发明名称：眼离子电渗治疗的方法和装置

摘要

一种眼离子电渗治疗用的离子电渗治疗装置，其中包含形成与眼睛配合的壳体单元。与壳体单元配合的是能传送电流的柔性电流分配单元。与电流分配单元配合的是装药物的一致性药物封装单元。该药物在电流影响下释放。还提供阻挡单元，该单元结构上做成使电流难于流到阻挡体外面，有助于优先输送药物。
权利要求书

1. 一种离子电渗治疗装置，其特征在于，该装置包含：
 a. 壳体单元；
 b. 与所述壳体单元相连的电流分配单元；
 c. 与所述电流分配单元相连的药物封装单元；
 d. 结构上做成立即与病人的组织接触并使电流难以流出其外的阻挡单元。

2. 如权利要求1所述的离子电渗治疗装置，其特征在于，还包含结构上做成使所述离子电渗治疗装置与病人的组织保持接触的固紧单元。

3. 如权利要求1所述的离子电渗治疗装置，其特征在于，所述壳体单元还包含体部，所述体部具有在其上贯穿的连接器槽口，所述连接器槽口结构上做成使所述体部可连接使用者操作装置。

4. 如权利要求1所述的离子电渗治疗装置，其特征在于，所述壳体单元为杯状。

5. 如权利要求1所述的离子电渗治疗装置，其特征在于，所述壳体单元还包含上环和下环，所述下环具有呈锥度的通孔。

6. 如权利要求1所述的离子电渗治疗装置，其特征在于，所述壳体是柔性的。

7. 如权利要求1所述的离子电渗治疗装置，其特征在于，所述电流分配单元由以下两部分构成：
 a. 导电部分；
 b. 多个导电分支，所述多个导电分支弹性连接所述导电部分。

8. 如权利要求1所述的离子电渗治疗装置，其特征在于，所述壳体单元的表面形成所述电流分布单元。

9. 如权利要求1所述的离子电渗治疗装置，其特征在于，所述电流分配单元和所述药物封装单元与进行离子电渗治疗时所述药物分装单元接触的表面相符合。
10. 如权利要求 1 所述的离子电渗治疗装置，其特征在于，所述壳体单元与进行离子电渗治疗时所述药物封装单元接触的表面相符。

11. 如权利要求 1 所述的离子电渗治疗装置，其特征在于，所述药物封装单元结构上做成保持药物，而在电势的影响下释放所述药物。

12. 如权利要求 1 所述的离子电渗治疗装置，其特征在于，所述阻挡单元结构上还做成防止封装物从所述阻挡单元的外面渗入其里面。

13. 如权利要求 1 所述的离子电渗治疗装置，其特征在于，所述阻挡单元还在结构上做成防止药物流到所述阻挡单元外面。

14. 一种离子电渗治疗装置，其特征在于，该装置包含:
 a. 壳体单元;
 b. 由所述壳体单元支承的柔性电流分配单元;
 c. 与所述电流分配单元和所述壳体单元相连的一致性电流封装单元;
 d. 结构上做成使电流难以流出其外面的阻挡单元。

15. 如权利要求 14 所述的离子电渗治疗装置，其特征在于，还包含结构上做成使所述阻挡单元和所述药物封装单元与病人的组织保持接触的紧固单元。

16. 如权利要求 15 所述的离子电渗治疗装置，其特征在于，所述壳体单元具有体部，所述体部具有在其上贯穿的连接器槽口，并在结构上配置成使所述体部可与使用者操作装置配合。

17. 如权利要求 16 所述的离子电渗治疗装置，其特征在于，所述电流分配单元为盘形，其上有多个孔，所述多个孔位于所述电流分配单元的外缘。

18. 如权利要求 17 所述的离子电渗治疗装置，其特征在于，所述药物封装单元具有大致圆柱形，并在结构上做成保持药物，而在电势影响下释放药物。

19. 如权利要求 14 所述的离子电渗治疗装置，其特征在于，所述壳体单元为杯形，具有连接器槽口和内腔。

20. 如权利要求 19 所述的离子电渗治疗装置，其特征在于，所述电流
分配单元还包含：

a. 导电的弧形部分；

b. 多个导电分支，所述多个导电分支弹性连接所述导电的弧形部分。

21. 如权利要求 20 所述的离子电渗治疗装置，其特征在于，所述电流分配单元还具有与所述导电的弧形部分相连的隔离部分，所述隔离部分通过所述连接器槽口连接离子电渗治疗剂量控制器。

22. 如权利要求 20 所述的离子电渗治疗装置，其特征在于，所述电流分配单元还具有与所述导电的弧形部分相连的隔离部分，所述隔离部分通过所述连接器槽口连接电流源。

23. 如权利要求 22 所述的离子电渗治疗装置，其特征在于，所述药物封装单元具有多个结构上做成装到所述壳体单元的所述内腔中并与眼表面配合的凹表面。

24. 如权利要求 23 所述的离子电渗治疗装置，其特征在于，所述阻挡单元位于所述壳体单元的外缘。

25. 如权利要求 14 所述的离子电渗治疗装置，其特征在于，所述壳体单元包含上环和下环。

26. 如权利要求 25 所述的离子电渗治疗装置，其特征在于，所述电流分配单元还包含：

a. 结构上做成装到所述下环中的导电部分；

b. 与所述导电部分弹性连接的多个导电分支。

27. 如权利要求 26 所述的离子电渗治疗装置，其特征在于，所述药物封装单元与所述电流分配单元配合，并具有带通孔的大致圆柱形。

28. 如权利要求 14 所述的离子电渗治疗装置，其特征在于，所述阻挡单元还在结构上做成与所述药物封装单元相连，所述阻挡单元包含具有大致钟形截面的大致圆形部分。

29. 如权利要求 14 所述的离子电渗治疗装置，其特征在于，所述阻挡单元与所述电流分配单元，所述药物封装单元和所述壳体单元配合，使电流
难于流到所述阻挡层外面，帮助优先输送药物。

