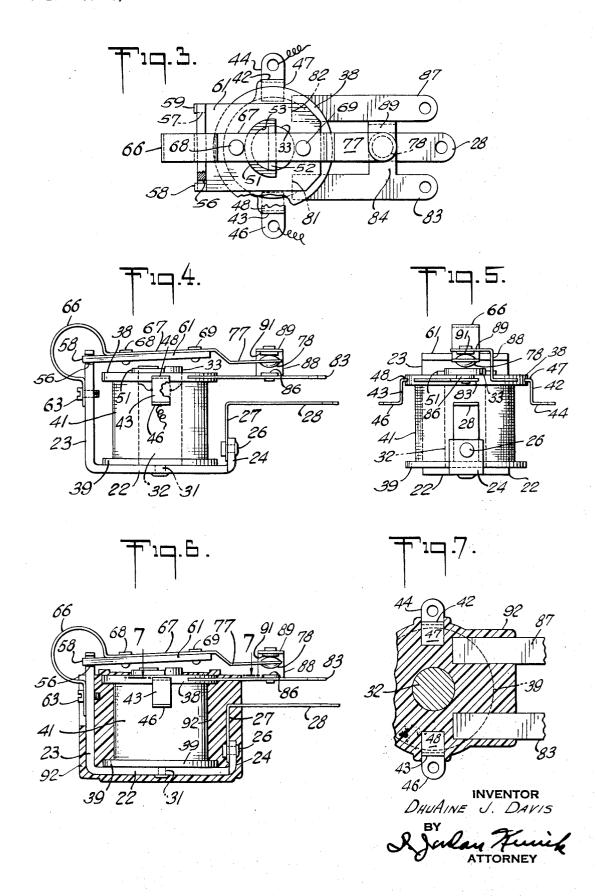
D. J. DAVIS

RELAY

Filed Nov. 6, 1967

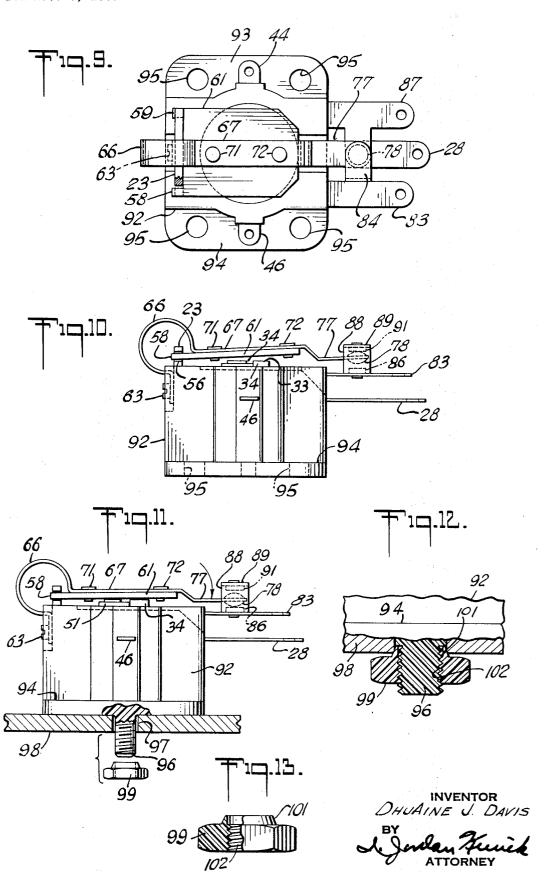
3 Sheets-Sheet 1


DHUAINE J. DAVIS

ATTORNEY

RELAY

Filed Nov. 6, 1967


3 Sheets-Sheet 2

RELAY

Filed Nov. 6, 1967

3 Sheets-Sheet 5

1

3,517,358

RELAY

DhuAine J. Davis, Wheaton, Ill., assignor to Hermetic
Coil Co., Inc., Wheaton, Ill., a corporation of Connecticut

Filed Nov. 6, 1967, Ser. No. 680,644 Int. Cl. H01h 85/02

U.S. Cl. 335-192

11 Claims

ABSTRACT OF THE DISCLOSURE

A relay having a coil form that supports electrical contacts and an insulated frame conducting electrical current. Unitary spring biasing means that cooperate with both the armature and the alternating contact element of 15 the relay. Biasing spring also performs current transmitting function. Encapsulation of relay effectively insulates circuit terminals and electromagnetic components.

