

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2014/164501 A1

(43) International Publication Date

9 October 2014 (09.10.2014)

WIPO | PCT

(51) International Patent Classification:

B23K 20/12 (2006.01) F28F 9/18 (2006.01)

(21) International Application Number:

PCT/US2014/022615

(22) International Filing Date:

10 March 2014 (10.03.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/777,438 12 March 2013 (12.03.2013) US
14/202,636 10 March 2014 (10.03.2014) US

(71) Applicant: **LOCKHEED MARTIN CORPORATION** [US/US]; 6801 Rockledge Drive, Bethesda, Maryland 20817 (US).

(72) Inventors: **NAGURNY, Nicholas J.**; 7020 Bruin Ct., Manassas, Virginia 20111 (US). **BECKNER, Derek M.**; 9782 Corbett Place, Manassas Park, Virginia 20111 (US). **ELLER, Michael R.**; 2222 Carondelet Street, Apt. G, New Orleans, Louisiana 70130 (US). **MAURER, Scott M.**; 6070 Erinblair Loop, Haymarket, Virginia 20169 (US). **OWEN, Trevor J.**; 9501 Atwood Road, Vienna, Virginia 22182 (US).

(74) Agent: **LARSON, James A.**; Hamre, Schumann, Mueller & Larson, P.C., P.O. Box 2902, Minneapolis, Minnesota 55402 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: PROCESS OF FRICTION STIR WELDING ON TUBE END JOINTS AND A PRODUCT PRODUCED THEREBY

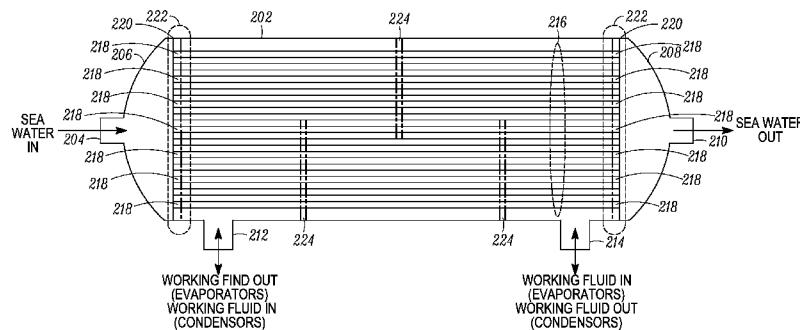


FIG. 2

(57) Abstract: A process of producing shell and tube heat exchangers where the ends of the tubes are secured to a tube sheet while reacting applied FSW forces without introducing a crevice or local deformation near the ends of the tubes. In particular, an interference fit is used to lock the ends of the tubes into the tube sheet without flaring or expanding the tube ends. A FSW process is then used to weld the ends of the tubes to the tube sheet.

PROCESS OF FRICTION STIR WELDING
ON TUBE END JOINTS AND A PRODUCT PRODUCED THEREBY

5

Field

This disclosure relates to friction stir welding on heat exchangers, such as shell and tube heat exchangers.

10

Background

Shell and tube friction stir welded (FSW) heat exchangers have been developed for marine grade applications such as ocean thermal energy conversion, thermal desalination and other relatively low temperature processes. In addition, the FSW process is being used in other heat exchangers that operate under higher temperatures and 15 pressures. In the FSW process as applied to shell and tube heat exchangers, a solid state welding or stirring process is used wherein the ends of tube walls are “stirred” into surrounding tube sheet material without introducing dissimilar metals and without 20 adverse effect to metal grain structure.

In the heat exchanger, the tubes are inserted into tube sheets on either end of the bundle of tubes in a manner similar to traditional shell and tube heat exchanger designs. The ends of the tubes are normally flared prior to the FSW process. This flaring or tube-end expansion allows the tubes to stay in place while reacting the forces applied during 25 the FSW process.

The FSW process eliminates crevices that would ordinarily exist between mechanically rolled tube ends and the surrounding tube sheet material. Elimination of 30 crevices is desirable to obtain a heat exchanger that can have long-life in a corrosive seawater environment. However, the process of flaring or expanding the ends of the tubes can sometimes introduce an undesirable crevice or locally deformed zone that can become a site for preferential crevice corrosion, particularly in a seawater environment.

Summary

This description describes an approach to producing shell and tube heat exchangers, where the ends of the tubes are secured to a tube sheet while reacting applied FSW forces without introducing a crevice or local deformation near the ends of the tubes.

5 In particular, an interference fit is used to lock the ends of the tubes into the tube sheet without flaring or expanding the tube ends. A FSW process is then used to weld the ends of the tubes to the tube sheet.

The tubes and the tube sheets can be made of any metals commonly used in shell and tube heat exchanger assemblies including, but not limited to, aluminum, carbon steel, 10 stainless steel, titanium, copper or other metals and alloys thereof.

The interference fit can be achieved in any suitable manner that avoids flaring or expanding the tube ends. In one embodiment, local deformation of the tube end surfaces or tube sheet surfaces and galling between adjacent surfaces can provide sufficient retention to keep the installed tube ends from being dislodged under a large axially 15 applied load that occurs during the FSW process.

One example of a local deformation is a knurled exterior tube surface at the tube ends. Other examples of achieving an interference fit include, but are not limited to, the use of tubing with external features such as corrugations and low-fin designs, or tubes with exterior raised features that become deformed during installation to effectively 20 locking the tube ends in place in an interference fit.

In one embodiment, a process of connecting a tube to a tube sheet includes inserting an end of the tube into a hole in the tube sheet with an interference fit between the tube end and the tube sheet that locks the tube end into the tube sheet without flaring or expanding the end of the tube adjacent to the tube sheet. The tube end is then FSW to 25 the tube sheet.

In another embodiment, a heat exchanger includes a first tube sheet having a plurality of holes, an inner side and an outer side. A plurality of tubes have first ends disposed in a corresponding one of the holes in the first tube sheet, with an interference fit between each first end and the first tube sheet, and the first end of each tube is not

flared or expanded. The first end of each tube is FSW to the first tube sheet at the outer side of the first tube sheet.

Drawings

5 Figure 1 is a schematic diagram of the layout of a conventional OTEC power generation system in which the described heat exchanger can be utilized in one embodiment.

Figure 2 is a cross-sectional view of a shell and tube heat exchanger according to one embodiment described herein.

10 Figure 3A is an end view of one of the tube sheets of the heat exchanger in Figure 2.

Figure 3B is close-up view of the region A-A in Figure 3A.

Figure 4 illustrates one of the tubes according to one exemplary embodiment.

15 Figure 5 illustrates the end of a tube showing one exemplary embodiment for creating an interference fit.

Figure 6 illustrates the end of a tube showing another exemplary embodiment for creating an interference fit.

Figure 7 is a cross-sectional view showing details of the joint between one of the tubes and the tube sheet prior to FSW.

