A closing sleeve assembly with a ported sleeve is disclosed. The closing sleeve assembly includes a housing; a port formed in the housing; a sealing surface formed in the housing adjacent to the port; and a closing sleeve configured to move between an open position and a closed position. The closing sleeve includes an uphole portion configured to substantially cover the sealing surface when the closing sleeve is moved to the open position; a port formed in the closing sleeve and configured to substantially overlap with the port formed in the housing when the closing sleeve is in the open position; and a seal configured to engage with the sealing surface to form a fluid and pressure tight seal when the closing sleeve is in the closed position.
CLOSING SLEEVE ASSEMBLY WITH PORTED SLEEVE

TECHNICAL FIELD
The present disclosure is related to downhole tools for use in a wellbore environment and more particularly to closing sleeve assemblies used in a well system during gravel packing operations.

BACKGROUND OF THE DISCLOSURE
Production fluids, including hydrocarbons, water, sediment, and other materials or substances found in a downhole formation, flow out of the surrounding formation into a wellbore and then ultimately out of the wellbore. Sand and other fine particulates are often carried from the formation into the wellbore by the production fluids. During well completion, a steel screen is placed in the wellbore and the surrounding annulus is packed with gravel to inhibit particulate flow from the formation.

BRIEF DESCRIPTION OF THE DRAWINGS
A more complete and thorough understanding of the various embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:

FIGURE 1 is an elevation view of a well system;
FIGURE 2 is a cross-sectional view of a closing sleeve assembly including a closing sleeve in an open position;
FIGURE 3 is a cross-sectional view of a closing sleeve assembly including a closing sleeve in a closed position;
FIGURE 4 is a perspective view of a closing sleeve of a closing sleeve assembly; and
FIGURE 5 is a perspective view of a release ring of a closing sleeve assembly.

DETAILED DESCRIPTION OF THE DISCLOSURE
To protect the sealing surface in a closing sleeve assembly from erosion caused by the proppant slurry flowing over the surface, a protective sleeve may be
positioned over the sealing surface. Embodiments of the present disclosure and its advantages may be understood by referring to FIGURES 1 through 5, where like numbers are used to indicate like and corresponding parts.

FIGURE 1 is an elevation view of a well system. Well system 100 includes well surface or well site 106. Various types of equipment such as a rotary table, drilling fluid or production fluid pumps, drilling fluid tanks (not expressly shown), and other drilling or production equipment may be located at well surface or well site 106. For example, well site 106 may include drilling rig 102 that may have various characteristics and features associated with a land drilling rig. However, downhole assemblies incorporating teachings of the present disclosure may be satisfactorily used with drilling equipment located on offshore platforms, drill ships, semi-submersibles and drilling barges (not expressly shown).

Well system 100 may also include production string 103, which may be used to produce hydrocarbons such as oil and gas and other natural resources such as water from formation 112 via wellbore 114. Production string 103 may also be used to inject hydrocarbons such as oil and gas and other natural resources such as water into formation 112 via wellbore 114. As shown in FIGURE 1, wellbore 114 is substantially vertical (e.g., substantially perpendicular to the surface). Although not illustrated in FIGURE 1, portions of wellbore 114 may be substantially horizontal (e.g., substantially parallel to the surface), or at an angle between vertical and horizontal.

The location of various components may be described relative to the bottom or end of wellbore 114 shown in FIGURE 1. For example, a first component described as uphole from a second component may be further away from the end of wellbore 114 than the second component. Similarly, a first component described as being downhole from a second component may be located closer to the end of wellbore 114 than the second component.

Well system 100 may also include downhole assembly 120 coupled to production string 103. Downhole assembly 120 may be used to perform operations relating to the completion of wellbore 114, production of hydrocarbons and other natural resources from formation 112 via wellbore 114, injection of hydrocarbons and other natural resources into formation 112 via wellbore 114, and/or maintenance of
wellbore 114. Downhole assembly 120 may be located at the end of wellbore 114 or at a point uphole from the end of wellbore 114. Downhole assembly 120 may be formed from a wide variety of components configured to perform these operations. For example, components 122a, 122b and 122c of downhole assembly 120 may include, but are not limited to, closing sleeve assemblies, screens, flow control devices, slotted tubing, packers, valves, sensors, and actuators. The number and types of components 122 included in downhole assembly 120 may depend on the type of wellbore, the operations being performed in the wellbore, and anticipated wellbore conditions.