BACKGROUND OF THE INVENTION

Field of the invvention

This invention relates to relays and, more particularly, 25 and 12. to a novel relay structure wherein the relay frame performs a current carrying function in addition to supporting the various components of the relay and wherein the armature biasing means also conducts the relay current to the alternating relay contact element.

Description of the prior art

Prior art relays display complex structures which have multifarious parts to perform separate functions. Such prior relays frequently have cumbersome means for in- 35 sulating the electrical terminals from each other and manifest crude construction principles which produce devices that are not only cumbersome but are also larger in size than is necessary to perform the relay function.

SUMMARY OF THE INVENTION

The present invention comprises a relay having an Lshaped frame that not only supports the relay coil and magnetizable core, but also performs the function of transmitting current from the power source for operating the alternating contact of the relay. Furthermore, the relay armature biasing means is connected to the frame to transmit current to the alternating contact which is mounted directly on the relay armature. By this means, 50 a considerable number of parts of prior art relays are eliminated and there is provided a relay that is considerably more compact in space and less expensive to produce than prior relays. Furthermore, the arrangement of parts and the reduction of their number permits easy encapsulation of a large part of the relay assembly so that the latter is readily handled for installation purposes. The encapsulation also provides convenient electrical insulation of the relay coil as well as insulation between the circuit terminals connected to the relay.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view, approximately actual size, of one embodiment of the device embracing the present invention:

FIG. 2 is an exploded perspective view of several parts of the device shown in FIG. 1;

FIG. 3 is an enlarged top view of the device shown in FIG. 1, some parts being omitted, some parts being broken away, and other parts being shown in dotted out-

FIG. 4 is a side view of the device shown in FIG. 3;

FIG. 5 is a front end view of the device shown in FIG. 4;

FIG. 6 is a ceneral vertical partial section view of the device shown in FIG. 4, some parts being shown in elevation and some parts being omitted;

FIG. 7 is a section view taken approximately on line 7-7 of FIG. 6;

FIG. 8 is similar to FIG. 1 wherein the device is encapsulated;

FIG. 9 is a top view of an encapsulated embodiment of the device shown in the previous figures, and including an enlarged integrally formed mounting base;

FIG. 10 is a side view of the device shown in FIG. 9; FIG. 11 is a side view of another encapsulated embodiment of the present invention with the substitution of a mounting screw for the integral mounting base of FIG. 9, and showing in exploded relation a mounting nut removably threadable on said screw for securing the device on a board or the like;

FIG. 12 is an enlarged fragmentary view of a portion of FIG. 11 showing the mounting nut engaged with the mounting screw; and

FIG. 13 is a partial section and partially broken away enlarged view of the mounting nut shown in FIGS. 11

DESCRIPTION OF THE PREFERRED EMBODIMENTS AND OPERATION

Referring now to the drawings in detail, the embodi-30 ment shown in FIGS. 1 through 6 comprises an electrically conductive L-shape metal frame, generally designated 21, having a horizontal base 22 and a vertical support wall 23 integrally formed at the rear end of said base. Integrally formed at the forward end of base 22 is an upwardly extending bracket 24 to which is attached by means of suitable rivet 26 or the like, the vertical leg 27 of an elongated horizontally extending power line terminal 28.

Secured in aperture 29 in base 22 is the stub 31 of a 40 a vertically extending elongated soft iron magnetizable core 32, the upper flat surface 33 of which has a diametrically slotted recess 34 formed therein.

Surrounding core 32 is a circular spool, generally designated 36, having a vertical tubular portion 37 and 45 integrally formed upper and lower flanges 38 and 39, respectively, said spool being made of a suitable insulating material. Core 32 forms a close slidable fit with the interior aperture of spool tube 37. Flange 39 rests on the top surface of base 22.

