wo 2012/078479 A2 | IV OO OO0 0 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/078479 A2

14 June 2012 (14.06.2012) WIPOIPCT

(51) International Patent Classification: WILSON, Emily N.; c¢/o Microsott Corporation, LCA -
GO6F 9/24 (2006.01) International Patents, One Microsoft Way, Redmond,
(21) International Application Number: \l\élf.ashmgton 98052_.6399 (US). STARI.(’ Kirsten V.; c/o
PCT/US2011/063208 }crosoft Corporation, LCA - Iptematlonal Patents, One
Microsott Way, Redmond, Washington 98052-6399 (US).
(22) International Filing Date: ZHANG, Sushu; ¢/o Microsoft Corporation, LCA - Inter-
4 December 2011 (04.12.2011) national Patents, One Microsott Way, Redmond, Washing-
- , ton 98052-6399 (US). STEMEN, Patrick L.; c/o Mi-
(25) Filing Language: English crosoft Corporation, LCA - International Patents, One Mi-
(26) Publication Language: English crosoft Way, Redmond, Washington 98052-6399 (US).
KING, Brian E.; ¢c/o Microsoft Corporation, LCA - Inter-
(30) Priority Data: national Patents, One Microsoft Way, Redmond, Washing-
12/961,318 6 December 2010 (06.12.2010) us ton 98052-6399 (US). KARAGOUNIS, Vasilios; c/o Mi-
(71) Applicant (for all designated States except US): MI- crosoft Corporation, LCA - mtematlonal Patents, One Mi-
CROSOFT CORPORATION [US/US]; One Microsoft crosoft Way, Redmond, Washington 98052-6359 (US).
Way, Redmond, Washington 98052-6399 (US). JAIN, Neel; c/o Mlqrosoﬁ Corporation, LCA - Interganon-
al Patents, One Microsoft Way, Redmond, Washington

(72) Inventors: IYIGUN, Mehmet; c/o Microsoft Corporation, 98052-6399 (US).

LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). BAK, Yevgeniy; c¢/o
Microsoft Corporation, LCA - International Patents, One
Microsoft Way, Redmond, Washington 98052-6399 (US).

(8D

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

[Continued on next page]

(54) Title: FAST COMPUTER STARTUP

YES,'chHGURAﬂON .

650

612 .

CHECK NTFS SEQUENCE
NUMBER
e 670

NO .~ SEQUENCE ™.

¥ 601
HIBER-BOOT? NO
{ 810

~.. CHANGE o

"NO

" NUMBERS
* CONSISTENT?. -

RE-ESTABLISH
USER STATE AND
SYSTEM STATE
FROM HIBER FILE

632

YES
RE-ESTABLISH

TARGET STATE
FROM HIBER FILE

.-630

RECORD STARTUP TIME -~

PRESENT USER .
LOG ON SCREEN

[—

INVALIDATE HIBERNATION FILE - --638

--634

‘

(" EnD

FIG. 6

(57) Abstract: Fast computer startup is provided by, upon receipt of a shut-
down command, recording state information representing a target state. In this
target state, the computing device may have closed all user sessions, such that
no user state information is included in the target state. However, the operat-
ing system may still be executing. In response to a command to startup the
computer, this target state may be quickly reestablished from the recorded tar-
get state information. Portions of a startup sequence may be performed to
complete the startup process, including establishing user state. To protect user
expectations despite changes in response to a shutdown command, creation
and use of the file holding the recorded state information may be conditional
on dynamically determined events. Also, user and programmatic interfaces
may provide options to override creation or use of the recorded state informa-
tion.

WO 2012/078479 A2 |IIWAK 00TV 0TS0 AR A

84)

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,

LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
1

FAST COMPUTER STARTUP
BACKGROUND

[0001] Computers have several operating modes, ranging from full operation to
full shutdown. In full operation, software defining the executing portions of the operating
system has been loaded from non-volatile memory into volatile memory, from which it
can more quickly be executed. The computer enters this full operation mode though a
“startup” process. The startup process configures the hardware and loads the operating
system of the computer. As part of the startup process, drivers are installed and operating
system services are started.
[0002] Once the computer is ready for operation by any user, a user may log on to
the computer. This log on may involve further configuration of the computer based on a
profile specific to user who is logged on. Either automatically or in response to user input,
applications may then be loaded, such that the applications can execute, taking advantage
of the capabilities of the hardware and operating system services of the computing device.
[0003] In the process of loading software, whether for the operating system or
applications, memory may be allocated, parameters of the software may be assigned
values based on the hardware configuration of the computer or a user profile, and other
configuration actions may be performed.
[0004] These actions establish a “state” of the computing device. Further changes
to the memory and other parameters of the system that define its operating state may also
be made as the user provides commands to interact with executing applications or
operating system services.
[0005] In full shutdown mode, power is not supplied to the hardware components
of the computer. No software or state information is stored in volatile memory, as this
memory does not retain information when it is powered off. Rather, any information that
will be used later to re-configure the computer for a full operation mode is stored in non-
volatile memory.
[0006] The computer enters shutdown mode through a process called shutdown.
During shutdown, any information that may be needed to re-configure the computer, if it
is not already stored in non-volatile memory, may be stored in non-volatile memory.
Software and other configuration information that was copied into volatile memory from
non-volatile memory is not copied back to non-volatile memory, because it can be re-
created upon a subsequent startup process. However, to the extent that the volatile

memory caches data copied from non-volatile memory that was modified after it was

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
2

copied (sometimes called “dirty” data), that data is copied to non-volatile memory during
shutdown.

[0007] A further variation is called log off. In a computer that supports user
sessions, users may log on to the computer in order to access its functionality. Though
shutdown effectively logs off users, a separate log off process may be performed
following which the computer does not power down. Rather, the operating system
remains loaded and ready for another user to log on. During logoff, the computer “breaks
down” user sessions. Breaking down a user session may entail closing applications
launched by the user and storing user specific data not already in non-volatile memory.
[0008] In addition to a full shutdown or log off, there may be power saving modes
in which power to some or all of the hardware components of the computer is turned off.
In a power saving mode, sometime called sleep mode, power is turned off for the
computer processor, network interfaces and possibly other components. However, power
is retained for volatile memory. In this way, any state information created during boot or
subsequent operation of the computer is retained in volatile memory. When power is
supplied to the processor again, it may resume operation in the state where it left off upon
entering sleep mode.

[0009] A further mode is sometimes called hibernate mode. The computer enters
this mode through a process called hibernation. During hibernation, a file capturing the
operating state of the computer is created and stored in non-volatile memory, typically a
hard disk. During a process of resuming from hibernate, this file may be read from the
disk and used to re-establish the state of the computer as it existed at the time of
hibernation. Resuming from hibernate restores in volatile memory copies of software or
parameters set during operation that existed at the time of hibernating, such that any user
state is also restored.

[0010] Resuming from hibernation can be faster than performing a full startup for
several reasons. One reason is that copying the state information in the hibernation file
into volatile memory re-creates the results of the full startup process, while avoiding the
time spent executing the steps of the startup process, such as CPU consumption, device
initialization and many other types of work that has to be done during boot. Additionally,
the information accessed during startup is stored in many different files, representing
different components that are accessed to load and configure what may be potentially tens
of thousands of components in the operating system. These components, and the

information accessed to configure them, may be randomly distributed across the hard disk.

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
3

Because hard disk drives, and some other forms of high capacity storage, are most
efficient at accessing sequential data, accessing randomly distributed data may include
substantial disk access time, leading to a long startup process. In contrast, the access time
is less in reading the hibernation file because information in that file may be stored
sequentially on the disk.
[0011] A further difference between resuming from hibernation and startup is that
hibernating and then resuming restores the full state of the computer, including any user
state for the user of the computer at the time the computer hibernated. In contrast, until a
user logs on, a startup will generically configure a computer for any user. Specific users
may then log on or otherwise take action to configure the computer for themselves. For
this reason, hibernation is generally selected by a user who intends to be away from a
computer for a while, but intends to return to the computer. A shutdown is generally used
by a user who intends to be away from the computer for a longer time, possibly not
returning to the computer at all or who expects other users may use the computer in the
before the user returns.

SUMMARY
[0012] To improve a user experience, a computer may be configured to respond to
a user command to shutdown by entering hibernate mode. Such a computer may be ready
for operation by a user more quickly after the user provides a command to startup the
computer. To enable the computer to quickly be ready for operation in a state consistent
with a user’s expectation, a hibernation file captures a target state that implements user
expectations. In response to a shutdown command, the computer creates this target state
prior to hibernating by performing only a portion of the steps in a shutdown process. The
steps performed may place the computer in the target state, corresponding to a state in
which the operating system remains loaded, but user sessions have been broken down.
[0013] Upon receipt of a startup command, the computer system may, rather than
creating an operating state by loading and configuring software, re-create the target state
by copying the hibernation file into volatile memory. The computer then may perform
only portions of the startup sequence. Those portions may include the operations that
would conventionally occur during a startup sequence after the operating system is loaded.
Those steps may include, for example, interacting with a user to perform a user log on and
load applications that define a user state.
[0014] In some embodiments, conditional processing may be performed in

response to a user command indicating a shutdown. The computing device may

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
4

determine, for example, whether the computing device is in an operating state where a full
shutdown is required or whether creating a hibernation file to use in response to a
subsequent startup command is appropriate.
[0015] Such a state may be identified in any of a number of ways, including by
determining that configuration settings of some installed component were changed and
will not be applied until the component again is loaded as part of a full startup sequence.
Alternatively, a programming interface may be provided that allows application
components to register as requiring a full shutdown.
[0016] If such a condition is detected, conventional shutdown processing may be
performed until the computing device is fully powered down. If not, the shutdown
sequence may be performed until the computing device is in the target state, from which a
hibernation file may be made.
[0017] In some embodiments, conditional processing may be performed in
response to a user command to startup. That conditional processing may include
determining whether a hibernation file exists. If so, a further check may be made on
whether it is possible that the target state of the computing device could have changed
between the time when the hibernation file was created and the time at which the startup
command was received. If events that could have caused a change in state are detected,
the computing device may perform a full startup sequence.
[0018] The foregoing is a non-limiting summary of the invention, which is defined
by the attached claims.