30、如权利要求 29 所述的离子电渗治疗装置，其特征在于，所述阻挡单元，还进一步提供来防止封装物流入所述阻挡单元里面。

31、如权利要求 14 所述的离子电渗治疗装置，其特征在于，所述壳体单元柔性，并形成与病人的组织相符合。

32、如权利要求 31 所述的离子电渗治疗装置，其特征在于，在所述壳体单元的第一表面形成所述电流分配单元。

33、如权利要求 32 所述的离子电渗治疗装置，其特征在于，所述电流分配单元和所述药物封装单元与进行离子电渗治疗时所述药物封装单元接触的病人的组织相符合。

34、如权利要求 33 所述的离子电渗治疗装置，其特征在于，由所述壳体单元周围组织对所述壳体单元第二表面施加的摩擦力适当保持所述离子电渗治疗装置。

35、一种对眼睛进行离子电渗治疗的离子电渗治疗装置，其特征在于，该装置包含：

a、壳体单元；

b、与所述壳体单元配合的柔性传导电流分配单元；

c、与所述电流分配单元相连并装有药物的一致性药物封装单元；

d、结构上做成使电流难于流出其外面并帮助优先输送药物的环形单元。

36、如权利要求 35 所述的离子电渗治疗装置，其特征在于，还包含结构上做成使所述环形单元和所述药物封装单元保持与病人的组织接触的固紧单元。

37、如权利要求 36 所述的离子电渗治疗装置，其特征在于，所述固紧单元与使用者操作装置配合，让使用者可灵活进行离子电渗治疗装置定位。

38、如权利要求 35 所述的离子电渗治疗装置，其特征在于，所述壳体单元形成与眼表面配合。

39、如权利要求 38 所述的离子电渗治疗装置，其特征在于，所述电流
分配单元还包含结构上做成与所述壳体单元相连的弧形部分，所述弧形部分有弹性且与眼睛表面相符合。

40. 如权利要求 39 所述的离子电渗治疗装置，其特征在于，所述药物封装单元结构上做成保持药物，而在电势影响下释放所述药物，所述药物封装单元结构上做成与所述壳体单元、所述电流分配单元和所述环形单元中的至少一个配合。

41. 如权利要求 40 所述的离子电渗治疗装置，其特征在于，所述环形单元具有大致为椭圆形的截面，并与所述壳体相连，所述环形单元结构上做成当所述环形单元靠近在眼表面时形成封闭。

42. 如权利要求 41 所述的离子电渗治疗装置，其特征在于，所述环形单元还防止封装物渗入所述环形单元里面。

43. 如权利要求 42 所述的离子电渗治疗装置，其特征在于，所述环形单元包含至少两个阻挡体部，所述至少两个阻挡体部之间形成封闭容积。

44. 一种使用离子电渗治疗装置进行眼离子电渗治疗的方法，其特征在于包含以下步骤：
 a. 取得离子电渗治疗装置，所述离子电渗治疗装置包含：
 i. 壳体单元；
 ii. 由所述壳体单元支撑的电流分配单元；
 iii. 与所述电流分配单元相连的药物封装单元；
 iv. 结构上做成使电流难于流出其外面的阻挡单元；
 b. 将所述离子电渗治疗装置放在病人眼上所要求位置；
 c. 对所述离子电渗治疗装置施加电流，从而迫使药物进入病人的组织。

45. 如权利要求 44 所述的方法，其特征在于，将所述离子电渗治疗装置放到适应的位置的步骤包含以下的步骤：
 a. 将所述阻挡单元靠在眼表面，使所述药物封装单元在眼表面上；
 b. 使所述壳体单元与病人相连，从而保持所述阻挡单元和所述药物封装单元在离子电渗治疗时与眼表面接触。
46、如权利要求 45 所述的方法，其特征在于，连接所述壳体单元的步骤包含将固定单元附着在病人的一个或多个组织上。

47、如权利要求 46 所述的方法，其特征在于，对所述离子电渗治疗装置施加电流的步骤包含以下步骤：

a. 将第二电极放到靠近所述离子电渗治疗装置；

b. 准备电流源，以便对所述电流分配单元发送电流；

c. 准备离子电渗治疗剂量控制器，以控制发送给所离子电渗治疗装置的电流；

d. 启动所述电流源和所述离子电渗治疗剂量控制器，以便沿至少一条电缆对所述电流分配单元和所述药物封装单元输送电流。
说明书

眼离子电渗治疗的方法和装置

本发明涉及对眼睛施放物质的方法和装置。具体而言，本发明揭示用离子电渗对眼睛施药的方法和装置。

在眼科医疗过程，需要输送药物给眼球，尽管输送药物给眼球的要求因治疗目的而异。例如，为了治疗具体病痛，需要药物集中到眼球内部的玻璃液。然而，其他治疗状况下，在整个巩膜表面或巩膜内组织输送并分配药物会有效验。另一过程则会要求诸如角膜移植等外科手术过程前要把麻麻醉剂送入角膜组织。因此，给定的治疗状况可能要求大面积输送药物，或与此相反，可能需要将药物集中在较小的面积上。

为了治病或帮助诊断，给眼表面输送药物的一种传统方法是通过使用眼滴剂。一般握住下眼睑使其离开巩膜，将药物滴入眼睑与巩膜之间形成的间隙。在此过程中，人员必须小心避免滴管或其手指碰到眼睛，以减小感染的危险。通过此过程，可给眼睛输送多种药剂，诸如抗生素、抗组织剂、皮质甾等。此外，还可用眼滴剂施放控制青光眼和扩大或缩小瞳孔的药剂。例如，检查眼睛时，眼科医师可将上滴入托吡卡胺或苯肾上腺素，以扩大瞳孔。通过这样滴药，眼科医生就能充分观察晶状体并检查缺陷。在白内障手术治疗中医生会在眼面上滴一些相同的药滴以扩大瞳孔，使晶状体前表面大部分暴露。此外，外科医生可用滴剂引入局部麻醉，而不是用针进行局部或全面麻醉。

不幸的是，通过使用眼滴瓶施药，存在感染的可能性，特别在多人使用相同滴瓶时，而且，人员可能用其手指无意接触滴瓶，从而将其手指上的细菌传给滴瓶。此外，还可能要求药物进入眼睛的玻璃体内，但眼滴瓶只将药物送到眼表面，使药物可通过各眼层。药物传入玻璃体要用一段长时间，因而降低眼滴瓶药物输送的有效性。
需要将药剂送到眼表面底下时，通常利用注射。通常通过将针插入眼周围组织或眼巩膜进行这种注射。药剂注射入这两个区域的任一个时，可导人玻璃体，其他周围组织或眼睛的其他部分。

然而，采用皮下注射也有缺点。其药物注射是侵入性的，不方便，而且由于针的尖锐而有时存在危险。医生将针插入周围组织时，所用力量稍微增加就可能导致眼球穿孔或视网膜脱落并带来许多相关问题。此外，许多人对任何类型注射使用的针感到紧张，涉及将针插到眼睛附近或插入眼睛时更是不安。

