(19) **日本国特許庁(JP)**

(12) 特 許 公 報(B2)

(11)特許番号

特許第3719522号 (P3719522)

(45) 発行日 平成17年11月24日 (2005.11.24)

(24) 登録日 平成17年9月16日 (2005.9.16)

(51) Int.C1.7

F I

HO3K 3/84

HO3K 3/84

Z

請求項の数 6 (全 7 頁)

(21) 出願番号 特願平8-527336

(86) (22) 出願日 平成8年3月13日 (1996.3.13)

(65) 公表番号 特表平10-503909

(43) 公表日 平成10年4月7日(1998.4.7)

(86) 国際出願番号 PCT/FR1996/000387

(87) 国際公開番号 W01996/028888

(87) 国際公開日 平成8年9月19日 (1996. 9.19)

審査請求日 平成15年3月11日 (2003.3.11)

(31) 優先権主張番号 95/02947

(32) 優先日 平成7年3月14日 (1995.3.14)

(33) 優先権主張国 フランス (FR)

(73) 特許権者

トムソン マルチメディア ソシエテ ア

ノニム

フランス国, 92400 クールベボワ, ラ・デファンス 5, プラス・デ・ボージ

ュ 9番

||(74)代理人

弁理士 伊東 忠彦

|(72) 発明者 コミンジュ,マルシャル

フランス国、38000 グルノーブル、 リュ・ダレムベール 36番、ジャルダン ・ド・サン・ポール

最終頁に続く

(54) 【発明の名称】 疑似ランダムスイッチング装置及び方法

(57)【特許請求の範囲】

【請求項1】

N台の電流又は電圧ソース(E0-E6)<u>を</u>疑似ランダムスイッチング<u>する</u>装置であって

上記 N 台のソースを第 1 の N 個の出力の系列(X 0 - X 6)に切換える第 1 の $\underline{AA y + Y}$ グ手段(A)と、

上記N台のソースを上記第1の手段の確率に対称的な確率で第2のN個の出力の系列(X0'-X6')に切換える第2のスイッチング手段(B)と、

上記第1<u>のN個の出力の系列</u>又は<u>上記</u>第2の<u>N個の出力の系列の</u>何れかの出力の系列を第3の出力の系列に同程度の確率で多重化する手段(C)と、

を有することを特徴とする装置。

【請求項2】

<u>上記第1のスイッチング手段(A)と上記第2のスイッチング手段(B)は、同一のスイ</u>ッチ(S1-S9)のネットワークにより構成され、

各スイッチは2個の入力及び2個の出力を具備し、

各ネットワークは同じランダムシーケンス発生器により制御され、

各ネットワークの対応するスイッチは上記疑似ランダムシーケンス発生器の同一ビットにより制御され、

上記第1のスイッチング手段のN個の入力は、上記第2のスイッング手段とは逆の順序で上記N台のソースに接続される、

10

ことを特徴とする請求項1記載の装置。

【請求項3】

上記第1の<u>N個の</u>出力の系列(X0-X6)及び上記第2の<u>N個の</u>出力の系列(X'0-X'6)は、互いに逆の順序で参照され、

上記多重化する手段(C)は、別のネットワークに属する同一の順序の2個の出力の一方を、上記第3の出力の系列の一つの出力に多重化することを特徴とする請求項2記載の装置。

【請求項4】

上記第1のN個の出力の系列又は上記第2のN個の出力の系列の多重化は、ランダムシーケンス発生器の付加ビットにより制御されることを特徴とする請求項2又は3記載の装置

10

20

【請求項5】

<u>上記ランダムシーケンス発生器は帰還ループを備えたシフトレジスタを含み、</u>

上記ループは、上記レジスタの入力を、上記レジスタの所定の数のメモリに接続された入力を有する排他的論理和の出力に接続することにより実現されることを特徴とする請求項2万至4のうちいずれか1項記載の装置。

【請求項6】

<u>N台の電流又は電圧ソース(E0-E6)を疑似ランダムスイッチングする方法であって</u>

.