BRIEF DESCRIPTION OF DRAWINGS
[0019] The accompanying drawings are not intended to be drawn to scale. In the
drawings, each identical or nearly identical component that is illustrated in various figures
is represented by a like numeral. For purposes of clarity, not every component may be
labeled in every drawing. In the drawings:
[0020] FIG. 1 is a conceptual block diagram illustrating a startup sequence in a
computing device;
[0021] FIG. 2 is a functional block diagram illustrating a resume from hibernation
sequence in a computing device;
[0022] FIG. 3 is a functional block diagram illustrating a fast startup sequence
according to some embodiments of the invention;
[0023] FIG. 4 is a flow chart illustrating a method of operating a computer to

respond to a startup command according to some embodiments of the invention;

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
5

[0024] FIG. 5 is a flow chart of a method of operating a computing device to
respond to a shutdown command according to some embodiments of the invention;
[0025] FIG. 6 is a flow chart of a portion of a startup sequence that may be
conditionally executed according to some embodiments of the invention;
[0026] FIG. 7 is a sketch of a portion of a graphical user interface through which a
user may select between commands that cause different behaviors of a computing device
upon shutdown; and
[0027] FIG. 8 is a block diagram of an exemplary computing device, illustrating an
environment in which embodiments of the invention may operation.

DETAILED DESCRIPTION
[0028] The inventors have recognized and appreciated that an experience of a user
of a computing device may be improved through the use of a hibernation file in
conjunction with portions of a shutdown and/or startup sequence of the computing device.
Such a file may be created selectively upon shutdown and used selectively upon startup
such that the performance of the computing device matches user expectations. Even when
a hibernation file is created or used, portions of conventional shutdown or startup
sequences may be performed.
[0029] To provide operation of the computing device that is consistent with user
expectations, hibernation may be used in conjunction with portions of a traditional
shutdown sequence of the computing device that places the computing device in a target
state. Those portions may include, upon receipt of a shutdown command, operations that
break down user sessions. In addition, as part of responding to a shutdown command,
information retained in volatile memory after user sessions are broken down, but that is
intended to be retained in non-volatile memory is moved to non-volatile memory. For
example, traditional cache flushing operations that mimic those performed during a
conventional shutdown may be performed.
[0030] Conversely, upon processing of a startup command, a resume from
hibernation may be performed along with portions of a startup sequence. That sequence
may include any part of the startup sequence that occurs after the operating system is
loaded and ready for operation. That part of the startup sequence may include user log on
and loading of applications, for example.
[0031] Further, to provide operation consistent with user expectations, creation or
use of a hibernation file as part of shutdown or startup may be conditioned upon

dynamically determined events. In scenarios in which a component has been reconfigured

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
6

during an operating session, such that configuration changes are not applied until the next
time the component is loaded, no hibernation file may be created. In response to the next
startup command from a user, the computer will detect that no hibernation file is available
and create the target state by reloading the operating system. Alternatively or additionally,
the operating system may provide an interface through which other components can
register to signify that they require a full shutdown or startup to function effectively.
When executing components are registered, a full shutdown sequence may be performed
in response to a shutdown command.

[0032] Further, to operate consistently with user expectations, in some
embodiments, a user interface may be provided through which a user may specify whether
to perform a conventional shutdown or a modified shutdown in which a target state is
created and then the hibernation process is performed. Such a user interface may present
separate options for a conventional shutdown and a modified shutdown sequence
incorporating hibernation. A computing device may conditionally invoke the modified
shutdown sequence in response to an input labeled as a conventional shutdown command.
A separate command option may be provided through the interface with which a user may
specify a conventional shutdown.

[0033] Turning now to FIG. 1, a function block diagram of a full startup sequence
is illustrated. FIG. 1 illustrates a functional block diagram of a computing device 100 that
may be adapted to operate according to embodiments of the invention.

[0034] In this example, computing device 100 includes volatile memory 120.
Volatile memory 120 may be implemented using DRAM or any other suitable memory
components. A startup sequence performed by computing device 100 involves creating
state information within volatile memory 120 that allows computing device 100 to
perform computing operations as are known in the art.

[0035] In this example, that state information is depicted as having two portions,
user state information 130 and system state information 140. System state information
140 represents the state information that generically configures computing device 100 for
operation by any user. In contrast, user state information 130 represents state information
that may be generated when computing device 100 is operated or configured for operation
by a specific user.

[0036] System state information 140 and user state information 130 may be
created in volatile memory 120 according to a startup process as is known in the art. FIG.

1 illustrates, in simplified conceptual fashion, steps in a conventional startup sequence.

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
7

Such a sequence may be initiated, for example, when computing device 100 is powered on
or other command signifying a startup is provided.

[0037] Computing device 100 may include components as are known in the art.
Those components may include a processor 110. Processor 110 may be implemented as a
microprocessor or a collection of microprocessors or processor cores, as are known in the
art. The operations described herein may be the result of processor 110 executing
software instructions.

[0038] Additionally, computing device 100 may incorporate multiple types of
computer storage media. In this case, those types include volatile memory and non-
volatile memory. In this example, volatile memory 120 is illustrated. Various types of
information are stored in non-volatile memory 150 and 152. Boot memory 154 is also
non-volatile memory. Different physical devices may be used to implement non-volatile
memories 150 and 152 and boot memory 154. For example, non-volatile memory 150
may be a disk, such as a spinning hard disk or a solid state drive. Non-volatile memory
152 may similarly be a disk, and may be the same disk used to implement non-volatile
memory 150, a different partition on the same disk or a different disk entirely.

[0039] Non-volatile memory 154 may likewise be a portion of the same device
used to implement non-volatile memories 150 and 152. Though, in the embodiment
illustrated, non-volatile memory 154 may be a non-volatile memory chip connected to
processor 110. Accordingly, it should be appreciated that FIG. 1 represents just one
example of a memory architecture, and any suitable memory architecture may be used.
[0040] In this example, non-volatile and volatile memories are illustrated. Such a
configuration represents a traditional computer architecture. Though, it is not a
requirement that this specific architecture be used. Rather, volatile memory 120 is an
example of operating memory. During operation of computing device 100, processor 110
may predominantly access the software and data to perform operations from volatile
memory 120. This memory may be relatively high speed such that operations may be
performed by processor 110 quickly.

[0041] In contrast, non-volatile memories, such as non-volatile memory 150 and
152, may be capable of storing large quantities of data, but may operate more slowly than
volatile memory 120. Generally, the cost of storing information in such non-volatile
memories may be relatively small in comparison to the cost of storing information in
volatile memory 120. To achieve cost effective, yet high speed operation, information

may be transferred between non-volatile memories and the volatile memories. These

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
8

transfers are performed to create a state within volatile memory 120 that supports desired
operation of computing device 100.

[0042] Other components of a computer system may be present, but are omitted
for simplicity. More detail of components that may be present in other embodiments is
provided below in connection with FIG. 8. However, the simplified illustration in FIG. 1
is adequate for an explanation of a startup process.

[0043] In response to a startup command, processor 110 may access and execute
instructions in boot memory 154. Boot memory 154 may contain instructions that cause
processor 110 to access non-volatile memories 150 and 152 and, based on software and
data stored in those memories, generate an appropriate state in volatile memory 120.
[0044] The instructions in boot memory 154 may cause processor 110 to load
software from non-volatile memory 150. As part of loading software components,
processor 110 may transfer software instructions to volatile memory 120 from which that
software may be executed. Though, loading software may include other operations,
including execution of some components.

[0045] Execution of some components from volatile memory 120 may transform
the software from the state in which it is stored to the state in which it is used or cause
other components to be transferred from non-volatile memory to volatile memory 120. In
the process of loading software, processor 110 may configure the software based on data
stored in non-volatile memory 152 or other information. That information may include,
for example, information about hardware components installed in computing device 100.
Accordingly, FIG. 1 illustrates that a second and third steps of the startup process may be
to acquire software from non-volatile memory 150 and data from non-volatile memory
152.

[0046] The first software loaded in this process may establish system state 140.
The software initially loaded may add to the system state 140 drivers 146, which control
hardware components. Before loading a driver, hardware components associated with
computing device 100 may be identified and an appropriate driver may be selected. Once
the driver is installed, operating system services, and other components, may interact with
the device controlled through the driver.

[0047] Operating system services 142 may then be loaded. One example of such a
service is file manager 144. File manager 144 may organize data in volatile memory such
that executing operating system services and applications may access data in non-volatile

memory organized according to files. Other services provided by an operating system

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
9

may include interacting with a user interface, establishing a network connection or sending
information to a printer. Though, the specific operating system services 142 is not a
limitation on the invention.

[0048] Additionally, during the process of establishing the system state 140,
processor 110 may store system state data 148. Such data may be copied from non-
volatile memory, such as non-volatile memory 152, or may be generated by execution of
software components. The data, for example, may be generated when processor 110
executes instructions that discover devices installed within computing device 100. As a
specific example, upon discovering a specific network interface card, processor 110 may
record as part of system state data 148 a type or capabilities of the network interface card.
This data may then be used during operation of the computing device to control
interactions with the network interface card. Though, it should be appreciated that the
specific data stored as system state data 148 is not critical to the invention.