对眼睛施药的另一种不常用的方法称为离子电渗治疗法。最基本的是，离子电渗治疗法涉及利用电动势驱动离子化学药品通过组织，使其能被邻近组织和血管吸收。一般说来，通过设置包含离子药液的第一生物电极使与其部分待离子电渗的组织相接触，来执行此疗法。将第二生物电极放在邻近第一生物电极的人体一部位上，并施加足够的电压，以产生通过组织的电流，从而形成此二电间的电路。电流流动时，离子化的药物分子在第二生物电极影响下，穿过组织进行迁移。

离子电渗疗法采用相同的方法。眼离子电渗治疗装置通常为眼杯装置和施药探头两种类型中的一种。传统眼杯装置由半球形单元构成。该单元的内部通常中空并从其顶部伸出一电极。进行离子电渗治疗时，眼杯装药液并放在眼睛上。施加来自电源的电压，电流从半球形单元内的电极传出，并流入眼表面。与此同时，迫使药物离子从半球形单元内的阴生物电极流向阳生物电极，或反之，从而迫使药物进入病人的眼睛。

在另一眼离子电渗治疗仪中，采用施药探头。施药探头具有伸入装药物的探头末端的电极。将该探头末端放在病人的病痛区，施加电流时，药物就从探头末端迁移到病人的组织中。

通常的眼离子电渗治疗装置存在一些问题。例如，施药探头装置要求准确且连续地将探头靠在病人的眼球上。如果整个眼球都要透入治疗，此过程就要进行一段长时间。此外，如果施加太大的力、太高的电流或保持接触太
长的时间，就会烧伤病人的眼球，在眼表面留下伤痕。至于眼杯形装置，如果探头太长或者设置不准确，有可能抓伤眼球。又，由于眼杯一致形限制和眼球曲率及大小不同，放在眼杯中的药物会从眼杯边缘下漏出。眼泪、盐水或其他不纯物之类的污染会渗入药物，从而降低其效力或药理有效性。可以将眼杯紧压在眼表面，以减少泄漏和污染渗入的影响。然而，所需力量会损伤眼睛。

已有的眼离子电渗治疗装置，其最大的问题可能就是药物非有意地输送到底周围软组织，包括眼睑、眼窝，而不是传送到眼球或巩膜。药物这样无意输送到周围软组织，其原因在于导电的盐水或眼泪具有比另一横贯巩膜的通路低得多的电阻，导致电流优先流到周围软组织的通路。

因此，有利的是提供一种装置，可用于对眼球的任何区域施药，同时避免将药物分布到周围组织和损伤眼睛。

因此，本发明的一个目的是提供一种给眼睛输送定量药物的装置。

本发明的另一目的是通过较优先针对要求治疗的特定区域输送定量药物，避免药物效力损失。

本发明的再一个目的是提供一种装置，减小眼表面上的药物被电流旁路到周围软组织的影响。

本发明的又一个目的是提供一种装置，避免盐水或眼泪流入药剂和药物基体，从而防止污染药剂和药物母体。

本发明的再一个目的是提供一种避免药物输送到眼球周围软组织的装置。

本发明的另一个目的是提供一种使用者可手持或可固定连接病人的装置。

本发明的再一个目的是提供一种避免输送药物时可能损伤眼球的装置。

本发明的又一个目的是提供一种装置，通过提高药物输送的有效性，使离子电渗治疗需要的时间最短，带来的不适最少。

本发明的又一个目的是提供一种灵活且能与所放置表面一致的装置。
本发明的再一个目的是提供一种一次使用后即丢弃或可再使用的装置

为了达到上述目的，根据实施和这里广泛的阐述，本发明是一种眼离子电渗治疗用的离子电渗治疗装置。该离子电渗治疗装置包含做成与眼睛配合的壳体单元。连接该壳体单元的是能传送电源所发电流的柔性电流分配单元。与该电流分配单元配合的是装药物的一致性药物封装单元。在电流影响下施放药物，同时提供一种阻挡单元，做成使电流难以流到阻挡体外面，因而避免药物的非所需迁移。

从以下的说明和所附权利要求，本发明的上述和其他的目的、特点会更加清楚。或者可从后文所述本发明的实施学到这些。

为了获得上述方式和本发明的其他优点、目的，参照附图所示具体实施例，提供以上简单介绍的本发明的较具体说明。应理解这些附图仅说明本发明的典型实施例，因而不要当做对本发明范围的限定。通过利用这些附图，将更加具体详细地阐述并解释本发明。附图中：

图 1 为离子电渗治疗系统的示意图。
图 2 为该离子电渗治疗系统中离子电渗治疗装置一实施例的侧视图。
图 3 为图 2 中离子电渗治疗装置沿 3-3 线部分分剖视图面图。
图 4 为图 3 中离子电渗治疗装置沿 4-4 线剖视图面图。
图 5 为图 2 中离子电渗治疗装置使用中的立体图。
图 6 为本发明离子电渗治疗装置另一实施例的立体图。
图 7 为图 6 实施例的侧视图。
图 8 为图 6 实施例使用的立体图。
图 9 为本发明离子电渗装置另一变换实施例的部分分解立体图。
图 10 为图 9 实施例的侧视图。
图 11 为本发明另一变换实施例的部分分解立体图。
图 12 为本发明离子电渗治疗装置再一实施例的部分分解立体图。
图 13 为图 12 实施例的平面图。
图 14 为本发明离子电渗治疗装置再一实施例的侧视图。
图 15 为图 14 实施例的平面图。
图 16 为图 14 实施例使用中的平面图。
图 17 为图 14 实施例使用中的平面图。
图 18 为图 14 实施例另一形状的平面图。

本发明涉及用于对眼睛施药的离子电渗治疗系统，该离子电渗治疗系统
包括可用于对眼睛施药的离子电渗治疗装置。该离子电渗治疗装置做得药物
仅优先输送到需要药物的区域。此离子电渗治疗装置允许生物电极直径比以往
能用于输送药物的大。可用直径增大的生物电极，使药物渗透到眼球中无
损耗。此外，该离子电渗治疗装置做成操作者使用方便，并且/或者与眼睛
联系中可固定定位。

