

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2019/092599 A1

(43) International Publication Date

16 May 2019 (16.05.2019)

(51) International Patent Classification:

G03B 15/06 (2006.01) *H04N 1/028* (2006.01)
H04N 1/00 (2006.01) *G03B 15/02* (2006.01)
G03B 15/12 (2006.01)

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(21) International Application Number:

PCT/IB2018/058725

(22) International Filing Date:

07 November 2018 (07.11.2018)

(25) Filing Language:

Italian

(26) Publication Language:

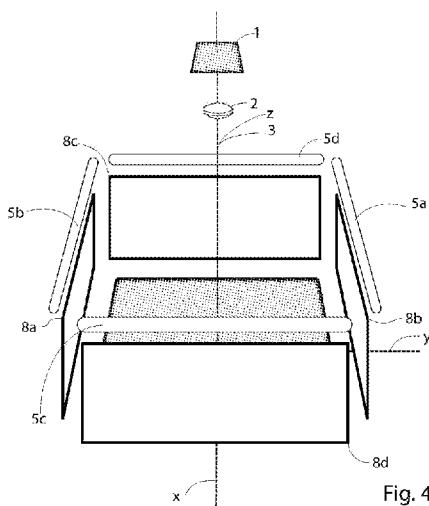
English

(30) Priority Data:

102017000127774 09 November 2017 (09.11.2017) IT

(72) Inventors; and

(71) Applicants: COLAGRANDE, Silvia [IT/IT]; Via del Fontanile Arenato, 301, 00163 Roma (IT). COLAGRANDE, Massimo [IT/IT]; VIA DELLA PISANA, 419, 00163 Roma (IT). COLAGRANDE, Lorenzo [IT/IT]; Via del Fontanile Arenato, 206, 00163 Roma (IT).


(74) Agent: CICCARELLO, Basilio; Ingeniis s.a.s. di B. Ciccarello e C., Via Antonio De Berti, 24, 00143 Roma (IT).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

Published:

- with international search report (Art. 21(3))
- in black and white; the international application as filed contained color or greyscale and is available for download from PATENTSCOPE

(54) Title: IMAGE SCANNER WITH MULTIDIRECTIONAL ILLUMINATION

(57) Abstract: An image scanner comprises a two-dimensional matrix sensor (1), a scanning plane (4) defined by the axes (x, y), an optical system (2), an optical axis (3) perpendicular to the scanning plane (4) and coinciding with an axis (z), a lighting system comprising at least four light sources (5a, 5b, 5c, 5d) that have its own main axis and are positioned so that each light source is adjacent to one side of the scanning plane (4) and illuminates it from a different direction. Each light source is arranged with its own main axis in a plane parallel to a facing mirror-reflecting surface (8a, 8b, 8c, 8d) above said facing mirror-reflecting surface and is oriented so as to radiate the scanning plane (4) by specularly reflecting its light beams on the respective mirror-reflecting surface situated on the opposite side (4) of the scanning plane (4) with respect to the light source (5a, 5b, 5c, 5d).

Description

Title of Invention: IMAGE SCANNER WITH MULTIDIRECTIONAL ILLUMINATION

Technical Field

[0001] The present invention relates to an image scanner with multidirectional illumination, based on a two-dimensional matrix sensor for color or grayscale images. Such a two-dimensional matrix sensor is suitable for obtaining color and 3D elevation information, through the digitization of objects and three-dimensional surfaces according to the "Photometric Stereo" technique and therefore is able to generate elevation, height and relief 3D information of the digitization object by combining the information of different images of the object, all said images being acquired from the same point of view but varying the direction of lighting in the different acquisitions. The object of digitization is a surface portion of a three-dimensional object such as a coin or a vase or a basically flat surface with three-dimensional details such as a surface of painting, bas-relief, fabric, leather, wood panel, slab of marble, stone, ceramics, wallpaper, printing matrix, etc.

