(12) PATENT

(19) AUSTRALIAN PATENT OFFICE

(11) Application No. - AU 200041759 B2
(10) Patent No. 769815

(54) Title
Distributed objects for a computer system
(51)6 International Patent Classification(s)
G06eT 001-60 GOpF 015-173
GO6F 007-00 GOeF 01700
(21) Application No: 200041759 (22) Application Date: 2000 .03.24
(87) WIPONo: WQO00.-58912
(30) Priority Data
(31) Number (32) Date (33) Country
09276986 1999 .03.26 us
(43) Publication Date : 2000 .10 .16
(43) Publication Journal Date : 2000 .12 .21
(44) Accepted Journal Date : 2004 .02 .05
(1) Applicant(s)
emWare, Inc.
(72) Inventor(s)
Michael Howard: William R. Harper Jr.
(74) Agent/Attorney
Griffith Hack.GPO Box 1285K,MELBOURNE W¥WIC 3001
(56) Related Art
s 5751962
s 5732261

05 5652888

‘@

i AL AV

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
Intemnational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :
GO6T 1/60, GOGF 17/00, 7/00, 15/173 Al

(11) Inter 1P ion Number: WO 00/58912

(43) International Publication Date: 5 October 2000 (05.10.00)

(21) International Application Number: PCT/US00/07790 | (81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB,
BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM,
(22) International Filing Date: 24 March 2000 (24.03.00) DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,

IN, 1S, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT,
(30) Priority Data; RO, RU, 8D, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ,
09/276,986 26 March 1999 (26.03.99) us UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, §Z, TZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(71) Applicant: EMWARE, INC. [US/US]; 6322 South 3000 East, (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
Suite 250, Salt Lake City, UT 84121 (US). LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(72) Inventors: HOWARD, Michael; 1593 East Bainbridge Road,
Sandy, UT 84092 (US). HARPER, William, R., Jr; 1566

East 3080 South, Salt Lake City, UT 84106 (US). Published
With international search report.
(74) Agents: AUSTIN, Wesley, L. et al.; Parsons Behle & Latimer, Before the expiration of the time limit for amending the
Suite 1800, 201 South Main Street, Salt Lake City, UT claims and to be republished in the event of the receipt of
84111 (US). amendments.

(54) Title: DISTRIBUTED OBJECTS FOR A COMPUTER SYSTEM

52 22
XY ;
1
CLENT H
APPLICATION
DEVICE
ACGESS
CLIENT
LY
P lcamumcanonl/sg
4
2 /%
PORT (4—] PORT PORT PORT

(57) Abstract

A distributed object for use in a networked computer system lncludmg a host computer (12) and a remote computer (16), where the
remote computer (16) is in etectronic communication with a device, is disclosed in one embodiment of the pres::nt invention as mcludmg a
first memember component implemented and stored on the host computer. The second member p is in electronic ion
with the remote computer (16), and the second member component functions to access data on the remote computer (16). The distributed
object may be part of an object hierarchy. The object hierarchy may also include a first subclass derived from the base class, The first
subclass may be implemented and stored on the host computer. This first subclass includes the second member component in electronic
communication with the remote computer (16). ‘The object hierarchy may also include a second subsclass that alters the function of the
object.

15

20

25

30

1

WO 00/58912 PCT/US00/07790

DISTRIBUTED OBJECTS FOR A COMPUTER SYSTEM

Technical Field
This invention relates to computer software and, more particularly, to novel systems

and methods for distributing computer software and data across a computer network.

Background Art

In recent years there has been a great increase in the amount of computer technology
that is involved in daily life. In today’s world, computer technology is involved in many
aspects of a person’s day. Many devices being used today by consumers have a small
computer inside of the device. These small computers come in varying sizes and degrees of
sophistication. These small computers include everything from one microcontroller to a
fully-functional complete computer system. For example, these small computers may be a
one-chip computer, such as a microcontroller, a one-board type of computer, such as a
controller, a typical desktop computer, such as an IBM-PC compatible, etc.

The small computers, (which can be rather large computers depending on the
particular need which is being met by the computer), almost always have one or more
processors at the heart of the computer. The processor(s) usually are interconnected to
different external inputs and outputs and function to manage the particular device. For
example, a processor in a vending machine for soda pop may be connected to the buttons
used to select the pop, to the switch that allows a pop to drop down to a user, and to lights to
indicate that the machine does not have any more pop of a particular variety.

Computer technology is involved in many aspects of daily life. Many appliances,
devices, etc., include one or more small computers. For example, refrigerators, telephones,
typewriters, automobiles, vending machines, and many different types of industral
equipment all have small computers, or processors, inside of them. Computer software runs
the processors of these computers and tells the processors what to do to carry out certain
tasks. For example, the computer software running on a processor in a vending machine may
cause a soda pop to drop to a user when the correct change has been entered by a user.

These types of small computers that are a part of a device, appliance, tool, etc., are

often referred to as embedded systems. The term “embedded system” usually refers to

10

15

20

25

30

35

-2 -

computer hardware and software that is part of a larger system. Embedded systems
usually do not have typical input and output devices such as a keyboard, mouse, and/or
monitor. Usually, at the heart of each embedded system is one or more processor(s).

Typically the embedded systems used today with various appliances, devices,
etc., do not have a lot of storage capability. As a result, the amount of data that can be
stored on the embedded systems is limited. With only limited storage, an embedded
system may not have as many features and capabilities as it could have if it had more
available storage.

Some embedded systems have been connected to computer networks to allow
some communication between the embedded system and a larger computer system.
However, because embedded systems are often not equipped with the functionality to
effectively and efficiently communicate with other computer systems, the
communication capability is usually limited.

Because of the constrained memory resources on the embedded systems, often
only limited interaction from a computer network with the embedded system is
available. This interaction is often of limited use because of the difficulty in
communicating with the different parts of the embedded system.

Brief Summary and Objects of the Invention

According to one aspect of the invention there is provided a distributed object
for use in a networked computer system including a host computer and a remote
computer, the remote computer being in electronic communication with a device, said
distributed object comprising:

a first member component implemented and stored on the host computer; and.

a second member component implemented and stored on the host computer, said

second member component being in electronic communication with the remote)
computer, and said second member component functioning to access data on the remote
computer.

According to another aspect of the invention there is provided a computer
system including a host computer and a remote computer, the remote computer being in
electronic communication with a device, said computer system comprising:

embedded code on the remote computer, said embedded code providing services
related to the device;

an encapsulation of exported services on the host computer; and

interface code on the remote computer, said interface code providing access to a
subset of said services via said encapsulation of exported services.

\\melb_files\home$\Priyanka\Keep\speci\41759-00.doc 30/10/03

-3 -

According to another aspect of the invention there is provided a computer
program product for distributing services, said program product comprising:

a computer readable medium for carrying program data; and

wherein the program data comprises executable instructions for implementing a

5 method comprised of the steps of:

providing application code on the remote computer, said application code
providing services related to the device;

exporting an enumeration of said services to said host computer, said
enumeration being a subset of said services;

10 encapsulating said enumeration of said services; and

accessing a service at the remote computer through said encapsulation of said
services.