一般说来，如图 1 所示，离子电渗治疗系统 10 包括用电缆 16 与剂量控
制器 14 电连接的电流源或电源 12。剂量控制器 14 又通过电缆 18 与离子电
渗治疗装置 20 电连接，电流 12 和剂量控制器 14 在技术上已公知，其作用
在于提供并控制各种离子电渗治疗系统特性，诸如电流、治疗时间、治疗电
力周期、治疗强度、启动和/或暂停治疗、治疗电流从启动电流到稳态药物
输送电流的升迁等，这些是例子而非限制。电流 12 和剂量控制器 14 可由独
立单元构成，此二独立单元用诸如电缆 16 等各种电技术连在一起，或者可
集成为一个单元，如虚线 19 所示。这样，由于这里的讲授，本领域的技术
人员能鉴别电源 12、剂量控制器 14 及其连接方法的各种其他实施例和配置，
使这两部分与离子电渗治疗装置配合，本说明后面接着的讨论将针对可用于
与各种电源和剂量控制器配合的各种离子电渗治疗装置 20 的结构和实施
例。

图 2 图 5 示出可用于对眼体特定区域进行局部离子电渗治疗并与离子电
渗治疗系统配合的离子电渗治疗装置 20。如图 5 中显示，使用诸如施药探
头之类的离子电渗治疗装置 20 进行眼睛的离子电渗治疗。能理解离子电渗
治疗装置 20 与诸如电源和剂量控制器（图中未示出）等已知离子电渗系统的
单元的配合。离子电渗治疗装置 20 一般包含壳体单元 22、电流分配单元
24. 药物封装单元 26 和阻挡单元 28。应理解许多其他不同的离子电渗治疗装置 20 也能有效进行其谋求的功能。

根据本发明的一个方面，壳体单元 22 包含第一末端 32、第二末端 34 和连接器凹槽 36。最好壳体 22 具有一般管状，其中第一末端 32 具有比第二末端 34 大的截面。第一末端 32 具有位于其边缘周围的凸缘 38。凸缘 38 具有多孔通孔 40，使其可连接电流分配单元 24 和药物封装单元 26。大致通过壳体 22 的中心，从第一末端 32 到第二末端 34 形成连接器凹槽 36。连接器凹槽 36 还从壳体 22 的中心向外延伸，从而将壳体 22 的第二末端 34 对分成两部分。由于本说明书的讲授会理解，本领域的技术人员能鉴别壳体 22 的各种其他结构及其相关特性。

例如，第一末端 32 可具有与第二末端 34 相同的截面，或者第一末端 32 可具有比第二末端 34 小的截面。连接器凹槽 36 可依据壳体单元 22 与使用者操作装置 30 之间所需的连接类型，具有不同的结构。例如连接器凹槽 36 可具有连接使用者操作装置 30 的相关螺纹内螺纹。另一种结构中连接器凹槽 36 可形成锥度，使其可与有锥度的相关使用者操作装置 30 滑动配合。连接器凹槽 36 还可依据用于将壳体单元 22 接到使用者操作装置 30 的连接器，将第二末端 34 分成许多部分。本领域技术人员公知各种其他将壳体单元 22 连接到使用者操作装置 30 的手段。此外，由于本说明书的讲授，本领域技术人员能鉴别进行所谋求功能的各种壳体单元 22 的结构。

壳体单元 22 一般做成牢固地保持电流分配单元 24、药物封装单元 26，如果需要，还有阻挡单元 28，同时还能连接使用者操作装置 30。壳体单元 22 还做成能经受离子电渗治疗时使用者施加的力。

壳体单元 22 最好用使该单元便于制造，同时具有足够强度和刚度并能连接的材料做成。材料类型可包括塑料、金属、复合材料、特氟纶、尼龙、聚酯、聚乙烯和聚碳酸酯等。最好壳体单元 22 基本上用聚碳酸酯塑料做成。

与壳体单元 22 相连的是电流分配单元 24。在一较佳实施例中，电流分配单元 24 具有大致为环形的部分 46，呈碟形，与垫圈相似。靠近其外缘有
多个孔 48，使电流分配单元 24 可连接壳体单元 22 的第一末端 32。此外，
中心孔 50 穿通环形部分 46 的中心。由于本说明书包含的信息，可理解本领
域的技术人员能鉴别电流分配单元 24 的各种其他结构。

例如，电流分配单元 24 可具有各种形状，诸如椭圆形、矩形、八角形、
不规则四边形等。电流分配单元 24 可连接壳体单元 22，同时可固定装在使
用者操作装置 30 上。这种情况下，电流分配单元 24 可为从使用者操作装置
30 的邻近端 31 伸出的导线，并做成连接药物封装单元 26。电流分配单元 24
还做成使外部电流可与其电连接。这样，电流分配单元 24 可具有本领域技
术人员公知的任何方式，使壳体单元 24、电源和药物封装单元 26 之间可电
连接。因此，电流分配单元 24 需要足够的强度、刚度、抗温度变化特性和
导电性，以防止通电时损坏。电流分配单元 24 各种其他结构也能有效进行
其所谋求的功能。

电流分配单元 24 最好用能导电电流而且柔软的材料做成。这些材料可
包括例如铝、铜、金属物质的薄膜、碳导电膜、碳导电可印刷膜、其他印刷
膜等。最好电流分配单元 24 用塑料片或者聚酯膜上印刷的金属膜形成。塑
料片和薄膜的厚度其范围为约 2 密耳到约 5 密耳。最好厚度为约 3 密耳到约
4 密耳。该厚度为 3 密耳左右更佳。

电流分配单元 24 除了其尺寸外，另一实施例中还可一次性使用或可再
次使用。因此，可用各种化合物或合金，以提供节省成本的电流输送装置。
如果要控制 PH，则可用银(Ag)或氯化银(Ag/AgCl)化合物。对于可再次使用
装置，阴极电流分配单元 24 可用例如烧结性 Ag/AgCl 做成，以便为一些治
疗提供适当的 Cl。阳极电流分配单元 24 可用固体 Ag 金属或烧结 Ag 颗粒或
墨等做成。如果一次使用即丢弃的离子电渗治疗装置需要 Ag 或 Ag/AgCl，
则能以成褶或印刷墨型薄膜等形式提供少量 Ag 或 AgCl。在本发明的其他结
构中可用碳导体作为阳极或阴极电流分配单元 24。