Background Art

[0002] Industrial reproduction for decorative purposes of such surfaces requires the digitization of color information but also often the digitization of elevation, height and relief information in such a way as to be able to copy and reproduce, in the smallest details, the three-dimensional structure of the original surface. Art reproduction also has digitization requirements similar to industrial reproduction for decorative purposes. Printing for decorative purposes, for example for making gadgets, cellphone covers, restaurant menus, etc. has now also acquired the ability to reproduce relief surfaces that mimic natural surfaces and therefore also needs to digitize elevation information in addition to color information. CAD and virtual reality applications also need to create material libraries that include color and 3D information in order to naturally simulate different types of materials on virtual objects and surfaces.

[0003] The applications described above need to capture highly detailed elevation information and therefore at very high resolution and very often also on large formats.

[0004] With such high requirements the digitization of elevation, height and relief information was until recently mainly realized using the "punctual scanning" technique (for example by using a laser or confocal sensor) and more recently also using the technique "Photometric Stereo" thanks to the introduction of a category of scanners created on the basis of the teachings of WO/2016/063231. The "Photometric Stereo" technique has clear advantages compared to punctual scanning as, among other things,

it allows faster digitization times, and provides color information in addition to elevation information.

- [0005] The "Photometric Stereo" technique allows to estimate a "Normal Map" of the surface of an object starting from a set of color or grayscale digital images of the same, in particular by repeating the digitization of the object with illuminations from different directions. The "Photometric Stereo" technique allows also to obtain a kind of elevation model commonly defined "Depth Map", for example through a process of integration of the "Normal Map", but also directly according to the algorithms used to realize the "Photometric Stereo". Both the "Normal Map" and the "Depth Map" allow you to generate 3D representations of the digitized object.
- [0006] The imaging systems that implement the "Photometric Stereo" technique are basically divided into two categories today.
- [0007] The first category consists of integrated systems and more in detail of professional scanners, generally of medium or large format, the professional scanners being based on linear sensors, precision mechanical movements and a compact lighting system that is integrated in the scanning process; these integrated systems provide high quality and repeatability results and are characterized by a high simplicity of use thanks to the integration of all the parts, but they are generally very expensive.
- [0008] The second category consists of non-integrated systems, generally of medium-small format, being based on a matrix camera and a traditional lighting system arranged and managed in a manual way; these are systems which, thanks to the fact that they do not require precision mechanical movements, have a lower cost, but do not always provide optimal quality results, and cannot be easily operated by anyone due to the lack of integration between the parts. The main obstacle to the realization of an integrated Photometric Stereo scanner based on a matrix sensor is related to the positioning and arrangement of the light sources; in fact, an optimal implementation of the "Photometric Stereo" technique requires that at least four light sources be placed so as to uniformly illuminate the viewing area from at least four different directions; but with respect to a linear sensor, the viewing area of a matrix sensor is much wider and therefore requires to position the light sources at a greater distance from the viewing plane in order to guarantee the necessary uniformity of illumination, in particular maintaining the parallelism and the direction of the light rays and this obviously makes the creation of a compact lighting system much more difficult and in particular makes integration into a scanner very difficult.
- [0009] The creation of an integrated scanner, based on a matrix sensor, would be desirable, but would require the creation of a compact lighting system that provides at the same time the optimal lighting for the implementation of the "Photometric Stereo" technique.

[0010] Figure 1 shows, in an axonometric view, a detail of a prior art embodiment of an image scanner based on a matrix type sensor 1 in which the digitization takes place by acquisition of the digitization object placed on the scanning plane 4. In particular, the acquisition is performed by the unit consisting of the image sensor 1 and the optical system 2 which are oriented on an optical axis 3 perpendicular to the scanning plane 4 and centered thereon. The axes x, y and z define a system of Cartesian axes in which the x and y axes are at right angles to each other, coplanar to the scanning plane 4 and centered on the optical axis 3, and the z axis, perpendicular to the axes x, y, corresponds exactly to the optical axis 3. The detail of this embodiment comprises a single light source 5a centered on the axis x and arranged so as to irradiate the entire scanning plane 4 from a direction. In this prior art embodiment, distance traveled from the rays of light emitted by the light source 5a as well as incidence angulation thereof on the scanning plane 4 at different points 6a, 7a are very different as a consequence of the light source 5a being relatively close to the scanning plane 4. This results in a relatively high unevenness of illumination on the scanning plane 4 shown in Figure 1 by a uneven dotting thereof.

