Abstract:

Agents: AMIDIN, Wood

Applicant: Townsend & Stockton Lip, Two Embarcadero Center, 8th Floor, San Francisco, CA 94111 (US).

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

Title: USE OF AMINES IN HEAVY OIL TRANSPORT

FIG.3

Abstract: Provided herein are, inter alia, heavy crude oil emulsion compositions and methods of making the same. The compositions and methods provided herein are particularly useful for the transport of heavy crude oils.
USE OF AMINES IN HEAVY OIL TRANSPORT

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No. 61/815,579 filed April 24, 2013, and U.S. Patent Application No. 14/194,576 filed February 28, 2014, which are hereby incorporated in their entirety and for all purposes.

BACKGROUND OF THE INVENTION

[0002] Heavy crude oils are defined as oils having an API (American Petroleum Industry) gravity of less than 20, and are viscous at lower temperatures when produced from a reservoir. The viscous heavy crude oils are difficult to transport in pipelines especially at low temperature. The viscosity of heavy crude oils at low temperature can be millions of cp. Methods used to lower the viscosity of heavy crude oils to facilitate their transport include, for example, expensive procedures involving heating the oil to a high temperature (e.g. 100 °C) before, and perhaps during the transport in a vessel (e.g. pipeline). Prior attempts to form low viscosity emulsions of heavy crude oils have had limited success in part due to difficulties in maintaining and controlling such emulsion, especially at ambient temperatures and during transport.

[0003] Therefore there is a need in the art for cost effective compositions and methods of transporting heavy crude oils at lower temperatures after they have been extracted from a reservoir or storage. Provided herein are methods and compositions addressing these and other needs in the art.

BRIEF SUMMARY OF THE INVENTION

[0004] Provided herein, inter alia, are heavy crude oil emulsion compositions including a heavy crude oil, a co-solvent and water and having surprisingly low viscosities at low water content. Due to their low viscosity, the emulsion compositions provided herein are particularly useful as a means for transporting heavy crude oils at ambient temperatures. Compared to existing transport techniques used in the art, the present emulsion compositions are highly versatile, stable and cost effective.

[0005] In one aspect, a heavy crude oil emulsion is provided. The heavy crude oil emulsion includes a heavy crude oil, water and a co-solvent. The co-solvent is an alkylamine or a compound having the formula:
In formula (I) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(\text{Ci-Cs} \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(\text{Ci-Ce} \) alkylamine or

\[
\text{N}
\begin{array}{c}
\text{CH}_2-\text{CH}=\text{O} \\
\text{R}^2
\end{array}
\]

\(\text{H} \)

\(n \) . \(R^2 \) and \(R^3 \) are independently hydrogen or unsubstituted \(\text{C1-C2} \) alkyl. The symbol \(n \) is an integer from 1 to 30. The symbol \(m \) is an integer from 1 to 30 and the heavy crude oil emulsion is within a transport vessel.

[0006] In another aspect, a method of forming a heavy crude oil emulsion is provided. The method includes contacting a heavy crude oil extracted from an oil reservoir with a co-solvent and water at an emulsion forming temperature, thereby forming a high temperature heavy crude oil emulsion. The high temperature heavy crude oil emulsion is allowed to cool to a transport temperature, thereby forming a heavy crude oil emulsion. The co-solvent is an alkylamine or a compound having the formula:

\[
\text{N}
\begin{array}{c}
\text{CH}_2-\text{CH}=\text{O} \\
\text{R}^2
\end{array}
\]

\(\text{H} \)

\(n \) . \(R^2 \) and \(R^3 \) are independently hydrogen, unsubstituted \(\text{Ci-Cs} \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(\text{C1-Ce} \) alkylamine or

\[
\text{H}
\begin{array}{c}
\text{CH}_2-\text{CH}=\text{O} \\
\text{R}^3
\end{array}
\]

\(m \) . \(R^2 \) and \(R^3 \) are independently hydrogen or unsubstituted \(\text{C1-C2} \) alkyl. The symbol \(n \) is an integer from 1 to 30, and \(m \) is an integer from 1 to 30.

[0007] In another aspect, a method of optimizing a heavy crude oil emulsion is provided. The method includes contacting a plurality of heavy crude oil samples extracted from an oil reservoir with an amount of a co-solvent, an amount of a salt and an amount of water at an emulsion forming temperature, wherein the amount of a co-solvent, the amount of a salt and the amount of water is different for each of the plurality of heavy crude oil samples, thereby forming a plurality of different high temperature heavy crude oil emulsion samples. The plurality of different high temperature heavy crude oil emulsion samples is allowed to cool to an ambient temperature, thereby forming a plurality of different low temperature heavy crude oil emulsion samples. A
low temperature heavy crude oil emulsion sample is identified amongst the plurality of different low temperature heavy crude oil emulsion samples having a viscosity at least 100 times lower than the viscosity of the heavy crude oil, thereby optimizing a heavy crude oil emulsion. The co-solvent is an alkylamine or a compound having the formula:

\[
\begin{array}{c}
\text{R}^{1A} \text{N} \left(\text{CH}_2-\text{CH}-\text{O} \right)^n \text{H} \\
\text{R}^{1B} \text{R}^2 \\
\end{array}
\]

(I). In formula (I) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(C_1-C_8 \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(C_1-C_6 \) alkylamine or

\[
\begin{array}{c}
\text{CH}_2-\text{CH}-\text{O} \text{H} \\
\text{R}^2 \\
\text{R}^3 \\
\end{array}
\]

\(m \). \(R^2 \) and \(R^3 \) are independently hydrogen or unsubstituted \(C_1-C_2 \) alkyl. The symbol \(n \) is an integer from 1 to 30, and \(m \) is an integer from 1 to 30.

[0008] In another aspect, a method of transporting a heavy crude oil is provided. The method includes extracting a heavy crude oil from an oil reservoir, thereby forming an extracted heavy crude oil. The extracted heavy crude oil is contacted with a co-solvent and water at an emulsion forming temperature, thereby forming a high temperature heavy crude oil emulsion. The high temperature heavy crude oil emulsion is allowed to cool to a transport temperature, thereby forming a heavy crude oil emulsion. The heavy crude oil emulsion is transported from a first location to a second location, thereby transporting the heavy crude oil. The co-solvent is an alkylamine or a compound having the formula:

\[
\begin{array}{c}
\text{R}^{1A} \text{N} \left(\text{CH}_2-\text{CH}-\text{O} \right)^n \text{H} \\
\text{R}^{1B} \text{R}^2 \\
\end{array}
\]

(I). In formula (I) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(C_1-C_8 \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(C_1-C_6 \) alkylamine or

\[
\begin{array}{c}
\text{CH}_2-\text{CH}-\text{O} \text{H} \\
\text{R}^2 \\
\text{R}^3 \\
\end{array}
\]

\(m \). \(R^2 \) and \(R^3 \) are independently hydrogen or unsubstituted \(C_1-C_2 \) alkyl. The symbol \(n \) is an integer from 1 to 30 and \(m \) is an integer from 1 to 30.

[0009] In another aspect, a method of forming a heavy crude oil emulsion in a production well is provided. The method includes contacting an extracted heavy crude oil in a production well
with a co-solvent and water, thereby forming a heavy crude oil emulsion in the production well.

The co-solvent is an alkylamine or a compound having the formula:

\[R^{1A} \begin{array}{c} N \end{array} \begin{array}{c} \text{CH}_2-\text{CH}\cdots\text{CH}_2 \end{array} \begin{array}{c} \text{H} \end{array} \begin{array}{c} R^2 \end{array} \begin{array}{c} \text{H} \end{array} \begin{array}{c} R^3 \end{array} \begin{array}{c} m \end{array} \]

In formula (I) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(Ci-Cs \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(C_1-C_6 \) alkylamine or

\[\begin{array}{c} \text{R}^3 \end{array} \begin{array}{c} \text{H} \end{array} \begin{array}{c} \text{R}^2 \end{array} \begin{array}{c} \text{H} \end{array} \begin{array}{c} \text{R}^3 \end{array} \begin{array}{c} m \end{array} \]

\(R^2 \) and \(R^3 \) are independently hydrogen or unsubstituted \(C_1-C_2 \) alkyl, \(n \) is an integer from 1 to 30 and \(m \) is an integer from 1 to 30.

[0010] In another aspect, a method of transporting an extracted heavy crude oil from a production well is provided. The method includes contacting an extracted heavy crude oil in a production well with a co-solvent, and water at an emulsion forming temperature, thereby forming a heavy crude oil emulsion in a production well. The heavy crude oil emulsion is transported from the production well to the surface, thereby transporting the extracted heavy crude oil from the production well. The co-solvent is an alkylamine or a compound having the formula:

\[R^{1A} \begin{array}{c} N \end{array} \begin{array}{c} \text{CH}_2-\text{CH}\cdots\text{CH}_2 \end{array} \begin{array}{c} \text{H} \end{array} \begin{array}{c} R^2 \end{array} \begin{array}{c} \text{H} \end{array} \begin{array}{c} R^3 \end{array} \begin{array}{c} m \end{array} \]

In formula (I) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(Ci-Cs \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(C_1-C_6 \) alkylamine or

\[\begin{array}{c} \text{R}^3 \end{array} \begin{array}{c} \text{H} \end{array} \begin{array}{c} \text{R}^2 \end{array} \begin{array}{c} \text{H} \end{array} \begin{array}{c} \text{R}^3 \end{array} \begin{array}{c} m \end{array} \]

\(R^2 \) and \(R^3 \) are independently hydrogen or unsubstituted \(C_1-C_2 \) alkyl, \(n \) is an integer from 1 to 30 and \(m \) is an integer from 1 to 30.

[0011] In another aspect, a heavy crude oil emulsion is provided. The heavy crude oil emulsion includes an amphiphilic co-solvent, a first phase and a second phase, wherein the first phase includes an oil-immiscible compound and the second phase includes a heavy crude oil.

The amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[R^{1A} \begin{array}{c} N \end{array} \begin{array}{c} \text{CH}_2-\text{CH}\cdots\text{CH}_2 \end{array} \begin{array}{c} \text{H} \end{array} \begin{array}{c} R^2 \end{array} \begin{array}{c} \text{H} \end{array} \begin{array}{c} R^3 \end{array} \begin{array}{c} m \end{array} \]

In formula (I) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(Ci-Cs \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl,
unsubstituted aryl, unsubstituted heteroaryl, \(Ci-Ce \) alkylamine or
\[R^2 \text{ and } R^3 \]
are independently hydrogen or unsubstituted \(C_1-C_2 \) alkyl, \(n \) is an integer from 1 to 30 and \(m \) is an integer from 1 to 30.

[0012] In another aspect, a heavy crude oil emulsion is provided. The heavy crude oil emulsion includes a first phase and a second phase, wherein the first phase includes an oil-immiscible compound and the second phase includes a heavy crude oil.

[0013] In another aspect, a method of forming a heavy crude oil emulsion is provided. The method includes contacting a heavy crude oil extracted from an oil reservoir with an oil-immiscible compound and an amphiphilic co-solvent at an emulsion forming temperature, thereby forming a high temperature heavy crude oil emulsion. The high temperature heavy crude oil emulsion is allowed to cool to a transport temperature, thereby forming a heavy crude oil emulsion. The amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[R^{1A} N\left(\begin{array}{c} CH_2-CH-O \end{array}\right) H \]
\[R^{1B} \]
\[R^2 \]
\[n \]
(I). In formula (I) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(Ci-Cs \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl,

unsubstituted aryl, unsubstituted heteroaryl, \(C1-C6 \) alkylamine or
\[R^2 \text{ and } R^3 \]
are independently hydrogen or unsubstituted \(C_1-C_2 \) alkyl, \(n \) is an integer from 1 to 30 and \(m \) is an integer from 1 to 30.

[0014] In another aspect, a method of forming a heavy crude oil emulsion in a production well is provided. The method includes contacting an extracted heavy crude oil in a production well with an oil-immiscible compound and an amphiphilic co-solvent, thereby forming a heavy crude oil emulsion in a production well. The amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[R^{1A} N\left(\begin{array}{c} CH_2-CH-O \end{array}\right) H \]
\[R^{1B} \]
\[R^2 \]
\[n \]
(I). In formula (I) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(Ci-Cs \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl,
unsubstituted aryl, unsubstituted heteroaryl, C1-C6 alkylamine or . R2 and R3 are independently hydrogen or unsubstituted C\textsubscript{1}-C\textsubscript{2} alkyl, n is an integer from 1 to 30 and m is an integer from 1 to 30.

[0015] In another aspect, a method of transporting an extracted heavy crude oil from a production well is provided. The method includes contacting an extracted heavy crude oil in a production well with an oil-immiscible compound and an amphiphilic co-solvent at an emulsion forming temperature, thereby forming a heavy crude oil emulsion in a production well. The heavy crude oil emulsion is transported from the production well to the surface, thereby transporting the extracted heavy crude oil from the production well. The amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[
\begin{array}{c}
\text{R}^{1A} \\
\text{R}^{1B}
\end{array}
\left(\begin{array}{c}
\text{N}
\\
\text{CH}_{2}-\text{CH}=\text{O}
\\
\text{R}^{3}
\end{array}\right)^{n} \text{H}
\]

In formula (I) \text{R}^{1A} and \text{R}^{1B} are independently hydrogen, unsubstituted C\textsubscript{1}-C\textsubscript{8} alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C\textsubscript{i}-C\textsubscript{e} alkylamine or . R2 and R3 are independently hydrogen or unsubstituted C\textsubscript{1}-C\textsubscript{2} alkyl, n is an integer from 1 to 30 and m is an integer from 1 to 30.

[0016] In another aspect, a non-aqueous composition including an oil-immiscible compound and an amphiphilic co-solvent is provided. The amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[
\begin{array}{c}
\text{R}^{1A} \\
\text{R}^{1B}
\end{array}
\left(\begin{array}{c}
\text{N}
\\
\text{CH}_{2}-\text{CH}=\text{O}
\\
\text{R}^{3}
\end{array}\right)^{n} \text{H}
\]

In formula (I) \text{R}^{1A} and \text{R}^{1B} are independently hydrogen, unsubstituted C\textsubscript{i}-C\textsubscript{s} alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C\textsubscript{i}-C\textsubscript{e} alkylamine or . R2 and R3 are independently hydrogen or unsubstituted C\textsubscript{1}-C\textsubscript{2} alkyl, n is an integer from 1 to 30 and m is an integer from 1 to 30.
FIG. 1: shows the effect of temperature on the viscosity of four heavy crude oils mentioned in table 3. Power law model was found to best describe the relationship of heavy oil viscosity vs. temperature. The measurements were taken using an ARES rheometer.

FIG. 2: Apparent viscosity of oil 85% A emulsions vs. shear rate with varying DIPA-15EO concentrations (aq.) at 25°C (Oil A (85% w/v) NaCl (0.2% aq.)).

FIG. 3: Apparent viscosity of oil 85% A emulsions vs. shear rate at different temperature (ARES Rheometer measurements) (Oil A (85% w/v) NaCl (0.4% aq.) DIPA-15EO (1.5% aq.)).

FIG. 4: Apparent viscosity of oil 85% A emulsions with varying emulsion storage time at 25°C (Oil A (85% w/v) NaCl (0.5% aq.) DIPA-15EO (2.5% aq.)).

FIG. 5: Apparent viscosity of oil 85% A emulsions with 1.5% DIPA-15EO with varying oil content at 25°C (Oil A: DIPA-15EO (1.5% aq.) NaCl (0.2% aq.)).

FIG. 6: Apparent viscosity of oil 85% A emulsions with 1.5% DIPA-15EO with varying oil content at 25°C (Oil A: DIPA-15EO (1.5% aq.) NaCl (1% aq.)).

FIG. 7: Apparent viscosity of 40% oil A emulsions with various amine co-solvents at 25°C (Oil A (40% w/v) NaCl (0.1% aq.)).

FIG. 8: Apparent viscosity of 60% oil A emulsions with various amine co-solvents at 25°C (Oil A (60% w/v) NaCl (0.1% aq.)).

FIG. 9: Apparent viscosity of oil A emulsions with combination of amine and phenol ethoxylate co-solvents at 25°C (Oil A (% w/v) DIPA-15EO (1.5% aq.) Ph-IOEO (0.5% aq.) NaCl (1% aq.)).

FIG. 10: Apparent viscosity of oil A emulsions with combination of amine co-solvent and T-Soft surfactant (Dodecylbenzene Sulfonic Acid (DDBSA)) at 25°C (Oil A (% w/v) DIPA-15EO (1.5% aq.) DDBSA (0.5% aq.) NaCl (0.2% aq.)).

FIG. 11: Apparent viscosity of oil C emulsions with combination of ethylene glycol and water at 25°C (Oil C (80% w/v) DIPA-15EO (0.6% w/v) Ethylene Glycol (15% w/v) DI-H2O (4.4% w/v)).

FIG. 12: Viscosity versus shear rate with amines in heavy crude oil.
DETAILED DESCRIPTION OF THE INVENTION

1. DEFINITIONS

[0029] The abbreviations used herein have their conventional meaning within the chemical and biological arts.

[0030] Where substituent groups are specified by their conventional chemical formulae, written from left to right, they equally encompass the chemically identical substituents that would result from writing the structure from right to left, e.g., -CH₂OH is equivalent to -OCH₂-.

[0031] The term "alkyl," by itself or as part of another substituent, means, unless otherwise stated, a straight (i.e. unbranched) or branched chain which may be fully saturated, mono- or polyunsaturated and can include di- and multivalent radicals, having the number of carbon atoms designated (i.e. Ci-Ci0 means one to ten carbons). Examples of saturated hydrocarbon radicals include, but are not limited to, groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, isobutyl, sec-butyl, homologs and isomers of, for example, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. An unsaturated alkyl group is one having one or more double bonds or triple bonds. Examples of unsaturated alkyl groups include, but are not limited to, vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers. Alkyl groups which are limited to hydrocarbon groups are termed "homoalkyl". An alkoxy is an alkyl attached to the remainder of the molecule via an oxygen linker (-O-).

[0032] The term "alkylene" by itself or as part of another substituent means a divalent radical derived from an alkyl, as exemplified, but not limited, by -CH₂CH₂CH₂CH₂-, and further includes those groups described below as "heteroalkylene." Typically, an alkyl (or alkyene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention. A "lower alkyl" or "lower alkyene" is a shorter chain alkyl or alkyene group, generally having eight or fewer carbon atoms.

[0033] The term "heteroalkyl," by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain or combinations thereof, consisting of at least one carbon atom and at least one heteroatom selected from the group consisting of O, N, P, Si and S, and wherein the nitrogen and sulfur atoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized. The heteroatom(s) O, N, P and S and Si may be placed at any interior position of the heteroalkyl group or at the position at which the alkyl group is attached to the remainder of the molecule. Examples include, but are not limited
to, -CH₂CH₂0-CH₃, -CH₂CH₂NHCH₃, -CH₂CH₂N(CH₃)CH₃, -CH₂S-CH₂CH₃, -CH₂-CH₂-S(0)-CH₃, -CH₂CH⁻CH=0CH₃, -CH⁺CH⁻N(CH₃)CH₃, -CH₂-, ..., a t least one ring i s a
dheteroaryl ring. Likewise, a 6,6-fused ring heteroarylene refers t o two rings fused together,
likewise, a 6,6-fused ring heteroaryl refers to two rings fused together,
wherein one ring has 6 members and the other ring has 6 members, and wherein at least one ring is a heteroaryl ring. And a 6,5-fused ring heteroarylene refers to two rings fused together, wherein one ring has 6 members and the other ring has 5 members, and wherein at least one ring is a heteroaryl ring. A heteroaryl group can be attached to the remainder of the molecule through a carbon or heteroatom. Non-limiting examples of aryl and heteroaryl groups include phenyl, 1-naphthyl, 2-naphthyl, 4-biphenyl, 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, 3-pyrazolyl, 2-imidazolyl, 4-imidazolyl, pyrazinyl, 2-oxazolyl, 4-oxazolyl, 2-phenyl-4-oxazolyl, 5-oxazolyl, 3-isoxazolyl, 4-isoxazolyl, 5-isoxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 4-pyrimidyl, 5-pyrimidyl, 5-benzothiazolyl, purinyl, 2-benzimidazolyl, 5-indolyl, 1-isoquinolyl, 5-isoquinolyl, 2-quinoxaliny1, 5-quinoxaliny1, 3-quinolyl, and 6-quinolyl. Substituents for each of the above noted aryl and heteroaryl ring systems are selected from the group of acceptable substituents described below. An "arylene" and a "heteroarylene," alone or as part of another substituent means a divalent radical derived from an aryl and heteroaryl, respectively.

[0036] Where a substituent of a compound provided herein is "R-substituted" (e.g. R²-substituted), it is meant that the substituent is substituted with one or more of the named R groups (e.g. R²) as appropriate. In some embodiments, the substituent is substituted with only one of the named R groups.

[0037] The symbol "-ΑΑΑ-" denotes the point of attachment of a chemical moiety to the remainder of a molecule or chemical formula.

[0038] Each R-group as provided in the formulae provided herein can appear more than once. Where an R-group appears more than once each R group can be optionally different.

[0039] The term "contacting" as used herein, refers to materials or compounds being sufficiently close in proximity to react or interact. For example, in methods of contacting a hydrocarbon material bearing formation and/or a wellbore, the term "contacting" includes placing an aqueous composition (including for example chemical, co-solvent or polymer) within a hydrocarbon material bearing formation using any suitable manner known in the art (e.g., pumping, injecting, pouring, releasing, displacing, spotting or circulating the chemical into a well, wellbore or hydrocarbon bearing formation).

[0040] The terms "unrefined petroleum" and "crude oil" are used interchangeably and in keeping with the plain ordinary usage of those terms. "Unrefined petroleum" and "crude oil" may be found in a variety of petroleum reservoirs (also referred to herein as a "reservoir," "oil
field deposit" "deposit" and the like) and in a variety of forms including oleaginous materials, oil shales (i.e. organic-rich fine-grained sedimentary rock), tar sands, light oil deposits, heavy oil deposits, and the like. "Crude oils" or "unrefined petroleum" generally refer to a mixture of naturally occurring hydrocarbons that may be refined into diesel, gasoline, heating oil, jet fuel, kerosene, and other products called fuels or petrochemicals. Crude oils or unrefined petroleums are named according to their contents and origins, and are classified according to their per unit weight (specific gravity). Heavier crude oils generally yield more heat upon burning, but have lower gravity as defined by the American Petroleum Institute (API) and market price in comparison to light (or sweet) crude oils. Crude oil may also be characterized by its Equivalent Alkane Carbon Number (EACN).

[0041] Crude oils vary widely in appearance and viscosity from field to field. They range in color, odor, and in the properties they contain. While all crude oils are mostly hydrocarbons, the differences in properties, especially the variation in molecular structure, determine whether a crude oil is more or less easy to produce, pipeline, and refine. The variations may even influence its suitability for certain products and the quality of those products. Crude oils are roughly classified into three groups, according to the nature of the hydrocarbons they contain, (i) Paraffin based crude oils contain higher molecular weight paraffins, which are solid at room temperature, but little or no asphaltic (bituminous) matter. They can produce high-grade lubricating oils. (ii) Asphaltene based crude oils contain large proportions of asphaltic matter, and little or no paraffin. Some are predominantly naphthenes and so yield lubricating oils that are sensitive to temperature changes than the paraffin-based crude oils. (iii) Mixed based crude oils contain both paraffin and naphthenes, as well as aromatic hydrocarbons. Most crude oils fit this latter category.

[0042] "Heavy crude oils" as provided herein are crude oils, with an API gravity of less than 20, or a viscosity of at least 100 cp. The heavy crude oils may have a viscosity greater than 100 cP. In some embodiments, the heavy crude oil has a viscosity of at least 100 cP. In other embodiments, the heavy crude oil has a viscosity of at least 1,000 cP. In other embodiments, the heavy crude oil has a viscosity of at least 10,000 cP. In other embodiments, the heavy crude oil has a viscosity of at least 100,000 cP. In other embodiments, the heavy crude oil has a viscosity of at least 1,000,000 cP.

[0043] "Reactive" or "active" heavy crude oil as referred to herein is crude oil containing natural organic acidic components (also referred to herein as unrefined petroleum acid) or their precursors such as esters or lactones. These active heavy crude oils can generate soaps
(carboxylate surfactants) when reacted with alkali or other basic agents (e.g. a basic co-solvent as provided herein). More terms used interchangeably for heavy crude oil throughout this disclosure are active hydrocarbon material or active petroleum material. An "oil bank" or "oil cut" as referred to herein, is the heavy crude oil that does not contain the injected chemicals and is pushed by the injected fluid during an enhanced oil recovery process. A "nonactive oil," as used herein, refers to an oil that is not substantially reactive or crude oil not containing significant amounts of natural organic acidic components or their precursors such as esters or lactones such that significant amounts of soaps are generated when reacted with alkali or other basic agents (e.g. a basic co-solvent as provided herein). A nonactive oil as referred to herein includes oils having an acid number of less than 0.5 mg KOH/g of oil.

"Unrefined petroleum acids" as referred to herein are carboxylic acids contained in active petroleum material (reactive heavy crude oil). The unrefined petroleum acids contain Cn to C20 alkyl chains, including napthenic acid mixtures. The recovery of such "reactive" oils may be performed using alkali (e.g. NaOH or Na2CO3) or other basic agents (e.g. a basic co-solvent as provided herein) in a composition. The alkali or other basic agent (e.g. a basic co-solvent as provided herein) reacts with the acid in the reactive oil to form soap in situ. These in situ generated soaps serve as a source of surfactants enabling efficient oil recovery from the reservoir.

The term "polymer" refers to a molecule having a structure that essentially includes the multiple repetitions of units derived, actually or conceptually, from molecules of low relative molecular mass. In some embodiments, the polymer is an oligomer.

The term "bonded" refers to having at least one of covalent bonding, hydrogen bonding, ionic bonding, Van Der Waals interactions, pi interactions, London forces or electrostatic interactions.

The term "productivity" as applied to a petroleum or oil well refers to the capacity of a well to produce hydrocarbons (e.g. unrefined petroleum); that is, the ratio of the hydrocarbon flow rate to the pressure drop, where the pressure drop is the difference between the average reservoir pressure and the flowing bottom hole well pressure (i.e., flow per unit of driving force).

The term "oil solubilization ratio" is defined as the volume of oil solubilized divided by the volume of surfactant in microemulsion. All the surfactant is presumed to be in the microemulsion phase. The oil solubilization ratio is applied for Winsor type I and type III
behavior. The volume of oil solubilized is found by reading the change between initial aqueous level and excess oil (top) interface level. The oil solubilization ratio is calculated as follows:

\[
\sigma_o = \frac{V_o}{V_s}, \text{ wherein}
\]

\[
\sigma_o = \text{oil solubilization ratio;}
\]

\[
V_o = \text{volume of oil solubilized;}
\]

\[
V_s = \text{volume of surfactant.}
\]

[0049] The term "water solubilization ratio" is defined as the volume of water solubilized divided by the volume of surfactant in microemulsion. All the surfactant is presumed to be in the microemulsion phase. The water solubilization ratio is applied for Winsor type III and type II behavior. The volume of water solubilized is found by reading the change between initial aqueous level and excess water (bottom) interface level. The water solubilization parameter is calculated as follows:

\[
\sigma_w = \frac{V_w}{V_s}, \text{ wet em}
\]

\[
\sigma_w = \text{water solubilization ratio;}
\]

\[
V_w = \text{volume of water solubilized.}
\]

[0050] The optimum solubilization ratio occurs where the oil and water solubilization ratios are equal. The coarse nature of phase behavior screening often does not include a data point at optimum, so the solubilization ratio curves are drawn for the oil and water solubilization ratio data and the intersection of these two curves is defined as the optimum. The following is true for the optimum solubilization ratio:

\[
\sigma_0 = \sigma_w = \sigma^*;
\]

\[
\sigma^* = \text{optimum solubilization ratio.}
\]

[0051] The term "solubility" or "solubilization" in general refers to the property of a solute, which can be a solid, liquid or gas, to dissolve in a solid, liquid or gaseous solvent thereby forming a homogenous solution of the solute in the solvent. Solubility occurs under dynamic equilibrium, which means that solubility results from the simultaneous and opposing processes
of dissolution and phase joining (e.g. precipitation of solids). The solubility equilibrium occurs
when the two processes proceed at a constant rate. The solubility of a given solute in a given
solvent typically depends on temperature. For many solids dissolved in liquid water, the
solubility increases with temperature. In liquid water at high temperatures, the solubility of ionic
solvates tends to decrease due to the change of properties and structure of liquid water. In more
particular, solubility and solubilization as referred to herein are the properties of oil to dissolve in
water and vice versa.

[0052] "Viscosity" refers to a fluid's internal resistance to flow or being deformed by shear or
tensile stress. In other words, viscosity may be defined as thickness or internal friction of a
liquid. Thus, water is "thin", having a lower viscosity, while oil is "thick", having a higher
viscosity. More generally, the less viscous a fluid is, the greater its ease of fluidity.

[0053] The term "salinity" as used herein, refers to concentration of salt dissolved in a aqueous
phases. Examples for such salts are without limitation, sodium chloride, magnesium and
calcium sulfates, and bicarbonates. In more particular, the term salinity as it pertains to the
present invention refers to the concentration of salts in brine and surfactant solutions.

[0054] The term "aqueous solution or aqueous formulation" refers to a solution in which the
solvent is water. The term "emulsion, emulsion solution or emulsion formulation" refers to a
mixture of two or more liquids which are normally immiscible. A non-limiting example for an
emulsion is a mixture of oil and water.

[0055] An "alkali agent" is used according to its conventional meaning and includes basic,
ionic salts of alkali metals or alkaline earth metals. Alkali agents as provided herein are typically
capable of reacting with an unrefined petroleum acid (e.g. the acid or its precursor in crude oil
(reactive oil)) to form soap (a surfactant which is a salt of a fatty acid) in situ. These in situ
generated soaps serve as a source of surfactants causing a reduction of the interfacial tension of
the oil in water emulsion, thereby reducing the viscosity of the emulsion. Examples of alkali
agents useful for the provided invention include, but are not limited to, sodium hydroxide,
sodium carbonate, sodium silicate, sodium metaborate, and EDTA tetrasodium salt.

[0056] A "co-solvent" refers to a compound having the ability to increase the solubility of a
solute (e.g., a polymer, an alkali agent) in the presence of an unrefined petroleum acid. In some
embodiments, the compounds provided herein (e.g., an alkylamine or a compound of formula (I),
(II), or (III)) including embodiments thereof are basic co-solvents. A "basic co-solvent" refers to
a compound capable of accepting protons (e.g. compounds including a basic nitrogen atom) and
reacting with an unrefined petroleum acid (e.g. the acid in crude oil (reactive oil)) to form soap (a surfactant salt of a fatty acid), for example, in situ.

[0057] The term "alkylamine" is used according to its ordinary meaning and refers to a heteroalkane compound composed of one or more nitrogen heteroatoms, carbon atoms (e.g. C1-C6 alkyl or alkylene groups) and hydrogen atoms wherein at least one nitrogen atom is basic. In some embodiments, the alkylamine is a secondary amine (e.g., diisopropylamine). A "secondary amine" as provided herein is used according to its ordinary meaning and refers to an organic compound wherein the nitrogen atom is bound to a hydrogen atom and two non-hydrogen substituents, wherein the two non-hydrogen substituents are independently aryl or alkyl. In other embodiments, the alkylamine is an alkylpolyamine. An "alkylpolyamine" as provided herein is used according to its ordinary meaning and refers to an alkylamine having a plurality of nitrogen heteroatoms (e.g. NH₂ or NH group). Non limiting examples of alkylpolyamines are dimethylaminopropylamine (DMAPA), triethylenetetramine (TETA), and diethylenetriamine (DETA). The alkylamine or alkylpolyamine as provided herein may include saturated C1-C6 alkyl or alkylene bound to another substituent (e.g., R1A or R1B).

[0058] The term "arylamine" is used according to its ordinary meaning and refers to a saturated 5 to 10 membered aryl ring substituted with at least one NH₂ group. A non-limiting example of an arylamine useful for the compositions provided herein is aniline.

[0059] An "alkylamine alkoxylate" as provided herein is used according to its ordinary meaning and refers to an alkylamine in which a nitrogen heteroatom is bonded to a hydrophilic moiety including an alcohol and/or an alkoxy portion. The term "alcohol" is used according to its ordinary meaning and refers to an organic compound containing an -OH group attached to a carbon atom. The term "alkoxy" refers to an alkyl (e.g. C1-C4 alkyl) group singularly bonded to oxygen. The alkoxy may be an ethoxy (-CH₂-CH₂-O-), a propoxy (-CH₂-CH(methyl)-O-) or a butoxy (-CH₂-CH(ethyl)-O-) group.

[0060] A "microemulsion" as referred to herein is a thermodynamically stable mixture of oil and water that may also include additional components such as the co-solvents provided herein including embodiments thereof, electrolytes, alkali and polymers. In contrast, a "macroemulsion" as referred to herein is a thermodynamically unstable mixture of oil and water that may also include additional components. The emulsion composition provided herein may be an oil-in-water emulsion, wherein the in situ generated soap aggregates (e.g. micelles) include a hydrophilic portion contacting the aqueous phase of the emulsion and a lipophilic portion
contacting the oil phase of the emulsion. Thus, in some embodiments, the in situ generated soap forms part of the aqueous phase of the emulsion. And in other embodiments, the in situ generated soap forms part of the oil phase of the emulsion. In yet another embodiment, the in situ generated soap forms part of an interface between the aqueous phase and the oil phase of the emulsion.

[0061] A "catalyst" as referred to herein is an agent used to convert unrefined petroleum, typically having low octane ratings, into high-octane liquid reformates, which are components of high-octane gasoline. During the process of conversion, the hydrocarbon molecules in the unrefined petroleum may be restructured and broken up into smaller molecules. The reformate produced by the conversion process may contain hydrocarbons with more complex molecular shapes having higher octane values than the hydrocarbons in the unrefined petroleum. Examples of catalysts useful for the conversion of unrefined petroleum into lighter high-octane reformates are without limitation, nanoparticles, platinum, palladium, rhodium, nickel, chromium oxide, Pt/Al2O3, zinc titanium oxide, aluminum oxide, and zeolites.