与电流分配单元连接的是药物封装单元 26。在图 2-图 5 的实施例中，
药物封装单元 26 具有包含第一封装端 54 和第二封装端 56 的大致圆柱形部
分52。第一封装端54与电流分配单元24和壳体单元22连接。第一封装端54具有与壳体单元22的第一末端32中相同的截面。此外第一封装端54在其边缘附近还有多个外伸部分58，从第一封装端伸出，与药物封装单元26中轴平行。多个外伸部分58穿过多个孔48锁定在相应的多个孔40内。将药物封装单元26做成散在药物从电流分配单元24传送到药物封装单元26。理解药物封装单元26可有各种其他结构，这些结构也能有效进行其谋求的功能。

药物封装单元26一般做成在离子电渗治疗过程中保持药源。此外，药物封装单元26还将电流分配单元24的电流传送到所接触的表面。药物封装单元26具有离子电渗治疗时弹性形变所需的强度和刚度，而且柔软，接触眼睛时不会损伤眼睛。

由于本说明书的讲授，本领域的技术人员能鉴别药物封装单元26的各种其他结构。例如，依据药物封装单元26连接电流分配单元24和壳体单元22或其中一个单独连接的方式，药物封装单元26的截面可不同。药物封装单元26可具有与壳体单元22或电流分配单元24相同的截面形状。在另一种结构中，药物封装单元26可为锥形，且锥形开口部分通过其中心。该锥形开口做成固定装到使用者操作装置30时，配合电流分配单元24，并具有从使用者操作装置30的邻近端引伸出的外伸导线的形状。药物封装单元26还可具有进行特定类型离子电渗治疗所需的截面或大小，诸如圆形、角形、点形等。此外，药物封装单元26还可依据具体应用，具有仅几毫米或几厘米的截面。其尺寸可为1mm到20mm。最好药物封装单元26为约5mm到6mm。

能执行药物封装单元26的功能的材料结构，其一个例子是凝胶海绵复合封装基体。Lloyd等人提出的5558632号美国专利说明这种材料，该专利按参考文献在此引入。构成药物封装单元26用的各种其他材料也能有效执行其谋求的功能。例如，可采用各种可再次使用或一次性使用的多孔芯吸材料、水凝胶或复合材料。
对于眼离子电渗治疗，最好采用交联水凝胶，因为这种水凝胶的粘附特性可避免纤维物、凝胶或残留物在离子电渗治疗后留在眼上。交联水凝胶的使用由于没有纤维物会划伤眼睛或使眼睛难过，在进行离子电渗治疗时也有利。另外，对于使用离子电渗治疗孔隙治疗如皮肤或毛囊等的情况，最好用有效芯吸湿润的凝胶。用于该情况下的这种材料，其例子有水凝浸渍的干海绵体和多层交联聚乙烯氧化干燥基体。

依据所进行医疗过程的类型，药物封装单元 26 中可使用各种药物。例如，药物封装单元 26 中可装入多卡固之类的麻醉剂。另一个例子是 VEGF (Vascular Endothelial Growth Factors)抑制剂之类的寡核苷酸。可用的其他药物说明例有抗生素、皮质甾、抗组胺剂、或苯肾上腺素。通过使用离子电渗治疗装置 20，还可输送各种其他药物。

如图 2-图 5 所示，将阻挡单元 28 连接到药物封装单元 26。阻挡单元 28 为圆环状，具有带第一槽口 66 的阻挡体 64，二者共中心轴。第一槽口 66 的一部分连接药物封装单元 26，另一部分则与眼球的一部分配合。阻挡单元 28 的各种其他结构也能有效执行其谋求的功能。

阻挡单元 28 一般形成与药物封装单元 26 连接，帮助药物的优先输送。本发明的一个特点就是提供眼离子电渗治疗时的优先送药，消除上述电通路旁路的问题。

相信在对眼球加电流时出现电通路旁路，会导致电流同时在多个方向辐射。根据传统的电学理论，电流沿电阻最低的通路流过。对眼离子电渗治疗来说，由于眼球表面连续浸在导电离子盐水中，泪水和自然出现的盐水会将电流分布在整个眼球表面并进入周围组织。相信会出现这种效应，与电流导入眼球表面的确切位置无关。因此，电流会流入巩膜，流入眼球的玻璃体，甚至流入周围表面组织，诸如内眼睑和眼窝组织。最近的研究支持这种主张。在试图通过横贯巩膜离子电渗治疗输送药化合物的过程中，眼玻璃液内基本上没有检测到药化合物，而检测到相当多血液内吸级的化合物。这表明药化合物和驱动电流被转换或“旁路”，从横贯巩膜的流动变成沿眼球表面流入
邻近软组织。构成本发明的阻挡单元 28，帮助防止药物跟随眼球表面的电
通路，从而有助于特定医疗过程优先分配药物。

依据药物封装单元 26 的规模和尺寸、电流分配单元 24、壳体单元 22
和所涉及的具体医疗过程，阻挡单元 28 可具有不同的结构。例如，由于医
疗过程可用电流通路的旁路帮助分配药物，离子电渗治疗装置 20 可不需要
阻挡单元 28。离子电渗治疗装置 20 可以有一个以上的阻挡单元 28，从而建
立第一和第二阻挡单元之间的密封区，更有效且优先地输送药物。阻挡单元
28 可为三角形、圆形、椭圆形等。由于本说明书的讲授会理解，本领域的
技术人员会使用并了解各种其他结构。

做成阻挡单元 28 的材料最好弯曲时对弯曲提供足够的弹性，以便附合
形成液体密封的接触面。阻挡单元 28 使用的这种材料包括软硅胶或其他与
放置表面大致顺适的硅化合物。例如，Dow Q7-2218 双份软硅胶、Nusil 等
效硅弹性体、低硬度聚氨脂橡胶和类似的材料可用于构成阻挡单元 28。阻
挡单元 28 最好用低硬度硅弹性胶做成。

构成离子电渗治疗装置 20 中，需要将上述各单元连接在一起。有各种
完成连接各个单元的方法。例如，可用超声波焊接、胶粘、螺纹连接，将壳
体单元 22 连到药物封装单元 26 和电流分配单元 24。可通过采用粘贴等将
阻挡单元 28 贴到药物封装单元 26。由于本说明书的讲授，本领域的技术人员
能鉴别将离子电渗治疗装置 20 的各单元结合在一起的各种方法。最好各
单元用超声波焊接连在一起。

