945

1950

1955

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

2105

2110

2115

2120

2125

2130

2135

2140

2145

2150

2155

2160

2165

2170

2175

2180

2185

2190

2195

2200

2205

2210

2215

2220

2225

2230

2235

2240

2245

2250

2255

2260

2265

2270

2275

2280

2285

2290

2295

2300

2305

2310

2315

2320

2325

2330

2335

2340

2345

2350

2355

2360

2365

2370

2375

2380

2385

2390

2395

2400

2405

2410

2415

2420

2425

2430

2435

2440

2445

2450

2455

2460

2465

2470

2475

2480

2485

2490

2495

2500

2505

2510

2515

2520

2525

2530

2535

2540

2545

2550

2555

2560

2565

2570

2575

2580

2585

2590

2595

2600

2605

2610

2615

2620

2625

2630

2635

2640

2645

2650

2655

2660

2665

2670

2675

2680

2685

2690

2695

2700

2705

2710

2715

2720

2725

2730

2735

2740

2745

2750

2755

2760

2765

2770

2775

2780

2785

2790

2795

2800

2805

2810

2815

2820

2825

2830

2835

2840

2845

2850

2855

2860

2865

2870

2875

2880

2885

2890

2895

2900

2905

2910

2915

2920

2925

2930

2935

2940

2945

2950

2955

2960

2965

2970

2975

2980

2985

2990

2995

3000

3005

3010

3015

3020

3025

3030

3035

3040

3045

3050

3055

3060

3065

3070

3075

3080

3085

3090

3095

3100

3105

3110

3115

3120

3125

3130

3135

3140

3145

3150

3155

3160

3165

3170

3175

3180

3185

3190

3195

3200

3205

3210

3215

3220

3225

3230

3235

3240

3245

3250

3255

3260

3265

3270

3275

3280

3285

3290

3295

3300

3305

3310

3315

3320

3325

3330

3335

3340

3345

3350

3355

3360

3365

3370

3375

3380

3385

3390

3395

3400

3405

3410

3415

3420

3425

3430

3435

3440

3445

3450

3455

3460

3465

3470

3475

3480

3485

3490

3495

3500

3505

3510

3515

3520

3525

3530

3535

3540

3545

3550

3555

3560

3565

3570

3575

3580

3585

3590

3595

3600

3605

3610

3615

3620

3625

3630

3635

3640

3645

3650

3655

3660

3665

3670

3675

3680

3685

3690

3695

3700

3705

3710

3715

3720

3725

3730

3735

3740

3745

3750

3755

3760

3765

3770

3775

3780

3785

3790

3795

3800

3805

3810

3815

3820

3825

3830

3835

3840

3845

3850

3855

3860

3865

3870

3875

3880

3885

3890

3895

3900

3905

3910

3915

3920

3925

3930

3935

3940

3945

3950

3955

3960

3965

3970

3975

3980

3985

3990

3995

4000

4005

4010

4015

4020

4025

4030

4035

4040

4045

4050

4055

4060

4065

4070

4075

4080

4085

4090

4095

4100

4105

4110

4115

4120

4125

4130

4135

4140

4145

4150

4155

4160

4165

4170

4175

4180

4185

4190

4195

4200

4205

4210

4215

4220

4225

4230

4235

4240

4245

4250

4255

4260

4265

4270

4275

4280

4285

4290

4295

4300

4305

4310

4315

4320

4325

4330

4335

4340

4345

4350

4355

4360

4365

4370

4375

4380

4385

4390

4395

4400

4405

4410

4415

4420

4425

4430

4435

4440

4445

4450

4455

4460

4465

4470

4475

4480

4485

4490

4495

4500

4505

4510

4515

4520

4525

4530

4535

4540

4545

4550

4555

4560

4565

4570

4575

4580

4585

4590

4595

4600

4605

4610

4615

4620

4625

4630

4635

4640

4645

4650

4655

4660

4665

4670

4675

4680

4685

4690

4695

4700

4705

4710

4715

4720

4725

4730

4735

4740

4745

4750

4755

4760

4765

4770

4775

4780

4785

4790

4795

4800

4805

4810

4815

4820

4825

4830

4835

4840

4845

4850

4855

4860

4865

4870

4875

4880

4885

4890

4895

4900

4905

4910

4915

4920

4925

4930

4935

4940

4945

4950

4955

4960

4965

4970

4975

4980

4985

4990

4995

5000

5005

5010

5015

5020

5025

5030

5035

5040

5045

5050

5055

5060

5065

5070

5075

5080

5085

5090

5095

5100

5105

5110

5115

5120

5125

5130

5135

5140

5145

5150

5155

5160

5165

5170

5175

5180

5185

5190

5195

5200

5205

5210

5215

5220

5225

5230

5235

5240

5245

5250

5255

5260

5265

5270

5275

5280

5285

5290

5295

5300

5305

5310

5315

5320

5325

5330

5335

5340

5345

5350

5355

5360

5365

5370

5375

5380

5385

5390

5395

5400

5405

5410

5415

5420

5425

5430

5435

5440

5445

5450

5455

5460

5465

5470

5475

5480

5485

5490

5495

5500

5505

5510

5515

5520

5525

5530

5535

5540

5545

5550

5555

5560

5565

5570

5575

5580

5585

5590

5595

5600

5605

5610

5615

5620

5625

5630

5635

5640</p