According to another aspect of the invention there is provided a computer
program data site for distributing services, said site comprising:

15 a computer for storing program data and for connecting to a telecommunications

network; and

wherein the program data comprises executable instructions for implementing a
method comprised of the steps of:

providing application code on the remote computer, said application code

e, 20 providing services related to the device;

exporting an enumeration of said services to said host computer, said

enumeration being a subset of said services;
encapsulating said enumeration of said services; and
accessing a service at the remote computer through said encapsulation of said
25 services.

According to another aspect of the invention there is provided a computer
system including a host computer and a remote computer, the remote computer being in
electronic communication with a device, a method for distributing services related to
the device, the method comprising the steps of:

30 providing application code on the remote computer, said application code
providing services related to the device;

exporting an enumeration of said services to said host computer, said

enumeration being a subset of said services;

encapsulating said enumeration of said services; and
35 accessing a service at the remote computer through said encapsulation of said
services.

\\melb_£iles\home$\Priyanka\Keep\speci\41759-00.doc 30/10/03

- 33 -

Brief Description of the Drawings

5 Objects and features of the present invention will become more fully apparent
from the following description and appended claims, taken in conjunction with the
accompanying drawings. Understanding that these drawings depict only typical
embodiments of the invention and are, therefore, not to be considered limiting of its
scope;, the invention will be described with additional specificity and detail through use

10 of the accompanying drawings in which:
Figure 1 is block diagram of the major hardware components included in the
presently preferred embodiment of the present invention;
Figure 2 is block diagram of ttie major hardware and software components
included in an embodiment of the present invention;

\\melb_files\home$\Eriyanka\Keep\speci\d1759-00.doc 30/10/03

10

15

20

25

30

WO 00/58912 . PCT/US00/07790

Figure 3 is block diagram of the major hardware and software components included in
the presently preferred embodiment of the present invention;

Figure 4 is an object diagram of an object hierarchy of the presently preferred
embodiment of the present invention;

Figure 5 is a flow diagram illustrating steps that are followed in the presently
preferred embodiment of the present invention;

Figure 6 is a flow diagram illustrating steps that are followed in the presently
preferred embodiment of the present invention; and

Figure 7 is a flow diagram illustrating steps that are followed in the presently

preferred embodiment of the present invention.

Detailed Description

It will be readily understood that the components of the present invention, as generally
described and illustrated in the Figures herein, could be arranged and designed in a wide
variety of different configurations, Thus, the following more detailed description of the
embodiments of the system and method of the present invention, as represented in Figures 1
through 7, is not intended to limit the scope of the invention, as claimed, but is merely
representative of the presently preferred embodiments of the invention.

The presently preferred embodiments of the invention will be best understood by
reference to the drawings, wherein like parts are designated by like numerals throughout.

Figure 1 is block diagram illustrating the major hardware components typically
utilized in the presently preferred embodiment of the present invention. In the presently
preferred embodiment, the present invention is used in a networked computer system 10
where a host computer 12 is connected to an embedded device 14. Typically the embedded
device 14 includes a computer 16 connected to input and output devices 18, 20. The
computer 16, in the presently preferred embodiment, is an embedded computer 16.
Particularly, in the presently preferred embodiment, the computer 16 comprises a
microcontroller (not shown). However, it will be appreciated by one skilled in the art that the
functions and processing normally carried out by a microcontroller could be carried out by
larger processors, whether they are part of a larger controller or part of a typical computer

system. The embedded computer 16 is remote from the host computer 12, in that the

10

15

20

25

30

WO 00/58912 s PCT/US00/07790
embedded computer 16 and host computer 12 are each computers capable of functioning on
their own. The term remote does not necessarily mean that the embedded computer 16 is at a
different location than the host computer 12, although in many embodiments of the present
invention the host computer 12 is at a different location than the embedded comptuer 16. The
terms embedded computer 16 and remote computer 16 may be used interchangeably herein.
Those elements discussed as being stored and/or implemented by the remote computer 16
could be stored and/or implemented at the host computer 12, in some circumstances.

The present invention has a broad application to many kinds of computer networks 10.
Generally, the computer system 10 in which the presently preferred embodiment of the
present invention also includes one or more client computers for monitoring and/or
controlling the embedded device 14. The remote computer 16 is operably connected to input
and/or output devices 18, 20 capable of electronic communication with the remote computer
16, or, in other words, to devices 18, 20 capable of input and/or output in the form of an
electrical signal. Sometimes the input and output device(s) 18, 20 and the remote computer
16 are both housed within the same physical structure.

The host computer 12 and the remote computer 16 are both broadly defined digital
computers. A computer, as used herein, is any device that includes a digital processor
capable of receiving and processing data. A computer includes the broad range of digital
computers including microcontrollers, hand-held computers, personal computers, servers,
mainframes, supercomputers, and any variation or related device thereof.

The input and output devices 18, 20 include any component, element, mechanism,
appliance, or the like capable of receiving and/or generating an electronic signal. Examples
of devices within the scope of the term device includes a vending machine, a telephone, a
door lock, a temperature sensor, a motor, a switch, and a light.

In current design, the host computer 12 is typically an IBM-compatible personal
computer running the Microsoft Windows 95 or 98 operating system. The remote computer
16 typically includes an embedded processor (not shown), and, as stated, often includes a
microcontroller. The devices 18, 20 can be any devices with electronic interfaces of which a
processor could interface and interact with. One possible item that may be used with the
present invention is a vending machine (not shown). Many vending machines include one or

more microcontrollers for controlling different parts of the vending machines. These

10

15

25

30

wo 60/58912 ¢ PCT/US00/07790

microcontrollers fall within the scope of remote computer 16. The input and output devices
18, 20 include the buttons for selecting items from the vending machine, switches for
allowing those items to be dropped down to the user, lights for indicating which items are
gone, the change release for releasing any change, etc. As known in the art, this vending
machine embodiment includes the input and output devices 18, 20 and the remote
computer(s) 16 integrated within the same structure. The present invention, therefore, may be
implemented in such an environment. Those skilled in the art will also realize that the remote
computer 16 may be in a separate structure from its attached input and output device(s) 18,
20. Many of the modern devices do come with embedded microcontrollers, for example,
many cellular phones, pagers, and the like come with embedded microcontrollers.

The host computer 12 may be connected to the remote computer 16 through a variety
of connections, including RS 232, RS 485, modem, powerline, wired connection, wireless
connection, etc. Similarly, the remote computer 16 may be connected to various input and
output devices 18, 20 through a variety of ways. As stated, typically the remote computer 16
comprises a microcontroller (not shown). Microcontrollers often have input/output ports for
communicating with external devices. These specifications of the particular microcontroller
often dictate how a device is connected to the microcontroller. Those skilled in the art
appreciate how different devices may be connected to computers, whether they are embedded
computers, standard desktop computers, mainframes, etc.

As stated, client computers 22 may also be included within the computer system 10.
Such a configuration allows users to access services at the remote computer 14 through the
host computer 12, even over great distances. The host computer 12 and the client computers
22 may all be connected together on a computer network 24, such as a LAN, WAN, etc. In
addition, the client computer 22 may connect from a remote location to the host computer 12
via a dial up connection, via an intranet, or via the Internet.

Figure 2 depicts a block diagram of the major hardware and software components of
the presently preferred embodiment of the present invention. As shown, the hardware
elements of Figure 2 correlate with those of Figure 1. Those skilled in the art will appreciate
that there are a variety of ways to interconnect the various hardware components, and that
there are various configurations wherein one or more of the hardware elements may be

eliminated by moving functionality from one hardware element to another.

