发明名称：带频率发生器的微型电机

摘要：带频率发生器的微型电机包括电机和频率发生器。频率发生器包括转子，环形转盘内齿芯子，永久磁铁和定子。发生器转子安装在电机转子上，它由软磁性材料制成的，外缘装有多个磁极齿的盘状转盘部分。软磁材料的盘形内齿芯子与电机外壳的内侧接触，并对转盘部分的外环形表面，其内缘装有多个磁极齿。永久磁铁在所述转盘两极齿间产生磁场，频率发生器定子的频率探测线圈测定磁路中磁通变化并产生正比于转盘转数的感应电动势。
权利要求书

1. 带频率发生器的微型电机包括两个部分，电机部分：带有用于形成磁场的永久磁铁的定子，带有绕在其铁心上的转子线圈的转子。这一构造是为了让电流经由与电刷呈滑动接触的整流子送入上述转子线圈。频率发生器部分：它用来测定电机转数，其特征在于：

所述频率发生器包括如下四个部分：

1）具有盘形转盘部分的频率发生器转子，转盘由软磁性材料做成，安装在电机的转子上，其外缘上有多个磁极尖齿，

2）由软磁性材料做成的环状盘形内齿铁芯，它与电机外壳接触，并有多个配置在铁心内缘上的磁极尖齿；

3）永久磁铁，它用来在所述转盘部分的磁极尖齿和内齿铁芯的磁极尖齿间形成磁场，

4）有频率探测线圈的频率发生器定子，该探测线圈可测定磁通的变化，由所述永久磁铁产生的磁通穿过上述磁路，所述探测线圈产生与转盘部分转数成正比的感生电动势。

2. 如权利要求1所述的带频率发生器的微型电机，其特征在于：所述频率发生器放置在由所述电刷和所述电机外壳所确定的空间。

3. 如权利要求1所述的带频率发生器的微型电机，其特征在于：定位于频率发生器转子的盘形转盘上的齿轮与定位于频率发生器定子内齿轮内缘上的齿轮有着相同的齿距。

4. 如权利要求2所述的带频率发生器的微型电机，其特征在于：频率发生器转子上的盘形转盘设置在内齿铁心和永久磁铁之间。
5. 如权利要求2所述的带频率发生器的微型电机，其特征在于：频率发生器转子的盘形转盘上的齿轮与频率发生器定子内齿轮心上的齿轮均弯成这样的状态，以致它们在平行于电机轴线的方向上彼此相向。

6. 如权利要求2所述的带频率发生器的微型电机，其特征在于：频率发生器转子的盘形转盘上的齿轮与频率发生器定子内齿轮心上的齿轮彼此以45°角相对。

7. 如权利要求1所述的带频率发生器的微型电机，其特征在于：频率探侧线圈绕在永久磁铁外缘上。

8. 如权利要求1所述的带频率发生器的微型电机，其特征在于：频率探侧线圈设置在电刷定位架外缘上专为存放探侧线圈而设置的槽沟中，该电刷定位架沿电机外壳的内环形表面固定电刷。
带频率发生器的微型电机

本发明总的涉及带频率发生器的微型电机，例如，带动小型磁带录音机的那种电机。本发明尤其涉及带频率发生器的微型电机，这种电机有优良频率特性和高输出，而且，由于有效地利用空间存放频率发生器而避免了电机尺寸的增大。

众所周知，在本发明前，装频率发生器的微型电机包括一个有多个磁极齿的转子；一个有多个磁极齿的定子，其磁极齿按面对转子的磁极齿的方式安装；一个在转子与定子的磁极齿之间形成磁场的永久磁铁；一个可产生感生电动势的频率探测线圈，感生电动势随转子与定子的磁极齿之间磁场的变化而正比于转子的转数。

图 7 A 和 7 B 是说明设带频率发生器的普通类型微型电机构造的示意图；图 8 A 是说明先有技术的带频率发生器的微型电机构造的示意图；图 8 B 是说明图 8 A 所示先有技术的频率发生器的透视图。

图 7 B 是一辅助图，用来说明电刷安装处的情况，观察方向是图 7 A 中的 A 一 A 向。图 7 A 中，用来固定电刷的结构被省略了，这部分的情况与图 8 A 中所示相同。