N台のソースを第1のN個の出力の系列(X0-X6)の方に切換える第1の段階と、 上記の第1の段階の切換えの確率に対し等しい確率と比較した場合に対称的な切換えの確率となるように、N台のソースを第2のN個の出力の系列(X'0-X'6)の方に切換える第2の段階と、

上記第1のN個の出力の系列又は第2のN個の出力の系列の一方を、第3のN個の出力の 系列(F0-F6)に等しい確率で多重化する段階と、

を有することを特徴とする方法。

【発明の詳細な説明】

本発明は、電流又は電圧ソースを無作為に切換える方法及び装置に関する。本発明は、特に、ディジタルオーディオシステム(光、又は、光磁気ディスク、ディジタルテレビジョン)用のマルチビット変調器に使用される。

30

ある種の回路では、所望の値の電流を発生させるべく所定の数の電流ソースからの電流を 加算するため、複数の電流ソースの中から所定の数の電流ソースをアドレス指定する必要 がある。このアドレス指定のタイプは、例えば、数通りの別個の電流レベルを発生させる マルチビット変調器で使用される。上記のレベルは、必要に応じた台数の電流ソースから の電流を加算することにより得られる。

厳密に同一の値の電流を発生する電流ソースを実現することは困難である。これは、集積回路基板の特性の局部的な変化と、上記のタイプの回路のため使用される従来より利用可能な製造工程の限界とに起因する。従って、ソースにより発生される電流の値は、ある誤差の余裕を有する。

上記の誤差の影響を制限するため、電流ソースをアドレス指定する前に、所定の電流レベルの誤差を変えるよう電流ソースを疑似ランダム的に同程度の確率で切換えることが提案されている。例えば、8台のソースをアドレス指定する必要があるとき、値<<1>>のレベルは、8台のソースの中の何れか1台を無作為にアドレス指定することにより発生され、値<<2>>のレベルは、8台のソースの中の何れか2台を無作為にアドレス指定することにより発生される。

従来の切換え方法は、スイッチの構造から名付けられたバタフライ法である。この方法は、2の冪乗に一致する台数の電流ソースを必要とする応用で使用される。この方法については後で詳細に説明する。電流ソースの台数が2の冪乗に一致しない場合に、バタフライ法は採用されず、ソースの切換えが同程度の確率で行われない。これにより、ソースの平均誤差ではあるが、不所望なバイアスが生じる。

50

40

10

20

30

40

50

本発明の目的は、N台の電流又は電圧ソースの疑似ランダムスイッチング装置であって、この疑似ランダムスイッチング装置は、

上記N台のソースを第1のN個の出力の系列に切換える第1のスイッチング手段と、

上記第1の手段の確率に対称的な確率で上記N台のソースを第2のN個の出力の系列に切換える第2のスイッチング手段と、

上記第1又は第2の何れかの出力の系列を第3の出力の系列に同程度の確率で多重化する手段とからなることを特徴とするスイッチング装置である。

本発明の特定の一実施例によれば、上記スイッチング手段は、各スイッチが2個の入力及び2個の出力を有する同一のスイッチのネットワークからなり、各ネットワークは同じランダムシーケンス発生器により制御され、上記第1のスイッチング手段のN個の入力は、上記第2のスイッング手段とは逆の順序で上記N台のソースに接続される。

本発明の特定の一実施例によれば、上記第1及び第2の出力の系列は、互いに逆の順序で参照され、上記の多重化する手段は、上記第3の出力の系列の一つの出力と同一の参照名を有する2個の出力の一方を多重化する。

