
(12) STANDARD PATENT (11) Application No. AU 2008279001 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Transactional graph-based computation with error handling

(51) International Patent Classification(s)
G06F 12/00 (2006.01)

(21) Application No: 2008279001 (22) Date of Filing: 2008.07.25

(87) WIPO No: W009/015342

(30) Priority Data

(31) Number (32) Date (33) Country
60/952,075 2007.07.26 US

(43) Publication Date: 2009.01.29
(44) Accepted Journal Date: 2014.02.06

(71) Applicant(s)
Ab Initio Technology LLC

(72) Inventor(s)
Wholey III, Joseph Skeffington;Stanfill, Craig W.

(74) Agent / Attorney
Pizzeys, PO Box 291, WODEN, ACT, 2606

(56) Related Art
US 5301336 A
US 5966072 A



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 January 2009 (29.01.2009) PCT

(51) International Patent Classification:
G06F12/00 (2006.01)

(21) International Application Number:
PCT/US2008/071206

(22) International Filing Date: 25 July 2008 (25.07.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/952,075 26 July 2007 (26.07.2007) US

(71) Applicant (for all designated States except US): AB
INITIO SOFTWARE CORPORATION [US/US]; 201
Spring Street, Lexington, Massachusetts 02421 (US).

(72) Inventors; and
(75) Inventors/Appiicants (for US only): STANFILL, Craig

W. [US/US]; 43 Huckleberry Hill Road, Lincoln, Mass­
achusetts 01773 (US). WHOLEY, Joseph Skefflngton,
III [US/US]; 11 Hillcrest Road, Belmont, Massachusetts 
02478 (US).

lllllllllllllllllllllllllllllllllllll^

(10) International Publication Number
WO 2009/015342 Al

(74) Agents: HENNESSEY, Gilbert H. et al.; Fish & Richard­
son P.C., P.O. Box 1022, Minneapolis, Minnesota 55440­
1022 (US).

(81) Designated States (unless otherwise indicated, for every 
kind of national protection available): AE, AG, AL, AM, 
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, 
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, 
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, 
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, 
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, 
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, 
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 
ZW.

(84) Designated States (unless otherwise indicated, for every 
kind of regional protection available): ARIPO (BW, GH, 
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, 
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, 
FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,

[Continued on next page]

(54) Title: TRANSACTIONAL GRAPH-BASED COMPUTATION WITH ERROR HANDLING

w
o 

20
09

/0
15

34
2 A

i IIII
III
III
III
III
III
III
III
III
III
III
III
III
III
III
III
IIN

Fig. 1

(57) Abstract: Processing transactions using graph-based 
computations includes determining (305) that at least one of 
a plurality of graph elements of a computation graph of a set 
of one or more computation graphs includes a computation 
to be performed for a given transaction, associating the given 
transaction with an instance (310) of the computation graph 
that includes reusable computation elements associated with 
respective graph elements, and executing (320) the graph to 
perform the computation.



WO 2009/015342 Al llllllllllllllllllllllllllllllllllllllll^^
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CO, Published:
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). — with international search report



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

Transactional Graph-Based Computation with Error Handling

CROSS-REFERENCE TO RELATED APPLICATIONS

[01] This application claims priority to U.S. Application Serial No. 60/952,075, 

filed on July 26, 2007, incorporated herein by reference.

Background

[02] This invention relates to execution of graph-based computations.

[03] Complex computations can often be expressed as a data flow through a 

directed graph, with components of the computation being associated with the vertices 

of the graph and data flows between the components corresponding to links (arcs, 

edges) of the graph. A system that implements such graph-based computations is 

described in U.S. Patent 5,966,072, EXECUTING COMPUTATIONS EXPRESSED 

AS GRAPHS. One approach to executing a graph-based computation is to execute a 

number of processes, each associated with a different vertex of the graph, and to 

establish communication paths between the processes according to the links of the 

graph. For example, the communication paths can use TCP/IP or UNIX domain 

sockets, or use shared memory to pass data between the processes.

Summary

[04] In one aspect, in general, a method for processing transactions using graph­

based computations includes determining that at least one of a plurality of graph 

elements of a computation graph of a set of one or more computation graphs includes 

a computation to be performed for a given transaction, associating the given 

transaction with an instance of the computation graph that includes reusable 

computation elements associated with respective graph elements, and executing the 

graph to perform the computation.

[05] Aspects can include one or more of the following features.

[06] At least some instances of the graphs in the set of computation graphs share 

one or more of the computation elements.



5

10

15

20

25

30

WO 2009/015342 PCT/US2008/071206

[07] The computation elements include computations executed by at least one of an

operating system process and a process thread.

[08] The graph elements include vertices of the computation graphs.

[09] Associating the transaction with an instance of the computation graph includes 

assigning a computation element corresponding to each graph element in the 

computation graph to the instance of the computation graph before beginning 

executing the graph elements.

[10] Associating the transaction with an instance of the computation graph includes 

assigning a computation element corresponding to a graph element in the computation 

graph to the instance of the computation graph after executing another graph element 

using a computation element already assigned to the instance.

[11] At least two of the graph elements use a common resource, and executing the 

graph to perform the computation includes assigning each of the graph elements using 

the common resource to a single computation element.

[12] The single computation element is already initiated when the graph elements 

are assigned to the computation element.

[13] The common resource includes a database.

[14] The common resource includes a specific port.

[15] Processing the transaction includes receiving a request for the transaction.

[16] The method also includes determining that the same computation graph is 

associated with a computation to be performed for a second transaction, associating 

the second transaction with a second instance of the computation graph, and executing 

the second instance of the graph to perform the computation for the second 

transaction.

[17] The computations for transactions performed using different instances of 

computation graphs are performed in a time-interleaved manner.

[18] Multiple transactions are processed concurrently.

2



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

[19] Each transaction is associated with one or more work elements that are 

processed according to the corresponding computation graph.

[20] At least some transactions are each associated with one work element that is 

processed according to the corresponding computation graph.

[21] The method further includes forming multiple instances of at least some of the 

computation graphs.

[22] The method further includes identifying that an error has occurred in the 

performing of a computation for one of the transactions, and continuing the 

performing of a computation for another one of the transactions.

