

US 20150202260A1

(19) **United States**

(12) **Patent Application Publication**

Grinberg et al.

(10) **Pub. No.: US 2015/0202260 A1**

(43) **Pub. Date: Jul. 23, 2015**

(54) **ENDOGLIN PEPTIDES TO TREAT FIBROTIC DISEASES**

(71) Applicant: **Acceleron Pharma, Inc.**, Cambridge, MA (US)

(72) Inventors: **Aysa Grinberg**, Lexington, MA (US); **Roselyne Castonguay**, Watertown, MA (US); **Eric Werner**, Milton, MA (US); **Ravindra Kumar**, Acton, MA (US)

(21) Appl. No.: **14/522,891**

(22) Filed: **Oct. 24, 2014**

Related U.S. Application Data

(60) Provisional application No. 61/896,002, filed on Oct. 25, 2013.

Publication Classification

(51) **Int. Cl.**

A61K 38/17 (2006.01)
C07K 14/71 (2006.01)
C07K 16/00 (2006.01)

(52) **U.S. Cl.**

CPC *A61K 38/179* (2013.01); *C07K 16/00* (2013.01); *C07K 14/71* (2013.01); *C07K 2317/92* (2013.01); *A61K 2039/505* (2013.01)

(57)

ABSTRACT

In certain aspects, the present disclosure relates to the insight that a polypeptide comprising a truncated, ligand-binding portion of the extracellular domain of endoglin (ENG) polypeptide may be used to treat fibrotic disorders.

FIGURE 1. Amino acid sequence of human ENG, isoform 1 (L-ENG)
(GenBank NM_001114753)

1 MDRGTLPLAV ALLIASCSLS PTSLAETVHC DLQPVGPERG EVTYTTSQVS KGCVAQAPNA
61 ILEVHVLFLE FPTGPSQLEL TLQASKQNGT WPREVLLVLS VNSSVFLHLQ ALGIPLHLAY
121 NSSLVTFQEP PGVNNTTELPS FPKTQILEWA AERGPITSAA ELNDPQSILL RLGQAQGSLS
181 FCMLEASQDM GRTLEWRPRT PALVRGCHLE GVAGHKAEHI LRVLPGHSAG PRTVTVKVEL
241 SCAPGDLDLAV LILQGPPYVS WLIDANHNMQ IWTTGEYSFK IFPEKNIRGF KLPDTPQGLL
301 GEARMLNASI VASFVELPLA SIVSLHASSC GGRLQTSPAP IQTTPPKDTG SPELLMSLIQ
361 TKCADDAMTL VLKKELVAHL KCTITGLTFW DPSCEAEDRG DKFVLRSAYS SCGMQVSASM
421 ISNEAVVNIL SSSSPQRKKV HCLNMDSLSF QLGLYLSPHF LQASNTIEPG QQSFVQVRVS
481 PSVSEFLLQL DSCHLDLGPE GGTVELIQGR AAKGNCVSLL SPSPEGDPRF SFLLHFYTVP
541 IPKTGTLSCT VALRPKTGSQ DQEVTHTVFM RLNIISPDLG GCTSKGLVLP AVLGITFGAF
601 LIGALLTAAL WYIYSHTRSP SKREPVVAVA APASSESSST NHSIGSTQST PCSTSSMA

(SEQ ID NO: 1)

FIGURE 1

FIGURE 2. Nucleotide sequence encoding human ENG, isoform 1 (L-ENG)

(GenBank NM_001114753)

361 CCTGCCACTG GACACAGGAT AAGGCCAGC GCACAGGCC CCACGTGGAC AGCATGGACC
421 GCGGCACGCT CCCCTCTGGCT GTTGCCTGCTC TGCTGGCCAG CTGCAGCCTC AGCCCCACAA
481 GTCTTCGAGA AACAGTCCAT TGTGACCTTC AGCCTGTGGG CCCCAGAGG GGCAGGGTGA
541 CATATACACAC TAGCCAGGTC TCGAAGGGCT GCGTGGCTCA GGGCCCCAAT GCCATCCTTG
601 AAGTCCATGT CCTCTTCTG GAGTCCCAA CGGGCCGTC ACAGCTGGAG CTGACTCTCC
661 AGGCATCCAA GCAAAATGGC ACCTGGCCCC GAGAGGTGCT TCTGGTCCTC AGTGTAAACA
721 GCAGTGTCTT CCTGCATCTC CAGGCCCTGG GAATCCCAC GCACITGGCC TACAATTCCA
781 GCCTGGTCAC CTTCCAAGAG CCCCCGGGGG TCAACACAC AGAGCTGCCA TCCTTCCCCA
841 AGACCCAGAT CCTTGAGTGG GCAGCTGAGA GGGGCCCAT CACCTCTGCT GCTGAGCTGA
901 ATGACCCCCA GAGCATCTC CTCCGACTGG GCCAAGGCCA GGGGTCACTG TCCTCTGCA
961 TGCTGGAAGC CAGCCAGGAC ATGGGCCGCA CGCTCGAGTG GCGGCCGCGT ACTCCAGCCT
1021 TGGTCCGGGG CTGCCACTTG GAAGGCCTGG CCGGCCACAA GGAGGCCAC ATCCTGAGGG
1081 TCCTGCCGGG CCACTCGGCC GGGCCCCGGA CGGTGACGGT GAAGGTGGAA CTGAGCTGCG
1141 CACCCGGGGG TCTCGATGCC GTCCCATCC TGCAGGGTCC CCCCTACGTG TCCTGGCTCA
1201 TCGACGCCAA CCACAACATG CAGATCTGGA CCACTGGAGA ATACTCCTTC AAGATCTTTC
1261 CAGAGAAAAA CATTCGTGGC TTCAAGCTCC CAGACACACC TCAAGGCCCTC CTGGGGGAGG
1321 CCCGGATGCT CAATGCCAGC ATTGTGGCAT CCTCGTGGA GCTACCGCTG GCCAGCATTG
1381 TCTCACTTCA TGCCTCCAGC TGCCTGGTA GGCTGCAGAC CTCACCCGCA CCGATCCAGA
1441 CCACTCCTCC CAAGGACACT TGTAGCCCG AGCTGCTCAT GTCCCTTGATC CAGACAAAGT
1501 GTGCCGACGA CGCCATGACC CTGGTACTAA AGAAAGAGCT TGTGCGCAT TTGAAGTGCA
1561 CCATCACGGG CCTGACCTTC TGGGACCCCCA GCTGTGAGGC AGAGGACAGG GGTGACAAGT
1621 TTGTCTTGCG CAGTGCTTAC TCCAGCTGTG GCATGCAGGT GTCAGCAAGT ATGATCAGCA
1681 ATGAGGGGGT GGTCAATATC CTGTCGAGCT CATCACCACA GCGGAAAAAG GTGCACTGCC
1741 TCAACATGGG CAGCCTCTCT TTCCAGCTGG GCCTCTACCT CAGCCCCACAC TTCCCTCCAGG
1801 CCTCCAACAC CATCGAGCCG GGGCAGCAGA GCTTGTCAGA GGTCAAGAGTG TCCCCATCCG
1861 TCTCCGAGTT CCTGCTCCAG TTAGACAGCT GCCACCTGGA CTTGGGGCCT GAGGGAGGCA
1921 CCGTGGAACT CATCCAGGGC CGGGCGGCCA AGGGCAACTG TGTGAGCCTG CTGTCCTCCAA
1981 GCCCCGAGGG TGACCCGCGC TTCAGCTTCC TCCTCCACTT CTACACAGTA CCCATACCCA
2041 AAACCGGCAC CCTCAGCTGC ACGGTAGCCCC TGCGTCCCCA GACCGGGTCT CAAGACCAGG
2101 AAGTCCATAG GACTGTCTTC ATGCGCTTGA ACATCATCAG CCCTGACCTG TCTGGTTGCA
2161 CAACCAAAGG CCTCGTCCCTG CCCGCCGTGC TGGGCATCAC CTTTGGTGCCTC TTCCCTCATCG
2221 GGGCCCTGCT CACTGCTGCA CTCTGGTACA TCTACTCGCA CACGCCTGCC CCCAGCAAGC
2281 GGGAGCCCGT CGTGGCGGTG GCTGCCCGG CCTCCTCGGA GAGCAGCAGC ACCAACCACCA
2341 GCATCGGGAG CACCCAGAGC ACCCCCTGCT CCACCAAGCAG CATGGCATAG

(SEQ ID NO: 2)

FIGURE 2

FIGURE 3. Amino acid sequence of human ENG, isoform 2 (S-ENG)

(GenBank NM_000118)

1 MDRGTLPLAV ALLLASCSLS PTSLAETVHC DLQPVGPERG EVTYTTSQVS KGCVAQAPNA
61 ILEVHVLFLE FPTGPSQLEI TIQASKQNGT WPREVLLVLIS VNSSVFLHLQ ALGIPLHLAY
121 NSSLVTFQEP PGVNNTTELPS FPKTQILEWA AERGPITSAA ELNDPQSILL RLGQAQGSLS
181 FCMLEASQDM GRTLEWRPRT FALVRGCHLE GVAGHKKEAHI LRVLPGHSAG PRTVTVKVEL
241 SCAPGDLDLAV LILQGPPYVS WLIDANHNMQ IWTTGEYSFK IFPEKNIRGF KLPDTPQGLL
301 GEARMLNASI VASFVELPLA SIVSLHASSC GGRLQTSPAP IQTTPPKDTC SPELLMSLIQ
361 TKCADDAMTL VLKKELVAHL KCTITGLTFW DPSCEAEDRG DKFVLRSAYS SCGMQVSASM
421 ISNEAVVNIL SSSSPQRKKV HCLNMDSLSF QLGLYLSPHF LQASNTIEPG QQSFVQVRVS
481 PSVSEFLLQL DSCHLDLGPE GGTVELIQGR AAKGNCVSSL SPSPEGDPRF SELLHFYTVP
541 IPKTGTLSCT VALRPKTGSQ DQEvhRTVFM RLNIISPDLIS GCTSKGLVLP AVLGITFGAF
601 LIGALLTAAL WYIYSHREY PRFFQ

(SEQ ID NO: 3)

FIGURE 3

FIGURE 4. Nucleotide sequence encoding human ENG, isoform 2 (S-ENG)

(GenBank NM_000118)

361 CCTGCCACTG GACACAGGAT AAGGCCAGC GCACAGGCC CCACGTGGAC AGCATGGACC
421 GCGGCACGCT CCCTCTGGCT GTTGCCTG TGCTGGCCAG CTGCAGCCTC AGCCCCACAA
481 GTCTTGCAGA AACAGTCCAT TGTGACCTTC AGCCTGTGGG CCCCGAGAGG GGCAGGGTGA
541 CATATACCAC TAGCCAGGTC TCGAAGGGCT GCGTGGCTCA GGCCCCAAT GCCATCCTG
601 AAGTCCATGT CCTCTTCCTG GAGTCCCAG CGGGCCCGTC ACAGCTGGAG CTGACTCTCC
661 AGGCATCCAA GCAAAATGGC ACCTGGCCCC GAGAGGTGCT TCTGGCCTC AGTGTAAACA
721 GCAGTGTCTT CCTGCATCTC CAGGCCCTGG GAATCCCAC GCACGGGCC TACAATTCCA
781 GCCTGGTCAC CTTCCAAGAG CCCCGGGGG TCAACACCAC AGAGCTGCCA TCCTTCCCCA
841 AGACCCAGAT CCTTGAGTPGG GCAGCTGAGA GGGGCCCCAT CACCTCTGCT GCTGAGCTGA
901 ATGACCCCCA GAGCATCTC CTCCGACTGG GCCAAGGCCA GGGGTCACTG TCCTTCTGCA
961 TGCTGGAAGC CAGCCAGGAC ATGGGCCGCA CGCTCGAGTG GCGGCCGCGT ACTCCAGCCT
1021 TGGTCCGGGG CTGCCACTTG GAAGGCCTGG CGGGCCACAA GGAGGCGCAC ATCCTGAGGG
1081 TCCTGCCGGG CCACTCGGCC GGGCCCCGGA CGGTGACGGT GAAGGTGGAA CTGAGCTGCC
1141 CACCCGGGG A TCTCGATGCC GTCCATCC TGCAGGGTCC CCCCTACGTG TCCTGGCTCA
1201 TCGACGCCAA CCACAAACATG CAGATCTGGA CCACTGGAGA ATACTCCTTC AAGATCTTC
1261 CAGAGAAAAA CATTCTGAGC TTCAAGCTCC CAGACACACC TCAAGGCCCTC CTGGGGGAGG
1321 CCCGGATGCT CAATGCCAGC ATTGTGGCAT CCTCTCGTGGA GCTACCGCTG GCCAGCATTG
1381 TCTCACTTCA TGCCTCCAGC TGGGTGGTA GGCTGCAGAC CTCACCCGCA CCGATCCAGA
1441 CCACTCCTCC CAAGGACACT TGTAGCCCGG AGCTGCTCAT GTCCTTGATC CAGACAAAGT
1501 GTGCCGACGA CGCCATGACC CTGGTACTAA AGAAAGAGCT TGTGCGCAT TTGAAGTGCA
1561 CCATCACGGG CCTGACCTTC TGGGACCCCA GCTGTGAGGC AGAGGACAGG GGTGACAAGT
1621 TTGTCTTGCG CAGTGCTTAC TCCAGCTGTG GCATGCAGGT GTCAGCAAGT ATGATCAGCA
1681 ATGAGGCGGT GGTCAATATC CTGTCGAGCT CATCACCCACA GCGGAAAAAG GTGCACTGCC
1741 TCAACATGGA CAGCCTCTCT TTCCAGCTGG GCCTCTACCT CAGCCCCACAC TTCCCTCCAGG
1801 CCTCCAACAC CATCGAGCCG GGGCAGCAGA GCTTTGTGCA GGTCAAGAGTG TCCCCATCCG
1861 TCTCCGAGTT CCTGCTCCAG TTAGACAGCT GCCACCTGGA CTTGGGCCT GAGGGAGGCA
1921 CCGTGGAACT CATCCAGGGC CGGGCGGCCA AGGGCAACTG TGTGAGCCTG CTGTCCCCAA
1981 GCCCCGAGGG TGACCCGGC TTCAGCTTCC TTCTCCACTT CTACACAGTA CCCATACCCA
2041 AAACCGGCAC CCTCAGCTGC ACGGTAGCCC TGGGTCCCAA GACCGGGTCT CAAGACCAGG
2101 AAGTCCATAG GACTGTCTTC ATGCGCTTGA ACATCATCAG CCCTGACCTG TCTGGTTGCC
2161 CAAGCAAAGG CCTCGTCCTG CCCGCCGTGC TGGGCATCAC CTTTGGTGCA TTCCCTCATCG
2221 GGGCCCTGCT CACTGCTGCCA CTCTGGTACA TCTACTCGCA CACGCGTGAG TACCCAGGC
2281 CCCCCACAGTG A

(SEQ ID NO: 4)

FIGURE 4

FIGURE 5. Amino acid sequence of murine ENG, isoform 1 (L-ENG)

(GenBank NM_007932)

1 MDRGVLPLPI TLLFVIYSFV PTGLAERVG CDLQPVDPTR GEVTFTTSQV SEGCVQAAN
61 AVREVHVLFL DFPGMLSHLE LTLQASKQNG TETQEVFLVL VSNKNVFVKF QAPEIPLHLA
121 YDSSLVIFQG QPRVNITVLP SLTSRKQILD WAATKGAIITS IAALDDPQSI VLQLGQDPKA
181 PFLCLPEAHK DMGATLEWQP RAQTPVQSCR LEGVSGHKEA YILRILPGSE AGPRTVTVM
241 ELSCTSGDAI LILHGPPYVS WFIDINHSMQ ILTTGEYSVK IFPGSKVKGV ELPDTPQGLI
301 AEARKLNASI VTSFVELPLV SNVSLRASSC GGVFQTTPAP VVTTPPKDTG SPVLLMSLIQ
361 PKCGNQVMTL ALNKKHVQTL QCTITGLTFW DSSCQAEDTD DHLVLSSAYS SCGMKVTAHV
421 VSNEVIISFP SGSPPLRKKV QCIDMDSLSF QLGLYLSPHF LQASNTIELG QQAFVQVSVS
481 PLTSEVTVQL DSCHLDLGPE GDMVELIQSR TAKGSCVTLL SPSPEGDPRF SFLLRVYMVP
541 TPTAGTLSCN LALRPSTLSQ EVYKTVSMRL NIVSPDLSGK GLVLPSVLGI TFGAFLIGAL
601 LTAALWYIYS HTRGPSKREP VVAVAAPASS ESSSTNHSIG STQSTPCSTS SMA

(SEQ ID NO: 5)

FIGURE 5

FIGURE 6. Nucleotide sequence encoding murine ENG, isoform 1 (L-ENG)

(GenBank NM_007932)

361 AGCATGGACC GTGGCGTGCT CCCTCTGCC ATTACCTGTC TGTTTGTCA CTATAGCTT
421 GTACCCACAA ~~GTACCCACAA~~ GTCTCGC AGAAAGAGTC GGCTGTGATC TACAGCCTGT GGACCCACAA
481 AGGGGTGAGG TGACGTTTAC CACCAAGCCAG GTCTCCGAGG GCTGTGTAGC TCAGGCTGCC
541 AATGCTGTGC GTGAAGTCCA CGTTCTCTTC CTGGATTTC CCGGAATGCT GTCACATCTG
601 GAGCTGACTC TTCAGGCATC CAAGCAAAAT GGCACGGAGA CCCAGGAGGT GTTCCTGGTC
661 CTCGTTTCGA ACAAAAATGT CTTCGTGAAG TTCCAGGCC CGGAAATCCC ATTGCACTTG
721 GCCTACGACT CCAGCCTGGT CATCTTCCAA GGACAGCCAA GAGTCAACAT CACAGTGTCA
781 CCATCCCTTA CCTCCAGGAA ACAGATCCTC GACTGGGCAG CCACCAAGGG CGCCATCACC
841 TCGATAGCAG CACTGGATGA CCCCCAAAGC ATCGTCCTCC AGTTGGGCCA AGACCCAAAG
901 GCACCATTCT TGTGCTTGCC AGAAGCTCAC AAGGACATGG GCGCCACACT TGAATGGCAA
961 CCACGAGCCC AGACCCCAAGT CCAAAGCTGT CGCTTGGAAAG GTGTGTCTGG CCACAAGGAG
1021 GCCTACATCC TGAGGATCCT GCCAGGTTCT GAGGCCGGGC CCCGGACGGT GACCGTAATG
1081 ATGGAACTGA GTTGCACATC TGGGGACGCC ATTCTCATCC TGCATGGTCC TCCATATGTC
1141 TCCTGGTTCA TCGACATCAA CCACAGCATG CAGATCTTGA CCACAGGTGA ATACTCCGTC
1201 AAGATCTTTC CAGGAAGCAA GGTCAAAGGC GTGGAGCTCC CAGACACACC CCAAGGGCTG
1261 ATAGCGGAGG CCCGCAAGCT CAATGCCAGC ATTGTCACCT CCTTTGTAGA GCTCCCTCTG
1321 GTCAGCAATG TCTCCCTGAG GGCTCCAGC TGCGGTGGTG TGTTCAGAC CACCCCTGCA
1381 CCCGTTGTGA CCACACCTCC CAAGGACACA TGCAAGCCCC TGCTACTCAT GTCCCTGATC
1441 CAGCCAAAGT GTGGCAATCA GGTCACTGACT CTGGCACTCA ATAAAAAAACA CGTGCAGACT
1501 CTCCAGTGCA CCATCACAGG CCTGACTTTC TGGGACTCCA GCTGCCAGGC TGAAGACACT
1561 GACGACCACATC TTGTCTGAG TAGCGCCTAC TCCAGCTGCG GCATGAAAGT GACAGCCCAT
1621 GTGGTCAGCA ATGAGGTGAT CATCAGTTTC CCGTCAGGCT CACCACCACT TCGGAAAAAG
1681 GTACAGTGCA TCGACATGGA CAGCCTCTCC TTCCAGCTGG GCCTCTACCT CAGCCCGCAC
1741 TTCCCTCCAGG CATCCAACAC CATCGAACTA GGCCAGCAGG CCTTCGTACA GGTGAGCGTG
1801 TCTCCATTGA CCTCTGAGGT CACAGTCCAG CTAGATAGCT GCCATCTGGA CTTGGGGCCC
1861 GAAGGGGACA TGGTGGAACT CATCCAGAGC CGAACAGCCA AGGGCAGCTG TGTGACCTTG
1921 CTGTCTCCAA GCCCTGAAGG TGACCCACGC TTCAGCTTCC TCCTCCGGGT CTACATGGTG
1981 CCCACACCCA CCGCTGGCAC CCTCAGTTGC AACTTAGCTC TGCGCCCTAG CACCTTGTC
2041 CAGGAAGTCT ACAAGACAGT CTCCATGCGC CTGAACATCG TCAGCCTGA CCTGTCTGGT
2101 AAAGGCCTTG TCCCTGCCCTC TGTACTGGGT ATCACCTTG GTGCCCTCCT GATTGGGGCC
2161 CTGCTCACAG CTGCACTCTG GTACATCTAT TCTCACACAC GTGGCCCCAG CAAGCAGGAG
2221 CCCGTGGTGG CAGTGGCTGC CCCGGCCTCC TCTGAGAGCA GCAGTACCAA CCACAGCATC
2281 GGGAGCACCC AGAGCACCCCC CTGCTCCACC AGCAGCATGG CGTAG