特定の一実施例によれば、上記のスイッチのネットワークは、バタフライネットワーク形である。

特定の一実施例によれば、上記第1又は第2の出力の系列の多重化はランダムシーケンス 発生器の付加ビットにより制御される。

特定の一実施例によれば、上記ランダムシーケンス発生器はループ状のシフトレジスタからなり、上記のループは、レジスタの入力を、上記レジスタの所定の数のメモリにその入力が接続された排他的論理和の出力に接続することにより実現される、

本発明の他の目的は、N台の電流又は電圧ソースの疑似ランダムスイッチング方法であり、この疑似ランダムスイッチング方法は、

N台のソースを第1のN個の出力の系列の方に切換える第1の段階と、

第2の段階中の切換えの確率が上記の第1の段階の切換えの確率に同程度の確率と比べて対称的であるように、N台のソースを第2のN個の出力の系列の方に切換える第2の段階と、

上記第1又は第2の出力の系列の一方を第3のN個の出力の系列に同程度の確率で多重化する段階とからなることを特徴とする。

特定の一実施例によれば、上記多重化の段階は、疑似ランダムシーケンス発生器のビット により制御される。

本発明の他の特徴及び利点は、添付図面により示されたその例に限定されることのない実施例の説明を通して明らかにされる。図面において、

図 1 は、バタフライ形処理により制御されたスイッチングネットワークを介する 8 台の電流ソースのアドレス指定装置を表わす図であり、

図2は、2の冪乗と一致しない多数のソースのアドレス指定装置を表わす図であり、

図 3 は、各ソースの参照番号の関数として重み付けられた図 2 の装置の各ソースのスイッチング回数のグラフであり、

図4は、本発明の実施例によるアドレス指定装置を表わす図である。

図1には、スイッチのネットワークを制御するバタフライ形の方法による8台のソースのアドレス指定装置が示される。8台の電流ソースは、E0乃至E7の名前が付けられる。上記装置の8個の出力は、×0乃至×7の名前が付けられる。上記装置の機能は、8台のソースE0乃至E7の中の何れかを8個の出力×0乃至×7の中の何れかに同程度の確率で接続させることである。このため、上記装置は、各スイッチが2個の入力及び2個の出力を有する12個のスイッチS1乃至S12により構成される。スイッチに送られた制制に受け、2個の入力信号は、夫々、一方の出力又はもう一方の出力に切換えられる。各スイッチの入力は、2台の電流ソース、又は、それ自体が別個の電流ソースの組に直接又は間接的に接続された別のスイッチの2個の出力に接続される。各電流ソースを23の中の1個の出力に多重化させる必要があるならば、3個のスイッチを通過させる必要がある。12個のスイッチは、12個のフリップフロップよりなるシフトレジスタにより実

20

30

40

50

現された疑似ランダムシーケンス発生器により制御され、幾つかのフリップフロップの出力は排他的論理和をうけ、この演算の結果は、最初のフリップフロップの入力に帰還される。かくして、周期が 2¹² - 1 = 4 0 9 5 ビットであるビットの疑似ランダムシーケンスが発生させられる。

かかる疑似ランダムシーケンス発生器の実現は、当業者には周知であり、これ以上の説明を行わない。より多くの情報のため、例えば、サイモン ヘイキン(Simon Haykin)著の書物"通信システム"、

ジョン ウィレイ アンド サンズ(John Wiley and Sons)、1994年刊行のページ579乃至596が参照できる。

より一般的に言うと、直列した n 個のフリップフロップからなる上記のタイプの疑似ランダムシーケンス発生器は、 2^n - 1 個の語を発生し、ゼロだけにより構成された語は許されない。 1 周期中に、各フリップフロップは、 2^{n-1} 回の状態 << 1 >> と、 2^{n-1} - 1 回の状態 << 0 >>である。状態 << 1 >> 及び << 0 >> は略同一の確率を有する。

再度図1を参照すると、各スイッチは、疑似ランダム発生器のシフトレジスタのあるビットの状態(フリップフロップ)に応答する。従って、各クロックパルスにおいて、スイッチの状態は、電流ソースと出力の間のパスを変更、修正する。各出力は1台のソースだけに接続される。