20 Figure 8 illustrates another exemplary embodiment for creating an interference fit.

Figures 9A and 9B illustrate the embodiment of Figure 8 used with the tubes shown in Figures 5 and 6 respectively.

25 Figure 10 is a cross-sectional view through one of the holes in a tube sheet illustrating the embodiment of Figure 8 installed in the hole of the tube sheet.

Detailed Description

This description describes an approach to producing shell and tube heat exchangers, where prior to FSW of the tubes to the tube sheet, an interference fit is used

to lock the ends of the tubes into the tube sheet without flaring or expanding the tube ends. A FSW process is then used to weld the ends of the tubes to the tube sheet.

The resulting shell and tube heat exchanger can be used in any heat exchange application, whether on land or on or in water. However, the described shell and tube
5 heat exchanger has particular benefits in a salt water environment as the shell and tube heat exchanger eliminates crevices or local deformations near the ends of the tubes that can form sites for preferential crevice corrosion.

To help explain the inventive concepts, a specific application of the shell and tube heat exchanger in an OTEC system will be described. However, it is to be realized that
10 the shell and tube heat exchanger is not limited to use in an OTEC system, but instead can be used in any heat exchange application.

In addition, the inventive concepts are not limited to use in a shell and tube heat exchanger, but instead can be used in any heat exchanger application where it is desirable to connect a tube to a supporting structure using FSW, including but not limited to, in a
15 manner that eliminates crevices or local deformations near the ends of the tubes that can form sites for preferential crevice corrosion. Therefore, the term tube sheet as used herein and in the claims is intended to broadly encompass any supporting structure to which a tube is to be secured, unless otherwise indicated.

Figure 1 is a schematic diagram of the layout of a conventional OTEC power
20 generation system 100. The overall construction and operation of an OTEC system is well known to those of ordinary skill in the art. The OTEC system 100 can be deployed in any suitable body of water such as an ocean, sea, a salt or fresh water lake, etc.

In this embodiment, the system 100 includes an offshore platform 102, a turbogenerator 104, a closed-loop conduit 106, an evaporator 110-1, a condenser 110-2, a
25 hull 112, a plurality of pumps 114, 116, and 124, and fluid conduits 120, 122, 128, and 130. The closed-loop conduit 106 is a conduit for conveying working fluid 108 through the evaporator 110-1, the condenser 110-2, and the turbogenerator 104.

The evaporator 110-1 can be a shell-and-tube heat exchanger that is configured to transfer heat from warm seawater at surface region and working fluid 108 thereby
30 inducing the working fluid to vaporize.

The condenser 110-2 can also be a shell-and-tube heat exchanger that is configured to transfer heat from vaporized working fluid 108 to cold seawater from the deep-water region thereby inducing condensation of vaporized working fluid 108 back into liquid form.

5 Figure 2 illustrates a shell and tube heat exchanger 110 that can be used for the evaporator 110-1 and/or the condenser 110-2. In this example, the heat exchanger 110 includes a shell 202, a first fluid inlet 204, an input manifold 206, an output manifold 208, a first fluid outlet 210, a secondary fluid port 212, a secondary fluid port 214, tubes 216 that form a tube bundle, first and second tube sheets 220 and baffles 224. As would 10 be understood by a person of ordinary skill in the art, the heat exchanger 110 provides heat exchange between a first fluid that flows through the tubes 216 and a secondary fluid that flows through the shell 202 across the outer surface of each of the tubes 216. In one embodiment, the first fluid inlet 204 and the first fluid outlet are for seawater that flows through the tubes 216. In the case of evaporators, the fluid port 212 can be an outlet port 15 for working fluid while the fluid port 214 can be an inlet port for the working fluid. In the case of condensers, the fluid port 212 can be an inlet port for working fluid while the fluid port 214 can be an outlet port for the working fluid.

Further information of the construction of the heat exchanger 110 is disclosed in U.S. Patent 8,439,250, which is incorporated herein by reference in its entirety.

20 With reference to Figures 3A and 3B, each of the tube sheets 220 is a mechanically rigid plate that includes a plurality of holes 218 that extend through the tube sheet 220 from an inner side surface 222 (Figure 7) that faces the interior chamber of the heat exchanger 110 to an outer side surface 223 (Figure 7) that faces the respective manifold 206, 208. Each hole 218 is illustrated as being circular with a diameter D1. 25 Likewise, the tube sheets 220 are illustrated as being circular but can have any shape suitable for use in a heat exchanger.

Figure 4 illustrates an example of one of the tubes 216. Each tube 216 includes a first end 230 and a second end 232, a central fluid passageway 234, and a length L between the first end and the second end. In the illustrated example, the tubes 216 are 30 shown as being cylindrical in shape with an inner diameter ID1 and an outer diameter

OD1. However, the tubes 216 and the holes 218 in the tube sheets 220 can have any complementary shapes, such as rectangular or triangular.

The tubes 216 and the tube sheets 220 can be made of any metals commonly used in shell and tube heat exchanger assemblies including, but not limited to, aluminum, 5 carbon steel, stainless steel, titanium, copper or other metals and alloys thereof.

The ends 230, 232 of the tubes 216 are joined to the tube sheets 220 at the holes 218 using a FSW process. FSW is a well-known method for joining two elements of the same or dissimilar material. FSW employs a rotating probe that is forced into the interface between the two elements. The immense friction between the probe and 10 materials causes material in the immediate vicinity of the probe to heat up to temperatures below its melting point. This softens the adjoining sections, but because the material remains in a solid state, its original material properties are retained. Movement of the probe along the weld line forces the softened material from the two pieces towards the trailing edge causing the adjacent regions to fuse, thereby forming a weld.

15 As discussed above, an interference fit is used to lock the ends 230, 232 of the tubes 216 into the holes of the tube sheets 220 without flaring or expanding the tube ends. The FSW process is then used to weld the ends of the tubes to the tube sheet.

Numerous possibilities exist for creating a suitable friction fit, and any technique 20 that creates a friction fit without flaring or expanding the tube ends can be used. The exterior surface of the tube can be modified, the interior surface of the holes 218 can be modified, or a combination of modifying the tube exterior surface and the hole interior surface can be used.

Figure 5 illustrates an end of a tube 250 that can be used, where the exterior surface of the tube 250 adjacent to each end is knurled 252 as well as having a non- 25 knurled, smooth portion 254 between the knurled portion and the terminal end of the tube. A suitable tube with a knurled external surface is available from Energy Transfer, Inc. of Minerva, Ohio.

In this example of Figure 5, the outer diameter OD1 of the tube 250 with the 30 knurled exterior is substantially equal to or only slightly less than the diameter D1 of the holes 218, such that the end of the tube 250 can be inserted into the hole 218 with an

interference fit therebetween. The interference fit should be sufficient to react against the loads that are applied during the FSW process, thereby locking the end of the tube in place and prevent axial and rotational movement of the tube during the FSW process.