(SEQ ID NO: 6)

FIGURE 6

FIGURE 7. Amino acid sequence of murine ENG, isoform 2 (S-ENG)
(GenBank NM_001146350)

1 MDRGVLPLPI TLLFVIYSFV PTTGLAERVG CDLQPVDPTR GEVTFTTSQV SEGCVAQAAN
61 AVREHVHLFL DFPGMLSHLE LTLQASKQNG TETQEVFLVL VSNKNVFVKF QAPEIPLHLA
121 YDSSLVIFQG QPRVNITVLP SLTSRKQILD WAATKGAITS EAALDDPQSI VLQLGQDPKA
181 PFLCLPEAHK DMGATLEWQP RAQTPVQSCR LEGVSGHKEA YILRILPGSE AGPRTVTVMM
241 ELSCTSGDAI LILHGPPYVS WFIDINHSMQ ILTTGEYSVK IFPGSKVKGV ELPDTPQGLI
301 AEARKLNASI VTSFVELPLV SNVSLRASSC GGVFQTPAP VVTPPPKDTG SPVLLMSLIQ
361 PKCGNQVMTL ALNKKHVQTL QCTITGLTFW DSSCQAEDTD DHLVLSSAYS SCGMKVTAHV
421 VSNEVIISFP SGSPPLRKKV QCIDMDSLSF QLGLYLSPHF LQASNTIELG QQAFVQVSVS
481 PLTSEVTVQL DSCHLDLGPE GDMVELIQSR TAKGSCVTLL SPSPEGDPRF SFLLRVYMVP
541 TPTAGTLSQN LALRPSTLSQ EVYKTVSMRL NIVSPDLSGK GLVLPSVLGI TFGAFLIGAL
601 LTAALWYIYS HTREYPKPPP HSHSKRSGPV HTTPGHTQWS L

(SEQ ID NO: 7)

FIGURE 7

FIGURE 8. Nucleotide sequence encoding murine ENG, isoform 2 (S-ENG)

(GenBank NM_001146350)

361 AGCATGGACC GTGGCGTGCT CCCTCTGCC ATTACCCCTGC TGTTTGTCA CTATAGCTT
421 GTACCCACAA CAGGTCTCGC AGAAAGAGTC GGCTGTGATC TACAGCCTGT GGACCCCA
481 AGGGGTGAGG TGACGTTTAC CACCAGCCAG GTCTCCGAGG GCTGTGTAGC TCAGGCTGCC
541 AATGCTGTGC GTGAAGTCCA CGTTCTCTTC CTGGATTTTC CGGAATGCT GTCACATCTG
601 GAGCTGACTC TTCAGGCATC CAAGCAAAAT GGCACGGAGA CCCAGGAGGT GTTCCTGGTC
661 CTCGTTTCGA ACAAAAATGT CTTCTGTAAAG TTCCAGGCCCG CGGAAATCCC ATTGCACTTG
721 GCCTACGACT CCAGCCTGGT CATCTTCAA GGACAGCCAA GAGTCAACAT CACAGTGCTA
781 CCATCCCTTA CCTCCAGGAA ACAGATCTC GACTGGGAG CCACCAAGGG CGGCATCACC
841 TCGATAGCAG CACTGGATGA CCCCAAAAGC ATCGTCTTCC AGTTGGGCCA AGACCCAAAG
901 GCACCATTCT TGTGCTTGCC AGAAAGCTCAC AAGGACATGG GCGCCACACT TGAATGGCAA
961 CCACGAGCCC AGACCCCAGT CCAAAGCTGT CGCTTGAAG GTGTGTCTGG CCACAAGGAG
1021 GCCTACATCC TGAGGATCCT GCCAGGTTCT GAGGCCGGGC CCCGGACGGT GACCGTAATG
1081 ATGGAACATGA GTTGCACATC TGGGGACGCC ATTCTCATCC TGCATGGTCC TCCATATGTC
1141 TCCTGGTTCA TCGACATCAA CCACAGCATG CAGATCTTGA CCACAGGTGA ATACTCCGTC
1201 AAGATCTTTC CAGGAAGCAA GGTCAAAGGC GTGGAGCTCC CAGACACACC CCAAGCCCTG
1261 ATAGCGGAGG CCCGCAAGCT CAATGCCAGC ATTGTCACCT CCTTTGTAGA GCTCCCTCTG
1321 GTCAAGCAATG TCTCCCTGAG GGCCTCCAGC TGGCGTGGGG TGTTCCAGAC CACCCCTGCA
1381 CCCGTTGTGA CCACACCTCC CAAGGACACA TGCAAGCCCG TGCTACTCAT GTCCCTGATC
1441 CAGCCAAAGT GTGGCAATCA GGTCACTGACT CTGGCACTCA ATAAAAAAACA CGTGCAGACT
1501 CTCCAGTGCA CCATCACAGG CCTGACTTTC TGGGACTCCA GCTGCCAGGC TGAAGACACT
1561 GACGACCATC TTGTCCTGAG TAGGCCCTAC TCCAGCTGGC GCATGAAAGT GACAGCCCAT
1621 GTGGTCAGCA ATGAGGTGAT CATCAGTTTC CCGTCAGGCT CACCACCACT TCGGAAAAAG
1681 GTACAGTGCA TCGACATGGA CAGCCTCTCC TTCCAGCTGG GCCTCTACCT CAGCCCGCAC
1741 TTCCCTCCAGG CATCCAACAC CATCGAACTA GGCCAGCAGG CCTTCGTACA GGTGAGCGTG
1801 TCTCCATTGA CCTCTGAGGT CACAGTCCAG CTAGATAGCT GCCATCTGGA CTGGGGGCC
1861 GAAGGGGACA TGGTGGAACT CATCCAGAGC CGAACAGCCA AGGGCAGCTG TGTGACCTTG
1921 CTGTCTCCAA GCCCTGAAGG TGACCCACGC TTCAGCTTCC TCCTCCGGGT CTACATGGTG
1981 CCCACACCCA CCGCTGGCAC CCTCAGTTGC AACTTAGCTC TGCGCCCTAG CACCTTGTCC
2041 CAGGAAGTCT ACAAGACAGT CTCCATGCAGC CTGAACATCG TCAGCCCTGA CCTGTCTGGT
2101 AAAGGCCTTG TCCTGCCCTC TGTACTGGGT ATCACCTTGG GTGCCCTCCT GATTGGGGCC
2161 CTGCTCACAG CTGCACTCTG GTACATCTAT TCTCACACAC GTGAGTATCC CAAGCCTCCA
2221 CCCCATTCCCC ACAGCAAGCG CTCAGGGCCC GTCCACACCA CCCCCGGGGCA CACCCAGTGG
2281 AGCCTCTGA

(SEQ ID NO: 8)

FIGURE 8

FIGURE 9. Amino acid sequence for human ENG extracellular domain

ETVHC DLQPVGPERG EVTYTTSQVS KGCVAQAPNA
ILEVHVLFLE FPTGPSQLEL TLQASKQNGT WPREVLLVLS VNSSVFLHLQ ALGIPLHLAY
NSSLVTFQEP PGVNTTELPS FPKTQILEWA AERGPITSAA ELNDPQSILL RLGQAQGSLS
FCMLEASQDM GRTLEWRPRT PALVRGCHLE GVAGHKEAHI LRVLPGHSAG PRTVTVKVEL
SCAPGDLDLAV LILQGPPYVS WLIDANHNMQ IWTTGEYSFK IFPEKNIRGF KLPDTPQGLL
GEARMLNASI VASFVELPLA SIVSLHASSC GGRLQTSPAP IQTTPPKDTC SPELLMSLIQ
TKCADDAMTL VLKKELVAHL KCTITGLTFW DPSCEAEDRG DKFVLRSAYS SCGMQVSASM
ISNEAVVNIL SSSSPQRKKV HCLNMDSLSF QLGLYLSPHF LQASNTIEPG QQSFVQVRVS
PSVSEFLLQL DSCHLDLGPE GGTVELIQGR AAKGNCSVLL SPSPEGDPRF SFLLHFYTV
IPKTGTLSC VALRPKTGSQ DQEvhRTVFM RLNIISPDLs GCTSKG
(SEQ ID NO: 9)

FIGURE 9

FIGURE 10. Amino acid sequence of murine ENG extracellular domain

ERVG CDLQPVDPTR GEVTFTTSQV SEGCVAQAA
AVREVHVLFL DFPGMLSHLE LTLQASKQNG TETREVFLVL VSNKNVFVKF QAPEIPLHLA
YDSSLVIFQG QPRVNITVLP SLTSRKQILD WAATKGAIITS IAALDDPQSI VLQLGQDPKA
PFLCLPEAHK DMGATLEWQP RAQTPVQSCR LEGVSGHKEA YILRILPGSE AGPRTVTVM
ELSCTSGDAI LILHGPPYVS WFIDINHSMQ ILTTGEYSVK IFPGSKVKGV ELPDTPQGLI
AEARKLNASI VTSFVELPLV SNVSLRASSC GGVFQTTPAP VVTTPPKDTG SPVLLMSLIQ
PKCGNQVMTL ALNKKHVQTL QCTITGLTFW DSSCQAEDTD DHLVLSSAYS SCGMKVTAHV
VSNEVIISFP SGSPPLRKKV QCIDMDSLSF QLGLYLSPHF LQASNTIELG QQAFVQVSVS
PLTSEVTVQL DSCHLDLGPE GDMVELIQSR TAKGSCVTLL SPSPEGDPRF SFLLRVYMVP
TPTAGTLSNCN LALRPSTLSQ EVYKTVSMRL NVVSPDLSGK G
(SEQ ID NO: 10)

FIGURE 10

FIGURE 11. Amino acid sequence of human IgG1 Fc domain

1 GGPKSCDKTH TCPPCPAPEL LGGPSVFLFP PKPKDTLMIS RTPEVTCVVV DVSHEDPEVK
61 FNWYVDGVEV HNAKTKPREE QYNSTYRVVS VLTVLHQDWL NGKEYKCKVS NKALPAPIEK
121 TISKAKGQPR EPQVYTLPPS REEMTKNQVS LTCLVKGFYF SDIAVEWESN GQPENNYKTT
181 PPVLDSDGSF FLYSKLTVDK SRWQQGNVFS CSVMHEALHN HYTQKSLSLS PGK
(SEQ ID NO: 11)

FIGURE 11

FIGURE 12. Amino acid sequence of N-terminally truncated human IgG1 Fc domain

1 THTCPPCPAP ELLGGPSVFL FPPKPKDTLM ISRTPEVTCV VVDVSHEDPE VKFNWYVDGV
61 EVHNAKTKPR EEQYNSTYRV VSVLTVLHQD WLNGKEYKCK VSNKALPAPI EKTISKAKGQ
121 PREPQVYTLP PSREEMTKNQ VSLTCLVKGF YPSDIAVEWE SNGQPENNYK TPPVLDSDG
181 SFFLYSKLT VDKSRWQQGNV FSCSVMHEAL HN HYTQKSLS LSPGK
(SEQ ID NO: 12)

FIGURE 12

FIGURE 13. Amino acid sequence of hENG(26-586)-hFc

1 MDAMKRGGLCC VLLLCGAVFV SPGRETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPWF PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPFGHSAGP RTVTVKVELS CAPGDLDAVL
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASTIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPKDTCS
351 PELLMSLIQT KCADDAMTLV LKKELVAHLK CTITGLTFWD PSCEAEDRGD
401 KFVLRSAYSS CGMQVSASMI SNEAVVNILS SSSPQRKKVH CLNMDSLSFQ
451 LGLYLSPHFL QASNTIEPGQ QSFVQVRVSP SVSEFLLQLD SCHLDLGPEG
501 GTVELIQGRA AKGNCVSLLS PSPEGDPRFS FLLHFYTVPI PKTGTLSCTV
551 ALRPKTGSQD QEVHRTVFMR LNIISPDLSG CTSKGGG KSCDKTHTCP
601 PCPAPELLGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS HEDPEVKFNW
651 YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK EYKCKVSNKA
701 LPAPIEKTIK KAKGQPREGQ VYTLPPSREE MTKNQVSLTC LVKGFYPSDI
751 AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV
801 MHEALHNHYT QKSLSLSPGK

(SEQ ID NO: 16)

FIGURE 13

FIGURE 14. Nucleotide sequence encoding hENG(26-586)-hFc

1 ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC
 AGTCTTCGTT TCGCCC ~~GGCC~~ ~~CC~~ GAAACAGT CCATTGTGAC CTTCAGCCTG
 101 TGGGCCCCGA GAGGGACGAG GTGACATATA CCACTAGCCA GGTCTCGAAG
 GGCTGCGTGG CTCAGGCCCC CAATGCCATC CTTGAAGTCC ATGTCCCTCTT
 201 CCTGGAGTTC CCAACGGGCC CGTCACAGCT GGAGCTGACT CTCCAGGCAT
 CCAAGCAAAA TGGCACCTGG CCCCAGAGAGG TGCTTCTGGT CCTCAGTGTAA
 301 AACAGCAGTG TCTTCCTGCA TCTCCAGGCC CTGGGAATCC CACTGCACCTT
 GGCCTACAAT TCCAGCCTGG TCACCTTCCA AGAGCCCCCG GGGGTCAACA
 401 CCACAGAGCT GCCATCCTTC CCCAAGACCC AGATCCTTGA GTGGGCAGCT
 GAGAGGGGCC CCATCACCTC TGCTGCGTGG CTGAATGACC CCCAGAGCAT
 501 CCTCCTCCGA CTGGGCCAAG CCCAGGGTC ACTGTCCCTTC TGCATGCTGG
 AAGCCAGCCA GGACATGGGC CGCACCGCTCG AGTGGCGGCC GCGTACTCCA
 601 GCCTTGGTCC GGGGCTGCCA CTTGGAAGGC GTGGCCGGCC ACAAGGAGGC
 GCACATCCTG AGGGTCTGC CGGGCCACTC GGCGGGGCC CGGACGGTGA
 701 CGGTGAAGGT GGAACGTAGC TGCGCACCCG GGGATCTCGA TGCCGTCCTC
 ATCCTGCAGG GTCCCCCTA CGTGTCTGG CTCATCGACG CCAACCACAA
 801 CATGCAGATC TGGACCACTG GAGAATACTC CTTCAAGATC TTTCCAGAGA
 AAAACATTG TGGCTTCAAG CTCCCAGACA CACCTCAAGG CCTCCTGGGG
 901 GAGGCCCGGA TGCTCAATGC CAGCATTGTG GCATCCTTCG TGGAGCTACC
 GCTGCCAGC ATTGTCTCAC TTCATGCCTC CAGCTGGGT GGTAGGCTGC
 1001 AGACCTCACCC CGCACCGATC CAGACCACTC CTCCCAAGGA CACTTGTAGC
 CCGGAGCTGC TCATGTCTT GATCCAGACA AAGTGTGCCG ACGACGCCAT
 1101 GACCCTGGTA CTAAAGAAAG AGCTTGTGC GCATTTGAAG TGCACCATCA
 CGGGCCTGAC CTTCTGGGAC CCCAGCTGTG AGGCAGAGGA CAGGGGTGAC
 1201 AAGTTTGTCT TGCGCAGTGC TTACTCCAGC TGTGGCATGC AGGTGTCAAG
 AAGTATGATC AGCAATGAGG CGGTGGTCAA TATCCTGTGC AGCTCATCAC
 1301 CACAGCGGAA AAAGGTGCAC TGCCCTCAACA TGGACAGCCT CTCTTCCAG
 CTGGGCCTCT ACCTCAGCCC ACACCTCCTC CAGGCCCTCCA ACACCATCGA
 1401 GCCGGGGCAG CAGAGCTTG TGCAGGTCAAG AGTGTCCCCA TCCGTCCTCG
 AGTTCTGCT CCAGTTAGAC AGCTGCCACC TGGACTTGGG GCCTGAGGGGA
 1501 GGCACCCGTGG AACTCATCCA GGGCCGGGCG GCCAAGGGCA ACTGTGTGAG
 CCTGCTGTCC CCAAGCCCCG AGGGTACCC GCGCTTCAGC TTCCCTCTCC
 1601 ACTTCTACAC AGTACCCATA CCCAAACCG GCACCCCTCAG CTGCACGGTA
 GCCCTGCGTC CCAAGACCGG GTCTCAAGAC CAGGAAGTCC ATAGGACTGT
 1701 CTTCAATGCAG TTGAACATCA TCAGCCCTGA CCTGTCTGGT TGCACAAAGCA
 AAGGC ~~ACCCG~~ ~~T~~GGTGGACCC AAATCTTGTG ACAAAACTCA CACATGCCA
 1801 CCGTGCCCAG CACCTGAACCT CCTGGGGGGA CCGTCAGTCT TCCCTCTCC
 CCCAAACCC AAGGACACCC TCATGATCTC CCGGACCCCT GAGGTACAT

1901 GCGTGGTGGT GGACGTGAGC CACGAAGACC CTGAGGTCAA GTTCAACTGG
TACGTGGACG GCGTGGAGGT GCATAATGCC AAGACAAAGC CGCGGGAGGA
2001 GCAGTACAAC AGCACGTACC GTGTGGTCAG CGTCCTCACC GTCTGCACC
AGGACTGGCT GAATGGCAAG GAGTACAAGT GCAAGGTCTC CAACAAAGCC
2101 CTCCCAGCCC CCATCGAGAA AACCATCTCC AAAGCCAAAG GGCAGCCCCG
AGAACACACAG GTGTACACCC TGCCCCCATC CCGGGAGGAG ATGACCAAGA
2201 ACCAGGTCAAG CCTGACCTGC CTGGTCAAAG GCTTCTATCC CAGCGACATC
GCCGTGGAGT GGGAGAGCAA TGGGCAGCCG GAGAACAACT ACAAGACCAC
2301 GCCTCCCGTG CTGGACTCCG ACGGCTCCTT CTTCCCTCTAT AGCAAGCTCA
CCGTGGACAA GAGCAGGTGG CAGCAGGGGA ACGTCTTCTC ATGCTCCGTG
2401 ATGCATGAGG CTCTGCACAA CCACTACACG CAGAAGAGCC TCTCCCTGTC
CCCGGGTAAA TGA
(SEQ ID NO: 17)

FIGURE 14 continued (Page 2 of 2)

FIGURE 15. Amino acid sequence of hENG(26-586)-hFc with N-terminally truncated Fc domain

1 MDAMKRGGLCC VLLLCGAVFV SPGAETVHCD LQPGVPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSOLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPNF PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDAVL
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPKDTCS
351 PELLMSLIQT KCADDAMTLV LKKELVAHLK CTITGLTFWD PSCEAEDRGD
401 KFVLRSAYSS CGMQVSASMI SNEAVVNILS SSSPQRKKVH CLNMDSLSFQ
451 LGLYLSPHFL QASNTIEPGQ QSFVQVRVSP SVSEFLLQLD SCHLDLGPEG
501 GTVELIQGRA AKGNCSVLLS PSPEGDPRFS FLEHFYTVPI PKTGTLSCTV
551 ALRPKTGSQD QEvhRTVFMR LNIISPDLSG CTSKGGGG HTCPPCPAPE
601 LLGGPSVFLF PPKPKDTLMI SRTPEVTCVV VDVSHEDPEV KFNWYVDGVE
651 VHNAKTKPRE EQYNSTYRVV SVLTVLHQDW LNGKEYKCKV SNKALPAPIE
701 KTISKAKGQP REPQVYTLPP SREEMTKNQV SLTCLVKGFY PSDIAVEWES
751 NGQOPENNYKT TPPVLDSDGS FFLYSKLTVD KSRWQQGNVF SCSVMHEALH
801 NHYTQKSLSL SPGK