[0049] Regardless of the specific operating system services 142 and system state
data 148 that is created in system state information 140, when that system state
information 140 is created, computing device 100 may be ready for operation by a user.
Accordingly, the startup sequence may continue with a process sometimes referred to as
user log on. As part of user log on, a specific user may be identified and further state
information may be created in volatile memory 120 to allow computing device 100 to
perform operations for that user. In this example, user state information 130 is illustrated
as containing application instructions 132 and user state data 134.

[0050] As with the instructions representing operation system components and the
data representing system state, application instructions 132 may be loaded into memory
based on software stored on volatile memory 150. Though, the process of loading
software may entail executing functions that appropriately configure the software or
computing device for operation. That configuration may be dependent on system state
data 148 or user state data 134.

[0051] As just one example, upon loading application instructions implementing a
web browser, processor 110 may access information representing user data, either from
non-volatile memory 152 or user state data 134, that identifies specific web sites that a
user has identified as “favorites.” In this example, establishing user state data 130
configures the web browser for execution in accordance with user preferences, which will
include presenting the list of the favorites customized for a specific user that has logged on

to computing device 100.

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
10

[0052] Once user log on is completed, the user may then interact with the
computing device 100. These interactions may result in more software being loaded or
some loaded applications being closed. Additionally, user interactions may set parameters
or take other actions that can change either user state 130 or system state 140. These
interactions may continue until a user inputs a command indicating an intent to end the
session.

[0053] The session may be ended in one of multiple ways. For example, when a
user completes a session of interaction with computing device 100, the user may log off
and/or shutdown computing device 100. Logoff results in the user session being broken
down such that user state information 130 is no longer available in memory 120. Part of
the log off sequence may entail removing user specific settings from the system state 140.
In this way, a second user may log on to computing device 100 without being influenced
by or being able to access state information generated by a prior user. The operations to
achieve this result may sometimes be described as breaking down a user session.

[0054] System state 140 may be retained following a logoff because power to
memory 120 may be maintained. In contrast, shutdown may result in both user state 130
and system state 140 being removed from volatile memory 120. Because power is turned
off to volatile memory 120, any information in volatile memory 120 at the end of the
shutdown sequence will be lost. Accordingly, any information needed to re-create that
state, if not already stored in no-volatile memory, may be moved to non-volatile memory.
[0055] Log off and/or shutdown sequences are not necessarily the reverse of the
startup sequence because there is no need to return any information generated from non-
volatile memories. That same information can be generated again upon subsequent
startup. However, portions of the user state 130 that were dynamically generated during
the session and cannot be re-created from the information in non-volatile memory, may, as
part of the log off or shutdown operation, be recorded in non-volatile memory. Similarly,
upon shutdown, portions of the system state data 148 that cannot be re-created upon re-
execution of the startup sequence may be transferred to non-volatile memory as part of the
shutdown sequence.

[0056] As one example, system state data 148 may contain a cache, intended to act
as a working copy of data items stored in non-volatile memory 152. A cache speeds up
operation of computing device 100 by establishing in volatile memory a copy of

information that should be retained in non-volatile memory. Reading or writing

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
11

information in a faster volatile memory location speeds up operation of the computing
device in comparison to accessing that same data in non-volatile memory.

[0057] When a copy of data in volatile memory is changed, it no longer matches
the corresponding data in non-volatile memory. The data in the cache is said to be “dirty.”
To keep the non-volatile memory synchronized with the copy in the cache, dirty data is
copied, from time-to-time, into non-volatile memory. Usually, dirty data is copied back
when the computer is not otherwise busy.

[0058] Though, delaying the copying of dirty data creates the possibility that at
shut down the data in the cache will not match what is in non-volatile memory. To avoid
inconsistencies, prior to shutting down computing device 100, an operation, sometimes
referred to as a flushing dirty data, may be performed. During this operation, dirty data is
copied to non-volatile storage.

[0059] Though the startup sequence illustrated in FIG. 1 is desirable because it
configures computing device 100 for operation by a user, the startup sequence can, in
some instances, be a source of frustration. An operating system and applications desired
by a user may collectively contain thousands or tens of thousands of components. The
startup sequence, therefore, may entail multiple read operations from non-volatile
memories 150 and 152. Because these memories generally operate slowly, the overall
process may be relatively slow. Additionally, a startup sequence may entail time
consuming operations other than storage-related operations. Additionally time may be
spent, for example, on computations by the CPU or device initialization.

[0060] FIG. 2 illustrates an alternative approach for creating state information in
volatile memory. FIG. 2 illustrates computing device 100 during a sequence of operation
in which state information is created in volatile memory 120 as part of a resume from
hibernation sequence.

[0061] Hibernation is an operating mode that may be created by copying state
information from volatile memory to non-volatile memory. Such state information may be
organized any suitable way. In the embodiment illustrated in FIG. 2, that state information
is illustrated as being stored in hibernation file 210 in non-volatile memory 152. During
hibernation, processor 110 may copy state information, including user state information
130 and system state information 140, into hibernation file 210. Hibernation mode is then
entered by shutting off power to all or a portion of the components of computer system

100. When the power is shut off, state information in volatile memory 120 is lost.

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
12

However, it may be re-created as a resume from hibernation by copying the hibernation
file into volatile memory.

[0062] Accordingly, FIG. 2 shows that the resume from hibernation sequence may
begin similarly to the startup sequence illustrated in FIG. 1 by processor 110 accessing
instructions stored in boot memory 154. Those instructions cause processor 110 to check
for the presence of hibernation file 210. In this example, upon detecting hibernation file
210, processor 110 copies the contents of hibernation file 210 into volatile memory 120.
The copying may entail direct copying or may entail processing to transform the
information in some way as it is copied, such as decompressing the file. Regardless of
whether processing is performed as part of the processing, the end result will result in
restoring state information. Once the state information is restored, a user may resume a
computing session that was interrupted at the time of hibernation. Both system state data
148 and user state data 134 will be returned to volatile memory 120. Additionally,
applications 132, operating system services 142 and drivers 146 will likewise be returned
to volatile memory 120 and ready for execution.

[0063] Frequently, a resume from hibernation will be faster than performing the
full startup sequence illustrated in connection with FIG. 1. Though the same amount of
information may ultimately be placed into volatile memory 120 during a resume from
hibernation and a full startup, simply copying that information from a file may be faster
than generating it by loading software and configuration data.

[0064] However, entering hibernation mode and then resuming from hibernation is
not always a suitable substitute for performing a shut down and then a startup sequence.
The Applicants have recognized and appreciated that performing a hibernation in response
to a user command to shut down a computing device and subsequently resuming from
hibernation in response to a command from a user to startup a computing device may not
result in operation of the computing device that meets the user’s expectation.

[0065] The inventors have identified a way to provide a faster operating
experience, without disrupting existing user expectations. FIG. 3 illustrates a functional
block diagram in which computing device 100 may conditionally incorporate hibernation
into a shut down sequence. Additionally, the computing device may conditionally
incorporate a resume from hibernation in a startup sequence.

[0066] In the embodiment illustrated in FIG. 3, computing device 100 is shown to
contain state information copied into non-volatile memory 152. In this embodiment, the

state information is formatted as a hibernation file 310. Hibernation file 310 may be in the

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
13

form of a hibernation file as is known in the art. Though it should be appreciated that any
suitable format may be used to store state information in non-volatile memory.

[0067] In contrast to the information stored in hibernation file 210, hibernation file
310 contains system state 140. User state 130 need not be stored as part of hibernation file
310; though is some embodiments, portions of the user state may be stored. Accordingly,
when a user supplies a startup command to computing device 100, processor 110 may
begin executing instructions from boot memory 154, similar to what occurs in the
operating mode illustrated in FIG. 2. Upon detecting the presence of hibernation file 310,
processor 110 may copy the contents of hibernation file 310 into volatile memory 120.
This copying re-creates the system state 140 in volatile memory 120.

[0068] This state may mimic the state of computing device 100 during the startup
sequence illustrated in FIG. 1 after operating system software is loaded, but before a user
log on occurs. Accordingly, to complete the creation of state information in volatile
memory 120, processor 110 may perform steps of the startup sequence described above in
connection with FIG. 1 that occur after system state is created. In this case, those
operations may include loading application instructions 132 and creating user state data
134 by reading software instructions from non-volatile memory 150 and configuring it
based on data in non-volatile memory 152. Upon completion of these sequence of
operations, the state information in volatile memory 120 may be comparable to that loaded
as a result of executing the startup sequence as described above in connection with FIG. 1.
However, the time required to respond to a startup command using the sequence illustrated
in FIG. 3 may be shorter than that required to execute a startup sequence as described in
connection with FIG. 1.

[0069] In the example illustrated in FIG. 3, hibernation file 310, though of the
same format as hibernation file 210 (FIG. 2), contains different information. Additionally,
hibernation file 310 is created in a different way than hibernation file 210. As described
above, hibernation file 210 (FIG. 2) records the state of computing device 100 as
represented in volatile memory 120 at the time of a hibernation command. In contrast,
hibernation file 310 is created in response to a shut down command. Though, the state
information captured in hibernation file 310 does not represent the full state of computing
device 100 at the time of the shut down command.

[0070] Rather some processing may be performed to place computing device 100
in a target state, at which time the hibernation file 310 may be created. In the embodiment

illustrated, the target state represents a state that may have been generated upon loading of

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
14

an operating system but without a user logging on to computing device 100. Such a target
state may be created, at least in part, by executing a portion of the shut down sequence.
For example, that portion may include logging off a user or users of computing device 100
or otherwise breaking down user connections. Such processing may be performed using
techniques as are known in the art.

[0071] Other processing may alternatively or additionally be performed for place
computing device 100 in a target state. For example, processing may include flushing
dirty data from system state data 148.