In addition, in the example of Figure 5, the inner diameter ID1 of the tube 250 both before and after FSW is constant from one end to the other. The outer diameter OD1 is also substantially constant between the ends of the tube both before and after FSW.

In one embodiment, when the tube end is inserted into the hole 218, some of the smooth portion 254 is located in the hole along with some of the knurled portion 252.

Figure 6 illustrates another embodiment of a tube 260 that includes fins or corrugations 262 (that are similar to threads) on the exterior surface for creating the interference fit. A suitable tube with this construction is available from Energy Transfer, Inc. of Minerva, Ohio. An optional press-fit collar 264 having deflectable tabs 266 separated by gaps can also be disposed around the fins 262 to enhance the interference fit. The tabs 266 deflect inwardly to lock onto the fins 262. Alternatively, the collar 264 can be disposed within the hole 218 of the tube sheet 220 with the tube sliding into the hole in one direction but cannot be pulled out because the tabs engage with the fins. In another alternative embodiment, as shown in Figure 7, the collar 264 can fit in a hole in the baffle 224 or otherwise engage with the baffle 224 for load support.

Figure 8 illustrates an example of a press-fit collar 270 that can be disposed around a tube. The collar 270 can have deflectable tabs 272 that are similar to the tabs 266 in Figure 6. The tabs 272 are designed to deflect radially inwardly to create an interference fit with the enhanced (for example, the knurls 252 in Figure 5, the fins 262 in Figure 6, or the like) outer surface of the tube. The collar 270 can also have external threads 274 on a portion of the collar without the deflectable tabs 272. The external threads 274 are intended to thread into corresponding threads 276 (see Figure 10) formed in a receiving hole 278 in the side surface 222 of the tube sheet 220 or on either side of a hole formed in the baffle 224.

As is evident from Figure 10, the receiving hole 278 has a larger diameter than the remainder of the hole 218 that the tube 250, 260 forms a friction fit with. The interior

surface of the hole 278 is formed with the threads 276 that engage with the threads 274 on the exterior of the collar 270.

Figure 9A depicts an example of the tube 250 and collar 270 assembly secured within a hole in the tube sheet 220 (the tube sheet 220 is only partially shown with one hole). Figure 9B depicts an example of the tube 260 and collar 270 assembly secured within a hole in the tube sheet 220 (the tube sheet 220 is only partially shown with one hole). In one embodiment, the collar 270 is initially press fit onto either the knurled tube 250 or the tube 270 with the fins. The tube and collar assembly are then threaded into the threaded hole 278 of the tube sheet or the baffle.

To assist in threading the collar 270 into the receiving hole 278 of the tube sheet 220, the collar 270 can also have an extended cylindrical feature 280 projecting from the threaded portion that has cutouts 282, flat faces or other wrench or tool engagement structure so that a spanner wrench or other tool can be used to rotate the collar 270 to tighten the collar 270 and tube assembly into the threaded hole 278 and/or unthread the collar from the hole.

The threading features on the collar 270 and on the receiving hole 278 allows assembly personnel to precisely screw/fasten the collar-and-tube assembly into the tube sheet 220 such that the tube end is flush with the outer surface 223 of the tube sheet. This precision threading feature solves the issue of manufacturing tolerances that cause fit-up variances using other press-fit methods

Another example of creating an interference fit could be a lock and key-type where, similar to Figure 6, a swaged type of key could be pressed onto the tube that could have grooves to engage the bottom side of the tube sheet 220 or tube baffle 224. In another embodiment, instead of a key, a tapered fin or wedge could be integrally formed on the tube that locks against the inner surface of the tube sheet hole to provide the interference fit.

In another embodiment, the back side of the tube sheet 220 could be tapped with a thread pattern that matches the external fins or threads 262 on the tube 260 in Figure 6. The tube 260 could then be threaded into the backside of the tube sheet 220 providing the necessary resistance for the friction stir weld.

Once the tube ends are inserted into the holes of the tube sheet, FSW can then be used to weld the tube ends to the tube sheet.

For the second ends of the tubes and the second tube sheet, the second ends may be fixed to the second tube sheet using a conventional FSW process like that described in 5 U.S. Patent 8,439,250 where the second ends of the tubes are immobilized relative to the second tube sheet by expanding the second ends of the tubes, followed by FSW to weld the second ends of the tubes to the tube sheet.

Example Process

10 The following describes a sample process used to secure aluminum tubes to an aluminum tube sheet. This exemplary process is applicable for only one side (i.e. one of the tube sheets) of the heat exchanger and not for both tube sheets, since the second tube sheet cannot be accessed in the same manner as the first tube sheet.

15 In this example, the tubes were 1 inch NPS schedule 40 coarse-knurled tubes with 3 inches of smooth tube on the end (similar to the embodiment of Figure 5), 12 inches in length. The tube sheet was a 2 inch thick aluminum tube sheet with holes for 7 tubes. In this exemplary process, a backing anvil/force to support the tubes is not used; only the tube sheet is supported.

20 1. The tube sheet was supported over the FSW anvil by placing aluminum blocks under opposing sides of the tube sheet, without blocking the tube holes. The height of the blocks determined how much of the tube can pass through the tube sheet hole before it is stopped at the anvil.

25 2. The exterior of the tubes and the interior of the tube sheet holes were cleaned with isopropyl alcohol, acetone, or other cleaner.

3. The tubes were then inserted into the tube sheet holes. The opposite tube ends were then struck using a rubber mallet to drive the tubes through the tube sheet until the tubes touch the anvil below the tube sheet. Approximately 0.5 inch of the smooth tube section 254 remained in the tube sheet hole for proper welding, with the remainder of the tube within the hole being the knurled section 252.

4. By now, the tubes should be near-galled and should not move in the tube sheet. On the weld side (i.e. the outer side of the tube sheet), the tubes were cut so that the tube ends are flush with the outer surface of the tube sheet.

5. The weld surface and the interior of the tubes were then cleaned.

5 6. The tubes are then deburred and the tubes and the tube sheet are then FSW. There should be no axial movement or spinning observed in the tubes as the weld proceeds.

10 Figure 7 illustrates an example of the tube 216 inserted into one of the holes of the tube sheet 220, with the tube cut so as to be flush with the outer surface 223 and ready for FSW. As seen in Figure 7, there is no flaring or expanding of the tube end prior to FSW. Instead, the inner diameter and outer diameter of the tube remain constant. Therefore, the described method does not introduce any crevice or other local deformation near the tube end that could act as a preferential site for corrosion.

15 The examples disclosed in this application are to be considered in all respects as illustrative and not limitative. The scope of the invention is indicated by the appended claims rather than by the foregoing description; and all changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.