现参阅图 5，可用离子电渗治疗装置 20 离子电渗治疗眼球。操作中，
通过连接器凹槽 36 施加电流给电流分配单元 24。于是，该电流通过药物封
装单元 26 流入眼球。电流流到位于眼睛附近的第二生物电极时，流通眼球。
离子电渗治疗装置 20 靠在眼睛上时，阻挡单元 28 与眼球接触。阻挡单元 28
使沿巩膜或结膜表面通过的电流减小，从而将药物输送导向阻挡单元 28 限
定的区域内。如图 4 所示，离子电渗治疗装置 20 可具有与可见虹膜相同的
尺寸，尽管不同的其他尺寸和规模也能有效执行谋求的所述功能。
图6-图8说明眼离子电渗治疗装置120的另一实施例。前面对离子电渗治疗装置20讨论的主要特性也用于眼离子电渗治疗装置120。该装置120具有壳体单元122、电流分配单元124、药物封装单元126和阻挡单元128。

壳体单元122大体为杯形，具有杯形的第一部分132、第二末端134和中间部分138。如图8所示，杯形的第一部分132做成舒适地放在眼球周围适当位置。而且，杯状第一部分132的中心轴偏离第二末端134的中心轴，使中间部分138从杯状第一部分132的外缘伸出。杯状第一部分132具有穿通其中心的孔140，使得可进入眼球。由于本说明书的讲授，本领域的技术人员能鉴别可执行所谋求功能的各种其他结构。

例如，如图7所示，杯状第一部分132可包含并完全覆盖眼球。在另一种结构中，中间部分138沿杯状第一部分132的中轴伸出。其他结构中，中间部分138可呈角状地从杯状第一部分132伸出。壳体单元122的其他结构也能有效执行所谋求的功能。

壳体单元122最好用能容易制造，同时使壳体单元122具有足够的强度、刚度和连接灵活形的材料构成。材料的类型可包括塑料、复合材料、特氟纶、尼龙、聚酯、聚乙烯、聚碳酸酯等。最好壳体单元122用聚碳酸酯做成。

如图6所示，电流分配单元124具有与杯状第一部分132的内表面143相同的形状。电流分配单元124由分段构成，具有从导电环（图中未示出）伸出的多个导电分支148。因此，电流分配单元124具有与杯状第一部分132的内腔142相同的形状。

电流分配单元124的分段形状为眼离子电渗装置120提供球状一致性的好处。多个导电分支148能相对于导电环进行弯曲，因而与眼球表面相符合，同时对药物封装单元126施加压力，使其靠在眼表面。电流分配单元124的各种其他结构也能有效执行所谋求的功能。

例如，电流分配单元124可连接使用者操作装置130（如图5所示），以便一个或多个导电分支148通过连接器凹槽136，并进入杯状第一部分132的内腔142。。另一种结构中，电流分配单元124位于连接器凹槽136内，
以便接触药物封装单元 126。只要做成与药物封装单元 126 接触，电流分配单元 124 可位于连接器凹槽 136 内纵向的任何位置。电流分配单元 124 的各种其他结构也能执行所谋求的功能。本领域的技术人员会理解通过适当修改壳体单元 122，可使用任何类型的电流分配单元 124。

根据本发明另一实施例的另一方面，药物封装单元 126 具有杯状件 152，该件做成与杯状第一部分 132 的内腔 142 形状一致，同时具有与眼表面配合的内弯曲部分。药物封装单元 126 具有双凹曲形状，带内外凹曲轮廓。外凹部分形成与壳体单元 122 配合，内凹部分配合眼表面。药物封装单元 126 与电流分配单元 124 和壳体单元 122 相连，同时能附合其接触的眼表面。药物封装单元的各种其他结构也能有效执行所谋求的功能。

例如，药物封装单元 126 可形成具有至少一个做成与至少一个导电分支 148 配合的孔。另一种结构中，药物封装单元 126 包含插入杯状第一部分 132 的内腔 142 的凝胶。另一种结构中，药物封装单元 126 为圆环状，以便使孔 140 可兼顾药物封装单元 126 的连接再装药物。这样，药物封装单元 126 与其接触的表面相附。由于本说明书的讲授，本领域的技术人员能鉴别可执行所谋求功能的药物封装单元 126 的各种其他结构。

根据本发明另一实施例的另一方面，阻挡单元 128 包含具有大致为圆截面的杯状阻挡部分 164。该部分 164 与杯状第一部分 132 的下部外缘相连，使靠在眼球上时形成封闭眼球。阻挡单元 128 的各种其他结构也能有效执行所谋求的功能。

例如，如图 6 所示，另一种结构中，阻挡单元 128 包含杯状阻挡部分 164 和上部杯状阻挡部分 166。上部阻挡部分 166 遣到杯状第一部分 132 中孔 140 的外缘，杯状阻挡部分 164 则连到杯状第一末端 132 的下部外缘。通过组合，上部杯状阻挡部分 166 和杯状阻挡部分 164 建立内部凹槽，限制药物流出，从而避免药物在某些治疗过程中传入杯状第一部分 132 的内部。依据治疗过程和治疗装置的需要，上部阻挡部分 166 和杯状阻挡部分 164 可具有相同或不同的截面。由于本说明书的讲授，本领域的技术人员能鉴别阻挡单元 128
的各种其他结构。

图 9-图 11 说明离子电渗治疗装置 220 的另一实施例。以上对离子电渗治疗装置 120 讨论的主要特性也用于离子电渗治疗装置 220。离子电渗治疗装置 220 具有壳体单元 222、电流分配单元 224、药物封装单元 226、阻挡单元 228 和固定单元 270。各单元具有与上文所述相同的所求功能。

壳体单元 222 由上环 234 和下环 232 两个分开的部件构成。下环 232 具有大致圆状的下部分 236 和从该部分外缘伸出的臂 238。上环 232 有内部锥度，使第一低端 240 具有比第二低端 242 小的直径。上环 234 具有形状与垫圈相似的圆状的上部分 235。上环 234 用于将药物封装单元 226 和电流分配单元 224 紧固到下环 232。由于本说明书讲授会理解，本领域技术人员能鉴别执行所求功能的壳体单元 222 各种其他结构。

例如下环 232 可具有凸缘 244，从下环 232 的外缘伸出并与之纵轴平行。于是凸缘 244 可直接与上环 234 或其上形成的凸缘相连，从而使电流分配单元 224、药物封装单元 226、阻挡单元 228 和另一种结构中的固定单元 227 固紧。可通过采用本领域技术人员公知的超声波焊接、粘合或其他结合技术进行连接。上环 234 和下环 232 各种其他结构也能执行所求功能的。