Wound around spool tube 37 is a coil 41 of electrical wire, the ends of said coil being connected to electrically conductive lugs 42 and 43, respectively. Lugs 42 and 43 have integrally formed, outwardly extending terminals 44 and 46, respectively, to which a relay actuator is connected. Lugs 42 and 43 have integrally formed support arms 47 and 48, respectively, which are inserted and secured in corresponding horizontal slots in opposite edges of flange 38.

Removably mounted on the top of core 32 is a semi-circular shaped shading coil 51 having an integrally formed diameter bar 52 which is removably insertable into slot 34, while the semi-circular aperture 53 of said coil interfits with a semi-circular segment of the top of core 32. Shading coil 51 is made of a suitable electrically conductive but non-magnetic material such as copper or brass and lies flat on the top surface of flange 38.

Formed at or near the upper end of wall 23 at the side edges thereof are recesses 56 and 57 which horizontally accommodate respective legs 58 and 59 integrally formed at the rear end of an armature plate 61 which is arrayed generally horizontally above and across the top of spool 36. The cooperation of legs 58 and 59 with respective

3

recesses 56 and 57 permit the limited pivotal action of armature plate 61 in respect of wall 23.

Threaded aperture 62 in wall 23 accommodates screw 63 to secure arm 64 of a curved electrically conductive sheet metal spring 66, said spring having an integrally formed bracket 67 which is connected to armature plate 61 by means of rivets 68 and 69 or the like extending through apertures 71 and 72, respectively, of said bracket, and through apertures 73 and 74, respectively, of armature plate 61. Aperture 76 in arm 64 through which screw 63 extends is somewhat elongated in shape whereby the vertical position of said arm may be adjusted upwards and downwards before being secured to wall 23 so that the proper tension of spring 66 may be adjusted and controlled for optimum pivotal operation of armature 61. 15 Integrally formed on the forward end of bracket 67 is an armature terminal 77 on the end of which is mounted alternating relay contact element 78.

Flange 38 has a pair of spaced apart horizontal recesses 81 and 82. Recess 81 accommodates one end of a 20 first electrically conductive terminal element 83, the other end of which is connectable to electrical apparatus that is controlled by the relay. Intermediate the ends of terminal 83 is an integrally formed laterally extending arm 84 on which is mounted contact element 86.

Recess 82 in flange 38 accommodates one end of a second electrically conductive terminal element 87, the other end of which is connectable to the electrical apparatus controlled by the relay device. Formed integrally intermediate the ends of second terminal 87 is an upwardly extending arm 88 which terminates in a laterally extending lug 89 on which is mounted a contact element 91. Contact element 91 is spaced apart and disposed vertically above contact element 86. Contact element 78 on armature terminal 77 is located in the space between con- 35 tact elements 86 and 91 and is normally in electrical contact with contact element 91, as shown in FIGS. 4, 5, 6 and 10. In this condition, it will be noted that armature plate 61 is normally urged upwardly and spaced apart from the top of core 32 under the action of spring 66. When coil 41 is electrically energized in the manner well known in the art, core 32 becomes magnetized whereby the magnetic forces generated at the upper end of said core causes armature plate 61 to be magnetically attracted to and moved downwardly upon the top of said core and held in that position as shown in FIG. 11, whereby contact element 78 on armature arm 77 is displaced from contact element 91 and is caused to make electrical contact with contact element 86.

Since the hot line lower terminal 28 is connected to the power source, the electrical current passes there-through, through base 22, wall 23, thence through spring 66, terminal 77, and contact element 78, to complete a circuit either between contact element 86 or contact element 91, according as coil 41 is energized or deenergized.

Thus, by means of the novel structure disclosed herein, 55 the L-shaped frame 21 of the relay is utilized to conduct current from the electrical power source. Also, the alternating relay contact 78 is mounted directly upon the working armature 61, whereby a great number of component parts of previous relays are completely eliminated. The 60 biasing spring 66 operating armature 61 is utilized to conduct the electrical current from L-shaped frame 21 to the alternating contact 78 of the relay. Accordingly, the fewer component parts of the present relay perform multiple functions in contrast to single functions of a 65 much greater number of parts in prior art devices.