CLAIMS

1. A process of connecting a tube to a tube sheet, comprising:
 - inserting an end of the tube into a hole in the tube sheet with an interference fit
- 5 between the tube end and the tube sheet that locks the tube end into the tube sheet without flaring or expanding the end of the tube adjacent to the tube sheet; and friction stir welding the tube to the tube sheet.
2. The process of claim 1, wherein the interference fit is created by modifying an exterior surface of the tube, modifying an interior surface of the tube sheet hole, or both modifying the exterior surface of the tube and modifying the interior surface of the tube sheet hole.
- 10
3. The process of claim 1, wherein the interference fit is created by modifying an exterior surface of the tube to include knurls or fins.
- 15
4. The process of claim 1, further comprising installing a collar around the tube, and at least partially fitting the collar into the tube sheet hole or into a hole in a baffle that is separate from the tube sheet.
- 20
5. The process of claim 4, wherein the collar includes a plurality of deflectable tabs that can deflect radially inward to engage with an outer surface of the tube.
6. The process of claim 5, wherein the collar further includes external threads, the tube sheet hole or the baffle hole includes interior threads on an interior surface thereof, and threading the collar into the tube sheet hole or into the baffle hole so that the external threads on the collar are engaged with the interior threads.
- 25
7. The process of claim 6, wherein the collar further includes tool engagement structure that facilitate rotation of the collar relative to the tube sheet hole or baffle plate
- 30

hole to thread the collar into or from the hole, and threading the collar into the tube sheet hole or into the baffle hole using a tool engaged with the tool engagement structure.

8. The process of claim 7, comprising threading the collar into the tube sheet hole or
5 baffle plate hole until the end of the tube is flush with one face of the tube sheet.

9. The process of claim 1, wherein the tube and the tube sheet form part of a heat
exchanger.

10 10. A heat exchanger, comprising:
a first tube sheet having a plurality of holes, an inner side and an outer side;
a plurality of tubes having first and second ends, the first end of each tube is
disposed in a corresponding one of the holes in the first tube sheet with an interference fit
between each first end and the first tube sheet;
15 the first end of each tube is friction stir welded to the first tube sheet at the outer
side of the first tube sheet; and
the first end of each tube is not flared or expanded.

11. The heat exchanger of claim 10, further comprising a second tube sheet having a
20 plurality of holes, an inner side and an outer side;
the second end of each tube is disposed in a corresponding one of the holes in the
second tube sheet;
the second end of each tube is friction stir welded to the second tube sheet at the
outer side of the second tube sheet.

25 12. The heat exchanger of claim 11, wherein the tubes are cylindrical and have a
constant diameter from the first end to the second end.

13. The heat exchanger of claim 10, wherein the first end of each tube has an exterior
30 surface that is provided with a friction enhancing texture, an interior surface of each tube

sheet hole is provided with a friction enhancing texture, or both the exterior surface of each first end and the interior surface of each tube hole is provided with a friction enhancing texture.

5 14. The heat exchanger of claim 11, wherein the first end of each tube has an exterior surface that is provided with knurls or fins.

10 15. The heat exchanger of claim 11, further comprising a collar disposed around each of the tubes, the collar at partially fitting into the corresponding tube sheet hole or into a corresponding hole in a baffle that is separate from the tube sheet.

16. The heat exchanger of claim 15, wherein each collar includes a plurality of deflectable tabs that are deflected radially inward and engage with an outer surface of the corresponding tube.

15 17. The heat exchanger of claim 16, wherein each collar further includes external threads, each tube sheet hole or each baffle hole includes interior threads on an interior surface thereof, and the external threads on each collar are engaged with the interior threads.

20 18. The heat exchanger of claim 17, wherein each collar further includes tool engagement structure at an end thereof that facilitate rotation of the collar relative to the tube sheet hole or baffle plate hole.