[23] The processing of a first transaction of the plurality of transactions starts at a 

first time, and the processing of a second transaction of the plurality of transactions 

starts at a second time later than the first time, the method further includes completing 

the performing of the computation for the second transaction before completing the 

performing of the computation for the first transaction.

[24] In another aspect, in general, a system for processing transactions using graph­

based computations includes means for determining that at least one of a plurality of 

graph elements of a computation graph of a set of one or more computation graphs 

includes a computation to be performed for a transaction, means for associating the 

given transaction with an instance of the computation graph that includes reusable 

computation elements associated with respective graph elements, and means for 

executing the graph to perform the computation.

[25] In another aspect, in general, a computer-readable medium stores a computer 

program for processing transactions using graph-based computations. The computer 

program includes instructions for causing a computer system to: determine that at 

least one of a plurality of graph elements of a computation graph of a set of one or 

more computation graphs includes a computation to be performed for a given 

transaction, associate the given transaction with an instance of the computation graph 

that includes reusable computation elements associated with respective graph 

elements, and execute the graph to perform the computation.

3



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

[26] In another aspect, in general, a method for processing graph-based 

computations includes: within a graph including vertices representing graph 

components that process work elements according to links joining the vertices, 

providing at least one error-handling graph component configured to provide error 

information to a process external to the graph, and processing data, including, in 

response to a graph component encountering an error while processing, redirecting 

processing to the error-handling graph component including directing at least some of 

the work elements to the error-handling component according to at least one link to a 

vertex representing the error-handling component.

[27] Aspects can include one or more of the following features.

[28] Redirecting processing to the error-handling graph component includes 

removing work elements from at least one input queue.

[29] Redirecting processing to the error-handling graph component includes 

processing the work elements directed to the error-handling graph component.

[30] Processing the work elements directed to the error-handling graph component 

includes rolling back changes to a database made prior to the error.

[31] Processing the data includes, for graph components not included in handling 

the error, discarding work elements directed to those graph components.

[32] A sub-graph is provided, the sub-graph including an error-handling sub-graph 

component configured to provide an error code as an output of the sub-graph.

[33] If output provided by the sub-graph indicates that an error occurred in the sub 

graph, processing is redirected to the error-handling graph component.

[34] Redirecting processing to the error-handling graph component includes 

communicating, from the graph component that encountered the error, to the error­

handling graph component, work elements that the graph component was processing 

when the error occurred.

[35] The work elements are communicated according to the link to the vertex 

representing the error-handling component.

4



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

[36] Redirecting processing to the error-handling graph component includes 

communicating, from the graph component that encountered the error, to the error­

handling graph component, reporting information about the error.

[37] The reporting information is communicated according to an implicit 

connection between the graph component that encountered the error and the error­

handling component.

[38] The implicit connection is revealed as an explicit link between a vertex 

representing the graph component that encountered the error and a vertex representing 

the error-handling component in response to a user request.

[39] Providing the error-handling graph component includes providing a plurality 

of error-handling graph components, and redirecting processing to the error-handling 

graph component includes selecting an error-handling graph component based on 

output provided from the graph component that encountered the error.

[40] Processing the data also includes, if a graph component encounters an error 

while processing, outputting an identification of a work element that caused the error.

[41] Processing includes: enabling a first component of the graph; disabling the 

error-handling component; and for each component downstream of the first 

component other than the error-handling component, enabling the component if a 

component immediately upstream of the component is enabled.

[42] Redirecting processing to the error-handling graph component includes: 

stopping execution of each enabled graph component, disabling the component that 

encountered the error; enabling the error-handling component; disabling components 

downstream of the component that encountered the error that are not downstream of 

the error-handling component; and enabling components upstream of the error­

handling component.

[43] Redirecting processing to the error-handling graph component includes, where 

the error occurred in a first component, if the error occurs under a first condition, 

directing process flow from the first component to a first error-handling component 

upstream of the first component, and if the error occurs under a second condition,

5



5

10

15

20

25

30

WO 2009/015342 PCT/US2008/071206

directing process flow from the first component to a second error-handling component

downstream of the first component.

[44] The first condition is that a counter is below a limit.

[45] The second condition is that a counter is above a limit.

[46] Redirecting processing to the error-handling graph component also includes 

enabling a set of graph components, the set having been determined prior to the error.

[47] In another aspect, in general, a system for processing graph-based 

computations includes, within a graph including vertices representing graph 

components that process work elements according to links joining the vertices, means 

for providing at least one error-handling graph component configured to provide error 

information to a process external to the graph, and means for processing data, 

including, in response to a graph component encountering an error while processing, 

redirecting processing to the error-handling graph component including directing at 

least some of the work elements to the error-handling component according to at least 

one link to a vertex representing the error-handling component.

[48] In another aspect, in general, a computer-readable medium stores a computer 

program for processing graph-based computations. The computer program includes 

instructions for causing a computer system to: within a graph including vertices 

representing graph components that process work elements according to links joining 

the vertices, provide at least one error-handling graph component configured to 

provide error information to a process external to the graph, and process data, 

including, in response to a graph component encountering an error while processing, 

redirecting processing to the error-handling graph component including directing at 

least some of the work elements to the error-handling component according to at least 

one link to a vertex representing the error-handling component.

[49] Other features and advantages of the invention are apparent from the 

following description, and from the claims.

Description of Drawings

[50] FIG. 1 is a diagram that illustrates an instance of graph-based computation.

6



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

[51] FIG. 2 is a logical block diagram of a system for processing work flows.

[52] FIG. 3A is a flowchart for processing each work flow.

[53] FIG. 3B is a flowchart for handling errors.

[54] FIGs. 4A, 4B, 5, and 6 are examples of error-handling graphs.

Description

1. Overview

[55] This application is related to United States patent application 10/268,509, 

Startup and Control of Graph-Based Computation, filed October 10, 2002, and

11/733,579, Transactional Graph-Based Computation, filed April 10, 2007, which is a 

continuation of application 10/268,509. Both are incorporated herein by reference.

[56] The system described below implements a method for executing computations 

that are defined in terms of computation graphs. Referring to FIG. 1, an example of a 

computation graph 100 includes a number of vertices 110 that are joined by 

unidirectional links 120. In the example shown in FIG. 1, vertices 110 are numbered 

from 1 to 6, and links 120 are also numbered from 1 to 6. Computation graph 100 

processes a work flow that is made up of a series of work elements 130, such as 

individual transactions that are processed according to a computation graph associated 

with a transaction processing system. A transaction may be composed of multiple 

work elements. Each vertex is associated with a portion of the computation defined by 

the overall computation graph. In this example, vertex 1 provides access to storage for 

an initial series of work elements 130 associated with one or more transactions, and 

passes that series on its output link 1. Processes that implement the computation 

associated with each of the vertices process the work elements 130 in turn, and 

typically produce a work element on one or more of the output links of that vertex.