(SEQ ID NO: 18)

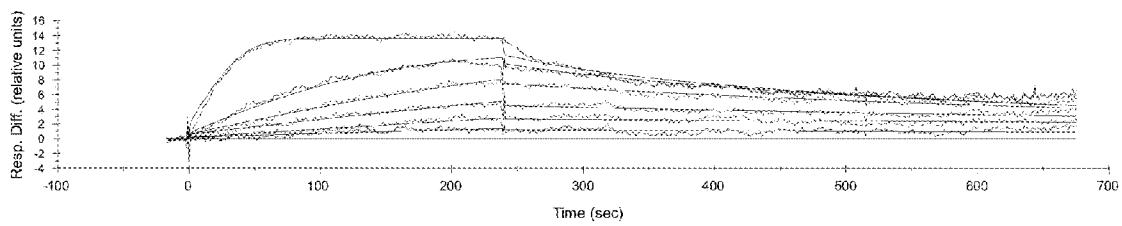
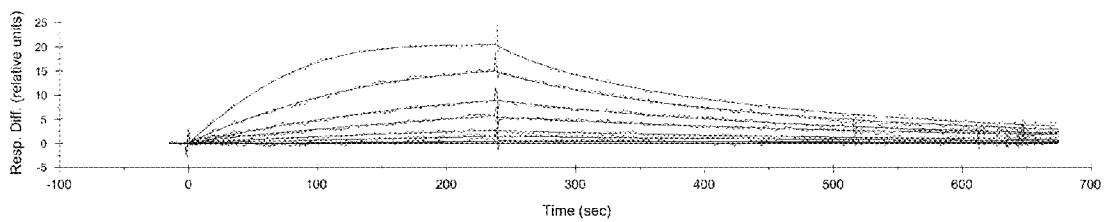
FIGURE 15

FIGURE 16. Amino acid sequence of mENG(27-581)-mFc

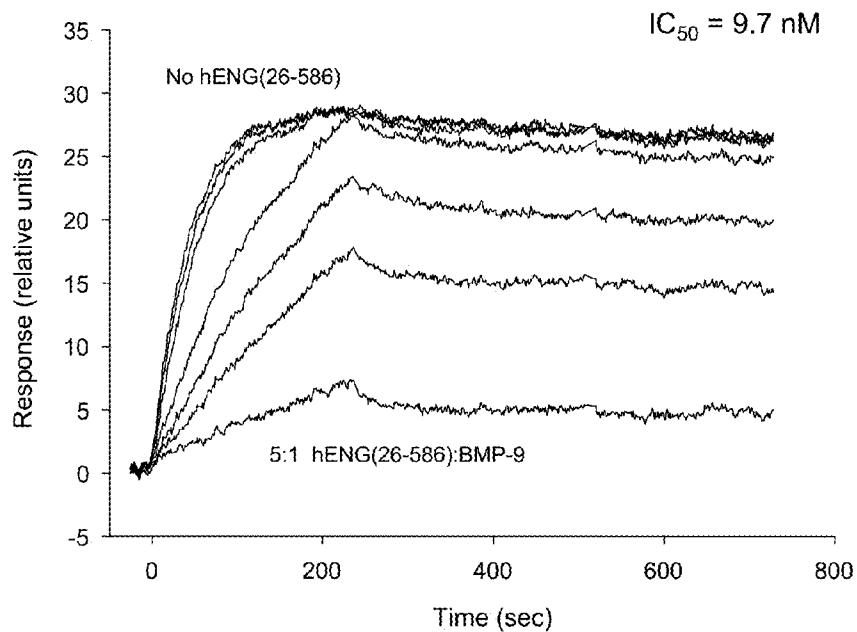
1 MDAMKRLGCC VLLLCGAVFV SPCCCERVGCD LQPVDPTRGE VTFTTSQVSE
51 GCVAQAANAV REVHVLFLDF PGMLSHLELT LQASKQNGTE TQEVLFLVLVS
101 NKNVFVKFQA PEIPLHLAYD SSLVIFQGQP RVNITVLP SL TSRKQILDWA
151 ATKGAITSIA ALDDPQSIVL QLGQDPKAPF LCLPEAHKDM GATLEWQPRA
201 QTPVQSCRLE GVSGHKEAYI LRILPGSEAG PRTVTVMME L SCTSGDAILI
251 LHGPPYVSWF IDINHSMQIL TTGEYSVKIF PGSKVKGVEL PDTPOGLIAE
301 ARKLNASIVT SFVELPLVSN VSLRASSCGG VFQTPAPVV TPPPKDTCS P
351 VLLMSLIQPK CGNQVMTLAL NKKHVQTLQC TITGLTFWDS SCQAEDTDDH
401 LVLSSAYSSC GMKVTAHVVS NEVIISFPSG SPPLRKKVQC IDMDSLSFQL
451 GLYLSPHFLQ ASNTIELGQQ AFVQVSVSPL TSEVTVQLDS CHLDLGPEGD
501 MVELIQSRTA KGSCVTLLSP SPEGDPRFSF LLRVYMVPTP TAGTLSCNLA
551 LRPSTLSQEV YKTVSMRLNI VSPDLSGKCT CCCEPRVPIT QNPCPPLKEC
601 PPCAAPDLLG GPSVFIFPPK IKDVLMISLS PMVTCVVVDV SEDDPDVQIS
651 WVFNNVEVHT AQTQTHREDY NSTLRVVSAL PIQHQDWMSG KEFKCKVNNR
701 ALPSPIEKTI SKPRGPVRAP QVYVLPPP AE EMTKKEFSLT CMITGFLPAE
751 IAVDWTNSNGR TEQNYKNTAT VLDSDGSYFM YSKLRVQKST WERGSLFACS
801 VVHEGLHNHL TTKTISRSLG K

(SEQ ID NO: 19)

FIGURE 16



FIGURE 17. Nucleotide sequence encoding mENG(27-581)-mFc

1 ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC
 AGTCTCGTT TCGCCCGG GAAAGAGT CGGCTGTGAT CTACAGCCTG
 101 TGGACCCAC AAGGGGTGAG GTGACGTTA CCACCAAGCCA GGTCTCCGAG
 GGCTGTGTAG CTCAGGCTGC CAATGCTGTG CGTGAAGTCC ACGTTCTCTT
 201 CCTGGATTT CCCGGAATGC TGTCACATCT GGAGCTGACT CTTCAGGCAT
 CCAAGCAAA TGGCACGGAG ACCCAGGAGG TGTTCCTGGT CCTCGTTCG
 301 AACAAAAATG TCTTCGTGAA GTTCCAGGCC CCGGAAATCC CATTGCACCT
 GGCCTACGAC TCCAGCCTGG TCATCTCCA AGGACAGCCA AGAGTCAACA
 401 TCACAGTGCT ACCATCCCTT ACCTCCAGGA AACAGATCCT CGACTGGGCA
 GCCACCAAGG GCGCCATCAC CTCGATAGCA GCACTGGATG ACCCCCCAAG
 501 CATCGTCCTC CAGTTGGGCC AAGACCCAAA GGCACCATTC TTGTGCTTGC
 CAGAAGCTCA CAAGGACATG GGCAGCACAC TTGAATGGCA ACCACGAGCC
 601 CAGACCCAG TCCAAAGCTG TCGCTTGGAA GGTGTGTCTG GCCACAAGGA
 GGCCTACATC CTGAGGATCC TGCCAGGTTC TGAGGCCGGG CCCCGGACGG
 701 TGACCGTAAT GATGGAACCTG AGTTGCACAT CTGGGGACGC CATTCTCATC
 CTGCATGGTC CTCCATATGT CTCCTGGTTC ATCGACATCA ACCACAGCAT
 801 GCAGATCTT ACCACAGGTG AATACTCCGT CAAGATCTT CCAGGAAGCA
 AGGTCAAAGG CGTGGAGCTC CCAGACACAC CCCAAGGCCT GATAGGGAG
 901 GCCCCGCAAGC TCAATGCCAG CATTGTCACC TCCTTTGTTAG AGCTCCCTCT
 GGTCAAGCAAT GTCTCCCTGA GGGCCTCCAG CTGCGGTGGT GTGTTCCAGA
 1001 CCACCCCTGC ACCCGTTGTG ACCACACCTC CCAAGGACAC ATGCAGCCCC
 GTGCTACTCA TGCCCTGAT CCAGCCAAAG TGTGGCAATC AGGTCAATGAC
 1101 TCTGGCACTC AATAAAAAAC ACGTGCAGAC TCTCCAGTGC ACCATCACAG
 GCCTGACTTT CTGGGACTCC AGCTGCCAGG CTGAAGACAC TGACGACCAT
 1201 CTTGTCCTGA GTAGGCCTA CTCCAGCTGC GGCATGAAAG TGACAGCCCA
 TGTGGTCAGC AATGAGGTGA TCATCAGTTT CCCGTCAGGC TCACCACAC
 1301 TTCGGAAAAA GGTACAGTGC ATCGACATGG ACAGCCTCTC CTTCCAGCTG
 GGCCTCTACC TCAGCCCGCA CTTCCCTCCAG GCATCCAACA CCATCGAACT
 1401 AGGCCAGCAG GCCTTCGTAC AGGTGAGCGT GTCTCCATTG ACCTCTGAGG
 TCACAGTCCA GCTAGATAGC TGCCATCTGG ACTTGGGGCC CGAAGGGGAC
 1501 ATGGTGAAC TCATCCAGAG CCGAACAGCC AAGGGCAGCT GTGTGACCTT
 GCTGTCTCCA AGCCCTGAAG GTGACCCACG CTTCAGCTTC CTCCCTCCGGG
 1601 TCTACATGGT GCCCACACCC ACCGCTGGCA CCCTCAGTTG CAACTTAGCT
 CTGCGCCCTA GCACCTTGTG CCAGGAAGTC TACAAGACAG TCTCCATGCG
 1701 CCTGAACATC GTCAGCCCTG ACCTGTCTGG TAAAGGACC GGTGGGGCG
 AGCCCAGAGT GCCCATAACA CAGAACCCCT GTCCCTCCACT CAAAGAGTGT
 1801 CCCCATGCG CAGCTCCAGA CCTCTTGGGT GGACCATCCG TCTTCATCTT
 CCCTCCAAAG ATCAAGGATG TACTCATGAT CTCCCTGAGC CCCATGGTCA


1901 CATGTGTGGT GGTGGATGTG AGCGAGGATG ACCCAGACGT CCAGATCAGC
TGGTTTGTGA ACAACGTGGA AGTACACACAC GCTCAGACAC AAACCCATAG
2001 AGAGGATTAC AACAGTACTC TCCGGGTGGT CAGTGCCCTC CCCATCCAGC
ACCAGGACTG GATGAGTGGC AAGGAGTTCA AATGCAAGGT CAACAAACAGA
2101 GCCCTCCCAT CCCCCATCGA GAAAACCATC TCAAAACCCA GAGGGCCAGT
AAGAGCTCCA CAGGTATATG TCTTGCCCTCC ACCAGCAGAA GAGATGACTA
2201 AGAAAGAGTT CAGTCTGACC TGCATGATCA CAGGCTTCTT ACCTGCCGAA
ATTGCTGTGG ACTGGACCAG CAATGGCGT ACAGAGCAAA ACTACAAGAA
2301 CACCGCAACA GTCCCTGGACT CTGATGGTTC TTACTTCATG TACAGCAAGC
TCAGAGTACA AAAGAGCACT TGGGAAAGAG GAAGTCTTT CGCCTGCTCA
2401 GTGGTCCACG AGGGTCTGCA CAATCACCTT ACGACTAAGA CCATCTCCCG
GTCTCTGGGT AAATGA

(SEQ ID NO: 20)

FIGURE 17 (Page 2 of 2)

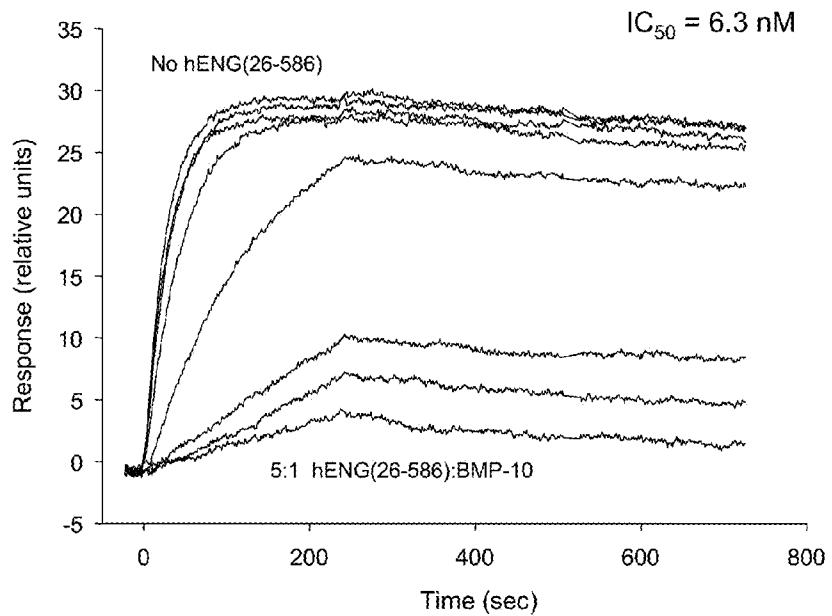

FIGURE 18. High-affinity binding of hENG(26-586)-hFc to BMP-9**FIGURE 18****FIGURE 19. High-affinity binding of hENG(26-586)-hFc to BMP-10****FIGURE 19**

FIGURE 20. Effect of soluble hENG extracellular domain, hENG(26-586), on binding of BMP-9 to ALK1

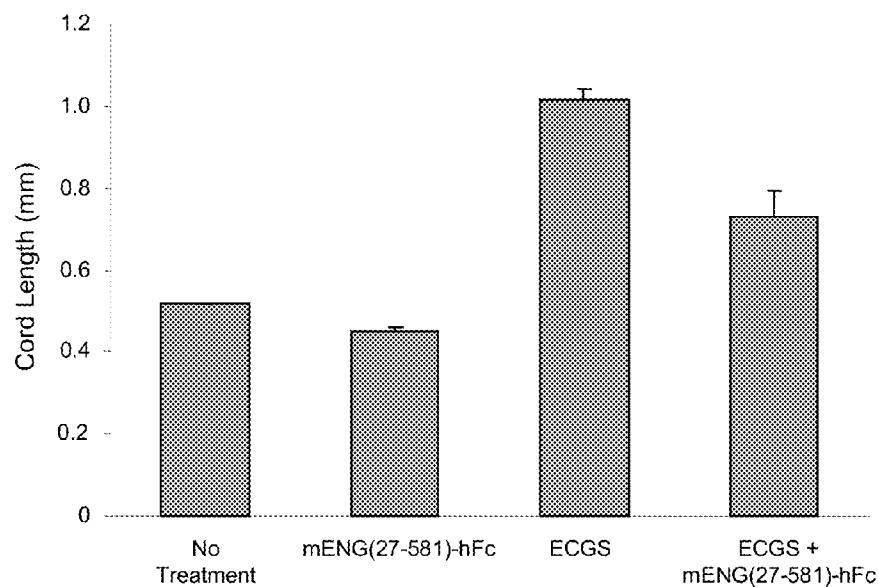

FIGURE 20

FIGURE 21. Effect of soluble hENG extracellular domain, hENG(26-586), on binding of BMP-10 to ALK1

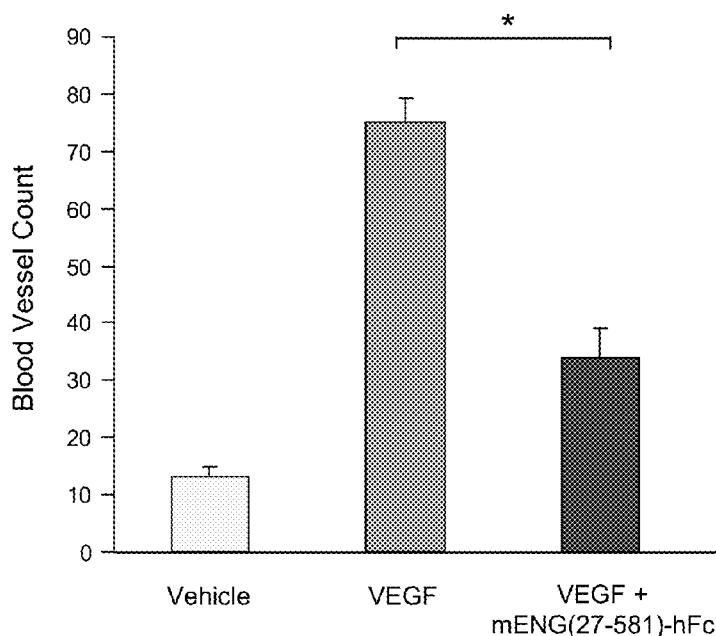

FIGURE 21

FIGURE 22. Effect of mENG(27-581)-hFc on cord formation by human umbilical vein endothelial cells (HUVEC) in culture

FIGURE 22

FIGURE 23. mENG(27-581)-hFc inhibits VEGF-stimulated angiogenesis in a CAM assay

FIGURE 23

FIGURE 24. Effect of mENG(27-581)-mFc on growth-factor stimulated angiogenesis in a mouse angioreactor assay