25

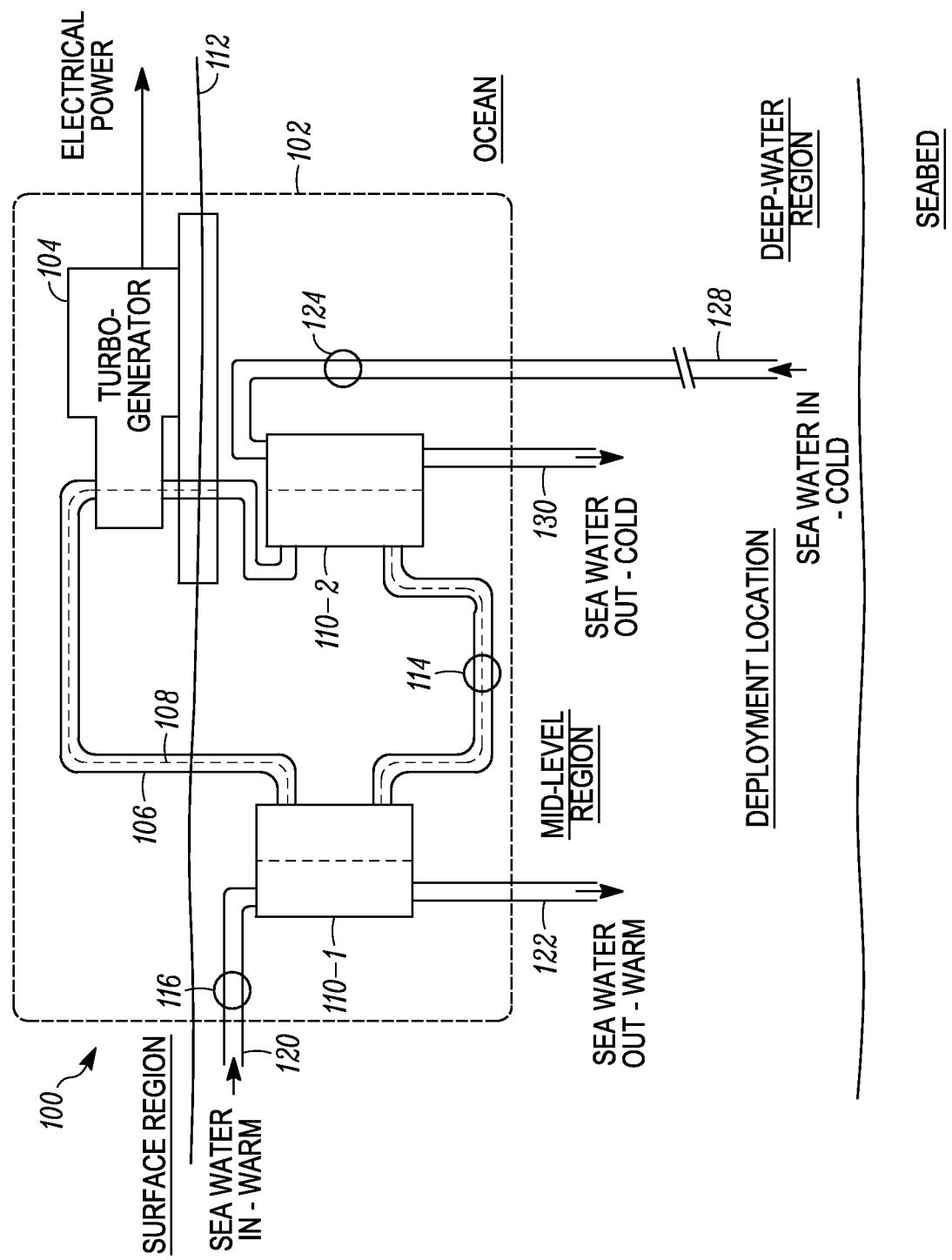


FIG. 1

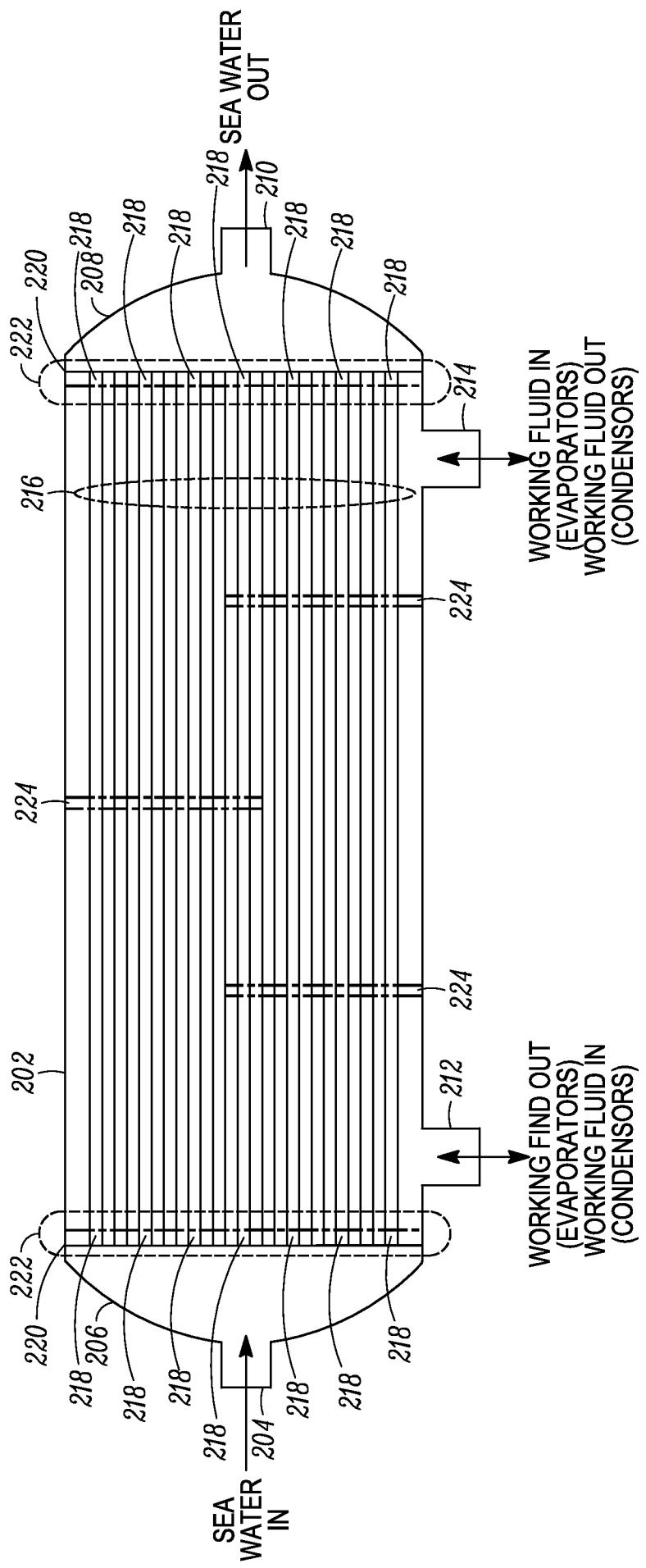


FIG. 2

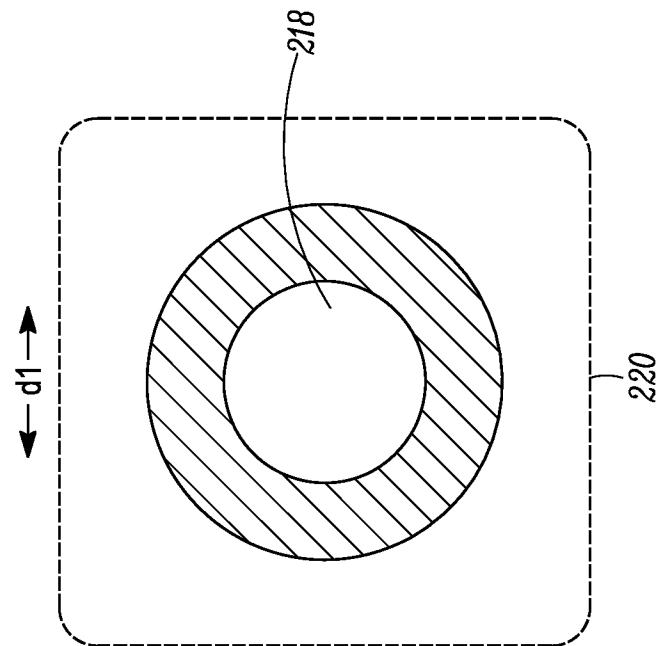


FIG. 3B