Fluids, including hydrocarbons, water, and other materials or substances, may be injected into wellbore 114 and formation 112 via production string 103 and downhole assembly 120. For example, during gravel pack operations a proppant slurry including proppant particles mixed with a fluid may be injected into wellbore 114 via a closing sleeve assembly 122 of downhole assembly 120 and production string 103. In other examples, a temporary string (not expressly shown) that is part of a service tool string may be used in place of production string 103. The proppant particles may include naturally occurring sand grains, man-made or specially engineered particles, such as resin-coated sand or high-strength ceramic materials like sintered bauxite. The proppant slurry flows out of closing sleeve assembly 122 through a port in a housing of closing sleeve assembly 122. (shown in FIGURES 2-5).

The flow of the proppant slurry through the port in the housing is controlled by a closing sleeve (shown in FIGURES 2-3). For example, in the closed position, the closing sleeve extends to cover the port in the housing and form a fluid and pressure tight seal with surfaces of the housing adjacent to the port, thus preventing the proppant slurry from flowing through the port in the housing. In the open position, the closing sleeve is retracted to permit the proppant slurry to flow through the port in the housing.

The flow of the proppant slurry through the port in the housing may cause the surfaces of the housing over which the proppant slurry flows to erode. Surface erosion may be particularly problematic where the eroded surface is a sealing surface. For example, the flow of the proppant slurry over surfaces of the housing adjacent to the port (shown in FIGURES 2-3) may erode the surfaces and thus alter the texture and/or
profile of the surfaces, which may inhibit the closing sleeve from forming a fluid and pressure tight seal with surfaces of the housing adjacent to the port. To protect the surfaces of the housing adjacent to the port from erosion caused by flow of the proppant slurry, the closing sleeve may be configured such that a portion of the closing sleeve covers the sealing surface and thereby protects it from the flow of proppant slurry. The features and configuration of such a closing sleeve are discussed in detail in conjunction with FIGURES 2-4.

FIGURES 2 and 3 are cross-sectional views of a closing sleeve assembly including a closing sleeve. Specifically, FIGURE 2 is a cross-sectional view of a closing sleeve assembly including a closing sleeve in an open position, and FIGURE 3 is a cross-sectional view of a closing sleeve assembly including a closing sleeve in a closed position.

As shown in FIGURES 2 and 3, closing sleeve assembly 200 includes housing 201, which includes port 202 through which a proppant slurry flows into wellbore 114 (shown in FIGURE 1). Closing sleeve assembly 200 also includes closing sleeve 204, which includes uphole portion 214, downhole portion 216, port 205, and seals 206 and 208. Additional details regarding the features of closing sleeve 204 are discussed below in conjunction with FIGURE 4. Closing sleeve 204 may be extended and retracted to move between a closed position (shown in FIGURE 3) and an open position (shown in FIGURE 2). Closing sleeve assembly 200 also includes a release ring 218 disposed in housing 201 that engages with closing sleeve 204 to maintain alignment of closing sleeve 204 relative to housing 201. For example, release ring 218 includes fingers 220 that engage with slots 402 (shown in FIGURE 4) formed in closing sleeve 204. The engagement of fingers 220 with slots 402 (shown in FIGURE 4) maintain alignment of closing sleeve 204 relative to housing 201 as closing sleeve 204 is moved between the open and closed positions. Additional details regarding the features of release ring 218 are discussed below in conjunction with FIGURE 5.