[0011] Figure 2 shows, in an axonometric view, a detail of a typical prior art embodiment identical to Figure 1 with the exception of the light source 5a which is placed at a greater distance from the scanning plane 4. As a result, in the embodiment of Figure 1 the distance traveled from the rays of light emitted by the light source 5a as well as the incidence angulation thereof on the scanning plane 4 at different points 6a, 7a are more similar and therefore determine a greater uniformity of illumination on the scanning plane 4 that is shown in Figure 2 by a uniform dotting thereof.

[0012] Figure 3 shows, in an axonometric view, a typical prior art embodiment of a image system based on a matrix sensor 1 and adapted to the implementation of the "Photometric Stereo" technique. In this prior art embodiment there are in fact four light sources 5a, 5b, 5c, 5d arranged so as to uniformly illuminate the scanning plane 4 from corresponding four different directions. This prior art embodiment, however, makes it very difficult to integrate the parts into a scanner due to the space required by the lighting system.

[0013] It would therefore be desirable to create a scanner based on a two-dimensional matrix sensor that is able to solve the previously described problem and, in particular, that provides a small lighting system suitable for optimally implementing the "Photometric Stereo" technique and therefore a compact lighting system that illuminates however the scan plane evenly and from at least four different directions.

[0014] US 2003/0193800 A1 describes a light box with diffused and uniform lighting for the photographic reproduction of objects. Four light sources in the form of tubes are arranged at the four vertical edges inside the light box. Each light source is covered by

a curved plate designed to diffuse the light in all directions. The walls of the light box are covered with a gray layer or paint to evenly diffuse the light. The diffused lighting system does not provide an optimal solution for the implementation of the "Photometric Stereo" technique, since, even if only one light source is activated at a time, the object of digitization would still be radiated in a relatively diffused manner, from multiple directions simultaneously and not from one direction.

[0015] US 2015/0370146 describes a collapsible and therefore portable light box, which allows to illuminate objects to be photographed with direct and diffused light. Light sources are represented at the top of the box on opposite walls, but could be of different numbers and placed in different places inside the box. The opposing side walls can have different colors to achieve particular lighting effects. The lighting system of US 2015/0370146 does not provide an optimal solution for the implementation of the "Photometric Stereo" technique. Indeed, even if only one light source is activated at a time and the diffusion of light inside the box is minimized, by using for example black colored plates for the back walls, a lighting solution similar to the one described in Figure 1 of the accompanying drawing would be obtained. In both cases, the object to be photographed is irradiated by a specific direction but in an uneven manner. This occurs because of the arrangement of the sources of light and, in particular, of the close distance between the light sources and the object to be photographed.

Summary of Invention

[0016] In this context, the technical task underlying the present invention is to propose an image scanner for digitizing three-dimensional surfaces according to the "Photometric Stereo" technique which overcomes the drawbacks of the prior art mentioned above.

[0017] An object of the present invention is to provide an image scanner, based on a two-dimensional matrix sensor, provided with a simple and compact lighting system which overcomes the limits of unevenness of the lighting described above.

[0018] Another object of the invention is to provide a lighting system arranged in a manner optimal for the "Photometric Stereo" technique.

[0019] The invention provides an image scanner including a two-dimensional matrix sensor, a scanning plane defined by the axes x, y at right angles each other, an optical system, an optical axis perpendicular to the scanning plane and coinciding with an axis z perpendicular to the scanning plane, a lighting system comprising at least four light sources that have its own main axis and are positioned so that each light source is adjacent to one side of the scanning plane and illuminates it from a different direction, wherein each light source is arranged with its own main axis in a plane parallel to a facing mirror-reflecting surface above said facing mirror-reflecting surface and is

oriented so as to radiate the scanning plane by specularly reflecting its light beams on the respective mirror-reflecting surface situated on the opposite side of the scanning plane with respect to the light source and adjacent to the scanning plane.