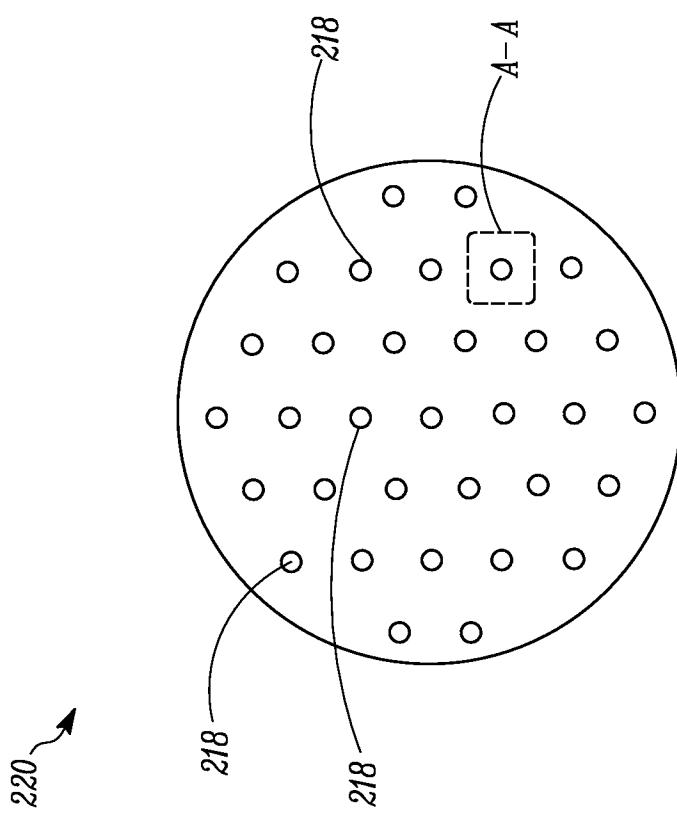


FIG. 3A

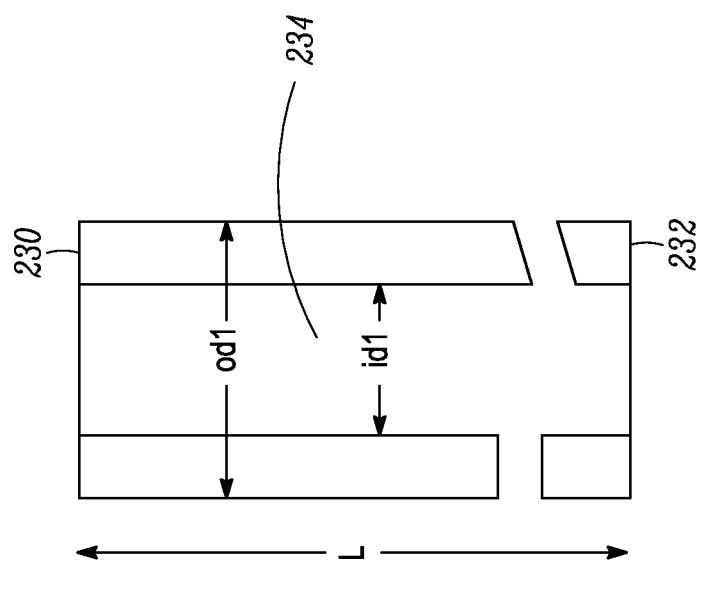


FIG. 4

216 ↗

FIG. 5

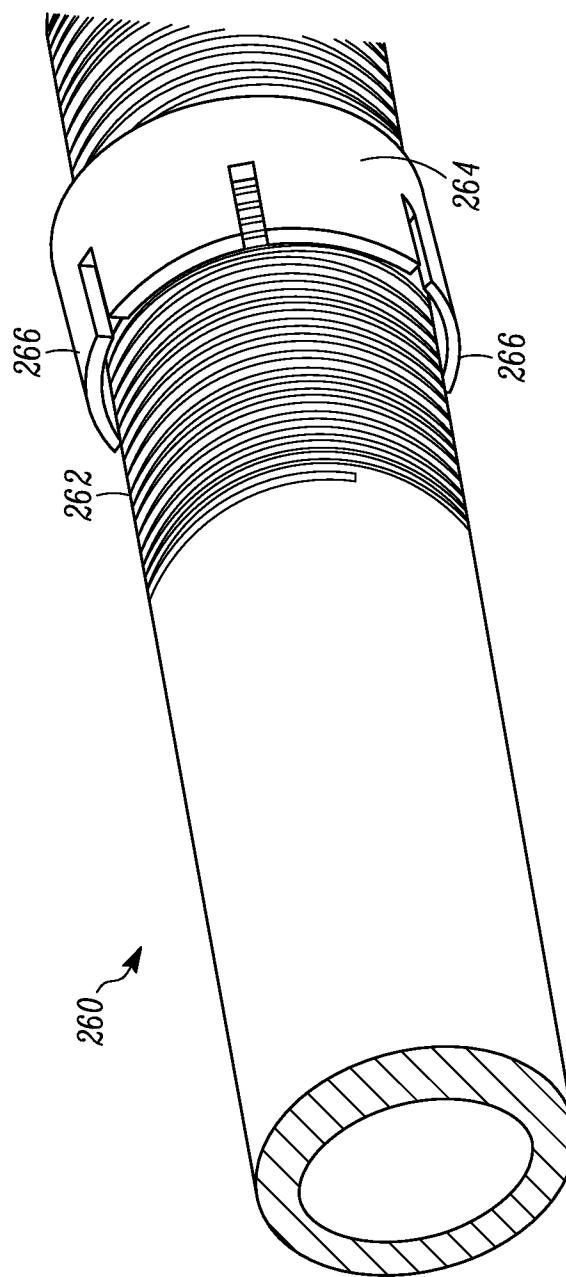


FIG. 6