アドレス指定されたソースの数が 2 の冪乗と一致しないとき、図 1 の装置は採用されないことが分かる。この場合、スイッチは、同程度の確率でソースを出力に切換えるため配置できない。従って、電流ソースのアドレス指定にバイアスが現れ、何台かのソースは他のソースよりも頻繁にアドレス指定される。その結果として、電流ソースの値に関する誤差の平均化の効果は小さい。

図 2 には、 7 台のソース E 0 乃至 E 6 を無作為にアドレス指定する装置が示される。図 1 に関して説明されたネットワークと類似した 9 個のスイッチからなるネットワークが使用される。 9 個のスイッチは 3 段のスイッチング段に設けられる。

第1の段で、スイッチS1、S2及びS3は、夫々、電流ソースの対(E0,E1)、(E2,E3)及び(E4,E5)を切換える。ソースE6は第2の段だけで切換えられる。ソースの台数が奇数台である場合に、7台のソースの中の1台のソースは所定の段で切換えられない。

第2の段で、スイッチS4及びS5の各入力の対は、スイッチS1の一方の出力と、スイッチS2の一方の出力に夫々接続される。スイッチS6は、ソースE6と、スイッチS3の2個の出力の一方に接続される。スイッチS6の入力に接続されないスイッチS3の出力は、第3の段に直接的に伝達される。

第3の段で、スイッチS7は、スイッチS4の出力及びスイッチS6の出力を切換え、一方、スイッチS9は、スイッチS4の出力及びスイッチS6の出力を切換える。スイッチS8は、上記スイッチS3の出力と、スイッチS5の出力を切換える。スイッチS5の別の出力は、第3の段で切換えられない。

スイッチ S 7 、 S 8 、 S 9 の出力と、スイッチ S 5 の切換えられない出力は、夫々、装置の出力 0 、 4 、 1 、 5 、 2 、 6 及び 3 を構成する。

図3のグラフAは、装置の各出力に対し、疑似ランダム発生器の1周期中に上記出力により受けられたソースの重み付き和を与える。出力 X がソース3を受けるとき、値<<3>>が累積され、出力がソース6を受けるとき、値<<6>>が累積され、以下同様である。出力に対するソースの寄与が常に同一確率であるならば、各出力に対し得られる和は同じである。同一確率ではない場合に、出力3は、例えば、他のソースよりも大きい重み付け係数を有する若干数のソースを受ける。同一確率の線が線Bにより与えられる。図3のグラフに対応する疑似ランダム発生器に使用された特性多項式は、

 $P = 1 + X^3 + X^{10}$

であることに注意する必要がある。

図4には、本発明の上記実施例に従う装置が示される。上記装置は、特定の形式で接続された二つのスイッチネットワークA及びBからなる。上記の二つの各ネットワークは、図

2のネットワークと同一である。二つのネットワークのスイッチは、同一の疑似ランダムシーケンス発生器により制御される。第1のネットワークは、ソースE0乃至E6を出力X0乃至X6に接続する。第2のネットワークは、第1のネットワークに対称的であり、ソースE0乃至E6がその入力に逆の順序で存在する。第1のネットワークの入力がソースE0に接続されるならば、対応する第2のネットワークの入力はソースE6に接続される。各ネットワークの出力に対しても同じことが言える。第1のネットワークの出力はX0乃至X6の名前が付けられる。

図4において、第2のネットワーク自体は第1のネットワークの鏡像である。これは、前節に記載された内容と同じ意味である。

上記の装置は、2個の入力及び2個の出力を有する7台のマルチプレクサからなり、各マルチプレクサの入力は同一の参照番号を有する出力に接続される。全マルチプレクサ(図4においてCで示される)は、疑似ランダムシーケンス発生器の同一ビットにより制御される。従って、マルチプレクサの7個の出力は、第1のネットワークの出力だけ、又は、第2のネットワークの出力だけに接続される。かくして、1台の電流ソースが二つ以上のネットワークにより引き寄せられることはない。多重化の機能は、二つのネットワークの確率を平均化することである。