[0020] According to the invention, the scanner uses a two-dimensional matrix sensor whose viewing area is much wider than that of a linear sensor: this would require placing the light sources at a greater distance from the viewing plane in order to guarantee the necessary uniformity of lighting. Differently from the prior art cited above, each light source is adjacent to one side of the scanning plane and oriented so as to indirectly illuminate the viewing plane through the specular reflection of the light rays on a mirror-reflecting surface placed on the wall of in front of the light source. In other words, the rays of light emitted by the light source and arriving at the scanning plane are more parallel because they have to travel a greater distance before reaching the scanning plane and this causes a greater uniformity of illumination while allowing the realization of a relatively compact system.

[0021] In greater detail, as is known, the mirror-reflecting surface, when it is hit by a beam of parallel light rays, reflects the beam while maintaining the parallelism of the light rays, that is to say without spreading the light emitted in different directions as does the light box of the known technique.

Brief Description of Drawings

[0022] Further characteristics and advantages of the present invention will become most clear from the indicative, and therefore not limiting, description of an embodiment of an image scanner with multidirectional illumination as illustrated in the accompanying drawings in which:

[0023] - Figures 1 to 3 are axonometric views of a detail of a known embodiment of an image scanner;

[0024] - Figure 4 is an axonometric view of a first embodiment of the scanner according to the present invention; and

[0025] - Figure 5 represents a detail of the light source 5a of Figure 4.

Description of an invention embodiment

[0026] With reference to Figures 4 and 5, an image scanner based on a two-dimensional matrix type sensor 1 according to the present invention acquires the object of the digitization placed on the scanning plane 4. As in the state of the art, the acquisition is carried out by a unit consisting of the image sensor 1 and the optical system 2 which are oriented on an optical axis 3 perpendicular to the scanning plane 4 and centered thereon. The axes x, y and z define a system of Cartesian axes in which the x and y axes are at right angles to each other, coplanar to the scanning plane 4 and centered on the optical axis 3, and the z axis, perpendicular to the axes x, y corresponds exactly to

the optical axis 3.