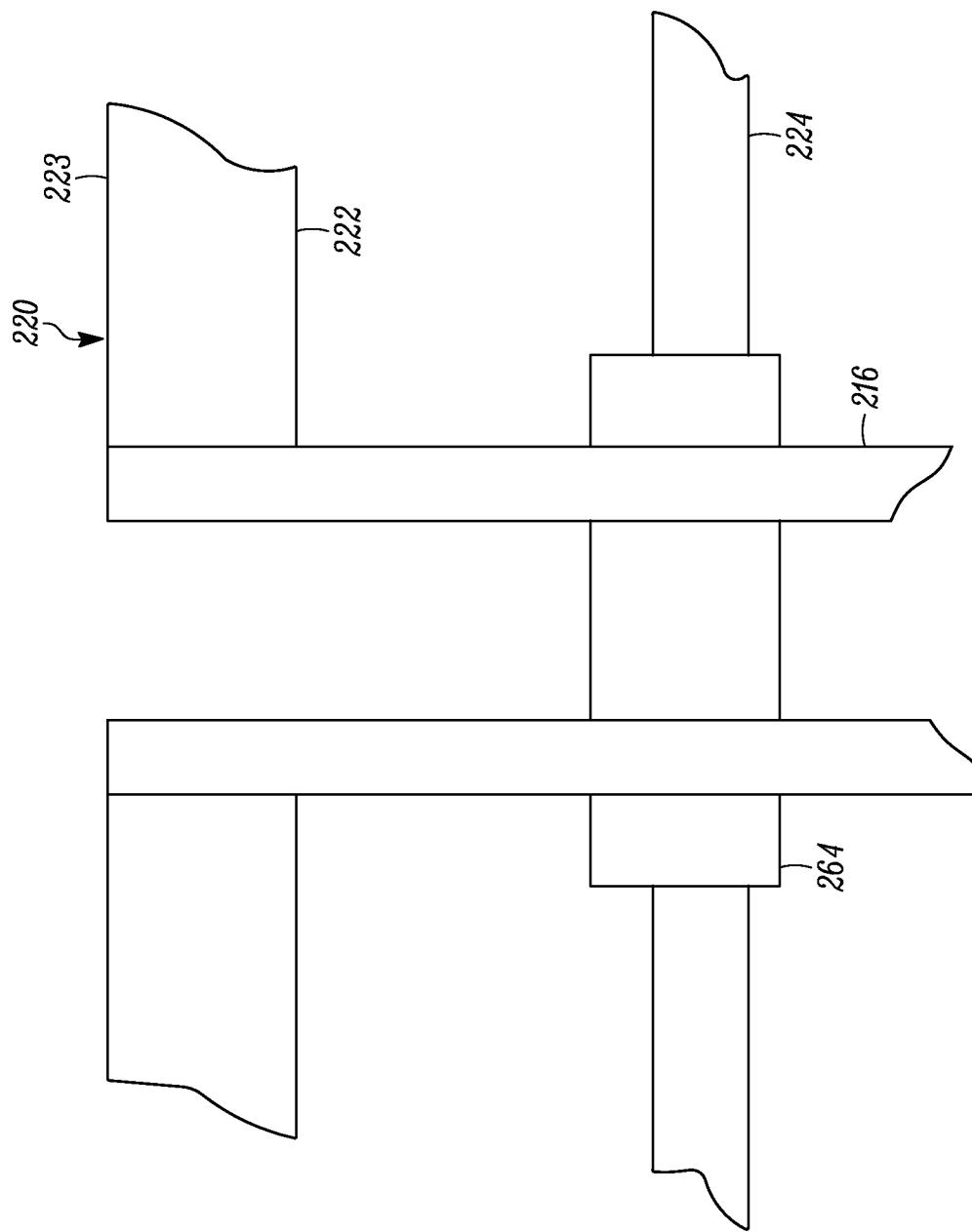


FIG. 7

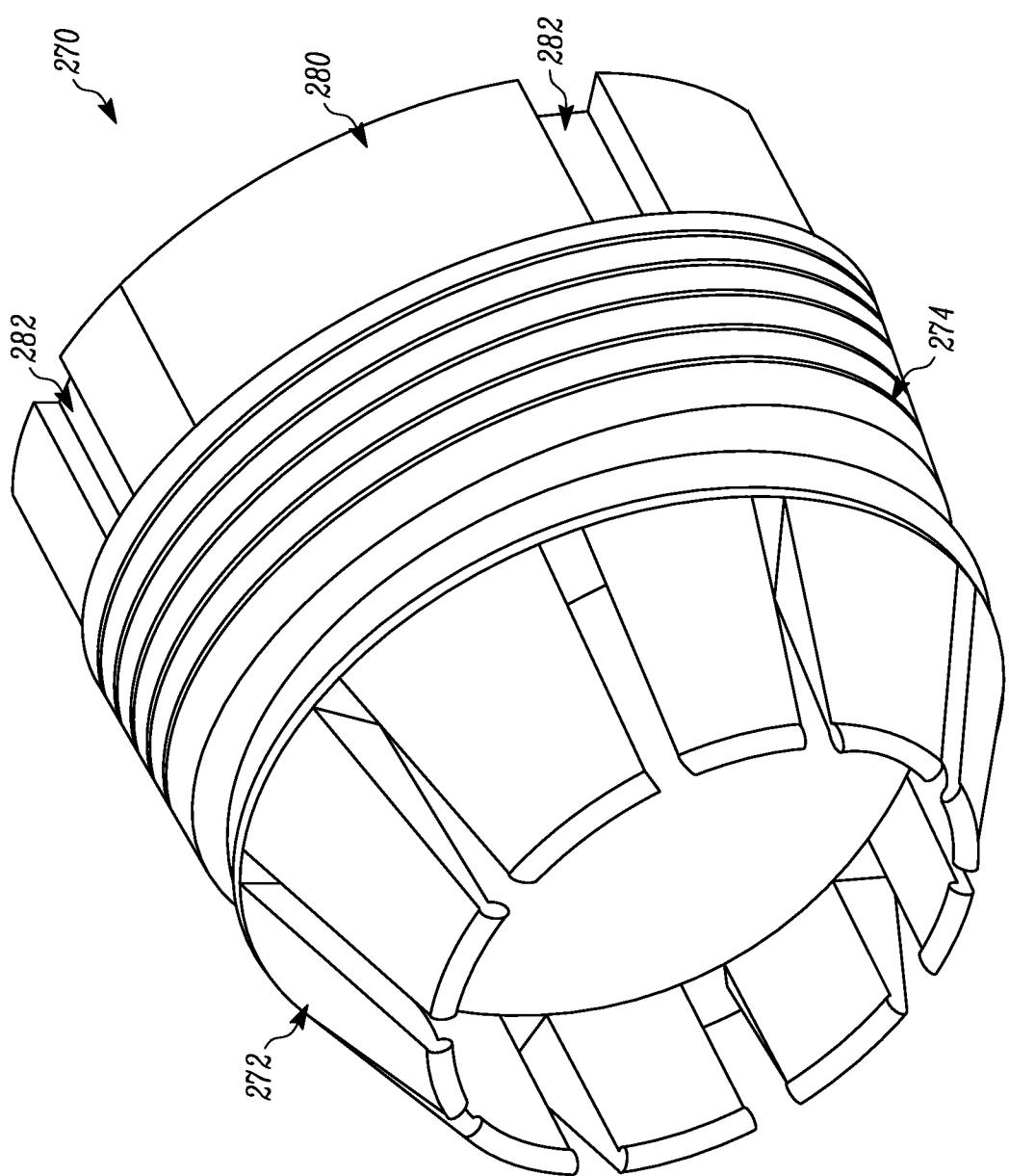
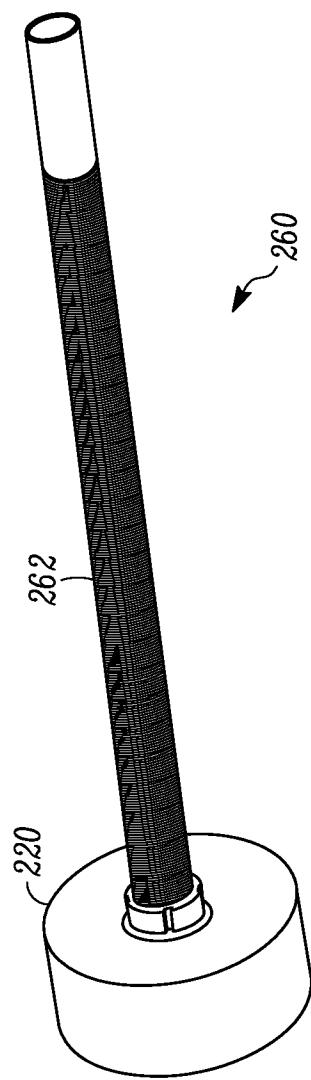
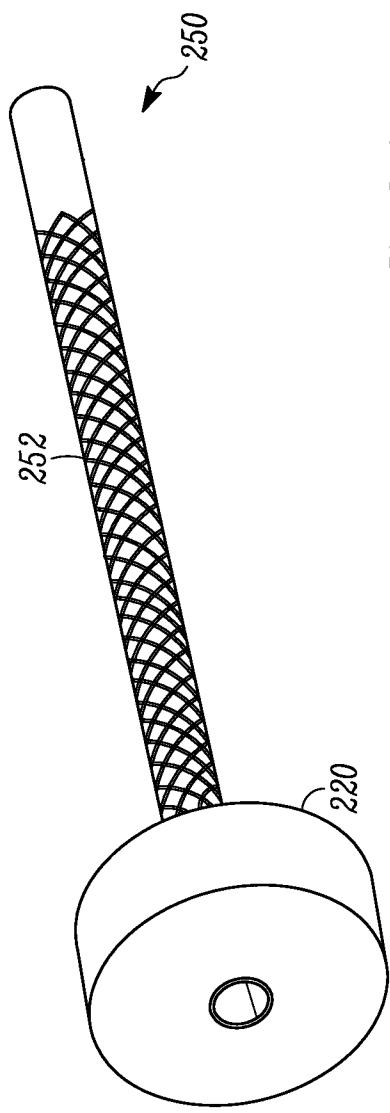