[57] A process for a vertex is ready to run when at least one work element is 

queued at each of the vertex’s inputs. As illustrated in FIG. 1, a work element 130 is 

in transit on link 1, a work element is queued ready for processing at vertex 3, and 

two work elements are queued for processing at vertex 4. Therefore, the processes for 

vertex 3 and vertex 4 are ready to run to process a queued work element. As

7



5

10

15

20

25

30

35

WO 2009/015342 PCT/US2008/071206

illustrated, vertex 5 has a work element queued on one of its inputs, link 4, but not on

the other input, link 5. Therefore the process associated with vertex 5 is not ready to

run.

[58] In some examples, a work flow may include work elements from multiple 

transactions (i.e., a first set of one or more work elements correspond to a first 

transaction, a second set of one or more elements correspond to a second transaction, 

etc.). A transaction can include a set of work elements representing actions that are all 

to be processed as a set, such that if one action fails, none should be carried out. 

Multiple instances of a graph may be used to process multiple transactions, and 

multiple instances of individual graph components (represented by vertices of a 

computation graph) may be created as needed by implementing computations of a 

graph component with a reusable computation element (e.g., an operating system 

process). By associating different transactions with different respective instances of 

graphs, multiple transactions can be processed concurrently. By enabling multiple 

computation elements to be assigned as needed to graph instances, efficient resource 

sharing can be realized by having a computation element be used by one graph 

instance and reused by another graph instance, as described in more detail below.

[59] Referring to FIG. 2, a system 200 for executing computation graphs to process 

work flows comprising transactions includes stored graph data structures 210. These 

data structures include specifications of computation graphs that include 

characteristics of the vertices and links of the graphs. Portions of these data structures 

may be accessed without loading an entire graph, for example, the specification of an 

individual graph component may be loaded in order to assign a work element to a 

newly-created instance of that graph component.

[60] A transaction subscription module 220 of the system receives control inputs 

222 from a transaction subscribing graph component (e.g., a component providing 

commands without necessarily processing work elements, such as the component 

represented by vertex 10 FIG. 1) including commands to process particular work 

flows 232 using corresponding computation graphs, which are specified in the stored 

graph data structures 210. The transaction subscription module 220 keeps track of 

graph computation processing resources 230 available for instantiating graph 

instances that are to be assigned to particular transactions. The transaction 



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

35

subscription module 220 includes a scheduler that uses the specifications of the 

computation graphs to determine how to instantiate graph instances using the graph 

computation processing resources 230, which is generally made up of multiple 

processes (or pools of processes), where each process functions as a reusable 

computation element that instantiates a given graph component in a graph instance. 

The processes that are executed to perform the computations of the components of a 

graph can make use of external data and processes 240, which include database 

engines, data storage, or other modules that are accessed during processing associated 

with vertices of the computation graphs. In some examples, a single process or set of 

processes capable of performing multiple different operations is bound to a given 

instance of a graph to handle all the operations of that instance.

[61] In some examples, the scheduler of the transaction subscription module 220 

uses a remote procedure call (RPC) process. When the scheduler receives a work 

element for a given transaction, it assigns the work element to the appropriate 

component of a graph instance associated with (i.e., assigned to) the transaction. The 

process assigned to that graph instance executes the computation of that component. 

The data associated with the work element is written to a temporary space available 

for the graph instance and accessible by the process. The scheduler is notified that the 

transaction subscription module 220 is done with that component, and the scheduler 

then schedules any downstream graph components for execution. Eventually the 

transaction will progress through the whole graph (as the graph is executed using the 

graph computation processing resources 230), and be output by way of an RPC 

publish process. This takes the data accumulated in the temporary space and commits 

it to the appropriate output channel, e.g., the database output 6 in FIG. 1. The RPC 

publish process can be multiplexed with the RPC subscribe process so that it can 

access the socket on which the transaction was initially received.

[62] In general, different transactions may be processed concurrently, each being 

processed by a different instance of a graph. System 200, through the transaction 

subscription module 220, allocates resources for an instance of a computation graph 

for each transaction and, through the graph computation processing resources 230, 

controls their execution to process the work flows.

9



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

35

2. Graph data structures

[63] System 200 includes a number of features that provide rapid startup of graph 

computations as well as efficient sharing of limited resources.

[64] Before processing a transaction with an instance of a computation graph, the 

transaction subscription module 220 creates a runtime data structure for that graph 

instance in a functionally shared memory. In one embodiment, a single shared 

memory segment is created in which all the runtime data structures for graph 

instances are created.

[65] The process or processes bound to a transaction are associated with the 

vertices of the graph and each of these processes maps the shared memory segment 

into its address space. The processes may be associated with vertices when graph 

instances are created for individual transactions or they may not be associated with 

vertices until instances of individual graph components are created or executed. The 

processes read and write work elements from and to the runtime data structures for the 

graph instances during processing of the transaction. That is, data for the transactions 

that flow through the graph are passed from component to component, and from 

process to process if more than one process is bound to the transaction, through these 

runtime data structures in the shared memory segment. By containing the data for a 

given transaction in a memory space accessible to each component of the graph and 

executing each component with a consistent process or set of processes, state can be 

shared between the components. Among other advantages, this allows all the database 

operations associated with executing the computations for a transaction to be 

committed at once, after it is confirmed that the transaction executed successfully.

3. Process pools

[66] As introduced above, graph computation processing resources 230 for 

executing the components of a graph instance can be implemented using process 

pools managed and allocated by the scheduler. For each of a number of different types 

of computation, a pool of processes is created prior to beginning processing of work 

flows of transactions using graph components requiring that type of computation. 