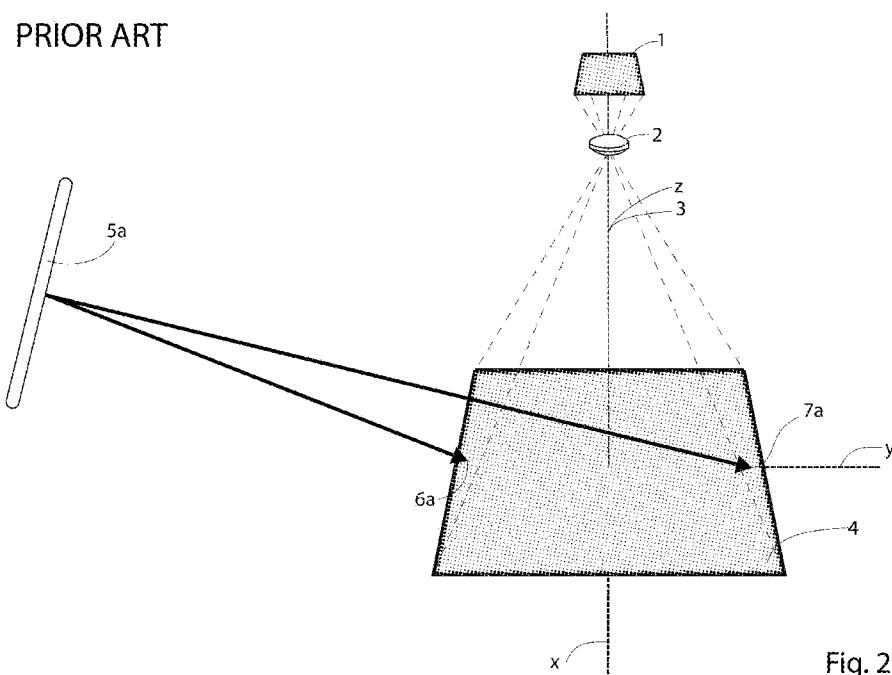
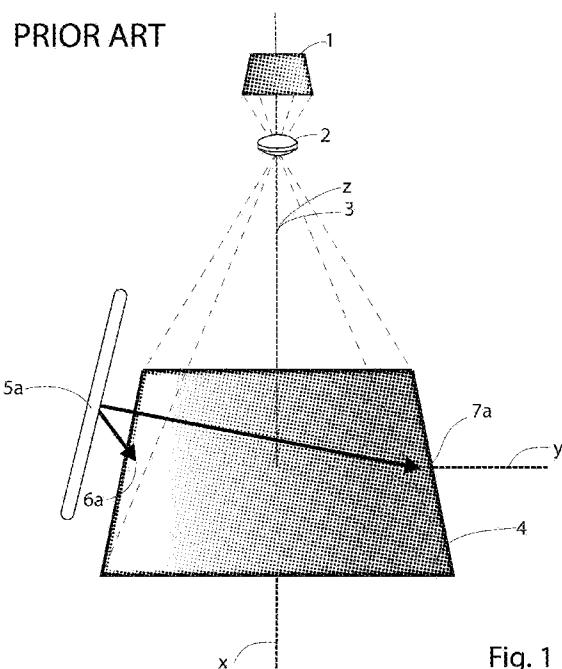
[0027] According to an embodiment of the invention, a lighting system comprises four light sources 5a, 5b, 5c, 5d having its own axis and being arranged so that each light source is adjacent to one side of the scanning plane 4 and illuminating it from a different direction. In the embodiment presented, each light source 5a, 5b, 5c, 5d is arranged with its own main axis in a plane parallel to a facing mirror-reflecting surface 8a, 8b, 8c, 8d, above a respective mirror-reflecting surface 8a, 8b, 8c, 8d, so as to irradiate with light rays such mirror-reflecting surface 8a, 8b, 8c, 8d situated in the opposite side of the scanning plane 4 with respect to the light source 5a, 5b, 5c, 5d, and adjacent said scanning plane 4, being oriented so as to reflect its rays of light on the scanning plane 4.

[0028] In the detail of Figure 5, for simplicity, a single light source 5a is shown, centered on the axis x and arranged above the mirror-reflecting surface 8a so as to irradiate the mirror-reflecting surface 8a, from which the rays are directed at the entire scanning plane 4. Schematically, it is shown that any emission of light from the source 5a, specularly reflected from the mirror reflecting surface 8a, hits the whole surface of the scanning plane 4 along the line defined by the arrows 6a, 7a.

[0029] The advantages of the invention with respect to the prior art are understood. Compared to a scanner of the same size shown in Figure 1, a high uniformity of illumination is achieved on the scanning plane 4.

[0030] With the same lighting as that obtained in the scanner of Figure 3, a compact scanner of reduced dimensions is obtained.

[0031] It should also be understood that the light sources, as well as the mirror-reflecting surfaces, may be more than four in number, to obtain for example a greater number of different lighting directions and therefore further optimize the results obtainable from the application of the Photometric Stereo technique.



Claims

[Claim 1]

Image scanner comprising a two-dimensional matrix sensor (1), a scanning plane (4) defined by the axes (x, y) at right angles each other, an optical system (2), an optical axis (3) perpendicular to the scanning plane (4) and coinciding with an axis (z) perpendicular to the scanning plane (4), a lighting system comprising at least four light sources (5a, 5b, 5c, 5d) that have its own main axis and are positioned so that each light source is adjacent to one side of the scanning plane (4) and illuminates it from a different direction, characterized in that each light source (5a, 5b, 5c, 5d) is arranged with its own main axis in a plane parallel to a facing mirror-reflecting surface (8a, 8b, 8c, 8d) above said facing mirror-reflecting surface and is oriented so as to radiate the scanning plane (4) by specularly reflecting its light beams on the respective mirror-reflecting surface (8a, 8b, 8c, 8d) situated on the opposite side (4) of the scanning plane (4) with respect to the light source (5a, 5b, 5c, 5d).