[0062] A "production well" as referred to herein is a vessel used for enhanced oil recovery, which connects a petroleum reservoir to the surface. A production well is capable of transporting crude oil that has been extracted from the petroleum reservoir (extracted crude oil) to the surface. In embodiments, the production well is in close proximity to the petroleum reservoir. In embodiments, the production well is connected to the reservoir through a mechanical pump (e.g., electrical submersible pump). In embodiments, the production well includes a mechanical pump.

[0063] An "extracted heavy crude oil" as referred to herein is a heavy crude oil that has exited a petroleum reservoir. An extracted heavy crude oil does not form part of the reservoir in which it was endogenously present. In embodiments, the extracted heavy crude oil is within a production well. In embodiments, the extracted heavy crude oil is within a transportation vessel. In embodiments, the extracted heavy crude oil is within a transport vessel. In embodiments, the extracted heavy crude oil is within a pipeline.

II. COMPOSITIONS

[0064] While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The
specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not limit the scope of the invention.

[0065] Provided herein are, inter alia, heavy crude oil emulsion compositions to be used for a variety of applications including transport of heavy crude oils. The heavy crude oil emulsions provided herein may be used with a wide variety of heavy crude oil concentrations and at a wide range of salinity, including hard brine and soft brine. In embodiments, the viscosity of the heavy crude oil emulsion compositions provided herein is surprisingly much lower than the viscosity of the heavy crude oil. Further, the viscosity of the heavy crude oil emulsions provided herein may remain low at ambient temperatures (i.e. temperatures below 80°C) over extended periods of time, making them particularly useful for heavy crude oil transport.

[0066] In one aspect, a heavy crude oil emulsion is provided. The heavy crude oil emulsion includes a heavy crude oil, water and a co-solvent. The co-solvent is an alkylamine or a compound having the formula:

\[
\text{R}^{1A}_N\underset{\text{R}^{1B}}{\text{N}}\left(\text{CH}_2\text{CH}_2\text{O}\right)_n\text{H}^{1C}
\]

(I). In formula (I) R^{1A} and R^{1B} are independently hydrogen, unsubstituted C1-C6 alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C1-C6 alkylamine or

\[
\left(\text{CH}_2\text{CH}_2\text{O}\right)_m\text{H}\quad \text{R}^{2}
\]

and R^{3} are independently hydrogen or unsubstituted C1-C2 alkyl. The symbol n is an integer from 1 to 30. The symbol m is an integer from 1 to 30 and the heavy crude oil emulsion is within a transport vessel.

[0067] The heavy crude oil emulsion provided herein including embodiments thereof includes a heavy crude oil, water and a co-solvent and the co-solvent may be a compound of formula (I). In formula (I) n may be an integer from 1 to 30. Thus, in some embodiments, the symbol n is an integer from 1-30. In some embodiments, the symbol n is an integer from 1-28. In other embodiments, the symbol n is an integer from 1-26. In some embodiments, the symbol n is an integer from 1-24. In some embodiments, the symbol n is an integer from 1-22. In some embodiments, the symbol n is an integer from 1-20. In some embodiments, the symbol n is an integer from 1-18. In some embodiments, the symbol n is an integer from 1-16. In some embodiments, the symbol n is an integer from 1-14. In some embodiments, the symbol n is an
integer from 1-12. In some embodiments, the symbol \(n \) is an integer from 1-10. In some embodiments, the symbol \(n \) is an integer from 1-8. In some embodiments, the symbol \(n \) is an integer from 1-6. In some embodiments, the symbol \(n \) is an integer from 1-4. In some embodiments, the symbol \(n \) is an integer from 1-3. In some embodiment, the symbol \(n \) is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30. In one embodiment, the symbol \(n \) is 3. In other embodiments, the symbol \(n \) is 1. In one embodiment, the symbol \(n \) is 6.

[0068] In some related embodiments, \(R^2 \) is hydrogen and \(n \) is as defined in an embodiment above (e.g., \(n \) is at least 1, or at least 10). Thus, in some embodiments, \(R^2 \) is hydrogen and \(n \) is 1.

In other embodiments, \(R^2 \) is hydrogen and \(n \) is 3.

[0069] In some embodiments, the symbol \(m \) is an integer from 1-30. In some embodiments, the symbol \(m \) is an integer from 1-28. In other embodiments, the symbol \(m \) is an integer from 1-26. In some embodiments, the symbol \(m \) is an integer from 1-24. In some embodiments, the symbol \(m \) is an integer from 1-22. In some embodiments, the symbol \(m \) is an integer from 1-20. In some embodiments, the symbol \(m \) is an integer from 1-18. In some embodiments, the symbol \(m \) is an integer from 1-16. In some embodiments, the symbol \(m \) is an integer from 1-14. In some embodiments, the symbol \(m \) is an integer from 1-12. In some embodiments, the symbol \(m \) is an integer from 1-10. In some embodiments, the symbol \(m \) is an integer from 1-8. In some embodiments, the symbol \(m \) is an integer from 1-6. In some embodiments, the symbol \(m \) is an integer from 1-4. In some embodiments, the symbol \(m \) is an integer from 1-3. In some embodiment, the symbol \(m \) is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30. In one embodiment, the symbol \(m \) is 3. In other embodiments, the symbol \(m \) is 1. In one embodiment, the symbol \(m \) is 6.

[0070] In some related embodiments, \(R^3 \) is hydrogen and \(m \) is as defined in an embodiment above (e.g., \(n \) is at least 1, or at least 10). Thus, in some embodiments, \(R^3 \) is hydrogen and \(m \) is 1. In other embodiments, \(R^3 \) is hydrogen and \(m \) is 3.

[0071] As provided herein \(R^{1A} \) and \(R^{1B} \) may be independently hydrogen, unsubstituted \(\text{Ci-Cs} \) (e.g., \(\text{C1-C4} \) alkyl, unsubstituted \(\text{C3-C6} \) (e.g., \(\text{C6} \)) cycloalkyl, unsubstituted 3 to 8 membered (e.g., 6 membered) heterocycloalkyl, \(\text{C5-C8} \) (e.g., \(\text{C6} \)) unsubstituted aryl, unsubstituted 5 to 8 membered (e.g., 5 to 6-membered) heteroaryl, \(\text{C1-C6} \) (e.g. \(\text{C2-C4} \) alkylamine or
In some embodiments, \(R_1^A \) and \(R_1^B \) are independently unsubstituted \(\text{Ci-Cg} \) alkyl. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently unsubstituted \(\text{Ci-Ce} \) alkyl. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently unsubstituted C1-C4 alkyl. In some embodiments, \(R_1^A \) and \(R_1^B \) are independently hydrogen or branched or linear C4-C6 alkylamine. In some embodiments, the number of total carbon atoms within \(R_1^A \) and \(R_1^B \) combined does not exceed 8.

In some embodiments, \(R_1^A \) and \(R_1^B \) are independently branched or linear unsubstituted Ci-Ce alkyl. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently branched or linear unsubstituted Ci-Ce alkyl. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently branched or linear unsubstituted C1-C4 alkyl. In some embodiments, \(R_1^A \) and \(R_1^B \) are independently branched or linear unsubstituted C3 alkyl. In some embodiments, \(R_1^A \) and \(R_1^B \) are independently linear unsubstituted Ci-Cs alkyl. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently branched unsubstituted Ci-Cs alkyl. In some embodiments, \(R_1^A \) and \(R_1^B \) are independently linear unsubstituted \(\text{Ci-Ce} \) alkyl. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently branched unsubstituted \(\text{Ci-Ce} \) alkyl. In some embodiments, \(R_1^A \) and \(R_1^B \) are independently linear unsubstituted C1-C4 alkyl. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently branched unsubstituted C1-C4 alkyl. In some embodiments, \(R_1^A \) and \(R_1^B \) are linear unsubstituted C3 alkyl. In other embodiments, \(R_1^A \) and \(R_1^B \) are branched unsubstituted C3 alkyl. In some embodiments, \(R_1^A \) and \(R_1^B \) are unsubstituted isopropyl.

As provided herein \(R_1^A \) and \(R_1^B \) may be independently hydrogen or \(\text{Ci-Ce} \) (e.g., C1-C4) alkylamine. In some embodiments, \(R_1^A \) and \(R_1^B \) are independently hydrogen or \(\text{Ci-Ce} \) alkylamine. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently hydrogen or C2-C6 alkylamine. In some embodiments, \(R_1^A \) and \(R_1^B \) are independently hydrogen or C3-C6 alkylamine. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently hydrogen or C4-C6 alkylamine. In some embodiments, \(R_1^A \) and \(R_1^B \) are independently hydrogen or C5 alkylamine. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently hydrogen or C6 alkylamine.

In some embodiments, \(R_1^A \) and \(R_1^B \) are independently hydrogen or branched or linear C1-C6 alkylamine. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently hydrogen or branched or linear C2-C6 alkylamine. In some embodiments, \(R_1^A \) and \(R_1^B \) are independently hydrogen or branched or linear C3-C6 alkylamine. In other embodiments, \(R_1^A \) and \(R_1^B \) are independently hydrogen or branched or linear C4-C6 alkylamine. In some embodiments, \(R_1^A \) and \(R_1^B \) are
independently hydrogen or branched or linear C₄ alkylamine. In other embodiments, R¹A and R¹B are independently hydrogen or branched or linear C₅ alkylamine. In some embodiments, R¹A and R¹B are independently hydrogen or branched or linear Ce alkylamine.

[0075] In some embodiments, R¹A and R¹B are independently hydrogen or linear Ci-Ce alkylamine. In other embodiments, R¹A and R¹B are independently hydrogen or linear C2-C6 alkylamine. In some embodiments, R¹A and R¹B are independently hydrogen or linear C3-C6 alkylamine. In other embodiments, R¹A and R¹B are independently hydrogen or linear C4-C6 alkylamine. In some embodiments, R¹A and R¹B are independently hydrogen or linear C₄ alkylamine. In other embodiments, R¹A and R¹B are independently hydrogen or linear C₅ alkylamine. In some embodiments, R¹A and R¹B are independently hydrogen or linear Ce alkylamine. In some embodiments, R¹A and R¹B are independently hydrogen or branched Ci-Ce alkylamine. In other embodiments, R¹A and R¹B are independently hydrogen or branched C2-C₆ alkylamine. In some embodiments, R¹A and R¹B are independently hydrogen or branched C₃-C₆ alkylamine. In other embodiments, R¹A and R¹B are independently hydrogen or branched C₄-C₆ alkylamine. In some embodiments, R¹A and R¹B are independently hydrogen or branched C₄ alkylamine. In other embodiments, R¹A and R¹B are independently hydrogen or branched C₅ alkylamine. In some embodiments, R¹A and R¹B are independently hydrogen or branched Ce alkylamine.

[0076] In some embodiments, R¹A is hydrogen and R¹B is C₄-C₆ alkylamine. In other embodiments, R¹A is hydrogen and R¹B is branched or linear C₄-C₆ alkylamine. In some embodiments, R¹A is hydrogen and R¹B is linear C₄-C₆ alkylamine. In other embodiments, R¹A is hydrogen and R¹B is branched C₄-C₆ alkylamine. In some embodiments, R¹A is hydrogen and R¹B is C₄ alkylamine. In some embodiments, R¹A is hydrogen and R¹B is linear C₄ alkylamine. In other embodiments, R¹A is hydrogen and R¹B is branched C₅ alkylamine. In other embodiments, R¹A is hydrogen and R¹B is C₅ alkylamine. In some embodiments, R¹A is hydrogen and R¹B is linear C₅ alkylamine. In other embodiments, R¹A is hydrogen and R¹B is Ce alkylamine. In other embodiments, R¹A is hydrogen and R¹B is linear Ce alkylamine.

[0077] R¹A and R¹B may be independently Ci-Ce (e.g., C₁-C₄) alkylamine. In some embodiments, R¹A and R¹B are independently Ci-Ce alkylamine. In other embodiments, R¹A and R¹B are independently C₂-C₆ alkylamine. In other embodiments, R¹A and R¹B are independently C₃-C₆ alkylamine. In other embodiments, R¹A and R¹B are independently branched or linear Ci-Ce alkylamine. In other embodiments, R¹A and R¹B are independently branched or linear C₂-C₆ alkylamine. In other embodiments, R¹A and R¹B are independently branched or linear C₃-C₆ alkylamine.
other embodiments, R1A and R1B are independently branched or linear C\textsubscript{4-6} alkylamine. In some embodiments, R1A and R1B are independently linear Ci-Ce alkylamine. In other embodiments, R1A and R1B are independently linear C2-C6 alkylamine. In other embodiments, R1A and R1B are independently linear C3-C6 alkylamine. In other embodiments, R1A and R1B are independently linear C4-C6 alkylamine. In some embodiments, R1A and R1B are independently branched C\textsubscript{1-6} alkylamine. In other embodiments, R1A and R1B are independently branched C2-C6 alkylamine. In other embodiments, R1A and R1B are independently branched C3-C6 alkylamine. In other embodiments, R1A and R1B are independently branched C4-C6 alkylamine. In some embodiments, R1A and R1B are independently C2 alkylamine or C\textsubscript{4} alkylamine. In some embodiments, R1A and R1B are C2 alkylamine.

[0078] As described herein R1A and R1B may be an alkylpolyamine. Thus, in some embodiments, the alkylamine is an alkylpolyamine. In some embodiments, R1A and R1B are independently Ci-Ce alkylpolyamine. In other embodiments, R1A and R1B are independently C2-C6 alkylpolyamine. In other embodiments, R1A and R1B are independently C4-C6 alkylpolyamine. In some embodiments, R1A and R1B are independently branched or linear Ci-Ce alkylpolyamine. In other embodiments, R1A and R1B are independently branched or linear C2-C6 alkylpolyamine. In other embodiments, R1A and R1B are independently branched or linear C3-C6 alkylpolyamine. In other embodiments, R1A and R1B are independently branched or linear C4-C6 alkylpolyamine. In some embodiments, R1A and R1B are independently linear Ci-Ce alkylpolyamine. In other embodiments, R1A and R1B are independently linear C2-C6 alkylpolyamine. In other embodiments, R1A and R1B are independently linear C3-C6 alkylpolyamine. In other embodiments, R1A and R1B are independently linear C4-C6 alkylpolyamine. In some embodiments, R1A and R1B are independently branched Ci-Ce alkylpolyamine. In other embodiments, R1A and R1B are independently branched C2-C6 alkylpolyamine. In other embodiments, R1A and R1B are independently branched C3-C6 alkylpolyamine. In other embodiments, R1A and R1B are independently branched C4-C6 alkylpolyamine. In some embodiments, R1A and R1B are independently C2 alkylamine or C\textsubscript{4} alkylpolyamine.

[0079] In some embodiments, R1A and R1B are independently hydrogen or Ci-Ce alkylamine. In other embodiments, R1A and R1B are Ci-Ce alkylamine. In some embodiments, R1A and R1B are Ci-Ce alkylpolyamine. In the embodiments provided herein R1A and R1B may have the structure of formula:
In some embodiments, R^{1A} is hydrogen and R^{1B} has the structure of formula (ID). In other embodiments, R^{1A} is hydrogen and R^{1B} has the structure of formula (IA). In other embodiments, R^{1A} is hydrogen and R^{1B} has the structure of formula (IC). In some embodiments, R^{1A} has the structure of formula (IC) and R^{1B} has the structure of formula (ID). In other embodiments, R^{1A} and R^{1B} have the structure of formula (ID).

As provided herein R^{1A} and R^{1B} may be independently hydrogen, unsubstituted C$_3$-C$_6$ (e.g., C$_5$) cycloalkyl or C$_5$-C$_8$ (e.g., C$_7$) unsubstituted aryl. Thus, in some embodiments, R^{1A} is hydrogen and R^{1B} is unsubstituted (e.g., C$_3$-C$_6$) cycloalkyl. In some embodiments, R^{1B} is unsubstituted 6 membered cycloalkyl. In other embodiments, R^{1A} is hydrogen and R^{1B} is (e.g., C$_5$-C$_8$) unsubstituted aryl. In some embodiments, R^{1B} is phenyl.

As provided herein R^2 and R^3 may be independently hydrogen or unsubstituted C$_1$-C$_2$ alkyl. Thus, in some embodiments, R^2 and R^3 are independently hydrogen, methyl or ethyl. In some embodiments, where multiple R^2 substituents are present and at least two R^2 substituents are different, R^2 substituents with the fewest number of carbons are present to the side of the compound of formula (I), (II), or (III) bound to the hydrogen atom. In this embodiment, the compound of formula (I), (II), or (III) will be increasingly hydrophilic in progressing from the nitrogen to the side of the compound indicated by asterisk in the below structures:

$$R^{1A} \text{N} \left(\text{CH}_2 \cdot \text{CH} \cdot \text{O}\right)^*_{R^2} \text{H} (I)$$
In some embodiments, the compound has the formula:

(II) \[\text{R}^1 \text{A} \quad \text{R}^1 \text{B} \quad \text{N} \left(\text{CH}_2 \text{CH}_2 \text{O} \right)^* \text{H} \]

(III) \[\text{R}^1 \text{A} \quad \text{R}^1 \text{B} \quad \text{N} \left(\text{CH}_2 \text{CH}_2 \text{O} \right)^* \text{H} \]

[0082] In some embodiments, the compound has the formula:

(II) \[\text{R}^1 \text{A} \quad \text{R}^1 \text{B} \quad \text{N} \left(\text{CH}_2 \text{CH}_2 \text{O} \right)^* \text{H} \]

are defined as above (e.g. hydrogen, C\textsubscript{3} alkyl, or Ci-Ce alkylamine), \text{R}^2 is methyl or ethyl, \text{R} is an integer from 0 to 15 and \text{p} is an integer from 1 to 10. In some embodiments, \text{R}^2 is hydrogen, \text{R} is 0 and \text{p} is an integer from 1 to 6.

[0083] In some embodiments, \text{R} is 0 to 15. In some related embodiments, \text{R} is 0 to 12. In some related embodiments, \text{R} is 0 to 10. In some related embodiments, \text{R} is 0 to 8. In some related embodiments, \text{R} is 0 to 6. In some related embodiments, \text{R} is 0 to 4. In some related embodiments, \text{R} is 0 to 2. In still further related embodiments, \text{R} is 0. In some further related embodiment, \text{p} is an integer from 1 to 10. In some further related embodiment, \text{p} is an integer from 1 to 8. In some further related embodiment, \text{p} is an integer from 1 to 6. In some further related embodiment, \text{p} is an integer from 1 to 4. In some further related embodiment, \text{p} is an integer from 1 to 2. In still some further related embodiment, \text{p} is more than 1. In some further embodiment, \text{p} is 6. \text{R}^1 \text{A}, \text{R}^1 \text{B} and \text{R}^2 may be any of the embodiments described above (e.g., \text{R}^1 \text{A} and \text{R}^1 \text{B} maybe isopropyl, \text{R}^2 maybe hydrogen or unsubstituted Ci-Ce alkyl). Thus, in some embodiment, \text{R}^1 \text{A} and \text{R}^1 \text{B} are isopropyl, \text{R} is 0 and \text{p} is 3.

[0084] In some embodiments, \text{R} is an integer from 1 to 15. In some related embodiments, \text{R} is an integer from 1 to 12. In some related embodiments, \text{R} is an integer from 1 to 10. In some related embodiments, \text{R} is an integer from 1 to 8. In some related embodiments, \text{R} is an integer from 1 to 6. In some related embodiments, \text{R} is an integer from 1 to 4. In some related embodiments, \text{R} is an integer from 1 to 2. In some further related embodiment, \text{p} is an integer from 1 to 10. In some further related embodiment, \text{p} is an integer from 1 to 8. In some further embodiment, \text{p} is an integer from 1 to 6. In some further related embodiment, \text{p} is an integer from 1 to 4. In some further related embodiment, \text{p} is an integer from 1 to 2. In still
some further related embodiment, p is more than 1. R1A, R1B and R2 may be any of the embodiments described above (e.g., R1A and R1B maybe isopropyl, R2 maybe hydrogen or unsubstituted C\textsubscript{1}-C\textsubscript{2} alkyl).

[0085] In some embodiments, 0 is 2 to 15. In some related embodiments, 0 is 2 to 12. In some related embodiments, 0 is 2 to 10. In some related embodiments, 0 is 2 to 8. In some related embodiments, 0 is 2 to 6. In some related embodiments, 0 is 2 to 4. In some further related embodiment, p is an integer from 1 to 10. In some further related embodiment, p is an integer from 1 to 8. In some further related embodiment, p is an integer from 1 to 6. In some further related embodiment, p is an integer from 1 to 4. In some further related embodiment, p is an integer from 1 to 2. In still some further related embodiment, p is more than 1. R1A, R1B and R2 may be any of the embodiments described above (e.g., R1A and R1B maybe isopropyl, R2 maybe hydrogen or unsubstituted C\textsubscript{1}-C\textsubscript{2} alkyl).

[0086] In some embodiments, 0 is 4 to 15. In some related embodiments, 0 is 4 to 12. In some related embodiments, 0 is 4 to 10. In some related embodiments, 0 is 4 to 8. In some related embodiments, 0 is 4 to 6. In some further related embodiment, p is an integer from 1 to 10. In some further related embodiment, p is an integer from 1 to 8. In some further related embodiment, p is an integer from 1 to 6. In some further related embodiment, p is an integer from 1 to 4. In some further related embodiment, p is an integer from 1 to 2. In still some further related embodiment, p is more than 1 R1A, R1B and R2 may be any of the embodiments described above (e.g., R1A and R1B maybe isopropyl, R2 maybe hydrogen or unsubstituted C\textsubscript{1}-C\textsubscript{2} alkyl).

[0087] In some embodiments, 0 is 6 to 15. In some related embodiments, 0 is 6 to 12. In some related embodiments, 0 is 6 to 10. In some related embodiments, 0 is 6 to 8. In some further related embodiment, p is an integer from 1 to 10. In some further related embodiment, p is an integer from 1 to 8. In some further related embodiment, p is an integer from 1 to 6. In some further related embodiment, p is an integer from 1 to 4. In some further related embodiment, p is an integer from 1 to 2. In still some further related embodiment, p is more than 1. R1A, R1B and R2 may be any of the embodiments described above (e.g., R1A and R1B maybe isopropyl, R2 maybe hydrogen or unsubstituted C\textsubscript{1}-C\textsubscript{2} alkyl).

[0088] In some embodiments, 0 is 8 to 15. In some related embodiments, 0 is an integer from 8 to 12. In some related embodiments, 0 is an integer from 8 to 10. In some further related embodiment, p is an integer from 1 to 10. In some further related embodiment, p is an integer
from 1 to 8. In some further related embodiment, \(p \) is an integer from 1 to 6. In some further related embodiment, \(p \) is an integer from 1 to 4. In some further related embodiment, \(p \) is an integer from 1 to 2. In still some further related embodiment, \(p \) is more than 1. \(R^A, R^B \) and \(R^2 \) may be any of the embodiments described above (e.g., \(R^A \) and \(R^B \) maybe isopropyl, \(R^2 \) maybe hydrogen or unsubstituted C1-C2 alkyl).

\[0089\] In some embodiments, \(o \) is an integer from 10 to 15. In some related embodiments, \(o \) is an integer from 10 to 12. In some further related embodiment, \(p \) is an integer from 1 to 10. In some further related embodiment, \(p \) is an integer from 1 to 8. In some further related embodiment, \(p \) is an integer from 1 to 6. In some further related embodiment, \(p \) is an integer from 1 to 4. In some further related embodiment, \(p \) is an integer from 1 to 2. In still some further related embodiment, \(p \) is more than 1. \(R^A, R^B \) and \(R^2 \) may be any of the embodiments described above (e.g., \(R^A \) and \(R^B \) maybe isopropyl, \(R^2 \) maybe hydrogen or unsubstituted C1-C2 alkyl).

\[0090\] In some embodiments, \(0 \) is an integer from 12 to 15. In some further related embodiment, \(p \) is an integer from 1 to 10. In some further related embodiment, \(p \) is an integer from 1 to 8. In some further related embodiment, \(p \) is an integer from 1 to 6. In some further related embodiment, \(p \) is an integer from 1 to 4. In some further related embodiment, \(p \) is an integer from 1 to 2. In still some further related embodiment, \(p \) is more than 1. \(R^A, R^B \) and \(R^2 \) may be any of the embodiments described above (e.g., \(R^A \) and \(R^B \) maybe isopropyl, \(R^2 \) maybe hydrogen or unsubstituted C1-C2 alkyl).

\[0091\] In other embodiments, the compound has the formula:

\[
\text{(III)} \quad R^2 \text{ is ethyl, } q \text{ is an integer from 0 to 10, } r \text{ is an integer from 0 to 10 and } s \text{ is an integer from 1 to 10.}
\]

\[0092\] In some embodiment, \(q \) is an integer from 0 to 10. In some related embodiment, \(q \) is an integer from 1 to 10. In some related embodiment, \(q \) is an integer from 2 to 10. In some related embodiment, \(q \) is an integer from 3 to 10. In some related embodiment, \(q \) is an integer from 4 to 10. In some related embodiment, \(q \) is an integer from 5 to 10. In some related embodiment, \(q \) is an integer from 6 to 10. In some related embodiment, \(q \) is an integer from 7 to 10. In some related embodiment, \(q \) is an integer from 8 to 10. In some related embodiment, \(q \) is 9 to 10. Moreover, in still further related embodiments, \(q \) is an integer from 0. In some further related
embodiment, r is 0 to 10. In some further related embodiment, r is 1 to 10. In some further related embodiment, r is 2 to 10. In some further related embodiment, r is 3 to 10. In some further related embodiment, r is 4 to 10. In some further related embodiment, r is 5 to 10. In some further related embodiment, r is 6 to 10. In some further related embodiment, r is 7 to 10. Moreover, in still further related embodiments, r is 0 to 10. In some further related embodiment, r is 8 to 10. In some further related embodiment, r is 9 to 10.

In some further related embodiment, s is 1 to 10. In still some further embodiment, s is 0. In some further related embodiment, s is 1 to 10. In still some further embodiment, s is 2 to 10. In still some further embodiment, s is 3 to 10. In still some further embodiment, s is 4 to 10. In still some further embodiment, s is 5 to 10. In still some further embodiment, s is 6 to 10. In still some further embodiment, s is 7 to 10. In still some further embodiment, s is 8 to 10. In still some further embodiment, s is 9 to 10.

In some related embodiment, q is an integer from 0 to 9. In some related embodiment, q is an integer from 1 to 9. In some related embodiment, q is an integer from 2 to 9. In some related embodiment, q is an integer from 3 to 9. In some related embodiment, q is an integer from 4 to 9. In some related embodiment, q is an integer from 5 to 9. In some related embodiment, q is an integer from 6 to 9. In some related embodiment, q is an integer from 7 to 9. In some related embodiment, q is an integer from 8 to 9. Moreover, in still further related embodiments, q is an integer from 0. In some further related embodiment, r is 0 to 10. In some further related embodiment, r is 1 to 10. In some further related embodiment, r is 2 to 10. In some further related embodiment, r is 3 to 10. In some further related embodiment, r is 4 to 10. In some further related embodiment, r is 5 to 10. In some further related embodiment, r is 6 to 10. In some further related embodiment, r is 7 to 10. In some further related embodiment, r is 8 to 10. In some further related embodiment, r is 9 to 10. Moreover, in still further related embodiments, r is 0. In still some further embodiment, s is 1 to 10. In still some further embodiment, s is 2 to 10. In still some further embodiment, s is 3 to 10. In still some further embodiment, s is 4 to 10. In still some further embodiment, s is 5 to 10. In still some further embodiment, s is 6 to 10. In still some further embodiment, s is 7 to 10. In still some further embodiment, s is 8 to 10. In still some further embodiment, s is 9 to 10. R1A, R1B and R2 may be any of the embodiments described above (e.g., R1A and R1B may be isopropyl, R2 may be hydrogen or unsubstituted C\textsubscript{1}-C\textsubscript{2} alkyl).

[0093] In some embodiment, q is an integer from 0 to 9. In some related embodiment, q is an integer from 1 to 9. In some related embodiment, q is an integer from 2 to 9. In some related embodiment, q is an integer from 3 to 9. In some related embodiment, q is an integer from 4 to 9. In some related embodiment, q is an integer from 5 to 9. In some related embodiment, q is an integer from 6 to 9. In some related embodiment, q is an integer from 7 to 9. In some related embodiment, q is an integer from 8 to 9. Moreover, in still further related embodiments, q is an integer from 0. In some further related embodiment, r is 0 to 10. In some further related embodiment, r is 1 to 10. In some further related embodiment, r is 2 to 10. In some further related embodiment, r is 3 to 10. In some further related embodiment, r is 4 to 10. In some further related embodiment, r is 5 to 10. In some further related embodiment, r is 6 to 10. In some further related embodiment, r is 7 to 10. In some further related embodiment, r is 8 to 10. In some further related embodiment, r is 9 to 10. Moreover, in still further related embodiments, r is 0. In still some further embodiment, s is 1 to 10. In still some further embodiment, s is 2 to 10. In still some further embodiment, s is 3 to 10. In still some further embodiment, s is 4 to 10. In still some further embodiment, s is 5 to 10. In still some further embodiment, s is 6 to 10. In still some further embodiment, s is 7 to 10. In still some further embodiment, s is 8 to 10. In still some further embodiment, s is 9 to 10. R1A, R1B and R2 may be any of the embodiments described above (e.g., R1A and R1B may be isopropyl, R2 may be hydrogen or unsubstituted C\textsubscript{1}-C\textsubscript{2} alkyl).

[0094] In some embodiment, q is an integer from 0 to 8. In some related embodiment, q is an integer from 1 to 8. In some related embodiment, q is an integer from 2 to 8. In some related
embodiment, q is an integer from 3 to 8. In some related embodiment, q is an integer from 4 to 8. In some related embodiment, q is an integer from 5 to 8. In some related embodiment, q is an integer from 6 to 8. In some related embodiment, q is an integer from 7 to 8. Moreover, in still further related embodiments, q is 0. In some further related embodiment, r is 0 to 10. In some further related embodiment, r is 1 to 10. In some further related embodiment, r is 2 to 10. In some further related embodiment, r is 3 to 10. In some further related embodiment, r is 4 to 10. In some further related embodiment, r is 5 to 10. In some further related embodiment, r is 6 to 10. In some further related embodiment, r is 7 to 10. In some further related embodiment, r is 8 to 10. In some further related embodiment, r is 9 to 10. Moreover, in still further related embodiments, r is 0. In still some further embodiment, s is 1 to 10. In still some further embodiment, s is 2 to 10. In still some further embodiment, s is 3 to 10. In still some further embodiment, s is 4 to 10. In still some further embodiment, s is 5 to 10. In still some further embodiment, s is 6 to 10. In still some further embodiment, s is 7 to 10. In still some further embodiment, s is 8 to 10. In still some further embodiment, s is 9 to 10. R^{IA}, R^{IB} and R^{2} may be any of the embodiments described above (e.g., R^{IA} and R^{IB} maybe isopropyl, R^{2} maybe hydrogen or unsubstituted C_{1}-C_{2} alkyl).

[0095] In some embodiment, q is an integer from 0 to 7. In some related embodiment, q is an integer from 1 to 7. In some related embodiment, q is an integer from 2 to 7. In some related embodiment, q is an integer from 3 to 7. In some related embodiment, q is an integer from 4 to 7. In some related embodiment, q is an integer from 5 to 7. In some related embodiment, q is an integer from 6 to 7. Moreover, in still further related embodiments, q is 0. In some further related embodiment, r is 0 to 10. In some further related embodiment, r is 1 to 10. In some further related embodiment, r is 2 to 10. In some further related embodiment, r is 3 to 10. In some further related embodiment, r is 4 to 10. In some further related embodiment, r is 5 to 10. In some further related embodiment, r is 6 to 10. In some further related embodiment, r is 7 to 10. In some further related embodiment, r is 8 to 10. In some further related embodiment, r is 9 to 10. Moreover, in still further related embodiments, r is 0. In still some further embodiment, s is 1 to 10. In still some further embodiment, s is 2 to 10. In still some further embodiment, s is 3 to 10. In still some further embodiment, s is 4 to 10. In still some further embodiment, s is 5 to 10. In still some further embodiment, s is 6 to 10. In still some further embodiment, s is 7 to 10. In still some further embodiment, s is 8 to 10. In still some further embodiment, s is 9 to 10. R^{IA}, R^{IB} and R^{2} may be any of the embodiments described above (e.g., R^{IA} and R^{IB} maybe isopropyl, R^{2} maybe hydrogen or unsubstituted C_{1}-C_{2} alkyl).
In some embodiment, \(q \) is an integer from 0 to 6. In some related embodiment, \(q \) is an integer from 1 to 6. In some related embodiment, \(q \) is an integer from 2 to 6. In some related embodiment, \(q \) is an integer from 3 to 6. In some related embodiment, \(q \) is an integer from 4 to 6. In some related embodiment, \(q \) is an integer from 5 to 6. Moreover, in still further related embodiments, \(q \) is 0. In some further related embodiment, \(r \) is 0 to 10. In some further related embodiment, \(r \) is 1 to 10. In some further related embodiment, \(r \) is 2 to 10. In some further related embodiment, \(r \) is 3 to 10. In some further related embodiment, \(r \) is 4 to 10. In some further related embodiment, \(r \) is 5 to 10. In some further related embodiment, \(r \) is 6 to 10. In some further related embodiment, \(r \) is 7 to 10. In some further related embodiment, \(r \) is 8 to 10. In some further related embodiment, \(r \) is 9 to 10. Moreover, in still further related embodiments, \(r \) is 0. In still some further embodiment, \(s \) is 1 to 10. In still some further embodiment, \(s \) is 2 to 10. In still some further embodiment, \(s \) is 3 to 10. In still some further embodiment, \(s \) is 4 to 10. In still some further embodiment, \(s \) is 5 to 10. In still some further embodiment, \(s \) is 6 to 10. In still some further embodiment, \(s \) is 7 to 10. In still some further embodiment, \(s \) is 8 to 10. In still some further embodiment, \(s \) is 9 to 10. \(R^{IA}, R^{IB} \) and \(R^2 \) may be any of the embodiments described above (e.g., \(R^{IA} \) and \(R^{IB} \) maybe isopropyl, \(R^2 \) maybe hydrogen or unsubstituted C1-C2 alkyl).