[0072] Moreover, as noted above, to preserve a user expectation of the reaction of
computing device 100 to a shut down command, a shut down sequence involving
hibernation may be conditionally performed based on conditions that may exist at the
time. Similarly, a startup sequence may conditionally involve a resume from hibernation.
FIGS. 4, 5 and 6 illustrate such conditional processing.

[0073] FIG. 4 illustrates a startup sequence such as may be performed by
computing device 100 in response to a startup command. A startup command may, for
example, by provided to computing device 100 by a user pressing an on button, supplying
power to computing device 100 or otherwise initiating operation of computing device 100.
[0074] Regardless of the manner in which the startup sequence is initiated, the
process may begin at block 410. At block 410, processor 110 may fetch and execute
instructions from boot memory 154 that initiate the process. Though, in later steps of the
process, instructions may be fetched from non-volatile memory 150 or from any other
suitable source, including from over a network connection.

[0075] Regardless of the source of the instructions used to control processor 110 to
initiate the startup sequence, the process may branch at decision block 412, depending on
whether a hibernation file is detected in non-volatile memory 152. If so, the process may
branch to termination point A, to continue on with a process as illustrated in FIG. 6.
Conversely, if no hibernation file exists, the process may proceed to subprocess 450.
[0076] Subprocess 450 may represent a sequence of operations that implement a
startup sequence generally as is known in the art. In this example, the processing at blocks
420, 422, 424, 426, 428, 430 and 432 may represent processing as in a known startup
sequence. Though, it should be appreciated that any suitable sequence of operations,
using any suitable techniques, may be used.

[0077] Regardless of the specific approach used, processing within subprocess 450
may begin at block 420. At block 420, processor 110 executes an operating system loader.

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
15

Such a loader may be a software component that, when executed, loads components of an
operating system from non-volatile memory 150 to volatile memory 120.

[0078] At block 422 operations that configure the image of the operating system
being created as part of the system state 140 may be configured. This configuration may
involve any suitable processing, including setting values of parameters of components
loaded into volatile memory or executing instructions that configure other aspects of the
system state 140.

[0079] Also as part of the startup subprocess 450, computing device 100 may
detect devices. Any suitable devices may be detected, such as printers, network interfaces
or other peripherals connected to computing device 100. Based on the detected devices, a
driver loader may be executed at block 426. A driver loader may be a software
component, constructed using known techniques, that loads a driver. Execution of driver
loader may involve identifying and loading driver software for the detected devices. Once
the drivers have been loaded, they may be started at block 428. This processing may make
the drivers and the devices that they control available for use by other components loaded
on computing device 100.

[0080] The process may continue to block 430 where operating system services
may be started. Once the devices and services of the operating system are available for
use, processing may proceed to block 432, At block 432 application components may be
loaded. This processing may be performed at part of a user log on process, using
techniques as are known in the art, or in any other suitable way.

[0081] As application components are loaded, the process illustrated in FIG. 4 may
branch depending on the nature of the application component loaded at block 432.
Branching at decision block 444 allows for the computing device to ameliorate problems
that might occur if one or more application components does not operate properly when
computing device 100 performs a shutdown sequence using hibernation rather than a
conventional shutdown sequence. Some components may require a reboot, meaning that a
full startup sequence is performed when the computing device is next powered on such
that state will be re-created using a loading process.

[0082] As an example, an application component that performs operations
differently depending on the time at which computing device 100 starts up may not
perform as expected by a user if a shutdown sequence incorporating hibernation as
illustrated in FIG. 3 is performed. For those components, when a subsequent startup is

performed, if that startup is performed based on a restore from hibernation, the application

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
16

component may be configured based on state information restored from hibernation file
310. That state information may contain an indication of a time when the computer last
performed a full startup sequence. Accordingly, the application component being
configured upon loading based on that state information will not be configured with a time
value representing when the startup sequence illustrated in FIG. 4 was initiated.

[0083] In contrast with possible user expectations, that component will be
configured with a time value representing a prior time when the full startup sequence was
performed. In this case, behavior of the application component will be based on a time
that differs from a user expectation because the user would expect the application
component to be configured based on the time that which the process of FIG. 4 began.
[0084] Accordingly, when such an application component is loaded on computing
device 100, it may be desirable to determine that the component requires a full shutdown
sequence in response to a shutdown command from a user. When such a component is
executing, the computing device may respond to a shutdown command by performing a
full shutdown sequence. In this way, upon a subsequence receipt of a startup command,
no hibernation file will be available, and a full startup sequence, as illustrated, for
example, in FIG. 1, will be performed. At other times, the computing device may respond
to a shutdown command with a shutdown sequence incorporating hibernation as illustrated
in FIG. 3.

[0085] To support such behavior consistent with user expectation, a mechanism
may be provided for an application program to designate that it requires a full shutdown
and full startup sequence to be performed. In the example of FIG. 4, that mechanism may
be implemented through an application programming interface (API) supported by the
operating system of computing device 100. Even application components that do not, in
all instances, require a full shutdown and full startup sequence may place a call through
such an APL

[0086] Accordingly, if it is determined at block 440 that an application component
being loaded requires a reboot, processing may branch to block 442. At block 442, the
application programming interface may be called to register that application component.
In this example, the API allows the operating system to track whether the application
component requesting a reboot is still executing when a startup command is subsequently
received. Though, it should be appreciated that such a call may be made at any time. Any

component, for example, that is reconfigured or otherwise encounters an operating state in

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
17

which it determines a full shutdown and full startup sequence be performed may make a
call through the API.

[0087] If no such call is made through the API, when a shutdown command is
subsequently received, the operating system may determine that a shutdown sequence,
incorporating hibernation as illustrated in FIG. 3, may be used. Conversely, if a call has
been made through the API to signify a full shut down and full startup sequence are
requested, the operating system may perform a full shutdown sequence, without creating a
hibernation file such that, upon subsequent receipt of a startup command, a full startup
sequence may be performed.

[0088] Any suitable mechanism may be used to determine whether an application
component needs a reboot, involving a full shutdown and subsequent full startup
sequence. As one example, the application component may be programmed to call the
APl indicated at block 442. Alternatively, the operating system may contain computer
executable instructions to analyze application components as they are being loaded to
identify functions that may require a reboot. In that scenario, processing at decision block
440 may involve analyzing each application component as it is loaded. Though, any
suitable techniques may be used at decision block 440 to determine whether a reboot may
be needed based on application components loaded.

[0089] Though FIG. 4 illustrates determining whether a reboot is needed based on
application components loaded, similar processing may be performed for other elements
of computing device 100. For example, similar processing may be performed for
operating system components. Alternatively or additionally, similar processing may be
performed based on devices installed in computing device 100 or to which computing
device 100 is connected.

[0090] Regardless of the conditions identified at decision block 440 that may
indicate a need for a reboot, if those conditions are identified, processing may branch to
block 442 where an indication is stored. That indication may trigger a full shutdown in
response to a shutdown command from a user or, alternatively or additionally, may trigger
a full startup sequence in response to a user command to startup, even if a hibernation file
is available. If those conditions are not detected, processing may proceed to block 444.
[0091] At block 444, data may be collected to allow computing device 100 to
determine the effectiveness of using a startup sequence that incorporates hibernation. In
this example, processing at block 444 records the time to perform subprocess 450, which

in this example indicates execution of a full startup sequence. This information may be

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
18

recorded in any suitable way. For example, information on startup time may be recorded
in non-volatile memory 152. The information may be recorded as individual startup times,
indicating a time required to perform a full startup sequence each time such a full startup
sequence is performed. Alternatively, the information may be recorded as a running
average over multiple full startup sequences, or in any other suitable way.

[0092] Information on startup time may be determined in any suitable way at block
444. As one example, a timer may be started at the initiation of subprocess 450 and read
when processing reaches block 444. Though, other time measurement techniques are
known and may be applied at block 444.

[0093] Once the startup time is recorded, processing may proceed to block 446.
Here, conventional operation of computing device 100 may occur. Such operation may
continue until a shutdown command is received.

[0094] FIG. 5 illustrates processing that may be performed in response to such a
shutdown command. The process illustrated in FIG. 5 includes a block 510, representing
operation of computing device 100 using techniques as are known in the art. During
operation, a shutdown command 512 may be received. Shutdown command 512 may be
generated by user input in any suitable way, such as through graphical user interface or a
hardware control.

[0095] In some embodiments, computing device 100 may support multiple types
of user input that can trigger a shutdown sequence. FIG. 7 is an illustration of a graphical
user interface through which a user may input shutdown commands. In this example, the
graphical user interface 710 is invoked by pressing a button labeled “start” that appears on
a user interface presented by a computer operating system. Though, it should be
appreciated that different operating systems support different interfaces and any suitable
technique to invoke a user interface may be used.

[0096] In response to pressing that button, graphical user interface 710 may be
presented by an operating system, using techniques as are known in the art. Through
graphical user interface 710, a user of computing device 100 may select among multiple
possible commands for ending a current session on the computing device. Here, three
options are shown.

[0097] Command 714 is here labeled “shutdown.” Such a shutdown command is
conventional on many computing devices and has traditionally been used to indicate that
the computing device should perform a full shutdown sequence. However, in the

embodiment illustrated in FIG. 5, user selection of shutdown command 714 may result in

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
19

the operating system of computing device 100 determining whether a partial shutdown
sequence incorporating hibernation may instead be performed. In this embodiment, an
operating system uses a label for a command having semantic meaning to a user in a way
that is potentially inconsistent with that meaning. Nonetheless, the conditional processing
preserves user expectations.