[Claim 2]

Image scanner according to claim 1, wherein the light sources (5a, 5b, 5c, 5d) consist of an array of LEDs.

PRIOR ART

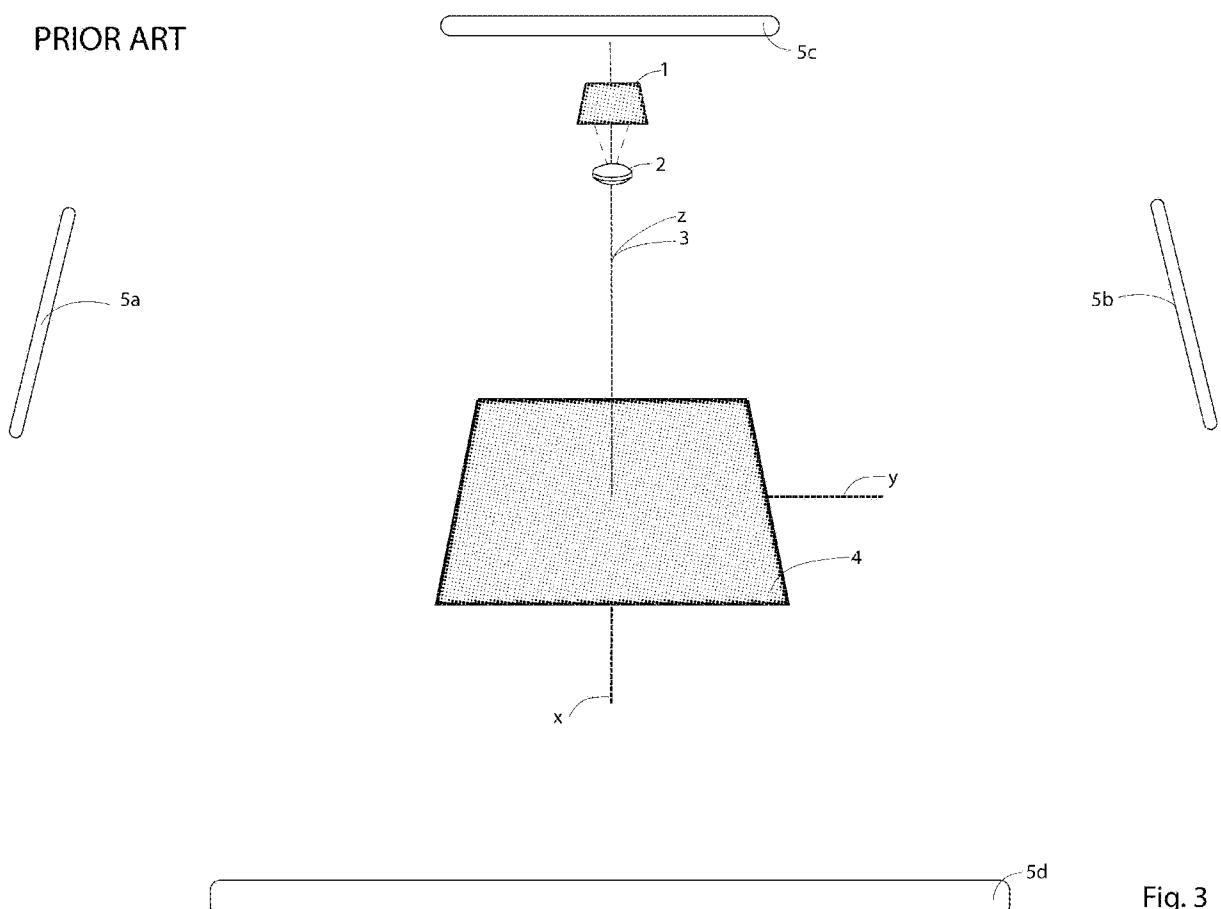


Fig. 3

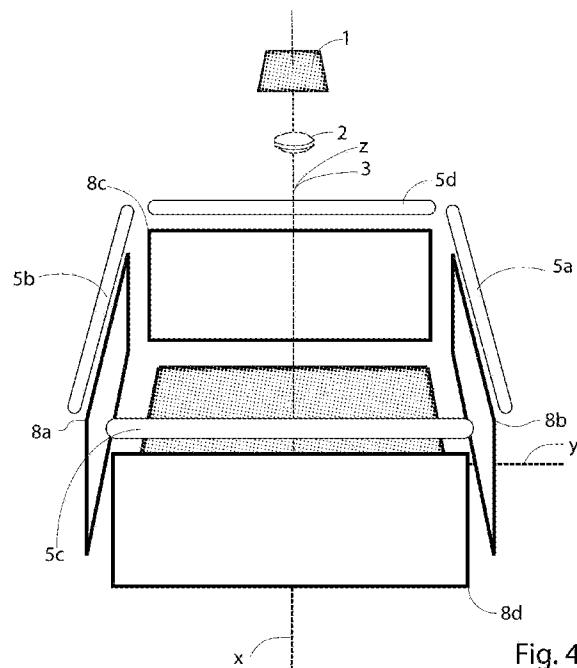


Fig. 4

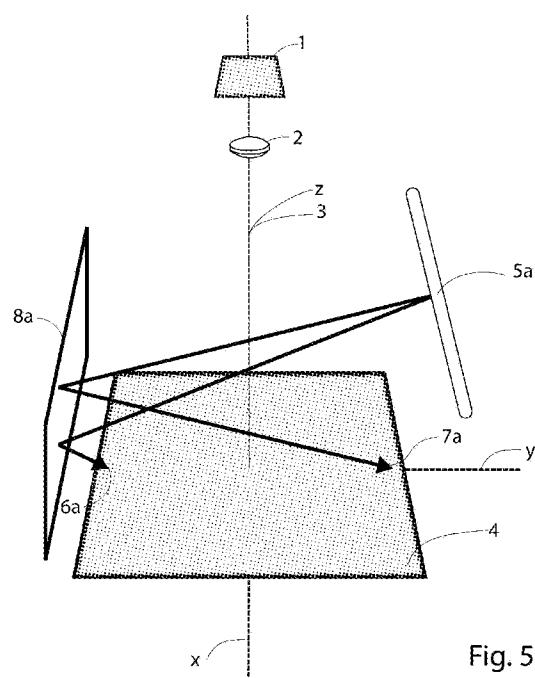


Fig. 5

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2018/058725

A. CLASSIFICATION OF SUBJECT MATTER
 INV. G03B15/06 H04N1/00
 ADD. G03B15/12 H04N1/028 G03B15/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 H04N F21V G03B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2010/213392 A1 (HATZAV IUVAL [US] ET AL) 26 August 2010 (2010-08-26) abstract figures 4,5 paragraphs [0001], [0014], [0017] paragraphs [0042], [0044], [0045] ----- A US 2003/193800 A1 (LAI PENG CHENG [TW] ET AL) 16 October 2003 (2003-10-16) abstract figures 3-5 claims 1,6 paragraphs [0006], [0015] - [0017] ----- -/--	1,2
A		1,2

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

19 December 2018

07/01/2019

Name and mailing address of the ISA/
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040,
 Fax: (+31-70) 340-3016

Authorized officer

Thollot, Julien

INTERNATIONAL SEARCH REPORTInternational application No
PCT/IB2018/058725

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2015/370146 A1 (JOHNSON AARON [US] ET AL) 24 December 2015 (2015-12-24) abstract figure 1 paragraphs [0004] - [0015] paragraph [0033] paragraph [0042] paragraphs [0054] - [0060] -----	1,2
1		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2018/058725

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 2010213392	A1	26-08-2010	NONE	
US 2003193800	A1	16-10-2003	DE 20303771 U1 GB 2388654 A TW 582487 U US 2003193800 A1	18-06-2003 19-11-2003 01-04-2004 16-10-2003
US 2015370146	A1	24-12-2015	US 2015370146 A1 WO 2015200504 A1	24-12-2015 30-12-2015