FIG. 8

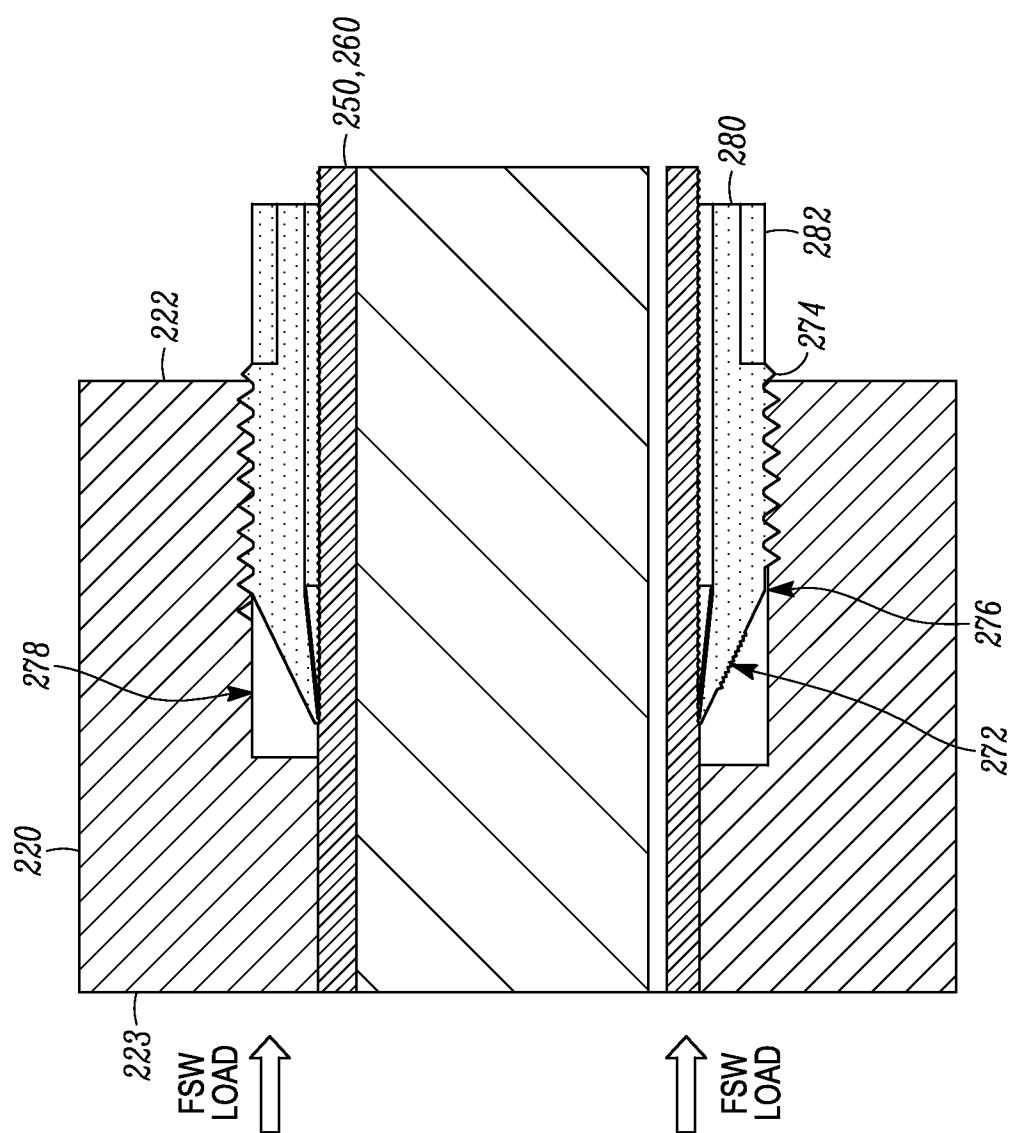


FIG. 10

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2014/022615**A. CLASSIFICATION OF SUBJECT MATTER****B23K 20/12(2006.01)i, F28F 9/18(2006.01)i**

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHEDMinimum documentation searched (classification system followed by classification symbols)
B23K 20/12; F28F 9/18Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & keywords: friction stir welding, heat exchanger, tube, hole, and fit**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2011-0000952 A1 (TAKESHITA et al.) 06 January 2011 See paragraphs [0041], [0055], [0065]; claims 1,2; and figures 2,4,6A-6E.	1,9-12
A		2-8, 13-18
Y	JP 64-034724 A (DIESEL KIKI CO., LTD.) 06 February 1989 See abstract; pages 2,3; and figures 2,3,9.	1,9-12
A	US 4505420 A (WITTENBACH, PAUL G.) 19 March 1985 See column 3, lines 3-29; and figure 1.	1-18
A	JP 2009-148831 A (GKSS FORSCHUNGSZENTRUM GEESTHACHT GMBH.) 09 July 2009 See paragraphs [0015], [0016]; claim 6; and figure 1.	1-18
A	JP 2012-187623 A (MITSUBISHI HEAVY IND. LTD.) 04 October 2012 See paragraphs [0029]-[0031]; and figures 1,2.	1-18

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 07 July 2014 (07.07.2014)	Date of mailing of the international search report 08 July 2014 (08.07.2014)
Name and mailing address of the ISA/KR International Application Division Korean Intellectual Property Office 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea Facsimile No. +82-42-472-7140	Authorized officer CHOI, Hyun Goo Telephone No. +82-42-481-8288

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2014/022615

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2011-0000952 A1	06/01/2011	US 8439250 B2	14/05/2013
JP 64-034724 A	06/02/1989	None	
US 4505420 A		None	
JP 2009-148831 A		CN 101559530 A CN 101559530 B DE 102007063075 A1 EG 25451 A EP 2072173 A1 EP 2072173 B1 ES 2427124 T3 JP 05227154 B2 PE 15342009 A1 PT 2072173 E RU 2008-150556 A RU 2488470 C2 US 2009-0159643 A1 US 7954691 B2	21/10/2009 06/11/2013 25/06/2009 09/01/2012 24/06/2009 05/06/2013 28/10/2013 03/07/2013 04/10/2009 09/09/2013 27/06/2010 27/07/2013 25/06/2009 07/06/2011
JP 2012-187623 A		None	