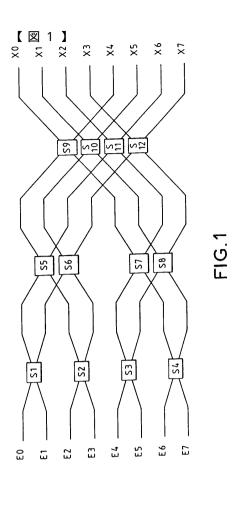
図3のグラフCは、第2のネットワークに対応し、第1のネットワークに対するグラフAと等価である。ネットワークの対称性により、線Bに関してグラフの対称性が生じることが分かる。実際上、線Bは、グラフAとBの値のハーフサムに対応する。かくして、全出力に接続されるべき全ソースに対し同一確率が多少得られる。

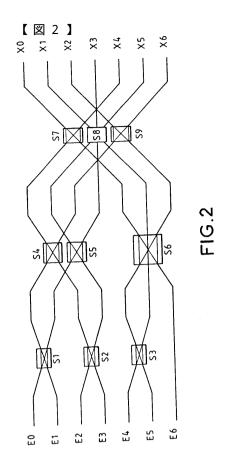
上記の定義された多項式を用いて、1023回のサイクルに関するシミュレーションから 得られたグラフは、以下の表1に定義された座標を有する。

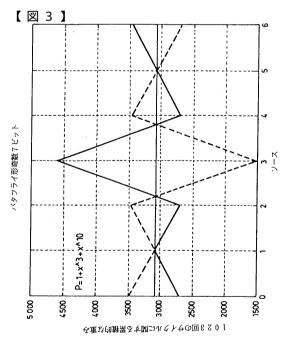
	グラフA	グラフB	グラフC
出力 0	3 4 5 6	2682	3 0 7 2
出力1	3 0 7 1	3 0 7 1	3 0 7 1
出力2	3 4 5 4	2686	3 0 7 0
出力3	1 5 3 3	4605	3 0 6 9
出力 4	3 4 5 2	2 6 8 4	3 0 6 8
出力 5	3 0 6 7	3 0 6 7	3 0 6 7
出力6	3 4 5 0	2682	3 0 6 6

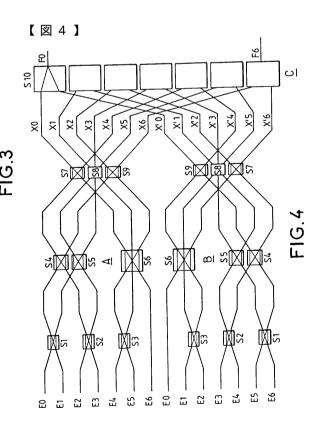
表 1

上記の実施例は、奇数台のソースに関係するが、本発明は、2の冪乗に一致しないあらゆる台数のソースに対し容易に一般化することが可能である。


本発明は、電流ソースの疑似ランダムアドレス指定に限定されることなく、他の応用、例えば、電圧ソースのアドレス指定に使用される。


10


20


30

40

フロントページの続き

(72)発明者 パヤルデ,フレデリク フランス国,92400 クールベボワ,ラ・デファンス 5,プラス・デ・ボージュ 9番 ト ムソン マルチメディア内

(72)発明者デロヴァ, フランシスフランス国, 38720サン・イレル・デュ・トゥベ, ロティスマン・レ・コンプ(番地なし)

審査官 石井 研一

(56)参考文献特開昭50-146854(JP,A)特開昭59-134911(JP,A)特開昭59-148914(JP,A)米国特許第4225816(US,A)

(58)調査した分野(Int.CI.⁷, DB名) HO3K 3/84