When closing sleeve 204 is in the closed position (shown in FIGURE 3), downhole portion 216 of closing sleeve 204 covers port 202 and seals 206 and 208 engage with sealing surfaces 210 and 212 (respectively) to form a fluid and pressure tight seal, thus preventing proppant slurry from flowing through port 202. Seals 206 and 208 may be a molded seal, such as an O-ring, and may be made of an elastomeric
material or a non-elastomeric material such as a thermoplastic including, for example, polyether ether ketone (PEEK) or Teflon®. The elastomeric material may be formed from compounds including, but not limited to, natural rubber, nitrile rubber, hydrogenated nitrile, urethane, polyurethane, fluorocarbon, perfluorocarbon, propylene, neoprene, hydrin, etc. Although four seals 206 are depicted in FIGURES 2 and 3, any number of seals 206 may be used. Similarly, although four seals 208 are depicted in FIGURES 2 and 3, any number of seals 208 may be used.

When closing sleeve 204 is moved to the open position (shown in FIGURE 2), closing sleeve 204 is retracted to a position in which port 205 is aligned with port 202 such that the opening of port 205 substantially overlaps with the opening of port 202. When port 205 is aligned with port 202 in this manner, the flow of proppant slurry through port 202 and into wellbore 114 (shown in FIGURE 1) is permitted. As explained above, fingers 220 of release ring 218 engage with slots 402 (shown in FIGURE 4A) of closing sleeve 204 to maintain alignment of closing sleeve 204 relative to housing 201. The engagement between fingers 220 and slots 402 (shown in FIGURE 4A) prevent closing sleeve 204 from rotating relative to housing 201, which may prevent port 205 from aligning with port 202 such that the opening of port 205 substantially overlaps with the opening of port 202 when closing sleeve 204 is in the open position. If closing sleeve 204 rotates within housing 201 such that the opening of port 205 does not substantially overlap with the opening of port 202, the flow of proppant slurry through port 202 and into wellbore 114 (shown in FIGURE 1) may be impeded. To protect sealing surface 210 from erosion caused by the flow of proppant slurry over surface 210, which may alter the texture and/or profile of sealing surface 210 and inhibit seals 206 from forming a fluid and pressure tight seal with sealing surface 210, uphole portion 214 of closing sleeve 204 is configured to cover sealing surface 210 when closing sleeve 204 is in the open position (shown in FIGURE 2).

FIGURE 4 is a perspective view of a closing sleeve. As shown in FIGURE 4, and discussed above in conjunction with FIGURES 2 and 3, closing sleeve 204 includes uphole portion 214, downhole portion 216, port 205 positioned between uphole portion 214 and downhole portion 216, and seals 206 and 208. Closing sleeve 204 also includes slots 402 formed in the surface of closing sleeve 204. Slots 402 engage with fingers 220 of release ring 218 (shown in FIGURES 2-3 and 5) to
prevent rotation of closing sleeve 204 within housing 201 (shown in FIGURES 2 and 3). As explained above with respect to FIGURES 2 and 3, rotation of closing sleeve 204 within housing 201 may prevent port 205 from aligning with port 202 of housing 201 such that the opening of port 205 substantially overlaps with the opening of port 202 when closing sleeve 204 is in the open position. If closing sleeve 204 rotates within housing 201 such that the opening of port 205 does not substantially overlap with the opening of port 202, the flow of proppant slurry through port 202 and into wellbore 114 (shown in FIGURE 1) may be impeded.

Port 205 may be sized such that the opening of port 205 is larger than the opening of port 202 in housing 201. For example, the opening of port 205 may be longer than the opening of port 202 in housing 201. The length of port 205 is indicated by dimension L in FIGURE 4. By sizing port 205 in this manner, the distance that closing sleeve 204 must be retracted in order for the opening of port 205 to substantially overlap with the opening of port 202 when the closing sleeve is in the open position need not be controlled with exact precision.

Closing sleeve 204 may be formed of an erosion resistant material, including but not limited to tungsten carbide and hardened tool steel. Closing sleeve 204 may also include an erosion resistant coating. For example, closing sleeve 204 may include a base formed of a metal or alloy to which an erosion resistant coating has been applied. The erosion resistant coating may, for example, include Nedox®, Hardide®, or a coating treated to be erosion resistant through methods including, for example, laser cladding, quench polish quench (QPQ) treatment, and nitro-carburizing. The erosion resistant coating may be applied to the entire closing sleeve 204 or portions thereof (e.g., upheole portion 214 of closing sleeve 204) Closing sleeve 204 may also be hardened to increase its erosion resistance.