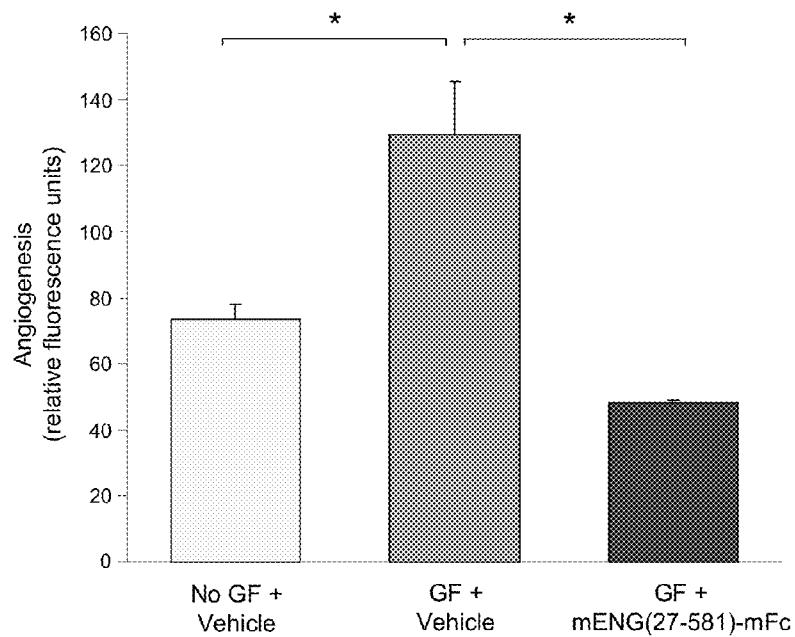


FIGURE 24

FIGURE 25. Schematic comparison of selected truncated hENG constructs

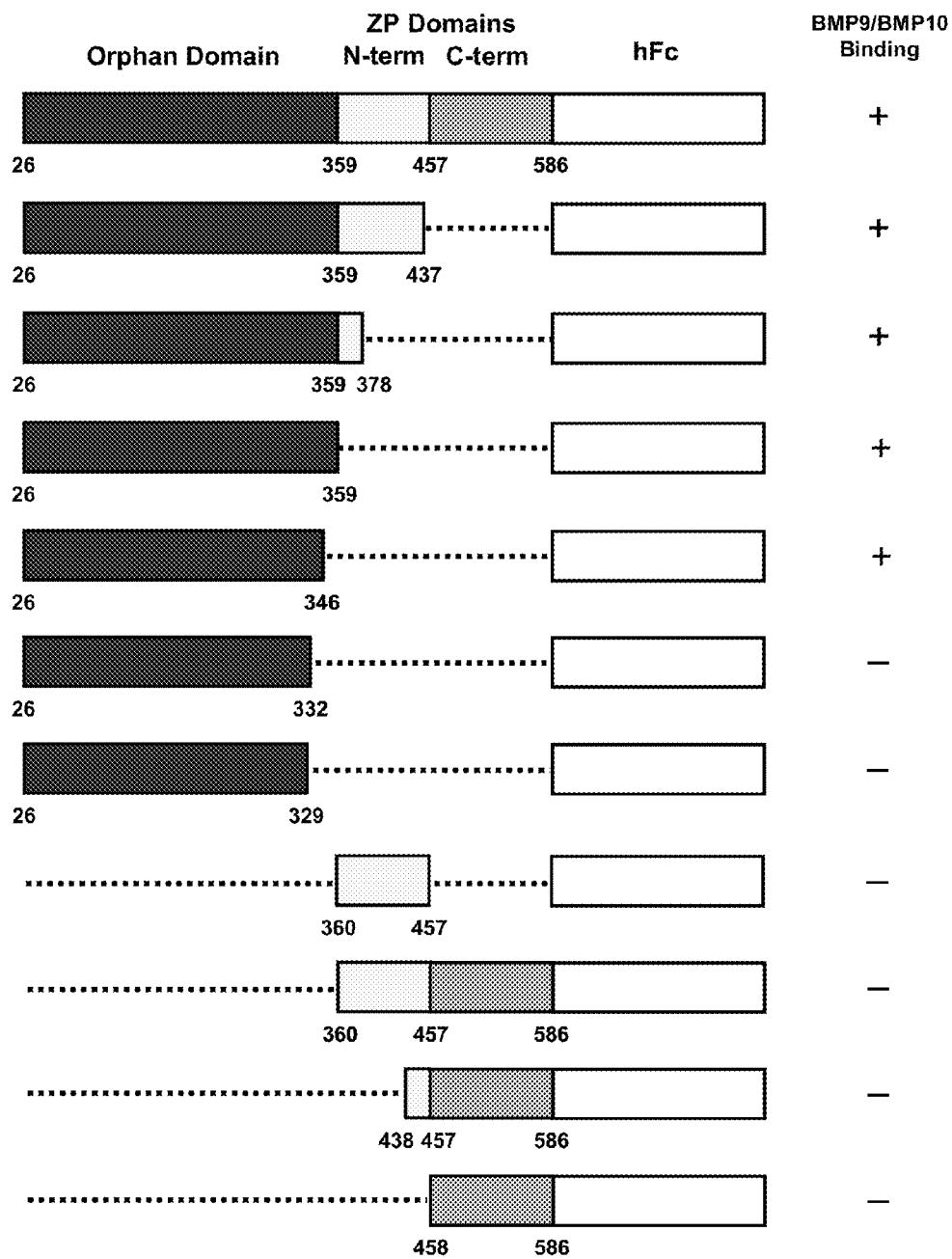


FIGURE 25

FIGURE 26. Amino acid sequence of hENG(26-437)-hFc

1 MDAMKRGLCC VLLLCGAVFV SPCAETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPNF PKTQILEWAA
151 ERGPITSAAE LNDPQSIILR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDAVL
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPKDTCS
351 PELLMSLIQT KCADDAMTLV LKKELVAHLK CTITGLTFWD PSCEAEDRGD
401 KFVLRSAVSS CGMQVSASMI SNEAVVNILS SSSPQRTCGG PKSCDKTHTC
451 PPCPAPELLG GPSVFLFPPK PKDTLMISRT PEVTCVVVDV SHEDPEVKFN
501 WYVDGVEVHN AKTKPREEQY NSTYRVVSVL TVLHQDWLNG KEYKCKVSNK
551 ALPAPIEKTI SKAKGQPREP QVYTLPPSRE EMTKNQVSLT CLVKGFYPSD
601 IAVEWESNGQ PENNYKTPPP VLDSDGSEFL YSKLTVDKSR WQQGNVFSCS
651 VMHEALHNHY TQKSLSLSPG K

(SEQ ID NO: 21)

FIGURE 26

FIGURE 27. Nucleotide sequence encoding hENG(26-437)-hFc

1 ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC
 AGTCTTCGTT TCGCCC**GGGG****CC** GAAACAGT CCATTGTGAC CTTCAGCCTG
 101 TGGGCCCGA GAGGGACGAG GTGACATATA CCACTAGCCA GGTCTCGAAG
 GGCTGCGTGG CTCAGGCCCC CAATGCCATC CTTGAAGTCC ATGTCCTCTT
 201 CCTGGAGTTC CCAACGGGCC CGTCACAGCT GGAGCTGACT CTCCAGGCAT
 CCAACAAAA TGGCACCTGG CCCCGAGAGG TGCTTCTGGT CCTCAGTGT
 301 AACAGCAGTG TCTTCCTGCA TCTCCAGGCC CTGGGAATCC CACTGCACCT
 GGCCCTACAAT TCCAGCCTGG TCACCTTCCA AGAGCCCCCG GGGGTCAACAA
 401 CCACAGAGCT GCCATCCTTC CCCAAGACCC AGATCCTTGA GTGGGCAGCT
 GAGAGGGCCC CCATCACCTC TGCTGCTGAG CTGAATGACC CCCAGAGCAT
 501 CCTCCTCCGA CTGGGCAAG CCCAGGGTC ACTGTCCTTC TGCAATGCTGG
 AAGCCAGCCA GGACATGGGC CGCACGCTCG AGTGGCGGCC GCGTACTCCA
 601 GCCTTGGTCC GGGGCTGCCA CTTGGAAGGC GTGGCCGGCC ACAAGGAGGC
 GCACATCCTG AGGGTCTGC CGGGCCACTC GGCCGGGGCC CGGACGGTGA
 701 CGGTGAAGGT GGAACTCAGC TGGCACCCCG GGGATCTCGA TGCCGTCCTC
 ATCTGCAGG GTCCCCCTCA CGTGTCTGG CTCATCGACG CCAACCACAA
 801 CATGCCAGTC TGGACCACTG GAGAATACTC CTTCAAGATC TTTCCAGAGA
 AAAACATTG TGGCTTCAAG CTCCCAGACA CACCTCAAGG CCTCCTGGGG
 901 GAGGCCCCGA TGCTCAATGC CAGCATGTG GCATCCTTC TGAGCTACC
 CCTGGCCAGC ATTGTCTCAC TTCATGCCCTC CAGCTGCGGT GGTAGGCTGC
 1001 AGACCTCACC CGCACCGATC CAGACCACTC CTCCAAGGA CACTTGTAGC
 CGGGAGCTGC TCATGTCCCT GATCCAGACA AAGTGTGCCG ACGACGCCAT
 1101 GACCCGGTA CTAAGAAAG AGCTTGTGC GCATTGAAG TGCACCATCA
 CGGGCCTGAC CTTCTGGGAC CCCAGCTGTG AGGCAGAGGA CAGGGGTGAC
 1201 AAGTTTGTCT TGCAGTGC TTACTCCAGC TGTGGCATGC AGGTGTCAGC
 AAGTATGATC AGCAATGAGG CGGTGGCAA TATCCTGTG AGCTCATCAC
 1301 CACAGCG**AC****CC**GGTGGA CCCAAATCTT GTGACAAAC TCACACATGC
 CCACCGTGC CAGCACCTGA ACTCCTGGGG GGACCGTCAG TCTTCCTCTT
 1401 CCCCCAAAA CCCAAGGACA CCCTCATGAT CTCCCGGACC CCTGAGGTCA
 CATGCGTGGT GGTGGACGTG AGCCACGAAG ACCCTGAGGT CAAGTTCAAC
 1501 TGGTACGTGG ACGGCAGTGG ACGTCATAAT GCCAAGACAA AGCCGGGGGA
 GGAGCAGTAC AACAGCACGT ACCGTGTGGT CAGCGTCCTC ACCGTCTGC
 1601 ACCAGGACTG GCTGAATGGC AAGGAGTACA AGTGCAGGT CTCCAACAAA
 GCCCTCCCAG CCCCCATCGA GAAAACCATC TCCAAAGCCA AAGGGCAGCC
 1701 CCGAGAACCA CAGGTGTACA CCCTGCCCTC ATCCCGGGAG GAGATGACCA
 AGAACCAAGGT CAGCCTGACCC TGCCTGGTCA AAGGCTTCTA TCCCAGCGAC
 1801 ATCGCCGTGG AGTGGGAGAG CAATGGGCAG CGGGAGAACAA ACTACAAGAC
 CACGCCCTCCC GTGCTGGACT CGCACGGCTC CTTCTCCCTC TATAGCAAGC
 1901 TCACCGTGG AAGAGCAGG TGGCAGCAGG GGAAACGTCTT CTCATGCTCC
 GTGATGCATG AGGCTCTGCA CAACCACTAC ACGCAGAAGA GCCTCTCCCT
 2001 GTCCCCGGGT AAATGA

(SEQ ID NO: 22)

FIGURE 27

FIGURE 28. Amino acid sequence of hENG(26-378)-hFc

1 MDAMKRLGCC VLLLCGAVFV SPCGETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPNF PKTQILEWAA
151 ERGPITSAAE LNDPQSIILR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDAVL
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPKDTCS
351 PELLMSLIQT KCADDAMTLV LKKELVATCG GTHTCPPCPA PELLGGPSVF
401 LFPPPKPKDTL MISRTPEVTC VVVDVSHEDP EVKFNWYVDG VEVHNAKTKP
451 REEQYNSTYR VVSVLTVLHQ DWLNGKEYKC KVSNKALPAP IEKTISKAKG
501 QPREPQVYTL PPSREEMTKN QVSLTCLVKG FYPSDIAVEW ESNQOPENNY
551 KTTPPVLDSD GSFFFLYSKLT VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL
601 SLSPGK

(SEQ ID NO: 23)

FIGURE 28

FIGURE 29. Nucleotide sequence encoding hENG(26-378)-hFc

1 ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC AGTCTCGTT
 61 TCGCCC**CCCC**CCGAAACAGT CCATTGTGAC CTTCAGCCTG TGGGCCCCGA GAGGGACGAG
 121 GTGACATATA CCACTAGCCA GGTCTCGAAG GGCTGCGTGG CTCAGGCCCC CAATGCCATC
 181 CTTGAAGTCC ATGTCCTCTT CCTGGACTTC CCAACGGGCC CGTCACAGCT GGAGCTGACT
 241 CTCCAGGCAT CCAAGCAAAA TGGCACCTGG CCCCCGAGAGG TGCTTCTGGT CCTCAGTGTA
 301 AACAGCAGTG TCTTCCTGCA TCTCCAGGCC CTGGGAATCC CACTGCACTT GGCCTACAAT
 361 TCCAGCCTGG TCACCTTCCA AGAGCCCCCG GGGGTCAACA CCACAGAGCT GCCATCCTTC
 421 CCCAAGACCC AGATCCTTGA GTGGGCAGCT GAGAGGGGCC CCATCACCTC TGCTGCTGAG
 481 CTGAATGACC CCCAGAGCAT CCTCCTCCGA CTGGGCCAAG CCCAGGGGTC ACTGTCCCTC
 541 TGCATGCTGG AAGCCAGCCA GGACATGGGC CGCACGCTCG AGTGGCGGCC GCGTACTCCA
 601 GCCTTGGTCC GGGGCTGCCA CTTGGAAGGC GTGGCCGGCC ACAAGGAGGC GCACATCCTG
 661 AGGGTCCTGC CGGGCCACTC GGGGGGGCCC CGGACGGTCA CGCTGAAGGT GGAACGTGAGC
 721 TGCACCCCCG GGGATCTCGA TGCCGTCTC ATCCCTGCAGG GTCCCCCCTA CGTGTCCCTGG
 781 CTCATCGACG CCAACCACAA CATGCAGATC TGGACCCTG GAGAACTACTC CTTCAAGATC
 841 TTTCCAGAGA AAAACATTG TGGCTTCAAG CTCCCAGACA CACCTCAAGG CCTCCCTGGGG
 901 GAGGCCCGGA TGCTCAATGC CAGCATTGTG GCATCCTTCG TGGAGCTACC GCTGGCCAGC
 961 ATTGTCTCAC TTCATGCCTC CAGCTGCGGT GGTAGGCTGC AGACCTCACC CGCACCGATC
 1021 CAGACCACTC CTCCCAAGGA CACTTGTAGC CCGGAGCTGC TCATGTCCCT GATCCAGACA
 1081 AAGTGTGCCG ACGACGCCAT GACCCCTGGTA CTAAGAAAG AGCTTGTGCA G**CCCCGTGGT**
 1141 **CGT**ACTCACA CATGCCACC GTGCCAGCA CCTGAACCTCC TGGGGGGACC GTCAGTCTTC
 1201 CTCTTCCCCC CAAACCCAA GGACACCCCTC ATGATCTCCC GGACCCCTGA GGTACATGC
 1261 GTGGTGGTGG ACGTGAGCCA CGAAGACCCCT GAGGTCAAGT TCAACTGGTA CGTGGACGGC
 1321 GTGGAGGTGC ATAATGCCAA GACAAAGCCG CGGGAGGAGC AGTACAACAG CACGTACCGT
 1381 GTGGTCAGCG TCCTCACCGT CCTGCACCAAG GACTGGCTGA ATGCCAAGGA GTACAAGTGC
 1441 AAGGTCTCCA ACAAAAGCCCT CCCAGCCCCC ATCGAGAAAA CCATCTCCAA AGCCAAAGGG
 1501 CAGCCCCGAG AACACACAGGT GTACACCCCTG CCCCCCATCCC GGGAGGAGAT GACCAAGAAC
 1561 CAGGGTCAGCC TGACCTGCCT GGTCAAAGGC TTCTATCCCA GCGACATCGC CGTGGAGTGG
 1621 GAGACCAATG CCCAGCCGGGA GAACAACTAC AAGACCCACCC CTCCCGTGCT GGACTCCGAC
 1681 GGCTCCTCTC TCCCTATAG CAAGCTCACC GTGGACAAGA GCAGGTGGCA GCAGGGGAAC
 1741 GTCTTCTCAT GCTCCGTGAT GCATGAGGCT CTGCACAAACC ACTACACGCA GAAGAGCCTC
 1801 TCCCTGTCCC CGGGTAAATG A

(SEQ ID NO: 24)

FIGURE 29

FIGURE 30. Amino acid sequence of hENG(26-359)-hFc

1 MDAMKRLGCC VLLLGA~~VFV~~ SPGAETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELP~~S~~F PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLD~~A~~V~~I~~
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSP~~A~~PI QTTPPKDTCS
351 PELLMSLITG GGPKSCDKTH TC~~PP~~CPAPEL LGGPSVFLFP PKPKDTLMIS
401 RTPEVTCVVV DVSHEDPEVK FNWYVDGVEV HNAKTKP~~REE~~ QYNSTYRVVS
451 VLTVLHQDWL NGKEYKCKVS NKALPAPIEK TISKAKGQPR EPQVYTLPPS
501 REEMTKNQVS LTCLVKGFY~~P~~ SDTAVEWESN GQPENNYKTT PPVLDSDGSF
551 FLYSKLTVDK SRWQQGNVFS CSVMHEALHN HYTQKSLSLS PGK

(SEQ ID NO: 25)

FIGURE 30

FIGURE 31. Nucleotide sequence encoding hENG(26-359)-hFc

1 ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC
 ATGCTTCGTT TCGCCC ~~cccc~~ CCGAAACAGT CCATTGTGAC CTTCAGCCTG
 101 TGGGGCCCCGA GAGGGACGAG GTGACATATA CCACTAGCCA GGTCTCGAAG
 GGCTGCGTGG CTCAGGCCCG CAATGCCATC CTGAAAGTCC ATGTCCTCTT
 201 CCTGGAGTTC CCAACGGGCC CGTCACAGCT GGAGCTGACT CTCCAGGCAT
 CCAAGCAAAA TGGCACCTGG CCCCCGAGAGG TGCTTCTGGT CCTCAGTGTAA
 301 AACAGCAGTG TCTTCCTGCA TCTCCAGGCC CTGGGAATCC CACTGCACTT
 GGCCTACAAT TCCAGCCTGG TCACCTTCCA AGAGCCCCCG GGGGTCAACA
 401 CCACAGAGCT GCCATCCTTC CCCAAGACCC AGATCCTTGA GTGGGCAGCT
 GAGAGGGGCC CCATCACCTC TGCTGCTGAG CTGAATGACC CCCAGAGCAT
 501 CCTCCTCCGA CTGGGCCAAG CCCAGGGTC ACTGTCCTTC TGCATGCTGG
 AAGCCAGCCA GGACATGGGC CGCACGCTCG AGTGGCGGCC GCGTACTCCA
 601 GCCTTGGTCC GGGGCTGCCA CTTGGAAGGC GTGGCGGCC ACAAGGAGGC
 GCACATCCTG AGGGTCCTGC CGGGCCACTC GGCGGGGCC CGGACGGTGA
 701 CGGTGAAGGT GGAACGTGAGC TGCGCACCCG GGGATCTCGA TGCGTCCTC
 ATCCTGCAGG GTCCCCCTA CGTGTCTGG CTCATCGACG CCAACCACAA
 801 CATGCAGATC TGGACCACGT GAGAATACTC CTTCAAGATC TTTCCAGAGA
 AAAACATTG TGGCTTCAAG CTCCCCAGACA CACCTCAAGG CCTCCTGGGG
 901 GAGGCCCGGA TGCTCAATGC CAGCATTGTG GCATCCTTCG TGGAGCTACC
 GCTGGCCAGC ATTGTCTCAC TTCATGCCCTC CAGCTGCGGT GGTAGGCTGC
 1001 AGACCTCACCG CGCACCGATC CAGACCACTC CTCCCAAGGA CACTTGTAGC
 CCGGAGCTGC TCATGTCTT GATC ~~ACCGGT~~ GGTGGACCCA AATCTTGTGA
 1101 CAAAACTCAC ACATGCCAC CGTGCCAGC ACCTGAACTC CTGGGGGGAC
 CGTCAGTCTT CCTCTTCCCC CCAAAACCCA AGGACACCCCT CATGATCTCC
 1201 CGGACCCCTG AGGTCACATG CGTGGTGGTG GACGTGAGCC ACGAAGACCC
 TGAGGTCAAG TTCAACTGGT ACGTGGACGG CGTGGAGGTG CATAATGCCA
 1301 AGACAAAGCC GCGGGAGGAG CAGTACAACA GCACGTACCG TGTGGTCAGC
 GTCCTCACCG TCCTGCACCA GGACTGGCTG AATGGCAAGG AGTACAAGTG
 1401 CAAGGTCTCC AACAAAGCCC TCCCAGCCCC CATCGAGAAA ACCATCTCCA
 AAGCCAAAGG GCAGCCCCGA GAACCACAGG TGTACACCCCT GCCCCCATCC
 1501 CGGGGAGGAGA TGACCAAGAA CCAGGTCAGC CTGACCTGCC TGGTCAAAGG
 CTTCTATCCC AGCGACATCG CCGTGGAGTG GGAGAGCAAT GGGCAGCCGG
 1601 AGAACAACTA CAAGACCACG CCTCCCGTGC TGGACTCCGA CGGCTCCTTC
 TTCCCTCTATA GCAAGCTCAC CGTGGACAAG AGCAGGTGGC AGCAGGGGAA
 1701 CGTCTTCTCA TGCTCCGTGA TGCATGAGGC TCTGCACAAAC CACTACACGC
 AGAAGAGCCT CTCCCTGTCC CCGGGTAAAT GA

(SEQ ID NO: 26)

FIGURE 31

FIGURE 32. Amino acid sequence of hENG(26-359)-hFc with N-terminally truncated Fc domain

1 MDAMKRLGCC VLLLCGAVFV SPGAETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPNF PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDAVL
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPKDTCS
351 PELLMSLTG GG THTCPPCP APELLGGPSV FLFPPKPKDT LMISRTPEVT
401 CVVVDVSHED PEVKFNWYVD GVEVHNAKTK PREEQYNSTY RVVSVLTVLH
451 QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT LPPSREEMTK
501 NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTPPPVLDs DGSFFLYSKL
551 TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK

(SEQ ID NO: 27)

FIGURE 32

FIGURE 33. Nucleotide sequence encoding hENG(26-359)-hFc with N-terminally truncated Fc domain

1 ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC
AGTCTTCGTT TCGCCC**CCCC CG** GAAACAGT CCATTGTGAC CTTCAGCCTG
 101 TGGGCCCCGA GAGGGACGAG GTGACATATA CCACTAGCCA GGTCTCGAAG
GGCTGCGTGG CTCAGGCCCC CAATGCCATC CTTGAAGTCC ATGTCCTCTT
 201 CCTGGAGTTTC CCAACGGGCC CGTCACAGCT GGAGCTGACT CTCCAGGCAT
CCAAGCAAAA TGGCACCTGG CCCCAGAGG TGCTTCTGGT CCTCAGTGTAA
 301 AACAGCAGTG TCTTCCTGCA TCTCCAGGCC CTGGGAATCC CACTGCACTT
GGCCTACAAAT TCCAGCCTGG TCACCTTCCA AGAGCCCCCG GGGTCAACAA
 401 CCACAGAGCT GCCATCCTTC CCCAAGACCC AGATCCTGA GTGGGCAGCT
GAGAGGGGCC CCATCACCTC TGCTGCTGAG CTGAATGACC CCCAGAGCAT
 501 CCTCCTCCGA CTGGGCAAG CCCAGGGGTC ACTGTCCCTC TGCAATGCTGG
AAGCCAGCCA GGACATGGGC CGCACGCTCG AGTGGCGGCC GCGTACTCCA
 601 GCCTTGGTCC GGGGCTGCCA CTTGGAAGGC GTGGCCGGCC ACAAGGAGGC
GCACATCCTG AGGGTCCCTGC CGGGCCACTC GGCCGGGCC CGGACGGTGA
 701 CGGTGAAGGT GGAAC TGCGCACCCG GGGATCTCGA TGCGTCCCTC
ATCCTGCAGG GTCCCCCTA CGTGTCTGG CTCATCGACG CCAACCACAA
 801 CATGCAGATC TGGACCACTG GAGAATACTC CTTCAAGATC TTTCCAGAGA
AAAACATTCG TGGCTTCAAG CTCCCAGACA CACCTCAAGG CCTCCTGGGG
 901 GAGGCCCGGA TGCTCAATGC CAGCATTGTG GCATCCTCG TGGAGCTACC
GCTGGCCAGC ATTGTCTCAC TTCAATGCC CAGCTGCGGT GGTAGGCTGC
 1001 AGACCTCACC CGCACCGATC CAGACCACCTC CTCCCAAGGA CACTTGTAGC
CCGGAGCTGC TCATGTCCCT GATC**ACCCGT GGTGAA** ACTC ACACATGCC
 1101 ACCGTGCCCA GCACCTGAAC TCCGGGGGG ACCGTCAGTC TTCCCTTTCC
CCCCAAACCA CAAGGACACC CTCATGATCT CCCGGACCCC TGAGGTACAA
 1201 TGCCTGGTGG TGGACGTGAG CCACGAAGAC CCTGAGGTCA AGTTCAACTG
GTACGTGGAC GGGTGGAGG TGCATAATGC CAAGACAAAG CGCGGGAGG
 1301 AGCAGTACAA CAGCACGTAC CGTGTGGTCA CGTCCTCAC CGTCCTGCAC
CAGGACTGGC TGAATGGCAA GGACTACAAG TGAAGGTCT CCAACAAAGC
 1401 CCTCCCAGCC CCCATCGAGA AAACCATCTC CAAAGCCAAA GGGCAGCCCC
GAGAACCACA GGTGTACACC CTGCCCCCAT CCCGGGAGGA GATGACCAAG
 1501 AACCAAGGTCA GCCTGACCTG CCTGGTCAAA GGCTTCTATC CCAGCGACAT
CGCCGTGGAG TGGGAGAGCA ATGGGCAGCC GGAGAACAAAC TACAAGACCA
 1601 CGCCTCCCGT GCTGGACTCC GACGGCTCCT TCTTCCTCTA TAGCAAGCTC
ACCGTGGACA AGAGCAGGTG GCAGCAGGGG AACGTCTTCT CATGCTCCGT
 1701 GATGCATGAG GCTCTGCACA ACCACTACAC GCAGAAGAGC CTCTCCCTGT
CCCCGGGTAA ATGA (SEQ ID NO: 28)

FIGURE 33

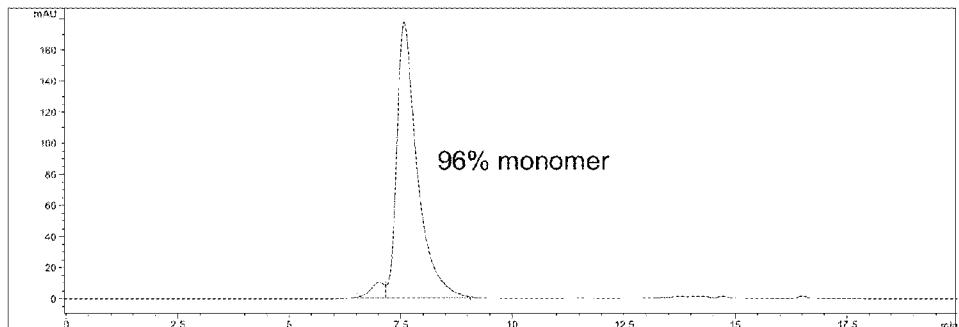
FIGURE 34. Amino acid sequence of hENG(26-346)-hFc with N-terminally truncated hFc domain

1 MDAMKRGGLCC VLLLCGAVFV SPEAETVHCD LQPVGPERDE VTYTTSQVSK
51 GCVAQAPNAI LEVHVLFLEF PTGPSQLELT LQASKQNGTW PREVLLVLSV
101 NSSVFLHLQA LGIPLHLAYN SSLVTFQEPP GVNTTELPNF PKTQILEWAA
151 ERGPITSAAE LNDPQSILLR LGQAQGSLSF CMLEASQDMG RTLEWRPRTP
201 ALVRGCHLEG VAGHKEAHIL RVLPGHSAGP RTVTVKVELS CAPGDLDAVL
251 ILQGPPYVSW LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
301 EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI QTTPPTGGGT
351 HTCPPCPAPE LLGGPSVFLF PPKPKDLMF SRTPEVTCVV VDVSHEDPEV
401 KFNWYVDGVE VHNAKTGPRE EQYNSTYRVV SVLTVLHQDW LNGKEYKCKV
451 SNKALPAPIE KTISKAKGQP REPQVYTLPP SREEMTKNQV SLTCLVKGFY
501 PSDIAVEWES NGQPENNYKT TPPVLDSDGS FFLYSKLTVD KSRWQQGNVF
551 SCSVMHEALH NHYTQKSLSL SPGK

(SEQ ID NO: 29)

FIGURE 34

FIGURE 35. Nucleotide sequence encoding hENG(26-346)-hFc with N-terminally truncated hFc domain


```

1  ATGGATGCAA TGAAGAGAGG GCTCTGCTGT GTGCTGCTGC TGTGTGGAGC AGTCTTCGTT
61  TCGCCCGGCG CCGAAACAGT CCATTGTGAC CTTCAGCCTG TGGGCCCCGA GAGGGACGAG
121  GTGACATATA CCACTAGCCA GGTCTCGAAG GGCTGCGTGG CTCAGGCCCC CAATGCCATC
181  CTTGAAGTCC ATGTCCTCTT CCTGGAGTTC CCAACGGGCC CGTCACAGCT GGAGCTGACT
241  CTCCAGGCAT CCAAGCAAAA TGGCACCTGG CCCCAGAGAGG TGCTTCTGGT CCTCAGTGTAA
301  AACAGCAGTG TCTTCCTGCA TCTCCAGGCC CTGGGAATCC CACTGCACTT GGCTTACAAT
361  TCCAGCCTGG TCACCTTCCA AGAGCCCCCG GGGGTCAACA CCACAGAGCT GCCATCCTTC
421  CCCAACACCC AGATCCTTGA GTGGCCAGCT GAGAGGGGCC CCATCACCTC TGCTGCTGAC
481  CTGAATGACC CCCAGAGCAT CCTCCTCCGA CTGGGCAAG CCCAGGGTC ACTGTCCTTC
541  TGCATGCTGG AAGCCAGCCA GGACATGGC CGCACGCTCG AGTGGCCGGCC GCGTACTCCA
601  GCCTTGGTCC GGGGCTGCCA CTTGGAAGGC GTGGCCGGCC ACAAGGAGGC GCACATCCTG
661  AGGGTCCCTGC CGGGCCACTC GGCGGGGCC CGGACGGTGA CGGTGAAGGT GGAAGTGAGC
721  TGCGCACCCG GGGATCTCGA TGCGTCTCTC ATCCTGCAGG GTCCCCCTA CGTGTCTGG
781  CTCATCGACG CCAACCACAA CATGCAGATC TGGACCACTG GAGAATACTC CTTCAAGATC
841  TTTCCAGAGA AAAACATTG TGGCTTCAAG CTCCCAGACA CACCTCAAGG CCTCCTGGGG
901  GAGGCCCGGA TGCTCAATGC CASCATTGTG GCATCCTTC TGGAGCTACC GCTGGCCAGC
961  ATTGTCTCAC TTCATGCCTC CAGCTGCGGT GGTAGGCTGC AGACCTCACC CGCACCGATC
1021  CAGACCACTC CTCCCACCGCG TGGTGG ACT CACACATGCC CACCGTGCCTC AGCACCTGAA
1081  CTCCTGGGGG GACC GTCACT CTTCTCTTC CCCCCAAAAC CCAAGGACAC CCTCATGATC
1141  TCCC GGACCC CTGAGGTAC C ATGCGTGGTG GTGGACGTGA GCCACGAAGA CCCTGAGGTC
1201  AAGTTCAACT GGTACGTGGA CGGC GTGGAG GGTGAATAG CCAAGACAAA GCCGCGGGAG
1261  GAGCAGTACA ACAGCACGTA CCGTGTGGTC AGCGTCTCA CCGTCTGCA CCAGGACTGG
1321  CTGAATGGCA AGGAGTACAA GTGCAAGGTC TCCAACAAAG CCCTCCAGC CCCCATCGAG
1381  AAAACCATCT CCAAAGCCAA AGGGCAGCCC CGAGAACAC AGGTGTACAC CCTGGCCCCA
1441  TCCC GGAGGAGG AGATGACCAA GAACCGAGTC AGCCTGACCT GCCTGGTCAA AGGCTTCTAT
1501  CCCAGCGACA TCGCCGTGGA GTGGGAGAGC AATGGGCAGC CGGAGAACAA CTACAAGACC
1561  ACGCCTCCCG TGCTGGACTC CGACGGCTCC TTCTTCTCT ATAGCAAGCT CACCGTGGAC
1621  AAGAGCAGGT GGCAGCAGGG GAACGTCTTC TCATGCTCCG TGATGCATGA GGCTCTGCAC
1681  AACCACTACA CGCAGAAGAG CCTCTCCCTG TCCCCGGGTA AATGA
(SEQ ID NO: 30)

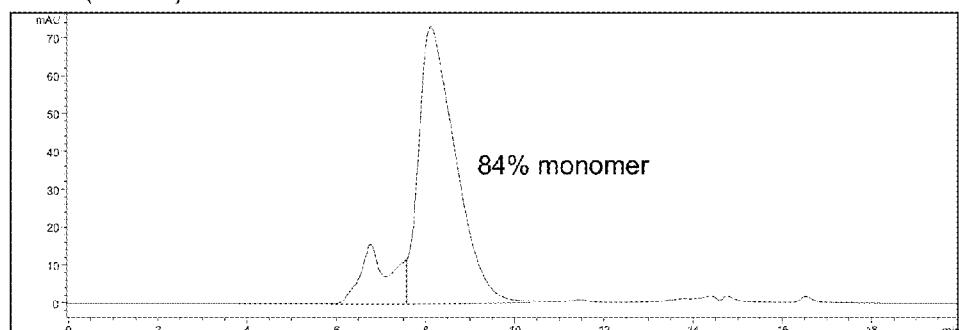
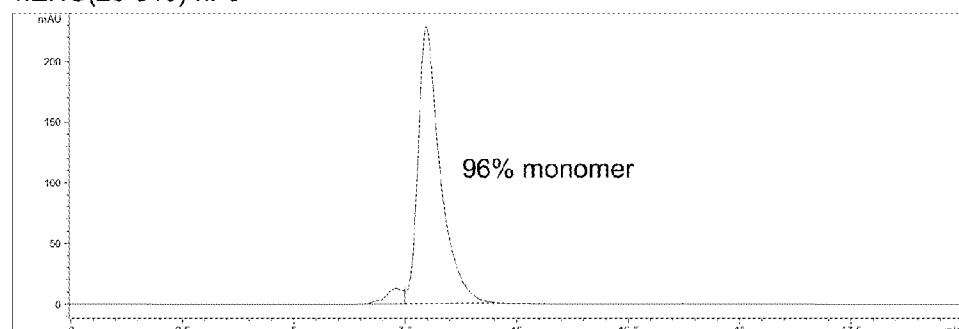
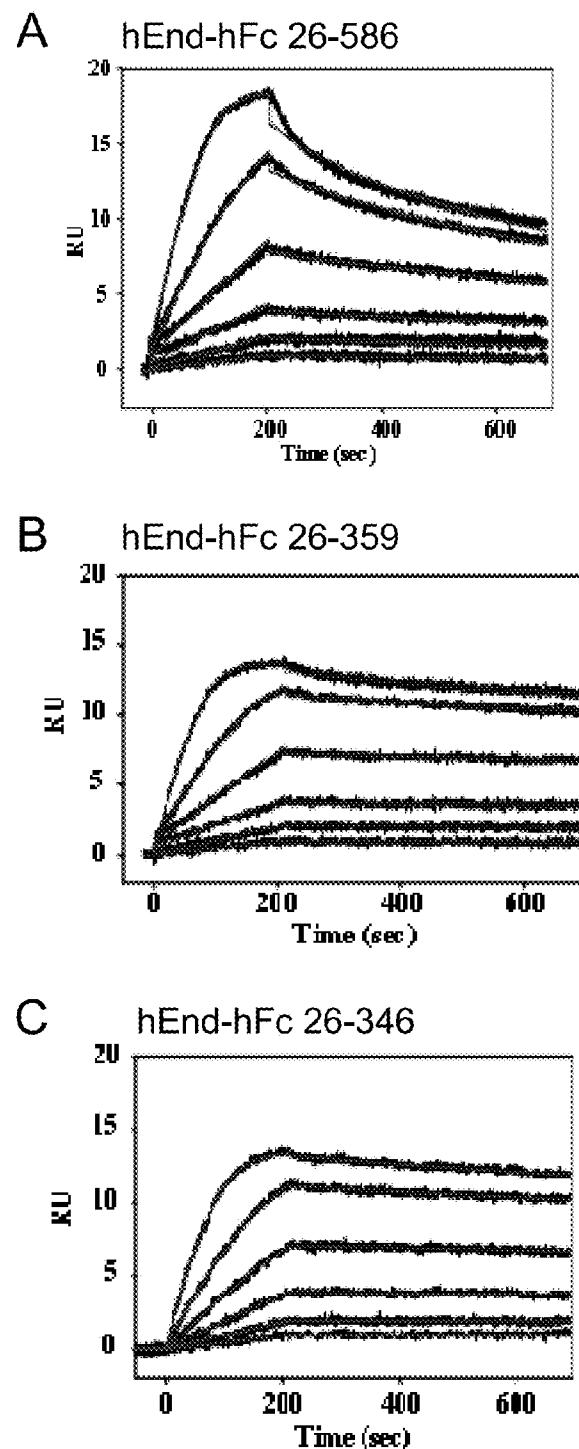

```

FIGURE 36. Size exclusion chromatograms of hENG-hFc proteins after initial purification


A hENG(26-586)-hFc

B hENG(26-359)-hFc



C hENG(26-346)-hFc

FIGURE 36

FIGURE 37. Characterization of high-affinity binding of BMP-9 to hENG-hFc variants

FIGURE 37

FIGURE 38. hENG(26-359)-hFc inhibits VEGF-stimulated angiogenesis in a CAM assay

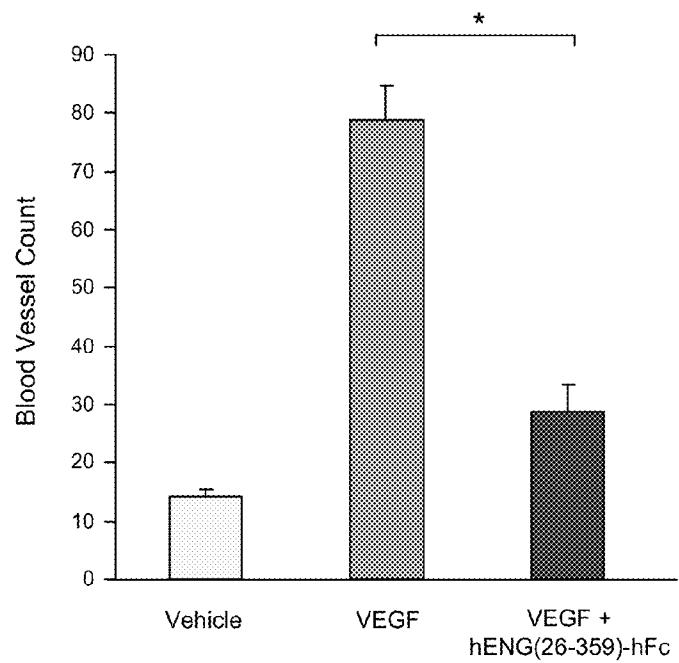


FIGURE 38

FIGURE 39. Effect of hENG(26-346)-hFc on growth factor-stimulated angiogenesis in a mouse angioreactor assay

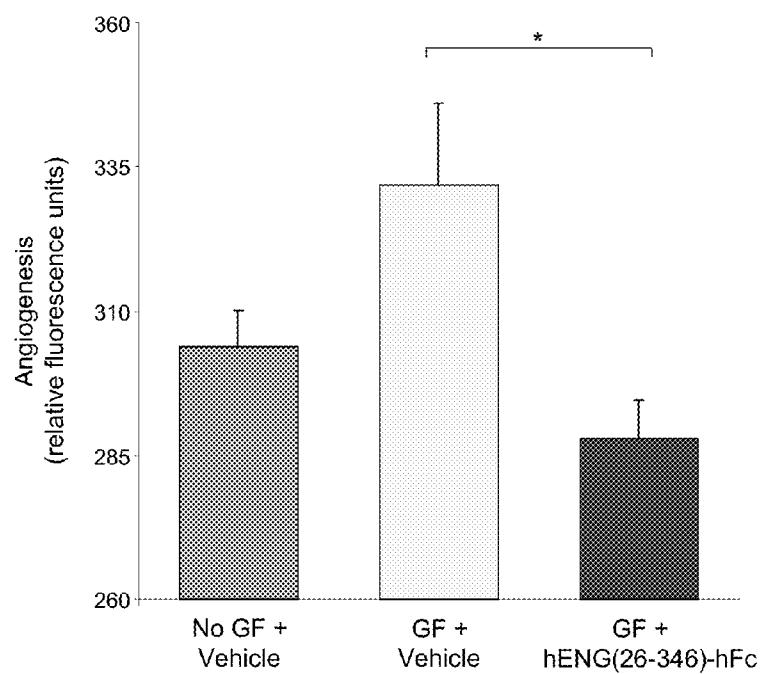


FIGURE 39

FIGURE 40. Effect of mENG(27-581)-mFc on growth of 4T1 mammary tumors in mice**FIGURE 40**