The relay of the present invention is encapsulated in a case or housing 92 of nylon, Bakelite, or other suitable electrically insulating material, which hermetically seals spool 36 and coil 41 from the atmosphere and encloses most of the L-shaped frame 21 therein. The encapsulation also secures terminals 28, 83 and 87, and lugs 42 second terminals in sa terminal being movab and 43 in position and fixes them rigidly in their respective slots in flange 38. The encapsulation also serves effectively as protective insulation for the current carrying 75 gized and deenergized.

4

frame 21 as well as to secure most of the component parts together in a unitary structure that is compact and easily handled for installation purposes. The encapsulation also serves to insulate the circuit terminals 28, 83 and 87 from each other. Coil terminals 44 and 46 also extend through the encapsulation of case 92 for connection to a coil energizing electrical circuit.

In a further embodiment as disclosed in FIGS. 9 and 10, case 92 may have integrally formed laterally extending mounting flanges 93 and 94 with apertures 95 for accommodating screws or bolts to secure the encapsulated relay in a fixed position upon a panel board or the like.

In another embodiment, the bottom of case 92 has a downwardly extending threaded bolt 96 integrally formed with the lower portion of said case and made of the same insulating material. Mounting bolt 96 which is located centrally of case 92 extends through a suitable aperture 97 in mounting board 98 and is threadably engaged by nut 99 to secure case 92 firmly in position. See FIGS. 11, 12 and 13.

Nut 99 is made of nylon or the like and has a thin, short integrally circular flange 101 extending laterally at the periphery of its axial aperture 102, said flange being somewhat flexible and deformable. When nut 99 is turned tight on bolt 96 against board 98, flange 101 becomes deformed and wedged between the body of said nut and said board to effectively lock the nut on the bolt. The thin flexible and deformable flange 101 serves as an effective lock nut means for assembling the relay upon a board or the like.

It is evident from the foregoing description of the present invention that in addition to the advantages described hereinbefore, the means for securing the magnetic core to the frame with the wire wound spool located on the core and with the slots in the spool flange being adapted to receive the end portions of electrical terminals results in an assembly fixture that holds the component parts together prior to encapsulation, thereby greatly reducing assembly costs and effectively accomplishing a considerable diminution in size of the final relay device.

Although the present invention has been described with reference to particular embodiments and examples, it will be apparent to those skilled in the art that variations and modifications can be substituted therefor without departing from the principles and true spirit of the invention.

1. A relay comprising an electrically conductive frame, means on said frame for connecting the latter to an electric power source, an armature hinged directly to said frame, electromagnetic means on said frame for moving said armature between first and second circuit positions, a biasing spring connected between said frame and said armature, said spring normally urging said armature apart from said electromagnetic means when the latter is deenergized, an alternating terminal integral with said spring and movable with said armature, the current from said power source being conducted through said frame, said spring and said alternating terminal, said electromagnetic means comprising a spool of insulating material, said spool having end flanges, an electrical coil wound around said spool between said flanges, a magnetizable core extending through the interior of said spool, first and second spaced apart slots in the edge of one flange of said spool, first and second circuit terminals the ends of which are inserted into respective first and second slots and being insulated from said electrical coil, and an encapsulating case of insulating material surrounding a portion of said frame and completely surrounding and enclosing said spool, said encapsulating material securing said first and second terminals in said respective slots, said alternating terminal being movable by said armature into electrical contact with either of said first and second circuit terminals according as said electromagnetic means is ener-