上环 234 和下环 232 最好用便于制造，同时使壳体单元 222 具有足够的强度和刚度的材料做成。材料的类型可包括塑料、复合材料、特氟纶、尼龙、聚酯、聚乙烯和聚碳酸酯等。最好上环 234 和下环 232 基本上用聚碳酸酯做成。

与壳体单元 222 相连的是电流分配单元 224。该单元 224 具有导电环部分 246，并且多个导电分支 248 从该部分内部边缘伸出。多个导电分支 248 伸向导电环部分 246 的中心，并做成对其加力时弯曲。因此，电流分配单元 224 在进行离子电渗治疗时，能与病人的眼表面相附合。电流分配单元 224 还具有从导电环部分 246 外缘伸出的绝缘部分 238。在一种结构中，用上面印有金属部分的印制膜构成电流分配单元 224。电流分配单元 224 的各种其他结构也能执行所求功能。
例如，电流分配单元 224 可包含一个导电分支 248。根据壳体单元 222、药物封装单元 226 和阻挡单元 228，电流分配单元 224 可具有其他尺寸和形状。如壳体单元 222 为矩形，则电流分配单元 224 也可为矩形。其他结构也能有效执行所谋求的功能。

最好用金属凝胶、印有金属物质的醋酸酯膜制造电流分配单元 224。诸如金属、导电材料、印制塑料或薄膜等其他材料也能有效执行所谋求的功能。最好用聚脂膜做成电流分配单元 224。塑料片或薄膜的厚度为约 2 密耳到约 4 密耳。厚度为约 3 密耳到约 4 密耳较佳，约 3 密耳更佳。

与电流分配单元 224 配合的是药物封装单元 226。药物封装单元 226 具有体部 252，大致呈圆柱状，有贯通中心孔 254。中心孔 254 的轴与体部 252 的纵轴重合。凸缘 256 从体部 252 的低端外缘伸出，并垂直于体部 252 的纵轴。因此，药物封装单元 226 具有大致 L 型的截面。药物封装单元 226 的各种其他结构也能有效执行所谋求的功能。

一般将药物封装单元 226 做成可连接电流分配单元 224 和下环 232。此外，药物封装单元 226 还使上环 234 可固定到下环 232，从而密封壳体单元 222 内的电流分配单元 224 和药物封装单元 226。提供中心孔 254，使眼睛的一部分可伸展在上面，同时接触上表面 258。

由于本说明的讲授，本领域的技术人员能鉴别药物封装单元 226 的各种其他结构。例如，在另一种结构中，药物封装单元 226 没有中心孔 254，仅用一整块材料构成。又一种结构中，用凝胶构成药物封装单元 226。此外，药物封装单元可具有与壳体单元 222 和电流分配单元 224 相对应的尺寸。例如，壳体单元 222 为弧形，则药物封装单元 226 为弧形或用可顺适弧形面的材料做成。如果电流分配单元 224 具有一个导电分支 248，则药物封装单元 226 具有配合该导电分支 248 的相应的圆。由于说明书的讲授会理解，本领域的技术人员能识别可执行所谋求功能的药物封装单元 226 的各种其他结构。

如上文讨论的那样，可用凝胶海绵、交联水凝胶、凝胶或其他类似材料
制造药物封装单元 226。本领域技术人员已公知构成药物封装单元 226 的其他材料。最好用可塑柔性凝胶或者具有具体治疗所需的环形、弧形或球面形的凝胶复合基体构成药物封装单元 226。

与壳体单元 222 和药物封装单元 226 相连的是阻挡单元 228。该单元 228 具有截面大致为钟形的圆形体部 264。阻挡单元 228 与上环 234 和/或药物封装单元 226 锁紧，从而留住药物封装单元 226。在一种结构中，阻挡元件 228 通过延伸到上表面 258 的水平面外，延伸到超过药物封装单元 226 的上表面 258 的水平面。阻挡单元 228 在药物封装单元 226 之前接触眼表面，并提供上述封闭功能。由于本说明书的讲授，本领域技术人员会了解阻挡单元 228 的各种其他结构。

例如，阻挡单元 228 可做成当下环 232 固紧药物封装单元 226 和/或电流分配单元 224 时，阻挡单元 228 与药物封装单元 226 的上表面 258 水平面一致，或位于该水平面下。其他结构中阻挡单元 228 可具有本领域技术人员公知的各种截面，以便阻挡单元 228 与眼睛接触时形成封闭。此外，如上文已讨论的那样，阻挡单元 228 的位置取决于要使用离子电渗治疗装置 220 的具体应用。离子电渗装置 220 可形成具有第二阻挡单元，该阻挡单元与中心孔 254 的内表面相连，以对诸如角膜等等眼睛的一个区域与导入的药物隔高。可理解第二阻挡单元的使用有助于药物导入要电渗治疗的特定部位。

根据本发明另一实施例的另一方面，离子电渗治疗装置 220 包含固紧单元 270。该单元 270 在图 11 所示的一种结构中，具有从下环 232 外缘伸出的固紧臂 272 以及与该臂远端 274 相连的接头部分 276。接头部分 276 具有连在其上的结合物，以便固定附着在个人的颊部、额部或人体的其他部位。固紧单元 270 的各种其他结构也能有效执行所谋求的功能。

例如，固紧单元 270 可不与上环 234 相连。另一种结构中，固紧单元 270 具有与固紧臂 272 相连的大致圆形的体部。该体部具有连接下环 232 的外表面和周围的通孔。在另一种结构中，固紧体部可位于上环 234 和下环 232 之间，并在上环 234 与下环 232 相连时固定连接到壳体单元 222。又一种结构
中可用挽具构成固紧臂 272，该挽具可连接病人的头部、肩部和身体的其他部分，以便在离子电渗治疗时支持离子电渗治疗装置 220。再一种结构中固紧臂 272 做成让使用者可人工适当握紧离子电渗治疗装置。在又一种结构中，接头部分 276 可通过采用粘合或其他类似技术加以粘贴，使得能方便地去除固紧单元 270 而不损伤病人身体。由于本说明书的讲授，本领域的技术人员能鉴别固紧单元 270 的各种其他结构。

最好用便于制造而且提供足够强度和刚度材料构成固紧单元 270。材料的类型包括塑料、金属、复合材料、特氟纶、尼龙、聚酯、聚乙烯和聚碳酸酯等。最好基本上用聚碳酸酯构成固紧单元 270。