FIGURE 5 is a perspective view of a release ring. As shown in FIGURE 5, and discussed above in conjunction with FIGURES 2 and 3, release ring 218 includes fingers 220 that engage with slots 402 (shown in FIGURE 4) formed in closing sleeve 204. The engagement of fingers 220 with slots 402 (shown in FIGURE 4) maintain alignment of closing sleeve 204 relative to housing 201 as closing sleeve 204 is moved between the open and closed positions. Although two fingers 220 are shown in FIGURE 5, any number of fingers 220 may be used.
Release ring 218 may be formed of an erosion resistant material, including but not limited to tungsten carbide and hardened tool steel. Release ring 218 may also include an erosion resistant coating. For example, release ring 218 may include a base formed of a metal or alloy to which an erosion resistant coating has been applied. The erosion resistant coating may, for example, include Nedox®, Hardide®, or a coating treated to be erosion resistant through methods including, for example, laser cladding, quench polish quench (QPQ) treatment, and nitro-carburizing. The erosion resistant coating may be applied to the entire release ring 218 or portions thereof (e.g., fingers 220). Release ring 218 may also be hardened to increase its erosion resistance.

Embodiments disclosed herein include:

A. A closing sleeve assembly including a housing; a port formed in the housing; a sealing surface formed in the housing adjacent to the port; and a closing sleeve configured to move between an open position and a closed position. The closing sleeve includes an upheole portion configured to substantially cover the sealing surface when the closing sleeve is moved to the open position; a port formed in the closing sleeve and configured to substantially overlap with the port formed in the housing when the closing sleeve is in the open position; and a seal configured to engage with the sealing surface to form a fluid and pressure tight seal when the closing sleeve is in the closed position.

B. A closing sleeve including an upheole portion configured to substantially cover a sealing surface of a housing when the closing sleeve is moved to an open position; a port formed in the closing sleeve and configured to substantially overlap with a port formed in the housing when a closing sleeve is in the open position; and a seal configured to engage with the sealing surface to form a fluid and pressure tight seal when the closing sleeve is in the closed position.

C. A well system including a string; and a closing sleeve assembly coupled to and disposed downhole from the production string. The closing sleeve assembly including a housing including a port formed in the housing and a sealing surface formed in the housing adjacent to the port; and a closing sleeve configured to move between an open position and a closed position. The closing sleeve includes an upheole portion configured to substantially cover the sealing surface when the closing sleeve is moved to the open position; a port formed in the closing sleeve and configured to
substantially overlap with the port formed in the housing when the closing sleeve is in
the open position; and a seal configured to engage with the sealing surface to form a
fluid and pressure tight seal when the closing sleeve is in the closed position.

Each of embodiments A, B, and C may have one or more of the following
additional elements in any combination: Element 1: further comprising a release ring
disposed uphole from the closing sleeve and configured to engage with the closing
sleeve to prevent rotation of the closing sleeve relative to the housing. Element 2:
wherein: the closing sleeve includes a slot formed in the surface; and the release ring
includes a finger extending from the downhole end and configured to engage with the
slot formed in the surface of the closing sleeve to prevent rotation of the closing
sleeve relative to the housing. Element 3: wherein the closing sleeve is formed of an
erosion resistant material. Element 4: wherein the release ring is formed of an erosion
resistant material. Element 5: wherein the closing sleeve is coated with an erosion
resistant coating. Element 6: wherein the release ring is coated with an erosion
resistant coating. Element 7: wherein the seal is positioned in a slot or groove formed
in the closing sleeve.

Therefore, the disclosed systems and methods are well adapted to attain the
ends and advantages mentioned as well as those that are inherent therein. The
particular embodiments disclosed above are illustrative only, as the teachings of the
present disclosure may be modified and practiced in different but equivalent manners
apparent to those skilled in the art having the benefit of the teachings herein.
Furthermore, no limitations are intended to the details of construction or design herein
shown, other than as described in the claims below. It is therefore evident that the
particular illustrative embodiments disclosed above may be altered, combined, or
modified and all such variations are considered within the scope of the present
disclosure. The systems and methods illustratively disclosed herein may suitably be
practiced in the absence of any element that is not specifically disclosed herein and/or
any optional element disclosed herein.