In some embodiment, \(q \) is an integer from 0 to 5. In some related embodiment, \(q \) is an integer from 1 to 5. In some related embodiment, \(q \) is an integer from 2 to 5. In some related embodiment, \(q \) is an integer from 3 to 5. In some related embodiment, \(q \) is an integer from 4 to 5. Moreover, in still further related embodiments, \(q \) is 0. In some further related embodiment, \(r \) is 0 to 10. In some further related embodiment, \(r \) is 1 to 10. In some further related embodiment, \(r \) is 2 to 10. In some further related embodiment, \(r \) is 3 to 10. In some further related embodiment, \(r \) is 4 to 10. In some further related embodiment, \(r \) is 5 to 10. In some further related embodiment, \(r \) is 6 to 10. In some further related embodiment, \(r \) is 7 to 10. In some further related embodiment, \(r \) is 8 to 10. In some further related embodiment, \(r \) is 9 to 10. Moreover, in still further related embodiments, \(r \) is 0. In still some further embodiment, \(s \) is 1 to 10. In still some further embodiment, \(s \) is 2 to 10. In still some further embodiment, \(s \) is 3 to 10. In still some further embodiment, \(s \) is 4 to 10. In still some further embodiment, \(s \) is 5 to 10. In still some further embodiment, \(s \) is 6 to 10. In still some further embodiment, \(s \) is 7 to 10. In still some further embodiment, \(s \) is 8 to 10. In still some further embodiment, \(s \) is 9 to 10. \(R^{IA}, R^{IB} \) and \(R^2 \) may be any of the embodiments described above (e.g., \(R^{IA} \) and \(R^{IB} \) maybe isopropyl, \(R^2 \) maybe hydrogen or unsubstituted C1-C2 alkyl).
In some embodiment, q is an integer from 0 to 4. In some related embodiment, q is an integer from 1 to 4. In some related embodiment, q is an integer from 2 to 4. In some related embodiment, q is an integer from 3 to 4. Moreover, in still further related embodiments, q is 0. In some further related embodiment, r is 0 to 10. In some further related embodiment, r is 1 to 10. In some further related embodiment, r is 2 to 10. In some further related embodiment, r is 3 to 10. In some further related embodiment, r is 4 to 10. In some further related embodiment, r is 5 to 10. In some further related embodiment, r is 6 to 10. In some further related embodiment, r is 7 to 10. In some further related embodiment, r is 8 to 10. In some further related embodiment, r is 9 to 10. Moreover, in still further related embodiments, r is 0. In still some further embodiment, s is 1 to 10. In still some further embodiment, s is 2 to 10. In still some further embodiment, s is 3 to 10. In still some further embodiment, s is 4 to 10. In still some further embodiment, s is 5 to 10. In still some further embodiment, s is 6 to 10. In still some further embodiment, s is 7 to 10. In still some further embodiment, s is 8 to 10. In still some further embodiment, s is 9 to 10. R1A, R1B and R2 may be any of the embodiments described above (e.g., R1A and R1B maybe isopropyl, R2 maybe hydrogen or unsubstituted C\textsubscript{1}-C\textsubscript{2} alkyl).

In some embodiment, q is an integer from 0 to 3. In some related embodiment, q is an integer from 1 to 3. In some related embodiment, q is an integer from 2 to 3. Moreover, in still further related embodiments, q is 0. In some further related embodiment, r is 0 to 10. In some further related embodiment, r is 1 to 10. In some further related embodiment, r is 2 to 10. In some further related embodiment, r is 3 to 10. In some further related embodiment, r is 4 to 10. In some further related embodiment, r is 5 to 10. In some further related embodiment, r is 6 to 10. In some further related embodiment, r is 7 to 10. In some further related embodiment, r is 8 to 10. In some further related embodiment, r is 9 to 10. Moreover, in still further related embodiments, r is 0. In still some further embodiment, s is 1 to 10. In still some further embodiment, s is 2 to 10. In still some further embodiment, s is 3 to 10. In still some further embodiment, s is 4 to 10. In still some further embodiment, s is 5 to 10. In still some further embodiment, s is 6 to 10. In still some further embodiment, s is 7 to 10. In still some further embodiment, s is 8 to 10. In still some further embodiment, s is 9 to 10. R1A, R1B and R2 may be any of the embodiments described above (e.g., R1A and R1B maybe isopropyl, R2 maybe hydrogen or unsubstituted C\textsubscript{1}-C\textsubscript{2} alkyl).

In some embodiment, q is an integer from 0 to 2. In some related embodiment, q is an integer from 1 to 2. Moreover, in still further related embodiments, q is 0. In some further related embodiment, r is 0 to 10. In some further related embodiment, r is 1 to 10. In some
further related embodiment, r is 2 to 10. In some further related embodiment, r is 3 to 10. In some further related embodiment, r is 4 to 10. In some further related embodiment, r is 5 to 10. In some further related embodiment, r is 6 to 10. In some further related embodiment, r is 7 to 10. In some further related embodiment, r is 8 to 10. In some further related embodiment, r is 9 to 10. Moreover, in still further related embodiments, r is 0. In still some further embodiment, s is 1 to 10. In still some further embodiment, s is 2 to 10. In still some further embodiment, s is 3 to 10. In still some further embodiment, s is 4 to 10. In still some further embodiment, s is 5 to 10. In still some further embodiment, s is 6 to 10. In still some further embodiment, s is 7 to 10. In still some further embodiment, s is 8 to 10. In still some further embodiment, s is 9 to 10R^{1A}, R^{1B} and R^2 may be any of the embodiments described above (e.g., R^{1A} and R^{1B} may be isopropyl, R^2 may be hydrogen or unsubstituted C_1-C_2 alkyl).

[0101] In some embodiments of the compound of formula (I), or embodiments thereof provided herein, where R^{1A} and R^{1B} are isopropyl, and R^2 is hydrogen, the symbol n is 1 or 3. In other embodiments, where R^{1A} is hydrogen, R^{1B} has the structure of formula (IA) and R^2 is hydrogen, the symbol n is 1 or 3. In some embodiments, where R^{1A} is hydrogen, R^{1B} has the structure of formula (IB) and R^2 is hydrogen, the symbol n is 1 or 3. In some embodiments, where R^{1A} is hydrogen, R^{1B} has the structure of formula (IC) and R^2 is hydrogen, the symbol n is 1 or 3. In some embodiments, where R^{1A} has the structure of formula (ID) and R^2 is hydrogen, the symbol n is 1 or 3. In some embodiments, where R^{1A} and R^{1B} have the formula of structure (ID) and R^2 is hydrogen, the symbol n is 1 or 3. In other embodiments, where R^{1A} is hydrogen, R^{1B} is phenyl and R^2 is hydrogen, the symbol n is 1 or 3. In other embodiments, where R^{1A} is hydrogen, R^{1B} is 6 membered cycloalkyl and R^2 is hydrogen, the symbol n is 1 or 3.

[0102] In some embodiments, the co-solvent is a compound having the formula (I). In some embodiments, R^{1A} and R^{1B} are isopropyl, R^2 is hydrogen, and the symbol n is 1. In some related embodiments, the co-solvent is present at about 2% (w/v). The compound of formula (I), wherein R^{1A} and R^{1B} are isopropyl, R^2 is hydrogen, and the symbol n is 1 may be referred to herein as DIPA-1EO. In some embodiments, R^{1A} and R^{1B} are isopropyl, R^2 is hydrogen, and the symbol n is 3. In some related embodiments, the co-solvent is present at about 0.5% (w/v). The compound of formula (I), wherein R^{1A} and R^{1B} are isopropyl, R^2 is hydrogen, and the symbol n is 3 may be referred to herein as DIPA-3EO.

[0103] In some embodiments, the co-solvent is a compound having the formula (I). In some embodiments, R^{1A} and R^{1B} are isopropyl, R^2 is hydrogen, and the symbol n is 15. In some
related embodiments, the co-solvent is present at about 1.5% (w/v). In some related embodiments, the co-solvent is present at about 2% (w/v). In some related embodiments, the co-solvent is present at about 2.5% (w/v). In some related embodiments, the co-solvent is present at about 3% (w/v). In some related embodiments, the co-solvent is present at about 3.5% (w/v).

The compound of formula (I), wherein \(R^{1A} \) and \(R^{1B} \) are isopropyl, \(R^2 \) is hydrogen, and the symbol \(n \) is 15 may be referred to herein as DIPA-15EO.

[0104] In other embodiments, the co-solvent is an alkylamine. In some embodiments, the alkylamine is diisopropylamine. In other embodiments, the alkylamine is an alkylpolyamine. In some embodiments, the alkylpolyamine is dimethylaminopropylamine, triethylenetetramine or diethylenetriamine. In some embodiments, the alkylpolyamine is dimethylaminopropylamine. In other embodiments, the alkylpolyamine is triethylenetetramine. In some embodiments, the alkylpolyamine is diethylenetriamine. Diisopropylamine (DIPA) refers to, in the customary sense, CAS Registry No 108-18-9. Dimethylaminopropylamine (DMAPA) refers to, in the customary sense, CAS Registry No. 109-55-7. Triethylenetetramine (TETA) refers to, in the customary sense, CAS Registry No. 112-24-3. Diethylenetriamine (DETA) refers to, in the customary sense, CAS Registry No. 111-40-0. In some embodiments, the co-solvent is an arylamine. In some embodiments, the arylamine is aniline. In embodiments, DMAPA is present at about 2%(w/v). In embodiments, TETA is present at about 2%(w/v).

[0105] As described above the emulsion composition provided herein includes a heavy crude oil, water, and a co-solvent, wherein the co-solvent is an alkylamine or a compound having the formula (I). In one embodiment, the emulsion composition includes a heavy crude oil, water and an alkylamine, wherein the alkylamine is triethylenetetramine, present at 2% (w/v). In one embodiment, the emulsion composition includes a heavy crude oil, water and an alkylamine, wherein the alkylamine is triethylenetetramine, present at 1% (w/v). In one embodiment, the emulsion composition includes a heavy crude oil, water and an alkylamine, wherein the alkylamine is diethylenetriamine, present at 2% (w/v). In another embodiment, the emulsion composition includes a heavy crude oil, water and a compound of formula (I), wherein \(R^{1A} \) and \(R^{1B} \) are isopropyl, \(R^2 \) is hydrogen, and the symbol \(n \) is 1, present at about 2% (w/v). In another embodiment, the emulsion composition includes a heavy crude oil, water and a compound of formula (I), wherein \(R^{1A} \) and \(R^{1B} \) are isopropyl, \(R^2 \) is hydrogen, and the symbol \(n \) is 3, present at about 0.5% (w/v).

[0106] In one embodiment, where the emulsion composition includes a heavy crude oil, water and an alkylamine, the emulsion composition does not include a compound having the formula
(I), (II) or (III). In some related embodiments, the alkylamine is triethylenetetramine. In other related embodiments, the alkylamine is dimethylaminopropylamine.

[0107] In one embodiment, where the emulsion composition includes a heavy crude oil, water and a co-solvent (e.g., an alkylamine or a compound of formula (I), (II), or (III)), the emulsion composition does not include a surfactant.

[0108] As described above, the emulsion composition provided herein may include a heavy crude oil, water and a co-solvent (e.g., an alkylamine or a compound of formula (I), (II), or (III)). In one embodiment, where the emulsion composition includes a heavy crude oil, water and a co-solvent (e.g., an alkylamine or a compound of formula (I), (II), or (III)), the emulsion composition does not include an alkali agent. In some related embodiments, the co-solvent is a basic co-solvent.

[0109] The emulsion composition provided herein includes a co-solvent of formula (I). In embodiments, the emulsion includes an additional co-solvent. Where the emulsion includes an additional co-solvent the co-solvent and the additional co-solvent form a co-solvent blend (e.g. a plurality of co-solvent types). Thus, in embodiments, the co-solvent is a single co-solvent type (e.g., a compound of formula (I)) in the emulsion. An "additional co-solvent" as provided herein is any co-solvent useful in enhanced oil recovery and transport of heavy oil (e.g., compounds of the formula (IV) or (V) as provided herein). In embodiments, the co-solvent is a co-solvent blend. A "co-solvent blend" as provided herein is a mixture of a plurality of co-solvent types (e.g., a compound of formula (I) and one or more additional co-solvent). Thus, in one embodiment, the emulsion composition includes a plurality of different co-solvents (e.g., a compound of formula (I) and one or more additional co-solvents). Where the emulsion composition includes a plurality of different co-solvents, the different co-solvents can be distinguished by their chemical (structural) properties. For example, the emulsion composition may include a co-solvent having the structure of formula (I) and an additional co-solvent, wherein the co-solvent and the additional co-solvent are chemically different. The emulsion composition may include a co-solvent having the structure of formula (I) and a first additional co-solvent, a second additional co-solvent and a third additional co-solvent, wherein the first additional co-solvent is chemically different from the second and the third additional co-solvent, and the second additional co-solvent is chemically different from the third additional co-solvent. In one embodiment, the co-solvent blend includes a compound of formula (I) and at least two different alcohols (e.g. a C1-C6 alcohol and a C1-C4 alcohol). In one embodiment, the emulsion composition includes a compound of formula (I) and a C1-C6 alcohol and a C1-C4 alcohol. In
other embodiments, the co-solvent blend includes a compound of formula (I) and at least two
different alkoxy alcohols (e.g. a C1-Ce alkoxy alcohol and a C1-C4 alkoxy alcohol). In other
embodiments, the emulsion composition includes a compound of formula (I) and a C1-Ce alkoxy
alcohol and a C1-C4 alkoxy alcohol. In embodiments, the emulsion composition includes a
compound of formula (I), (II) or (III) and a phenol alkoxy alcohol. In one embodiment, the co-
solvent blend includes a compound of formula (I), (II) or (III) and at least two co-solvents
selected from the group consisting of alcohols, alkyl alkoxy alcohols and phenyl alkoxy alcohols.
For example, the co-solvent blend may include a compound of formula (I), (II) or (III) and an
alcohol, an alkyl alkoxy alcohol or a phenyl alkoxy alcohol. The alkyl alkoxy alcohols or phenyl
alkoxy alcohols provided herein have a hydrophobic portion (alkyl or aryl chain), a hydrophilic
portion (e.g. an alcohol) and optionally an alkoxy (ethoxylate or propoxylate) portion.

[0110] In embodiments, the emulsion compositions provided herein include an additional co-
solvent. The additional co-solvent may form part of a co-solvent blend together with a
compound of formula (I), (II) or (III). In embodiments, the additional co-solvent

\[\begin{align*}
R^3 L^1 \left(\begin{array}{c}
O \cdot CH_2 \cdot CH \end{array} \right)^n \cdot OH \\
R^2
\end{align*} \]

has the formula (IV). In formula (IV), L^1 is unsubstituted C1-Ce alkylene, unsubstituted phenylene, unsubstituted cyclohexylene, unsubstituted cyclopentylene or methyl-substituted cyclopentylene. R^2 is independently hydrogen, methyl or ethyl. R^3 is

\[\begin{align*}
O \cdot CH_2 \cdot CH \end{align*} \]

independently hydrogen or (IV), R^4 is independently hydrogen, methyl or ethyl,
n is an integer from 0 to 30, and m is an integer from 0 to 30. In one embodiment, n is an integer
from 0 to 25. In one embodiment, n is an integer from 0 to 20. In one embodiment, n is an
integer from 0 to 15. In one embodiment, n is an integer from 0 to 10. In one embodiment, n is an
integer from 0 to 5. In one embodiment, n is 1. In other embodiments, n is 3. In one
embodiment, n is 5. In one embodiment, m is an integer from 0 to 25. In one embodiment, m is
an integer from 0 to 20. In one embodiment, m is an integer from 0 to 15. In one embodiment, m is
an integer from 0 to 10. In one embodiment, m is an integer from 0 to 5. In one
embodiment, m is 1. In other embodiments, m is 3. In one embodiment, m is 5. In formula (IV)
each of R^2 and R^4 can appear more than once and can be optionally different. For example, in
one embodiment where \(n \) is 2, \(R^2 \) appears twice and can be optionally different. In other embodiments, where \(m \) is 3, \(R^4 \) appears three times and can be optionally different.

[0111] L\(^1\) may be linear or branched unsubstituted alkylene. In one embodiment, L\(^1\) of formula (IV) is linear unsubstituted \(Ci-Ce \) alkylene. In one embodiment, L\(^1\) of formula (IV) is branched unsubstituted \(Ci-Ce \) alkylene. In other embodiments, L\(^1\) of formula (IV) is linear unsubstituted C2-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is branched unsubstituted C2-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is linear unsubstituted C3-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is branched unsubstituted C3-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is linear unsubstituted C4-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is branched unsubstituted C4-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is linear unsubstituted \(C_i-C_e \) alkylene. In other embodiments, L\(^1\) of formula (IV) is branched unsubstituted \(C_i-C_e \) alkylene.

[0112] In one embodiment, where L\(^1\) is linear or branched unsubstituted alkylene (e.g. branched unsubstituted \(Ci-Ce \) alkylene), the alkylene is a saturated alkylene (e.g. a linear or branched unsubstituted saturated alkylene or branched unsubstituted \(Ci-Ce \) saturated alkylene). A "saturated alkylene," as used herein, refers to an alkylene consisting only of hydrogen and carbon atoms that are bonded exclusively by single bonds. Thus, in one embodiment, L\(^1\) is linear or branched unsubstituted saturated alkylene. In one embodiment, L\(^1\) of formula (IV) is linear unsubstituted saturated \(Ci-Ce \) alkylene. In one embodiment, L\(^1\) of formula (IV) is branched unsubstituted saturated \(Ci-Ce \) alkylene. In other embodiments, L\(^1\) of formula (IV) is linear unsubstituted saturated C2-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is branched unsubstituted saturated C2-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is linear unsubstituted saturated C3-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is branched unsubstituted saturated C3-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is linear unsubstituted saturated C4-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is branched unsubstituted saturated C4-C6 alkylene. In other embodiments, L\(^1\) of formula (IV) is linear unsubstituted saturated \(C_i-C_e \) alkylene. In other embodiments, L\(^1\) of formula (IV) is branched unsubstituted saturated \(C_i-C_e \) alkylene.

[0113] In one embodiment, L\(^1\) of formula (IV) is substituted or unsubstituted cycloalkylene or unsubstituted arylene. In one embodiment, L\(^1\) of formula (IV) is \(R^2 \)-substituted or unsubstituted cyclopropylene, wherein \(R^7 \) is C1-C3 alkyl. In other embodiments, L\(^1\) of formula (IV) is \(R^8 \)-substituted or unsubstituted cyclobutylene, wherein \(R^8 \) is C1-C2 alkyl. In other embodiments, L\(^1\) of formula (IV) is \(R^9 \)-substituted or unsubstituted cyclopentylene, wherein \(R^9 \) is Ci-alkyl. In
other embodiments, \(L^1 \) of formula (IV) is \(R^{10} \)-substituted or unsubstituted cyclopentylene, wherein \(R^{10} \) is unsubstituted cyclohexyl. In one embodiment, \(L^1 \) of formula (IV) is unsubstituted phenylene, unsubstituted cyclohexylene, unsubstituted cyclopentylene or methyl-substituted cyclopentylene.

5

[0114] In one embodiment, \(-L^1-R^3\) of formula (IV) is \(\text{Ci-Ce} \) alkyl, unsubstituted phenyl, unsubstituted cyclohexyl, unsubstituted cyclopentyl or a methyl-substituted cycloalkyl.

[0115] In one embodiment, the additional co-solvent has the structure of formula

\[
R^{11}_{\text{m}} \left(\frac{O-\text{CH}2-\text{CH}}{R^2} \right) _{\text{n}} \text{OH}
\]

(IVA). In formula (IVA), \(R^{11} \) is \(\text{C}_1-\text{C}_6 \) alkyl, unsubstituted phenyl, unsubstituted cyclohexyl, unsubstituted cyclopentyl or a methyl-substituted cycloalkyl.

10

[0116] In one embodiment, \(n \) and \(m \) are independently 1 to 20. In other embodiments, \(n \) and \(m \) are independently 1 to 15. In other embodiments, \(n \) and \(m \) are independently 1 to 10. In one embodiment, \(n \) and \(m \) are independently 1 to 6. In one embodiment, \(n \) and \(m \) are independently 1.

[0117] The additional co-solvent included in the emulsion compositions provided herein may be a monohydric or a dihydric alkoxy alcohol (e.g. \(\text{Ci-Ce} \) alkoxy alcohol or \(\text{Ci-Ce} \) alkoxy diol). Where the additional co-solvent is a monohydric alcohol, the co-solvent has the formula (IV) and \(R^3 \) is hydrogen. Where the additional co-solvent is a diol, the co-solvent has the formula (IV)

\[
\left(\frac{O-\text{CH}2-\text{CH}}{R^4} \right) _{\text{m}} \text{OH}
\]

and \(R^3 \) is \(\text{hydrogen} \). In one embodiment, \(L^1 \) is linear unsubstituted \(\text{C}_4 \) alkylene and \(n \) is 3. In one embodiment, the additional co-solvent is triethylene glycol butyl ether. In other embodiments, the additional co-solvent is tetraethylene glycol. In further embodiments, \(m \) is 3. In one embodiment, \(L^1 \) is linear unsubstituted \(\text{C}_4 \) alkylene and \(n \) is 5. In one embodiment, the additional co-solvent is pentaethylene glycol n-butyl ether. In further embodiments, \(m \) is 5. In one embodiment, \(L^1 \) is branched unsubstituted \(\text{C}_4 \) alkylene and \(n \) is 1. In one embodiment, the additional co-solvent is ethylene glycol iso-butyl ether. In further embodiments, \(m \) is 1. In one embodiment, \(L^1 \) is branched unsubstituted \(\text{C}_4 \) alkylene and \(n \) is 3. In one embodiment, the additional co-solvent is triethylene glycol iso-butyl ether. In further embodiments, \(m \) is 3. In one embodiment, the additional co-solvent is ethylene glycol or propylene glycol. In other embodiments, the additional co-solvent is ethylene glycol alkoxylation or propylene glycol.
alkoxylate. In one embodiment, the additional co-solvent is propylene glycol diethoxylate or propylene glycol triethoxylate. In one embodiment, the additional co-solvent is propylene glycol tetraethoxylate. In some embodiments, the additional co-solvent is an alcohol, alkoxy alcohol, glycol ether, glycol or glycerol. In embodiments, the additional co-solvent is an alcohol, alkoxy alcohol or glycol ether.

In one embodiment, the additional co-solvent is propylene glycol diethoxylate or propylene glycol triethoxylate. In one embodiment, the additional co-solvent is propylene glycol tetraethoxylate. In some embodiments, the additional co-solvent is an alcohol, alkoxy alcohol, glycol ether, glycol or glycerol. In embodiments, the additional co-solvent is an alcohol, alkoxy alcohol or glycol ether.

In the structure of formula (IV), R_3 may be hydrogen or R_3, R_4 and m are independently 0. Thus in one embodiment, R_3 is hydrogen.

In one embodiment, the additional co-solvent provided herein may be an alcohol or diol (Ci-C6 alcohol or Ci-Ce diol). Where the additional co-solvent is an alcohol, the co-solvent has a structure of formula (IV), where R_3 is hydrogen and n is 0. Where the additional co-solvent is a diol, the co-solvent has a structure of formula (IV), where R_3 is hydrogen, n and m are 0. Thus, in one embodiment, n and m are independently 0. In one embodiment, L_1 is linear or branched unsubstituted C1-C6 alkylene. In other embodiments, L_1 is linear or branched unsubstituted C2-C6 alkylene. In one embodiment, L_1 is linear or branched unsubstituted C2-C6 alkylene. In one embodiment L_1 is linear or branched unsubstituted C3-C6 alkylene. In other embodiments, L_1 is linear or branched unsubstituted C4-C6 alkylene. In one embodiment, L_1 is linear or branched unsubstituted C4-alkylene. In one embodiment, L_1 is branched unsubstituted butylene. In one embodiment, the additional co-solvent has the structure of formula

$$\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{(O-CH}_2\text{CH}_2\text{)}_5\text{OH}$$

(tVB). In other embodiments, the additional co-

$\text{CH}_3^2\text{CH-CH}_2\text{-O-CH}_2\text{CH}_2\text{OH}$

solvent has the structure of formula $\text{CH}_3^2\text{CH-CH}_2\text{OH}$ (IVC). In one embodiment, the additional co-solvent has the structure of formula

$$\text{HO-CH}-\text{CH}$

(IVD).
In some embodiments, the additional co-solvent has the formula

\[
\left(R^1 \right)_z \left[\text{O} - \text{CH}_2 - \text{CH} \right] \text{O} (V).
\]

In formula (\(V\)) \(R^1\) is independently hydrogen, unsubstituted \(Ci-Ce\) alkyl or \(R^5\)-OH, \(R^2\) is independently hydrogen or unsubstituted \(C1-C2\) alkyl, \(R^5\) is independently a bond or unsubstituted \(Ci-Ce\) alkyl, \(n\) is an integer from 1 to 30, \(0\) is an integer from 1 to 5 and \(z\) is an integer from 1 to 5. In some embodiments, \(R^1\) is unsubstituted \(C2-C6\) alkyl. In some embodiments, \(R^1\) is unsubstituted \(C4-C6\) alkyl. In some embodiments, \(R^1\) is unsubstituted \(C1-C5\) alkyl. In other embodiments, \(R^1\) is unsubstituted \(C1-C4\) alkyl. In other embodiments, \(R^1\) is unsubstituted \(C1-C3\) alkyl. In other embodiments, \(R^1\) is unsubstituted \(C1-C2\) alkyl. In some embodiments, \(R^1\) is methyl. In some embodiment, \(R^1\) is hydrogen.

In some embodiment, \(R^1\) is independently a bond or \(R^5\)-OH. In some embodiment, \(R^1\) is \(R^5\)-OH. In some embodiments, \(R^5\) is unsubstituted \(C2-C6\) alkyl. In some embodiments, \(R^5\) is unsubstituted \(C4-C6\) alkyl. In some embodiments, \(R^5\) is unsubstituted \(C1-C5\) alkyl. In other embodiments, \(R^5\) is unsubstituted \(C1-C4\) alkyl. In other embodiments, \(R^5\) is unsubstituted \(C1-C3\) alkyl. In some embodiments, \(R^5\) is unsubstituted \(C2\) alkyl. In other embodiments, \(R^5\) is ethyl. In some embodiments, \(R^5\) is methyl. In some embodiments, \(R^5\) is a bond.

In formula (\(V\)) the symbol \(n\) is an integer from 1 to 30. In one embodiment, \(n\) is an integer from 1 to 25. In one embodiment, \(n\) is an integer from 1 to 20. In one embodiment, \(n\) is an integer from 1 to 15. In one embodiment, \(n\) is an integer from 1 to 10. In one embodiment, \(n\) is an integer from 1 to 5. In some embodiment, \(n\) is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30. In one embodiment, \(n\) is 3. In other embodiments, \(n\) is 5. In one embodiment, \(n\) is 6. In one embodiment, \(n\) is 16.

In formula (\(V\)) the symbol \(0\) is an integer from 1 to 5 and the symbol \(z\) is an integer from 1 to 5. In embodiments, \(0\) is 1, 2, 3, 4, or 5. In embodiments, \(z\) is 1, 2, 3, 4, or 5. In embodiments, \(0\) is 1 and \(z\) is 5. In further embodiments, \(R^1\) is independently hydrogen or \(R^5\)-OH and \(R^5\) is a bond. In other further embodiments, \(R^1\) is hydrogen. In other further embodiments, \(R^1\) is \(R^5\)-OH and \(R^5\) is a bond.
In some embodiments, the additional co-solvent has the formula

\[
\text{(VA)} \quad R^1 \quad \text{OH}
\]

(\text{VA}). In formula (VA) \(R^1\) is independently hydrogen or unsubstituted \(C1-C6\) alkyl, \(R^2\) is independently hydrogen or unsubstituted \(C1-C2\) alkyl and \(n\) is an integer from 1 to 30. In some embodiments, \(R^1\) is unsubstituted \(C2-C6\) alkyl. In some embodiments, \(R^1\) is unsubstituted \(C4-C6\) alkyl. In some embodiments, \(R^1\) is linear unsubstituted \(C1-C5\) alkyl. In other embodiments, \(R^1\) is unsubstituted \(C1-C4\) alkyl. In other embodiments, \(R^1\) is unsubstituted \(C1-C3\) alkyl. In some embodiments, \(R^1\) is unsubstituted \(C2\) alkyl. In other embodiments, \(R^1\) is ethyl. In some embodiments, \(R^1\) is methyl. In some embodiment, \(R^1\) is hydrogen.

\(R^1\) may be linear or branched unsubstituted alkyl. In one embodiment, \(R^1\) of formula (VA) is linear unsubstituted \(C1-C6\) alkyl. In one embodiment, \(R^1\) of formula (VA) is branched unsubstituted \(C1-C6\) alkyl. In other embodiments, \(R^1\) of formula (VA) is linear unsubstituted \(C1-C5\) alkyl. In other embodiments, \(R^1\) of formula (VA) is branched unsubstituted \(C1-C5\) alkyl. In other embodiments, \(R^1\) of formula (VA) is linear unsubstituted \(C1-C4\) alkyl. In other embodiments, \(R^1\) of formula (VA) is branched unsubstituted \(C1-C4\) alkyl. In other embodiments, \(R^1\) of formula (VA) is branched unsubstituted \(C1-C3\) alkyl. In other embodiments, \(R^1\) of formula (VA) is branched unsubstituted \(C1-C3\) alkyl. In other embodiments, \(R^1\) of formula (VA) is linear unsubstituted ethyl. In other embodiments, \(R^1\) of formula (VA) is branched unsubstituted ethyl.

In one embodiment, where \(R^1\) is linear or branched unsubstituted alkyl (e.g. branched unsubstituted \(C1-C6\) alkyl), the alkyl is a saturated alkyl (e.g. a linear or branched unsubstituted saturated alkyl or branched unsubstituted \(C1-C6\) saturated alkyl). A "saturated alkyl," as used herein, refers to an alkyl consisting only of hydrogen and carbon atoms that are bonded exclusively by single bonds. Thus, in one embodiment, \(R^1\) is linear or branched unsubstituted saturated alkyl. In one embodiment, \(R^1\) of formula (VA) is linear unsubstituted saturated \(C1-C6\) alkyl. In one embodiment, \(R^1\) of formula (VA) is branched unsubstituted saturated \(C1-C6\) alkyl. In other embodiments, \(R^1\) of formula (VA) is linear unsubstituted saturated \(C1-C5\) alkyl. In other embodiments, \(R^1\) of formula (VA) is branched unsubstituted saturated \(C1-C5\) alkyl. In other embodiments, \(R^1\) of formula (VA) is linear unsubstituted saturated \(C1-C4\) alkyl. In other embodiments, \(R^1\) of formula (VA) is branched unsubstituted saturated \(C1-C4\) alkyl. In other embodiments, \(R^1\) of formula (VA) is linear unsubstituted saturated \(C1-C3\) alkyl. In other embodiments, \(R^1\) of formula (VA) is branched unsubstituted saturated \(C1-C3\) alkyl. In other
embodiments, \(R^1 \) of formula (VA) is linear unsubstituted saturated ethyl. In other embodiments, \(R^1 \) of formula (VA) is branched unsubstituted saturated ethyl.

[0127] In formula (VA) the symbol \(n \) is an integer from 1 to 30. In one embodiment, \(n \) is an integer from 1 to 25. In one embodiment, \(n \) is an integer from 1 to 20. In one embodiment, \(n \) is an integer from 1 to 15. In one embodiment, \(n \) is an integer from 1 to 10. In one embodiment, \(n \) is an integer from 1 to 5. In some embodiment, \(n \) is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30. In one embodiment, \(n \) is 3. In other embodiments, \(n \) is 5. In one embodiment, \(n \) is 6. In one embodiment, \(n \) is 16.

[0128] In some embodiments, \(R^1 \) is hydrogen. In other related embodiments, \(n \) is as defined in an embodiment above (e.g. \(n \) is at least 1, or at least 15, e.g. 5 to 20). Thus, in some embodiments, \(R^1 \) is hydrogen and \(n \) is 16.

[0129] In some embodiments, \(R^1 \) is methyl. In other related embodiments, \(n \) is as defined in an embodiment above (e.g. \(n \) is at least 1, or at least 10, e.g. 5 to 20). Thus, in some embodiments, \(R^1 \) is methyl and \(n \) is 16.

[0130] In some embodiment, the additional co-solvent has the formula:

\[
\begin{array}{c}
\text{R}^1 \quad \text{O-CH}_2\text{-CH}_2\quad \text{O-CH}_2\text{-CH}_2\quad \text{OH} \\
\text{R}^2 \quad \text{p}
\end{array}
\]

(\(\text{VB} \)). In formula (VB) \(R^1 \) is defined as above (e.g. unsubstituted \(\text{C}_1\text{-C}_6 \) alkyl), \(R^2 \) is methyl or ethyl, \(o \) is an integer from 0 to 10 and \(p \) is an integer from 1 to 20. In some embodiments, \(R^2 \) is methyl. In other embodiments, \(R^2 \) is ethyl. In formula (VB) \(R^2 \) can appear more than once and can be optionally different. For example, in some embodiments where \(o \) is 3, \(R^2 \) appears three times and can be optionally different. In other embodiments, where \(o \) is 6, \(R^2 \) appears six times and can be optionally different.

[0131] In some embodiments, \(o \) is 0 to 10. In some related embodiments, \(o \) is 0 to 8. In some related embodiments, \(o \) is 0 to 6. In some related embodiments, \(o \) is 0 to 4. In some related embodiments, \(o \) is 0 to 2. In still further related embodiments, \(o \) is 0. In some further related embodiment, \(p \) is an integer from 1 to 20. In some further related embodiment, \(p \) is an integer from 1 to 18. In some further related embodiment, \(p \) is an integer from 1 to 16. In some further related embodiment, \(p \) is an integer from 1 to 14. In some further related embodiment, \(p \) is an integer from 1 to 12. In some further related embodiment, \(p \) is an integer from 1 to 10. In some further related embodiment, \(p \) is an integer from 1 to 8. In some further related embodiment, \(p \) is an integer from 1 to 6. In some further related embodiment, \(p \) is an integer from 1 to 4. In some
further related embodiment, p is an integer from 1 to 2. In still some further related embodiment, p is more than 1. In some further embodiment, p is 6. In some further embodiment, p is an integer from 16. R¹ and R² may be any of the embodiments described above (e.g. R¹ maybe linear unsubstituted Ci-Ce alkyl, R² maybe linear unsubstituted C₁C₂ alkyl). Thus, in some embodiment, R¹ is hydrogen, 0 is 0 and p is an integer from 16.