图 7 所示的微型电机包括 5 部分：一套由电刷定位架 2 支撑的电刷装置 3，定位架 2 安装在一个合成树脂做的端部钟形盘 1 上；一个固定地装在电机传动轴 6 上的整流子 7，传动轴 6 由轴承 5 支撑，一个通过整流子 7 固定地装在电机传动轴上的转子 8，一个绕
在转子8的转子铁心8-1上的转子线圈8-2，一个固定地装在电机外壳9的内环形表面上的永久磁铁10。当电流送入微型电机的转子线圈8-2时，位于由永久磁铁10形成的磁场和电机外壳9中的转子8即开始旋转。图中标号11指示一个噪声消除元件。

先有技术的微型电机为探测电机转数而安装频率发生器12（如图8所示），其工艺是通过在轴线方向上延伸微型电机的传动轴来完成的（如图7所示），但与此同时，也延伸了电机外壳9的轴向长度。频率发生器12就设置在延伸后得到的空间，图中标号12-1指示频率发生器的转子（下文中称FG转子），在其外缘有一块多极磁化的磁铁，标号12-2指示频率发生器的定子（下文中称FG定子），它有一个梳状铁心12-21，该铁心装在FG转子12-1的外缘对面，而探测线圈则绕在梳状铁心12-21上。

其它标号对应的各部分如图7所示。

在图8A中，当电机驱动时，FG转子12-1随之旋转。

FG转子12-1面对着FG定子12-2的梳状齿，当转子旋转时，它的磁极的极性实际上是重复变换的。FG转子磁极极性一旦倒转就使得与探测线圈12-22连系的磁通方向改变，并使该线圈产生感生电动势，因为感生电动势的频率与FG转子的转数成正比，于是，通过测量感生电动势的频率就可测定电机的转数。

综上所述，先有技术微型电机要求专门提供一个用于放置频率发生器12的空间，这就使得它需要一个大的（特别在电机轴线方向）空间尺寸。

本发明打算克服先前的微型电机的这些缺陷。
为此，本发明中带频率发生器的微型电机包括：定子，它具有用于形成磁场的永久磁铁；转子，它具有绕在转子铁心上的转子线圈；电机部分，其中，电流通过与电刷呈滑动接触的直流子输入转子线圈；以及频率发生器。所述频率发生器包括：具有盘形转盘部分的频率发生器转子，转盘部分由软磁性材料做成，装在转子上，其外缘上装有多个磁极尖齿；环状磁性内齿铁心，它用软磁性材料做成，安装方式是：与电机外壳的内壁接触并面对转盘部分外环形表面，铁心内缘装有多个磁极尖齿，可在转盘部分磁极尖齿与内齿铁心磁极尖齿间形成磁场的永久磁铁，以及具有频率探测线圈的频率发生器定子，探测线圈可测定磁路中发生的磁通的变化，（磁通由永久磁铁穿越引起）产生与转盘部分的转数成正比的感应电动势。

本发明中各部件的情况在关于图1至图6的详细描述中将更为清楚。

图1是说明本发明的原理的结构图，

图2是说明微型电机中设置探测线圈的位置（如图1所示）的辅助图。

图3是说明本发明的一个实施例的结构图。

图4是说明图3所示的实施例中设置探测线圈的位置的辅助图。

图5是说明图3所示的实施例中FG转子和定子的辅助图，图5A为局部放大的视图，图5B是沿图5A中A-A线方向取的侧视图。

图6A和6B是说明用于本发明中的FG转子和定子的另一实施例的辅助图。
图 7 A 和 7 B 是说明设有频率发生器的普通微型电机的结构图。图 8 A 是说明带频率发生器的先有技术微型电机的辅助结构图。图 8 B 是说明用于先有技术的微型电机（如图 8 A 所示）中的频率发生器的透视图。

图 1 和 2 说明作为本发明实施例的带频率发生器的微型电机。在图 1 和 2 中，标号 20 指示 FG 转子，20-11 指示齿轮部分，21 指示 FG 定子，21-1，21-2，21-8 分别指示内齿铁心。FG 磁铁和探测线圈，其余标号与图 7 所示相对应。

本发明着眼于电刷装置 8 和整流子 7 周围的空间。此空间可用于频率发生器。就是说，通过将频率发生器安装于此空间，可以使带频率发生器的微型电机具有与不带频率发生器的微型电机基本上相同的空间尺寸。

在图 1 和 2 中，FG 转子 20 由具环状盘形的软磁性材料做成，并固定地装在一个噪声消除元件的绝缘表面或等势面上。FG 转子外缘加工成齿轮轮（见图 5 B）。