Although the present disclosure and its advantages have been described in
detail, it should be understood that various changes, substitutions and alterations can
be made herein without departing from the spirit and scope of the disclosure as
defined by the following claims.
WHAT IS CLAIMED IS:

1. A closing sleeve assembly, comprising:
   a housing;
   a port formed in the housing;
   a sealing surface formed in the housing adjacent to the port; and
   a closing sleeve configured to move between an open position and a closed position, the closing sleeve including:
       an uphole portion configured to substantially cover the sealing surface when the closing sleeve is moved to the open position;
       a port formed in the closing sleeve and configured to substantially overlap with the port formed in the housing when the closing sleeve is in the open position; and
       a seal configured to engage with the sealing surface to form a fluid and pressure tight seal when the closing sleeve is in the closed position.

2. The closing sleeve assembly of claim 1, further comprising a release ring disposed uphole from the closing sleeve and configured to engage with the closing sleeve to prevent rotation of the closing sleeve relative to the housing.

3. The closing sleeve assembly of claim 2, wherein:
   the closing sleeve includes a slot formed in the surface; and
   the release ring includes a finger extending from the downhole end and configured to engage with the slot formed in the surface of the closing sleeve to prevent rotation of the closing sleeve relative to the housing.

4. The closing sleeve assembly of claim 1, wherein the closing sleeve is formed of an erosion resistant material.

5. The closing sleeve assembly of claim 2, wherein the release ring is formed of an erosion resistant material.
6. The closing sleeve assembly of claim 1, wherein the closing sleeve is coated with an erosion resistant coating.

7. The closing sleeve assembly of claim 2, wherein the release ring is coated with an erosion resistant coating.

8. The closing sleeve assembly of claim 1, wherein the seal is positioned in a slot or groove formed in the closing sleeve.

9. A closing sleeve, comprising:
   an upholoe portion configured to substantially cover a sealing surface of a housing when the closing sleeve is moved to an open position;
   a port formed in the closing sleeve and configured to substantially overlap with a port formed in the housing when a closing sleeve is in the open position; and
   a seal configured to engage with the sealing surface to form a fluid and pressure tight seal when the closing sleeve is in the closed position.

10. The closing sleeve of claim 9, wherein the closing sleeve is formed of an erosion resistant material.

11. The closing sleeve of claim 9, wherein the closing sleeve is coated with an erosion resistant coating.

12. The closing sleeve of claim 9, wherein the seal is positioned in a slot or groove formed in the closing sleeve.
13. A well system comprising:
   a string; and
   a closing sleeve assembly coupled to and disposed downhole from the 
   production string, the closing sleeve assembly comprising:
      a housing including a port formed in the housing and a sealing surface 
      formed in the housing adjacent to the port; and 
      a closing sleeve configured to move between an open position and a 
      closed position, the closing sleeve including:
         an uphole portion configured to substantially cover the sealing 
         surface when the closing sleeve is moved to the open position; 
         a port formed in the closing sleeve and configured to 
         substantially overlap with the port formed in the housing when the closing sleeve is in 
         the open position; and
         a seal configured to engage with the sealing surface to form a 
         fluid and pressure tight seal when the closing sleeve is in the closed position.

14. The well system of claim 13, the closing sleeve assembly further 
    comprising a release ring disposed uphole from the closing sleeve and configured to 
    engage with the closing sleeve to prevent rotation of the closing sleeve relative to the 
    housing.

15. The well system of claim 14, wherein:
    the closing sleeve includes a slot formed in the surface; and 
    the release ring includes a finger extending from the downhole end and 
    configured to engage with the slot formed in the surface of the closing sleeve to 
    prevent rotation of the closing sleeve relative to the housing.

16. The well system of claim 13, wherein the closing sleeve is formed of 
    an erosion resistant material.

17. The well system of claim 14, wherein the release ring is formed of an 
    erosion resistant material.
18. The well system of claim 13, wherein the closing sleeve is coated with an erosion resistant coating.