[0132] In some embodiments, 0 is an integer from 1 to 10. In some related embodiments, 0 is an integer from 1 to 8. In some related embodiments, 0 is an integer from 1 to 6. In some related embodiments, 0 is an integer from 1 to 4. In some related embodiments, 0 is an integer from 1 to 2. In some further related embodiment, p is an integer from 1 to 20. In some further related embodiment, p is an integer from 1 to 18. In some further related embodiment, p is an integer from 1 to 16. In some further related embodiment, p is an integer from 1 to 14. In some further related embodiment, p is an integer from 1 to 12. In some further related embodiment, p is an integer from 1 to 10. In some further related embodiment, p is an integer from 1 to 8. In some further related embodiment, p is an integer from 1 to 6. In some further related embodiment, p is an integer from 1 to 4. In some further related embodiment, p is an integer from 1 to 2. In still some further related embodiment, p is more than 1. R¹ and R² may be any of the embodiments described above (e.g. R¹ maybe linear unsubstituted Ci-Ce alkyl, R² maybe linear unsubstituted C₁C₂ alkyl).

[0133] In some embodiments, 0 is 2 to 10. In some related embodiments, 0 is 2 to 8. In some related embodiments, 0 is 2 to 6. In some related embodiments, 0 is 2 to 4. In some further related embodiment, p is an integer from 1 to 20. In some further related embodiment, p is an integer from 1 to 18. In some further related embodiment, p is an integer from 1 to 16. In some further related embodiment, p is an integer from 1 to 14. In some further related embodiment, p is an integer from 1 to 12. In some further related embodiment, p is an integer from 1 to 10. In some further related embodiment, p is an integer from 1 to 8. In some further related embodiment, p is an integer from 1 to 6. In some further related embodiment, p is an integer from 1 to 4. In some further related embodiment, p is an integer from 1 to 2. In still some further related embodiment, p is more than 1. R¹ and R² may be any of the embodiments described above (e.g. R¹ maybe linear unsubstituted Ci-Ce alkyl, R² maybe linear unsubstituted Ci-C₂ alkyl).

[0134] In some embodiments, 0 is 4 to 10. In some related embodiments, 0 is 4 to 8. In some related embodiments, 0 is 4 to 6. In some further related embodiment, p is an integer from 1 to 20. In some further related embodiment, p is an integer from 1 to 18. In some further related
embodiment, \(p \) is an integer from 1 to 16. In some further related embodiment, \(p \) is an integer from 1 to 14. In some further related embodiment, \(p \) is an integer from 1 to 12. In some further related embodiment, \(p \) is an integer from 1 to 10. In some further related embodiment, \(p \) is an integer from 1 to 8. In some further related embodiment, \(p \) is an integer from 1 to 6. In some further related embodiment, \(p \) is an integer from 1 to 4. In some further related embodiment, \(p \) is an integer from 1 to 2. In still some further related embodiment, \(p \) is more than 1. \(R^1 \) and \(R^2 \) may be any of the embodiments described above (e.g. \(R^1 \) maybe linear unsubstituted \(C_i-C_e \) alkyl, \(R^2 \) maybe linear unsubstituted \(C_1-C_2 \) alkyl).

[0135] In some embodiments, \(o \) is 6 to 10. In some related embodiments, \(o \) is 6 to 8. In some further related embodiment, \(p \) is an integer from 1 to 20. In some further related embodiment, \(p \) is an integer from 1 to 18. In some further related embodiment, \(p \) is an integer from 1 to 16. In some further related embodiment, \(p \) is an integer from 1 to 14. In some further related embodiment, \(p \) is an integer from 1 to 12. In some further related embodiment, \(p \) is an integer from 1 to 10. In some further related embodiment, \(p \) is an integer from 1 to 8. In some further related embodiment, \(p \) is an integer from 1 to 6. In some further related embodiment, \(p \) is an integer from 1 to 4. In some further related embodiment, \(p \) is an integer from 1 to 2. In still some further related embodiment, \(p \) is more than 1. \(R^1 \) and \(R^2 \) may be any of the embodiments described above (e.g. \(R^1 \) maybe linear unsubstituted \(C_i-C_e \) alkyl, \(R^2 \) maybe linear unsubstituted \(C_1-C_2 \) alkyl).

[0136] In some embodiments, \(o \) is 8 to 10. In some further related embodiment, \(p \) is an integer from 1 to 20. In some further related embodiment, \(p \) is an integer from 1 to 18. In some further related embodiment, \(p \) is an integer from 1 to 16. In some further related embodiment, \(p \) is an integer from 1 to 14. In some further related embodiment, \(p \) is an integer from 1 to 12. In some further related embodiment, \(p \) is an integer from 1 to 10. In some further related embodiment, \(p \) is an integer from 1 to 8. In some further related embodiment, \(p \) is an integer from 1 to 6. In some further related embodiment, \(p \) is an integer from 1 to 4. In some further related embodiment, \(p \) is an integer from 1 to 2. In still some further related embodiment, \(p \) is more than 1. \(R^1 \) and \(R^2 \) may be any of the embodiments described above (e.g. \(R^1 \) maybe linear unsubstituted \(C_i-C_e \) alkyl, \(R^2 \) maybe linear unsubstituted \(C_1-C_2 \) alkyl).

[0137] In formula (V), (VA) or (VB) \(R^2 \) may be independently hydrogen or unsubstituted \(C_i-C_2 \) alkyl. In some embodiments, \(R^2 \) is hydrogen or unsubstituted \(C_i \) or \(C_2 \) alkyl. In some related embodiments, \(R^2 \) is hydrogen or branched unsubstituted \(C_i \) or \(C_2 \) saturated alkyl. In some embodiments, \(R^2 \) is hydrogen or a branched unsubstituted \(C_i \) saturated alkyl. In some
embodiments, \(R^2 \) is independently hydrogen or methyl. In other embodiments, \(R^2 \) is independently hydrogen or ethyl. In some embodiments, \(R^2 \) is independently hydrogen, methyl or ethyl. In some embodiments, \(R^2 \) is hydrogen. In some embodiments, \(R^2 \) is methyl. In some embodiments, \(R^2 \) is ethyl. In formula (V) \(R^2 \) can appear more than once and can be optionally different. For example, in some embodiments where \(n \) is 3, \(R^2 \) appears three times and can be optionally different. In other embodiments, where \(n \) is 6, \(R^2 \) appears six times and can be optionally different.

[0138] In some embodiments, where multiple \(R^2 \) substituents are present and at least two \(R^2 \) substituents are different, \(R^2 \) substituents with the fewest number of carbons are present to the side of the compound of formula (V), (VA) or (VB) bound to the -OH group. In this embodiment, the compound of formula (V), (VA) or (VB) will be increasingly hydrophilic in progressing from the \(R^1 \) substituent to the side of the compound of formula (V), (VA) or (VB) bound to the -OH group. The term "side of the compound of formula ((V), (VA) or (VB) bound to the -OH group" refers to the side of the compound indicated by asterisks in the below structures:

[0139] In some embodiments, \(R^2 \) is hydrogen. In other related embodiments, \(n \) is as defined in an embodiment above (e.g. \(n \) is at least 1, or at least 20, e.g. 5 to 15). Thus, in some embodiments, \(R^2 \) is hydrogen and \(n \) is 16.

[0140] In some embodiments, \(R^2 \) is methyl. In other related embodiments, \(n \) is as defined in an embodiment above (e.g. \(n \) is at least 1, or at least 20, e.g. 5 to 15). Thus, in some embodiments, \(R^2 \) is methyl and \(n \) is 16.
In some embodiment, the additional co-solvent is present from about 0.01% w/w to about 5% w/w.

In some embodiment, the total co-solvent concentration (i.e. the total amount of all co-solvent types within the emulsions and emulsion compositions provided herein) is from about 0.05% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration in the emulsion is from about 0.25% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 0.5% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 1.0% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 1.25% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 1.5% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 1.75% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 2.0% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 2.5% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 3.0% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 3.5% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 4.0% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 4.5% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 5.0% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 5.5% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 6.0% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 6.5% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 7.0% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 7.5% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 8.0% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 9.0% w/w. In other embodiments, the total co-solvent concentration in the emulsion is about 10% w/w.

In some embodiments, the emulsion composition includes a plurality of co-solvents. Where the emulsion composition includes a plurality of different co-solvents the emulsion composition may include a first co-solvent, a second co-solvent or a third co-solvent. The first, second and third co-solvent may be independently different (e.g., a compound of formula (I) and an alkylamine; or two alkylamines having a different hydrocarbon chain length and different number of nitrogen atoms). Thus, in some embodiments, the first co-solvent is an alkylamine and the second co-solvent is a compound having the formula (I). In other embodiments, the first
co-solvent is a triethylenetetramine and the second co-solvent is a compound of formula (I), wherein R^{1A} and R^{1B} are isopropyl, R^2 is hydrogen, and the symbol n is 1. In other embodiments, the co-solvent is an alkylamine and a compound having the formula (I).

[0144] As described above the emulsion composition provided herein may include a co-solvent, wherein the co-solvent is capable of reacting with an unrefined petroleum acid (e.g. the acid in crude oil (reactive oil)) to form soap (a surfactant salt of a fatty acid) in situ. The formation of soap in situ promotes the formation of emulsions (both microemulsion and macroemulsion) providing for efficient decrease of the heavy crude oil viscosity by lowering the interfacial tension between the water and the heavy crude oil.

[0145] In some embodiments, the emulsion composition includes a co-solvent (e.g., an alkylamine or a compound of formula (I), (II), or (III)) and an alkali agent. Where the emulsion composition includes a co-solvent (e.g., an alkylamine or a compound of formula (I), (II), or (III)) and an alkali agent, the co-solvent serves as an interfacial viscosity reducing agent when in contact with the heavy crude oil (e.g. an unrefined petroleum) within the heavy crude oil emulsion composition. An "interfacial viscosity reducing agent" as provided herein is an agent that in the presence of an alkali agent facilitates the formation of soap in situ from carboxylic acids (e.g. endogenous carboxylic acids) contained in the unrefined oil (also referred to herein as unrefined oil acid). By contacting the alkali agent with the carboxylic acid in the crude oil (e.g. by delivering the alkali agent more efficiently than water alone) the co-solvent facilitates the generation of soap in situ. The co-solvent provided herein may further allow for the formation of a microemulsion between the unrefined petroleum, the alkali agent, the co-solvent and the water. The co-solvent may decrease the interfacial viscosity and thus help promote emulsion formation and transform highly viscous macroemulsions to less viscous microemulsions. The co-solvent may further break the macroemulsions or prevent the formation of highly viscous macroemulsion entirely. In some embodiments, where the emulsion composition includes a co-solvent (e.g., an alkylamine or a compound of formula (I), (II), or (III)) and an alkali agent, the co-solvent is capable of accepting protons from the carboxylic acid in the crude oil, thereby forming a protonated co-solvent. The alkali agent may accept protons from the protonated co-solvent, thereby forming a regenerated co-solvent. Thus, as an interfacial viscosity reducing agent and as a basic co-solvent, the co-solvent provided herein including embodiments thereof (e.g., an alkylamine or a compound of formula (I), (II), or (III)), may act to facilitate the transport of the heavy crude oil emulsion composition by decreasing the viscosity and thereby increasing the flow of heavy crude oil emulsion.
The co-solvents according to the embodiments provided herein may also be referred to herein as "co-solvents provided herein" or "the co-solvent of the present invention." Any one or combination of a co-solvent (e.g., an alkylamine or a compound of formula (I), (II), or (III)) is useful in the methods and compositions provided herein.

In some embodiments, the co-solvent is present in an amount sufficient to decrease the viscosity of the heavy crude oil at least 1,000-fold. In some embodiments, the co-solvent is present in an amount sufficient to decrease the viscosity of the heavy crude oil at least 1,000-fold. In other words, in the presence of a sufficient amount of the co-solvent, the viscosity of the heavy crude oil is lowered at least 1,000-fold compared to the absence of the co-solvent. Thus, in the presence of a sufficient amount of the co-solvent the viscosity of the heavy crude oil is lower than in the absence of the co-solvent. In some embodiments, the co-solvent is present in an amount sufficient to decrease the viscosity of the heavy crude oil at least 10,000-fold. In some embodiments, the co-solvent is present in an amount sufficient to decrease the viscosity of the heavy crude oil at least 100,000-fold. In some embodiments, the co-solvent is present in an amount sufficient to decrease the viscosity of the heavy crude oil at least 200,000-fold.

The co-solvent provided herein including embodiments thereof (e.g., an alkylamine or a compound of formula (I), (II), or (III)) may be present at an amount from about 0.05% (w/w) to about 10% (w/w). Thus, in some embodiments, the co-solvent (e.g., an alkylamine or a compound of formula (I), (II), or (III)) is present from about 0.05% w/w to about 10% w/w. In some embodiments, the co-solvent is present from about 0.1% w/w to about 10% w/w. In other embodiments, the co-solvent is present from about 0.5% w/w to about 10% w/w. In some embodiments, the co-solvent is present from about 1% w/w to about 10% w/w. In other embodiments, the co-solvent is present from about 1.5% w/w to about 10% w/w. In some embodiments, the co-solvent is present from about 2% w/w to about 10% w/w. In other embodiments, the co-solvent is present from about 2.5% w/w to about 10% w/w. In some embodiments, the co-solvent is present from about 3% w/w to about 10% w/w. In other embodiments, the co-solvent is present from about 3.5% w/w to about 10% w/w. In some embodiments, the co-solvent is present from about 4% w/w to about 10% w/w. In other embodiments, the co-solvent is present from about 4.5% w/w to about 10% w/w. In some embodiments, the co-solvent is present from about 5% w/w to about 10% w/w. In other embodiments, the co-solvent is present from about 5.5% w/w to about 10% w/w. In some embodiments, the co-solvent is present from about 6% w/w to about 10% w/w. In other embodiments, the co-solvent is present from about 6.5% w/w to about 10% w/w. In some
embodiments, the co-solvent is present from about 7% w/w to about 10% w/w. In other embodiments, the co-solvent is present from about 7.5% w/w to about 10% w/w. In some embodiments, the co-solvent is present from about 8% w/w to about 10% w/w. In other embodiments, the co-solvent is present from about 8.5% w/w to about 10% w/w. In some embodiments, the co-solvent is present from about 9% w/w to about 10% w/w. In other embodiments, the co-solvent is present at about 2% w/w. In other embodiments, the co-solvent is present at about 0.5% w/w. A person of ordinary skill in the art will immediately recognize that the above referenced values refer to weight percent of co-solvent per volume of emulsion (i.e. total volume of aqueous and non-aqueous solution).

[0149] The total co-solvent concentration (i.e. the total amount of all co-solvent types within the heavy crude oil emulsion compositions provided herein) may be from about 0.05% (w/w) to about 10% (w/w). Thus, in some embodiments, the total co-solvent concentration (i.e. the total amount of all co-solvent types within the heavy crude oil emulsion compositions provided herein) is from about 0.05% w/w to about 10% w/w. In some embodiments, the total co-solvent concentration is from about 0.1% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration is from about 0.5% w/w to about 10% w/w. In some embodiments, the total co-solvent concentration is from about 1% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration is from about 1.5% w/w to about 10% w/w. In some embodiments, the total co-solvent concentration is from about 2% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration is from about 2.5% w/w to about 10% w/w. In some embodiments, the total co-solvent concentration is from about 3% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration is from about 3.5% w/w to about 10% w/w. In some embodiments, the total co-solvent concentration is from about 4% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration is from about 4.5% w/w to about 10% w/w. In some embodiments, the total co-solvent concentration is from about 5% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration is from about 5.5% w/w to about 10% w/w. In some embodiments, the total co-solvent concentration is from about 6% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration is from about 6.5% w/w to about 10% w/w. In some embodiments, the total co-solvent concentration is from about 7% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration is from about 7.5% w/w to about 10% w/w. In some embodiments, the total co-solvent concentration is from about 8% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration is from about 10% w/w. In some embodiments, the total co-solvent concentration is from about 10% w/w. In other embodiments, the total co-solvent concentration is from about
8.5% w/w to about 10% w/w. In some embodiments, the total co-solvent concentration is from about 9% w/w to about 10% w/w. In other embodiments, the total co-solvent concentration is from about 9.5% w/w to about 10% w/w.

[0150] In some embodiments, the emulsion composition further includes a surfactant. Where the emulsion further includes a surfactant, the emulsion may include a surfactant or a surfactant blend (e.g., a plurality of surfactant types). The surfactant provided herein may be any appropriate surfactant useful in the field of enhanced oil recovery or transport of heavy crude oil. In some embodiments, the surfactant is a single surfactant type in the emulsion. In other embodiments, the surfactant is a surfactant blend. A "surfactant blend" as provided herein is a mixture of a plurality of surfactant types. In some embodiments, the surfactant blend includes a first surfactant type, a second surfactant type or a third surfactant type. The first, second and third surfactant type may be independently different (e.g., anionic or cationic surfactants; or two anionic surfactants having a different hydrocarbon chain length but are otherwise the same). Therefore, a person having ordinary skill in the art will immediately recognize that the terms "surfactant" and "surfactant type(s)" have the same meaning and can be used interchangeably. In some embodiments, the surfactant is an anionic surfactant, a non-ionic surfactant, a zwitterionic surfactant or a cationic surfactant. In some embodiments, the surfactant is an anionic surfactant, a non-ionic surfactant, or a cationic surfactant. In other embodiments, the surfactant is a zwitterionic surfactant. "Zwitterionic" or "zwitterion" as used herein refers to a neutral molecule with a positive (or cationic) and a negative (or anionic) electrical charge at different locations within the same molecule. Examples for zwitterionics are without limitation betaines and sulfates.

[0151] The surfactant provided herein may be any appropriate anionic surfactant. In some embodiments, the surfactant is an anionic surfactant. In embodiments, the anionic surfactant is sodium dodecylbenzenesulfonate (DDBSA). Sodium dodecylbenzenesulfonate (DDBSA) refers to, in the customary sense, CAS Registry No. 25155-30-0. There terms "DDBSA" and "T-Soft" are herein used interchangeably having the same customary meaning known in the art.

[0152] In some embodiments, the anionic surfactant is an anionic surfactant blend. Where the anionic surfactant is an anionic surfactant blend the emulsion includes a plurality (i.e., more than one) of anionic surfactant types. In some embodiments, the anionic surfactant is an alkoxy carboxylate surfactant, an alkoxy sulfate surfactant, an alkoxy sulfonate surfactant, an alkyl sulfonate surfactant, an aryl sulfonate surfactant or an olefin sulfonate surfactant. An "alkoxy carboxylate surfactant" as provided herein is a compound having an alkyl or aryl attached to one
or more alkoxylene groups (typically -CH₂-CHethyl-0-, -CH₂-CHmethyl-0-, or -CH₂-CH₂-O-) which, in turn is attached to -COO⁻ or acid or salt thereof including metal cations such as sodium. In some embodiments, the alkoxy carboxylate surfactant has the formula:

\[
R^1\text{O} - \left(\text{CH}_2\text{CH} \right)_n\text{CH} \left(\text{CH} \right)_m\text{CH} \left(\text{CH}_2\text{CH} \right)_p\text{OH} \quad (\text{VI}) \quad \text{or} \quad R^1\text{O} - \left(\text{CH}_2\text{CH} \right)_n\text{CH} \left(\text{CH} \right)_m\text{CH} \left(\text{CH}_2\text{CH} \right)_p\text{O}^- M^+ \quad (\text{VII})
\]

In formula (VI) or (VII) R1 is substituted or unsubstituted Cs-Ciso alkyl or substituted or unsubstituted aryl. R2 is independently hydrogen or substituted Ci-Ce alkyl. R3 is independently hydrogen or unsubstituted C\textsubscript{8}-C\textsubscript{36} alkyl. R4 is substituted or unsubstituted naphthyl. R5 is independently hydrogen or unsubstituted Ci-Ce alkyl, n is an integer from 2 to 210, z is an integer from 1 to 6 and M+ is a monovalent, divalent or trivalent cation. In some embodiments, R1 is unsubstituted linear or branched C\textsubscript{6}-C\textsubscript{36} alkyl. In some embodiments, R1 is (C\textsubscript{6}H\textsubscript{5}-CH\textsubscript{2}CH\textsubscript{2})\textsubscript{3}C\textsubscript{6}H\textsubscript{2}-(TSP), (C\textsubscript{6}H\textsubscript{5}-CH\textsubscript{2}CH\textsubscript{2})\textsubscript{3}C\textsubscript{6}H\textsubscript{4}-(DSP), (C\textsubscript{6}H\textsubscript{5}-CH\textsubscript{2}CH\textsubscript{2})\textsubscript{3}C\textsubscript{6}H\textsubscript{4}-(MSP), or substituted or unsubstituted

[0153] In some embodiments, the surfactant is an alkoxy sulfate surfactant. An alkoxy sulfate surfactant as provided herein is a surfactant having an alkyl or aryl attached to one or more alkoxylene groups (typically -CH₂-CHethyl-0-, -CH₂-CHmethyl-0-, or -CH₂-CH₂-O-) which, in turn is attached to -SO\textsubscript{3}⁻ or acid or salt thereof including metal cations such as sodium. In some embodiment, the alkoxy sulfate surfactant has the formula RA-(BO)\textsubscript{e}-(PO)\textsubscript{f}-(EO)\textsubscript{g}-SO\textsubscript{3}⁻ or acid or salt (including metal cations such as sodium) thereof, wherein RA is C\textsubscript{8}-C\textsubscript{30} alkyl, BO is -CH₂-CHethyl-0-, PO is -CH₂-CHmethyl-0-, and EO is -CH₂-CH₂-0-. The symbols e, f and g are integers from 0 to 25 wherein at least one is not zero. In some embodiment, the alkoxy sulfate surfactant is C\textsubscript{15}-13PO-sulfate (i.e. an unsubstituted C\textsubscript{15} alkyl attached to 13 -CH2-CH(methyl)-0- linkers, in turn attached to -SO\textsubscript{3}⁻ or acid or salt thereof including metal cations such as sodium).

[0154] In other embodiments, the alkoxy sulfate surfactant has the formula

\[
R^2\text{O} - \left(\text{CH}_2\text{CH} \right)_m\text{CH} \left(\text{CH} \right)_n\text{CH} \left(\text{CH}_2\text{CH} \right)_p\text{X}^- M^+ \quad (\text{VIII})
\]

In formula (VIII) R1 and R2 are independently substituted or unsubstituted Cs-Ciso alkyl or substituted or unsubstituted aryl. R3 is independently hydrogen or unsubstituted Ci-Ce alkyl. z is an integer from 2 to 210. X⁻ is
sulfonate surfactants and alkyl aryl sulfonate surfactants useful in the embodiments provided herein are alkyl aryl unsubstituted cations thereof including metal cations such as sodium.

[0155] The alkoxy sulfate surfactant provided herein may be an aryl alkoxy sulfate surfactant. An aryl alkoxy surfactant as provided herein is an alkoxy surfactant having an aryl attached to one or more alkoxylene groups (typically -CH₂-CH(ethyl)-O-, -CH₂-CH(methyl)-O-, or -CH₂-CH₂-O-) which, in turn is attached to -SO₃⁻ or acid or salt thereof including metal cations such as sodium. In some embodiments, the aryl alkoxy surfactant is (C₆H₅-CH₂CH₂)₃C₆H₂-7PO-10EO-sulfate (i.e. tri-styrylphenol attached to 7-CH₂-CH(methyl)-O- linkers, in turn attached to 10-CH₂-CH₂-O- linkers, in turn attached to -SO₃⁻ or acid or salt thereof including metal cations such as sodium).

[0156] In some embodiments, the surfactant is an unsubstituted alkyl sulfate or an unsubstituted alkyl sulfonate surfactant. An alkyl sulfate surfactant as provided herein is a surfactant having an alkyl group attached to -O-SO₃⁻ or acid or salt thereof including metal cations such as sodium. An alkyl sulfonate surfactant as provided herein is a surfactant having an alkyl group attached to -SO₃⁻ or acid or salt thereof including metal cations such as sodium. In some embodiments, the surfactant is an unsubstituted aryl sulfate surfactant or an unsubstituted aryl sulfonate surfactant. An aryl sulfate surfactant as provided herein is a surfactant having an aryl group attached to -O-SO₃⁻ or acid or salt thereof including metal cations such as sodium. An aryl sulfonate surfactant as provided herein is a surfactant having an aryl group attached to -SO₃⁻ or acid or salt thereof including metal cations such as sodium. In some embodiments, the surfactant is an alkyl aryl sulfonate. Non-limiting examples of alkyl sulfate surfactants, alkyl sulfate surfactants, alkyl sulfonate surfactants, aryl sulfonate surfactants and alkyl aryl sulfonate surfactants useful in the embodiments provided herein are alkyl aryl

49
sulfonates (ARS) (e.g. alkyl benzene sulfonate (ABS)), alkane sulfonates, petroleum sulfonates, and alkyl diphenyl oxide (di)sulfonates. Additional surfactants useful in the embodiments provided herein are alcohol sulfates, alcohol phosphates, alkoxy phosphate, sulfosuccinate esters, alcohol ethoxylates, alkyl phenol ethoxylates, quaternary ammonium salts, betains and sultains.

[0157] The surfactant as provided herein may be an olefin sulfonate surfactant. In some embodiments, the olefin sulfonate surfactant is an internal olefin sulfonate (IOS) or an alfa olefin sulfonate (AOS). In some embodiments, the olefin sulfonate surfactant is a C15-C30 (IOS). In some further embodiments, the olefin sulfonate surfactant is C15-C18 IOS. Where the olefin sulfonate surfactant is C15-C18 IOS, the olefin sulfonate surfactant is a mixture (combination) of C15, C16, C17 and C18 alkene, wherein each alkene is attached to a -SO3- or acid or salt thereof including metal cations such as sodium. Likewise, where the olefin sulfonate surfactant is C19-C28 IOS, the olefin sulfonate surfactant is a mixture (combination) of C19, C20, C21, C22, C23, C24, C25, C26, C27 and C28 alkene, wherein each alkene is attached to a -SO3- or acid or salt thereof including metal cations such as sodium. As mentioned above, the emulsion provided herein may include a plurality of surfactants (i.e. a surfactant blend). In some embodiments, the surfactant blend includes a first olefin sulfonate surfactant and a second olefin sulfonate surfactant. In some further embodiments, the first olefin sulfonate surfactant is C15-C18 IOS and the second olefin sulfonate surfactant is C19-C28 IOS.

[0159] A person having ordinary skill in the art will immediately recognize that many surfactants are commercially available as blends of related molecules (e.g. IOS and ABS surfactants). Thus, where a surfactant is present within a composition provided herein, a person
of ordinary skill would understand that the surfactant may be a blend of a plurality of related surfactant molecules (as described herein and as generally known in the art).

[0160] In some embodiment, the total surfactant concentration (i.e. the total amount of all surfactant types within the emulsions and emulsion compositions provided herein) is from about 0.05% w/w to about 10% w/w. In other embodiments, the total surfactant concentration in the emulsion is from about 0.25% w/w to about 10% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 0.5% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 1.0% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 1.25% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 1.5% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 1.75% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 2.0% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 2.5% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 3.0% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 3.5% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 4.0% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 4.5% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 5.0% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 5.5% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 6.0% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 6.5% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 7.0% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 7.5% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 8.0% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 9.0% w/w. In other embodiments, the total surfactant concentration in the emulsion is about 10% w/w.

[0161] In some embodiments, the emulsion composition further includes an alkali agent. An alkali agent as provided herein is a basic, ionic salt of an alkali metal (e.g. lithium, sodium, potassium) or alkaline earth metal element (e.g. magnesium, calcium, barium, radium). In some embodiments, the alkali agent is NaOH, KOH, LiOH, Na₂CO₃, NaHCO₃, Na-metaborate, Na silicate, Na orthosilicate, or NH₄OH. The emulsion composition may include seawater, or fresh water from an aquifer, river or lake. In some embodiments, the emulsion composition includes hard brine or soft brine. In some further embodiments, the water is soft brine. In some further
embodiments, the water is hard brine. Where the emulsion composition includes soft brine, the aqueous composition may include an alkali agent. In soft brine the alkali agent provides for enhanced soap generation from the oils, lower surfactant adsorption to the solid material (e.g. rock) in the reservoir and increased solubility of viscosity enhancing water soluble polymers. In some embodiment, the alkali agent is present in the emulsion composition at a concentration from about 0.1% w/w to about 3% w/w.

[0162] The heavy crude oil emulsion compositions provided herein may further include a salt to increase the salinity of the emulsion composition. Thus, in some embodiments, the heavy crude oil composition further includes a salt. In some embodiments, the salt is NaCl, Na₂SO₄, K₂SO₄ or KCl. In some embodiments, the salt is NaCl or KCl. The salt included in the heavy crude oil emulsion compositions provided herein may be present in an amount sufficient to increase the activity of the in situ generated soap, which is formed through the reaction of the carboxylic acids in the oil with the alkali agent and/or basic co-solvent. The activity of the in situ generated soap refers to the surface activity of the in situ generated soap. In some embodiments, the salt is present in an amount sufficient to decrease the interfacial tension between the water and the heavy crude oil. In some embodiments, the salt is present in an amount sufficient to decrease the interfacial viscosity of the emulsion. In some embodiments, the salt is present in an amount sufficient to increase the solubility of the co-solvent or alkali agent in the emulsion relative to the absence of the salt. In other words, in the presence of a sufficient amount of the salt, the solubility of the co-solvent or the alkali agent in the heavy crude oil emulsion composition is higher than in the absence of the salt.

[0163] The salt may be present in the heavy crude oil emulsion composition from about 0.01% to about 2% (w/v). Thus in some embodiments, the salt is present from about 0.01% to about 2% (w/v). In other embodiments, the salt is present from about 0.05% to about 2% (w/v). In other embodiments, the salt is present from about 0.1% to about 2% (w/v). In other embodiments, the salt is present from about 0.2% to about 2% (w/v). In other embodiments, the salt is present from about 0.3% to about 2% (w/v). In other embodiments, the salt is present from about 0.4% to about 2% (w/v). In other embodiments, the salt is present from about 0.5% to about 2% (w/v). In other embodiments, the salt is present from about 0.6% to about 2% (w/v). In other embodiments, the salt is present from about 0.7% to about 2% (w/v). In other embodiments, the salt is present from about 0.8% to about 2% (w/v). In other embodiments, the salt is present from about 0.9% to about 2% (w/v). In other embodiments, the salt is present from about 1.0% to about 2% (w/v). In other embodiments, the salt is present from about 1.2%
to about 2% (w/v). In other embodiments, the salt is present from about 1.4% to about 2% (w/v).
In other embodiments, the salt is present from about 1.6% to about 2% (w/v). In other
embodiments, the salt is present from about 1.8% to about 2% (w/v).

[0164] In some embodiments, the salt is present from about 0.01% to about 1% (w/v). In other
embodiments, the salt is present from about 0.05% to about 1% (w/v). In other embodiments,
the salt is present from about 0.1% to about 1% (w/v). In other embodiments, the salt is present
from about 0.2% to about 1% (w/v). In other embodiments, the salt is present from about 0.3% to
about 1% (w/v). In other embodiments, the salt is present from about 0.4% to about 1% (w/v).
In other embodiments, the salt is present from about 0.5% to about 1% (w/v). In other
embodiments, the salt is present from about 0.6% to about 1% (w/v). In other embodiments, the
salt is present from about 0.7% to about 1% (w/v). In other embodiments, the salt is present
from about 0.8% to about 1% (w/v). In other embodiments, the salt is present from about 0.9% to
about 1% (w/v). In one embodiment, the salt is present at an amount of about 0.1% (w/v). In
another embodiment, the salt is present at an amount of about 0.8% (w/v). A person of ordinary
skill in the art will immediately recognize that the above referenced values refer to weight
percent of salt per volume of aqueous solution.

[0165] The heavy crude oil emulsion compositions provided herein may further include
seawater, or fresh water from an aquifer, river or lake. In some embodiments, the water is hard
brine. In other embodiments, the water is soft brine. In some embodiments, the brine is derived
from the same reservoir as the heavy crude oil. In other embodiments, the brine is derived from
a different reservoir than the heavy crude oil. In some embodiments, salt is removed from the
brine.

[0166] In other embodiments, the emulsion further includes a catalyst. The catalyst provided
herein may be any appropriate catalyst useful in the field of enhanced oil recovery or transport of
heavy crude oil. In some embodiments, the catalyst is a single catalyst type in the emulsion. In
other embodiments, the catalyst is a catalyst blend. A "catalyst blend" as provided herein is a
mixture of a plurality of catalyst types. In some embodiments, the catalyst blend includes a first
catalyst type, a second catalyst type or a third catalyst type. The first, second and third catalyst
type may be independently different (e.g. anionic or cationic catalysts; or two cationic catalyst
having a different hydrocarbon chain length but are otherwise the same). Therefore, a person
having ordinary skill in the art will immediately recognize that the terms "catalyst" and "catalyst
type(s)" have the same meaning and can be used interchangeably. In some embodiments, the
catalyst is a nanoparticle. In other embodiments, the catalyst is platinum, palladium, rhodium, or
nickel. In some embodiments, the catalyst is chromium oxide, Pt/Al₂O₃, or zinc titanium oxide. In other embodiments, the catalyst is aluminum oxide or zeolites.