When a transaction is assigned to a graph instance, if computation of a particular type 

will be needed to perform the computation for a given component of the graph 

10



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

35

instance, the scheduler allocates a member of the process pool for use by the graph 

instance and with the given component. The member of the process pool remains 

associated with that graph instance for the duration of processing of the transaction, 

and may be re-used for other components within that graph instance that require the 

same type of computation. The process may be released back to the pool once no 

work elements remain upstream of the last component in the graph instance for that 

transaction that needs that type of computation. There may be many different pools of 

processes, each associated with a corresponding type of computation. Processes in a 

pool may be used for components in the same or different graph instances, including 

for a given type of component in different graph instances, and for multiple different 

components in one graph instance, for example.

[67] In some implementations, each process in a process pool is a separate process 

(e.g., a UNIX process) that is invoked by the transaction subscription module 220, 

which manages the process pools. The module 220 maintains a separate work queue 

for each process pool. Each entry in a work queue identifies a specific vertex of a 

graph instance for which the process is to perform computation.

[68] Some processes reserve or consume fixed resources. An example of such a 

process is one that makes a connection to a database, such as an Oracle® database. 

Since resources are consumed with forming and maintaining each database 

connection, it is desirable to limit the number of such processes that are active. If a 

graph includes multiple components that access a database, it may be desirable for all 

the database operations for a given transaction to take place in a single database 

process. To accommodate this, a set of processes may be established that each 

maintain a connection to the database and are each capable of performing the database 

functions that a given graph instance may require. When a graph instance is assigned 

to a given transaction, one process from the set is assigned to that graph instance for 

the entire transaction, as described above, and all of the database components are 

multiplexed to that process. When a vertex requires a process for accessing the 

database to process a work element of the transaction, the assigned process (which has 

already established its connection with the database) is associated with that vertex. In 

this way, the overhead of the initialization steps of that process that would have been 

required to connect to that database is avoided, and all database actions for a given

11



5

10

15

20

25

30

35

WO 2009/015342 PCT/US2008/071206

transaction are handled by the same process. Other types of processes can be handled

in the same way.

[69] System 200 supports different approaches to configuring processes for 

vertices, which differ in when the vertices are associated with processes and when the 

computation for the vertices is initiated. In one type of configuration, a process is not 

associated with a vertex until all the data at all its input work elements are completely 

available. If a work element is large, it may take some time for the entire work 

element to be computed by the upstream vertex and to be available. This type of 

configuration avoids blocking the process waiting for input to become available, so 

that it can be used by other vertices in that graph instance.

[70] Another type of configuration uses a streaming mode. A process is associated 

with a vertex and initiated when at least the start of each input is available. The 

remainder of each of its inputs becomes available while the process executes. If that 

input becomes available sufficiently quickly, the process does not block waiting for 

input. However, if the inputs do not become available, the process may block.

4. Computation control

[71] FIG. 3A is a flowchart for a process 300 for processing each transaction using 

respective graph instances. When the transaction subscription module 220 (FIG. 2) 

receives a request to process a transaction, it first determines which computation 

graph (and corresponding type) is appropriate to process the transaction (step 305). 

For example, the scheduler determines that a certain computation graph is appropriate 

(e.g., includes appropriate components) to perform a computation for the transaction. 

The transaction itself may specify this, or the transaction subscription module 220 

may include or have access to data that associates particular transaction types with 

particular computation graphs. The transaction subscription module 220 then creates a 

graph instance (if necessary) of a computation graph of the type needed to process 

that transaction (step 310) and associates the transaction with it. As part of this 

process, the transaction subscription module 220 allocates a portion of the shared 

memory segment for the runtime data structure for the graph instance, and copies a 

graph template for that type of computation graph into runtime data structure, thereby 

initializing the runtime data structure. Examples of the use of graph templates are

12



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

35

described in more detail in U.S. Patent No. 7,167,850, incorporated herein by 

reference. In some examples, graph instances have already been created and at this 

stage one is merely assigned to the present transaction. The transaction subscription 

module 220 then executes the graph instance (step 320), under control of the 

scheduler, as described in more detail below. The graph instance includes 

computation elements (e.g., processes) associated with (assigned to) respective 

components that are reusable. When the transaction’s entire work flow has been 

processed, the transaction subscription module 220 commits results of the execution 

of the graph (e.g., commits changes to an output database) and optionally releases the 

assigned resources and computation elements and deletes the runtime data structure 

for the graph instance, thus permitting that portion of the shared memory segment to 

be reused for other graph instances (step 330).

5. Alternatives

[72] As noted above, it is possible to pre-create graph pools of already instantiated 

instances of computation graphs in anticipation of there being transactions that will 

require them. When a transaction is received and needs a graph instance, if one is 

available from a graph pool, it is assigned from the pool rather than having to be 

created. In this way, the startup cost for a transaction is further reduced. When the 

computation for the transaction is completed, the graph is reset by restoring variables 

to their initial values prior to having been assigned to the transaction and freeing any 

dynamically-assigned memory. After the graph instance is reset it is returned to the 

pool.

[73] In some examples, the number of graph instances in a graph pool can be 

allowed to grow as needed. For instance, there might be a minimum number of 

instances of each graph, and more may be created as needed.

[74] In the description above, processes may be assigned to vertices in the graph in 

an on-demand manner where they are not associated with a vertex until after all the 

inputs to that vertex are available, though they are bound to the particular graph 

instance and transaction. Another approach is to associate the processes to the vertices 

when the transaction is associated with the graph instance and to maintain the 

association until the transaction’s entire work flow has been processed.

13



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

6. Applications

[75] One application of computation graphs of the type described above is for 

processing financial transactions in a banking application. In general, different types 

of transactions require different types of computation graphs. A typical computation 

graph is associated with some combination of a type of customer transaction and 

“backend” services that are needed to process the transaction. For example, 

transactions can be ATM requests, bank teller inputs, and business-to-business 

transactions between computers or web servers. Different customers might have 

different backend systems, particularly when banks consolidate and customers are 

combined from different original banks. Their accounts may be maintained on very 

different backend systems even though they are all customers of the acquiring bank. 

Therefore, different vertices in a graph may be used to process different transactions. 

Different services may be associated with vertices in the graph. For example, some of 

the vertices may be associated with functions such as updating a balance, depositing 

money in an account, or performing an account hold so funds are held in an account. 

In some implementations, on-the-fly assignment of processes to vertices avoids the 

overhead of having processes for unused vertices remain idle.