- 2. A relay according to claim 1 and further comprising an electrically conductive power circuit terminal connected to said frame, said terminal extending through said encapsulating case and insulated from said first and second circuit terminals.
- 3. A relay according to claim 2 wherein said first and second circuit terminals are laterally spaced apart and said alternating terminal is movable vertically in a plane intermediate said circuit terminals, and further comprising an integrally formed extension on said first circuit terminal, an integral extension on said second circuit terminal, the ends of the extensions on said first and second circuit terminals being located at opposite ends of the vertical path described by said alternating terminal which makes electrical contact with either of said extensions as said elec- 15 trically connected to the winding on said spool. tromagnetic means is energized and de-energized.
- 4. A relay comprising an electrically conductive frame, a magnetic core mounted on a portion of said frame, a wire wound spool of insulating material positioned around said core, a flange on said spool, first and second spaced 20 apart slots in said flange, first and second circuit terminals removably inserted into said first and second slots and supported in position therein, third and fourth spaced apart slots in said flange, third and fourth terminals removably inserted into said respective third and fourth slots, said 25 third and fourth terminals being connected to respective ends of the wire winding on said spool, a power terminal connected to said frame and an encapsulating case of insulating material surrounding the major portion of said frame and enclosing said wire wound spool, said encapsu- 30 lating material securing said first, second, third and fourth terminals firmly in their respective slots while exposed portions of said terminals extend outwardly from said case for connection to external circuitry.
- 5. A relay according to claim 4 wherein said frame is 35 generally L-shaped with said power terminal being connected to said frame near one end thereof; and further including first and second spaced electrical contacts respectively associated with said first and second circuit terminals externally of said encapsulating material; and an armature 40pivotally connected to said L-shaped frame at the other end thereof and including a movable contact interposed between said first and second contacts, said armature being located externally of said encapsulating material.
- 6. A relay comprising: an electrically conductive gen- 45 erally L-shaped frame; a power terminal secured to said frame at one end thereof; an armature pivotally secured to said frame at the other end thereof and including at least one electrical contact movable therewith; a spool formed of an electrically insulating material secured to 50 said frame, said spool having at least one end flange formed of an insulating material and including at least one recess therein; an electrical winding wound about said spool; terminal means including a first portion received within said recess and a second portion mounting a contact and adapted to be engaged by the contact on said armature; and an encapsulating case formed of an insulat-

ing material surrounding the major portion of said frame and said spool and securing said terminal means in said

7. A relay according to claim 6 wherein said flange includes a second recess spaced from said first recess, and a second terminal means received within said second recess, said second terminal means including a contact portion adapted to be engaged by the contact on said armature and electrically spaced from the contact on said first named terminal means.

- 8. A relay according to claim 6 further including a pair of spaced slots in said flange and a pair of electrically conductive lug means terminating in terminals received in respective ones of said slots, said lug means being elec-
- 9. A relay according to claim 6 further including a second recess in said flange spaced from said first recess; a pair of slots in said flange spaced from said first and second recesses and from each other; terminal lugs received in respective ones of said slots and electrically connected to said winding and a second terminal means received in said second recess, said second terminal means having a contact portion spaced from the contact portion of said first terminal means and adapted to be engaged by the contact on said armature; said encapsulating case encompassing substantially all of said structure with substantially only said armature, said first and second contact portions, said first and second terminal means, portions of said lugs and said terminal extending therefrom.
- 10. A relay according to claim 6 wherein said encapsulating case includes an outward projection terminating in a threaded end.
- 11. A relay according to claim 10 and further comprising a plastic nut, a thin deformable integral circular flange formed at one end of the interior aperture of said nut, said nut being threadably received on the threaded end of said projection.

References Cited

UNITED STATES PATENTS

2,802,193	8/1957	Biba 336—192
2,883,635	4/1959	Clark 336—192
2,867,702	1/1959	Rice 335—187
2,907,847	10/1959	Grenier 335—202
2,920,160	1/1960	Heath 335—187
3,001,567	9/1961	Brill 151—7
3,040,143	6/1962	Peay 335—202
3,129,304	4/1964	Hyink 335—202
3,308,407	3/1967	Lake 335—187

FOREIGN PATENTS

4/1958 Germany. 1,027,313

BERNARD A. GILHEANY, Primary Examiner H. BROOME, Assistant Examtner