FIGURE 41. Effect of mENG(27-581)-mFc on growth of Colon-26 tumors in mice

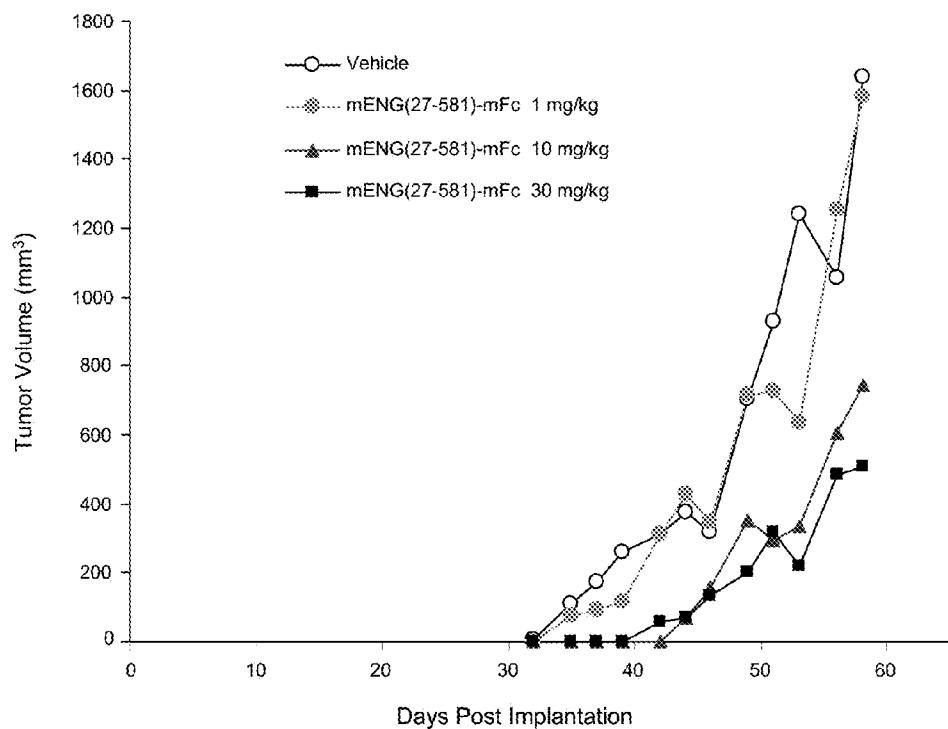


FIGURE 41

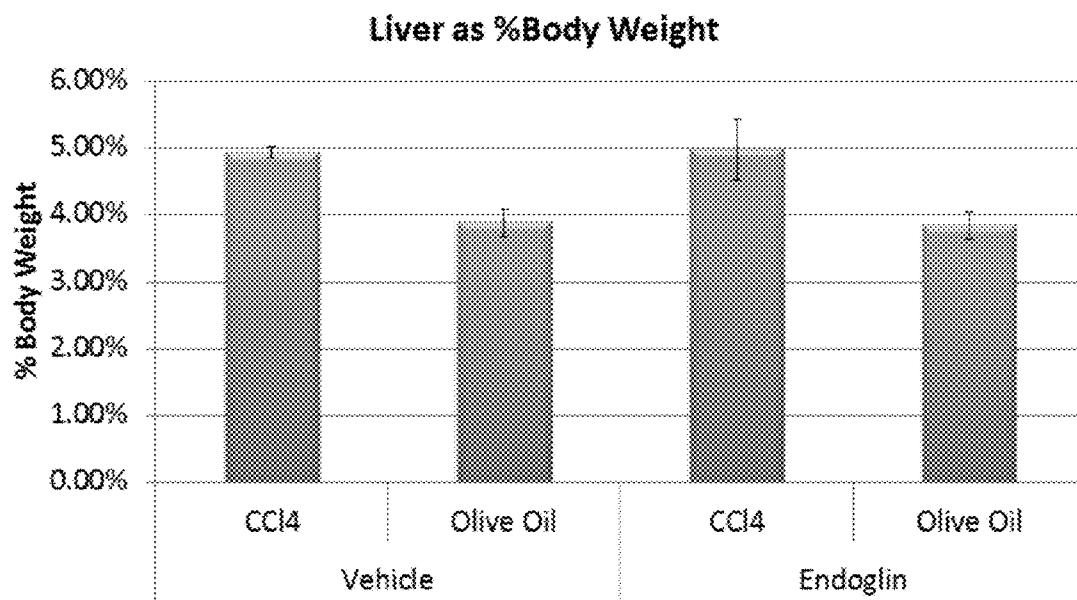


FIGURE 42

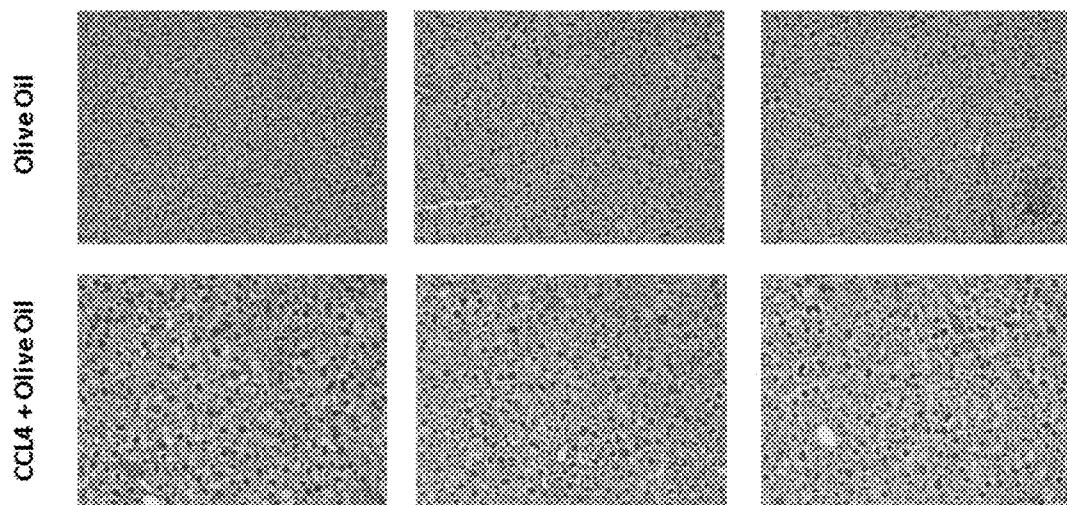


FIGURE 43

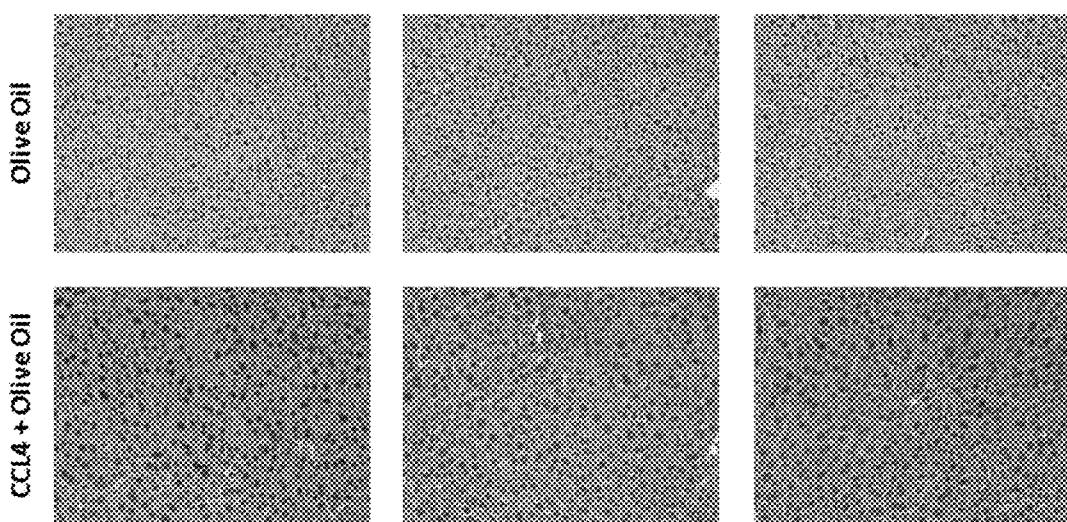


FIGURE 44

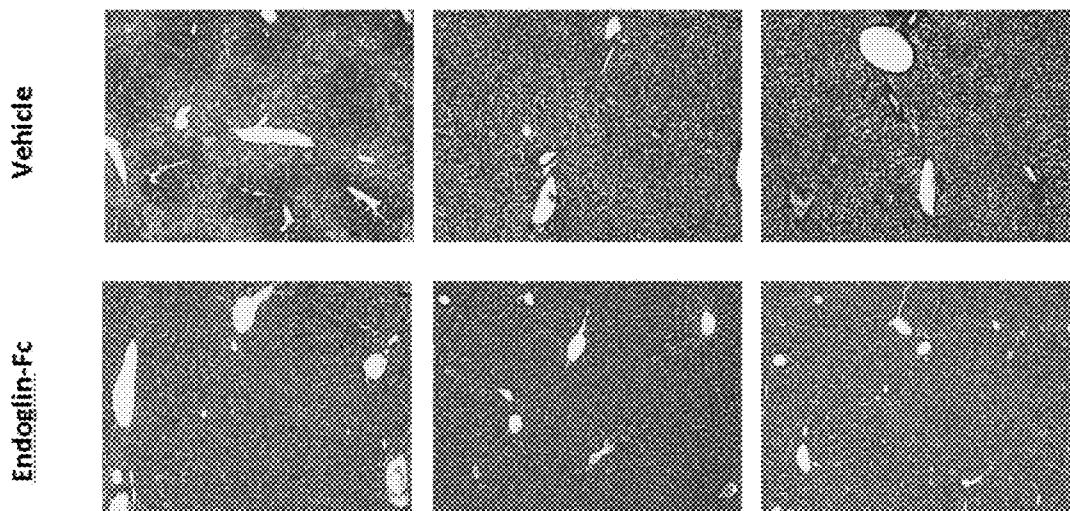
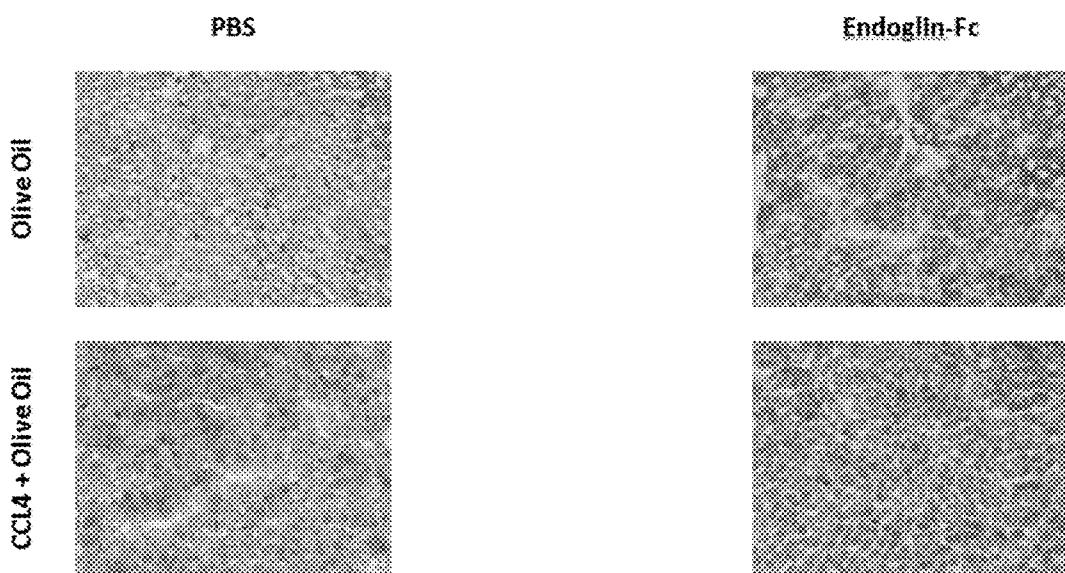



FIGURE 45

Endoglin-Fc treated animals had the lowest percentage of livers with extensive positive oil red o staining

FIGURE 46

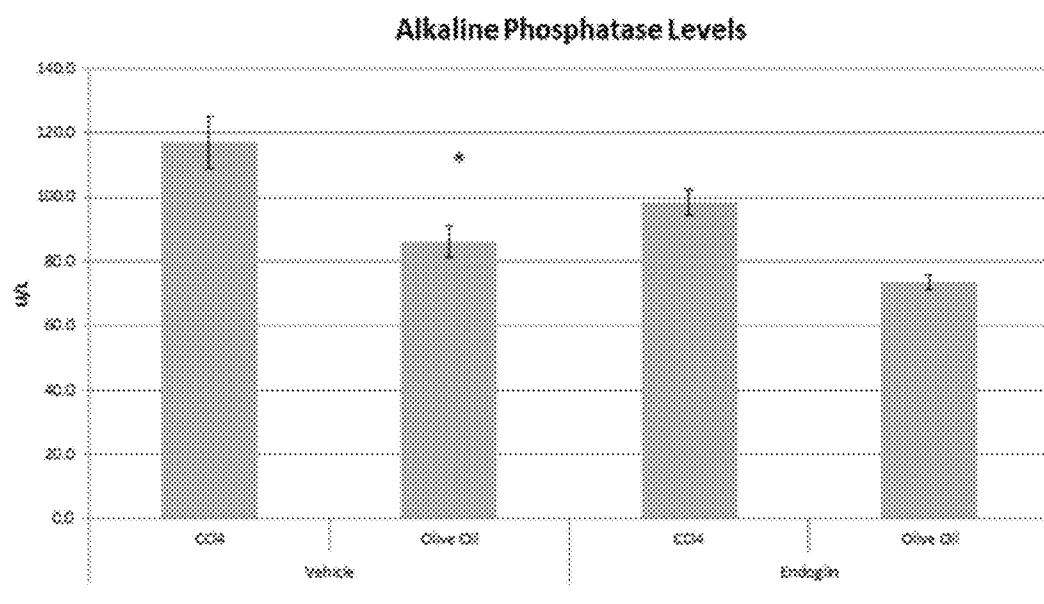


FIGURE 47

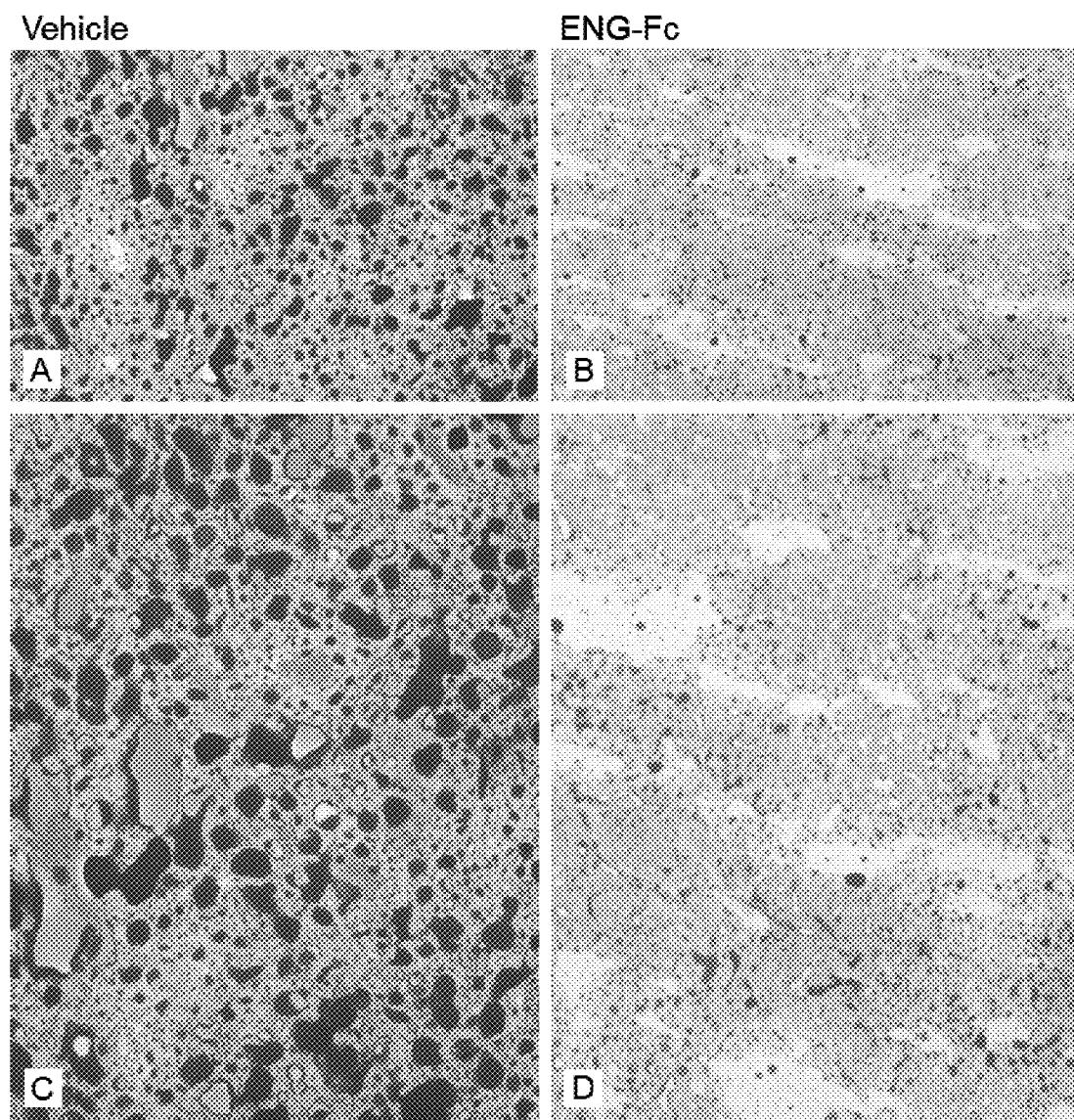


FIGURE 48

ENDOGLIN PEPTIDES TO TREAT FIBROTIC DISEASES

RELATED APPLICATIONS

[0001] This application claims the benefit of the filing date under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 61/896,002, filed Oct. 25, 2013, and entitled Endoglin Peptides To Treat Fibrotic Diseases, the entire contents of which are incorporated herein by reference.

BACKGROUND

[0002] Fibrosis is the formation of excess fibrous connective tissue in an organ or tissue. Fibrosis may occur in response to physical or chemical injury as part of a reparative or reactive process, also referred to as scarring. Fibrosis may also arise from a pathological aberration in a cell or tissue without external injury. Fibrosis results in the deposition of connective tissue, which can support tissue homeostasis and healing after trauma. Excessive fibrosis, however, can obliterate the architecture and impede the function of the underlying organ or tissue, leading to fibrotic disorders, such as, for example, liver fibrosis, pulmonary fibrosis, and cystic fibrosis. Fibrotic tissue can typically not carry out the specialized functions of the respective organ, and cannot be repaired. Treatment options for fibrotic disorders are, thus, limited to tissue replacement approaches, such as organ transplantation, and palliative care.

[0003] It is desirable that effective compositions and methods for inhibiting and treating fibrosis be developed. These include methods and compositions which can inhibit and/or reverse excessive fibrosis associated with fibrotic disorders.

SUMMARY

[0004] Some aspects of this disclosure provide endoglin (ENG) polypeptides and the use of such endoglin polypeptides to treat or prevent fibrotic disorders. Some embodiments of this disclosure provide methods of treating or preventing a fibrotic disorder in a patient in need thereof. In some embodiments, the method comprises administering to the patient an effective amount of an endoglin polypeptide provided herein. In some embodiments, the endoglin polypeptide used comprises an amino acid sequence that is at least 95% identical to amino acids 42-333 of SEQ ID NO: 1. In some embodiments, the fibrotic disorder is liver fibrosis, vascular fibrosis, pulmonary fibrosis, pancreatic fibrosis, renal fibrosis, musculoskeletal fibrosis, cardiac fibrosis, skin fibrosis, eye fibrosis, progressive systemic sclerosis (PSS), chronic graft-versus-host disease, Peyronie's disease, post-cystoscopic urethral stenosis, retroperitoneal fibrosis, mediastinal fibrosis, progressive massive fibrosis, proliferative fibrosis, nephrogenic systemic fibrosis, neoplastic fibrosis, Dupuytren's disease, strictures, radiation induced fibrosis, cystic fibrosis, pleural fibrosis, sarcoidosis, scleroderma, spinal cord injury/fibrosis, myelofibrosis, vascular restenosis, atherosclerosis, injection fibrosis (which can occur as a complication of intramuscular injections, especially in children), or complications of coal workers' pneumoconiosis. In some embodiments, the fibrotic disorder is not myelofibrosis. In some embodiments, the liver fibrosis is liver cirrhosis, alcohol-induced liver fibrosis, biliary duct injury, primary biliary cirrhosis, infection-induced liver fibrosis, congenital hepatic fibrosis or autoimmune hepatitis. In some embodiments, the infection-induced liver fibrosis is bacterial-induced or viral-induced. In some

embodiments, the pulmonary fibrosis is idiopathic, pharmacologically-induced, radiation-induced, chronic obstructive pulmonary disease (COPD), or chronic asthma. In some embodiments, the cardiac fibrosis is endomyocardial fibrosis or idiopathic myocardopathy. In some embodiments, the skin fibrosis is scleroderma, post-traumatic, operative cutaneous scarring, keloids, or cutaneous keloid formation. In some embodiments, the eye fibrosis is glaucoma, sclerosis of the eyes, conjunctival scarring, corneal scarring, or pterygium. In some embodiments, the retroperitoneal fibrosis is idiopathic, pharmacologically-induced or radiation-induced. In some embodiments, the cystic fibrosis is cystic fibrosis of the pancreas or cystic fibrosis of the lungs. In some embodiments, the injection fibrosis occurs as a complication of an intramuscular injection.