[0167] In some embodiments, the emulsion is at a transport temperature. A transport temperature as provided herein refers to a temperature at which a heavy crude oil emulsion is transported in a transport vessel (e.g. an oil pipeline). A "transport vessel" as used herein, refers to a container used for transporting oil, typically large amounts of oil (e.g. at least hundreds of gallons, at least thousands of gallons, at least millions of gallons or at least billions of gallons). A transport vessel includes a storage vessel contained within a petroleum tanker (oil tankers), barge, truck or a train. A transport vessel also includes an petroleum pipeline (oil pipeline). The transport temperature of a heavy crude oil emulsion may be less than the temperature of the heavy crude oil in the reservoir or less than the temperature of the heavy crude oil after extraction from the reservoir. In some embodiments, the transport temperature is less than 100°C. In some embodiments, the transport temperature is less than 70°C. In some embodiments, the transport temperature is less than 60°C. In other embodiments, the transport temperature is less than 55°C. In some embodiments, the transport temperature is less than 50°C. In other embodiments, the transport temperature is less than 45°C. In some embodiments, the transport temperature is less than 40°C. In other embodiments, the transport temperature is less than 35°C. In some embodiments, the transport temperature is less than 30°C. In other embodiments, the transport temperature is less than 25°C. In some embodiments, the transport temperature is less than 20°C. In other embodiments, the transport temperature is less than 15°C.

[0168] In some embodiments, the transport temperature is from about 0°C to about 70°C. In some embodiments, the transport temperature is from about 10°C to about 70°C. In some embodiments, the transport temperature is from about 15°C to about 70°C. In other embodiments, the transport temperature is from about 20°C to about 70°C. In other embodiments, the transport temperature is from about 25°C to about 70°C. In other embodiments, the transport temperature is from about 30°C to about 70°C. In other embodiments, the transport temperature is from about 35°C to about 70°C. In other embodiments, the transport temperature is from about 40°C to about 70°C. In other embodiments, the transport temperature is from about 45°C to about 70°C. In other embodiments, the transport temperature is from about 50°C to about 70°C. In other embodiments, the transport temperature is from about 55°C to about 70°C. In some embodiments, the transport temperature is from about 0°C to about 60°C. In other embodiments, the transport temperature is from about 5°C to about 60°C. In some embodiments, the transport
temperature is from about 10°C to about 60°C. In some embodiments, the transport temperature is from about 15°C to about 60°C. In other embodiments, the transport temperature is from about 20°C to about 60°C. In other embodiments, the transport temperature is from about 25°C to about 60°C. In other embodiments, the transport temperature is from about 30°C to about 60°C. In other embodiments, the transport temperature is from about 35°C to about 60°C. In other embodiments, the transport temperature is from about 40°C to about 60°C. In other embodiments, the transport temperature is from about 45°C to about 60°C. In other embodiments, the transport temperature is from about 50°C to about 60°C. In other embodiments, the transport temperature is from about 55°C to about 60°C. In some embodiments, the transport temperature is about 0°C, 5°C, 10°C, 15°C, 20°C, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C, 60°C, 65°C or 70°C. In some embodiments, the transport temperature is an ambient temperature. An ambient temperature as provided herein may be a temperature of less than 80°C. Thus, in embodiments, the ambient temperature is less than 80°C. In embodiments, the ambient temperature is less than 60°C. In embodiments, the ambient temperature is less than 40°C. In embodiments, the ambient temperature is 20°C.

[0169] The heavy crude oil emulsion compositions provided herein include a broad concentration of heavy crude oil. In some embodiments, the heavy crude oil is present from about 10% to about 95% (v/v). In other embodiments, the heavy crude oil is present from about 15% to about 95% (v/v), from about 20% to about 95% (v/v), from about 25% to about 95% (v/v), from about 30% to about 95% (v/v), from about 35% to about 95% (v/v), from about 40% to about 95% (v/v), from about 45% to about 95% (v/v), from about 50% to about 95% (v/v), from about 55% to about 95% (v/v), from about 60% to about 95% (v/v), from about 65% to about 95% (v/v), from about 70% to about 95% (v/v), from about 75% to about 95% (v/v), from about 80% to about 95% (v/v), from about 85% to about 95% (v/v) or from about 90% to about 95% (v/v). In some embodiments, the heavy crude oil is present at about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% (v/v). In some embodiments, the heavy crude oil is present at about 20% (v/v). In other embodiments, the heavy crude oil is present at about 20% (v/v). A person of ordinary skill in the art will immediately recognize that the above referenced values refer to volume percent per volume of emulsion.

[0170] As described above, the heavy crude oils included in the emulsion compositions provided herein are highly viscous. In some embodiments, the viscosity of the heavy crude oil is
about 100,000 cP. In other embodiments, the viscosity of the heavy crude oil is about 200,000 cP. In some embodiments, the viscosity of the heavy crude oil is about 300,000 cP. In some embodiments, the viscosity of the heavy crude oil is about 1,000,000 cP. In some embodiments, the viscosity of the heavy crude oil is about 100,000 cP at ambient temperature.

In other embodiments, the viscosity of the heavy crude oil is about 200,000 cP at ambient temperature. In some embodiments, the viscosity of the heavy crude oil is about 300,000 cP at ambient temperature. In some embodiments, the viscosity of the heavy crude oil is about 1,000,000 cP at ambient temperature.

[0171] Upon formation of a heavy crude oil emulsion according to the compositions and methods provided herein, the viscosity of the heavy crude oil emulsion decreases and remains low over extended periods of time and at ambient temperatures. In some embodiments, the viscosity of the emulsion is lower than the viscosity of the heavy crude oil. In some embodiments, the viscosity of the emulsion is about a 10 times less than the viscosity of the heavy crude oil. In some embodiments, the viscosity of the emulsion is about a 100 times less than the viscosity of the heavy crude oil. In some embodiments, the viscosity of the emulsion is about a 1,000 times less than the viscosity of the heavy crude oil. In other embodiments, the viscosity of the emulsion is about a 10,000 times less than the viscosity of the heavy crude oil. In other embodiments, the viscosity of the emulsion is about a 100,000 times less than the viscosity of the heavy crude oil. The formation of low viscosity heavy crude oil emulsions according to the compositions and methods provided herein allows for cost effective and efficient transport of a heavy crude oil. Thus, the emulsion compositions provided herein may be within a vessel. In some embodiments, the emulsion is within a vessel. In a further embodiment, the vessel is a pipeline. In another further embodiment, the vessel forms part of transportation vehicle. A transportation vehicle as provided herein refers to a vehicle appropriate for the transport of heavy crude oil emulsions. Examples of transportation vehicles are without limitation vehicles appropriate for ground transportation (e.g. trucks, trains), water transportation (e.g. sea or river) and air transportation. In some embodiments, the emulsion is transported in a pipeline.

[0172] The heavy crude oil emulsion compositions as provided herein are surprisingly stable at ambient temperature. A heavy crude oil emulsion composition is stable, when it retains the same features (e.g. viscosity) over an extended period of time (e.g. hours, days, weeks, months). As described above, the heavy crude oil emulsions provided herein have a viscosity that is at least 1,000-fold lower than the viscosity of the heavy crude oil. Surprisingly, the heavy crude oil
emulsion compositions provided herein maintain a low viscosity, which is at least 1,000-fold lower than the viscosity of the heavy crude oil, at ambient temperature and for extended periods of time. An ambient temperature as provided herein may be a temperature of less than 80°C. Thus, in some embodiments, the ambient temperature is less than 80°C. In other embodiments, the ambient temperature is less than 60°C. In some embodiments, the ambient temperature is less than 40°C. In some embodiments, the emulsion is stable at ambient temperature for at least an hour. In some embodiments, the emulsion is stable at ambient temperature for at least a day. In some embodiments, the emulsion is stable at ambient temperature for at least a week. In some embodiments, the heavy crude oil emulsion is stable at the transport temperature for at least an hour. In some embodiments, the heavy crude oil emulsion is stable at the transport temperature for at least a day. In some embodiments, the heavy crude oil emulsion is stable at the transport temperature for at least a week. In other embodiments, the heavy crude oil emulsion is stable at the transport temperature for at least a month.

[0173] In one embodiment, the heavy crude oil emulsion includes a heavy crude oil at 40% (v/v); a co-solvent wherein the co-solvent is triethylenetetramine (TETA), present at 2% w/w; and a salt, wherein the salt is NaCl present 0.1% (w/v). In another embodiment, the heavy crude oil emulsion includes a heavy crude oil at 40% (v/v); a co-solvent wherein the co-solvent is dimethylaminopropylamine (DMAPA), present at 2% w/w; and a salt, wherein the salt is NaCl present 0.1% (w/v). In one embodiment, the heavy crude oil emulsion includes a heavy crude oil at 40% (v/v); a co-solvent wherein the co-solvent is triethylenetetramine (TETA), present at 1% w/w; and a salt, wherein the salt is NaCl present 0.1% (w/v).

[0174] In one aspect, a heavy crude oil emulsion is provided. The heavy crude oil emulsion includes a heavy crude oil, water and an alkylamine and the heavy crude oil emulsion is within a transport vessel. The alkylamine may be an alkylamine as described herein including embodiments thereof (e.g. an alkylpolyamine). Thus, in some embodiments, the alkylamine is triethylenetetramine. In other embodiments, the alkylamine is dimethylaminopropylamine. In one embodiment, the emulsion does not include a compound of formula (I), (II), or (III). In another embodiment, the emulsion does not include a surfactant. In one embodiment, the emulsion does not include an alkali agent.

[0175] As described above the emulsion composition provided herein includes a heavy crude oil, water, a salt and a co-solvent, wherein the co-solvent is an alkylamine or a compound having the formula (I). In one embodiment, the heavy crude oil is present at about 85%, the co-solvent is DIPA-15EO present at about 1.5%(w/v), 2.5%(w/v), 3%(w/v), or 3.5%(w/v), and the salt is
NaCl, present at about 0.2%(w/v). In one embodiment, the heavy crude oil is present at about 85%(w/v), the co-solvent is DIPA-15EO present at about 1.5%(w/v) and the salt is NaCl, present at about 0.4%(w/v). In one embodiment, the heavy crude oil is present at about 85%(w/v), the co-solvent is DIPA-15EO present at about 2.5%(w/v) and the salt is NaCl, present at about 0.5%(w/v). In one embodiment, the heavy crude oil is present at about 80%(w/v), 85%(w/v) or 90%(w/v), the co-solvent is DIPA-15EO present at about 1.5%(w/v) and the salt is NaCl, present at about 0.2%(w/v). In one embodiment, the heavy crude oil is present at about 20%(w/v), 40%(w/v), 60%(w/v), 80%(w/v) or 100%(w/v), the co-solvent is DIPA-15EO present at about 1.5%(w/v) and the salt is NaCl, present at about 1%(w/v). A person of ordinary skill in the art will immediately recognize that the above referenced values for the concentration of co-solvent refer to weight percent per volume of water and oil combined. The above referenced values for the concentration of other components (e.g., salt) refer to weight percent per volume of aqueous solution.

[0176] In one embodiment, the heavy crude oil is present at about 40%(w/v), the co-solvent is DMAPA present at about 2%(w/v) and the salt is NaCl, present at about 0.1%(w/v). In one embodiment, the heavy crude oil is present at about 40%(w/v), the co-solvent is DIPA-15EO present at about 2%(w/v) and the salt is NaCl, present at about 0.1%(w/v). In one embodiment, the heavy crude oil is present at about 40%(w/v), the co-solvent is TETA present at about 2%(w/v) and the salt is NaCl, present at about 0.1%(w/v). In one embodiment, the heavy crude oil is present at about 60%(w/v), the co-solvent is DIPA-15EO present at about 3%(w/v) and the salt is NaCl, present at about 0.1%(w/v). A person of ordinary skill in the art will immediately recognize that the above referenced values for the concentration of co-solvent refer to weight percent per volume of water and oil combined. The above referenced values for the concentration of other components (e.g., salt) refer to weight percent per volume of aqueous solution.

[0177] As described above the heavy crude oil emulsion provided herein includes an co-solvent, wherein the co-solvent and the additional co-solvent form a co-solvent blend. In one embodiment, the heavy crude oil is present at about 20%(w/v), 60%(w/v) or 80%(w/v), the co-solvent is DIPA-15EO, present at about 1.5%(w/v), the additional co-solvent is a compound of formula (VA), wherein R^1 and R^2 are hydrogen and n is 10, present at 0.5% (w/v) and the salt is NaCl, present at about 1%(w/v). A person of ordinary skill in the art will immediately recognize that the above referenced values for the concentration of co-solvent or additional co-solvent refer to weight percent per volume of water and oil combined. The above referenced values for the
concentration of other components (e.g., salt) refer to weight percent per volume of aqueous solution.

[0178] The heavy crude oil emulsion provided herein may further include a surfactant. In one embodiment, the heavy crude oil is present at about 85% (w/v), the co-solvent is DIPA-15EO, present at about 1.5% (w/v), the surfactant is DDBSA, present at 0.5% (w/v) and the salt is NaCl, present at about 0.2% (w/v). A person of ordinary skill in the art will immediately recognize that the above referenced values for the concentration of co-solvent refer to weight percent per volume of water and oil combined. The above referenced values for the concentration of other components (e.g., surfactant, salt) refer to weight percent per volume of aqueous solution.

[0179] In another aspect, a heavy crude oil emulsion is provided. The heavy crude oil emulsion includes a first phase and a second phase, wherein the first phase includes an oil-immiscible compound and the second phase includes a heavy crude oil.

[0180] In one aspect, a heavy crude oil emulsion is provided. The heavy crude oil emulsion includes an amphiphilic co-solvent, a first phase and a second phase, wherein the first phase includes an oil-immiscible compound and the second phase includes a heavy crude oil. The amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[
R^{1A}N\left(\frac{CH_2-CH-O}{R^2}\right)^nH
\]

(1). In formula (1) \(R^{1A}\) and \(R^{1B}\) are independently hydrogen, unsubstituted Ci-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl,

\[
\left(\frac{CH_2-CH-O}{R^3}\right)^mH
\]

unsubstituted aryl, unsubstituted heteroaryl, Cl-C6 alkylamine or are independently hydrogen or unsubstituted Cl-C2 alkyl, \(n\) is an integer from 1 to 30 and \(m\) is an integer from 1 to 30.

[0181] The heavy crude oil emulsions provided herein include oil-immiscible compounds and/or amphiphilic co-solvents. An "oil-immiscible compound" as referred to herein is a compound that is not soluble in heavy crude oil. In one embodiment, the oil-immiscible compound is only lightly soluble in heavy crude oil. In embodiments, the oil-immiscible compound is a liquid. An oil-immiscible compound is capable of lubricating viscous crude oil and has a lower viscosity than the heavy crude oil. Upon formation of the heavy crude oil emulsion the oil-immiscible compound is within the first phase of the emulsion and is capable of
facilitating the interaction of other components (e.g., co-solvent, alkali agent, surfactant) with the crude oil. Thus, in some embodiments, the oil-immiscible compound forms part of the first phase of the emulsion. In yet another embodiment, the oil-immiscible compound forms part of an interface between the first phase and the second phase of the emulsion. In embodiments, the oil-immiscible compound is ethylene glycol, diethylene glycol, glycerol, propylene glycol, pentaerythritol, sorbitol or methanol. In embodiments, the oil-immiscible compound is ethylene glycol. In embodiments, the oil-immiscible compound is glycerol. In embodiments, the oil-immiscible compound is ethylene glycol, diethylene glycol, propylene glycol, sorbitol, ethanol, isopropanol, secondary butanol or methanol. In embodiments, the oil-immiscible compound is ethylene glycol. In embodiments, the oil-immiscible compound is methanol. In embodiments, the oil-immiscible compound is ethylene glycol, diethylene glycol, propylene glycol, dimethyl ether, pentaerythritol sorbitol, ethanol, isopropanol, secondary butanol or methanol. In embodiments, the oil-immiscible compound is ethylene glycol, diethylene glycol, propylene glycol, dimethyl ether, pentaerythritol sorbitol, ethanol, isopropanol, secondary butanol or methanol. A person of ordinary skill in the art immediately recognizes that the above referenced values for the concentration of co-solvent refer to weight percent per volume of water and oil combined (i.e., emulsion). The above referenced values for the concentration of other components (salt, alkali agent) refer to weight percent per volume of aqueous solution.

[0182] In embodiments, the oil-immiscible compound is present at about 5% (w/v). In embodiments, the oil-immiscible compound is present at about 10% (w/v). In embodiments, the oil-immiscible compound is present at about 15% (w/v). In embodiments, the oil-immiscible compound is present at about 20% (w/v). In embodiments, the oil-immiscible compound is present at about 25% (w/v). In embodiments, the oil-immiscible compound is present at about 30% (w/v). In embodiments, the oil-immiscible compound is present at about 35% (w/v). In embodiments, the oil-immiscible compound is present at about 40% (w/v). In embodiments, the oil-immiscible compound is present at about 45% (w/v). In embodiments, the oil-immiscible compound is present at about 50% (w/v). In embodiments, the oil-immiscible compound is present at about 55% (w/v). In embodiments, the oil-immiscible compound is present at about 60% (w/v). A person of ordinary skill in the art will immediately recognize that the above referenced values for the concentration of co-solvent refer to weight percent per volume of water and oil combined (i.e., emulsion). The above referenced values for the concentration of other components (salt, basic agent) refer to weight percent per volume of aqueous solution.
[0183] In embodiments, the oil-immiscible compound is present from about 5%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 10%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 15%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 20%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 25%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 30%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 35%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 40%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 45%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 50%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 55%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 60%(w/v) to about 70%(w/v). In embodiments, the oil-immiscible compound is present from about 65%(w/v) to about 70%(w/v).

[0184] In embodiments, the first phase is about 5% oil-immiscible compound. In embodiments, the first phase is about 10% oil-immiscible compound. In embodiments, the first phase is about 15% oil-immiscible compound. In embodiments, the first phase is about 20% oil-immiscible compound. In embodiments, the first phase is about 25% oil-immiscible compound. In embodiments, the first phase is about 30% oil-immiscible compound. In embodiments, the first phase is about 35% oil-immiscible compound. In embodiments, the first phase is about 40% oil-immiscible compound. In embodiments, the first phase is about 45% oil-immiscible compound. In embodiments, the first phase is about 50% oil-immiscible compound. In embodiments, the first phase is about 55% oil-immiscible compound. In embodiments, the first phase is about 60% oil-immiscible compound. In embodiments, the first phase is about 65% oil-immiscible compound. In embodiments, the first phase is about 70% oil-immiscible compound. In embodiments, the first phase is about 75% oil-immiscible compound. In embodiments, the first phase is about 80% oil-immiscible compound. In embodiments, the first phase is about 85% oil-immiscible compound. In embodiments, the first phase is about 90% oil-immiscible compound. In embodiments, the first phase is about 95% oil-immiscible compound. In embodiments, the first phase is about 98% oil-immiscible compound. In embodiments, the first phase is about 99% oil-immiscible compound. A person of ordinary skill in the art will immediately recognize that the above referenced values refer to weight percent per volume of the emulsion.
An "amphiphilic co-solvent" refers to a co-solvent as provided herein (e.g., a compound of formula (I), (II), (III), or a co-solvent blend as described herein), including embodiments thereof, which is at least partially soluble in both the first phase including the oil-immiscible compound, and the second phase including the heavy crude oil. Therefore, the amphiphilic co-solvent is by definition chemically distinct from the oil-immiscible compound. In embodiments, the amphiphilic co-solvent forms part of the first phase. In embodiments, the amphiphilic co-solvent forms part of the second phase. In embodiments, the amphiphilic co-solvent forms part of the first phase and the second phase. In embodiments, the amphiphilic co-solvent is present in the first phase and the second phase. In embodiments, the first phase includes an alkali agent. Where the heavy crude oil emulsion includes an amphiphilic co-solvent any co-solvent useful in enhanced oil recovery and transport of heavy oil may be used. Examples of co-solvents useful for the emulsions and methods provided herein have been described above (e.g., a compound of formula (I), (II), (III), or a co-solvent blend as described herein). An amphiphilic co-solvent as provided herein is present at the same concentrations described herein for co-solvents. Thus, in embodiments, the amphiphilic co-solvent is present at about 0.01%(w/v) to 5%(w/v). A person of ordinary skill in the art will immediately recognize that the above referenced values for the concentration of amphiphilic co-solvent refer to weight percent per volume of first and second phase (i.e., water and oil combined or emulsion).

In embodiments, the heavy crude oil emulsion includes an additional co-solvent as described above. Thus, in embodiments, the additional co-solvent forms part of the first and the second phase. In embodiments, the additional co-solvent has the formula

\[
R^3-L^1\left(\begin{array}{c}
\text{O-CH}_2\text{-CH} \\
R^2
\end{array}\right)^n\text{OH}
\]

(IV). In formula (IV), \(L^1\) is unsubstituted \(C_{1-6}\) alkylene, unsubstituted phenylene, unsubstituted cyclohexylene, unsubstituted cyclopentylene or methyl-substituted cyclopentylene. \(R^2\) is independently hydrogen, methyl or ethyl. \(R^3\) is independently hydrogen or

\[
\left(\begin{array}{c}
\text{O-CH}_2\text{-CH} \\
R^4
\end{array}\right)^m\text{OH}
\]

\(R^4\) is independently hydrogen, methyl or ethyl, \(n\) is an integer from 0 to 30, and \(m\) is an integer from 0 to 30.
In some embodiments, the additional co-solvent has the formula

\[
\left(\begin{array}{c}
R^1 \substack{O-C-CH_2-CH=\cdots-HR^2 \substack{\cdots_o(V)}} \\
\end{array} \right)_{n}
\]

In formula (V) \(R^1 \) is independently hydrogen, unsubstituted \(Ci-Ce \) alkyl or \(R^5-OH \), \(R^2 \) is independently hydrogen or unsubstituted \(Cl-C2 \) alkyl, \(R^5 \) is independently a bond or unsubstituted \(Ci-Ce \) alkyl, \(n \) is an integer from 1 to 30, 0 is an integer from 1 to 5 and \(z \) is an integer from 1 to 5.

In some embodiments, the additional co-solvent has the formula

\[
\left(\begin{array}{c}
R^1 \substack{O-C-CH_2-CH=\cdots-HR^2 \substack{\cdots_o(VA)}} \\
\end{array} \right)_{n}
\]

(VA). In formula (VA) \(R^1 \) is independently hydrogen or unsubstituted \(Ci-Ce \) alkyl, \(R^2 \) is independently hydrogen or unsubstituted \(C1-C2 \) alkyl and \(n \) is an integer from 1 to 30. In embodiments, the additional co-solvent is present at a concentration from about 0.01% w/w to about 5% w/w.

In embodiments, the heavy crude oil emulsion does not include water. In embodiments, the heavy crude oil emulsion does not include added water. In embodiments, the heavy crude oil emulsion does not include exogenous water. Where the heavy crude oil emulsion does not include exogenous water no water is added to the emulsion. In embodiments, the heavy crude oil emulsion is anhydrous. In embodiments, the heavy crude oil emulsion includes traces of water. Where the heavy crude oil emulsion includes traces of water, the heavy crude oil emulsion includes less than about 0.01%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 20%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 15%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 10%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 5%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 4%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 3%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 2%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 1%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.5%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.4%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.3%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.2%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.1%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.05%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.01%(w/v) water.
0.1%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.01%(w/v) water. A person of ordinary skill in the art will immediately recognize that the above referenced values refer to weight percent per volume of emulsion.

[0190] In embodiments, the first phase further includes heavy crude oil water. "Heavy crude oil water" is water that is endogenous to the heavy crude oil and refers to the water found in the heavy crude oil as extracted. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 0.01%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 1%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 5%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 10%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 15%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 20%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 30%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 40%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 50%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 60%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 70%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 80%(w/v) to about 95%w/v. In embodiments, the amount of heavy crude oil water in a heavy crude oil is from about 90%(w/v) to about 95%w/v. In embodiments, the heavy crude oil water is present at about 95%(w/v). In embodiments, the heavy crude oil water is present at about 90%(w/v). In embodiments, the heavy crude oil water is present at about 85%(w/v). In embodiments, the heavy crude oil water is present at about 80%(w/v). In embodiments, the heavy crude oil water is present at about 75%(w/v). In embodiments, the heavy crude oil water is present at about 60%(w/v). In embodiments, the heavy crude oil water is present at about 65%(w/v). In embodiments, the heavy crude oil water is present at about 50%(w/v). In embodiments, the heavy crude oil water is present at about 45%(w/v). In embodiments, the heavy crude oil water is present at about 40%(w/v). In embodiments, the heavy crude oil water is present at about 35%(w/v). In embodiments, the heavy crude oil water is present at about 30%(w/v). In embodiments, the heavy crude oil water is present at about 25%(w/v). In embodiments, the heavy crude oil water
is present at about 20%(w/v). In embodiments, the heavy crude oil water is present at about 15%(w/v). In embodiments, the heavy crude oil water is present at about 10%(w/v). In embodiments, the heavy crude oil water is present at about 5%(w/v). In embodiments, the heavy crude oil water is present at about 4%(w/v). In embodiments, the heavy crude oil water is present at about 3%(w/v). In embodiments, the heavy crude oil water is present at about 2%(w/v). In embodiments, the heavy crude oil water is present at about 1%(w/v). In embodiments, the heavy crude oil water is present at about 0.5%(w/v). In embodiments, the heavy crude oil water is present at about 0.1%(w/v). In embodiments, the heavy crude oil water is present at about 0.01%(w/v). In embodiments, traces of the heavy crude oil water are present in the heavy crude oil emulsion. Where traces of the heavy crude oil water are present in the heavy crude oil emulsion, the heavy crude oil emulsion includes less than 0.01%(w/v) of heavy crude oil water. In embodiments, the heavy crude oil emulsion does not include heavy crude oil water. In embodiments, the amount of water in the heavy crude oil emulsion is equal to the amount of the heavy crude oil water. A person of ordinary skill in the art will immediately recognize that the above referenced values refer to weight percent per volume of emulsion.

[0192] In embodiments, the heavy crude oil emulsion includes a surfactant. Where the heavy crude oil emulsion includes a surfactant any surfactant useful in enhanced oil recovery and transport of heavy oil may be used. Examples of surfactants useful for the methods provided have been described above. In embodiments, the viscosity of the emulsion is lower than the viscosity of the heavy crude oil. In embodiments, the emulsion is formed at an ambient temperature.

[0193] As described above the emulsion composition provided herein includes a heavy crude oil, an amphiphilic co-solvent, an oil-immiscible compound and a heavy crude oil, wherein the amphiphilic co-solvent is an alkylamine or a compound having the formula (I). In one embodiment, the heavy crude oil is present at about 80%, the co-solvent is DIPA-15EO present at about 0.6%(w/v), and the oil-immiscible compound is ethylene glycol, present at about 15%(w/v). In a further embodiment, the heavy crude oil emulsion includes heavy crude oil water. In another further embodiment, the heavy crude oil water is present at about 4.4%(w/v).

[0194] In another aspect, a non-aqueous composition including an oil-immiscible compound and an amphiphilic co-solvent is provided. The amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[
\text{R}^{1A} \text{NH} = \text{CH}_{2} \text{O} \text{R}^{1B} \text{H} \]

(I). In formula (I) \(R^{1A} \) and \(R^{1B} \) are
independently hydrogen, unsubstituted Ci-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, Ci-Ce alkylamine or

\[
\begin{align*}
\text{H} & \quad \text{R}^3 \\
\text{CH}_2 & \text{CH} - \text{O} \\
\text{m} & \quad \text{R}^3
\end{align*}
\]

\(\text{R}^2 \text{ and R}^3 \) are independently hydrogen or unsubstituted C_{1-6} alkyl, \(n \) is an integer from 1 to 30 and \(m \) is an integer from 1 to 30. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, glycerol, propylene glycol, pentaerythritol, sorbitol or methanol. In embodiments, the oil-immiscible compound is ethylene glycol. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, sorbitol, ethanol, isopropanol, secondary butanol or methanol. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, dimethyl ether, pentaerythritol sorbitol, ethanol, isopropanol, secondary butanol or methanol. In embodiments, the oil-immiscible compound is ethylene glycol. In embodiments, the oil-immiscible compound is methanol. In embodiments, the non-aqueous composition includes a surfactant. Where the non-aqueous composition includes a surfactant any surfactant useful in enhanced oil recovery and transport of heavy oil may be used. Examples of surfactants useful for the methods provided have been described above. Where the non-aqueous composition includes an amphiphilic co-solvent any co-solvent useful in enhanced oil recovery and transport of heavy oil may be used. Examples of co-solvents useful for the emulsions and methods provided have been described above (e.g., a compound of formula (I), (II), (III)).

The term "non-aqueous" composition as provided herein refers to a composition where water is present at an amount approximately equal to or less than 20% w/w. In some embodiments, water is present at an amount less than 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001, or 0.000001% w/w. In some embodiments, water is present at an amount less than 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001, or 0.000001% w/w. In some embodiments, water is present at an amount less than 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001, or 0.000001% w/w. In some embodiments, water is present at an amount less than 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001, 0.00001, or 0.000001% w/w. In some embodiments, water is present at an amount less than 1% w/w. In some embodiments, water is present at an amount less than 0.5% w/w. In some embodiments, water is present at an amount less than 0.1% w/w. In some embodiments, water is present at an amount less than 0.01% w/w. In some embodiments, water is present at an amount less than 0.001% w/w.
some embodiments, water is present at an amount less than 0.0001% w/w. In some embodiments, water is present at an amount less than 0.000001% w/w. In some embodiments, water is present at an amount less than 0.0000001% w/w. In some embodiments, water is present in trace amounts. In some embodiments, water is absent. In other embodiments, the non-aqueous composition includes traces of water. In other embodiments, the non-aqueous composition includes no water.

III. METHODS

[0196] In another aspect, a method of forming a heavy crude oil emulsion is provided. The method includes contacting a heavy crude oil extracted from an oil reservoir with a co-solvent (e.g., an alkylamine or a compound of formula (I), (II), or (III)) and water at an emulsion forming temperature, thereby forming a high temperature heavy crude oil emulsion. The high temperature heavy crude oil emulsion is allowed to cool to a transport temperature, thereby forming a heavy crude oil emulsion (e.g. an emulsion composition provided herein including embodiments thereof). The co-solvent is an alkylamine or a compound having the formula:

\[
R^{1A} \overset{N-}{\可以选择} \left(\overset{H}{\text{CH}_2-\text{CH}_2-\text{O}} \right)^n (I). \quad \text{In formula (I) } R^{1A} \text{ and } R^{1B} \text{ are independently hydrogen, unsubstituted } \text{Ci-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C1-C6 alkylamine or}
\]

\[
\left(\overset{H}{\text{CH}_2-\text{CH}_2-\text{O}} \right)^m (II). \quad R^2 \text{ and } R^3 \text{ are independently hydrogen or unsubstituted C1-C2 alkyl. The symbol } n \text{ is an integer from 1 to 30, and } m \text{ is an integer from 1 to 30.}
\]

[0197] Where the co-solvent is a compound of formula (I) it may be any compound according to the embodiments provided herein (e.g., a compound of formula (I) wherein \(R^{1A} \) and \(R^{1B} \) are isopropyl, and \(R^2 \) is hydrogen, and the symbol \(n \) is 1 or 3). Thus, in some embodiments, \(R^{1A} \) and \(R^{1B} \) are independently unsubstituted \(\text{Ci-Ce alkyl} \). In other embodiments, the number of total carbon atoms within \(R^{1A} \) and \(R^{1B} \) combined does not exceed 8. In some embodiments, \(R^{1A} \) and \(R^{1B} \) are independently unsubstituted \(\text{C1-C4 alkyl} \). In some embodiments, \(R^{1A} \) and \(R^{1B} \) are unsubstituted isopropyl. In other embodiments, the symbol \(n \) is an integer from 1 to 10. In some
embodiments, the symbol \(n \) is an integer from 1 to 6. In some embodiments, \(R^2 \) is hydrogen and \(n \) is 1 to 3. In other embodiments, the compound has the formula:

\[
\text{R}^{1\text{A}}\text{N}\left(\text{CH}_2\text{CH}_2\text{O}\right)^{\text{R}^2}\left(\text{CH}_2\text{CH}_2\text{O}\right)_{\text{p}}\text{H}
\]

(II). In formula (II) \(R^2 \) is methyl or ethyl, \(o \) is an integer from 0 to 15, and \(p \) is an integer from 1 to 10. In some embodiments, \(R^2 \) is hydrogen, \(o \) is 0 and \(p \) is an integer from 1 to 6. In other embodiments, the compound has the formula:

\[
\text{R}^{1\text{A}}\text{N}\left(\text{CH}_2\text{CH}_2\text{O}\right)^{\text{R}^2}\left(\text{CH}_2\text{CH}_2\text{O}\right)^{\text{q}}\left(\text{CH}_3\text{CH}_2\text{O}\right)^{\text{r}}\text{H}
\]

(III). In formula (III) \(R^2 \) is ethyl, \(q \) is an integer from 0 to 10, \(r \) is an integer from 0 to 10, and \(s \) is an integer from 1 to 10.

[0198] Where the co-solvent is an alkylamine it may be any alkylamine provided herein including embodiments thereof (e.g., triethylenetetramine, dimethyaminopropylamine). Thus, in some embodiments, the alkylamine is diisopropylamine. In other embodiments, the alkylamine is an alkylpolyamine. In some embodiments, the alkylpolyamine is dimethyaminopropylamine, triethylenetetramine or diethylenetriamine.

[0199] As described above the co-solvent may be present at an amount sufficient to decrease the viscosity of the heavy crude oil. In some embodiments, the co-solvent is present in an amount sufficient to decrease the viscosity of the heavy crude oil at least 1,000-fold. In other embodiments, the co-solvent is present from about 0.01\% to about 5\% (w/v).

[0200] In some embodiments, the heavy crude oil is present from about 10\% to about 90\% (w/v). In some embodiments, the heavy crude oil is present from about 10\% to about 95\% (w/v). As described above the heavy crude oil may be present at about 10\%, 15\%, 20\%, 25\%, 30\%, 35\%, 40\%, 45\%, 50\%, 55\%, 60\%, 65\%, 70\%, 75\%, 80\%, 85\%,90\% or 95\% (w/v). In some embodiments, the heavy crude oil is present at about 20\% (w/v). In other embodiments, the heavy crude oil is present at about 40\% (w/v). In other embodiments, the heavy crude oil is present at about 60\% (w/v). In other embodiments, the heavy crude oil is present at about 80\% (w/v). A person of ordinary skill in the art will immediately recognize that the above referenced values refer to weight percent per volume of emulsion.