[0098] Though, if a user wants to ensure that a full shutdown sequence is
performed, a separate command, with a different label may be supplied for that reason. If
a user desires to instruct the computing device to perform a full shutdown, without
creating a hibernation file such that, upon a subsequent startup command, the operating
system state will be generated by loading software from non-volatile memory 150 and
configuring it with data from non-volatile memory 152, the user may select command 715.
In this example, command 715 is labeled “reboot.” Such a labeling is used to identify to a
user that a full shutdown sequence will be performed such that, upon a subsequent startup
command, a full startup sequence will be performed. In this case, command 715 performs
actions that are similar to those performed in a conventional computing system when a
“shutdown” command is issued. However, in the computing device presenting graphical
user interface 710, the semantic label associated with a traditional shutdown command has
been applied to command 714. Accordingly, command 715 is given a different label.
[0099] Graphical user interface 710 may also contain other options for ending a
user session. In this example, graphical user interface 710 includes a command 716.
Upon selection of command 716, computing device 100 may respond by breaking down a
session for a designated user. Such behavior of a computing device is known in the art. In
this case, command 716 may correspond to a conventional logoff command. Though,
many suitable command options may be included in graphical user interface 710, in the
embodiment illustrated, only selection of command 714 or 716 results in initiation of the
process illustrated in FIG. 5.

[00100] Regardless of the manner in which the shutdown command is received and
its nature, in response to receipt of the command, processing may transition from block
510 to block 514. At block 514, the beginning portions of a shutdown sequence may be
performed. The portion of the shutdown sequence performed at block 514 may involve
conventional processing. In this example, the processing at block 514 ends any user
session or sessions on computing device 100. As described above in connection with FIG.
1, such processing may involve closing applications and saving user state data 134 or

performing any other suitable actions. As a result of those actions, any information in user

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
20

state 130 that is persisted from one user session to the next is moved from user state data
134 to non-volatile memory, such as non-volatile memory 152.

[00101] Regardless of the specific steps taken to end user sessions or otherwise
persist user state data 134, when those steps are completed, processing may proceed to
decision block 516. At decision block 516, the process of FIG. 5 may branch depending
on whether a reboot has been requested. Processing at block 516 may be performed in any
suitable way. Any one or more criteria may be applied at decision block 516 to determine
whether a reboot has been requested. As one example, user input may be used at decision
block 516 to determine whether a reboot has been requested. For example, when a user
selects reboot command 715 (FIG. 7), that user selection may serve as an indication that a
reboot has been requested.

[00102] As another example, it was described in connection with FIG. 4 that an
application component may request a reboot, such as by calling an API at block 442 (FIG.
4). If such a call has been made, processing at decision block 516 may determine that a
reboot has been requested. Though in some embodiments, the processing at decision
block 516 may be conditioned on multiple criteria. For example, processing may
determine that an application component has registered a request for a reboot through a
call to an API at block 442. Further processing at decision block 516 may determine
whether such a request should be honored. Such processing may include, for example,
determining whether the requesting application component is still executing at the time the
process of FIG. 5 is executed. Alternatively or additionally, processing at decision block
516 may entail determining whether the requesting component has sufficient access
privileges to command a reboot.

[00103] Regardless of the nature of the processing performed at decision block 516,
if, as a result of that processing, it is determined that a reboot has been requested, the
process branches to block 530. In this scenario, block 530 represents a full shutdown
sequence. Such a full shutdown sequence may be performed as is known in the art. It
may entail breaking down user sessions, flushing dirty data and powering off the
computing device. Regardless of the specific steps taken in performing the shutdown
sequence, upon completion, the process of FIG. 5 may end, leaving computing device 100
in a powered off state.

[00104] Conversely, if a reboot has not been requested at decision block 516, the
process may proceed to decision block 518. Processing at decision block 518 is an

example of conditional processing to determine whether a full shutdown sequence should

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
21

be performed or a partial shutdown, followed by hibernation should be performed.
Generally, processing at decision block 518 may entail application of any suitable policy.
Such a policy may be evaluated at the time a shutdown command is received.

[00105] In the example illustrated, the policy applied relates to time savings
achieved using hibernation. At decision block 518, it may be determined whether a time
savings is achieved by starting up from hibernation. Such a determination may be made
by comparing recorded information about relative times for placing computing device 100
in an operation state with a full startup sequence or a resume from hibernation followed by
a partial startup sequence. Information on a time for performing a full startup may be
based, for example, on information stored at block 444 (FIG. 4). Information on the time
required to place computing device 100 in an operational state following a resume from
hibernation may be determined in a similar way based on information recorded at the end
of execution of the process of FIG. 6.

[00106] If the times for creating an operating state based on a resume followed by a
partial startup are slower than times for performing a full startup, the processing may
branch from decision block 518 to subprocess 530. Conversely, if processing at decision
block 518 determines that a resume from hibernation followed by partial execution of a
startup sequence is preferable, processing may proceed to decision block 520.

[00107] At decision block 520, further conditional processing may be performed to
determine whether the computing device 100 is in a state appropriate for a partial
shutdown sequence incorporating hibernation. Such processing may entail determining
whether, during the current session, configuration changes were specified for any
components. If such configuration changes require a reboot to become effective, a
shutdown involving hibernation may not implement user expectation for the behavior of
computing device 100 because selecting the shutdown command 714 (FIG. 7) is
associated with a label that traditionally would cause the computing device to apply
configuration changes at the next startup.

[00108] If computing device 100 implements a shutdown sequence involving
hibernation in response to a command with a label traditionally used to indicate a full
startup, upon a subsequent startup, the state of those components will resume their
previous state rather than a state based on configuration changes. Accordingly, a scenario
may exist in which user expectations of invoking a command that might otherwise be
associated with a full shutdown sequence will not exhibit expected behaviors. To avoid

computing device 100 operating in a way inconsistent with expected user behaviors, the

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
22

process of FIG. 5 may branch depending on whether the computing device automatically
determines that a full shutdown sequence should be performed in order to obtain operation
consistent with user expectations. If so, the process branches to subprocess 530, where a
full shutdown sequence is performed as described above.

[00109] In the embodiment illustrated, a condition under which a full shutdown
sequence is to be performed is identified by determining whether any components have
had configuration settings changed during the current session. Techniques as are known
in the art for making this determination may be applied at decision block 520. As one
example, processing to change configuration settings of executing components may entail
setting a flag or otherwise recording an indication of a configuration change. In that
scenario, processing at decision block 520 may entail checking the value of the status flag.
Though, other suitable processing alternatively or additionally may be used. For example,
processing may entail scanning one or more memory locations to detect unapplied
configuration settings.

[00110] Regardless of how the determination is made at decision block 520, if no
condition exists under which a full shut down and/or subsequent full startup is required,
processing may proceed to decision block 522. At block 522, operations to fully place
computing device 100 in a target state from which hibernation occurs are performed. As
described above in connection with FIG. 3, that target state may correspond to a state in
which the operating system state is maintained but all user sessions have been broken
down and any user state that is required upon subsequent logon of the user has been
persisted, in an appropriate form, in non-volatile memory.

[00111] An example of an operation that may be performed to achieve this target
state is flushing dirty data. Alternatively or additionally, if other data stored as part of
system state data 148 relates to a session of a logged on user, processing at block 522 may
entail storing that data in non-volatile memory 152.

[00112] Regardless of what operations are performed to fully achieve the target
state, processing may then proceed to block 524. Block 524, information that later may be
used to ascertain the suitability of a hibernation file for recreating a target state on
computing device 100 may be taken. As an example, some computing devices may be
configured with multiple operating systems or multiple instances of an operating system.
A hibernation file created as part of shut down of a specific instance of an operating
system may be used to restore operating system state only in response to a command to

startup the same instance of the operating system.

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
23

[00113] However, the possibility that a computing device may be operated with an
operating system other than the one in use when the hibernation file was created creates a
possibility that an operating system will be executing on the computing device between
the time when a hibernation file was created and a subsequent startup command that
would trigger re-creation of state based on that file. Intervening operation by another
operating system or instance of the same operating system may create the possibility that
the state captured in the hibernation file no longer represents the state of the computing
device that should be created in order to achieve operation consistent with user
expectations.

[00114] For example, if a user has, after shutting down operation with a first
operating system, loaded a second operating system and made changes to any data or other
component used by the first operating system, resuming from a hibernation file in this
instance will result in creating a state that does not reflect the intervening user changes.
[00115] Accordingly, a mechanism may be employed to determine whether, upon a
subsequent startup command, a hibernation file is suitable for use in recreating the
operating state of computing device 100. In the embodiment illustrated in FIG. 5, that
mechanism entails storing information at the time the hibernation file is created. In this
specific example, that information is a sequence number maintained by a file system.
Specifically, the sequence number may be maintained by the NTFS file system or other
file system that may be operating on a computing device. Such a sequence number may
be incremented each time at volume of disk storage is loaded. Accordingly, processing at
block 524 may entail storing the NTFS sequence number associated with the volume
containing the hibernation file and other data associated with the operating system. This
value may be stored in non-volatile memory such that it may be accessed in connection
with a subsequent startup command.

[00116] Regardless of the specific information recorded at block 524 to allow a
subsequent determination of the usability of a hibernation file, the process may proceed to
subprocess 526. Subprocess 526 may involve storing the hibernation file. Processing at
block 526 may be performed using conventional techniques associated with hibernation of
a computing device. Though, it should be appreciated that any suitable technique
performing a hibernation file may be used.

[00117] Regardless of the specific technique used to store the hibernation file as

part of subprocess 526, upon storing the hibernation file, power may be shut down to

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
24

computing device 100. Computing device 100 may stay in the powered down state until a
startup command is received.

[00118] The subsequent startup command may be processed as illustrated in FIG. 4
and FIG. 6. FIG. 4 illustrates processing that may be performed in response to receiving a
start command. That processing includes processing at block 410 and at decision block
412. When processing reaches decision block 412, the process may branch, depending on
whether a hibernation file exists, such as may exist if subprocess 526 was performed
during the immediately preceding shutdown. When that hibernation file exists, the
process of FIG. 4 may branch through the connector labeled A to continue with processing
as illustrated in FIG. 6.