[76] An advantage of allocating graph instances on a per-transaction basis is that it 

allows parallelization of data streams that otherwise would have to be processed 

serially. Graph instances assigned to different transactions may finish in a different 

order than they started, for example, if the first transaction was more complicated than 

the second. This may allow the second graph instance to be released and available to 

process a third transaction when a serialized system would still be processing the first 

transaction.

7. Error Handling

[77] An advantage of allocating graph instances on a per-transaction basis is that 

failures due to errors in executing a graph instance can be contained to that 

transaction, and do not compromise the concurrent processing of other graph 

instances. By delaying committing the results of the computation graph until the 

entire transaction is completed, the data can be “rolled-back”, in the event of an error,

14



5

10

15

20

25

30

35

WO 2009/015342 PCT/US2008/071206

to the state that it was in before the system began to process the transaction. Errors

can be handled in several ways.

[78] In some examples, an “error handling” component is included in a graph. The 

error handling component is a special case in that it does not have to execute for the 

graph to complete. In the event that the component at any vertex generates an error, 

instead of causing the whole computation to abort, execution of the graph is redirected 

to the error handling component. An explicit relationship between a given component 

and an error handling component (including a work flow from an output port of a 

component to an input port of the error handling component) is referred to as an 

exception flow. The scheduler removes work elements that were part of the failed 

computation from the graph instance and the error handling component provides an 

output which the graph can use to provide an error message as output to the process 

that called it. The error handling component may receive data input other than through 

an exception flow, depending on the implementation.

[79] FIG. 3B shows a flowchart for an exemplary procedure 350 for executing a 

graph and handling an error that occurs in the graph. The scheduler processes a work 

flow of work elements (step 360) in the graph components according to the links. 

When the scheduler recognizes (step 370) that an error has occurred in a graph 

component, the scheduler redirects processing to the error-handling component. One 

aspect of this redirection is directing (step 380) work elements to the error-handling 

component according to any exception flows to that error-handling component. As 

described in more detail below, processing of the exception flow enables the error­

handling component to provide (step 390) error information to a process external to 

the graph that represents the state of the graph processing before the graph began 

processing the transaction in which the error occurred.

[80] For any component in a graph, there is a designated error handling component. 

This may be a component that directly receives an exception flow output or other 

error data output from another graph component, or it may be defined as the 

designated error handling component for a set of components regardless of whether it 

receives an exception flow. In some examples, exception flow is handled as shown in 

FIGs. 4A-B. In this example, the graph is designed for carrying out a transactional 

computation and subscribe 902 and publish 904 components are shown, but the same

15



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

35

technique can be used in graphs for non-transactional work flows. In FIG. 4A, the 

scheduler has activated a graph 900. Beginning with the first component, subscribe 

902, each component in any non-exception path downstream is marked as “enabled.” 

An exception path is a path that only receives a flow of work elements or other error 

data in the case of an exception (e.g., an exception flow leading to an error handling 

component as described above). This is referred to as enablement propagation. A 

given component that is downstream of others is enabled if any of its inputs is 

connected to an upstream component that is enabled. That is, replicate 906, reformat 

908, call web service 910, rollup 912, fuse 914, and publish 904 are all enabled, but 

the error handler 916 and the two components rollback 918 and error log 920 

downstream of it, which do not receive non-exception input flows from any enabled 

components, remain “disabled.”

[81] If an error occurs, the scheduler halts execution of the erring component, 

allows any other components that are already executing to finish, and propagates any 

relevant data (e.g., exception flow output of the completed components, or “error 

reporting output” of the erring component) to the error handling component. For 

example, if the call web service component 910 triggers an error, the exception flow 

from replicate component 906 and error reporting output from a reject port 921 of the 

call web service component 910 are input to the error handling component 916 at 

inputs 922, 924, respectively. Error reporting output ports (shown as ports on the 

bottom of some of the components in the graph 900) can be used to provide 

information about any errors that have occurred including, for example, information 

characterizing what error(s) occurred, where the error(s) occurred, and any rejected 

work elements associated with the error(s).

[82] In this example, there are three error reporting output ports for the replicate 

component 906. The reject port 921 provides work elements that may have caused the 

error or are in some way related to the error. The error port 923 provides an error 

messages describing relevant information about the error. The log port 925 can 

optionally provide information logging that the error occurred. The log port 925 can 

also provide log information about events during the normal course of execution even 

if no errors occur. In this example, the reject port 921 is explicitly shown as connected 

for those components (e.g., the call web service component 910) that may need to use 

16



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

35

the port. However, the error port 923 and log port 925 are not explicitly shown as 

connected, but have implicit connections to the error handling component 916. For 

example, the ports can be connected by a developer and then hidden using an 

interface control. In some implementations, the system can automatically determine 

implicit connections to a default error handling component, which may then be 

overridden by the developer. For large and/or complicated graphs, this “implicit 

wiring” for one or more types of error reporting ports improves visual comprehension 

of a graph by a developer, which is one of the benefits of graph-based programming. 

In some implementations, visual cues can be provided to indicate that a port is 

implicitly connected to a port of another component (e.g., an icon or a shaded or 

colored port). Some or all of the hidden implicit work flow connections can also be 

revealed as explicit links in response to a user request (e.g., clicking a button or 

hovering over a port).

[83] The exception flow output from the replicate component 906 may have 

already been queued at the input 922, if the replicate had finished operation before the 

error occurred. The scheduler then enables the error handling component (916 in this 

example), disables the erring component (910 in this example), and performs 

enablement propagation from the error handling component (enabling 918, 904, 920 

in this example). Any component downstream of the disabled erring component is 

also disabled as long as that component does not receive a flow from an enabled 

component downstream of the error handling component (disabling 912 and 914 in 

this example). Finally, any remaining component that provides a flow to an enabled 

component is enabled (enabling 906 and 902 in this example).

[84] Thus, the result of this procedure is shown by the indication of “<enabled>” 

and “<disabled>” components in FIG. 4B. Connecting the publish component 904 

back into the flow after the error handler 916 allows the transaction to be completed, 

albeit with an error message for its output. Data that had already propagated to the 

now-disabled components, e.g., output from the reformat component 908, is 

discarded.