[0201] As described above the heavy crude oil emulsion provided herein may include an additional co-solvent. Thus, in embodiments, the method includes contacting the heavy crude oil
extracted from an oil reservoir with a compound of formula

\[R^3-L^1\left(\text{O-CH}_2\text{-CH}_i\right)\text{OH} \]

(IV). In formula (IV), \(L^1 \) is unsubstituted \(Ci-Ce \) alkylene, unsubstituted phenylene, unsubstituted cyclohexylene, unsubstituted cyclopentylene or methyl-substituted cyclopentylene. \(R^2 \) is independently hydrogen, methyl or ethyl. \(R^3 \) is independently hydrogen or

\[R^4 \] is independently hydrogen, methyl or ethyl, \(n \) is an integer from 0 to 30, and \(m \) is an integer from 0 to 30.

In embodiments, the method includes contacting the heavy crude oil extracted from an oil reservoir with a compound of formula

\[(R)^{1}_{z}\left[\text{O-CH}_2\text{-CH}_i\right]_{n}\text{OH} \]

(V). In formula (V) \(R^1 \) is independently hydrogen, unsubstituted \(Ci-Ce \) alkyl or \(R^5 \)-OH, \(R^2 \) is independently hydrogen or unsubstituted \(C_1-C_2 \) alkyl, \(R^5 \) is independently a bond or unsubstituted \(Ci-Ce \) alkyl, \(n \) is an integer from 1 to 30, \(o \) is an integer from 1 to 5 and \(z \) is an integer from 1 to 5.

In some embodiments, the method includes contacting the heavy crude oil extracted from an oil reservoir with a compound of formula

\[R^1\left[\text{O-CH}_2\text{-CH}_i\right]_{n}\text{OH} \]

(VA). In formula (VA) \(R^1 \) is independently hydrogen or unsubstituted \(Ci-Ce \) alkyl, \(R^2 \) is independently hydrogen or unsubstituted \(C_1-C_2 \) alkyl and \(n \) is an integer from 1 to 30.

In some embodiments, the method further includes contacting the heavy crude oil extracted from an oil reservoir with an alkali agent. As described above, an alkali agent as provided herein is a basic, ionic salt of an alkali metal (e.g. lithium, sodium, potassium) or alkaline earth metal element (e.g. magnesium, calcium, barium, radium). In some embodiments, the alkali agent is \(\text{NaOH}, \text{KOH}, \text{LiOH}, \text{Na}_2\text{C}_0 \), \(\text{NaHC}_0 \), \(\text{Na}-\text{metaborate}, \text{Na silicate}, \text{Na orthosilicate}, \text{or NH}_4\text{OH} \). The emulsion composition may include seawater, or fresh water from an aquifer, river or lake. In some embodiments, the emulsion composition includes hard brine or soft brine. In some further embodiments, the water is soft brine. In some further embodiments, the water is hard brine. Where the emulsion composition includes soft brine, the aqueous
composition may include an alkali agent. In soft brine the alkali agent provides for enhanced soap generation from the oils, lower surfactant adsorption to the solid material (e.g. rock) in the reservoir and increased solubility of viscosity enhancing water soluble polymers. In some embodiment, the alkali agent is present in the emulsion composition at a concentration from about 0.1% w/w to about 3% w/w. In some embodiment, the alkali agent is present in the emulsion composition at a concentration from about 0.01% w/w to about 3% w/w. A person of ordinary skill in the art will immediately recognize that the above referenced values refer to weight percent per weight of aqueous solution.

[0205] In some embodiments, the method further includes contacting the heavy crude oil extracted from an oil reservoir with a catalyst. For the methods provided herein any catalyst useful in the process of oil refining may be used. Examples of catalysts useful for the methods provided have been described above.

[0206] Using the methods provided herein a heavy crude oil emulsion according to the compositions provided herein may be formed. As described above the heavy crude oil composition is stable (e.g. maintains a viscosity lower than the viscosity of the heavy crude oil) at ambient temperature and for extended time periods (e.g. weeks, months). In some embodiments, the emulsion is stable at ambient temperature for at least a week. In some embodiments, the heavy crude oil emulsion is stable at the transport temperature for at least a week. In other embodiments, the heavy crude oil emulsion is stable at the transport temperature for at least a month.

[0207] As described above the emulsion provided herein is formed at an emulsion forming temperature. The emulsion forming temperature may be equivalent to the temperature of the heavy crude oil in the reservoir. In some embodiments, the emulsion forming temperature is at least 60°C. In some embodiments, the emulsion forming temperature is at least 70°C. In other embodiments, the emulsion forming temperature is about 100°C. The heavy crude oil emulsion formed at the emulsion forming temperature is referred to herein as high temperature heavy crude oil emulsion. The high temperature heavy crude oil emulsion has a viscosity which is lower than the heavy crude oil viscosity and may be cooled to a transport temperature (e.g. ambient temperature). In some embodiments, the transport temperature is less than 60°C. In other embodiments, the transport temperature is about 25°C. Surprisingly, after the high temperature heavy crude oil emulsion is cooled to a transport temperature, the viscosity of the heavy crude oil emulsion remains lower than the viscosity of the heavy crude oil. In some embodiments, the heavy crude oil has a viscosity of at least 100,000 cP. In other embodiments,
the heavy crude oil has a viscosity of at least 200,000 cP. In some embodiments, the heavy crude oil has a viscosity of at least 300,000 cP. In some embodiments, the heavy crude oil has a viscosity of at least 1,000,000 cP. In some embodiments, the extracted heavy crude oil has a viscosity of at least 100,000 cP at ambient temperature. In other embodiments, the extracted heavy crude oil has a viscosity of at least 200,000 cP at ambient temperature. In some embodiments, the extracted heavy crude oil has a viscosity of at least 300,000 cP at ambient temperature. In some embodiments, the extracted heavy crude oil has a viscosity of at least 1,000,000 cP at ambient temperature. The viscosity of the heavy crude oil emulsion may be 1,000 times lower than the viscosity of the heavy crude oil. In some embodiments, the viscosity of the heavy crude oil emulsion is 10,000 times lower than the viscosity of the heavy crude oil. In other embodiments, the viscosity of the heavy crude oil emulsion is 100,000 times lower than the viscosity of the heavy crude oil.

[0208] In another aspect, a method of optimizing a heavy crude oil emulsion is provided. The method includes contacting a plurality of heavy crude oil samples extracted from an oil reservoir with an amount of a co-solvent, an amount of a salt and an amount of water at an emulsion forming temperature, wherein the amount of a co-solvent, the amount of a salt and the amount of water is different for each of the plurality of heavy crude oil samples, thereby forming a plurality of different high temperature heavy crude oil emulsion samples. The plurality of different high temperature heavy crude oil emulsion samples is allowed to cool to an ambient temperature, thereby forming a plurality of different low temperature heavy crude oil emulsion samples. A low temperature heavy crude oil emulsion sample is identified amongst the plurality of different low temperature heavy crude oil emulsion samples having a viscosity at least 100 times lower than the viscosity of the heavy crude oil, thereby optimizing a heavy crude oil emulsion. The co-solvent is an alkylamine or a compound having the formula:

\[
\begin{array}{c}
\text{R}^{1A} \text{N} \left(\text{CH}_2 - \text{CH} - \text{O} \right)^{\text{m}} \left(\text{R}^2 \right)^{\text{n}} \\
\text{R}^{1B} \text{N} \left(\text{CH}_2 - \text{CH} - \text{O} \right)^{\text{m}} \left(\text{R}^3 \right)^{\text{n}}
\end{array}
\]

(1). In formula (1) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(\text{Ci-Cs} \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(\text{C1-C6} \) alkylamine or

\[
\left(\text{CH}_2 - \text{CH} - \text{O} \right)^{\text{m}} \left(\text{R}^2 \right)^{\text{n}} \left(\text{R}^3 \right)^{\text{n}} \]

. \(R^2 \) and \(R^3 \) are independently hydrogen or unsubstituted \(\text{C1-C2} \) alkyl. The symbol \(n \) is an integer from 1 to 30, and \(m \) is an integer from 1 to 30. In some embodiments, the
amount of a co-solvent is from about 0.01% to about 5% (w/v). In other embodiments, the amount of a basic agent is from about 0.01% to about 3% (w/v). In some embodiments, the amount of water is from about 1% to about 90% (w/v). In some embodiments, the heavy crude oil emulsion is stable at a shear rate from about 0.01 to about 100,000 reciprocal seconds.

[0209] In another aspect, a method of transporting a heavy crude oil is provided. The method includes extracting a heavy crude oil from an oil reservoir, thereby forming an extracted heavy crude oil. The extracted heavy crude oil is contacted with a co-solvent and water at an emulsion forming temperature, thereby forming a high temperature heavy crude oil emulsion. The high temperature heavy crude oil emulsion is allowed to cool to a transport temperature, thereby forming a heavy crude oil emulsion. The heavy crude oil emulsion is transported from a first location to a second location, thereby transporting the heavy crude oil. The co-solvent is an alkylamine or a compound having the formula:

\[\left(\frac{CH_2=CH-O}{R^2} \right)^m \text{H} \]

(1). In formula (1) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted C1-C6 alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C1-C6 alkylamine or

\[\left(\frac{CH_2=CH-O}{R^3} \right)^m \text{H} \]

(1), \(R^2 \) and \(R^3 \) are independently hydrogen or unsubstituted C1-C2 alkyl. The symbol \(n \) is an integer from 1 to 30 and \(m \) is an integer from 1 to 30. In another embodiment, the method further includes contacting the extracted heavy crude oil with a catalyst. In some embodiments, the transporting of step (iv) is performed in a vessel. In other embodiments, the vessel is a pipeline. In some embodiments, the vessel forms part of a transportation vehicle. In other embodiments, the method further includes after the transporting of step (iv) separating the heavy crude oil from the co-solvent and the water, thereby forming a recovered heavy crude oil.

[0210] In another aspect, a method of forming a heavy crude oil emulsion in a production well is provided. The method includes contacting an extracted heavy crude oil in a production well with a co-solvent (e.g., a compound of formula (I), (II), (III) or an alkylamine) and water, thereby forming a heavy crude oil emulsion in the production well. The co-solvent is an alkylamine or a compound having the formula:

\[\left(\frac{CH_2=CH-O}{R^2} \right)^n \text{H} \]

(1), In formula (1) \(R^{1A} \)
and R^1 are independently hydrogen, unsubstituted Ci-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, Ci-Ce alkyamine or

$\begin{align*}
\text{H} \\
\text{H}
\end{align*}$

R^3. R^2 and R^3 are independently hydrogen or unsubstituted C$_1$-C$_2$ alkyl, n is an integer from 1 to 30 and m is an integer from 1 to 30.

5 [0211] In embodiments, the alkyamine is diisopropylamine. In other embodiments, the alkyamine is an alkylpolyamine. In some embodiments, the alkylpolyamine is dimethylaminopropylamine, triethylenetetramine or diethylenetriamine.

[0212] In some embodiments, the extracted heavy crude oil is present from about 10% to about 95% (w/v). The extracted heavy crude oil may be present at about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% (w/v). In some embodiments, the extracted heavy crude oil is present at about 20% (w/v). In other embodiments, the extracted heavy crude oil is present at about 40% (w/v). In other embodiments, the extracted heavy crude oil is present at about 60% (w/v). In other embodiments, the extracted heavy crude oil is present at about 80% (w/v). A person of ordinary skill in the art will immediately recognize that the above referenced values refer to weight percent per volume of emulsion. The emulsion provided herein is formed at an emulsion forming temperature. The emulsion forming temperature may be equivalent to the temperature of the heavy crude oil in the reservoir. In some embodiments, the emulsion forming temperature is at least 60°C. In some embodiments, the emulsion forming temperature is at least 70°C. In other embodiments, the emulsion forming temperature is about 100°C.

[0213] In some embodiments, the heavy crude oil emulsion is stable at the transport temperature for at least an hour. In some embodiments, the heavy crude oil emulsion is stable at the transport temperature for at least a day. In some embodiments, the heavy crude oil emulsion is stable at the transport temperature for at least a week. In other embodiments, the heavy crude oil emulsion is stable at the transport temperature for at least a month.

[0214] In some embodiments, the extracted heavy crude oil has a viscosity of at least 100,000 cP. In other embodiments, the extracted heavy crude oil has a viscosity of at least 200,000 cP. In some embodiments, the extracted heavy crude oil has a viscosity of at least 300,000 cP. In some embodiments, the extracted heavy crude oil has a viscosity of at least 1,000,000 cP. In some embodiments, the extracted heavy crude oil has a viscosity of at least 100,000 cP at
ambient temperature. In other embodiments, the extracted heavy crude oil has a viscosity of at least 200,000 cP at ambient temperature. In some embodiments, the extracted heavy crude oil has a viscosity of at least 300,000 cP at ambient temperature. In some embodiments, the extracted heavy crude oil has a viscosity of at least 1,000,000 cP at ambient temperature. The viscosity of the heavy crude oil emulsion may be 1,000 times lower than the viscosity of the extracted heavy crude oil. In some embodiments, the viscosity of the heavy crude oil emulsion is 10,000 times lower than the viscosity of the extracted heavy crude oil. In other embodiments, the viscosity of the heavy crude oil emulsion is 100,000 times lower than the viscosity of the extracted heavy crude oil.

The heavy crude oil emulsion provided herein may be formed in a production well by contacting the extracted heavy crude oil with an additional co-solvent. Thus, in embodiments, the method includes contacting the extracted heavy crude oil with a compound of formula

$$R^3-L^1 \left(\frac{O-CH_2-CH}{R^2} \right)_n OH$$

(IV). In formula (IV), \(L^1\) is unsubstituted C1-C6 alkylene, unsubstituted phenylene, unsubstituted cyclohexylene, unsubstituted cyclopentylene or methyl-substituted cyclopentylene. \(R^2\) is independently hydrogen, methyl or ethyl. \(R^3\) is independently hydrogen or unsubstituted C1-C2 alkyl. \(R^4\) is independently hydrogen, methyl or ethyl, \(n\) is an integer from 0 to 30, and \(m\) is an integer from 0 to 30.

In embodiments, the method includes contacting the extracted heavy crude oil with a compound of formula

$$\left(\frac{R^1}{\text{phenylene}} \right)_{2z} \left(\frac{O-CH_2-CH}{R^2} \right)_n OH$$

(V). In formula (V) \(R^1\) is independently hydrogen, unsubstituted C1-C6 alkyl or \(R^5\)-OH, \(R^2\) is independently hydrogen or unsubstituted C1-C2 alkyl, \(R^5\) is independently a bond or unsubstituted C1-C6 alkyl, \(n\) is an integer from 1 to 30, \(0\) is an integer from 1 to 5 and \(z\) is an integer from 1 to 5.

In some embodiments, the method includes contacting the extracted heavy crude oil with a compound of formula

$$R^1-L^1 \left(\frac{O-CH_2-CH}{R^2} \right)_n OH$$

(VA). In formula (VA) \(R^1\) is
independently hydrogen or unsubstituted \textit{Ci-Ce} alkyl, \(R^2 \) is independently hydrogen or unsubstituted C1-C2 alkyl and \(n \) is an integer from 1 to 30.

[0218] In embodiments, the extracted heavy crude oil is contacted with a surfactant. In embodiments, the extracted heavy crude oil is contacted with a catalyst. In embodiments, the co-solvent is a compound of formula (I) (II), (III) or an alkylamine. In embodiments, the co-solvent is a co-solvent blend. In embodiments, the co-solvent is present at a concentration from about 0.01\% w/w to about 5\% w/w. A person of ordinary skill in the art will immediately recognize that the above referenced values for the concentration of co-solvent refer to weight percent per volume of water and oil combined (i.e. emulsion).

[0219] In another aspect, a method of transporting an extracted heavy crude oil from a production well is provided. The method includes contacting an extracted heavy crude oil in a production well with a co-solvent, and water at an emulsion forming temperature, thereby forming a heavy crude oil emulsion in a production well. The heavy crude oil emulsion is transported from the production well to the surface, thereby transporting the extracted heavy crude oil from the production well. The co-solvent is an alkylamine or a compound having the formula:

\[
\begin{align*}
&\text{R}^{1A} \text{N}\left(\text{CH}_2\text{CH}_2\text{O}\right)_{\text{n}} \text{H} \\
&\text{R}^{1B} \text{N}\left(\text{CH}_2\text{CH}_2\text{O}\right)_{\text{m}} \text{H}
\end{align*}
\]

(I), In formula (I) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(\text{Ci-Cs} \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \textit{Ci-Ce} alkylamine or \(\text{R}^{2} \), \(\text{R}^{3} \), and \(\text{R}^{4} \) are independently hydrogen or unsubstituted C1-C2 alkyl, \(n \) is an integer from 1 to 30 and \(m \) is an integer from 1 to 30. In embodiments, the method includes contacting the extracted heavy crude oil with an additional co-solvent. In embodiments, the additional co-solvent is a compound of formula ((IV), (IVA), (IVB), (IVC), (IVD), (V), (VA), or (VB))). In embodiments, the method includes contacting the extracted heavy crude oil with a co-solvent blend. In embodiments, the extracted heavy crude oil is contacted with a surfactant. In embodiments, the transporting of step (ii) includes moving the heavy crude oil transport emulsion with a mechanical pump. In embodiments, the mechanical pump is an electrical submersible pump.

[0220] In another aspect, a method of forming a heavy crude oil emulsion is provided. The method includes contacting a heavy crude oil extracted from an oil reservoir with an oil-immiscible compound and an amphiphilic co-solvent at an emulsion forming temperature,
thereby forming a high temperature heavy crude oil emulsion. The high temperature heavy crude oil emulsion is allowed to cool to a transport temperature, thereby forming a heavy crude oil emulsion. The amphiphilic co-solvent is an alkyamine (e.g., diisopropylamine, alkylpolyamine, dimethylaminopropylamine, triethylenetetramine or diethylenetriamine) or a compound having the formula:

\[
R^1A \underbrace{\left(\begin{array}{c}
CH_2 \cdots CH \cdots O \cdots H \\
R^2
\end{array}\right)}_{n} \quad \text{or}
\]

\[
R^1B \underbrace{\left(\begin{array}{c}
CH_2 \cdots CH \cdots O \\
R^3
\end{array}\right)}_{m}
\]

In formula (I) \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(C_1-C_6 \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(C_1-C_6 \) alkylamine or \(C_1-C_6 \) arylamine, respectively. \(R^2 \) and \(R^3 \) are independently hydrogen or unsubstituted \(C_1-C_2 \) alkyl, \(n \) is an integer from 1 to 30 and \(m \) is an integer from 1 to 30. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, glycerol, propylene glycol, pentaerythritol, sorbitol or methanol. In embodiments, the oil-immiscible compound is ethylene glycol. In embodiments, the oil-immiscible compound is glycerol. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, sorbitol, ethanol, isopropanol, secondary butanol or methanol. In embodiments, the oil-immiscible compound is ethylene glycol. In embodiments, the oil-immiscible compound is methanol. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, dimethyl ether, pentaerythritol sorbitol, ethanol, isopropanol, secondary butanol or methanol.

[0221] In embodiments, the amount of water in the heavy crude oil emulsion is equal to the amount of water in the extracted heavy crude oil. In embodiments, the heavy crude oil emulsion does not include water. In embodiments, the heavy crude oil emulsion does not include added water. In embodiments, the heavy crude oil emulsion is anhydrous. In embodiments, the extracted heavy crude oil emulsion includes heavy crude oil water. In embodiments, the amount of water in the heavy crude oil emulsion is equal to the amount of the heavy crude oil water. In embodiments, the heavy crude oil emulsion includes traces of water. Where the heavy crude oil emulsion includes traces of water, the heavy crude oil emulsion includes less than about 0.01%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 20%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 15%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 10%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about
5%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 4%(w/v)
water. In embodiments, the heavy crude oil emulsion includes less than about 3%(w/v) water.
In embodiments, the heavy crude oil emulsion includes less than about 2%(w/v) water. In
embodiments, the heavy crude oil emulsion includes less than about 1%(w/v) water. In
5 embodiments, the heavy crude oil emulsion includes less than about 0.5%(w/v) water. In
embodiments, the heavy crude oil emulsion includes less than about 0.4%(w/v) water. In
embodiments, the heavy crude oil emulsion includes less than about 0.3%(w/v) water. In
embodiments, the heavy crude oil emulsion includes less than about 0.2%(w/v) water. In
embodiments, the heavy crude oil emulsion includes less than about 0.1%(w/v) water. In
10 embodiments, the heavy crude oil emulsion includes less than about 0.01%(w/v) water. In
embodiments, the heavy crude oil emulsion includes less than about 20°/s(w/v) water. In
embodiments, the heavy crude oil emulsion includes less than about 15°/s(w/v) water. In
embodiments, the heavy crude oil emulsion includes less than about 10°/s(w/v) water. In
embodiments, the amount of the heavy crude oil water is less than about 5%(w/v). In
15 embodiments, the amount of the heavy crude oil water is less than about 2%(w/v). In
embodiments, the amount of the heavy crude oil water is less than about 1%(w/v). In
embodiments, the amount of water in the heavy crude oil emulsion is equal to the amount of the
heavy crude oil water. A person of ordinary skill in the art will immediately recognize that the
above referenced values refer to weight percent per volume of emulsion. In embodiments, the
extracted heavy crude oil is contacted with a surfactant.

[0222] In another aspect, a method of forming a heavy crude oil emulsion in a production well
is provided. The method includes contacting an extracted heavy crude oil in a production well
with an oil-immiscible compound and an amphiphilic co-solvent, thereby forming a heavy crude
oil emulsion in a production well. The amphiphilic co-solvent is an alkylamine (e.g.,
25 diisopropylamine, alkylpolyamine, dimethyldionopropylamine, triethylenetetramine or
\[
\begin{align*}
\text{diethylenetriamine} \div n \\
\text{formula } (I), \text{ In formula } (I) R^{1A} & \text{ and } R^{1B} \text{ are independently hydrogen, unsubstituted } C_{1-3} \text{ alkyl, unsubstituted cycloalkyl,} \\
\text{unsaturated heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, } C_{1-6} \text{ alkylamine or} \\
\text{R}^2 & \text{ and } R^3 \text{ are independently hydrogen or unsubstituted } C_{1-2} \text{ alkyl, } n \text{ is an}
\end{align*}
\]
integer from 1 to 30 and \(m \) is an integer from 1 to 30. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, glycerol, propylene glycol, pentaerythritol, sorbitol or methanol. In embodiments, the oil-immiscible compound is ethylene glycol. In embodiments, the oil-immiscible compound is glycerol. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, sorbitol, ethanol, isopropanol, secondary butanol or methanol. In embodiments, the oil-immiscible compound is ethylene glycol. In embodiments, the oil-immiscible compound is methanol. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, dimethyl ether, pentaerythritol sorbitol, ethanol, isopropanol, secondary butanol or methanol.

[0223] In embodiments, the amount of water in the heavy crude oil emulsion is equal to the amount of water in the extracted heavy crude oil. In embodiments, the heavy crude oil emulsion does not include water. In embodiments, the heavy crude oil emulsion does not include added water. In embodiments, the heavy crude oil emulsion is anhydrous. In embodiments, the extracted heavy crude oil emulsion includes heavy crude oil water. In embodiments, the amount of water in the heavy crude oil emulsion is equal to the amount of the heavy crude oil water. In embodiments, the heavy crude oil emulsion includes traces of water. Where the heavy crude oil emulsion includes traces of water, the heavy crude oil emulsion includes less than about 0.01%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 20%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 15%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 10%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 5%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 4%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 3%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 2%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 1%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.5%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.4%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.3%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.2%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.1%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.01%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 20%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 15%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 10%(w/v) water. In
embodiments, the amount of the heavy crude oil water is less than about 5%(w/v). In embodiments, the amount of the heavy crude oil water is less than about 2%(w/v). In embodiments, the amount of the heavy crude oil water is less than about 1%(w/v). In embodiments, the amount of water in the heavy crude oil emulsion is equal to the amount of the heavy crude oil water. A person of ordinary skill in the art will immediately recognize that the above referenced values refer to weight percent per volume of emulsion. In embodiments, the extracted heavy crude oil is contacted with a surfactant.

[0224] In another aspect, a method of transporting an extracted heavy crude oil from a production well is provided. The method includes contacting an extracted heavy crude oil in a production well with an oil-immiscible compound and an amphiphilic co-solvent at an emulsion forming temperature, thereby forming a heavy crude oil emulsion in a production well. The heavy crude oil emulsion is transported from the production well to the surface, thereby transporting the extracted heavy crude oil from the production well. The amphiphilic co-solvent is an alkylamine (e.g., diisopropylamine, alkylpolyamine, dimethyldiethylenetriamine or diethylenetriamine) or a compound having the formula:

\[
R^{1A}N\left(\frac{CH_2-CH-O}{R^2}\right)^n-H
\]

(1), In formula (1) \(R^{1A}\) and \(R^{1B}\) are independently hydrogen, unsubstituted C1-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C1-C6 alkylamine or are independently hydrogen or unsubstituted C1-C2 alkyl, \(n\) is an integer from 1 to 30 and \(m\) is an integer from 1 to 30. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, glycerol, propylene glycol, pentaerythritol, sorbitol or methanol. In embodiments, the oil-immiscible compound is ethylene glycol. In embodiments, the oil-immiscible compound is glycerol. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, sorbitol, ethanol, isopropanol, secondary butanol or methanol. In embodiments, the oil-immiscible compound is ethylene glycol. In embodiments, the oil immiscible compound is methanol. In embodiments, the oil immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, dimethyl ether, pentaerythritol sorbitol, ethanol, isopropanol, secondary butanol or methanol.

79
In embodiments, the amount of water in the heavy crude oil emulsion is equal to the amount of water in the extracted heavy crude oil. In embodiments, the heavy crude oil emulsion does not include water. In embodiments, the heavy crude oil emulsion does not include added water. In embodiments, the heavy crude oil emulsion is anhydrous. In embodiments, the extracted heavy crude oil emulsion includes heavy crude oil water. In embodiments, the amount of water in the heavy crude oil emulsion is equal to the amount of the heavy crude oil water. In embodiments, the heavy crude oil emulsion includes traces of water. Where the heavy crude oil emulsion includes traces of water, the heavy crude oil emulsion includes less than about 0.01%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 20%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 15%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 10%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 5%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 4%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 3%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 2%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 1%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.5%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.4%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.3%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.2%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.1%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 0.01%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 20%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 15%(w/v) water. In embodiments, the heavy crude oil emulsion includes less than about 10%(w/v) water. In embodiments, the amount of the heavy crude oil water is less than about 5%(w/v). In embodiments, the amount of the heavy crude oil water is less than about 2%(w/v). In embodiments, the amount of the heavy crude oil water is less than about 1%(w/v). In embodiments, amount of water in the heavy crude oil emulsion is equal to the amount of the heavy crude oil water. A person of ordinary skill in the art will immediately recognize that the above referenced values refer to weight percent per volume of emulsion. In embodiments, the extracted heavy crude oil is contacted with a surfactant.
IV. EXAMPLES

[0226] Applicants have discovered that certain amine and amine alkoxylate co-solvents (e.g., alkylamine or a compound of formula (I), (II), or (III)) are superior to the use of alkali only or surfactant only or diluent(solvent) only. Such co-solvents promote the formation of low-viscosity microemulsions as well as low viscosity macroemulsions. Furthermore, such co-solvent physically disrupts the asphaltenes in heavy crude oils by interacting with the resins that stabilize the asphaltenes. The amine and amine alkoxylate co-solvents may directly interact with asphaltenes and cause disruptions of intermolecular aggregations. Remarkably low concentrations of certain tailored co-solvents are effective in this regard. Depending on the crude oil properties, it is sometimes necessary to first moderately increase the temperature of the mixture of co-solvent, brine and heavy oil to form the emulsions, but they do not need to be kept hot since the viscosity remains low when the temperature is lowered. In many cases, thermal methods such as steam are used to extract heavy oil from the reservoir so the oil will already be hot when it reaches the surface and thus no heating will be necessary.

[0227] Phase Behavior Procedures

[0228] Phase Behavior Screening: Phase behavior studies have been used to characterize chemicals for EOR. There are many benefits in using phase behavior as a screening method. Phase Behavior studies are used to determine the effect of electrolytes, co-solvents, alkalis, surfactants, polymers, temperature, pressure and other variables on: (1) IFT reduction; (2) oil solubilization ratios, (3) microemulsion densities; (4) microemulsion viscosities; (5) coalescence times; (6) interfacial viscosity (7) optimal properties for recovering oil from cores and reservoirs.

[0229] Thermodynamically stable phases can form with oil, water and non-surfactant aqueous mixtures. In situ generated soaps form micellar structures at concentrations at or above the critical micelle concentration (CMC). The emulsion coalesces into a separate phase at the oil-water interface and is referred to as a microemulsion. A microemulsion is a surfactant-rich or soap-rich distinct phase consisting of in situ generated soaps, oil, water and co-solvent, alkali agent and other components. This phase is thermodynamically stable in the sense that it will return to the same phase volume at a given temperature. Some workers in the past have added additional requirements, but for the purposes of this engineering study, the only requirement will be that the microemulsion is a thermodynamically stable phase.

[0230] The phase transition is examined by keeping all variables fixed except for the scanning variable. The scan variable is changed over a series of pipettes and may include, but is not
limited to, salinity, temperature, chemical (co-solvent, alcohol, electrolyte), oil, which is
sometimes characterized by its equivalent alkane carbon number (EACN), and co-solvent
structure, which is sometimes characterized by its hydrophilic-lipophilic balance (HLB). The
phase transition was first characterized by Winsor (1954) into three regions: Type I - excess
oleic phase, Type III - aqueous, microemulsion and oleic phases, and the Type II - excess
aqueous phase. The phase transition boundaries and some common terminology are described as
follows: Type I to III - lower critical salinity, Type III to II - upper critical salinity, oil
solubilization ratio (Vo/Vs), water solubilization ratio (Vw/Vs), the solubilization value where
the oil and water solubilization ratios are equal is called the Optimum Solubilization Ratio (σ*),
and the electrolyte concentration where the optimum solubilization ratio occurs is referred to as
the Optimal Salinity (S*). Since no surfactant is added, the only surfactant present is the in-situ
generated soap. For the purpose of calculating a solubilization ratio, one can assume a value for
soap level using TAN(total acid number) and an approximate molecular weight for the soap.

[0231] Determining Interfacial Tension

[0232] Efficient use of time and lab resources can lead to valuable results when conducting
phase behavior scans. A correlation between oil and water solubilization ratios and interfacial
tension was suggested by Healy and Reed (1976) and a theoretical relationship was later derived
by Chun Huh (1979). Lowest oil-water IFT occurs at optimum solubilization as shown by the
Chun Huh theory. This is equated to an interfacial tension through the Chun Huh equation,
where IFT varies with the inverse square of the solubilization ratio:

\[\gamma = \frac{C}{\sigma^2} \quad (1) \]

[0233] For most crude oils and microemulsions, C=0.3 is a good approximation. Therefore, a
quick and convenient way to estimate IFT is to measure phase behavior and use the Chun-Huh
equation to calculate IFT. The IFT between microemulsions and water and/or oil can be very
difficult and time consuming to measure and is subject to larger errors, so using the phase
behavior approach to screen hundreds of combinations of co-solvents, electrolytes, oil, and so
forth is not only simpler and faster, but avoids the measurement problems and errors associated
with measuring IFT especially of combinations that show complex behavior (gels and so forth)
and will be screened out anyway. Once a good formulation has been identified, then it is still a good idea to measure IFT.

[0234] Equipment

[0235] Phase behavior experiments are created with the following materials and equipment.

5 Mass Balance: Mass balances are used to measure chemicals for mixtures and determine initial saturation values of cores.

[0236] Water Deionizer: Deionized (DI) water is prepared for use with all the experimental solutions using a Nanopure™ filter system. This filter uses a recirculation pump and monitors the water resistivity to indicate when the ions have been removed. Water is passed through a 0.45 micron filter to eliminate undesired particles and microorganisms prior to use.

[0237] Borosilicate Pipettes: Standard 5 mL borosilicate pipettes with 0.1 mL markings are used to create phase behavior scans as well as run dilution experiments with aqueous solutions. Ends are sealed using a propane and oxygen flame.

[0238] Pipette Repeater: An Eppendorf Repeater Plus® instrument is used for most of the pipetting. This is a handheld dispenser calibrated to deliver between 25 microliter and 1 ml increments. Disposable tips are used to avoid contamination between stocks and allow for ease of operation and consistency.

[0239] Propane-oxygen Torch: A mixture of propane and oxygen gas is directed through a Bernz-O-Matic flame nozzle to create a hot flame about ½ inch long. This torch is used to flame-seal the glass pipettes used in phase behavior experiments.

[0240] Convection Ovens: Several convection ovens are used to incubate the phase behaviors and core flood experiments at the reservoir temperatures. The phase behavior pipettes are primarily kept in Blue M and Memmert ovens that are monitored with mercury thermometers and oven temperature gauges to ensure temperature fluctuations are kept at a minimal between recordings. A large custom built flow oven was used to house most of the core flood experiments and enabled fluid injection and collection to be done at reservoir temperature.

[0241] pH Meter: An ORION research model 701/digital ion analyzer with a pH electrode is used to measure the pH of most aqueous samples to obtain more accurate readings. This is calibrated with 4.0, 7.0 and 10.0 pH solutions. For rough measurements of pH, indicator papers are used with several drops of the sampled fluid.
Phase Behavior Calculations

The oil and water solubilization ratios are calculated from interface measurements taken from phase behavior pipettes. These interfaces are recorded over time as the mixtures approached equilibrium and the volume of any macroemulsions that initially formed decreased or disappeared.

Phase Behavior Methodology

The methods for creating, measuring and recording observations are described in this section. Scans are made using a variety of electrolyte mixtures described below. Oil is added to most aqueous non-surfactant solutions to see if a microemulsion formed, how long it took to form and equilibrate if it formed, what type of microemulsion formed and some of its properties such as viscosity. However, the behavior of aqueous mixtures without oil added is also important and is also done in some cases to determine if the aqueous solution is clear and stable over time, becomes cloudy or separated into more than one phase.

Preparation of samples. Phase behavior samples are made by first preparing non-surfactant aqueous stock solutions and combining them with brine stock solutions in order to observe the behavior of the mixtures over a range of salinities.