[0005] In some embodiments, the endoglin polypeptide used to treat a fibrotic disorder as provided herein does not include a sequence consisting of amino acids 379-430 of SEQ ID NO: 1. In some embodiments, the endoglin polypeptide comprises an amino acid sequence at least 95% identical to a sequence beginning at an amino acid corresponding to any of positions 26-42 of SEQ ID NO: 1 and ending at an amino acid corresponding to any of positions 333-378 of SEQ ID NO: 1. In some embodiments, the endoglin polypeptide comprises an amino acid sequence at least 95% identical to amino acids 26-346 of SEQ ID NO: 1, amino acids 26-359 of SEQ ID NO: 1, or amino acids 26-378 of SEQ ID NO: 1. In some embodiments, the endoglin polypeptide consists of a first portion consisting of an amino acid sequence at least 95% identical to amino acids 26-346 of SEQ ID NO: 1, amino acids 26-359 of SEQ ID NO: 1, or amino acids 26-378 of SEQ ID NO: 1, and a second portion that is heterologous to SEQ ID NO: 1. In some embodiments, the second portion of the endoglin polypeptide comprises an Fc portion of an IgG. In some embodiments, the endoglin polypeptide does not include more than 50 consecutive amino acids from a sequence consisting of amino acids 379-586 of SEQ ID NO: 1. In some embodiments the endoglin polypeptide is a dimer or higher order multimer comprising two or more endoglin polypeptides, and may optionally be a homodimer, heterodimer, homomultimer or heteromultimer.

[0006] In some embodiments, the endoglin polypeptide used to treat a fibrotic disorder as provided herein binds human BMP-9 with an equilibrium dissociation constant (KD) less than 1×10^{-9} M or a dissociation rate constant (kd) less than 1×10^{-3} s $^{-1}$. In some embodiments, the endoglin polypeptide binds human BMP-9 with an equilibrium dissociation constant (KD) less than 1×10^{-9} M or a dissociation rate constant (kd) less than 5×10^{-4} s $^{-1}$. In some embodiments, the endoglin polypeptide binds human BMP-10 with an equilibrium dissociation constant (KD) less than 1×10^{-9} M or a dissociation rate constant (kd) less than 5×10^{-3} s $^{-1}$. In some embodiments, the endoglin polypeptide binds human BMP-10 with an equilibrium dissociation constant (KD) less than 1×10^{-9} M or a dissociation rate constant (kd) less than 2.5×10^{-3} s $^{-1}$. Optionally the endoglin polypeptide characterized by any of the above BMP-9 or BMP-10 binding properties is a dimer or higher order multimer. In some embodiments, the endoglin polypeptide does not bind human TGF- β 1, human TGF- β 3, human VEGF, or human basic fibroblast growth factor (FGF-2). In some embodiments, the endoglin polypeptide is a fusion protein including, in addition to a portion comprising an endoglin amino acid sequence, one or more polypeptide portions that enhance one or more of: in vivo

stability, in vivo half-life, uptake/administration, tissue localization or distribution, formation of protein complexes, such as dimers or multimers, and/or purification. In some embodiments, the endoglin polypeptide includes a portion of a constant domain of an immunoglobulin and/or a portion of a serum albumin. In some embodiments, the endoglin polypeptide comprises an immunoglobulin Fc domain. In some embodiments, the immunoglobulin Fc domain is joined to the ENG polypeptide portion by a linker. In some embodiments, the linker consists of an amino acid sequence consisting of SEQ ID NO: 31 (TGGG) or GGG. In some embodiments the Fc domains form a dimer. In some embodiments, the endoglin polypeptide includes one or more modified amino acid residues selected from: a glycosylated amino acid, a PEGylated amino acid, a farnesylated amino acid, an acetylated amino acid, a biotinylated amino acid, an amino acid conjugated to a lipid moiety, and an amino acid conjugated to an organic derivatizing agent.

[0007] In some embodiments, the endoglin polypeptide is administered intravenously, intramuscularly, intraarterially, subcutaneously, or orally.

[0008] In part, the present disclosure provides endoglin polypeptides and the use of such endoglin polypeptides as selective antagonists for BMP9 and/or BMP10. As described herein, polypeptides comprising part or all of the endoglin extracellular domain (ECD) bind to BMP9 and BMP10 while not exhibiting substantial binding to other members of the TGF-beta superfamily. This disclosure demonstrates that polypeptides comprising part or all of the endoglin ECD are effective antagonists of BMP9 and BMP10 signaling and act to inhibit angiogenesis and tumor growth in vivo. Thus, in certain aspects, the disclosure provides endoglin polypeptides as antagonists of BMP9 and/or BMP10 for use in inhibiting angiogenesis as well as other disorders associated with BMP9 or BMP10 described herein.

[0009] In certain aspects, the disclosure provides polypeptides comprising a truncated extracellular domain of endoglin for use in inhibiting angiogenesis and treating other BMP9 or BMP10-associated disorders. While not wishing to be bound to any particular mechanism of action, it is expected that such polypeptides act by binding to BMP9 and/or BMP10 and inhibiting the ability of these ligands to form signaling complexes with receptors such as ALK1, ALK2, ActRIIA, ActRIIB and BMPRII. In certain embodiments, an endoglin polypeptide comprises, consists of, or consists essentially of, an amino acid sequence that is at least 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the sequence of amino acids 42-333, 26-346, 26-359 or 26-378 of the human endoglin sequence of SEQ ID NO:1. An endoglin polypeptide may comprise, consist of, or consist essentially of an amino acid sequence that is at least 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the sequence of amino acids beginning at any of positions 26-42 of SEQ ID NO:1 and ending at any of positions 333-378 of the human endoglin sequence of SEQ ID NO:1. An endoglin polypeptide may comprise, consist of, or consist essentially of, a polypeptide encoded by a nucleic acid that hybridizes under less stringent, stringent or highly stringent conditions to a complement of a nucleotide sequence selected from a group consisting of: nucleotides 537-1412 of SEQ ID NO: 2, nucleotides 121-1035 of SEQ ID NO: 30, nucleotides 121-1074 of SEQ ID NO: 26, nucleotides 121-1131 of SEQ ID NO: 24, nucleotides 73-1035 of SEQ ID NO: 30, nucleotides 73-1074 of SEQ ID NO: 26, and nucleotides 73-1131 of SEQ ID NO: 24.

In each of the foregoing, an endoglin polypeptide may be selected such that it does not include a full-length endoglin ECD (e.g., the endoglin polypeptide may be chosen so as to not include the sequence of amino acids 379-430 of SEQ ID NO:1, or a portion thereof or any additional portion of a unique sequence of SEQ ID NO:1). An endoglin polypeptide may be used as a monomeric protein or in a dimerized form. An endoglin polypeptide may also be fused to a second polypeptide portion to provide improved properties, such as an increased half-life or greater ease of production or purification. A fusion may be direct or a linker may be inserted between the endoglin polypeptide and any other portion. A linker may be a structured or unstructured and may consist of 1, 2, 3, 4, 5, 10, 15, 20, 30, 50 or more amino acids, optionally relatively free of secondary structure. A linker may be rich in glycine and proline residues and may, for example, contain a sequence of threonine/serine and glycines (e.g., TGGG (SEQ ID NO: 31)) or simply one or more glycine residues (e.g., GGG (SEQ ID NO: 32)). Fusions to an Fc portion of an immunoglobulin or linkage to a polyoxyethylene moiety (e.g., polyethylene glycol) may be particularly useful to increase the serum half-life of the endoglin polypeptide in systemic administration (e.g., intravenous, intraarterial and intra-peritoneal administration). In certain embodiments, an endoglin-Fc fusion protein comprises a polypeptide comprising, consisting of, or consisting essentially of, an amino acid sequence that is at least 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to a sequence of amino acids starting at any of positions 26-42 of SEQ ID NO:1 and ending at any of positions 333-378 of the human endoglin sequence of SEQ ID NO:1, and optionally may not include a full-length endoglin ECD (e.g., the endoglin polypeptide may be chosen so as to not include the sequence of amino acids 379-430 of SEQ ID NO:1, or a portion thereof, or so as not to include any 5, 10, 20, 30, 40, 50, 52, 60, 70, 100, 150 or 200 or more other amino acids of any part of endoglin or any part of amino acids 379 to 581 of SEQ ID NO:1), which polypeptide is fused, either with or without an intervening linker, to an Fc portion of an immunoglobulin. An endoglin polypeptide, including an endoglin-Fc fusion protein, may bind to BMP9 and/or BMP10 with a K_D of less than $10^{-8}M$, $10^{-9}M$, $10^{-10}M$, $10^{-11}M$ or less, or a dissociation constant (k_d) of less than $10^{-3} s^{-1}$, $3 \times 10^{-3} s^{-1}$, $5 \times 10^{-3} s^{-1}$ or $1 \times 10^{-4} s^{-1}$. The endoglin polypeptide may be selected to have a K_D for BMP9 that is less than the K_D for BMP10, optionally less by 5-fold, 10-fold, 20-fold, 30-fold, 40-fold or more. The endoglin polypeptide may have little or no substantial affinity for any or all of TGF- β 1, - β 2 or - β 3, and may have a K_D for any or all of TGF- β 1, - β 2 or - β 3 of greater than $10^{-9}M$, $10^{-8}M$, $10^{-7}M$ or $10^{-6}M$. The endoglin polypeptide may be a dimer or higher order multimer.

[0010] An Fc portion may be selected so as to be appropriate to the organism. Optionally, the Fc portion is an Fc portion of a human IgG1. Optionally, the endoglin-Fc fusion protein comprises the amino acid sequence of any of SEQ ID NOs: 33, 34, 35, or 36. Optionally, the endoglin-Fc fusion protein is the protein produced by expression of a nucleic acid of any of SEQ ID Nos: 17, 20, 22, 24, 26, 28 or 30 in a mammalian cell line, particularly a Chinese Hamster Ovary (CHO) cell line. An endoglin polypeptide may be formulated as a pharmaceutical preparation that is substantially pyrogen free. The pharmaceutical preparation may be prepared for systemic delivery (e.g., intravenous, intramuscular, intraarterial or subcutaneous delivery) or local delivery (e.g., to the eye).

[0011] The endoglin polypeptides disclosed herein may be used in conjunction or sequentially with one or more additional therapeutic agents, including, for example, anti-angiogenesis agents, VEGF antagonists, anti-VEGF antibodies, anti-neoplastic compositions, cytotoxic agents, chemotherapeutic agents, anti-hormonal agents, and growth inhibitory agents. Further examples of each of the foregoing categories of molecules are provided herein.

[0012] In certain aspects, the disclosure provides methods for inhibiting angiogenesis in a mammal by administering any of the endoglin polypeptides described generally or specifically herein. The endoglin polypeptide may be delivered locally (e.g., to the eye) or systemically (e.g., intravenously, intramuscularly, intraarterially or subcutaneously). In certain embodiments, the disclosure provides a method for inhibiting angiogenesis in the eye of a mammal by administering an endoglin polypeptide to the mammal at a location distal to the eye, e.g. by systemic administration.

[0013] In certain aspects the disclosure provides methods for treating a tumor in a mammal. Such a method may comprise administering to a mammal that has a tumor an effective amount of an endoglin polypeptide. A method may further comprise administering one or more additional agents, including, for example, anti-angiogenesis agents, VEGF antagonists, anti-VEGF antibodies, anti-neoplastic compositions, cytotoxic agents, chemotherapeutic agents, anti-hormonal agents, and growth inhibitory agents. A tumor may also be one that utilizes multiple pro-angiogenic factors, such as a tumor that is resistant to anti-VEGF therapy.

[0014] In certain aspects, the disclosure provides methods for treating patients having a BMP9 or BMP10 related disorder. Examples of such disorders are provided herein, and may include, generally, disorders of the vasculature, hypertension, and fibrotic disorders.

[0015] In certain aspects the disclosure provides ophthalmic formulations. Such formulations may comprise an endoglin polypeptide disclosed herein. In certain aspects, the disclosure provides methods for treating a fibrotic disease of the eye or an angiogenesis related disease of the eye. Such methods may comprise administering systemically or to said eye a pharmaceutical formulation comprising an effective amount of an endoglin polypeptide disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. 1 shows the native amino acid sequence of human ENG, isoform 1 (L-ENG). The leader (residues 1-25) and predicted transmembrane domain (residues 587-611) are each underlined.

[0017] FIG. 2 shows the native nucleotide sequence encoding human ENG, isoform 1 (L-ENG). Sequences encoding the leader (nucleotides 414-488) and predicted transmembrane domain (nucleotides 2172-2246) are each underlined.

[0018] FIG. 3 shows the native amino acid sequence of human ENG, isoform 2 (S-ENG). The leader (residues 1-25) and predicted transmembrane domain (residues 587-611) are each underlined. Compared to isoform 1, isoform 2 has a shorter and distinct C-terminus, but the sequence of the extracellular domain (see FIG. 9) is identical.

[0019] FIG. 4 shows the native nucleotide sequence encoding human ENG, isoform 2 (S-ENG). Sequences encoding the leader (nucleotides 414-488) and predicted transmembrane domain (nucleotides 2172-2246) are each underlined.

[0020] FIG. 5 shows the native amino acid sequence of murine ENG, isoform 1 (L-ENG). The leader (residues 1-26)

and predicted transmembrane domain (residues 582-606) are underlined and bracket the extracellular domain of the mature peptide (see FIG. 10). Isoform 3 of murine ENG (GenBank accession NM_001146348) differs from the depicted sequence only in the leader, where the threonine at position 23 (highlighted) is deleted and there is a glycine-to-serine substitution at position 24 (also highlighted).

[0021] FIG. 6 shows the native nucleotide sequence encoding murine ENG, isoform 1 (L-ENG). Sequences encoding the leader (nucleotides 364-441) and predicted transmembrane domain (nucleotides 2107-2181) are underlined. The nucleotide sequence encoding isoform 3 of murine ENG (GenBank accession NM_001146348) differs from the depicted sequence only in the leader, specifically at positions 430-433 (highlighted).

[0022] FIG. 7 shows the native amino acid sequence of murine ENG, isoform 2 (S-ENG). The leader (residues 1-26) and predicted transmembrane domain (residues 582-606) are underlined. Compared to isoform 1, isoform 2 has a shorter and distinct C-terminus, but the sequence of the extracellular domain (see FIG. 10) is identical.

[0023] FIG. 8 shows the native nucleotide sequence encoding murine ENG, isoform 2 (S-ENG). Sequences encoding the leader (nucleotides 364-441) and predicted transmembrane domain (nucleotides 2107-2181) are underlined.

[0024] FIG. 9 shows the amino acid sequence of the extracellular domain of human ENG. The extracellular domains of the two human isoforms are identical in both amino-acid and nucleotide sequence.

[0025] FIG. 10 shows the amino acid sequence of the extracellular domain of murine ENG, which is 69% identical to its human counterpart. The extracellular domains of the two murine isoforms are identical in both amino-acid and nucleotide sequence.

[0026] FIG. 11 shows an amino acid sequence of the human IgG1 Fc domain. Underlined residues are optional mutation sites as discussed in the text.

[0027] FIG. 12 shows an N-terminally truncated amino acid sequence of the human IgG1 Fc domain. Underlined residues are optional mutation sites as discussed in the text.

[0028] FIG. 13 shows the amino acid sequence of hENG (26-586)-hFc. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

[0029] FIG. 14 shows a nucleotide sequence encoding hENG(26-586)-hFc. Nucleotides encoding the ENG domain are underlined, those encoding the TPA leader sequence are double underlined, and those encoding linker sequences are bold and highlighted.

[0030] FIG. 15 shows the amino acid sequence of hENG (26-586)-hFc with an N-terminally truncated Fc domain. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

[0031] FIG. 16 shows the amino acid sequence of mENG (27-581)-mFc. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

[0032] FIG. 17 shows a nucleotide sequence encoding mENG(27-581)-mFc. Nucleotides encoding the ENG domain are underlined, those encoding the TPA leader sequence are double underlined, and those encoding linker sequences are bold and highlighted.

[0033] FIG. 18 shows characterization of BMP-9 binding to hENG(26-586)-hFc, as determined in a surface plasmon resonance (SPR)-based assay. BMP-9 binding to captured hENG(26-586)-hFc was assessed at ligand concentrations of 0 and 0.01-0.625 nM (in two-fold increments, excluding 0.3125 nM), and non-linear regression was used to determine the K_D as 29 pM.

[0034] FIG. 19 shows characterization of BMP-10 binding to hENG(26-586)-hFc, as determined in an SPR-based assay. BMP-10 binding to captured hENG(26-586)-hFc was assessed at ligand concentrations of 0 and 0.01-1.25 nM (in two-fold increments), and non-linear regression was used to determine the K_D as 400 pM.

[0035] FIG. 20 shows the effect of soluble human ENG extracellular domain, hENG(26-586), on binding of BMP-9 to ALK1. Concentrations of hENG(26-586) from 0-50 nM were premixed with a fixed concentration of BMP-9 (10 nM), and BMP-9 binding to captured ALK1 was determined by an SPR-based assay. The uppermost trace corresponds to no hENG(26-586), whereas the lowest trace corresponds to an ENG:BMP-9 ratio of 5:1. Binding of BMP-9 to ALK1 was inhibited by soluble hENG(26-586) in a concentration-dependent manner with an IC_{50} of 9.7 nM.

[0036] FIG. 21 shows the effect of soluble human ENG extracellular domain, hENG(26-586), on binding of BMP-10 to ALK1. Concentrations of hENG(26-586) from 0-50 nM were premixed with a fixed concentration of BMP-10 (10 nM), and BMP-10 binding to captured ALK1 was measured by an SPR-based assay. The uppermost trace corresponds to no hENG(26-586), and the lowest trace corresponds to an ENG:BMP-10 ratio of 5:1. Binding of BMP-10 to ALK1 was inhibited by soluble hENG(26-586) in a concentration-dependent manner with an IC_{50} of 6.3 nM.

[0037] FIG. 22 shows the effect of mENG(27-581)-hFc on cord formation by human umbilical vein endothelial cells (HUVEC) in culture. Data are means of duplicate cultures \pm SD. The inducer endothelial cell growth substance (ECGS) doubled mean cord length compared to no treatment, and mENG(27-581)-hFc cut this increase by nearly 60%. In the absence of stimulation (no treatment), mENG(27-581)-hFc had little effect.

[0038] FIG. 23 shows the effect of mENG(27-581)-hFc on VEGF-stimulated angiogenesis in a chick chorioallantoic membrane (CAM) assay. Data are means \pm SEM; *, p<0.05. The number of additional blood vessels induced by VEGF treatment was decreased by 65% with concurrent mENG(27-581)-hFc treatment.

[0039] FIG. 24 shows the effect of mENG(27-581)-mFc treatment for 11 days on angiogenesis stimulated by a combination of the growth factors (GF) vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) in a mouse angioreactor assay. Angiogenesis in units of relative fluorescence \pm SEM; *, p<0.05. mENG(27-581)-mFc completely blocked GF-stimulated angiogenesis in this *in vivo* assay.

[0040] FIG. 25 shows the domain structure of hENG-Fc fusion constructs. Full-length ENG extracellular domain (residues 26-586 in top structure) consists of an orphan domain and N-terminal and C-terminal zona pellucida (ZP) domains. Below it are shown structures of selected truncated variants and whether they exhibit high-affinity binding (+/-) to BMP-9 and BMP-10 in an SPR-based assay.