[00119] Processing at FIG. 6 illustrates a process that may be performed when a
hibernation file exists. The process of FIG. 6 may begin at block 601. At block 601, the
process may branch depending on whether the hibernation file detected at decision block
412 (FIG. 4) represents a hibernation file capturing a target state during a shut down such
as 1s indicated in connection with subprocess 526. If it does, the process may proceed to
decision block 610.

[00120] Alternatively, the hibernation file may represent a conventional hibernation
file incorporating user state in addition to system state information. Such a hibernation
file may be used in accordance with a conventional technique to restore that state. The
convention processing may be performed at subprocess 670 where the hibernation file is
used to reestablish a state of the computing device, including user state, at the time of the
prior hibernation. Following completion of subprocess 670, processing may continue to
block 638.

[00121] Conversely, if the hibernation file, as determined at decision block 601 was
recorded as part of a shutdown process, the process continues to decision block 610.
Beginning at decision block 610, one or more operations may be performed to determine
whether, in response to the startup command, a full startup sequence should be performed
or a resume from hibernation followed by a partial startup sequence should be performed.
In this example, multiple conditions are checked to determine whether a resume from
hibernation should be performed even though it is determined that a hibernation file exists.
One such condition checked at decision block 610 entails determining whether, for the
computing device 100, there has been a change in hardware configuration such that a
resume from a hibernation may result in re-creating state information that does not match

the current computer configuration. Such a change may be detected in any suitable way,

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
25

including checking an inventory of hardware components that was created during a last
session of the computing device and stored in non-volatile memory. The hardware
configuration of the computing device upon subsequent startup can be check to ensure that
each item on the inventor is installed. Though, it should be appreciated that checking an
inventory is only one example of how such processing may be performed. Regardless of
how the determination is made, f the hardware configuration has changed, the processing
may branch from decision block 610 to subprocess 650. Subprocess 650 may entail
reloading the operating system. Processing at subprocess 650 may be performed using
techniques as are known in the art. Following loading of the operating system in
subprocess 650, the process may proceed to block 632.

[00122] Conversely, if processing at decision block 610 determines that no
hardware configuration occurred, processing may proceed to block 612. At block 612,
further processing may be performed to dynamically determine whether computing device
100 is in a state from which a resume from hibernation is to be performed. In this case,
processing at decision block 612 may make use of information stored at block 524 (FIG.
5) to determine whether changes that occurred between the creation of the hibernation file
such that user expectations would not be met if a resume from hibernation were
performed.

[00123] In this example, processing at block 612 involves checking the NTFS
sequence number associated with the volume containing the hibernation file. If that
volume has not been loaded since the hibernation file was created, the sequence number
read at block 612 will differ from the sequence number stored at block 524 by a known
amount representing a chance in the sequence number upon startup. Conversely, if the
difference in sequence numbers is greater than the known amount, processing at block 612
will identify that changes possibly were made between the time of the creation of the
hibernation file and the startup command that triggered the resume from hibernation.
[00124] At decision block 620, the process may branch based on the comparison
performed at block 612. If the sequence numbers are not consistent, the process branches
to subprocess 750. Such a branch may occur when a difference in the sequence numbers
indicates that the hibernation file may not establish an operating state of the computing
device that is consistent with user expectations. Accordingly, subprocess 650 is
performed in which the system state 140 is created by reloading operating system

software.

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
26

[00125] Conversely, if the comparison performed at block 612 indicates that the
sequence numbers are consistent, the process may proceed to subprocess 630. When that
branch is taken, the hibernation file has been determined to be appropriate for re-
establishing the state of the computing device. Accordingly, subprocess 630 entails re-
establishing the target state of the computing device from the hibernation file. Subprocess
630 may be performed using known techniques for resuming from hibernation. Though,
in this scenario, rather than reestablishing a state of the computing device including a user
state, resuming based on the hibernation file re-creates the target state at the time the
hibernation file was created. This state for example may represent the state of the
computing device at the start of subprocess 526 (FIG. 5). Though, in other embodiments,
partial user state may be stored in the hibernation file, such as may occur when the
operating system predicts applications likely to be opened by a user upon completion of a
startup sequence and stores the hibernation file to capture the state of the computing
device while those applications are still open.

[00126] Upon completion of subprocess 630, the process of FIG. 6 may proceed to
block 632. Regardless of whether processing arrives at block 632 through subprocess 630
or 650, at block 632

a time required to respond to a startup command may be recorded. The meaning of the
value recorded may depend on the path by which processing reached block 632. When
processing arrives at block 632 through subprocess 630, the time represents the time for
startup using a resume from hibernation as part of the processing, and is recorded
accordingly. Conversely, when processing arrives at block 632 through subprocess 650,
the time represents the time for startup using a full startup sequence, and is recorded
accordingly. Processing at block 632 may be performed at any suitable way, including
using techniques as describe in connection with block 444 (FIG. 4).

[00127] As a result of recording information at block 632, processing at decision
block 518 (FIG. 5) may have information available to compare the time to respond to a
startup command based on a full startup sequence that includes a resume from hibernation
and a portion of the startup sequence. This information may be recorded and compared in
any suitable way.

[00128] Processing may then proceed to subprocess 634. At subprocess 634, a
portion of a startup sequence may be performed to create a desired operating state for the
computing device. This portion may include logging on a user. This operation may be

performed in a known way and may include automated log on or may include presenting a

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
27

log on screen through which a user may present information to manually perform a log on
process. In scenarios in which processing arrived at subprocess 634 through subprocess
650, the combination of processing at subprocess 650 and subprocess 634 may represent a
full startup sequence. Conversely, if processing arrives at subprocess 634 through
subprocess 630, the response to the startup command involves a resume from hibernation
and a portion of the startup sequence.

[00129] In this example, that portion of the startup sequence represents logging on a
user in subprocess 634. Such processing may be performed using conventional
techniques. Though, the specific steps used to complete the startup sequence following a
resume from hibernation may be any suitable techniques.

[00130] The process may then proceed to block 638, where the hibernation file may
be invalidated. Processing may also arrive at block 638 following subprocess 670.
Regardless of how processing arrives at block 638, The hibernation file may be
invalidated in any suitable way that indicates that the hibernation file is not to be later
used when it might re-create an incorrect operating state. The hibernation file may be
invalidated, for example, by altering its contents in some way, recording in a separate
memory structure that the file is invalid or by deleting the file.

[00131] The process of FIG. 6 may then end. When the process ends, computing
device 100 may be configured in an operating state and may thereafter continue operating
until a shutdown or reboot command is received.

[00132] FIG. 8 illustrates an example of a suitable computing system environment
800 on which the invention may be implemented. The computing system environment
800 is only one example of a suitable computing environment and is not intended to
suggest any limitation as to the scope of use or functionality of the invention. Neither
should the computing environment 800 be interpreted as having any dependency or
requirement relating to any one or combination of components illustrated in the exemplary
operating environment 800.

[00133] The invention is operational with numerous other general purpose or
special purpose computing system environments or configurations. Examples of well
known computing systems, environments, and/or configurations that may be suitable for
use with the invention include, but are not limited to, personal computers, server
computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based

systems, set top boxes, programmable consumer electronics, network PCs, minicomputers,

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
28

mainframe computers, distributed computing environments that include any of the above
systems or devices, and the like.

[00134] The computing environment may execute computer-executable
instructions, such as program modules. Generally, program modules include routines,
programs, objects, components, data structures, etc. that perform particular tasks or
implement particular abstract data types. The invention may also be practiced in
distributed computing environments where tasks are performed by remote processing
devices that are linked through a communications network. In a distributed computing
environment, program modules may be located in both local and remote computer storage
media including memory storage devices.

[00135] With reference to FIG. 8, an exemplary system for implementing the
invention includes a general purpose computing device in the form of a computer 810.
Components of computer 810 may include, but are not limited to, a processing unit 8§20, a
system memory 830, and a system bus 821 that couples various system components
including the system memory to the processing unit 820. The system bus 821 may be any
of several types of bus structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus also known as Mezzanine bus.

[00136] Computer 810 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer
810 and includes both volatile and nonvolatile media, removable and non-removable
media. By way of example, and not limitation, computer readable media may comprise
computer storage media and communication media. Computer storage media includes both
volatile and nonvolatile, removable and non-removable media implemented in any method
or technology for storage of information such as computer readable instructions, data
structures, program modules or other data. Computer storage media includes, but is not
limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium which
can be used to store the desired information and which can accessed by computer 810.

Communication media typically embodies computer readable instructions, data structures,

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
29

program modules or other data in a modulated data signal such as a carrier wave or other
transport mechanism and includes any information delivery media. The term “modulated
data signal” means a signal that has one or more of its characteristics set or changed in
such a manner as to encode information in the signal. By way of example, and not
limitation, communication media includes wired media such as a wired network or direct-
wired connection, and wireless media such as acoustic, RF, infrared and other wireless
media. Combinations of the any of the above should also be included within the scope of
computer readable media.

[00137] The system memory 830 includes computer storage media in the form of
volatile and/or nonvolatile memory such as read only memory (ROM) 831 and random
access memory (RAM) 832. A basic input/output system 833 (BIOS), containing the
basic routines that help to transfer information between elements within computer 810,
such as during startup, is typically stored in ROM 831. RAM 832 typically contains data
and/or program modules that are immediately accessible to and/or presently being
operated on by processing unit 820. By way of example, and not limitation, FIG. 8
illustrates operating system 834, application programs 835, other program modules 836,
and program data 837.