10

15

20

WO 00/58912 I . PCT/US00/07790

The present invention enables a user to monitor and/or control services provided by
the embedded computer 16 through a host computer 12. The services of the embedded
computer 16 are exposed by the present invention such that they may be accessed over the
computer network 10 and in an efficient manner.

In the presently preferred embodiment of the present invention, data from input and/or
output devices 18, 20 is read in and/or written out through input/output ports 26. An
embedded application program 28 includes the executable instructions that directly interface
with these input and/or output ports 26. Usually embedded applications 28 have a main loop
which is iterated through over and over. Of course, embedded application developers may
write an application that does not have a main loop that is continually iterated through. The
principles of the present invention could be applied to those applications not having a main
loop and provide substantially the same benefits as are realized in the presently preferred
embodiment.

Basic information about the embedded or remote computer 16, its characteristics and
capabilities are useful in practicing the present invention. Such basic information may be
stored at the remote computer 16 in a capabilities table 30. The capabilities table 30 may be
stored as a file, or it may be stored as static data that is compiled with the application 28, or it
may be stored on a storage device (not shown) external to the remote computer 16. Those
skilled in the art will realize that there are a variety of ways to store basic capabilities of a
remote computer 16 and its connected input and/or output devices 18, 20. Table 1 contains

pseudocode illustrating what types of information may be stored in the capabilities table 30.

Table 1
1A byte ordering type
1B device identification
1C device address
1D software version
1E communication protocol version
IF maximum communication packet size
1G nonvolatile storage flag (indicates yes or no)
1H nonvolatile storage size, starting address

-10-

10

15

20

25

WO 00/58912 PCT/US00/07790

8-
11 static file system flag
1 dynamic file system flag

As illustrated in Table 1, the capabilities table may include indicate the byte order
type shown at line (1A). This byte ordering type (1A) may indicate whether the remote or
embedded computer 16 is big endian or little endian. The table may also indicate what the
device identification, shown at line (1B), is for that particular remote or embedded computer
16. The device address, shown at line (1C), if any, may also be stored in the capabilities table
30. For compatibility purposes, the version numbers, shown at line (1D), for the software
being used may also be stored. Similarly the communication protocol version numbers,
shown at line (1E), may also be stored. Particulars about the communication may also be
stored. For example, as shown in Table 1, the maximum communication packet size, shown
at line (1F), may be stored. A nonvolatile storage flag shown at line (1G) may indicate
whether there is nonvolatile storage accessible by the remote computer 16. Pertinent
information about the nonvolatile storage may also be stored, such as the nonvolatile storage
size and its starting address, shown at line (1H). A static file system flag, shown at line (1D,
may indicate whether there is a static file system. Similarly, a dynamic file system flag,
shown at line (1J), may indicate whether there is a dynamic file system. The capabilities
table 30 is useful in that software at the host computer 12 can request the capabilities table 30
and ascertain the characteristics and capabilities of the embedded computer 16.

Users, through software running on the client computer 22 and/or the host computer
12, may wish to access certain services provided by the remote embedded computer 16.
Services include different functions, variables, events, and/or files. For example, users may
wish to execute particular functions, access certain variables, check on specified events, or
access specific files. In current design, the services that a user may need access to are
identified and listed. The identification of services also includes information about the
cex_-tain services. This identification of certain services may be accomplished in a variety of
ways. For example, in current design, a table 32 of services may be stored at the remote
computer 16. The services table 32 may be stored as a file, or it may be stored as static data
that is compiled with the application, or it may be stored on a storage device (not showm)

external to the remote computer 16. Those skilled in the art will realize that there are a

11-

WO 06/58912 PCT/US00/07790

9
variety of ways to store basic information about certain services provided by the application
code 28 running on the embedded computer 16. Table 2 contains pseudocode illustrating

what types of information may be stored in the services table 32.

Table 2
2A “FunctionA”, function, word, void, &FunctionA
2B “FunctionB”, function, int, float, &FunctionB
2C “VarA”, variable, int, void, &varA
2D “VarB”, variable, string, void, &varB
2E “EventA”, event, byte, void, &eventA
2F “EventB”, event, int, void, null
2G “FileA”, file, void, void, &fileA
2H “FileB”, file, void, void, &fileB

As illustrated in Table 2, the services table 32 may include information such as the
name or identification of the service, the type of service (e.g., whether it is a function,
variable, event, file, etc.), the input parameter type, if any, the return type, if any, and the
address of the service. Information about function FunctionA, shown at line (2A), is

10 illustrated indicating that it is a function, it takes a word as an input parameter, it returns
nothing (void), and its address is indicated at &FunctionA. Line (2B) illustrates the
information about another function, FunctionB. Relevant information about variables are
illustrated at lines (2C)-(2D). Information about events is illustrated at lines (2E)-(2F).
Events may be any type of data. For example, an event could be a variable, a particular

15 register, an interrupt, etc. Events may be particularly useful for items that occur
asynchronously. Examples of asynchronous types of events include an alarm going off or an
external LED changing. Information about certain files are illustrated at lines (2G) and (2H).

By storing information about certain services at the remote computer 16, software on
the host computer 12 can readily ascertain what services are available at the remote computer

20 16. Usually the application code 28 defines the services. The services table 32 functions to
provide information about certain services, where the information would be useful to a user at

the host computer 12, or to a user at the client computer 22 connected thereto.

12-

10

15

20

25

30

WO 06/589 12 PCT/US00/07790
-10-

In current design, an embedded interface module 34 provides access between the
services at the remote computer 16 and software running at the host computer 12. In the
presently preferred embodiment, the interface module 34 uses information in the services
table 32 to access the desired service on the remote computer 16. Further, in the presently
preferred embodiment, the interface module 34 is reentrant code.

The interface module 34 communicates through an embedded communications port
36. In cwment design, a communications module 38 provides communication using the
communications port 36. One skilled in the art will appreciate, however, that the interface
module 34 may include the code necessary to directly interface with the communications port
36 at the remote computer 16. The communications module 38 or code 38 provides access to
the communications port 36, and ensures that data is given to the communications port 36 in
appropriately sized and formatted pieces, and that data received from the communications
port 36 is correctly read from the port 36.

The host computer 12 includes a communication port 40 in electronic communication
with the communications port 36 of the remote computer 16. As discussed earlier, there are a
variety of such ports available with computers that are capable of interfacing with a remote
and/or embedded computer port 36. A communication module 42 provides features similar to
those provided by the communications module 38 of the remote computer 16. The
communications module 42 correctly formats data that is written to and read from the
communications port 40,

The host computer 12 provides access to the services provided at the embedded
computer 16. In the presently preferred embodiment of the present invention, the services
table 32 is retrieved from the embedded computer 16 and from it 32 a list of the services is
created at the host computer 12 that substantially corresponds to the services table 32. The
list of services at the host computer 12 is referred to in Figure 2 as exported services
information 44. The exported services information 44 indicates what services are available at
the remote computer 16 and what data types, if any, are used with individual services. This
facilitates access via the host computer 12 to the remote or embedded computer 16.

In current design, a process is initially started on the host computer 12 that causes the
exported services information 44 to be created. The device access controller 46 provides this

initial direction, in current design.