[85] As noted above, data may flow to the error handling component as part of an 

exception flow or as part of an error reporting output of another component. Data that 

is available before the error occurs, for example, output data from the replicate 

17



WO 2009/015342 PCT/US2008/071206

5

10

15

20

25

30

35

module 906 in FIG. 4B, is held in escrow in an input queue for the error handler 916 

until it is needed, if it ever is. If the graph completes without error, the error handler 

916 is never activated and the data is discarded. If an error does occur, the error 

handler 916 uses whatever input data it has received to formulate a response. In some 

examples, as in FIG. 4B, a rollback component 918 is used. The input data from the 

replicate component 906 tells the error hander 916 what the state of things was before 

the graph began processing the transaction. The error hander 916 outputs this to the 

rollback component 918 which uses it to restore any data that was modified by the 

other components to its state prior to the execution of the transaction. Execution flow 

then goes to both the error log 920 which logs the error, and to the publish component 

904 so that the error can be reported and appropriately handled by whatever higher- 

level process delivered it to the graph 900. An exception flow from any component to 

the error handler 916 may also include data. If there is input to the error hander 916 

other than the original data from the replicate component 906, such as error output 

from the call web service component 910 or an exception flow from any other 

component (not shown), this may be used to formulate a more-detailed error message 

at either the error log or the publish component.

[86] In some examples, as shown in FIG. 5, a graph includes vertices that are 

implemented as sub-graphs, e.g. sub-graph 950, each of which may have its own error 

handling component 952. Thus, there can be a hierarchy of sub-graphs with a top 

level graph, having vertices that are sub-graphs at a lower “graph level,” and so on. If 

an error occurs in any component 954, 956, 958, 960, 962 of the sub-graph 950, the 

processing flow is routed to the error handling component 952 which provides error 

reporting output on a sub-graph error reporting port 974. The scope of the error 

handling component 952 is the sub-graph 950. The error handling component may 

have inputs 966, 968 that receive output from either an exception flow from another 

graph element (e.g., element 954) or error output 959 of another graph element (e.g., 

element 958) which may themselves be nested sub-graphs. In some examples, if an 

error handling component has multiple inputs, only the input that most recently 

received data is used. If all the components of the sub-graph 950 complete their 

operations successfully, output (a work flow) is delivered to the normal sub-graph 

output port 970 and processing flow beyond the sub-graph 950 continues normally. If 

an error occurs, it can be handled and reported on an error flow output 972, or an error

18



5

10

15

20

25

30

35

WO 2009/015342 PCT/US2008/071206

reporting output 974. In other examples, errors can also be reported on the standard

output 970.

[87] If a sub-graph does not have error handling, its errors flow upwards in the 

hierarchy of sub-graphs of which it is a part until they reach a graph level that does 

have error handling, at which point that level’s error-handling component is activated.

[88] The data escrowed at the input of the error handling component may be a 

subset of a work flow, it may be all the data associated with a transaction, or it could 

be an entire data flow. If the error-handling component has an error output port, it will 

output the record that caused the error or other error information based on the 

escrowed data or the input received from the component that had the error. If it does 

not have such a port, it may simply output the offending record as normal output on 

its output port.

[89] If a sub-graph does not have error handling, errors in its components flow 

upwards in the hierarchy of sub-graphs of which it is a part until they reach a graph 

level that does have error handling, at which point that level’s error-handling 

component receives appropriate input and generates an appropriate error output.

[90] Error handling can allow cyclic graph arrangements that would ordinarily be 

avoided in graph-based computation processing. For example, as shown in FIG. 6, in 

a graph 1100 an error output 1116 from a computation component 1112 downstream 

from an error hander 1104 returns flow back to that same error handler 1104. The 

error handler 1104 also receives input from a subscribe component 1102 and provides 

output to a roll-back component 1106 as in FIG. 4A. The roll-back 1106 returns the 

data to the state it was in before the failed computation was attempted, based on the 

data input to the error hander 1104 by the subscribe component 1102. A counter 

component 1108 may receive the flow from the roll-back component 1106 and 

increment its value before returning flow to the gather component 1110. The 

computation component 1112 can use the value input from the counter component

1108 in several different ways. It can consult the value before carrying out its

computation, for example, to see if it should change something about its operation. It

can also consult the counter after an error, to see if some threshold number of attempts

has been made. If the threshold has been exceeded, instead of returning the error

19



5

10

15

20

25

30

35

WO 2009/015342 PCT/US2008/071206

output to the error handler 1104 through the output 1116 again, it directs its output to

a second error output 1118 that leads to a second error handler 1120. If a counter

component is not used, some other technique can be used to break the cycle and

assure that the graph eventually completes.

[91] To assure that a cyclic graph is well-defined, the set of elements that will be 

enabled on error is determined in advance based on the topology of the graph, rather 

than being done as-needed as described above.

[92] In some examples, other rules are used to assure that error handling works 

correctly. For example, in some implementations, error handling can only be triggered 

on one exception port of one component within a graph (any simultaneous errors may 

be ignored). If a graph component or sub-graph is linked to an error handling 

component, it must use that component on any error. If a graph component or sub­

graph is not linked to an error handling component, errors must be handled by the 

generic error handler for the present scope. Each graph component is typically 

associated with exactly one error handler. These rules may be modified or combined 

depending on the requirements of the system. They can be useful where tight control 

of the process for each transaction is needed.

[93] In some examples, when an error occurs, the operating system determines 

which error-handling component is associated with the component that experienced 

the error, and then determines which input flow, if any, to that error-handling 

component should be used. If there are multiple inputs, the one that most recently had 

data written to it is used.

[94] Error handling may be active, as just described, where components or sub­

graphs handle their own errors and produce error codes that can be used by other 

components to diagnose or work around the error, or it can be passive. In a passive 

system, a graph that encounters an error simply fails, and allows the operating system 

to provide error handling, for example by providing a stack dump to a debugging 

process.

[95] Each component of a graph is implicitly connected to a scheduler, which 

doesn’t need a specific invitation from a graph to intervene and handle errors. The 

scheduler can remove data related to an error from a graph instance and, in some
20



5

10

15

20

25

30

35

WO 2009/015342 PCT/US2008/071206

examples, does not need to know the nature of the error. In some cases, the scheduler

may return resources assigned to a graph to their respective pools in stages, allowing

the graph to complete processing work elements that were not affected by the error.