图 12 和图 13 说明眼离子电渗治疗装置 320 的另一实施例。上面对离子电渗治疗装置 220 讨论的主要特性也用于离子电渗治疗装置 320。离子电渗治疗装置 320 具有壳体单元 322、电流分配单元 324、药物封装单元 326 和阻挡单元 328。壳体单元 322 包含体部 332 和上环 334。体部 332 做成具有至少一个翼部 333。体部 332 和翼部 333 做成有弹性，使翼部 333 在如图 12 所示进行使用时，可伸展到病人眼睑底下。体部 332 还做成具有孔 337，该孔形成与药物封装单元 326 配合，使眼睛的角膜可通过该处伸展。

上环 334 大致为圆形，具有从环体 335 伸出的环凸缘 336。凸缘 336 与体部 332 下表面相连，帮助将药物封装单元 326 和电流分配单元 324 保持在体部 332。壳体单元 322 的各种不同结构也能有效执行所谋求的功能。

最好用便于制造而且提供放置在病人眼睑底下有足够强度和柔性的材料构成壳体单元 322。材料的类型可包括塑料、金属、复合材料、特氟纶、尼龙、聚酯、聚乙烯和聚碳酸酯等。

本实施例的其他单元与上面讨论的单元相同，而且按同样的方式相连在一起。例如，用缩短的绝缘部分 338 构成电流分配单元 324。缩短的绝缘部分 338 比离子电渗治疗装置 220 绝缘部分 238 短得多，以避免因其端部的穿透而损伤眼睛。药物封装单元 326 具有与药物封装单元 226 基本上相同的结构。然而，使用中，药物封装单元 326 的体部 352 穿通孔部 337，并且凸缘 356
靠在体部 332 的下表面 338 上。因此，药物封装单元 326 具有大致倒 L 型的截面。凸缘 356 还做成配合与其相连的电流分配单元 324。阻挡单元 328 与通过孔部 337 伸出的药物封装单元 326 的部分相连。本领域的技术人员了解药物封装单元 326 的各种其他结构，以执行所需的谋求的功能。

图 14～图 18 说明眼离子电渗治疗装置 420 的另一实施例。上面对其他离子电渗治疗装置讨论的主要特性也用于离子电渗治疗装置 420。离子电渗治疗装置 420 一般做成便于放在眼窝的甄部边（如图 16 所示），或放在眼睑底下（如图 17 所示），由周围组织施加的摩擦力适当支持，同时提供需要的离子电渗治疗药物输送。这里说明的结构中，因为眼睑和周围组织与离子电渗治疗装置 420 维持摩擦接触，从而避免离子电渗治疗装置 420 移动，所以不需要粘合剂以适当地保持离子电渗治疗装置 420。

现参阅图 14 和图 15，说明用于眼窝甄部边的离子治疗装置的结构。离子电渗治疗装置 420 包含与通过导线 425 连到电源（图中未示）的电流分配单元 424 配合的壳体单元 422。与该壳体单元相连的是药物封装单元 426 和阻挡单元 428。壳体单元 422 包含大致形成三角形的体部 432，与其一边相连的有固紧单元 434。体部 432 做成支承电流分配单元 424、药物封装单元 426 和阻挡单元 428，以便于操作和插入，而且其特点是不受药物迁移和电流的影响。因此，体部 432 避免药物通过并进入周围组织。

图 14 的结构中，壳体单元 422 具有固紧单元 434，以便在可脱开地进行离子电渗治疗装置 420 定位中增大摩擦力。固紧单元 434 为大致钩状，使离子电渗治疗装置 420 插在眼窝甄部边时，固紧单元 434 与眼角配合，如图 16 所示。在本发明的其他结构中，固紧单元 434 的末端可做成带有粘贴片，该片可用于可脱开地适当连接离子电渗治疗装置 420。又一结构中，壳体单元 422 做成不带固紧单元 434，如图 18 所示。由于本说明书的讲授，本领域的技术人员能鉴别，也可执行所需功能的壳体单元 422 各种其他结构。

例如，可按照进行所需离子电渗治疗的需要，改变离子电渗治疗装置 420 的规模和尺寸。如图 17 和图 18 所示，壳体单元 422 可具有伸长的形状，以
配合并提供下眼睑底下的插入。壳体单元 422，因而离子电渗治疗装置 420，
可具有各种截面形状，诸如圆形、椭圆形、矩形、方形、梯形等等。

只要是具有弹性并防止离子电渗治疗时电流和药物的迁移，各种类型的材
料都可用来制成壳体单元 422。这些材料可包括弹性塑料、薄膜、复合材料、
特氟纶、尼龙、聚酯、聚乙烯、聚碳酸酯、橡胶、弹性体、硅等等。最好基
本上用弹性硅做成壳体单元 422。

本实施例中，电流分配单元 424 做成与壳体单元 422 综合为一体。如图
14 和图 15 虚线所示，电流分配单元 424 的形式为在壳体单元 422 内表面形
成的导电印制。通过这种结构，因为用于形成离子电渗治疗装置的层数减少，
离子电渗治疗装置的柔性提高。由于本说明书的讲授，本领域技术人员了解
电流分配单元 424 的其他结构。

如图 16 所示，在进行使用中，离子电渗治疗装置 420 在眼窝边 (图中
未示) 和眼球之间滑动。壳体单元 422 接触眼窝的表面，药物封装单元 426
和阻挡单元 428 则接触眼球。在进行离子电渗治疗装置 420 的定位期间，固
紧单元 434 与眼角配合，使该固紧单元 434 的末端附着眼周组织。这样，
固紧单元 434 就防止操作时离子电渗治疗装置 420 移动。

图 17 和图 18 中示出离子电渗治疗装置 420 的另一种结构，其中壳体单
元 422 没有固紧单元 434。这种方式中，通过下眼睑施加在壳体单元 422 表
面的摩擦力，保持离子电渗治疗装置 420。

由于本说明书的讲授，本领域的技术人员能辨别各种其他结构。例如，
如图 18 所示，离子电渗治疗装置 420 构成为具有两个阻挡单元 428，以形
成药物封装单元 426 所在的密封内部空间。

能用其他具体形式实施本发明而不偏离其精神或基本特征。应全面将所
述实施例仅当作说明而非限定。因此本发明的范围由所附权利要求指明，而
不是以上的说明。所有落入权利要求等效范围和含义的改变都包含在本发明
的范围中。