13-

10

15

20

25

30

" wo 06/58912 " PCT/US00/07790

As stated, the presently preferred embodiment of the present invention may provide
access to the services of the embedded computer 16 to client computers 22 that are in
electronic communication with the host computer 12. To facilitate access by client computers
22, the host computer 12 may include servers. A web server 48 may be started at the host
computer 12. The web server 48 may provide a web interface to services at the remote
computer 16. For example, the data and/or services of the remote computer 16 may be
represented graphically through HTML pages. Thus, the device access controller 46, may
create web pages (not shown) from the services available at the remote computer 16, and the
web server 48 may service HTTP requests for these web pages.

A device access server 50 may also be included at the host computer 12 to service
client requests for services of the remote computer 16. In current design, the device access
server 50 accesses the exported services information 44 and makes this information available
to clients at client computers 22.

A client computer 22 may include a client application 52 and a device access client
54. The device access client 54 communicates with the device access server 50 to access the
services of the remote computer 16. The client application 52 may use the device access
client 54 to obtain information about the services. The client application 52 could also access
data from the web server 48 located at the host computer 12. For example, the client
application 52 may be a web browser capable of connecting to the web server 48.

Referring to Figure 3, the presently preferred embodiment of the present invention is
shown with an object implementation whereby the exported services information is
encapsulated. Users of the present invention may encapsulate the list of services of the
remote computer 16 by using a software object 56 at the host computer 12. An object 56 of
the presently preferred embodiment of the present invention is stored and implemented on the
host computer 12. The object 56 provides an object representation of at least part of the
remote computer system 14, where the remote computer system 14 includes both the remote
computer 16 and its connected devices 18, 20. Part of the object 56 is used mainly to access
the services provided by the remote computer 16. By implementing the object 56 on the host
computer 12, developers are provided with the many benefits of object-oriented analysis and
design without using valuable memory resources on the remote computer 16 to provide these

benefits. In current design, only items necessary for storage on the remote computer 16 are

14-

15

20

30

WO 00/58912 12 PCT/US00/07790
stored at the remote computer 16. Of course, it will be appreciated by those skilled in the art
that, if the remote computer 16 did have access to a substantial amount of memory, many
more items could be stored at the remote computer 16,

An object 56 is a description of a data structure. An object 56, as used herein, is an
abstract data type that encapsulates data and/or functions. Accordingly, one skilled in the art
could implement a data structure equivalent to an object 56, without using object-oriented
features of certain programming languages. Specifically, an object 56 as used herein does not
require that software developers use object-oriented languages such as C-++ or Smalltalk. An
object 56 within the scope of the present invention could be implemented in any
programming language. For example, an object 56 could be implemented in C, C++, Pascal,
FORTRAN, assembly language, etc. In current design, the C programming language is being
used.

The member components (functions, variables, data, etc. that are encapsulated by the
object 56) of the object 56 are stored on the host computer 12. A member component of the
object 56 may be either a member function or member data. In the presently preferred
embodiment, several member functions, or methods, and several data members, or attributes,
are stored on the host computer 12. Although the member components, as defined by the
class definition of the object 56, are stored on the host computer 12, the member components
may access services of the remote computer 16: the object 56 may provide access to
functions, variables, events, and/or files of the remote computer system 14.

To provide the benefits of the present invention, at least one member component of
the object 56, implemented and stored on the host computer 12, is in electronic
communication with the remote computer 16 and is used to access data on the remote
computer 16. Accessing data may be retrieving data from the remote computer 16, changing
data that is stored at the remote computer 16, or it may be causing code on the remote
computer 16 to be executed.

In current design, the object 56 functions in part to mirror data and/or functions and/or
events of the remote computer 16. The object 56 includes data and or functions that
correspond to the services at the remote computer 16. The services table 32 and the exported
services information 58 enable the object 56 to relate or expose the services of the remote

computer 16 to software running on the host computer 12 and/or software running on client

-15-

10

15

20

25

30

wo 06/58912 13 PCT/US00/07790

computers 22. In this way, part of the data and/or functions of the remote computer 16 is
distributed across the computer network 10. In the presently preferred embodiment, only the
necessary data is stored at the remote computer 16, and only the executable code necessary to
be stored on the remote computer 16 is stored on the remote computer 16. Data and functions
representative of the remote computer system 14 are distributed between the remote computer
16 and the host computer 12 to minimize the resources necessary at the remote computer 16.
The object 56 provides the benefits of object-oriented analysis and design to developers and
also provides access to data and functions natively residing in the remote computer system
14, Thus, the data and functions provided by the object 56 are distributed between the host
computer 12 and the remote computer system 14 but are all accessible through the object 56
at the host computer 12.

In the presently preferred embodiment of the present invention, the object 56 is part of
an object hierarchy. The object hierarchy will be discussed in relation to Figure 4.

The system used in combination with Figure 3 may be substantially similar to the
system 10 shown in Figure 2. The software modules of the host computer 12 may be
modified to include the device object 56 and an object loader 60.

The object loader 60 creates the device object 56. The following tables of pseudocode
and explanation relating thereto will provide further details of the device object 56 and the
device object loader 60. The tables contain pseudocode written with the C programing
language as a target language in which to implement the pseudocode. It will be appreciated
by those skilled in the art that almost any programming language could be used in
implementing the present invention.

In the presently preferred embodiment, the device object loader 60 takes a description
of a device object 56 and creates an instance of that object 56. This instance includes the
exported services information 58 contained therein. In the pseudocode that follows, the
instance of the device object 56 includes tables for all of the services that have been exported
from the remote computer 16 and that are available to the host computer 12. As will be
discussed more with Figure 4, services of base objects can be overridden by objects that
inherit that base object when that particular object is loaded and/or instantiated.

In the pseudocode, the object hierarchy will be instantiated base object first, so that

the base object will be the first object to initialize. Once the device object loader 60 has

-16-

10

15

wo 06/58912 14- PCT/US00/07790
completed it's task of loading all of the device objects 56 for that particular device object
instance, it will be ready for use by other software routines.

Table 3 illustrates a data structure that may be used for the device object 56. As
illustrated, hash tables are used as tables for storing the exported services information 58.
The pseudocode of Table 3 also shows a separate hash table for each type of service exported,
including variables, events, functions, and files. One skilled in the art will appreciate how a
hash table, or hashing, may be implemented.

Table 3

typedef <A hash table implementation> HASH;
typedef <a string definition> PTSTR;
typedef unsigned long DEV_OBJECT_HANDLE;

typedef struct _DeviceObject {

HASH VarServiceTable; /* Variable Services Table */

HASH EventServiceTable; /* Event Services Table */

HASH FuncServiceTable; /* Function Services Table */

HASH FileServiceTable; /* File Services Table */

PTSTR DeviceObjectName; /* The Full String Name of this object */
}DeviceObject;

Table 4 illustrates the different functions that may be performed for a variable. Of
course, the same types of functions may also be provided with events, functions, and files.
The principles of the illustration of Table 4 can be applied to the variables table, as shown, as
well as to events, functions, and files. As illustrated in Table 3, hash tables may be used for
storing the exported services information 58. Table 4 includes pseudocode showing the
different functions that may be provided and performed for each variable in the variable table.
In operation, after the services table 32 has been exported to the host computer 12, the host
computer 12 then has exported services information 58. The exported services information
58 typically includes variables. Table 4 illustrates that, in current design, the code running on

the host computer 12 will be given the ability to get a variable value, set a variable value, get

A7-

WO 00/58912 15 PCT/US00/07790
information about the variable, and subscribe to the variable, The same capabilities can be

provided in relation to functions, events, and files.