8. Implementation

[96] The invention may be implemented in hardware or software, or a combination 

of both (e.g., programmable logic arrays). Unless otherwise specified, the algorithms 

described are not inherently related to any particular computer or other apparatus. In 

particular, various general purpose machines may be used with programs written in 

accordance with the teachings herein, or it may be more convenient to construct more 

specialized apparatus (e.g., integrated circuits) to perform particular functions. Thus, 

the invention may be implemented in one or more computer programs executing on 

one or more programmed or programmable computer systems (which may be of 

various architectures such as distributed, client/server, or grid) each comprising at 

least one processor, at least one data storage system (including volatile and non­

volatile memory and/or storage elements), at least one input device or port, and at 

least one output device or port. Program code is applied to input data to perform the 

functions described herein and generate output information. The output information is 

applied to one or more output devices, in known fashion.

[97] Each such program may be implemented in any desired computer language 

(including machine, assembly, or high level procedural, logical, or object oriented 

programming languages) to communicate with a computer system. In any case, the 

language may be a compiled or interpreted language.

[98] Each such computer program is preferably stored on or downloaded to a 

storage media or device (e.g., solid state memory or media, or magnetic or optical 

media) readable by a general or special purpose programmable computer, for 

configuring and operating the computer when the storage media or device is read by 

the computer system to perform the procedures described herein. The inventive 

system may also be considered to be implemented as a computer-readable storage 

medium, configured with a computer program, where the storage medium so 

configured causes a computer system to operate in a specific and predefined manner 

to perform the functions described herein.

21



20
08

27
90

01
 

21
 A

pr
 2

01
0 5 [99] It is to be understood that the foregoing description is intended to

illustrate and not to limit the scope of the invention, which is defined by the scope

of the appended claims. Other embodiments are within the scope of the following

claims.

[100] Throughout this specification and the claims which follow, unless the

10 context requires otherwise, the word "comprise", and variations such as

"comprises" and "comprising", will be understood to imply the inclusion of a 

stated integer or step or group of integers or steps but not the exclusion of any 

other integer or step or group of integers or steps.

[101] The reference to any prior art in this specification is not, and should

15 not be taken as, an acknowledgement or any form of suggestion that the prior art

forms part of the common general knowledge in Australia.

22



20
08

27
90

01
 

15
 Ja

n 
20

14 What is claimed is:

1. A method for processing transactions using graph-based computations, the method 

including:

selecting a computation graph from a plurality of computation graphs, including 

determining which computation graph among the plurality of computation graphs includes 

one or more graph elements that are associated with a computation to be performed for a 

given transaction,

associating the given transaction with an instance of the selected computation graph, 

in which the selected computation graph includes computation elements configured to 

instantiate respective graph elements in the instance of the selected computation graph, and 

executing the instance of the selected computation graph to perform the 

computation.

2. The method of claim 1 wherein at least some instances of the graphs in the plurality 

of computation graphs share one or more of the computation elements.

3. The method of claim 1 wherein the computation elements include computations 

executed by at least one of an operating system process and a process thread.

4. The method of claim 1 wherein the graph elements include vertices of the 

computation graphs.

5. The method of claim 1 wherein associating the transaction with an instance of the 

computation graph includes assigning a computation element corresponding to each graph 

element in the computation graph to the instance of the computation graph before beginning 

executing the graph elements.

6. The method of claim 1 wherein associating the transaction with an instance of the 

computation graph includes assigning a computation element corresponding to a graph 

element in the computation graph to the instance of the computation graph after executing 

another graph element using a computation element already assigned to the instance.

23



20
08

27
90

01
 

15
 Ja

n 
20

14 7. The method of claim 1 in which at least two of the graph elements use a common 

resource, and executing the graph to perform the computation includes assigning each of 

the graph elements using the common resource to a single computation element.

8. The method of claim 7 in which the single computation element is already initiated 

when the graph elements are assigned to the computation element.

9. The method of claim 7 in which the common resource includes at least one of a 

database and a specific port.

10. The method of claim 1 also including

determining that at least one of the graph elements of the selected computation 

graph is associated with a computation to be performed for a second transaction, 

associating the second transaction with a second instance of the selected 

computation graph, and

executing the second instance of the selected computation graph to perform the 

computation for the second transaction.

11. The method of claim 10 wherein the computations for transactions performed using 

different instances of computation graphs are performed in a time-interleaved manner.

12. The method of claim 10 wherein multiple transactions are processed concurrently.

13. The method of claim 10 wherein each transaction is associated with one or more 

work elements that are processed according to the corresponding computation graph.

14. The method of claim 13 wherein at least some transactions are each associated with 

one work element that is processed according to the corresponding computation graph.

15. The method of claim 1 further including forming multiple instances of at least some 

of the computation graphs.

24



20
08

27
90

01
 

15
 Ja

n 
20

14 16. The method of claim 1 further including identifying that an error has occurred in the 

performing of a computation for one of the transactions, and continuing the performing of a 

computation for another one of the transactions.

17. The method of claim 1 wherein the processing of a first transaction of the plurality 

of transactions starts at a first time, and the processing of a second transaction of the 

plurality of transactions starts at a second time later than the first time, the method further 

including completing the performing of the computation for the second transaction before 

completing the performing of the computation for the first transaction.

18. A system for processing transactions using graph-based computations, the system 

including:

means for selecting a computation graph from a plurality of computation graphs, 

including means for determining which computation graph among the plurality of 

computation graphs includes one or more graph elements that are associated with a 

computation to be performed for a transaction,

means for associating the given transaction with an instance of the selected 

computation graph, in which the selected computation graph includes computation elements 

configured to instantiate respective graph elements in the instance of the selected 

computation graph, and

means for executing the instance of the selected computation graph to perform the 

computation.

19. A non-transitory computer-readable storage medium storing a computer program for 

processing transactions using graph-based computations, the computer program including 

instructions for causing a computer system to:

select a computation graph from a plurality of computation graphs, including 

determining which computation graph among the plurality of computation graphs includes 

one or more graph elements that are associated with a computation to be performed for a 

given transaction,

associate the given transaction with an instance of the selected computation graph, 

in which the selected computation graph includes computation elements configured to 

instantiate respective graph elements in the instance of the selected computation graph, and

25



20
08

27
90

01
 

15
 Ja

n 
20

14 execute the instance of the selected computation graph to perform the computation.