Solution Preparation. Non-surfactant aqueous stock solutions are based on active weight-percent co-solvent. The masses of co-solvent, alkali agent and de-ionized water (DI) are measured out on a balance and mixed in glass jars using magnetic stir bars. The order of addition is recorded on a mixing sheet along with actual masses added and the pH of the final solution. Brine solutions are created at the necessary weight percent concentrations for making the scans.

Co-solvent Stock. The chemicals being tested are first mixed in a concentrated stock solution that usually consisted of co-solvent, alkali agent and/or polymer along with de-ionized water. The quantity of chemical added is calculated based on activity and measured by weight percent of total solution. Initial experiments are at about 1-3% co-solvent so that the volume of the middle microemulsion phase would be large enough for accurate measurements assuming a solubilization ratio of at least 10 at optimum salinity.

Polymer Stock. Often these stocks were quite viscous and made pipetting difficult so they are diluted with de-ionized water accordingly to improve ease of handling. Mixtures with polymer are made only for those co-solvent formulations that showed good behavior and merited
additional study for possible testing in core floods. Consequently, scans including polymer are limited since they are done only as a final evaluation of compatibility with the co-solvent.

[0250] Pipetting Procedure. Phase behavior components are added volumetrically into 5 ml pipettes using an Eppendorf Repeater Plus or similar pipetting instrument. Co-solvent, alkali agent and brine stocks are mixed with DI water into labeled pipettes and brought to temperature before agitation. Almost all of the phase behavior experiments are initially created with a water oil ratio (WOR) of 1:1, which involves mixing 2 ml of the aqueous phase with 2 ml of the evaluated crude oil or hydrocarbon, and different WOR experiments are mixed accordingly. The typical phase behavior scan consisted of 10-20 pipettes, each pipette being recognized as a data point in the series.

[0251] Order of Addition. Consideration must be given to the addition of the components since the concentrations are often several folds greater than the final concentration. Therefore, an order is established to prevent any adverse effects resulting from co-solvent, alkali agent or polymer coming into direct contact with the concentrated electrolytes. The desired sample compositions are made by combining the stocks in the following order: (1) Electrolyte stock(s); (2) De-ionized water; (3) co-solvent stock; (4) alkali agent stock; (5) Polymer stock; and (6) Crude oil or hydrocarbon.

[0252] Initial Observations. Once the components are added to the pipettes, sufficient time is allotted to allow all the fluid to drain down the sides. Then aqueous fluid levels are recorded before the addition of oil. These measurements are marked on record sheets. Levels and interfaces are recorded on these documents with comments over several days and additional sheets are printed as necessary.

[0253] Sealing and Mixing. The pipettes are blanketed with argon gas to prevent the ignition of any volatile gas present by the flame sealing procedure. The tubes are then sealed with the propane-oxygen torch to prevent loss of additional volatiles when placed in the oven. Pipettes are arranged on the racks to coincide with the change in the scan variable. Once the phase behavior scan is given sufficient time to reach reservoir temperature (15-30 minutes), the pipettes are inverted several times to provide adequate mixing. Tubes are observed for low tension upon mixing by looking at droplet size and how uniform the mixture appeared. Then the solutions are allowed to equilibrate over time and interface levels are recorded to determine equilibration time and co-solvent/alkali agent performance.
Measurements and Observations. Phase behavior experiments are allowed to equilibrate in an oven that is set to the reservoir temperature for the crude oil being tested. The fluid levels in the pipettes are recorded periodically and the trend in the phase behavior observed over time. Equilibrium behavior is assumed when fluid levels ceased to change within the margin of error for reading the samples.

Fluid Interfaces. The fluid interfaces are the most crucial element of phase behavior experiments. From them, the phase volumes are determined and the solubilization ratios are calculated. The top and bottom interfaces are recorded as the scan transitioned from an oil-in-water microemulsion to a water-in-oil microemulsion. Initial readings are taken one day after initial agitation and sometimes within hours of agitation if coalescence appeared to happen rapidly. Measurements are taken thereafter at increasing time intervals (for example, one day, four days, one week, two weeks, one month and so on) until equilibrium is reached or the experiment is deemed unessential or uninteresting for continued observation.

Emulsion Preparation Procedure

The stock solutions listed below are prepared as follows:

a. Alkali Solution (optional)

b. Brine solution

c. Co-solvent Solution

Pipet the required volume of the stock solutions to get a solution with specified alkali, brine, and co-solvent concentrations. Pipet the required volume of the aqueous solution into a 50 ml glass centrifuge tube. Pipet the required volume of the oil into the glass centrifuge tube. Cap the centrifuge tube and put the samples into a 100°C oven. After the samples are at the oven temperature, mix (hand shake) the samples well every 20 minutes for 2 hour. The samples are mixed approx. 15-30 seconds. Take the samples out of the oven and let them reach room temperature (~25°C).

Viscosity Measurement Procedure

Briefly mix (hand shake) the emulsion sample and pour it into a 25 ml column. Using mineral oil and Teledyne ISCO 500D Series Syringe Pump, inject the mineral oil into the 25 ml column and displace the emulsion into the capillary tube at constant volumetric flow rates. The mixing between the mineral oil and emulsion seemed to be minimal. When a flow rate is inputted into the pump, check the pressure drop across the capillary tube every 30 seconds using...
a transducer that is connected to the LabView program. Wait until steady state pressure drop is observed and recorded the pressure drop. Change the flow rate and repeat to measure a range of shear rates by varying the flow rate.

[0261] **Experimental Procedure for Emulsion Breaking**

[0262] Acid such as sulfuric acid, hydrochloric acid is administered to the heavy oil emulsion to neutralize the alkali initially added to create the emulsion and to return the pH from neutral to acidic. The sample is shaken and allowed sufficient time to convert the soap produced from the heavy oil back to the acidic components of the oil. The temperature of the sample may be increased to improve the kinetics of the reaction. The sample is briefly centrifuged to separate the demulsified heavy oil from the aqueous solution (water, salt, co-solvent). In some embodiments, methods known in the art for breaking a heavy crude oil emulsion are used. Useful methods of breaking an emulsion are for example disclosed in Verzaro et al. (2002; SPE/Petroleum Society of CIM/CHOA 78959, page 1-5).

[0263] **Upgrading of Heavy Oil during transportation (Formation of Reformate)**

[0264] **Nanoparticie Catalyst Upgrading in Pipeline**

[0265] Catalytic nanoparticles have larger surface area per mass for reactions to occur, thus requiring smaller quantity. The property of nanoparticles to prefer to be in the interface of oil and water is advantageous and necessary for the heavy oil upgrading because of the emulsion transportation method claimed. The catalytic nanoparticles are incorporated into the emulsion along with water, alkaline, and co-solvent and transported through pipeline, ending with the separation of the catalyst for possible reuse. Several examples of catalysts and different reactions for upgrading oil (forming reformates) are listed below.

[0266] **Hydrogenation and hydrogenolysis reactions via H₂ transfer**

Catalysts used are platinum, palladium, rhodium or nickel.

[0267] **Dehydrogenation and metathesis reactions via loss of H₂ from oil molecules**

Catalysts used are chromium oxide, Pt/Al2O3, or zinc titanium oxide.

[0268] **Hydrocracking reaction**

Breaking of carbon-carbon bond to create smaller oil molecules. Catalysts used are aluminum oxide or zeolites.
The residence time of the heavy oil in the pipeline is rather long (e.g. weeks, months) and the average speed of oil flow in pipelines is around 5 miles/hour. Depending on the length of the pipelines, the oil being transport in pipelines can spend days flowing from start to end. For example, the proposed Keystone Pipeline, if completed, would be around 2000 miles long. At 5mile/hr, it will take 2-3 weeks for the oil to reach its destination. The residence time in the pipeline can be used to upgrade the heavy oil with the use of an appropriate catalyst. The advantages of this over the conventional means of upgrading heavy oil in refineries are (i) faster refining time to end products since a part of refining the heavy oil is done before it gets to the refineries; (ii) increase in refinery capacity since it will take shorter time to create the end products; (iii) less energy and cost necessary to upgrade heavy oil; (iv) lower temperature and less catalyst is used to do the upgrading since the available window for heavy oil upgrading reaction is days/weeks instead of hours; (v) and less equipment such as reactors and heat exchangers is required for heavy oil upgrading in the refinery since the pipeline serves as a reactor.

Preparation of heavy crude oil in water emulsions

All emulsions samples were created using the following procedure unless otherwise noted. The aqueous solution consisting of deionized water (DI), NaCl, an alkali, and a co-solvent is mixed and prepared. All chemicals were measured and reported as weight percent of the aqueous solution. A mixture of the aqueous solution and a heavy crude oil was poured into a volumetric vial to create emulsions with different concentrations of oil (i.e., 20%, 40%, 60%, 80%, and 85%). The concentration of a crude oil in an emulsion is reported as a volume percent of the total volume of an emulsion (w/v). The mixture was sealed and placed in a 100°C oven. After reaching the oven temperature, the sample was hand shaken for 30 seconds every 20 minutes for an hour. The sample was taken out of the oven and cooled down to a room temperature of 25°C ±2°C overnight.

Measurement of apparent viscosity of emulsions

Apparent viscosities of all emulsion samples were measured using a stainless steel tube viscometer unless otherwise stated.

Tube Viscometer

A stainless steel tubing was purchased from Swagelok with the specifications listed in Table 4. A Rosemount 3051 Pressure Transmitter was connected to the inlet and outlet of the tube viscometer using three way fittings to record the differential pressure along the tube. The
transmitter was calibrated and the range of measurable differential pressure was set at 0-35 psi. 500D syringe pump from Teledyne Isco was used to displace samples through the tube viscometer at constant flow rates. Viscosity standards (50, 100, 200, and 500 mPa s) were injected through the tube to calibrate the tube viscometer based on differential pressure readings, flow rates, and tube dimensions. An effective inner diameter (ID) of 0.8176 mm was established after calibration. Emulsion samples are injected into the tube viscometer at constant flow rates. A range of flow rates were tested and pressure drops recorded to obtain apparent viscosity data at a range of apparent shear rates. When a flow rate was picked, the pressure drop across the tube was allowed to reach steady state and recorded before the next flow rate was tested. After a sample has been tested, the tube viscometer was cleaned thoroughly with the following procedure. Flush out the emulsion from the tube with 0.1% NaCl brine. Clean out any residual crude oil present in the tube with toluene. Displace all the toluene in the tube with 0.1% NaCl brine.

[0276] The oil content of the emulsion has a tremendous effect on emulsion viscosity.

The emulsion viscosity seems to be relatively insensitive to crude oil viscosity. The higher the crude oil viscosity, the greater the viscosity reduction of the oil when emulsified. For example, 80% emulsions for all four oils show a viscosity range of 100-300 cP, while crude oil viscosities vary from 10,000-300,000 cP. Crude oil A shows a 1500 times reduction in viscosity while crude oil D shows only 40-50 times reduction in viscosity when comparing 80% emulsions. All crude oils show evidence of yield stress except for crude oil C.

[0277] Amines are a type of co-solvents that can be used to make heavy oil emulsions. The biggest advantage of using an amine co-solvent is the property of amines to also act as an alkali to increase the pH. With amine co-solvent, Applicants have eliminated the need to add alkali to increase the pH, reducing chemicals used to just one chemical, the amine co-solvent. Applicants have tested numerous types of amines and found that diisopropylamine (DIPA) seems to have preferred properties. Amine co-solvents can also be ethoxylated to acquire the benefits shown in Table 5. Figure 2 shows the results of using DIPA-15EO to prepare 85% oil A emulsions. There does not seem to be a clear trend with co-solvent concentration since multiple variables are changing at once (co-solvent concentration & pH). However, for up to 3% co-solvent, the viscosity seems to drop as co-solvent concentration increases.

[0278] Figure 1 shows the extreme effect temperature can have on heavy crude oil viscosity. Figure 3 is a test of 85% oil A emulsion viscosity at different temperature to observe the effect of
temperature on emulsion viscosity using an ARES rheometer. Increasing the temperature from 25-42°C has a big effect on viscosity with further incremental change in temperature producing smaller benefits in terms of emulsion viscosity.

[0279] Emulsion stability is a very important variable for pipeline transportation. Disastrous problems can arise if heavy crude oil separates from the emulsion in the pipeline. Pipeline flow might have to be stopped for days or weeks in case of problems. Figure 4 shows emulsion viscosity measurements of same sample taken 7 days and 2.5 months after emulsion preparation. Emulsion was stable after 2.5 months and no phase separation was observed. Surprisingly, Applicants observed that at low shear rates, the emulsion tested possessed lower apparent viscosity after 2.5 months compared to 7 days.

[0280] Applicants successfully created heavy crude oil emulsion by replacing most of the water with a hydrophilic solvent, ethylene glycol. 3% w/w DIPA-15EO, 22% w/w DI, and 75% w/w ethylene glycol were mixed. 20% w/v of this stock solution was mixed with 80% w/v of oil C to make the emulsion in FIG. 11. For FIG. 11, the idea is that when heavy crude oil is produced from a well, it is produced as an emulsion with some produced water emulsified within the oil. If 5% of the produced heavy oil emulsion is water, which is a reasonable assumption, 84.4% w/v (80% oil and 4.4% water) of this produced heavy oil emulsion can be combined with 0.6% DIPA-15EO and 15% ethylene glycol without any addition of water to create the emulsion.

[0281] Summary of Discoveries

[0282] Oil concentration increase equals higher emulsion viscosity equals higher stability. Heavy oil viscosity seems to have very little effect on emulsion viscosity above 10,000 cp oil that was tested. Therefore, Applicants’ emulsion making process has bigger effect when heavy oil is very viscous. The composition of crude oil, especially the surface active components that are activated with change in pH, seems to have a large effect on emulsion viscosity. The composition of soap is different for every crude oil. The salinity of water increases the emulsion viscosity as salinity increases. The effect is minor compared to pH change or oil %. Type of co-solvent used is important as illustrated in Figures 2, 9 and 10. Increasing co-solvent concentration decreases the emulsion viscosity up to a concentration and viscosity plateaus with increasing concentration. The higher the number of EO, the more hydrophilic the soap/solvent system becomes and the higher the salinity tolerance (Table 5). Number of EO should depend on the salinity of available water supply. Shear rate depends on pipeline diameter and flow rate. Generally, higher shear rate equals lower emulsion viscosity. The temperature of transport has
significant effect on the emulsion viscosity. Higher temp results in lower emulsion viscosity and lower stability (Figure 3). Storage of emulsions doesn’t seem to affect the emulsion negatively (Figure 6). It even seems to lower the emulsion viscosity with time.

Comparison of heavy oil emulsion preparation methods have been made between Applicants' co-solvent method to established surfactant method (NPE). Applicants' results show significant advantages of the co-solvent method compared to surfactant method (NPE). Applicants show emulsion viscosity data for higher oil content up to 90% oil. (Fig. 5, 6). Applicants have increased the emulsion viscosity data from 2 to 4 different heavy oils (9,000-310,000 cP) demonstrating the versatility of the process. (Table 3). Applicants have shown that salinity requirement of the brine could be matched by optimizing the hydrophilicity (xEO) of the co-solvent. (Table 5). Applicants have shown the effect of salinity on the emulsion viscosity based on Applicants' ability to design emulsions that can tolerate higher salinity. A new type of amine co-solvents that also acts as an alkali has been tested and showed excellent results with our 85% oil emulsions. (Fig. 2). The effect of temperature on the heavy oil emulsion viscosity has been explored. (Fig 3). Applicants have tested viscosity of the same co-solvent emulsion sample 7 days and 2.5 months after preparation to show excellent stability of our emulsions. (Fig. 6).

V. TABLES

Table 1. Summary of Apparent Viscosities of Micro-emulsion Formed with Amines

<table>
<thead>
<tr>
<th>Amine</th>
<th>% of amine</th>
<th>Capillary Viscosity (cP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TETA*</td>
<td>2</td>
<td>5.36 ± 0.55</td>
</tr>
<tr>
<td>TETA*</td>
<td>1</td>
<td>9.98 ± 5.27</td>
</tr>
<tr>
<td>DMAPA**</td>
<td>2</td>
<td>2.71 ± 0.46</td>
</tr>
</tbody>
</table>

* Triethylenetetramine
** Dimethylaminopropylamine

Table 2. Apparent Viscosities of micro-emulsion measured by capillary tube method

<table>
<thead>
<tr>
<th>Corrected apparent viscosity (cp)</th>
<th>2% TETA</th>
<th>1% TETA</th>
<th>2% DMAPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear Rate (s^-1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.37</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Shear Rate (s⁻¹)</td>
<td>2% TETA</td>
<td>1% TETA</td>
<td>2% DMAPA</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1.10</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3.65</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>10.95</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>18.26</td>
<td>5</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>36.51</td>
<td>6</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>54.77</td>
<td>6</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>91.28</td>
<td>6</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>182.57</td>
<td>6</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>365.13</td>
<td>6</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>AVG</td>
<td>5.4</td>
<td>10.0</td>
<td>2.7</td>
</tr>
<tr>
<td>STDEV</td>
<td>0.6</td>
<td>5.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 3: Heavy crude oil properties

<table>
<thead>
<tr>
<th></th>
<th>TotalC (A)</th>
<th>Zuata (B)</th>
<th>PRB (C)</th>
<th>Ugnu (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origins</td>
<td>Unknown</td>
<td>Venezuela</td>
<td>Canada</td>
<td>Alaska</td>
</tr>
<tr>
<td>Dynamic viscosity (cP) at 25°C & 10 s⁻¹</td>
<td>310,000</td>
<td>93,000</td>
<td>62,500</td>
<td>9,000</td>
</tr>
<tr>
<td>Specific gravity at 25°C</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Total acid number (mg KOH/g oil)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Table 4: Tube viscometer specifications

<table>
<thead>
<tr>
<th></th>
<th>Tube dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer diameter (OD)</td>
<td>1.5875 mm</td>
</tr>
<tr>
<td>Wall thickness</td>
<td>0.4064 mm</td>
</tr>
<tr>
<td>Inner diameter (ID)</td>
<td>0.7747 mm</td>
</tr>
<tr>
<td>Length</td>
<td>92.964 cm</td>
</tr>
</tbody>
</table>
Table 5
Emulsion: Oil A (60% w/v) 1.6% aq. Ph-xEO 0.2% aq. NaOH

<table>
<thead>
<tr>
<th>Type of co-solvent</th>
<th>0.1% NaCl</th>
<th>0.8% NaCl</th>
<th>1.6% NaCl</th>
<th>2.4% NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>No co-solvent</td>
<td>Fluid</td>
<td>Solid</td>
<td>Solid</td>
<td>Solid</td>
</tr>
<tr>
<td>Ph-2EO</td>
<td>Fluid</td>
<td>Solid</td>
<td>Solid</td>
<td>Solid</td>
</tr>
<tr>
<td>Ph-8EO</td>
<td>Fluid</td>
<td>Fluid</td>
<td>Solid</td>
<td>Solid</td>
</tr>
<tr>
<td>Ph-16EO</td>
<td>Fluid</td>
<td>Fluid</td>
<td>Solid</td>
<td>Solid</td>
</tr>
<tr>
<td>Ph-20EO</td>
<td>Fluid</td>
<td>Fluid</td>
<td>Solid</td>
<td>Solid</td>
</tr>
</tbody>
</table>

*Fluid describes O/W emulsions that are single phase, homogeneous, and fluid enough to measure viscosity.

*Solid describes emulsions that consist of multiple phases, are extremely heterogeneous, or too viscous to measure viscosity.

Table 6
Effect of many variables on emulsion viscosity and stability

<table>
<thead>
<tr>
<th>Heavy Crude Oil</th>
<th>Viscosity</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil %</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Viscosity</td>
<td>↑</td>
<td>minor effect</td>
</tr>
<tr>
<td>Composition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aqueous

Salinity	↑	↑	↑
Alkali Conc.			
NaOH	↑	↑	↑
Na2CO3	↑	↑	↑

Co-solvent

Type	↑	↓	↑
Concentration			
# of EO’s	↑	Minor effect	↑

Environmental

| Temp of Transport | ↑ | ↓ | ↓ |
| Time of storage | ↑ | ↓ | |

Emulsion Prep Procedure

| Temp of mixing | ↑ | ↓ | ↑ |
VI. EMBODIMENTS

[0292] Embodiment 1. A heavy crude oil emulsion comprising a heavy crude oil, water and a co-solvent, wherein said co-solvent is an alkylamine or a compound having the formula:

\[
\begin{align*}
 &\text{R}^{1A}_N\left(CH_2-CH-O\right)^R^{1B}_H^N \quad \text{R}^{1B}_N\left(CH_2-CH-O\right)^R^{1A}_H^N \quad \text{R}^{1A}_N\left(CH_2-CH-O\right)^R^{1B}_H^N \\
\end{align*}
\]

wherein \(\text{R}^{1A} \) and \(\text{R}^{1B} \) are independently hydrogen, unsubstituted \(\text{C}_1-\text{C}_s \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(\text{C}_1-\text{C}_6 \) alkylamine or \(\text{C}_1-\text{C}_6 \) alkylamine; \(\text{R}^2 \) and \(\text{R}^3 \) are independently hydrogen or unsubstituted \(\text{C}_1-\text{C}_2 \) alkyl; \(n \) is an integer from 1 to 30; \(m \) is an integer from 1 to 30; and wherein said heavy crude oil emulsion is within a transport vessel.

[0293] Embodiment 2. The heavy crude oil emulsion of embodiment 1, wherein \(\text{R}^{1A} \) and \(\text{R}^{1B} \) are independently unsubstituted \(\text{C}_1-\text{C}_6 \) alkyl.

[0294] Embodiment 3. The heavy crude oil emulsion of any one of the preceding embodiments, wherein the number of total carbon atoms within \(\text{R}^{1A} \) and \(\text{R}^{1B} \) combined does not exceed 8.

[0295] Embodiment 4. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(\text{R}^{1A} \) and \(\text{R}^{1B} \) are independently unsubstituted \(\text{C}_1-\text{C}_4 \) alkyl.

[0296] Embodiment 5. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(\text{R}^{1A} \) and \(\text{R}^{1B} \) are unsubstituted isopropyl.

[0297] Embodiment 6. The heavy crude oil emulsion of one of embodiments 1 to 5, wherein \(n \) is an integer from 1 to 10.
Embodiment 7. The heavy crude oil emulsion of one of embodiments 1 to 5, wherein \(n \) is an integer from 1 to 6.

Embodiment 8. The heavy crude oil emulsion of one of embodiments 1 to 5, wherein \(R^2 \) is hydrogen and \(n \) is an integer from 1 to 3.

Embodiment 9. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(m \) is an integer from 1 to 10.

Embodiment 10. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(m \) is an integer from 1 to 6.

Embodiment 11. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(R^3 \) is hydrogen and \(m \) is an integer from 1 to 3.

Embodiment 12. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(R^A \) and \(R^B \) are independently hydrogen or C2-C6 alkylamine.

Embodiment 13. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(R^A \) is hydrogen and \(R^B \) is C4-C6 alkylamine.

Embodiment 14. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(R^A \) and \(R^B \) are independently C2-C4 alkylamine.

Embodiment 15. The heavy crude oil emulsion of one of embodiments 12 to 14, wherein said alkylamine is an alkylpolyamine.

Embodiment 16. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(R^A \) is hydrogen and \(R^B \) is unsubstituted cycloalkyl.

Embodiment 17. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(R^B \) is 6 membered cycloalkyl.

Embodiment 18. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(R^A \) is hydrogen and \(R^B \) is unsubstituted aryl.

Embodiment 19. The heavy crude oil emulsion of any one of the preceding embodiments, wherein \(R^B \) is phenyl.
[0311] Embodiment 20. The heavy crude oil emulsion of embodiment 1, wherein said compound has the formula:

\[
\text{R}^{1A}N\left(\text{CH}_2\text{CH}_2\text{O}\right)_{\text{R}^2}\left(\text{CH}_2\text{CH}_2\text{O}\right)_{\text{O}}\left(\text{CH}_2\text{CH}_2\text{O}\right)_{\text{p}}\text{H}
\]

wherein \(\text{R}^2\) is methyl or ethyl; \(\text{o}\) is an integer from 0 to 15; and \(\text{p}\) is an integer from 1 to 10.

[0312] Embodiment 21. The heavy crude oil emulsion of embodiment 20, wherein \(\text{R}^2\) is hydrogen, \(\text{o}\) is 0 and \(\text{p}\) is an integer from 1 to 6.

[0313] Embodiment 22. The heavy crude oil emulsion of embodiment 1, wherein said compound has the formula:

\[
\text{R}^{1A}N\left(\text{CH}_2\text{CH}_2\text{O}\right)_{\text{R}^2}\left(\text{CH}_2\text{CH}_3\text{O}\right)_{\text{q}}\left(\text{CH}_2\text{CH}_2\text{O}\right)_{\text{r}}\text{H}
\]

wherein \(\text{R}^2\) is ethyl; \(\text{q}\) is an integer from 0 to 10; \(\text{r}\) is an integer from 0 to 10; and \(\text{s}\) is an integer from 1 to 10.

[0314] Embodiment 23. The heavy crude oil emulsion of embodiment 1, wherein said alkylamine is diisopropylamine.

[0315] Embodiment 24. The heavy crude oil emulsion of embodiment 1, wherein said alkylamine is an alkylpolyamine.

[0316] Embodiment 25. The heavy crude oil emulsion of embodiment 24, wherein said alkylpolyamine is dimethylaminopropylamine, triethylenetetramine or diethylenetriamine.

[0317] Embodiment 26. The heavy crude oil emulsion as in one of embodiments 1 to 25, wherein said co-solvent is present from about 0.01% to about 5% (w/v).

[0318] Embodiment 27. The heavy crude oil emulsion as in one of embodiments 1 to 26, further comprising a compound of formula:

\[
\text{R}^3\text{L}^1\left(\text{O}\text{CH}_2\text{CH}_2\text{O}\right)_{\text{R}^2}\text{H}
\]

wherein \(\text{L}^1\) is unsubstituted \(\text{C}_1-\text{C}_6\) alkylene, unsubstituted phenylene, unsubstituted cyclohexylene, unsubstituted cyclopentylene or methyl-substituted cyclopentylene; \(\text{R}^2\) is independently hydrogen, methyl or ethyl;
R is independently hydrogen; R4 is independently hydrogen, methyl or ethyl; n is an integer from 0 to 30, and m is an integer from 0 to 30.

[0319] Embodiment 28. The heavy crude oil emulsion as in one of embodiments 1 to 26, further comprising a compound of formula:

\[
\left(\frac{O-CH_{2}-CH}{R^4} \right)^{m} \quad \text{R}^1 \quad \left[\left(\frac{O-CH_{2}-CH}{R^4} \right)^{n} \quad \text{R}^2 \right]^0
\]

wherein R1 is independently hydrogen, unsubstituted C1-Ce alkyl or R5-OH; R2 is independently hydrogen or unsubstituted C1-C2 alkyl; R5 is independently a bond or unsubstituted C1-Ce alkyl; n is an integer from 1 to 30; 0 is an integer from 1 to 5; and z is an integer from 1 to 5.

[0320] Embodiment 29. The heavy crude oil emulsion of embodiment 27 or 28, wherein said compound is present at about 0.01% w/v to about 5% w/v.

[0321] Embodiment 30. The heavy crude oil emulsion of any one of the preceding embodiments, wherein the heavy crude oil is present from about 10% to about 90%(w/v).

[0322] Embodiment 31. The heavy crude oil emulsion of any one of the preceding embodiments, further comprising a surfactant.

[0323] Embodiment 32. The heavy crude oil emulsion of any one of the preceding embodiments, further comprising an alkali agent.

[0324] Embodiment 33. The heavy crude oil emulsion of embodiment 32, wherein said alkali agent is NaOH, KOH, LiOH, Na2CO3, NaHC03, Na-metaborate, Na silicate, Na orthosilicate, Na acetate or NH4OH.

[0325] Embodiment 34. The heavy crude oil emulsion of embodiment 32, wherein said alkali agent is present from about 0.01% to about 3% (w/v).

[0326] Embodiment 35. The heavy crude oil emulsion of any one of the preceding embodiments, further comprising a salt.

[0327] Embodiment 36. The heavy crude oil emulsion of embodiment 35, wherein said salt is NaCl, Na2SO4, K2SO4 or KC1.
Embodiment 37. The heavy crude oil emulsion of embodiment 35, wherein said salt is present in an amount sufficient to increase the solubility of said co-solvent in said emulsion relative to the absence of said salt.

Embodiment 38. The heavy crude oil emulsion of embodiment 35, wherein said salt is present from about 0.01% to about 4% (w/v).

Embodiment 39. The heavy crude oil emulsion of any one of the preceding embodiments, further comprising a catalyst.

Embodiment 40. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said emulsion is at a transport temperature.

Embodiment 41. The heavy crude oil emulsion of embodiment 40, wherein said transport temperature is less than 60 °C.

Embodiment 42. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said heavy crude oil is present from about 10% to about 90% (w/v).

Embodiment 43. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said viscosity of said heavy crude oil is about 100,000 cP at ambient temperature.

Embodiment 44. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said viscosity of said heavy crude oil is about 200,000 cP at ambient temperature.

Embodiment 45. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said viscosity of said heavy crude oil is about 300,000 cP at ambient temperature.

Embodiment 46. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said viscosity of said emulsion is about a 1,000 times less than the viscosity of said heavy crude oil.

Embodiment 47. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said viscosity of said emulsion is about a 10,000 times less than the viscosity of said heavy crude oil.
[0339] Embodiment 48. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said viscosity of said emulsion is about a 100,000 times less than the viscosity of said heavy crude oil.

[0340] Embodiment 49. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said transport vessel is a pipeline.

[0341] Embodiment 50. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said transport vessel forms part of a transportation vehicle.

[0342] Embodiment 51. The heavy crude oil emulsion as in one of embodiments 1-49, wherein said emulsion is transported in a pipeline.

[0343] Embodiment 52. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said emulsion is stable at ambient temperature for at least an hour.

[0344] Embodiment 53. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said emulsion is stable at ambient temperature for at least a day.

[0345] Embodiment 54. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said emulsion is stable at ambient temperature for at least a week.

[0346] Embodiment 55. The heavy crude oil emulsion of any one of the preceding embodiments, wherein said emulsion is stable at ambient temperature for at least a month.

[0347] Embodiment 56. The heavy crude oil emulsion of embodiment 54 or 55, wherein said ambient temperature is less than 80°C.

[0348] Embodiment 57. The heavy crude oil emulsion of embodiment 54 or 55, wherein said ambient temperature is less than 60°C.

[0349] Embodiment 58. The heavy crude oil emulsion of embodiment 54 or 55, wherein said ambient temperature is less than 40°C.

[0350] Embodiment 59. A method of forming a heavy crude oil emulsion, said method comprising: (i) contacting a heavy crude oil extracted from an oil reservoir with a co-solvent and water at an emulsion forming temperature, thereby forming a high temperature heavy crude oil emulsion; (ii) allowing said high temperature heavy crude oil emulsion to cool to a transport temperature, thereby forming a heavy crude oil emulsion; wherein said co-solvent is an
alkylamine or a compound having the formula: \(R^1 A \), wherein \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(\text{Ci-C} \text{Cs} \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(\text{Ci-C} \text{e} \) alkylamine or

\[
\begin{align*}
\left(\text{CH}_2 - \text{CH} - \text{O} \right)_m H \\
\left(\text{CH}_2 - \text{CH} - \text{O} \right)_n \left(\text{CH}_2 - \text{CH} - \text{O} \right)_p H
\end{align*}
\]

; \(R^2 \) and \(R^3 \) are independently hydrogen or unsubstituted \(\text{C}_1\text{-C}_2 \) alkyl; \(n \) is an integer from 1 to 30; and \(m \) is an integer from 1 to 30.

[0351] Embodiment 60. The method of embodiment 59, wherein \(R^{1A} \) and \(R^{1B} \) are independently unsubstituted \(\text{C}_1\text{-C}_6 \) alkyl.

[0352] Embodiment 61. The method of embodiment 59 or 60, wherein the number of total carbon atoms within \(R^{1A} \) and \(R^{1B} \) combined does not exceed 8.

[0353] Embodiment 62. The method of any one of embodiments 59-61, wherein \(R^{1A} \) and \(R^{1B} \) are independently unsubstituted \(\text{C}_1\text{C}_4 \) alkyl.

[0354] Embodiment 63. The method of any one of embodiments 59-62, wherein \(R^{1A} \) and \(R^{1B} \) are unsubstituted isopropyl.

[0355] Embodiment 64. The method of one of embodiments 59 to 63, wherein \(n \) is an integer from 1 to 10.

[0356] Embodiment 65. The method of one of embodiments 59 to 53, wherein \(n \) is an integer from 1 to 6.

[0357] Embodiment 66. The method of one of embodiments 59 to 63, wherein \(R^2 \) is hydrogen and \(n \) is an integer from 1 to 3.

[0358] Embodiment 67. The method of embodiment 59, wherein said compound has the formula:

\[
\begin{align*}
\left(\text{CH}_2 - \text{CH} - \text{O} \right)_m H \\
\left(\text{CH}_2 - \text{CH} - \text{O} \right)_0 \left(\text{CH}_2 - \text{CH}_2 - \text{O} \right)_p H
\end{align*}
\]

; \(R^2 \) is methyl or ethyl; \(o \) is an integer from 0 to 15; and \(p \) is an integer from 1 to 10.
Embodiment 68. The method of embodiment 67, wherein \(R^2 \) is hydrogen, \(o \) is 0 and \(p \) is an integer from 1 to 6.

Embodiment 69. The method of embodiment 59, wherein said compound has the formula:

\[
\begin{align*}
R^1 \bigg(\bigg(\bigg(CH_2 - CH - O \bigg) \bigg(CH_2 - CH - O \bigg) \bigg(CH_2 - CH_2 - O \bigg) \bigg) H \\
R^2 \quad q \quad r \quad s
\end{align*}
\]

wherein \(R^2 \) is ethyl; \(q \) is an integer from 0 to 10; \(r \) is an integer from 0 to 10; and \(s \) is an integer from 1 to 10.

Embodiment 70. The method of embodiment 59, wherein said alkylamine is diisopropylamine.

Embodiment 71. The method of embodiment 59, wherein said alkylamine is an alkylpolyamine.