[00138] The computer 810 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 8 illustrates a
hard disk drive 840 that reads from or writes to non-removable, nonvolatile magnetic
media, a magnetic disk drive 851 that reads from or writes to a removable, nonvolatile
magnetic disk 852, and an optical disk drive 855 that reads from or writes to a removable,
nonvolatile optical disk 856 such as a CD ROM or other optical media. Hard disk drive
840 may be implemented as a spinning magnetic medium that contains one or more
magnetic heads that can write to or read from the magnetic media. Other removable/non-
removable, volatile/nonvolatile computer storage media that can be used in the exemplary
operating environment include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 841 is typically connected to the system bus 821
through an non-removable memory interface such as interface 840, and magnetic disk
drive 851 and optical disk drive 855 are typically connected to the system bus 821 by a
removable memory interface, such as interface 850.

[00139] The drives and their associated computer storage media discussed above

and illustrated in FIG. 8, provide storage of computer readable instructions, data

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
30

structures, program modules and other data for the computer 810. In FIG. 8, for example,
hard disk drive 841 is illustrated as storing operating system 844, application programs
845, other program modules 846, and program data 847. Note that these components can
either be the same as or different from operating system 834, application programs 835,
other program modules 836, and program data 837. Operating system 844, application
programs 845, other program modules 846, and program data 847 are given different
numbers here to illustrate that, at a minimum, they are different copies. A user may enter
commands and information into the computer 810 through input devices such as a
keyboard 862 and pointing device 861, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a microphone, joystick, game
pad, satellite dish, scanner, or the like. These and other input devices are often connected
to the processing unit 820 through a user input interface 860 that is coupled to the system
bus, but may be connected by other interface and bus structures, such as a parallel port,
game port or a universal serial bus (USB). A monitor 891 or other type of display device
is also connected to the system bus 821 via an interface, such as a video interface 890. In
addition to the monitor, computers may also include other peripheral output devices such
as speakers 897 and printer 896, which may be connected through an output peripheral
interface 895.

[00140] The computer 810 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 880. The remote
computer 880 may be a personal computer, a server, a router, a network PC, a peer device
or other common network node, and typically includes many or all of the elements
described above relative to the computer 810, although only a memory storage device 881
has been illustrated in FIG. 8. The logical connections depicted in FIG. 8 include a local
area network (LAN) 871 and a wide area network (WAN) 873, but may also include other
networks. Such networking environments are commonplace in offices, enterprise-wide
computer networks, intranets and the Internet.

[00141] When used in a LAN networking environment, the computer 810 is
connected to the LAN 871 through a network interface or adapter 870. When used in a
WAN networking environment, the computer 810 typically includes a modem 872 or other
means for establishing communications over the WAN 873, such as the Internet. The
modem 872, which may be internal or external, may be connected to the system bus 821
via the user input interface 860, or other appropriate mechanism. In a networked

environment, program modules depicted relative to the computer 810, or portions thereof,

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
31

may be stored in the remote memory storage device. By way of example, and not
limitation, FIG. 8 illustrates remote application programs 885 as residing on memory
device 881. It will be appreciated that the network connections shown are exemplary and
other means of establishing a communications link between the computers may be used.
[00142] Having thus described several aspects of at least one embodiment of this
invention, it is to be appreciated that various alterations, modifications, and improvements
will readily occur to those skilled in the art.

[00143] For example, it is described that a determination is made upon startup of
whether to perform a full startup sequence or a resume from hibernation followed by a
portion of a startup sequence based on relative times observed for performing each
sequence. It should be appreciated that similar processing could be performed at
shutdown. If performed at shutdown, the decision could be implemented by storing or not
storing a hibernation file. Accordingly, it should be appreciated that operations described
as occurring upon startup may alternatively be performed upon shutdown, and vice versa.
[00144] Benefits as described above may be achieved in other ways. For example,
in addition to avoiding work by a computer’s CPU and other components, such as a disk,
during a process of setting up state, such an approach allows data to be saved in a
hibernation file in response to a shutdown command that will help speed up a user’s
experience during a response to a subsequent startup command and/or after processing of
the startup command has been completed. For example, when the user logs on, a number
of applications may be launched (e.g. WINDOWS EXPLORER web browser, startup
apps, etc). An operating system may explicitly track files (and their offsets) that a user
accesses during a defined interval after processing of a startup command is completed.
Those applications, or other components, can be read into memory to be saved into the
hibernation filed created during a subsequent processing of a shutdown command. In this
way, these applications, or other components, will be read sequentially from disk into
memory instead of having to read it randomly as part of launching those applications.
[00145] Also, user log on and log off is described. It should be appreciated that a
shutdown command may be provided in scenarios on which multiple users are logged onto
a computer. If a shutdown sequence is partially performed and then a hibernation
operation is performed, the partial shutdown sequence may result in log off of multiple
users, but techniques as described above may nonetheless be applied.

[00146] For example, techniques as described herein may be used to provide

automated servicing without user intervention. For example, a computing device that has

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
32

responded to a shutdown command by performing a partial shutdown sequence and then
hibernating, may be configured to automatically wake at a time when user activity is not
expected, such as in the middle of the night. Upon awaking, the computing device may
perform maintenance activities, such as applying software updates. To the user, it appears
as if the computing device was shutdown at the end of the day, such that the maintenance
activities are transparent to the user. Such a capability may be implemented, for example,
if the computing device, in response to a shutdown command, detects that it has
maintenance activity or patches to apply and arms itself to wake at an opportune time.
When it wakes up, the computing device performs whatever maintenance activity, such as
applying patches, is necessary. The system then does a full restart and then again performs
a partial shutdown followed by a hibernation. This scenario enables a software vendor to
offer a solution that makes maintenance activity invisible to the user. This capability can
be applied to both consumers and to enterprise PCs. In addition to improving the user
experience, such an approach may also save power, particularly for enterprise users.
[00147] Such alterations, modifications, and improvements are intended to be part
of this disclosure, and are intended to be within the spirit and scope of the invention.
Accordingly, the foregoing description and drawings are by way of example only.

[00148] The above-described embodiments of the present invention can be
implemented in any of numerous ways. For example, the embodiments may be
implemented using hardware, software or a combination thereof. When implemented in
software, the software code can be executed on any suitable processor or collection of
processors, whether provided in a single computer or distributed among multiple
computers. Such processors may be implemented as integrated circuits, with one or more
processors in an integrated circuit component. Though, a processor may be implemented
using circuitry in any suitable format.

[00149] Further, it should be appreciated that a computer may be embodied in any
of a number of forms, such as a rack-mounted computer, a desktop computer, a laptop
computer, or a tablet computer. Additionally, a computer may be embedded in a device
not generally regarded as a computer but with suitable processing capabilities, including a
Personal Digital Assistant (PDA), a smart phone or any other suitable portable or fixed
electronic device.

[00150] Also, a computer may have one or more input and output devices. These
devices can be used, among other things, to present a user interface. Examples of output

devices that can be used to provide a user interface include printers or display screens for

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
33

visual presentation of output and speakers or other sound generating devices for audible
presentation of output. Examples of input devices that can be used for a user interface
include keyboards, and pointing devices, such as mice, touch pads, and digitizing tablets.
As another example, a computer may receive input information through speech
recognition or in other audible format.

[00151] Such computers may be interconnected by one or more networks in any
suitable form, including as a local area network or a wide area network, such as an
enterprise network or the Internet. Such networks may be based on any suitable
technology and may operate according to any suitable protocol and may include wireless
networks, wired networks or fiber optic networks.

[00152] Also, the various methods or processes outlined herein may be coded as
software that is executable on one or more processors that employ any one of a variety of
operating systems or platforms. Additionally, such software may be written using any of a
number of suitable programming languages and/or programming or scripting tools, and
also may be compiled as executable machine language code or intermediate code that is
executed on a framework or virtual machine.

[00153] In this respect, the invention may be embodied as a computer readable
storage medium (or multiple computer readable media) (e.g., a computer memory, one or
more floppy discs, compact discs (CD), optical discs, digital video disks (DVD), magnetic
tapes, flash memories, circuit configurations in Field Programmable Gate Arrays or other
semiconductor devices, or other non-transitory, tangible computer storage medium)
encoded with one or more programs that, when executed on one or more computers or
other processors, perform methods that implement the various embodiments of the
invention discussed above. The computer readable storage medium or media can be
transportable, such that the program or programs stored thereon can be loaded onto one or
more different computers or other processors to implement various aspects of the present
invention as discussed above. As used herein, the term "non-transitory computer-
readable storage medium" encompasses only a computer-readable medium that can be
considered to be a manufacture (i.e., article of manufacture) or a machine. Alternatively
or additionally, the invention may be embodied as a computer readable medium other than
a computer-readable storage medium, such as a propagating signal.

[00154] The terms “program” or “software” are used herein in a generic sense to
refer to any type of computer code or set of computer-executable instructions that can be

employed to program a computer or other processor to implement various aspects of the

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
34

present invention as discussed above. Additionally, it should be appreciated that
according to one aspect of this embodiment, one or more computer programs that when
executed perform methods of the present invention need not reside on a single computer or
processor, but may be distributed in a modular fashion amongst a number of different
computers or processors to implement various aspects of the present invention.

[00155] Computer-executable instructions may be in many forms, such as program
modules, executed by one or more computers or other devices. Generally, program
modules include routines, programs, objects, components, data structures, etc. that
perform particular tasks or implement particular abstract data types. Typically the
functionality of the program modules may be combined or distributed as desired in various
embodiments.

[00156] Also, data structures may be stored in computer-readable media in any
suitable form. For simplicity of illustration, data structures may be shown to have fields
that are related through location in the data structure. Such relationships may likewise be
achieved by assigning storage for the fields with locations in a computer-readable medium
that conveys relationship between the fields. However, any suitable mechanism may be
used to establish a relationship between information in fields of a data structure, including
through the use of pointers, tags or other mechanisms that establish relationship between
data elements.