20. A method for processing graph-based computations including:

within a computation graph including vertices representing work element-handling 

graph components that process work elements according to links joining the vertices, 

providing at least one error-handling graph component within the 

computation graph, the at least one error-handling graph component distinct from 

the work element-handling graph components and configured to provide error 

information to a process external to the computation graph,

processing data, including, in response to a work element-handling graph 

component encountering an error while processing, redirecting processing to the 

error-handling graph component, and

directing at least some of the work elements to the error-handling graph 

component according to at least one link to a vertex representing the error-handling 

graph component.

21. The method of claim 20 in which redirecting processing to the error-handling graph 

component includes removing work elements from at least one input queue.

22. The method of claim 20 in which redirecting processing to the error-handling graph 

component includes processing the work elements directed to the error-handling graph 

component.

23. The method of claim 22 in which processing the work elements directed to the 

error-handling graph component includes rolling back changes to a database made prior to 

the error.

24. The method of claim 22 in which processing the data includes, for graph 

components not included in handling the error, discarding work elements directed to those 

graph components.

26



20
08

27
90

01
 

15
 Ja

n 
20

14 25. The method of claim 20 also including providing a sub-graph, the sub-graph 

including an error-handling sub-graph component configured to provide an error code as an 

output of the sub-graph.

26. The method of claim 23 in which if output provided by the sub-graph indicates that 

an error occurred in the sub graph, redirecting processing to the error-handling graph 

component.

27. The method of claim 20 in which redirecting processing to the error-handling graph 

component includes communicating, from the graph component that encountered the error, 

to the error-handling graph component, work elements that the graph component was 

processing when the error occurred.

28. The method of claim 27 in which the work elements are communicated according to 

the link to the vertex representing the error-handling component.

29. The method of claim 27 in which redirecting processing to the error-handling graph 

component includes communicating, from the graph component that encountered the error, 

to the error-handling graph component, reporting information about the error.

30. The method of claim 29 in which the reporting information is communicated 

according to an implicit connection between the graph component that encountered the 

error and the error-handling component.

31. The method of claim 30 also including revealing the implicit connection as an 

explicit link between a vertex representing the graph component that encountered the error 

and a vertex representing the error-handling component in response to a user request.

32. The method of claim 20 in which providing the error-handling graph component 

includes providing a plurality of error-handling graph components, and redirecting 

processing to the error-handling graph component includes selecting an error-handling 

graph component based on output provided from the graph component that encountered the 

error.

27



20
08

27
90

01
 

15
 Ja

n 
20

14

33. The method of claim 20 in which processing the data also includes, if a graph 

component encounters an error while processing, outputting an identification of a work 

element that caused the error.

34. The method of claim 20 in which processing includes: 

enabling a first component of the computation graph; 

disabling the error-handling component; and

for each component downstream of the first component other than the error­

handling component, enabling the component if a component immediately upstream of the 

component is enabled.

35. The method of claim 34 in which redirecting processing to the error-handling graph 

component includes:

stopping execution of each enabled graph component,

disabling the component that encountered the error;

enabling the error-handling component;

disabling components downstream of the component that encountered the error that 

are not downstream of the error-handling component; and

enabling components upstream of the error-handling component.

36. The method of claim 20 in which redirecting processing to the error-handling graph 

component includes, where the error occurred in a first component,

if the error occurs under a first condition, directing process flow from the first 

component to a first error-handling component upstream of the first component,

and if the error occurs under a second condition, directing process flow from the 

first component to a second error-handling component downstream of the first component.

37. The method of claim 36 in which the first condition is that a counter is below a 

limit.

38. The method of claim 36 in which the second condition is that a counter is above a 

limit.

28



20
08

27
90

01
 

15
 Ja

n 
20

14

39. The method of claim 36 in which redirecting processing to the error-handling graph 

component also includes enabling a set of graph components, the set having been 

determined prior to the error.

40. A system for processing graph-based computations, the system including:

within a computation graph including vertices representing work element-handling 

graph components that process work elements according to links joining the vertices, 

means for providing at least one error-handling graph component within the 

computation graph, the at least one error-handling graph component distinct from 

the work element-handling graph components and configured to provide error 

information to a process external to the graph,

means for processing data, including, in response to a work element­

handling graph component encountering an error while processing, redirecting 

processing to the error-handling graph component, and

means for directing at least some of the work elements to the error-handling 

graph component according to at least one link to a vertex representing the error­

handling graph component.

41. A non-transitory computer-readable storage medium storing a computer program for 

processing graph-based computations, the computer program including instructions for 

causing a computer system to:

within a computation graph including vertices representing work element-handling 

graph components that process work elements according to links joining the vertices, 

provide at least one error-handling graph component within the computation

graph, the at least one error-handling graph component distinct from the work 

element-handling graph components and configured to provide error information to 

a process external to the graph, and

process data, including, in response to a work element-handling graph

component encountering an error while processing, redirecting processing to the

error-handling graph component, and

29



20
08

27
90

01
 

15
 Ja

n 
20

14 direct at least some of the work elements to the error-handling graph

component according to at least one link to a vertex representing the error-handling

graph component.

42. The method of claim 1 including committing the performed computation to a 

database after multiple computations for the given transaction are performed.

43. A method for processing transactions using graph-based computations substantially 

as herein described.

44. A system for processing transactions using graph-based computations substantially 

as herein described.

45. A non-transitory computer-readable storage medium storing a computer program for 

processing transactions using graph-based computations substantially as herein described.

46. A method for processing graph-based computations substantially as herein 

described.

47. A system for processing graph-based computations substantially as herein 

described.

48. A non-transitory computer-readable storage medium storing a computer program for 

processing graph-based computations substantially as herein described.

30



ο
1/8ο

(Μ

20
08

27
90

01
 

19
 M

ar

FIG. 1



2/8

INPUTS

20
08

27
90

01
 

19
 M

ar
 2

01
0

CONTROL

FIG. 2



3/8

20
08

27
90

01
 

19
 M

ar
 2

01
0

300--.

FOR EACH TRANSACTION

FIG. 3A



4/8

20
08

27
90

01
 

19
 M

ar
 2

01
0

350

FIG. 3B



20
08

27
90

01
 

19
 M

ar
 2

01
0

< 
vf

0
Ll_



6/8

20
08

27
90

01
 

19
 M

ar
 2

01
0



20
08

27
90

01
 

19
 M

ar
 2

0



8/8

20
08

27
90

01
 

19
 M

ar
 2

01
0

CO

0
LL