19. The well system of claim 14, wherein the release ring is coated with an erosion resistant coating.

20. The well system of claim 13, wherein the seal is positioned in a slot or groove formed in the closing sleeve.
INTERNATIONAL SEARCH REPORT

PCT/US2015/052941

A. CLASSIFICATION OF SUBJECT MATTER
E21B 17/00(2006.01)i, E21B 43/04(2006.01)i, E21B 43/119(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
E21B 17/00; E21B 34/06; E21B 23/06; E21B 34/00; E21B 33/12; E21B 34/12; E21B 43/26; E21B 34/14; E21B 43/04; E21B 43/1 19

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: port, finger, assembly, seal, fluid, locking, closing, sleeve, wellbore, ring, erosion

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>See paragraphs [0026]-[0041], [0050][0052], [0088]; and figures 1a-1b, 2a, 4c-4d.</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 6371208 B1 (NORRAN et al.) 16 April 2002</td>
<td>4-7, 10-11, 16-19</td>
</tr>
<tr>
<td></td>
<td>See column 3, lines 8-20; column 4, lines 53-57; and figures 2, 8-9.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WO 2012-051705 A1 (NCS OILFIELD SERVICES CANADA INC. et al.) 26 April 2012</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>See page 10, line 28 - page 12, line 2; and figures 3, 4a, 7a.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 2012-0097386 A1 (WARD et al.) 26 April 2012</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>See paragraphs [0022], [0024]-[0025], [0035]; and figures 18, 2.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 4246968 A (JESSUP et al.) 27 January 1981</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>See column 3, line 9 - column 4, line 43; and figures 1-2.</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
  "A" document defining the general state of the art which is not considered to be of particular relevance
  "E" earlier application or patent but published on or after the international filing date
  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  "O" document referring to an oral disclosure, use, exhibition or other means
  "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
15 June 2016 (15.06.2016)

Date of mailing of the international search report
16 June 2016 (16.06.2016)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

Facsimile No. +82-42-481-8578

Authorized officer
KIM, Jin Ho

Telephone No. +82-42-481-8699

Form PCT/ISA/210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2810412 Al</td>
<td>29/03/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2619404 Al</td>
<td>31/07/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012-037645 Al</td>
<td>29/03/2012</td>
</tr>
<tr>
<td>US 6371208 Bl</td>
<td>16/04/2002</td>
<td>AU 5765000 A</td>
<td>09/01/2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 767839 B2</td>
<td>27/11/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 767839 C</td>
<td>15/07/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2377890 Al</td>
<td>28/12/2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2377890 C</td>
<td>22/03/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2369640 A</td>
<td>05/06/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2369640 B</td>
<td>14/01/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20016307 A</td>
<td>19/02/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 320243 Bl</td>
<td>14/11/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 00-079094 Al</td>
<td>28/12/2000</td>
</tr>
<tr>
<td>WO 2012-051705 Al</td>
<td>26/04/2012</td>
<td>CA 2738907 Al</td>
<td>12/07/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2738907 C</td>
<td>24/04/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2766626 Al</td>
<td>12/07/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2788985 Al</td>
<td>12/03/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2852311 Al</td>
<td>26/04/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 103299028 A</td>
<td>11/09/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201390570 Al</td>
<td>29/11/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2630327 Al</td>
<td>28/08/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 2013004385 A</td>
<td>27/02/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012-0090847 Al</td>
<td>19/04/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013-0068451 Al</td>
<td>21/03/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014-0305648 Al</td>
<td>16/10/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8794331 B2</td>
<td>05/08/2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012-051705 A9</td>
<td>10/05/2013</td>
</tr>
<tr>
<td>US 2012-0097386 Al</td>
<td>26/04/2012</td>
<td>AU 2010-243081 Al</td>
<td>10/05/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2010-243081 B2</td>
<td>21/03/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2721545 Al</td>
<td>26/04/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2447466 A2</td>
<td>02/05/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8657010 B2</td>
<td>25/02/2014</td>
</tr>
<tr>
<td>US 4246968 A</td>
<td>27/01/1981</td>
<td>CA 1130197 A</td>
<td>24/08/1982</td>
</tr>
</tbody>
</table>

Form PCT/ISA/2 10 (patent family annex) (January 2015)