Table 4

typedef unsigned long SERVICE_STS;

typedef enum {
VAR_GET, /* Get the variables Value */
VAR_SET, /* Set the Variables Value */
VAR_INFO, * Get information about this variable */

VAR _SUBSCRIBE /* Subscribe to this variable */
} VAR_SERVICE_CMD;

/* This is the definition of the variable service accessing function */
typedef SERVICE_STS (*PFVarService)(DEV_OBJECT_HANDLE This,
VAR_SERVICE_CMD Cmd, PTSTR ServiceName, ...);

typedef struct _VarServiceEntry{
DEV_OBJECT_HANDLE ThisHandle; /* Handle to this Object */

PFVarService VarService; /*Pointer to the service assessor
function*/
PTSTR VarServiceName; - /* The name of this service */
BOOL Final; /* Flag to tell if this service can be overridden */
BOOL Protected; /* Flag that makes this service only useable from
** inherited objects */
BOOL Virtual; /* Flag that means that this service is defined but not

** implemented and must be implemented by inherited
** objects in order for the object to be instantiated */
_VarServiceEntry* NextEntry; /* The next varservice entry that was overridden
**by this entry */
}VarServiceEntry;

18-

10

15

20

25

WO 00/58912 PCT/US00/07790
-16-

When the object is first created, in current design, the device object 56 is filled
starting with the base object first. With the pseudocode illustrations, each of the hashes in the
device object table will be filled with that object's services. When the base object is
initialized, all of its variables may be placed within the VarServiceEntry. Accordingly, the
fina] device object reference will contain the base objects VarServiceEntry table and can be
manipulated through the function pointer, VarService. In the presently prefemred
embodiment, the entries in the tables can only be overridden if the Final flag in the
VarServiceEntry table is FALSE. This allows the base object to implement services that
cannot be overridden by inherited objects. If the service can be overridden, an inherited
object can override the service by creating a new table and inserting it into the
VarServiceTable with the same name. The NextEntry pointer in the VarServiceEntry table
allows the overridden service to still be accessed by the inherited objects. The other flags
available are the Protected and Virtual flag. The Protected flag indicates that when true only
inherited objects can utilize this service, not the owner of the object. The Virtual flag
indicates that the interface is not implemented in this object and must be implemented in
inherited objects in order for the device object to be instantiated.

Table 5 includes pseudocode for the object loader 60. The object loader 60 takes a
string definition of the object and creates the object. Each object’s initialization routine
places its services into the device object table. After the object loader 60 has loaded the
objects, the device object 56 is created and can be used to manipulate the embedded system
14, including the remote computer 16 and its input and/or output devices 18, 20. In other
words, after the device object 56 is created, it can be used to access the services at the remote
computer 16.

Table 5

DeviceObject* LoadDeviceObject(PTSTR DeviceObjectDescriptor) {
PTSTR* ObjectNameList;
int 1;

int NumberOfObjects; /* Number of Objects in the ObjectNameList */

19-

WO 00/58912 PCT/US00/07790

-17-

object*/

/* Parse the String Device object descriptor into each particular piece and place
** each piece into the ObjectNameList

*/

ParseDeviceObjectDescriptor(DeviceObjectDescriptor, ObjectNameList);

/* Allocate a new Device Object Structure */
DeviceObject* NewObject = MallocNewDeviceObject();

/* Initialize any data structures within the device object */

InitDeviceObject(NewObject);

/* Loop over all of the objects in the hierarchy initializing each one individually */
for(i = 0; i < NumberOfObjects; i++){
DIL_HANDLE DeviceObjectDIl; /* Handle to a loaded DIl */
PFDeviceObjectDliInit DeviceObjectInit; /*Ptr to Object Initialization routine*/
DWORD Sts;
PTSTR ObjectName = ObjectNameList[i]; /* Get this objects name */

DeviceObjectDIl = FindDeviceObjectDII(ObjectName); /*Find dll for this

/* Retrieve the Initialization routine function pointer */

DeviceObjectlnit = GetFunctionPtr(DeviceObjectDII);

/* Have the Device Object fill it's Services into the Device Object Table */
Sts = DeviceObjectInit(NewObject);
!

return NewObject;

-20-

10

15

20

25

30

WO 00/58912 18 . PCT/US00/07790

The device access server 50, and/or the web server 48, and/or other software needing
access to the services of the remote computer 16 may access the device object 56 to access
the exported services information 58.

A benefit that comes from the use of objects is the ability to provide fixes and/or
extensions through the use of subclasses. Figure 4 is a simple illustration of how an object
hierarchy 62 can be used to extend the capabilities or provide fixes to software loaded on the
remote computer 16. In the object hierarchy 62 of Figure 4, the base object 64 includes data
and functions that are common to a large group of remote computers 16. The device object
66, a subclass from the base object 64, is more focused on a smaller group of remote
computers 16 and includes data and/or functions that are more specific and focused on a
narrower set of remote computers 16. As shown in Figure 4, the device object 66 includes
functions D, E and F. Funétions D, E, and F all are simply wrappers for the real functions D,
E, and F, which are all implemented on the remote computer 16. Functions D, E, and F are
typically implemented through code of the embedded application 28. Information necessary
to interface with Functions D, E, and F may be part of the exported services information.

To illustrate the usefulness of the object-oriented approach, assume that after a period
of time from the initial release of the code of the remote computer 16, the functions D and F
at the remote computer 16 had been altered. Function D at the remote computer 16 had been
altered to provide additional error checking. Function F had been altered to fix a bug found
in the earlier release. Through use of the present invention, software at the host computer 12
can be implemented to add these fixes to the remote computer 16 software without changing
the code on the remote computer 16. .

As shown in Figure 4, a subclass, device extension object 68, may be derived from the
device object 66. The device extension object 68 may include its own Function D that
overrides the Function D of the device object 66. The new Function D may add code to
implement any new changes to the function D at the remote computer 16. In this example,
for instance, the new Function D may include code that provides additional error checking.
Function D may also include the original code of the old Function D literally, or it may
simply call the device object Function D before, during, or after its execution of the new

Function D code.

-21-

20

25

30

wo 06/58912 19 PCT/US00/07790

The device extension object 68 may also include its own Function F that overrides the
Function F of the device object 66. The new Function F may add code to implement any new
changes to the function F at the remote computer 16. In this example, for instance, the new
Function F may include code that fixes the bug found in the code of an earlier release of code
on the remote computer 16. Function F may also include the original code of the old
Function F literally, or it may simply call the device object 66 Function F before, during, or
after its execution of the new Function F code. A simple example is as follows: assume that
an original function F, at the remote computer 16, was to add two numbers together and store
the result. Further, assume that after the code was released and shipped, it was found that in
certain circumstances, the calculation was incorrect. The new Function F could add code on
the host computer 12 that could adjust, compensate, and/or fix the calculation when an
incorrect result was given by the old function F at the remote computer 16.

Of course, it will be appreciated that all types of extensions and/or fixes may not be
able to be adequately compensated for through code on the host computer 12. The foregoing
illustration is meant to show that some extensions and/or fixes may be adequately
compensated for through code on the host computer 12, and the example shows how it can be
accomplished.

The presently preferred embodiment of the present invention typically involves at
least two separate pieces of code, the code loaded on the remote computer 16 and the code
loaded on the host computer 12. Figure 5 is a flow diagram showing the steps that may be
followed in implementing the necessary components at the remote computer 16. Figure 6 is a
flow diagram showing the steps that may be followed in implementing the necessary
components at the host computer 12.

Typically, developers who wish to use the present invention have a computer system
10 including a remote computer 16 and a host computer 12. The remote computer 16
includes the external devices 18, 20 for inputs and outputs. Developers who wish to use the
present invention often have an embedded application 28 that receives and processes device
inputs 18 and generates outputs 20. In implementing the present invention, the developers
first identify 70 the services that are to be exported to the host computer 12. The services

include functions, variables, events, files, etc.

22

10

15

20

25

30

wo 06/58912 PCT/US00/07790
220-

Once the services to be exported have been identified 70, a table of these services is
created 72. This table 32 may be implemented in a variety of ways. For example, the
services table 32 may be stored as a data structure, a file, etc. Typically the services table 32
is static, meaﬁing that the table is usually fixed in relation to the code loaded on the remote
computer 16. For example, usually the services table 32 is compiled and linked with the code
that is to be loaded on the remote computer 16. However, the services table 32 could be
dynamic, meaning that it could be generated and created after the code has been compiled,
linked, and loaded on the remote computer 16.

In current design, a capabilities table 30 is also created 74. Similar to the services
table 32, the capabilities table 30 may be either static or dynamic, and it may be stored in
various ways, as will be appreciated by one skilled in the art.

The code for the remote computer 16 is then written or modified 76 to interface and
communicate with the software running or to be run on the host computer 12. As shown in
Figures 2 and 3, a separate embedded interface module 34 may be written. This embedded
interface module 34 may be written so as to respond to various requests that may be received
from the software at the host computer 12. By creating a separate interface module 34, the
embedded application 28 may maintain focus on the services of the remote computer 16. In
current design, the embedded application 28 is typically modified to make a function call into
the embedded interface module 34 within its main operation loop to provide time for
responding to requests from the host computer 12. The embedded interface module 34
performs some processing, and then returns back to the main operation loop. The interface
module 34 should retum control to the main operation loop within a short enough period of
time so that the main operation loop will not miss any necessary events and/or processing.

In an altemnative preferred embodiment, the embedded interface module 34 could be
called by an interrupt service routine that is called periodically.

As also shown in Figures 2 and 3, a separate communications module 38 may be
created to handlé communications of data to and from the communications port 36.

Once the necessary changes have been made to the code of the remote computer 16,
the code is then compiled 78 and linked together, and then loaded on the remote computer 16.
Of course, it will be appreciated by one skilled in the art that the various source files could be

compiled at different times, and then linked and loaded onto the remote computer 16.

23-

15

20

25

30

WO 00/58912 ’ PCT/US00/07790

Figure 6 is a flow diagram showing the steps that may be followed in implementing
the necessary components at the host computer 12. Of course, different steps could be
implemented to practice the present invention. The steps of Figure 6 are illustrative of the
principles of the présent invention and are not meant to be limiting as to the breadth of the
principles taught herein. To initiate the operation of software of the presently preferred
embodiment of the present invention on the host computer 12, a user may start 80 the device
access controller 46. The device access controller 46, in current design, includes the
communication module 42 for communicating with the remote computer 16.

In current design, the device access controller 46 resets 82 the embedded interface
module 34 to a known state. This includes resetting any state variables, data, etc. In the
presently preferred embodiment, the embedded interface module 34 acknowledges the reset
by sending an acknowledgment back to the device access controller 46.

The access controller 46 also requests 84 the capabilities table 30 from the remote
computer 16. Through the capabilities table 30, the software running at the host computer 12
becomes aware of what capabilities the remote computer 16 has.

The access controller 46 also requests 86 the services table 32 from the remote
computer 16. By obtaining the services table 32, the software at the host computer 12 is able
to create and maintain exported services information 44 about particular services at the
remote computer 16. The host computer 12 may then present this information to a user at the
host computer 12 or to client software requesting such information.

As explained above, the present invention may be implemented using object-oriented
techniques. If a user wishes to use objéct-oriented techniques, a device object 56 may be
created 88. This device object 56 may encapsulate all or some of the information retrieved
from the services table 32.

Any servers to be used at the host computer 12 in servicing requests from clients 22
need to be started. For example, a web server 48 could be started 90 to service requests from
web browsers at client computers 22. In addition, or in the alternative, a device access server
50 could be started 92 for providing access to information about the remote computer 16 and
also in providing access to the remote computer 16. As shown in Figures 2 and 3, a client

application 52 and/or a device access client 54 may be started on client computers 22. Once

24-

15

20

25

30

WO 00/58912 PCT/US00/07790
-22-
the software is running at the host computer 12, it acts to service 94 requests it receives. The
software will typically continue servicing 94 requests until the software stops 96 running,

Figure 7 depicts a flow diagram of the scenario of getting a variable value from the
remote computer 16. Figure 7 tracks the software components as shown in Figures 2 and 3.
However, it will be appreciated by one skilled in the art that the steps of Figure 7 could easily
be modified for use with a different software component architecture that implements the
principles of the present invention as contained herein. The principles illustrated and
described in relation to Figure 7 can be used in accessing other services of the remote
computer 16.

Unless a client application 52 is already aware of the services at the remote computer
16, it 52 first usually requests 98 a list of available services. The server, either the web server
48, the device access server 50, or similar server, receives 100 the request and retrieves the
exported service information from the device object 56. If the particular implementation of
the present invention is not using an object-oriented approach, the server could either Tetrieve
the exported service information directly from the exported service information 44, or from a
function designed and implemented to return such information.

The server then sends 102 the services information to the client 52. Once the client
knows what services are available at the remote computer 16, it may request certain data
and/or actions relating to the services. As shown in Figure 7, the client may request 104 a
specific variable value. A user, through client software 52, may request a specific variable
value from the remote computer 16 to know the state of events or data at the remote computer
16. For example, the remote computér 16 may be in electronic communication with a
temperature sensor, and may store the temperature sensor data in a variable. A user may wish
to know what that variable value is so as to know what temperature is being sensed at the
remote computer 16.

The server receives 106 the request for a particular value and may request 108 the
variable from the appropriate device object 56, or functionally equivalent software. The
object 56, upon receiving this request, sends 110 a message to the embedded interface module
34 requesting this value. The hardware and software communication pathway between the
host computer and remote computer may be as shown and described in relation to Figures 2

and 3.

25-

15

20

25

30

WO 00/58912 PCT/US00/07790
23-

Upon its next call for processing, the embedded interface module 34 receives 112 the
message and accesses 114 the variable and reads the value contained therein. After retrieving
the variable value, the embedded interface module 34 sends 116 the value back to the object
56 through the communication pathway. Once the object 56 has received the value, it returns
118 the value to the server. The server then answers 120 the request from the client and sends
the variable value to the client software.

If an object hierarchy were being utilized to extend the capabilities of the object, as
discussed in relation to Figure 4, the object 56 may provide further processing on the data
before it returns the data to the server. For example, a subclass component may alter the
view, or modify the value, of the retrieved variable. The variable or value retrieve function,
in the form of a retrieve or get operation on the object 56, may be overridden in the subclass
into a retrieve or get operation which includes performing code that may alter the value of the
variable. First, the get operation calls the get operation from the base class in order to retrieve
the value from the remote computer. After the value has been retrieved from the remote
computer, the get operation may then execute a function or instructions to alter the value.
The get or retrieve operation of the subclass component is viewed the same as the one in the
base class, but additions and extensions stored on the host have enhanced the device object.

In the presently preferred embodiment of the present invention, commercially
available software from emWare, Inc. is used in implementing the present invention.
emWare, Inc. may be contacted through its web site at http:/www.emware.com. One skilled
in the art will appreciate how the commercially availably software items from emWare can be
used with the present invention. The 'following is a general and basic description of
technology of emWare that is used in the presently preferred embodiment of the present
invention.

emWare’s business centers around microcontrollers that manage many electronic
devices used in today’s world, including telephones, home appliances, office equipment,
ATMs, security systems, VCRs, automobiles, etc. These microcontrollers are embedded into
millions of intelligent electronic devices. -

emWare has developed technology and software which provide distributed network-
based device control. emWare's Embedded Micro Intemetworking Technology (EMIT)

software is designed to move the majority of software off of the embedded microcontroller

-26-

15

20

25

30

WO 00/58912 PCT/US00/07790
24

and distribute it to more capable computers over a network. EMIT has also been developed
to leverage existing Internet technologies.

Use of EMIT software involves various components including the following: the
customer’s embedded application 28, emMicro software (which correlates to the embedded
interface module 34), emGateway sofiware, emNet software (which correlates to the
communication modules 38 and 42), and the customer’s monitoring/controlling application
52. Typically, potential customers of emWare already have embedded environments in
which they plan to deploy emWare’s EMIT software to enhance their monitoring and
controlling capabilities. These embedded environments typically include the embedded
system 14, the host computer 12, and client computers 22.

emMicro is used in the presently preferred embodiment of the present invention on
the remote computer 16 for relaying service information from the remote computer 16 to the
host computer 12. Service information is information about the functions, variables, events
and files of the embedded application 28 running on the remote computer 16.

The communications between the host computer 12 and the remote computer 16
running emMicro are usually accomplished via a lightweight network such as R8232, R5484,
RF, or IR. The emNet component is responsible for handling communications between
emMicro and the software on the host computer 12.

From the above discussion, it will be appreciated that the present invention distributes
services of an embedded system across a larger computer system. In addition, the present
invention increases the functionality of an embedded system by allowing functionality to be
distributed across a computer system. The. present invention also increases the effective storage
capability of data related to the embedded system by allowing this data to be stored on the host
computer. Moreover, the present invention increases the ease of interfacing and communicating
with a remote computer by encapsulating services information and exposing it to client
applications thereby making the services of the remote computer easier to access and interact
with.

The present invention may be embodied in other specific forms without departing from
its spirit or essential characteristics. The described embodiments are to be considered in all
respects only as illustrative, and not restrictive. The scope of the invention is, therefore,

indicated by the appended claims, rather than by the foregoing description. All changes which

27-

10

- 25 =

come within the meaning and range of equivalency of the claims are to be embraced
within their scope.

It is to be understood that, if any prior art publication is referred to herein, such
reference does not constitute an admission that the publication forms a part of the
common general knowledge in the art, in Australia or any other country.

In the claims which follow and in the preceding description of the invention,
except where the context requires otherwise due to express language or necessary
implication, the word “comprise” or variations such as “comprises” or “comprising” is
used in an inclusive sense, i.e. to specify the presence of the stated features but not to
preclude the presence or addition of further features in various embodiments of the

invention.

\\melb_files\home$\Priyanka\Keep\speci\d1759-00 .doc 30/10/03

-28-

{
ki) o
WO 00/58912 2% o PCT/US00/07790
THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS: '

1. A distributed object for use in a networked computer system including a hast

computer and a remote computer, the remote computer being in electronic commumcauon
with a device, said distributed object comprising:

a first member component implemented and stored on the host computer; and

5 a second member component implemented and stored on the host computer, said
second member component being in electronic communication with the
remote computer, and said second member component functioning to access

' data on the remote computer.
10 2. The distributed object of claim 1, wherein said distributed object is part of an object
hierarchy.
3.

The distributed object of claim 2, wherein said object hierarchy is an instantiation of a
class hierarchy, said class hierarchy comprising:

15 a base class including member data and functions common to a set of remote
computers, said base class being implemented and stored on the host
O computer; and
' I a first subclass, said first subclass being derived from said base class, said first
subclass being implemented and stored on the host computer, said first
20.::5.: subclass including saidb second member component in electronic
communication with the remote computer, and said second member
component functioning to access said data on the remote computer.
., The distributed object of claim 3, wherein said class hierarchy further comprises a
25+ speond subclass, said second subclass altering the function of said object,
. .5' The distributed object of claim’ 1, wherein the remote computer comprises application

codc said application code providing services related to the device.
|
|

30 6. The distributed object of claim 1, wherein the remote computer further comprises a

services list on the remote computer, said list comprising information of certain services,

-29-

15

20

25

30

WO 00/58912 PCT/US00/07790
27.

7. The distributed object of claim 6, wherein said distributed object further comprises an

enumeration of exported services, said exported services being a subset of said services.

8. The distributed object of claim 7, wherein said second member component comprises

said enumeration of exported services.

9. The distributed object of claim 6 wherein said information of said list comprises

identifications of functions and data types associated with said functions.

10. The distributed object of claim 6 wherein said information of said list comprises

identifications of variables and data types for said variables.

11. The distributed object of claim 6 wherein said information of said list comprises

identifications of events.

12. The distributed object of claim 6 wherein said information of said list comprises

identifications of files.

13. A computer system including a host computer and a remote computer, the remote
computer being in electronic communication with a device, said computer system
comprising: '
embedded code on the remote computer, said embedded code providing services
related to the device;
an encapsulation of exported services on the host computer; and
interface code on the remote computer, said interface code providing access to a

subset of said services via said encapsulation of exported services.

14. The computer system of claim 13, wherein said encapsulation of exported services

substantially corresponds to said subset of said services.

-30-

10

20

25

30

SRR R N o T

WO 00/58912 PCT/US00/07790
-28-
15. The computer system of claim 14, further comprising a services list on the remote
computer comprising information of certain services, said services list substantially

corresponding to items of said encapsulation of exported services.
16. The computer system of claim 13, wherein said encapsulation is an object.

17. The computer system of claim 16, wherein said ‘object is an instantiation of a class,
said class being derived from a base class, said base class including data and functions

relevant to a set of remote computers.

18. The computer system of claim 17 further comprising a second object, said second
object being an instantiation of a second class, said second class being derived from said
class, said second object altering the function of said subset of said services through code

stored at the host computer.

19. The computer system of claim 15 wherein said information of said list comprises

identifications of functions and data.

20. The computer system of claim 13 wherein said encapsulation of exported services

comprises identifications of functions and data.

21. The computer system of claim 13, further comprising a client computer networked to

said host computer.