[00157] Various aspects of the present invention may be used alone, in
combination, or in a variety of arrangements not specifically discussed in the embodiments
described in the foregoing and is therefore not limited in its application to the details and
arrangement of components set forth in the foregoing description or illustrated in the
drawings. For example, aspects described in one embodiment may be combined in any
manner with aspects described in other embodiments.

[00158] Also, the invention may be embodied as a method, of which an example
has been provided. The acts performed as part of the method may be ordered in any
suitable way. Accordingly, embodiments may be constructed in which acts are performed
in an order different than illustrated, which may include performing some acts
simultaneously, even though shown as sequential acts in illustrative embodiments.

[00159] Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to
modify a claim element does not by itself connote any priority, precedence, or order of one
claim element over another or the temporal order in which acts of a method are performed,

but are used merely as labels to distinguish one claim element having a certain name from

WO 2012/078479 PCT/US2011/063208
35

another element having a same name (but for use of the ordinal term) to distinguish the
claim elements.
[00160] Also, the phraseology and terminology used herein is for the purpose of

description and should not be regarded as limiting. The use of "including," "comprising,"

" e b1

or "having," “containing,” “involving,” and variations thereof herein, is meant to

encompass the items listed thereafter and equivalents thereof as well as additional items.

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208

36
CLAIMS
What is claimed is:
1. A method of operating a computing device comprising a plurality of

hardware components, the method comprising:
receiving a command to startup the computing device;
determining a condition of the computing device;
conditionally processing the received startup command based on the determined
condition, the conditional processing comprising:
when the determined condition is a first condition, copying state
information from non-volatile storage to volatile storage without performing a full
startup sequence; and
when the determined condition is a second condition, performing the full
startup sequence.
2. The method of claim 1, wherein:
determining that the condition is the first condition comprises, at least in part,
detecting a hibernation file.
3. The method of claim 2, wherein:
determining that the condition is the first condition further comprises, at least in
part, detecting that the hibernation file was not modified after creation.
4, The method of claim 2, wherein:
determining that the condition is the first condition further comprises, at least in
part, detecting:
that a volume containing the hibernation file was not mounted after creation
of the hibernation file; or
that a hardware configuration of the computing device changed after
creation of the hibernation file.
5. The method of claim 1, further comprising:
receiving a command to shutdown the computing device:
in response to receiving the command to shutdown, copying state
information in volatile storage to non-volatile storage without performing a full
shutdown sequence;
recording in connection with the state information in non-volatile storage, a
sequence number associated with mounting a volume containing the copied state

information in non-volatile storage.

10

15

20

25

30

WO 2012/078479 PCT/US2011/063208
37

6. The method of claim 5, wherein:

conditionally processing comprises determining a change of a current
sequence number associated with the volume relative to the recorded sequence
number.

7. The method of claim 1, further comprising:

when the determined condition is the first condition, recording an
indication of a time to respond to the startup command by copying state
information from non-volatile storage to volatile storage without performing a full
startup sequence; and

when the determined condition is a second condition, recording an
indication of a time to respond to the startup command by performing the full
startup sequence.

8. The method of claim 7, further comprising:

in response to a shutdown command:

selectively creating a hibernation file when a previously recorded indication of
startup time by copying state information from non-volatile storage to volatile storage
without performing a full startup sequence is less than a previously recorded indication of
startup time by performing the full startup sequence.

9. At least one computer-readable storage medium comprising computer
executable instructions that implement an operating system for a computing device, the
operating system comprising a plurality of components, comprising:

a first plurality of instructions that, when executed, perform a portion of a startup
sequence and copy state information from a hibernation file in non-volatile storage to
volatile storage;

a second plurality of instructions that, when executed, perform the startup
sequence, startup sequence comprising loading an operating system and establish a user
state;

a third plurality of instructions that, when executed, respond to a startup command
by selecting between the first plurality of instructions and the second plurality of
instructions and initiating executing of the selected plurality of instructions.

10. The computer-readable storage medium of claim 9, wherein:

computer executable instructions further comprise:

WO 2012/078479 PCT/US2011/063208
38

instructions that, when executed, record an indication of a first time to
respond to the startup command when the selected plurality of instructions
comprise the first plurality of instruction; and
instructions that, when executed, record an indication of a second time to respond
to the startup command when the selected plurality of instructions comprise the second

plurality of instructions.

PCT/US2011/063208

WO 2012/078479

1/8

.1.-.-.!-.!-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.!!!!!!!!!!!! _
_ |
. |
| 12°1" :
! ™ |
_ i
. |
| AHOWAW | |
i HOSSI00Yd - .
| oL — @ 1004 "
_ i
. , |
S A S A i
S [I I
T A L NN viva |
1/ vivaalvis \\@ | __@_,, e i
| 1 | . .
ot _\,_m_kw@ o Y| sy3ANa - "_ _,_ !
o ! \ S .
Lo / \ _ i
it / \ _—| s30IAu3S SO muﬂug N !

oplL ——1 / \Zhb | (z), FdvmLdOS | |
. Ve |
i v1vd ac” (L) “al SNOILONYLSNI X !
E 3LV1S ¥3sn el | NOILYOITddY g i
oy h .
I e ot bu ot bot bt bot ot bu ot botbutbotitty BOvtbut ot bothotbot ot bob ot et ot bot bt bottotbobbotil |
_ _

PCT/US2011/063208

WO 2012/078479

2/8

et
. 0Ll
|
i D
i
|
i ¥OSS300¥d -~
i)
_ e
|)
R (€A o ________ _
ST !
a vLva 31V1S \A g
Lo !
1y I
L 2
|| i
it Zvl— S3IDIAYIS SO %wﬁ% _
Y !
| | .|..|..||..||..||..||..||..||..||..||..||..||..||..||..||..||..||. |
Iy |
L viva3lvis SNOILONYLSNI ¥
s ¥3sn //vﬁ zeL —| NOILYDITddY g
| I I
It i
i ruuHHHHHHHHHHHHHHHHJWHHHHHHHHHHHHHHHHH;
_-.QN
0zl

AHJON3IN
1004

PCT/US2011/063208

WO 2012/078479

3/8

AMOWAW
¥OSSIV0Yd 0 A
1 I
[P __I.I.“ II .
e DTN 2
VLvd 3LV1S \ﬂ ___ “_ i
X W3LSAS gy,
. [} .
i / __,
L_ ! a4y
/ \ S30INY3S SO
. Y \ T4
—
_ s N L
5 <E~ﬁ_um_m_ww§m \ﬁ S
I
i e Zej—] NOLLYOIddY i
! ji /oﬁ
d

WO 2012/078479

4/8

START

PCT/US2011/063208

FETCH AND EXECUTE FROM
BOOT MEMORY

442

CALL APITO
REGISTER APP

|

EXECUTE OS LOADER — 420 :
| i

|

CONFIGURE OS IMAGE 422 i
T |

| i

DETECT DEVICES 424 :

| i

|

EXECUTE DRIVER LOADER 420 i
|

i

START DRIVERS —428 :

| i

|

START SERVICES 430 i

| |

| |

) |

EXECUTE APPLICATION 432 @
|

i

i

i

i

i

i

i

i

i

i

RECORD STARTUP TIME [~ 44
— e — I_ _
OPERATE ——446

FIG. 4

WO 2012/078479

COMMAND

5/8

START

PCT/US2011/063208

510
OPERATE -

J

512

|

END USER SESSION(S) |~ °14

516

REBOOT

YES

EQUESTED?

518
NO

RESUME TIMES

FAVORABLE?

520
YES

CONFIGURATION

CHANGED?

530
/522 v/
FLUSH DIRTY DATA SHUT-
| DOWN
RECORD NTFS SEQUENCE
NUMBER
\
| 524
STORE
HIBER FILE
526
END

FIG. 5

WO 2012/078479

612

6/8

PCT/US2011/063208

650

601
HIBER-BOOT? NO
610
CONFIGURATION
CHANGE
CHECK NTFS SEQUENCE
NUMBER
620 570
\ oy

SEQUENCE
NUMBERS
CONSISTENT?

RE-ESTABLISH
USER STATE AND
SYSTEM STATE
FROM HIBER FILE

v
RELOAD RE-ESTABLISH 630
oS TARGET STATE | |~
FROM HIBER FILE
' 632
RECORD STARTUP TIME |~
PRESENT USER | | 634

LOG ON SCREEN

INVALIDATE HIBERNATION FILE

638

END

FIG. 6

PCT/US2011/063208

WO 2012/078479

718

oS0 %5 W R\ RS RRR R M WORR SR IS

J00gaY

PCT/US2011/063208

WO 2012/078479

8/8

T8 SAVM90Yd
NOLLYIddVv) 008
L0 — __ _ —
178 578 58 778

=148 3SNOW V1¥d SIINAON SAVHOO0Y NIISAS

e AVYO0Md | WYMSOMdHIHIO | NOUVOITddY | ONIwd3do
298 QYVOHAIN sw\@ il _

W] e sty
m 098 \ |
m Y1V |
e 1NN RSN TOANON | | AMOWIIA “TOA-NON “
YOMLIN Vv 17001 v} 438N T18VAONY TIQVAONINON i
I N N
m # 098 he8N 968 S31NAON !
“ SNTTEISAS v Wy508d $3HL0 |
SNENVEES w | ¢ @ ¢ GE8 SINYHOOMd i
s68 “ NOLLYS I ddY “
_ ERVANEI —_ m
| 3N ! TIHdH3d i 7E8 _I3LSAS "
%8 m 1ndIn0 LIND 08 ONILYE3d0 |
“ omw\ $53004d g — “
N 4 T e B A 78w |
N\ | L o’ €8 soig |
; “ 0Z “
; 768 (Wow) |
S /0 T (N RIOWINATLSAS T |

0l

(o]

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings

