(54) Titre : MATERIAUX RECYCLABLES MONO OU MULTICOUCHE A PROPRIETES HYDROFUGES OU D'IMPERMEABILITE AUX GAZ, ET PROCEDURE DE FABRICATION
(54) Title: SINGLE OR MULTI-LAYER RECYCLABLE MATERIAL WITH BARRIER PROPERTIES AGAINST HUMIDITY AND GASES, AND PROCESS FOR ITS MANUFACTURE

(57) Abrégé/Abstract:
Single or multi-layer material, with barrier properties against humidity and gases and, possibly, against light, which is recyclable, i.e. its components can be fully reused in the production of further material with the similar properties. Basically the material is produced from cellulose pulp or, rather, from sheets of paper or cardboard which are impregnated with a gel forming hydrocolloid sol or with a mixture of hydrocolloids, after which the cellulose-hydrocolloid compound is dehydrated and cooled down. The resulting material can be used, among other applications, in the production of packages to contain goods or other substances, coatings for construction, such as roofs and the like.
Single or multi-layer recyclable material, with barrier properties against humidity and gases and a process for its manufacture.

**ABSTRACT:**

Single or multi-layer material, with barrier properties against humidity and gases and, possibly, against light, which is recyclable, i.e. its components can be fully reused in the production of further material with the similar properties. Basically the material is produced from cellulose pulp or, rather, from sheets of paper or cardboard which are impregnated with a gel forming hydrocolloid sol or with a mixture of hydrocolloids, after which the cellulose-hydrocolloid compound is dehydrated and cooled down. The resulting material can be used, among other applications, in the production of packages to contain goods or other substances, coatings for construction, such as roofs and the like.
Single or multi-layer recyclable material, with barrier properties against humidity and gases and a process for its manufacture

Field of Invention

This invention relates to a single or multi-layers material and a process for its production. The material provides barriers against humidity, gases and light radiation, and in its composition there are substances that make it completely recyclable.

The recycling properties of the material provided by present invention mean that, apart from the product formed with this material, once used, the constituents can be reused as prime material for the production of further material similar to that of the invention, for the manufacture of other products.

Among varied uses of the material of the invention, it can be noted the manufacture of paper or cardboard packages, either laminated, formed or injected from a cellulose pulp treated in accordance with the invention, to contain food, beverages or products other than food, such as liquid detergents, lubricating oils and greases, pastes or waxes for the shining of surfaces, paints and varnishes among others. Also sheets/layers according to the invention can be used in different industrial areas other than packaging such as in the manufacture of impermeable coatings to be used in the construction industry, e.g. covering for roofs etc.

The sheets and/or layers prepared in accordance with the invention also have the additional property of keeping the taste - and hygienic characteristics of food which may be packed in containers made from them, as long as they are kept in aseptic conditions usual for this type of operations.

Related Art

A great variety of laminated materials more precisely multi-layer materials, are known in the art, that offer effective barriers against humidity, rays of light (radiation) and penetration of gases, all of which find their principal industrial use in the
manufacture of disposable packages to contain food, biological substances etc., especially when these substances are in liquid form.

In the mentioned uses, it is necessary that the material that will form the package, has certain basic properties such as adequate mechanical resistance so that the package can stand the manipulations in the different stages of manufacture, filling, distribution and use while containing the product. It is also necessary that the laminated material of the package be impermeable to humidity and gases and, additionally, it might be necessary that the package offers a barrier against light radiation.

Impermeability is essential when the substance to be packed is a liquid, thereby preventing leakage, or when the substance can be damaged by humidity that tends to penetrate through the package, for instance, if filling in vacuum has taken place, or at a pressure considerably lower than the environmental with the purpose of displacing the air from its content.

The impermeability of a package can be indispensable, e.g. to avoid oxidation of its contents, leakage or contamination of odours, to prevent the degradation of vitamins or proteins of the content, etc.

The degrading action of light is well known, e.g. ultraviolet radiation, in some types of organic molecules, so a package that stores organic substances should offer an appropriate barrier against this type of radiation.

A great diversity of improved known multi-layer materials, has shown advantages in some of the above mentioned factors, compared with previous known multi-layer materials in the technical field.
Generally, multi-layer materials with barriers against humidity, gases and light radiation, consist of a supporting sheet and/or layer, or a structural sheet of cellulose, on which metallic sheets and/or layers like aluminium, zinc or tin, polyethylene sheets, layers or polyethyleneglycol polyesters etc., are placed on top. But due to the nature of the laminated components and their integration to the material compounds, the multi-layer materials are difficult to be recycled and are not degradable.

Degradation of those industrial products that are no longer utilized, is more and more necessary as much for the preservation of the environment, as well as recovering the basic materials or substances that form the ground. When it is not possible to combine degradation of industrial materials with their use, it is necessary to find their recyclability, i.e that the materials that constitute a product can reenter the production cycle of the same product, or other industrial product, thereby avoiding to use materials recently extracted from the natural environment, materials that can become scarce or expensive to extract.

For the recyclability of the products to be practical, this has to be achieved in few and economical stages of post treatment. The invention offers precisely these characteristics of recyclability of materials which have been provided with several layers to give it appropriate barriers against humidity, gases and light radiation.

Summary of the Invention

In general terms, the invention consists of a sheet and/or a layer, based on structural support of cellulose, consisting of a cellulose pulp, such as cardboard or paperboard, impregnated or covered with a gel forming hydrocolloid sol such as Agar-Agar, which provides same with barrier properties against humidity and gases. (sol = colloid
dispersed in a liquid). Additionally the cellulose support can be impregnated or covered with a barrier against light, such as an ink based on oxides, or titan or barium salts.

The substance used as a barrier against light must be electrically neutral and must not be of the migratory type. The electric neutrality of the light barrier is fundamental to reassure the recyclability of the material that forms the sheet since, otherwise, the gel forming hydrocolloid can alter its gelification properties. On the other hand, if the barrier against light is an ink of the migratory type, this can become concentrated in one of the joining sides between two sheets or layers thus altering its adhesiveness.

Use of a gel forming hydrocolloid as a barrier against humidity and gases, supported by a base of cellulose, give the material very particular characteristics. In fact, some hydrocolloids, like ficolloids, possess a thermic hysteresis of appropriate rank for the majority of applications of sheets or layers so manufactured, because a gel forming hydrocolloid such as Agar-Agar melts at 100°C and gelifies at 34°C so that the gel integrated in the cellulose support, and duly dehydrated, will keep its barrier properties against humidity and gases until the material is subjected to the fusion temperature of the hydrocolloid, when the gel will start to dehydrate to be converted into a sol. This is what allows the sheet and/or layers of the invention to be used in different applications with ample temperature variations, as long as they do not reach the fusion temperature of the hydrocolloid and, on the contrary, the material of the sheet and/or layers can be recycled at the mentioned fusion temperature to form a pulp of cellulose containing some hydrocolloids and inks with barriers against light.

**Description of Preferred Embodiments**

For a detailed explanation of the invention, two
principal variants will be described. One embodiment, is applicable when a sheet and/or layer of the invention includes, as a support, a cellulose pulp, and a second embodiment is applicable when it includes a support consisting of a sheet or layer of cardboard or paperboard, previously formed by traditional methods.

In the first embodiment, the sheet and/or layer of the invention is formed from a cellulose pulp, which can consist of a cellulose pulp of prime use, or a mixture of the same with a recycled cellulose pulp, the latter obtained from paper, carton, rag waste or other sources, that supply cellulose or recyclable fibres, among which can be found waste from laminated materials of the present invention.

A gel forming hydrocolloid sol, such as Agar-Agar, is prepared in a weight equivalent proportion as a minimum at a 0.5% in respect to the total water content in the pulp, supposing that the gel forming hydrocolloid possesses a gel strength of 600 g/cm². This proportion will be inverse to the gel strength of the gel forming hydrocolloid used, in comparison with the reference of 0.5% to a gel strength of 600 g/cm².

Considering a given strength of gel, the proportion in weight of a gel forming hydrocolloid, with regard to the total water content in the cellulose mass, must take into consideration the possible previous content of gel forming hydrocolloids that the initial pulp may have, as a consequence of the use of recycled materials in it.

When adding the mixture of hydrocolloid to the cellulose pulp, the latter must have the same or higher temperature than the gelification point to avoid gelification of the gel forming hydrocolloid. To avoid this in this stage of incorporation of the sol to the cellulose, it is desirable to do it immediately before or when the pulp enters the
wire of the manufacture of paper.

Once the gel forming hydrocolloid is incorporated in the cellulose pulp, the hydrocolloid will disperse on all of the pulp and then this is treated in a conventional way to form sheets and/or layers of cardboard or paper, until a substantially dry sheet or layer is obtained with the gel forming hydrocolloid integrated in it having the final stage of dehydrated gel, a minimum proportion of 1 : 1000 in weight of hydrocolloid, being obtained in respect to the cellulose content.

The adding of a barrier against light can be done in the first stages of manufacture, i.e. before or after adding the gel forming hydrocolloid to the cellulose pulp, or rather after having formed the paper or carton sheet/layer, in which case the barrier against light is applied on one of the sides of the sheet/layer, as a cover.

In a second embodiment of the process of the invention, a ready made cardboard or paperboard is applied on a structural support in the form of paper sheet/cover, by conventional methods. In this case the sheet/layer of paper or cardboard is impregnated with a gel forming hydrocolloid sol prepared with at least a 0.1% in weight with regard to the total water content of the mixture. This proportion will be inverse to the gel strength of the used hydrocolloid, in comparison with the reference of 0.2% to a gel strength of 600 g/cm² in the first embodiment.

The sheet/layer being impregnated with a gel forming hydrocolloid sol is maintained at a temperature superior to that of the gelification point of said sol, until the hydrocolloid is completely dispersed on the sheet/layer.

In a next stage, the sheet/layer of paper, cardboard or paperboard already impregnated with the gel forming hydrocolloid is dehydrated and cooled down to the environmental temperature, obtaining
a dehydrated gel absorbed in the cellulose pulp which forms the base
layer/sheet, the final humidity so obtained being the usual of paper and
cardboards.

As in the first embodiment, in the second one a final
dry product is obtained with the hydrocolloid integrated in the resulting
sheet/layer so that the dehydrated gel is found present in a minimum
proportion of 1 : 1000 in weight, with regard to the cellulose content.

If the industrial application of the laminated material
requires it, the sheet/layer already impregnated with gel and already
dried, will be subject to a process of covering it with a barrier against
light, by conventional methods such as printing or other equivalent
methods.

Whether the first or the second embodiment, has been
used to form the laminated material of the invention, the barrier against
light will consist of, preferably, an ink or covering based on oxides or
barium or titan salts, which are hydroscopic, electrically neutral and
are not migratory.

When it is convenient to form a multi-laminated mate-
rial, e.g. of the corrugated carton type, sheets/layers of the invention
will be used, preferably prepared in accordance with the process
described in the first or second embodiments of manufacture and joining
of the sheets can be done either by traditional techniques, on condition
that the used adhesive does not interfere with the recyclable charactera-
istics of the material. Otherwise the joining of the sheets/layers can
be made using the self-adhesive properties of the hydrocolloid. In this
last case, the joining of the sheets/layers contemplates the stages of
heating the sheets and/or layers, and if necessary moistening them,
previously treated with a gel forming hydrocoloids. This moistening is
done at a temperature the same as or superior to the temperature of the fusion of the gel forming hydrocolloid, with the purpose of restoring the state of sol in each interstitial in the cellulose pulp furnishing the sheets to be joined together.

After the hydrocolloid is brought to its sol state, the sheets'/layers' sides that are free from barriers against light, are put face to face and pressure is applied so that the sol of both surfaces of two adjacent sheets/layers is joined. While the sheets/layers are joined by pressure, they are cooled down to change the sol back to gel, after which they are dehydrated to a level usual for papers and cardboard.

The hydrocolloids used in the invention may be chosen out of any available variety, on condition that they are inert to the substances that can or should be in contact with the laminated material.

A second condition that these hydrocolloids should fulfill, is their thermal hysteresis which should be found within temperature ranges compatible with the industrial application of the laminated material. For certain applications these ranges must be as ample as possible and must include the environmental temperatures most frequent, so that the gel forming hydrocolloid maintains its state of gel and its fusion point, i.e., the point when the gel is transformed into a sol, should preferably be substantially higher than the most extreme environmental temperatures to a specific industrial application. A typical case of industrial application that requires a thermal hysteresis of ample range in the above mentioned sense is the one for packages for food.

A third condition to watch our for, is the gel strength of the gel forming hydrocolloid used in the laminating material of the invention, which will contribute to the total resistance of the sheet/layer as far as traction and cutting are concerned.
Some preferred hydrocolloids used in the invention, and particularly convenient to use in the sheet/layer obtained in the manufacture of packages, are Agar-Agar, Sodium Alginate, hydrosoluble gums of the microbial generation like Gellan Gum or the like.

Also, the synergic effect obtained by the combination of hydrocolloids is known, where at least one of them is gel forming, a few examples of synergic mixtures in which the gel strength is improved, and can be used in the invention, can consist of xanthan/carrageenan, locust bean gum, sodium alginate / methox pectins, among other mixtures.

Another synergic effect that can be used in the context of the invention, and must not be confused with the synergism obtained by mixtures between hydrocolloids, consists in the improvement of the gel strength obtained when mixing a gel forming hydrocolloid and certain ionic concentrations of Li for improving the barrier against gases, or Ca, Mg, Na or K for improving the gel strength. The following Table 1 shows the improvement of the gel strength of Gellan Gum when it is mixed with certain ionic concentrations.
Table 1 (Molar)

Ionic concentration of

<table>
<thead>
<tr>
<th>(Molar)</th>
<th>Ca</th>
<th>Mg</th>
<th>Na</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gel %</td>
<td>Improv.</td>
<td>Gel %</td>
<td>Improv.</td>
<td>Gel %</td>
</tr>
<tr>
<td>0.0010</td>
<td>47.2</td>
<td>51.9</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.0020</td>
<td>44.1</td>
<td>51.7</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.0030</td>
<td>31.7</td>
<td>34.7</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.0040</td>
<td>29.2</td>
<td>37.2</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.0050</td>
<td>29.2</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.0075</td>
<td>26.6</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.0100</td>
<td>24.7</td>
<td>28.5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.0300</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>47.2</td>
</tr>
<tr>
<td>0.0400</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>70.0</td>
</tr>
<tr>
<td>0.0500</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>70.5</td>
</tr>
<tr>
<td>0.0700</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.0750</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>39.2</td>
</tr>
<tr>
<td>0.1000</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>33.7</td>
</tr>
<tr>
<td>0.2000</td>
<td>---</td>
<td>---</td>
<td>26.3</td>
<td>---</td>
</tr>
<tr>
<td>0.3000</td>
<td>---</td>
<td>---</td>
<td>27.8</td>
<td>---</td>
</tr>
</tbody>
</table>

Certain generalizations or variations of the product as well as to the proposed process are obvious and should be considered included in the claimed protections. Said variations will result even more obvious if these do not tend to improve the basic characteristics already defined, such as the condition of barrier against humidity and gases, compatible with a recyclable product and which offers a support of good mechanical characteristics, as is the cellulose. In this manner, the use of woven fabrics as a support of the gel forming hydrocolloid, the
use of supports that include a cellular or alveolar structure, the adding of another type of coatings or barriers different to the contemplated in the preceding statements, such as recyclable radiopaque coatings, cellulose in any of its industrial forms such as the extruded cellulose, etc., will depend on the particular industrial applications of each case, and therefore they will be included in this invention.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

1. A single or multi-layer recyclable material, with barrier properties against humidity, gases and, light, applicable in the manufacture of containers of paper or cardboard, coating materials for construction, CHARACTERIZED in that said recyclable material is constituted of at least one base sheet or layer made from cellulose pulp and, at least, one gel-forming hydrocolloid selected from Agar-Agar, the weight portion of the hydrocolloid being at least 0,5% in respect to the total water content in the pulp, the gel forming hydrocolloid possessing a gel strength of 600 g/cm².

2. A single multi-layer recyclable material according to claim 1, wherein said material is constituted, at least, of a nearly ready-made, but not ready-dried paper coated with a solution of said hydrocolloid, said hydrocolloid being in the form of dehydrated gel in the resulting laminated sheet or layer, the minimum ratio of the gel forming hydrocolloid to the cellulose content being about 1 : 1000, by weight; different single-layers of recyclable being joined to each other, in a conventional way.

3. A single multi-layer recyclable material according to claim 2, wherein said different single-layers of recyclable material are pinned to each other by a common interphase contact formed by said gel forming hydrocolloid, to form a multi-layer recyclable material.

4. A single or multi-layer recyclable material, according to any one of claims 1 to 3, CHARACTERIZED in
that at least one of the constituting sheets or layers of said material is provided with a substance used as a barrier against light substance, either integrated as an ink in the cellulose pulp, or incorporated to one of the faces of the layer, as a coating, said substance being electrically neutral and hydrosoluble.

5. A process to manufacture a single layer recyclable material according to any one of claims 1 to 3, CHARACTERIZED by comprising a first step for integrating a sol of at least one gel forming hydrocolloid selected from Agar-Agar, into a cellulose pulp substrate being at a temperature above the gelation point of said sol, said gel-forming hydrocolloid being at a ratio of at least 0.5%, by weight, to the total water content in said cellulose pulp, said hydrocolloid processing a gel strength of 600 g/cm²; a second step for forming a sheet of paper or cardboard in a conventional way; and a third step for dehydrating and post cooling said resulting sheet, at environmental temperature, until reaching a desired humidity level on dry basis, typical of paper.

6. A process to manufacture a single layer recyclable material, according to claim 5, CHARACTERIZED in that an electrically neutral and hydrosoluble substance having barrier properties against light is integrated into the cellulose pulp, either before or after adding said hydrocolloid.

7. A process to manufacture a single layer recyclable material, according to claim 6, CHARACTERIZED in that a coating of said barrier against light substance is incorporated to the already formed layer.
8. A process to manufacture a single layer recyclable material, according to anyone of claims 1 or 3, CHARACTERIZED by comprising a first step wherein a sol of at least one gel forming hydrocolloid selected from Agar-Agar, is added to a paper or cardboard sheet, the ratio of said hydrocolloid to the total water content being at least 0.5%, by weight, such amount of hydrocolloid being applicable when said hydrocolloid possesses a gel strength of 600 g/cm²; a second step wherein said sheet is maintained at a temperature superior to the gelation point of said sol until the sol, or the hydrocolloid, is completely dispersed on said sheet; and a third step wherein said treated sheet is subjected to dehydration and post-cooling at environmental temperature to obtain a cellulosic sheet having said gel absorbed therein and a conventional final humidity.

9. A process to manufacture a single layer recyclable material, accordance to claim 8, CHARACTERIZED in that the sheet or layer of paperboard or cardboard is coated on one of its faces with electrically neutral and hydrosoluble substance as a barrier against light.

10. A process to manufacture a single layer recyclable material, according to any one of claims 6, 7 or 9 CHARACTERIZED in that said barrier against light is an ink or a coating based on titanium or barium.

11. A process to manufacture a multi-layer recyclable material, according to any of claims 1 and 2, CHARACTERIZED in that sheets or layers of paperboard or cardboard, already impregnated with Agar-Agar according to any one of claims 5, or 7-10 are joined to each other
by wetting them at the same or superior fusion temperature of said gel forming hydrocolloid, to drive same into a sol stage; thereafter, faces free from said barrier against light, or two or more of said sheets are contacted each other, and pressed together, through conventional methods, whilst cooled down to transform said sol into a gel, and later on are dehydrated.

12. A process to manufacture a single or a multi-layer recyclable material, according to any one of claims 5 to 11, CHARACTERIZED in that said gel forming hydrocolloid selected from Agar-Agar and ionic lithium derivatives, are mixed for enhancing the barrier against gases.