22. The computer system of claim 21 wherein said client computer comprises a

monitoring application.

23, The computer system of claim 22 wherein said monitoring application monitors the

device using said encapsulation.

24. The computer system of claim 13 wherein said host computer is a desktop computer.

-31-

- 29 -

25. The computer system of claim 13 wherein said remote computer is an embedded

computer.

26. A computer program product for distributing services, said program product
5 comprising:
a computer readable medium for carrying program data; and
wherein the program data comprises executable instructions for implementing a
method comprised of the steps of:
providing application code on the remote computer, said application code
10 providing services related to the device;
exporting an enumeration of said services to said host computer, said
enumeration being a subset of said services;
encapsulating said enumeration of said services; and
accessing a service at the remote computer through said encapsulation of said
15 services.

27. The product of claim 26 wherein the method therein further comprises the step
of creating a services list on the remote computer, said list comprising information of

certain services.

cere 20
:':..: 28. The product of claim 27 wherein said services list is created statically.
29. The product of claim 26 wherein said exporting step is accomplished
. dynamically.
” 25

30. A computer program data site for distributing services, said site comprising:
a computer for storing program data and for connecting to a telecommunications
network; and
wherein the program data comprises executable instructions for implementing a
30 method comprised of the steps of:
providing application code on the remote computer, said application code
providing services related to the device;

exporting an enumeration of said services to said host computer, said

enumeration being a subset of said services;
35 encapsulating said enumeration of said services; and
accessing a service at the remote computer through said encapsulation of said

services.

\imelb_files\home$\Priyanka\Keep\speci\d1759-00.doc 30/10/03

-32-

- 30 -

31. The site of claim 30 wherein the method therein further comprises the step of
creating a services list on the remote computer, said list comprising information of

certain services.
32, Thessite of claim 31 wherein said services list is created statically.
33. The site of claim 30 wherein said exporting step is accomplished dynamically.

10 34. Inacomputer system including a host computer and a remote computer, the
remote computer being in electronic communication with a device, a method for
distributing services related to the device, the method comprising the steps of:

providing application code on the remote computer, said application code
providing services related to the device;

15 exporting an enumeration of said services to said host computer, said
enumeration being a subset of said services;

encapsulating said enumeration of said services; and
accessing a service at the remote computer through said encapsulation of said

services.

20
35. The method of claim 34 further comprising the step of creating a services list on
the remote computer, said list comprising information of certain services.
36. The method of claim 35 wherein said services list is created statically.

25
37. The method of claim 34 wherein said exporting step is accomplished
dynamically.

se 0, 38. The distributed object of any one of claims 1 to 12 and substantially as herein

30 described with reference to the accompanying drawings.

aeesd 39. The computer system of any one of claims 13 to 25 and substantially as herein
aesed described with reference to the accompanying drawings.

35 40. The product of any one of claims 26 to 29 and substantially as herein described
with reference to the accompanying drawings.

\\melb_files\home$\Priyanka\Keep\speci\41759-00.doc 30/10/03

-33-

- 31 -

41. The site of any one of claims 30 to 34 and substantially as herein described with
reference to the accompanying drawings.

Dated this 30" day of October 2003
5 emWare, Inc.

By their Patent Attorneys

GRIFFITH HACK

Fellows Institute of Patent and

Trade Mark Attorneys of Australia

\\melb_files\hcme$\Priyanka\Keep\spaci\41759-00.doc 30/10/03

-34-

PCT/US00/07790

WO 00/58912

17

0c

81

Sindino

b - -

SLNdNI

L b1y
\Q—.
L]
1
'
ve
q3InNdoo |, o HILNdWOD | / o H3ILNdWo9
a3agaagws | g ASOH - 7 ANIITO
\. / wm\
ol cl

-35-

PCT/US00/07790

WO 00/58912

c 614
8l
02—
r==--1SINdINO|-{ SLADNI |-------- .
1
4 9€ o
¥ J /
| 1204 | \—hmom_ | 1400 [« 11104 | ,
e
ge—1 Jinaow Jimnaon 1 4%
e NOLLYIINNWINOO NOLLYOINNNINOD 05 \
F 3
\ v 0 \|I\¢¢ \ /
FigvL |, NOLLYWHO-INI YIAHIS LNIITO
SILIUEVAVI [~ mw«ummﬁ\ S30IAH3S [+ > SSIJV [mmwmw%%
P a3140dX3 | 301A30
e N
Y3ITIOHINOD
NOLLYOITddY $S300V yaryas | R zown«.uw_ﬂ%m<
N4 gz—_93aasaw3 30iIA3Q gam [g
\\ ‘ / /
]
.................... \ commmomnd oy \ 8t \. 2
9l 4 ze
vl

-36-

.

. WO 06/58912 PCT/US00/07790

3/7

Vv

WEB 48 60
N e
50 N
/ v
DEVICE DEVICE OBJECT
ACCESS
SERVER EXPORTED
SERVICES 58
INFORMATION |_{~
56~ |

42
/

COMMUNICATION
MODULE

40\ PORT

Fig. 3

-37-

WO 00/58912 PCT/US00/07790

4/7

\

BASE OBJECT /64

VAR A
VARB

FUNCTION C

66
DEVICE OBJECT s

FUNCTION D
FUNCTION E
FUNCTION F

/68

DEVICE EXTENSION OBJECT

FUNCTION D
FUNCTION F

Fig. 4

-38-

WO 00/58912

5/7

PCT/US00/07790

IDENTIFY SERVICES |70
CREATE sr:'ﬂI VICES TABLE 72

;
CREATE CAPABILITIES TABLE | ~74
MODIFY EMBEDI.{ED APPLICATION |76
COMPILE AND uml(EMBEDDED CODE |78

Fig. 5

-30-

_— WO 00/58912 PCT/US00/07790

6/7

START
DEVICE ACCESS
CONTROLLER

RESET INTERFACE MODULE 82

I REQUEST CAPABILITIES TABLE }/84

| REQUEST SERVICES TABLE |86

L CREATE DEVICE OBJECT }/83

[START WEB SERVER f-90

| stam pevice access serven f-o2

Y A 4
L SERVICE REQUESTS 94
Fig. 6

-40-

o Y WO o0ss8912 PCT/US00/07790

717

CLIENT APPLICATION REQUESTS AVAILABLE SERVICES 8

v

SERVER RECEIVES REQUEST AND RETRIEVES | ~100
EXPORTED SERVICES INFORMATION

v

SERVER SENDS SERVICES INFORMATION TO CLIENT

Y

CLIENT REQUESTS SPECIFIC VARIABLE VALUE | ~104

v

SERVER RECEIVES REQUEST

v

SERVER REQUESTS VARIABLE VALUE FROM OBJECT

v

OBJECT SENDS MESSAGE TO EMBEDDED | ~110
I/F MODULE REQUESTING VARIABLE VALUE

v

EMBEDDED V/F MODULE RECEIVES MESSAGE

v

EMBEDDED I/F MODULE ACCESSES | ~114
VARIABLE AND GETS VALUE

v

EMBEDDED I/F MODULE SENDS VALUE TO OBJECT

v

OBJECT RETURNS VALUE TO SERVER

v

SERVER ANSWERS REQUEST 120
AND SENDS VALUE TO CLIENT

| ~102

106

108

112

116

118

Fig. 7

-41-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