FG 定子 21 由内齿铁心 21-1，永久磁铁 21-2 和探测线圈 21-3 组成。内齿铁心 21-1 由软磁性材料做成，基本上呈环状盘形，其制作在内缘上的齿轮（如图 5 B 所示）与制作在 FG 转子外缘上的齿轮有相同的齿距。一对永久磁铁 21-2（下文中称 FG 磁铁）设置在端部圆环形盘 1 的内表面上。探测线圈 21-3 绕在每一个 FG 磁铁 21-2 上。FG 定子 21 的内齿铁心 21-1 固定地装在电机外壳 9 上，其安装方式应使内齿铁心 21 的内齿部分经由一个预先确定的空隙与 FG 转子 20 的齿轮部分相对。
如图2所示，一对外探线圈21-3以串联方式连接。

图1所示的频率发生器由FG转子20和FG定子21组成。在频率发生器中形成的磁路是：FG磁铁21-2→FG转子20→内齿铁心21-1→电机外壳9→端部铁心盘1→FG磁铁21-2。当电机被驱动时，FG转子20随之旋转。由于FG转子20旋转，磁通强度将随FG转子20与FG定子21的内齿铁心21-1间空隙中磁阻的变化而变化。结果，探测线圈21-3中将产生感应电动势，其频率对应于磁通强度的变化。

由于感应电动势的频率正比于FG转子20的转数，所以，电机的转数可通过测量探测线圈21-3中感应电动势的频率来确定。

同时，由磁路中噪声引起的磁通起伏，将对探测线圈21-3的输出产生不良影响。

但是，电机的转数仍能准确地测定，因为，由噪声引起的磁通起伏可以通过适当配置探测线圈对21-3来抵消，即，把两个探测线圈安装在相对于整流子7（如图1所示）的对称的位置上。

在图3所示实施例中，内齿铁心21-1配置的方式是使FG转子位于内齿铁心21-1与FG磁铁21-2之间。如图4所示，探测线圈沿电机外壳9外缘缠绕。图3与图1所示的实施例有着基本上相同的结构。

在图5所示实施例中，因为FG转子定位于内齿铁心21-1和FG磁铁21-2之间，所以，即使电机传动轴在轴线方向移动，FG磁铁21-2和FG转子20之间的距离与FG转子20和内齿铁心21之间的距离之和可保持不变。因此，在FG磁铁21-2、FG转子20和内齿铁心21-1中间，由于电机传动
轴6的轴向移动造成的诸空隙中磁阻的变化就能防止。

如图4所示，探测线圈213沿电机外壳9的内表面缠绕。这是为了减小来自电机转子8旋转时引起的不利的磁通影响。这就是说，如图3和4中实施例所表明的，由转子8侧面来的大部分漏磁通流过内齿铁心211，电机外壳9、端部轴形盘1，图底部的电机外壳9和内齿铁心211。结果，不管转子8的转角位置如何，漏磁通都不与探测线圈213交连。这样，探测线圈213基本上不受由磁通引起的有害噪声效应的影响。换言之，来自电机转子8由磁通引起的噪声有害影响被消除了。此外，由于电刷定位架2外缘上刻有放置探测线圈的槽沟，从而省去线圈架。电刷定位架2由绝缘材料做成，它是为沿电机外壳9的内环形表面固定电刷装置3而设置的。线圈架的剔除，可减少微型电机的制造成本，还可简化绕线操作，节省劳力。

在本发明中，内齿铁心211的内齿部分和FG转子20的齿轮部分有着相同的齿距，它们经由预先确定的空隙安装在彼此相对的位置上。即，在图8所示的实施例中，内齿铁心211和FG转子20具有平的盘形，同时，内齿铁心211的内齿部分和FG转子20的齿轮部分20-11以其侧表面彼此相对。必须注意的是，内齿部分2111和齿轮部分20-11相对位置的准确性对频率发生器的特性有很大的影响。

为了增加上述提到的这种相对位置的准确性，最理想的是同时提高内齿铁心211和FG转子20在轴向上和径向上的位置的准确性。不论怎样，本发明使内齿铁心211与FG转子20相对位置准确性的提高成为可能，其方法即是选择如图5、图6A和
6 B 中所示的任一配置。这就是说：如果径向上准确性偏低，可采用图 5 所示实施例；如果轴向上准确性偏低，可采用图 6 B 所示实施例；如果是中间情形，则可采用图 6 A 所示实施例。

综上所述，本发明使我们有可能得到一个具有优良频率特性和高输出的带频率发生器的微型电机。由于有效地利用了电机中可用来放置频率发生器的空间，从而避免了电机空间尺寸的增大。

本发明的另一优点是一般零件可通用于装和不装频率发生器的微型电机。