Embodiment 72. The method of embodiment 71, wherein said alkylpolyamine is dimethylaminopropylamine, triethylenetetramine or diethylenetriamine.

Embodiment 73. The method of any one of embodiments 59-72, further comprising contacting said heavy crude oil extracted from an oil reservoir with a compound of formula:

\[
R^3 L^1 \bigg(\bigg(O - CH_2 - CH \bigg) \bigg) OH \\
R^2 \quad n
\]

wherein \(L^1 \) is unsubstituted \(C_1-C_6 \) alkylene, unsubstituted phenylene, unsubstituted cyclohexylene, unsubstituted cyclopentylene or methyl-substituted cyclopentylene; \(R^2 \) is independently hydrogen, methyl or ethyl; \(R^3 \) is independently hydrogen or \(\bigg(O - CH_2 - CH \bigg) \bigg) OH \\
R^4 \quad m \); \(R^4 \) is independently hydrogen, methyl or ethyl; \(n \) is an integer from 0 to 30, and \(m \) is an integer from 0 to 30.

Embodiment 74. The method of any one of embodiments 59-73, further comprising contacting said heavy crude oil extracted from an oil reservoir with a compound of formula:

\[
\bigg(R^1 \bigg)^z \bigg(\bigg(O - CH_2 - CH \bigg) \bigg) OH \\
R^2 \quad n \bigg) \bigg)^0
\]

wherein \(R^1 \) is independently hydrogen, unsubstituted \(C_i-C_e \) alkyl or \(R^5 \cdot OH \); \(R^2 \) is independently hydrogen or unsubstituted \(C_1-C_2 \) alkyl; \(R^5 \) is independently...
a bond or unsubstituted \(\text{Ci-Ce} \) alkyl; \(n \) is an integer from 1 to 30; \(o \) is an integer from 1 to 5; and \(z \) is an integer from 1 to 5.

[0366] Embodiment 75. The method of embodiment 73 or 74, wherein said compound is present from about 0.01% to about 5% (w/v).

5 [0367] Embodiment 76. The method of embodiment 59 to 75, wherein said co-solvent is present from about 0.01% to about 5% (w/v).

[0368] Embodiment 77. The method of any one of embodiments 59-76, wherein said heavy crude oil is present from about 10% to about 95% (w/v).

[0369] Embodiment 78. The method of any one of embodiments 59-77, further comprising contacting said heavy crude oil extracted from an oil reservoir with an alkali agent.

[0370] Embodiment 79. The method of any one of embodiments 59-78, further comprising contacting said heavy crude oil extracted from an oil reservoir with a catalyst.

[0371] Embodiment 80. A method of optimizing a heavy crude oil emulsion, said method comprising: (i) contacting a plurality of heavy crude oil samples extracted from an oil reservoir with an amount of a co-solvent, an amount of a salt and an amount of water at an emulsion forming temperature, wherein said amount of a co-solvent, the amount of a salt and said amount of water is different for each of said plurality of heavy crude oil samples, thereby forming a plurality of different high temperature heavy crude oil emulsion samples; (ii) allowing said plurality of different high temperature heavy crude oil emulsion samples to cool to an ambient temperature, thereby forming a plurality of different low temperature heavy crude oil emulsion samples; (iii) identifying a low temperature heavy crude oil emulsion sample amongst said plurality of different low temperature heavy crude oil emulsion samples having a viscosity at least 100 times lower than the viscosity of said heavy crude oil, thereby optimizing a heavy crude oil emulsion; wherein said co-solvent is an alkylamine or a compound having the formula:

\[
\begin{align*}
R^1 & \quad N \left(\begin{array}{c}
\text{CH}_2 - \text{CH}_2 - \\
\text{O} \\
\text{H}
\end{array} \right) \\
R^2 & \quad \left(\begin{array}{c}
\text{CH}_2 - \text{CH}_2 - \\
\text{O} \\
\text{H}
\end{array} \right) \\
R^3 & \quad R^4 \\
\end{align*}
\]

wherein \(R^1 \) and \(R^3 \) are independently hydrogen, unsubstituted \(\text{Ci-Cs} \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(C_1 - C_6 \) alkylamine or \(\text{C}_1 - \text{C}_2 \) alkyl; \(n \) is an integer from 1 to 30; and \(m \) is an integer from 1 to 30.
[0372] Embodiment 81. The method of embodiment 80, wherein said co-solvent is present from about 0.01% to about 5% (w/v).

[0373] Embodiment 82. The method of embodiment 80, wherein said heavy crude oil is present from about 10% to about 95% (w/v).

[0374] Embodiment 83. A method of transporting a heavy crude oil, comprising:

(i) extracting a heavy crude oil from an oil reservoir, thereby forming an extracted heavy crude oil;
(ii) contacting said extracted heavy crude oil with a co-solvent and water at an emulsion forming temperature, thereby forming a high temperature heavy crude oil emulsion;
(iii) allowing said high temperature heavy crude oil emulsion to cool to a transport temperature, thereby forming a heavy crude oil emulsion;
(iv) transporting said heavy crude oil emulsion from a first location to a second location, thereby transporting said heavy crude oil; wherein said co-solvent is an alkylamine or a compound having the formula:

\[
\begin{array}{c}
\text{R}^1 \text{A} \\
\text{N} \left(\frac{\text{CH}_2 - \text{CH}_2 - \text{O}}{\text{H}} \right) \text{R}^2 \\
\text{n}
\end{array}
\]

or

\[
\begin{array}{c}
\text{CH}_2 - \text{CH}_2 - \text{O} \\
\text{H} \\
\text{R}^3
\end{array}
\]

\[
\text{m}
\]

wherein \(\text{R}^1 \text{A} \) and \(\text{R}^1 \text{B} \) are independently hydrogen, unsubstituted \(\text{C}_1-\text{C}_6 \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(\text{C}_1-\text{C}_6 \) alkylamine or

\[
\begin{array}{c}
\text{CH}_2 - \text{CH}_2 - \text{O} \\
\text{H} \\
\text{R}^3
\end{array}
\]

\[
\text{m}
\]

\(\text{R}^2 \) and \(\text{R}^3 \) are independently hydrogen or unsubstituted \(\text{C}_1-\text{C}_2 \) alkyl;

\(n \) is an integer from 1 to 30; and \(m \) is an integer from 1 to 30.

[0375] Embodiment 84. The method of embodiment 83, wherein said first location is a production well.

[0376] Embodiment 85. The method of embodiment 83, further comprising contacting said extracted heavy crude oil with a catalyst.

[0377] Embodiment 86. The method of embodiment 83 or 85, wherein said transporting of step (iv) is performed in a vessel.

[0378] Embodiment 87. The method of embodiment 86, wherein said vessel is a pipeline.

[0379] Embodiment 88. The method of embodiment 87, wherein said vessel forms part of a transportation vehicle.
Embodiment 89. The method of embodiment 85, further comprising after said transport of step (iv) separating said heavy crude oil from said co-solvent and said water, thereby forming a recovered heavy crude oil.

Embodiment 90. A method of forming a heavy crude oil emulsion in a production well, said method comprising contacting an extracted heavy crude oil in a production well with a co-solvent and water, thereby forming a heavy crude oil emulsion in the production well, wherein

\[
R^{1A} \quad N \quad \left(\begin{array}{c} \text{CH}_2 \cdot \text{CH} \cdot \text{O} \end{array} \right) \quad H
\]

\[
R^{1B}
\]

\[
N \quad \left(\begin{array}{c} \text{CH}_2 \cdot \text{CH} \cdot \text{O} \end{array} \right) \quad H
\]

\[
R^{2}
\]

\[
R^{3}
\]

\[\text{alkylamine or } \text{alkylpolyamine.} \]

[0382] Embodiment 91. The method of embodiment 90, wherein said extracted heavy crude oil is present from about 10% to about 95% (w/v).

[0383] Embodiment 92. The method of embodiment 90, wherein said alkylamine is diisopropylamine.

[0384] Embodiment 93. The method of embodiment 90, wherein said alkylamine is an alkylpolyamine.

[0385] Embodiment 94. The method of embodiment 93, wherein said alkylpolyamine is dimethylaminopropylamine, triethylenetetramine or diethylenetriamine.

[0386] Embodiment 95. The method of any one of embodiments 90-94, wherein said extracted heavy crude oil has a viscosity of at least 100,000 cP.

[0387] Embodiment 96. The method of any one of embodiments 90-95, wherein said extracted heavy crude oil has a viscosity of at least 200,000 cP.

[0388] Embodiment 97. The method of any one of embodiments 90-96, wherein said extracted heavy crude oil has a viscosity of at least 300,000 cP.
[0389] Embodiment 98. The method of any one of embodiments 90-97, wherein said extracted heavy crude oil has a viscosity of at least 1,000,000 cP.

[0390] Embodiment 99. The method of any one of embodiments 90-98, wherein the viscosity of said heavy crude oil emulsion is 1,000 times lower than the viscosity of said extracted heavy crude oil.

[0391] Embodiment 100. The method of any one of embodiments 90-99, wherein the viscosity of said heavy crude oil emulsion is 10,000 times lower than the viscosity of said extracted heavy crude oil.

[0392] Embodiment 101. The method of any one of embodiments 90-101, wherein the viscosity of said heavy crude oil emulsion is 100,000 times lower than the viscosity of said extracted heavy crude oil.

[0393] Embodiment 102. The method of any one of embodiments 90-101, further comprising contacting said extracted heavy crude oil with a compound of formula:

\[R^3 - L^1 \left(O - CH_2 - CH \right)_{R^2}^{n} OH \]

wherein \(L^1 \) is unsubstituted \(C_i-C_e \) alkylene, unsubstituted phenylene, unsubstituted cyclohexylene, unsubstituted cyclopentylene or methyl-substituted cyclopentylene; \(R^2 \) is independently hydrogen, methyl or ethyl; \(R^3 \) is independently hydrogen or

\[O - CH_2 - CH \]

\[\left(O - CH_2 - CH \right)_{R^4}^{m} OH \]

; \(R^4 \) is independently hydrogen, methyl or ethyl; \(n \) is an integer from 0 to 30, and \(m \) is an integer from 0 to 30.

[0394] Embodiment 103. The method of any one of embodiments 90-102, further comprising contacting said extracted heavy crude oil with a compound of formula:

\[\left(R^1 \right)^z \left[O - CH_2 - CH \right]_{R^2}^{n} OH \]

wherein \(R^1 \) is independently hydrogen, unsubstituted \(C_i-C_e \) alkyl or \(R^5 \)-OH; \(R^2 \) is independently hydrogen or unsubstituted \(C_1-C_2 \) alkyl; \(R^5 \) is independently a bond or unsubstituted \(C_i-C_e \) alkyl; \(n \) is an integer from 1 to 30; \(o \) is an integer from 1 to 5; and \(z \) is an integer from 1 to 5.
Embodiment 104. The method of any one of embodiments 90-103, further comprising contacting said extracted heavy crude oil with a surfactant.

Embodiment 105. The method of any one of embodiments 90-104, further comprising contacting said extracted heavy crude oil with a catalyst.

Embodiment 106. A method of transporting an extracted heavy crude oil from a production well, comprising: (i) contacting an extracted heavy crude oil in a production well with a co-solvent, and water at an emulsion forming temperature, thereby forming a heavy crude oil emulsion in a production well; (ii) transporting said heavy crude oil emulsion from said production well to the surface, thereby transporting said extracted heavy crude oil from said production well, wherein said co-solvent is an alkylamine or a compound having the formula:

\[
R^{1A}N\left(\begin{array}{c}
CH_2-CH-O \\
R^2 \\
R^{1B}
\end{array}\right)_n
\]

and wherein \(R^{1A}\) and \(R^{1B}\) are independently hydrogen, unsubstituted Ci-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C1-C6 alkylamine or

\[
\left(\begin{array}{c}
CH_2-CH-O \\
R^3 \\
R^2
\end{array}\right)_m
\]

and wherein \(R^2\) and \(R^3\) are independently hydrogen or unsubstituted C1-C2 alkyl; \(n\) is an integer from 1 to 30; and \(m\) is an integer from 1 to 30.

Embodiment 107. The method of embodiment 106, wherein said transporting of step (ii) further comprises moving said heavy crude oil transport emulsion with a mechanical pump.

Embodiment 108. The method of embodiment 107, wherein said mechanical pump is an electrical submersible pump.

Embodiment 109. A heavy crude oil emulsion comprising an amphiphilic co-solvent, a first phase and a second phase, wherein said first phase comprises an oil-immiscible compound and said second phase comprises a heavy crude oil; wherein said amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[
R^{1A}N\left(\begin{array}{c}
CH_2-CH-O \\
R^2 \\
R^{1B}
\end{array}\right)_n
\]

and wherein \(R^{1A}\) and \(R^{1B}\) are independently hydrogen, unsubstituted Ci-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C1-C6 alkylamine or
R² and R³ are independently hydrogen or unsubstituted C₁-C₂ alkyl; n is an integer from 1 to 30; and m is an integer from 1 to 30.

[0401] Embodiment 110. The heavy crude oil emulsion of embodiment 109, wherein said heavy crude oil emulsion does not comprise water.

[0402] Embodiment 111. The heavy crude oil emulsion of embodiment 109, wherein said heavy crude oil emulsion further comprises heavy crude oil water.

[0403] Embodiment 112. The heavy crude oil emulsion of embodiment 111, wherein the amount of water in said heavy crude oil emulsion is equal to the amount of said heavy crude oil water.

[0404] Embodiment 113. The heavy crude oil emulsion of embodiment 111, wherein the amount of said heavy crude oil water is less than about 20%(w/v).

[0405] Embodiment 114. The heavy crude oil emulsion of embodiment 111, wherein the amount of said heavy crude oil water is less than about 2%(w/v).

[0406] Embodiment 115. The heavy crude oil emulsion of embodiment 111, wherein the amount of said heavy crude oil water is less than about 1%(w/v).

[0407] Embodiment 116. The heavy crude oil emulsion of embodiment 109, wherein said amphiphilic co-solvent is present in said first phase and said second phase.

[0408] Embodiment 117. The heavy crude oil emulsion of embodiment 109, wherein said first phase is about 80% oil-immiscible compound.

[0409] Embodiment 118. The heavy crude oil emulsion of embodiment 109, wherein said first phase is about 95% oil-immiscible compound.

[0410] Embodiment 119. The heavy crude oil emulsion of embodiment 109, wherein said first phase is about 100% oil-immiscible compound.

[0411] Embodiment 120. The heavy crude oil emulsion of embodiment 109, wherein said oil-immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, pentaerythritol, sorbitol or methanol.

[0412] Embodiment 121. The heavy crude oil emulsion of embodiment 109, further comprising a surfactant.
Embodiment 122. The heavy crude oil emulsion of embodiment 109, wherein the viscosity of said heavy crude oil emulsion is lower than the viscosity of said heavy crude oil.

Embodiment 123. The heavy crude oil emulsion of embodiment 109, wherein the emulsion is formed at an ambient temperature.

Embodiment 124. A method of forming a heavy crude oil emulsion, said method comprising: (i) contacting a heavy crude oil extracted from an oil reservoir with an oil-immiscible compound and an amphiphilic co-solvent at an emulsion forming temperature, thereby forming a high temperature heavy crude oil emulsion; (ii) allowing said high temperature heavy crude oil emulsion to cool to a transport temperature, thereby forming a heavy crude oil emulsion; wherein said amphiphilic co-solvent is an alkylamine or a compound having the formula: , wherein R\(^{1A}\) and R\(^{1B}\) are independently hydrogen, unsubstituted Ci-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, Ci-Ce alkylamine or are independently hydrogen or unsubstituted C\(_1\)-C\(_2\) alkyl; n is an integer from 1 to 30; and m is an integer from 1 to 30.

Embodiment 125. The method of embodiment 124, wherein said extracted heavy crude oil emulsion further comprises heavy crude oil water.

Embodiment 126. The method of embodiment 125, wherein the amount of water in said heavy crude oil emulsion is equal to the amount of said heavy crude oil water.

Embodiment 127. The method of embodiment 124, further comprising contacting said heavy crude oil extracted from an oil reservoir with a surfactant.

Embodiment 128. The method of embodiment 124, wherein said oil-immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, pentaerythritol, sorbitol or methanol.

Embodiment 129. A method of forming a heavy crude oil emulsion in a production well, said method comprising contacting an extracted heavy crude oil in a production well with an oil-immiscible compound and an amphiphilic co-solvent, thereby forming a heavy crude oil...
emulsion in a production well; wherein said amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[
\text{N} \left(\begin{array}{c}
\text{CH}_2 - \text{CH} - \text{O} \\
\text{R}^2
\end{array} \right) \text{H}^n
\]

\[\left(\begin{array}{c}
\text{CH}_2 - \text{CH} - \text{O} \\
\text{R}^3
\end{array} \right) \text{H}^m \]

wherein \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted Ci-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, Ci-Ce alkylamine or are independently hydrogen or unsubstituted C\(_1\)-C\(_2\) alkyl; \(n \) is an integer from 1 to 30; and \(m \) is an integer from 1 to 30.

[0421] Embodiment 130. The method of embodiment 129, wherein said extracted heavy crude oil emulsion further comprises heavy crude oil water.

[0422] Embodiment 131. The method of embodiment 130, wherein the amount of water in said heavy crude oil emulsion is equal to the amount of said heavy crude oil water.

[0423] Embodiment 132. The method of embodiment 130, further comprising contacting said extracted heavy crude oil with a surfactant.

[0424] Embodiment 133. The method of embodiment 129, wherein said oil-immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, pentaerythritol, sorbitol or methanol.

[0425] Embodiment 134. A method of transporting an extracted heavy crude oil from a production well, comprising: (i) contacting an extracted heavy crude oil in a production well with an oil-immiscible compound, and an amphiphilic co-solvent at an emulsion forming temperature, thereby forming a heavy crude oil emulsion in a production well; (ii) transporting said heavy crude oil emulsion from said production well to the surface, thereby transporting said extracted heavy crude oil from said production well; wherein said amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[
\text{N} \left(\begin{array}{c}
\text{CH}_2 - \text{CH} - \text{O} \\
\text{R}^2
\end{array} \right) \text{H}^n
\]

\[\left(\begin{array}{c}
\text{CH}_2 - \text{CH} - \text{O} \\
\text{R}^3
\end{array} \right) \text{H}^m \]

wherein \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted Ci-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C\(_1\)-C\(_6\) alkylamine or
\[
\text{CH}_2\text{-CH-O} H
\]

\[
\text{R}^3
\]

; \text{R}^2 \text{ and } \text{R}^3 \text{ are independently hydrogen or unsubstituted C1-C2 alkyl; } n \text{ is an integer from } 1 \text{ to } 30; \text{ and } m \text{ is an integer from } 1 \text{ to } 30.

[0426] Embodiment 135. The method of embodiment 134, wherein said extracted heavy crude oil emulsion further comprises heavy crude oil water.

[0427] Embodiment 136. The method of embodiment 135, wherein the amount of water in said heavy crude oil emulsion is equal to the amount of said heavy crude oil water.

[0428] Embodiment 137. The method of embodiment 134, further comprising contacting said extracted heavy crude oil with a surfactant.

[0429] Embodiment 138. The method of embodiment 134, wherein said oil-immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, pentaerythritol, sorbitol or methanol.

[0430] Embodiment 139. A non-aqueous composition comprising an oil-immiscible compound, and an amphiphilic co-solvent, wherein said amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[
\text{R}^{1A} \text{N} \left(\text{CH}_2\text{-CH-O} H \right)_n \text{R}^{1B}
\]

, wherein \text{R}^{1A} \text{ and } \text{R}^{1B} \text{ are independently hydrogen, unsubstituted C1-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl,}

unsubstituted aryl, unsubstituted heteroaryl, \text{Ci-Ce} \text{ alkylamine or}

\[
\text{CH}_2\text{-CH-O} H
\]

\[
\text{R}^3
\]

; \text{R}^2 \text{ and } \text{R}^3 \text{ are independently hydrogen or unsubstituted C1-C2 alkyl; } n \text{ is an integer from } 1 \text{ to } 30; \text{ and } m \text{ is an integer from } 1 \text{ to } 30.

[0431] Embodiment 140. The non-aqueous composition of embodiment 139, wherein said oil-immiscible compound is ethylene glycol, di-ethylene glycol, propylene glycol, pentaerythritol, sorbitol or methanol.

[0432] Embodiment 141. The non-aqueous composition of embodiment 139, further comprising a surfactant.
WHAT IS CLAIMED IS:

1. A heavy crude oil emulsion comprising a heavy crude oil, water and a co-
solvent, wherein said co-solvent is an alkylamine or a compound having the formula:

\[
\begin{array}{c}
R^{1A} N(C_{2H4}C_{2H5})_{H} \\
R^{1B} C_{2H4}C_{2H5} \\
R^{2} \\
R^{3}
\end{array}
\]

wherein

- \(R^{1A} \) and \(R^{1B} \) are independently hydrogen, unsubstituted \(C_{1-8} \) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(C_{1-6} \) alkylamine or
- \(R^{2} \) and \(R^{3} \) are independently hydrogen or unsubstituted \(C_{1-2} \) alkyl;
- \(n \) is an integer from 1 to 30;
- \(m \) is an integer from 1 to 30; and
- wherein said heavy crude oil emulsion is within a transport vessel.

2. The heavy crude oil emulsion of claim 1, wherein \(R^{1A} \) and \(R^{1B} \) are independently unsubstituted \(C_{1-6} \) alkyl.

3. The heavy crude oil emulsion of one of claims 1, wherein \(n \) is an integer from 1 to 10.

4. The heavy crude oil emulsion of claim 1, wherein \(m \) is an integer from 1 to 6.

5. The heavy crude oil emulsion of claim 1, wherein \(R^{1A} \) and \(R^{1B} \) are independently hydrogen or \(C_{2-6} \) alkylamine.

6. The heavy crude oil emulsion of claim 5, wherein \(R^{1A} \) is hydrogen and \(R^{1B} \) is \(C_{4-6} \) alkylamine.

7. The heavy crude oil emulsion of claim 1, wherein said alkylamine is an alkylpolyamine.
The heavy crude oil emulsion of claim 1, wherein said compound has the formula:

\[\text{N}
\left(\begin{array}{c}
\text{CH}_2\text{-CH-O-} \\
\text{CH}_2\text{-CH-O-} \\
\text{CH}_2\text{-CH-O-}
\end{array} \right)_n \text{H}
\]

wherein

R\text{1A} is methyl or ethyl;

R\text{1B} is an integer from 0 to 15; and

R\text{2} is an integer from 1 to 10.

The heavy crude oil emulsion of claim 1, wherein said heavy crude oil is an asphaltene.

The heavy crude oil emulsion of claim 1, further comprising a surfactant.

The heavy crude oil emulsion of claim 1, further comprising an alkali agent.

The heavy crude oil emulsion of claim 1, further comprising a salt.

The heavy crude oil emulsion of claim 1, wherein said emulsion is at a transport temperature.

A method of forming a heavy crude oil emulsion, said method comprising:

(i) contacting a heavy crude oil extracted from an oil reservoir with a co-solvent and water at an emulsion forming temperature, thereby forming a high temperature heavy crude oil emulsion;

(ii) allowing said high temperature heavy crude oil emulsion to cool to a transport temperature, thereby forming a heavy crude oil emulsion;

wherein said co-solvent is an alkylamine or a compound having the formula:

\[\text{N}
\left(\begin{array}{c}
\text{CH}_2\text{-CH-O-} \\
\text{CH}_2\text{-CH-O-} \\
\text{CH}_2\text{-CH-O-}
\end{array} \right)_n \text{H}
\]

wherein
10. R^{1A} and R^{1B} are independently hydrogen, unsubstituted Ci-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C$_{1-Ce}$

$$\left(\text{CH}_2-\text{CH-O}\right)_{R^3}^H$$

12. alkylamine or

13. R^2 and R^3 are independently hydrogen or unsubstituted C$_{1-C2}$ alkyl;

14. n is an integer from 1 to 30; and

15. m is an integer from 1 to 30.

15. A method of transporting a heavy crude oil, comprising:

(i) extracting a heavy crude oil from an oil reservoir, thereby forming an extracted heavy crude oil;

(ii) contacting said extracted heavy crude oil with a co-solvent and water at an emulsion forming temperature, thereby forming a high temperature heavy crude oil emulsion;

(iii) allowing said high temperature heavy crude oil emulsion to cool to a transport temperature, thereby forming a heavy crude oil emulsion;

(iv) transporting said heavy crude oil emulsion from a first location to a second location, thereby transporting said heavy crude oil;

wherein said co-solvent is an alkylamine or a compound having the formula:

$$\text{R}^{1A}_N\left(\text{CH}_2-\text{CH-O}\right)_{R^2}^H$$

12. wherein

13. R^{1A} and R^{1B} are independently hydrogen, unsubstituted Ci-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C$_{1-C6}$

$$\left(\text{CH}_2-\text{CH-O}\right)_{R^3}^H$$

15. alkylamine or

16. R^2 and R^3 are independently hydrogen or unsubstituted C$_{1-C2}$ alkyl;

17. n is an integer from 1 to 30; and

18. m is an integer from 1 to 30.

16. The method of claim 15, wherein said first location is a production well.
17. The method of claim 15, wherein said transporting of step (iv) is performed in a vessel.

18. The method of claim 17, wherein said vessel is a pipeline.

19. A method of forming a heavy crude oil emulsion in a production well, said method comprising contacting an extracted heavy crude oil in a production well with a cosolvent and water, thereby forming a heavy crude oil emulsion in the production well,

wherein said cosolvent is an alkylamine or a compound having the formula:

\[
\begin{align*}
R^{1A} & \quad N\left(\begin{array}{c}
\text{CH}_2\text{-CH-} \\
R^2
\end{array}\right)H \\
R^{1B} & \quad n,
\end{align*}
\]

wherein

- \(R^{1A}\) and \(R^{1B}\) are independently hydrogen, unsubstituted \(C_1-C_8\) alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, \(C_1-C_6\) alkylamine or
- \(R^2\) and \(R^3\) are independently hydrogen or unsubstituted \(C1-C2\) alkyl;
- \(n\) is an integer from 1 to 30; and
- \(m\) is an integer from 1 to 30.

20. A method of transporting an extracted heavy crude oil from a production well, comprising:

(i) contacting an extracted heavy crude oil in a production well with a cosolvent, and water at an emulsion forming temperature, thereby forming a heavy crude oil emulsion in a production well;

(ii) transporting said heavy crude oil emulsion from said production well to the surface, thereby transporting said extracted heavy crude oil from said production well,

wherein said cosolvent is an alkylamine or a compound having the formula:
wherein

\[R^{1A} \text{ and } R^{1B} \text{ are independently hydrogen, unsubstituted } C_1-C_8 \text{ alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, } C_1-C_6 \text{ alkylamine or a compound having the formula:} \]

\[R^{1A} \overbrace{\left(\begin{array}{c} \text{N} \text{C} \text{N} \\ \text{R}^{1B} \end{array} \right) \left(\begin{array}{c} \text{H} \\ \text{R}^2 \end{array} \right)^n}^{m}, \]

wherein

\[R^2 \text{ and } R^3 \text{ are independently hydrogen or unsubstituted } C_1-C_2 \text{ alkyl;} \]

\[n \text{ is an integer from } 1 \text{ to } 30 \text{; and} \]

\[m \text{ is an integer from } 1 \text{ to } 30. \]

21. A heavy crude oil emulsion comprising an amphiphilic co-solvent, a first phase and a second phase, wherein said first phase comprises an oil-immiscible compound and said second phase comprises a heavy crude oil;

wherein said amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[R^{1A} \overbrace{\left(\begin{array}{c} \text{N} \text{C} \text{N} \\ \text{R}^{1B} \end{array} \right) \left(\begin{array}{c} \text{H} \\ \text{R}^2 \end{array} \right)^n}^{m}, \]

wherein

\[R^{1A} \text{ and } R^{1B} \text{ are independently hydrogen, unsubstituted } C_1-C_6 \text{ alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, } C_1-C_6 \text{ alkylamine or a compound having the formula:} \]

\[R^{1A} \overbrace{\left(\begin{array}{c} \text{N} \text{C} \text{N} \\ \text{R}^{1B} \end{array} \right) \left(\begin{array}{c} \text{H} \\ \text{R}^2 \end{array} \right)^n}^{m}, \]

wherein

\[R^2 \text{ and } R^3 \text{ are independently hydrogen or unsubstituted } C_1-C_2 \text{ alkyl;} \]

\[n \text{ is an integer from } 1 \text{ to } 30 \text{; and} \]

\[m \text{ is an integer from } 1 \text{ to } 30. \]

22. The heavy crude oil emulsion of claim 21, wherein said heavy crude oil emulsion does not comprise water.
23. The heavy crude oil emulsion of claim 21, wherein said amphiphilic co-solvent is present in said first phase and said second phase.

24. A method of forming a heavy crude oil emulsion, said method comprising:

(i) contacting a heavy crude oil extracted from an oil reservoir with an oil-immiscible compound and an amphiphilic co-solvent at an emulsion forming temperature, thereby forming a high temperature heavy crude oil emulsion;

(ii) allowing said high temperature heavy crude oil emulsion to cool to a transport temperature, thereby forming a heavy crude oil emulsion;

wherein said amphiphilic co-solvent is an alkylamine or a compound having the formula:

\[
\begin{align*}
R^1_A & \quad \text{R}^1_B \\
& \quad \text{R}^2
\end{align*}
\]

\[
\begin{align*}
& \quad \text{R}^3
\end{align*}
\]

wherein

- \(R^1_A \) and \(R^1_B \) are independently hydrogen, unsubstituted C1-Cs alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C1-C6 alkylamine or
- \(R^2 \) and \(R^3 \) are independently hydrogen or unsubstituted C1-C2 alkyl;

- \(n \) is an integer from 1 to 30; and

- \(m \) is an integer from 1 to 30.

25. A method of transporting an extracted heavy crude oil from a production well, comprising:

(i) contacting an extracted heavy crude oil in a production well with an oil-immiscible compound, and an amphiphilic co-solvent at an emulsion forming temperature, thereby forming a heavy crude oil emulsion in a production well;

(ii) transporting said heavy crude oil emulsion from said production well to the surface, thereby transporting said extracted heavy crude oil from said production well;

wherein said amphiphilic co-solvent is an alkylamine or a compound having the formula:
wherein

R^{1A} and R^{1B} are independently hydrogen, unsubstituted C_1-C_8 alkyl, unsubstituted cycloalkyl, unsubstituted heterocycloalkyl, unsubstituted aryl, unsubstituted heteroaryl, C_i-C_e alkylamine or alkylamine or

R^2 and R^3 are independently hydrogen or unsubstituted C1-C2 alkyl;

n is an integer from 1 to 30; and

m is an integer from 1 to 30.
FIG. 3

Apparent Viscosity (cP)

- 25°C
- 42°C
- 56°C
- 76°C

--- Herschel-Bulkley Model

Shear Rate (s⁻¹)

FIG. 4

Apparent Viscosity (cP)

- 7 days
- 2.5 months

--- Herschel-Bulkley Model

Shear Rate (s⁻¹)
A. CLASSIFICATION OF SUBJECT MATTER
CIOL l/222(2006.01)i, C07C 215/08(2006.01)i, C07C 217/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
CIOL l/222; C09K 8/02; B01D 17/05; CIOL 1/22; CIOL 1/30; F17D 1/17; CIOC 1/20; C09K 8/36; C07C 215/08; C07C 217/06

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: heavy crude oil, water, co-solvent, alkylamine, emulsion, transporting, extracting, production well, amphiphilic

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2011-0077311 Al (ROGEL, E. et al.) 31 March 2011 See abst ract ; paragraphs [0019] - [0031], [0046] - [0053] ; and claims 1, 6, 9, 10, 24.</td>
<td>1,3,5,7,9-21,23-25</td>
</tr>
<tr>
<td>Y</td>
<td>US 2010-0248996 Al (SAWDON, C. A.) 30 Sept ember 2010 See abst ract ; paragraph [0016] ; and claims 25, 30, 40.</td>
<td>2,4,6,8</td>
</tr>
<tr>
<td>A</td>
<td>US 5360458 A (FORSBERG, J. W. et al.) 01 November 1994 See abst ract ; column 3, line 15 - column 19, line 22 ; and claim 1.</td>
<td>1-25</td>
</tr>
<tr>
<td>A</td>
<td>US 6178980 BI (STORM, D. A.) 30 January 2001 See abst ract ; column 3, line 63 - column 9, line 11 ; and claims 1 - 4.</td>
<td>1-25</td>
</tr>
<tr>
<td>A</td>
<td>US 6402934 BI (CHHEDA, B. D. et al.) 11 June 2002 See abst ract ; column 2, line 53 - column 7, line 25 ; and claims 1, 4 - 7.</td>
<td>1-25</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search
02 September 2014 (02.09.2014)

Date of mailing of the international search report
02 September 2014 (02.09.2014)

Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer
LEE, Dong Wook
Telephone No. +82-42-481-8163

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2011-0077311 Al</td>
<td>31/03/2011</td>
<td>CA 2773728 Al</td>
<td>31/03/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2011-038125 A2</td>
<td>31/03/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2011-038125 A3</td>
<td>21/07/2011</td>
</tr>
<tr>
<td>US 2010-0248996 Al</td>
<td>30/09/2010</td>
<td>AT 508175 T</td>
<td>15/05/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 602008006760 D1</td>
<td>16/06/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201000548 Al</td>
<td>29/10/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2075302 Al</td>
<td>01/07/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2207863 Al</td>
<td>21/07/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2207863 Bl</td>
<td>04/05/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8242059 B2</td>
<td>14/08/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wo 2009-047478 Al</td>
<td>16/04/2009</td>
</tr>
<tr>
<td>US 6178980 Bl</td>
<td>30/01/2001</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2299104 C</td>
<td>04/05/2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1205404 C</td>
<td>08/06/2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1265446 A</td>
<td>06/09/2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO 5210976 Al</td>
<td>30/10/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1033471 Al</td>
<td>06/09/2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1033471 Bl</td>
<td>17/09/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA00001955 A</td>
<td>08/03/2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20000903 A</td>
<td>04/09/2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20000903 D</td>
<td>24/02/2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 326829 Bl</td>
<td>23/02/2009</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)