[0041] FIG. 26 shows the amino acid sequence of hENG (26-437)-hFc. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

[0042] FIG. 27 shows a nucleotide sequence encoding hENG(26-437)-hFc. Nucleotides encoding the ENG domain are underlined, those encoding the TPA leader sequence are double underlined, and those encoding linker sequences are bold and highlighted.

[0043] FIG. 28 shows the amino acid sequence of hENG (26-378)-hFc with an N-terminally truncated Fc domain. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

[0044] FIG. 29 shows a nucleotide sequence encoding hENG(26-378)-hFc with an N-terminally truncated Fc domain. Nucleotides encoding the ENG domain are underlined and those encoding linker sequences are bold and highlighted.

[0045] FIG. 30 shows the amino acid sequence of hENG (26-359)-hFc. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

[0046] FIG. 31 shows a nucleotide sequence encoding hENG(26-359)-hFc. Nucleotides encoding the ENG domain are underlined, those encoding the TPA leader sequence are double underlined, and those encoding linker sequences are bold and highlighted.

[0047] FIG. 32 shows the amino acid sequence of hENG (26-359)-hFc with an N-terminally truncated Fc domain. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

[0048] FIG. 33 shows a nucleotide sequence encoding hENG(26-359)-hFc with an N-terminally truncated Fc domain. Nucleotides encoding the ENG domain are underlined, those encoding the TPA leader sequence are double underlined, and those encoding linker sequences are bold and highlighted.

[0049] FIG. 34 shows the amino acid sequence of hENG (26-346)-hFc with an N-terminally truncated Fc domain. The ENG domain is underlined, the TPA leader sequence is double underlined, and linker sequences are bold and highlighted.

[0050] FIG. 35 shows a nucleotide sequence encoding hENG(26-346)-hFc with an N-terminally truncated Fc domain. Nucleotides encoding the ENG domain are underlined and those encoding linker sequences are bold and highlighted.

[0051] FIG. 36 shows size-exclusion chromatograms for hENG(26-586)-hFc (A), hENG(26-359)-hFc (B), and hENG (26-346)-hFc (C) after the respective CHO-cell-derived proteins were purified by protein A affinity chromatography. Percent recovery of monomeric hENG(26-346)-hFc was equal to that of hENG(26-586)-hFc. In contrast, recovery of monomeric hENG(26-359)-hFc was reduced by the presence of additional high-molecular-weight aggregates, thus requiring additional procedures to obtain purity equivalent to that of the other constructs.

[0052] FIG. 37 shows kinetic characterization of BMP-9 binding to hENG(26-586)-hFc (A), hENG(26-359)-hFc (B), and hENG(26-346)-hFc (C), as determined in an SPR-based assay. BMP-9 binding to captured CHO-cell-derived proteins was assessed at ligand concentrations of 0.0195-0.625 nM in

two-fold increments. RU, response units. Note slower off-rates for the truncated variants compared to hENG(26-586)-hFc.

[0053] FIG. 38 shows the effect of hENG(26-359)-hFc on VEGF-stimulated angiogenesis in a CAM assay. Data are means \pm SEM; *, p<0.05. The number of additional blood vessels induced by VEGF treatment was decreased by 75% with concurrent hENG(26-359)-hFc treatment, even though hENG(26-359)-hFc does not bind VEGF.

[0054] FIG. 39 shows the effect of hENG(26-346)-hFc treatment for 11 days on angiogenesis stimulated by a combination of the growth factors (GF) VEGF and FGF-2 in a mouse angioreactor assay. A. Angiogenesis in units of relative fluorescence \pm SEM; *, p<0.05. B. Photographs of individual angioreactors (four per mouse) arranged by treatment group, with blood vessel formation visible as darkened contents. Although unable to bind VEGF or FGF-2 itself, hENG(26-346)-hFc completely blocked GF-stimulated angiogenesis in this *in vivo* assay.

[0055] FIG. 40 shows the effect of mENG(27-581)-mFc on growth of 4T1 mammary tumor xenografts in mice. Data are means \pm SEM. By day 24 post implantation, tumor volume was 45% lower (p<0.05) in mice treated with mENG(27-581)-mFc compared to vehicle.

[0056] FIG. 41 shows the effect of mENG(27-581)-mFc on growth of Colon-26 tumor xenografts in mice. mENG(27-581)-mFc treatment inhibited tumor growth in a dose-dependent manner, with tumor volume in the high-dose group nearly 70% lower than vehicle by day 58 post implantation.

[0057] FIG. 42 shows liver as % body weight in a mouse CCl4 model of liver fibrosis with or without endoglin (mENG(27-581)-mFc) treatment.

[0058] FIG. 43 shows H&E staining of liver tissue in mock-injected (PBS) mice.

[0059] FIG. 44 shows H&E staining of liver tissue in mENG(27-581)-mFc injected mice.

[0060] FIG. 45 shows Masson's Trichrome staining of liver tissue in CCl4-induced mice.

[0061] FIG. 46 shows Oil Red O staining of liver tissue in CCl4-induced mice injected with PBS or with mENG(27-581)-mFc. mENG(27-581)-mFc treated animals had the lowest percentage of livers with extensive positive oil red O staining.

[0062] FIG. 47 shows serum alkaline phosphate levels in CCl4-induced and mock-induced (olive oil) mice treated with mENG(27-581)-mFc or with PBS. Serum AP was lower in the endoglin-treated cohorts.

[0063] FIG. 48 shows the effect of ENG-Fc treatment on hepatic lipid deposition in MCDD mice, a model of liver fibrosis caused by methionine and choline dietary deficiency. Compared to vehicle (A,C), treatment with mENG(27-581)-mFc for 3 weeks markedly reduced hepatic lipid deposits (B,D) in MCDD mice. Lipid deposits were identified by intense staining with Oil Red O a lipid-soluble diazo dye. Magnification, 100 \times (A, B) and 200 \times (C, D).

DETAILED DESCRIPTION

1. Overview

[0064] In certain aspects, the present invention relates to ENG polypeptides. ENG (also known as CD105) is referred to as a coreceptor for the transforming growth factor- β (TGF- β) superfamily of ligands and is implicated in normal and pathological fibrosis and angiogenesis. ENG expression is

low in quiescent vascular endothelium but upregulated in endothelial cells of healing wounds, developing embryos, inflammatory tissues, and solid tumors (Dallas et al, 2008, Clin Cancer Res 14:1931-1937). Mice homozygous for null ENG alleles die early in gestation due to defective vascular development (Li et al, 1999, Science 284:1534-1537), whereas heterozygous null ENG mice display angiogenic abnormalities as adults (Jerkic et al, 2006, Cardiovasc Res 69:845-854). In humans, ENG gene mutations have been identified as the cause of hereditary hemorrhagic telangiectasia (Osler-Rendu-Weber syndrome) type-1 (HHT-1), an autosomal dominant form of vascular dysplasia characterized by arteriovenous malformations resulting in direct flow (communication) from artery to vein (arteriovenous shunt) without an intervening capillary bed (McAllister et al, 1994, Nat Genet 8:345-351; Fernandez-L et al, 2006, Clin Med Res 4:66-78). Typical symptoms of patients with HHT include recurrent epistaxis, gastrointestinal hemorrhage, cutaneous and mucocutaneous telangiectases, and arteriovenous malformations in the pulmonary, cerebral, or hepatic vasculature.

[0065] Although the specific role of ENG in fibrosis and angiogenesis remains to be determined, it is likely related to the prominent role of the TGF- β signaling system in this process (Cheifetz et al, 1992, J Biol Chem 267:19027-19030; Pardali et al, 2010, Trends Cell Biol 20:556-567). Significantly, ENG expression is upregulated in proliferating vascular endothelial cells within tumor tissues (Burrows et al, 1995, Clin Cancer Res 1:1623-1634; Miller et al, 1999, Int J Cancer 81:568-572), and the number of ENG-expressing blood vessels in a tumor is negatively correlated with survival for a wide range of human tumors (Fonsatti et al, 2010, Cardiovasc Res 86:12-19). Thus, ENG is a promising target for antangiogenic therapy generally, and for cancer in particular (Dallas et al, 2008, Clin Cancer Res 14:1931-1937; Bernabeu et al, 2009, Biochim Biophys Acta 1792:954-973).

[0066] Structurally, ENG is a homodimeric cell-surface glycoprotein. It belongs to the zona pellucida (ZP) family of proteins and consists of a short C-terminal cytoplasmic domain, a single hydrophobic transmembrane domain, and a long extracellular domain (ECD) (Gougos et al, 1990, J Biol Chem 265:8361-8364). As determined by electron microscopy, monomeric ENG ECD consists of two ZP regions and an orphan domain located at the N-terminus (Llorca et al, 2007, J Mol Biol 365:694-705). In humans, alternative splicing of the primary transcript results in two ENG isoforms, one consisting of 658 residues (long, L, SEQ ID NO: 1) and the other 625 residues (short, S, SEQ ID NO: 3), which differ only in their cytoplasmic domain (Bellon et al, 1993, 23:2340-2345; ten Dijke et al, 2008, Angiogenesis 11:79-89). Murine ENG exists as three isoforms: L-ENG (SEQ ID NO: 5), S-ENG (SEQ ID NO: 7), and a third variant (isoform 3) of unknown functional significance identical to L-ENG except for changes at two positions within the leader sequence (Perez-Gomez et al, 2005, Oncogene 24:4450-4461). The ECD of murine ENG displays 69% amino acid identity with that of human ENG and lacks the Arg-Gly-Asp (RGD) integrin interaction motif found in the human protein. Recent evidence suggests that the L-ENG and S-ENG isoforms may play different functional roles *in vivo* (Blanco et al, 2008, Circ Res 103:1383-1392; ten Dijke et al, 2008, Angiogenesis 11:79-89).

[0067] As a coreceptor, ENG is thought to modulate responses of other receptors to TGF- β family ligands without direct mediation of ligand signaling by itself. Ligands in the

TGF- β family typically signal by binding to a homodimeric type II receptor, which triggers recruitment and transphosphorylation of a homodimeric type I receptor, thereby leading to phosphorylation of Smad proteins responsible for transcriptional activation of specific genes (Massague, 2000, *Nat Rev Mol Cell Biol* 1:169-178). Based on ectopic cellular expression assays, it has been reported that ENG cannot bind ligands on its own and that its binding to TGF- β 1, TGF- β 3, activin A, bone morphogenetic protein-2 (BMP-2), and BMP-7 requires the presence of an appropriate type I and/or type II receptor (Barbara et al, 1999, *J Biol Chem* 274:584-594). Nevertheless, there is evidence that ENG expressed by a fibroblast cell line can bind TGF- β 1 (St.-Jacques et al, 1994, *Endocrinology* 134:2645-2657), and recent results in COS cells indicate that transfected full-length ENG can bind BMP-9 in the absence of transfected type I or type II receptors (Scharpfenecker et al, 2007, *J Cell Sci* 120:964-972).

[0068] In addition to the foregoing, ENG can occur in a soluble form in vivo under certain conditions after proteolytic cleavage of the full-length membrane-bound protein (Hawinkels et al, 2010, *Cancer Res* 70:4141-4150). Elevated levels of soluble ENG have been observed in the circulation of patients with cancer and preeclampsia (Li et al, 2000, *Int J Cancer* 89:122-126; Calabro et al, 2003, *J Cell Physiol* 194: 171-175; Venkatesha et al, 2006, *Nat Med* 12:642-649; Levine et al, 2006, *N Engl J Med* 355:992-1005). Although the role of endogenous soluble ENG is poorly understood, a protein corresponding to residues 26-437 of the ENG precursor (amino acids 26-437 of SEQ ID NO: 1) has been proposed to act as a scavenger or trap for TGF- β family ligands (Venkatesha et al, 2006, *Nat Med* 12:642-649; WO-2007/143023), of which only TGF- β 1 and TGF- β 3 have specifically been implicated.

[0069] The present disclosure provides polypeptides comprising a truncated portion of the extracellular domain of ENG bind selectively to BMP9 and/or BMP10 and can act as BMP9 and/or BMP10 antagonists, provide advantageous properties relative to the full-length extracellular domain, and may be used to inhibit fibrosis. In part, the disclosure provides the identity of physiological, high-affinity ligands for soluble ENG polypeptides. Surprisingly, soluble ENG polypeptides are shown herein to have highly specific, high affinity binding for BMP-9 and BMP-10 while not exhibiting any meaningful binding to TGF- β 1, TGF- β 2 or TGF- β 3, and moreover, soluble ENG polypeptides are shown herein to inhibit BMP9 and BMP10 interaction with type II receptors, thereby inhibiting cellular signal transduction. The disclosure further demonstrates that ENG polypeptides inhibit fibrosis. The data also demonstrate that an ENG polypeptide can exert an anti-angiogenic effect despite the finding that ENG polypeptide does not exhibit meaningful binding to TGF- β 1, TGF- β 3, VEGF, or FGF-2.

[0070] Thus, in certain aspects, the disclosure provides endoglin polypeptides as antagonists of BMP-9 or BMP-10 for use in inhibiting any BMP-9 or BMP-10 disorder generally, and particularly for inhibiting fibrosis and/or angiogenesis, including both VEGF-dependent angiogenesis and VEGF-independent angiogenesis. However, it should be noted that antibodies directed to ENG itself are expected to have different effects from an ENG polypeptide. A pan-neutralizing antibody against ENG (one that inhibits the binding of all strong and weak ligands) would be expected to inhibit the signaling of such ligands through ENG but would not be expected to inhibit the ability of such ligands to signal

through other receptors (e.g., ALK-1, ALK-2, BMPRII, ActRIIA or ActRIIB in the case of BMP-9 or BMP-10). It should further be noted that, given the existence of native, circulating soluble ENG polypeptides that, based on the data presented here, presumably act as natural BMP-9/10 antagonists, it is not clear whether a neutralizing anti-ENG antibody would primarily inhibit the membrane bound form of ENG (thus acting as an ENG/BMP-9/10 antagonist) or the soluble form of ENG (thus acting as an ENG/BMP-9/10 agonist). On the other hand, based on this disclosure, an ENG polypeptide would be expected to inhibit all of the ligands that it binds to tightly (including, for constructs such as those shown in the Examples, BMP-9 or BMP-10) but would not affect ligands that it binds to weakly. So, while a pan-neutralizing antibody against ENG would block BMP-9 and BMP-10 signaling through ENG, it would not block BMP-9 or BMP-10 signaling through another receptor. Also, while an ENG polypeptide may inhibit BMP-9 signaling through all receptors (including receptors besides ENG) it would not be expected to inhibit a weakly binding ligand signaling through any receptor, even ENG.

[0071] Proteins described herein are the human forms, unless otherwise specified. Genbank references for the proteins are as follows: human ENG isoform 1 (L-ENG), NM_001114753; human ENG isoform 2 (S-ENG), NM_000118; murine ENG isoform 1 (L-ENG), NM_007932; murine ENG isoform 2 (S-ENG), NM_001146350; murine ENG isoform 3, NM_001146348. Sequences of native ENG proteins from human and mouse are set forth in FIGS. 1-8.

[0072] The terms used in this specification generally have their ordinary meanings in the art, within the context of this disclosure and in the specific context where each term is used. Certain terms are discussed in the specification, to provide additional guidance to the practitioner in describing the compositions and methods disclosed herein and how to make and use them. The scope or meaning of any use of a term will be apparent from the specific context in which the term is used.

2. Therapeutic Methods and Uses of ENG Polypeptides

Fibrosis and Fibrotic Disorders

[0073] Some aspects of this disclosure are based on the surprising recognition that ENG polypeptides can be used to inhibit and/or treat fibrotic disorders. The disclosure provides methods of inhibiting fibrosis in a mammal by administering an effective amount of an ENG polypeptide, e.g., an ENG polypeptide comprising an amino acid sequence that is at least 95% identical to amino acids 42-333 of SEQ ID NO: 1, including an ENG-Fc fusion protein or nucleic acid antagonists (e.g., antisense or siRNA) of the foregoing. These ENG polypeptides, ENG-Fc fusion proteins, and nucleic acid antagonists are hereafter collectively referred to as "therapeutic agents."

[0074] In some embodiments, the instant disclosure provides ENG polypeptides and methods of using such polypeptides that are useful in the treatment, inhibition, or prevention of fibrosis. As used herein, the term "fibrosis" refers to the aberrant formation or development of excess fibrous connective tissue by cells in an organ or tissue. Although processes related to fibrosis can occur as part of normal tissue formation or repair, dysregulation of these processes can lead to altered cellular composition and excess connective tissue deposition

that progressively impairs to tissue or organ function. The formation of fibrous tissue can result from a reparative or reactive process.

[0075] Fibrotic disorders or conditions that can be treated with ENG polypeptides and therapeutic methods using such polypeptides as provided herein include, but are not limited to, fibroproliferative disorders associated with vascular diseases, such as cardiac disease, cerebral disease, and peripheral vascular disease, as well as tissues and organ systems including the heart, skin, kidney, lung, peritoneum, gut, and liver (as disclosed in, e.g., Wynn, 2004, *Nat Rev* 4:583-594, incorporated herein by reference). Exemplary disorders that can be treated include, but are not limited to, renal fibrosis, including nephropathies associated with injury/fibrosis, e.g., chronic nephropathies associated with diabetes (e.g., diabetic nephropathy), lupus, scleroderma, glomerular nephritis, focal segmental glomerular sclerosis, and IgA nephropathy; lung or pulmonary fibrosis, e.g., idiopathic pulmonary fibrosis, radiation induced fibrosis, chronic obstructive pulmonary disease (COPD), scleroderma, and chronic asthma; gut fibrosis, e.g., scleroderma, and radiation-induced gut fibrosis; liver fibrosis, e.g., cirrhosis, alcohol-induced liver fibrosis, biliary duct injury, primary biliary cirrhosis, infection or viral induced liver fibrosis, congenital hepatic fibrosis and autoimmune hepatitis; and other fibrotic conditions, such as cystic fibrosis, endomyocardial fibrosis, mediastinal fibrosis, pleural fibrosis, sarcoidosis, scleroderma, spinal cord injury/fibrosis, myelofibrosis, vascular restenosis, atherosclerosis, cystic fibrosis of the pancreas and lungs, injection fibrosis (which can occur as a complication of intramuscular injections, especially in children), endomyocardial fibrosis, idiopathic pulmonary fibrosis of the lung, mediastinal fibrosis, myelofibrosis, retroperitoneal fibrosis, progressive massive fibrosis, a complication of coal workers' pneumoconiosis, and nephrogenic systemic fibrosis.

[0076] As used herein, the terms "fibrotic disorder", "fibrotic condition," and "fibrotic disease," are used interchangeably to refer to a disorder, condition or disease characterized by fibrosis. Examples of fibrotic disorders include, but are not limited to vascular fibrosis, pulmonary fibrosis (e.g., idiopathic pulmonary fibrosis), pancreatic fibrosis, liver fibrosis (e.g., cirrhosis), renal fibrosis, musculoskeletal fibrosis, cardiac fibrosis (e.g., endomyocardial fibrosis, idiopathic cardiomyopathy), skin fibrosis (e.g., scleroderma, post-traumatic, operative cutaneous scarring, keloids and cutaneous keloid formation), eye fibrosis (e.g., glaucoma, sclerosis of the eyes, conjunctival and corneal scarring, and pterygium), progressive systemic sclerosis (PSS), chronic graft-versus-host disease, Peyronie's disease, post-cystoscopic urethral stenosis, idiopathic and pharmacologically induced retroperitoneal fibrosis, mediastinal fibrosis, progressive massive fibrosis, proliferative fibrosis, and neoplastic fibrosis.

[0077] As used herein, the term "cell" refers to any cell prone to undergoing a fibrotic response, including, but not limited to, individual cells, tissues, and cells within tissues and organs. The term cell, as used herein, includes the cell itself, as well as the extracellular matrix (ECM) surrounding a cell. For example, inhibition of the fibrotic response of a cell, includes, but is not limited to the inhibition of the fibrotic response of one or more cells within the lung (or lung tissue); one or more cells within the liver (or liver tissue); one or more cells within the kidney (or renal tissue); one or more cells within muscle tissue; one or more cells within the heart (or cardiac tissue); one or more cells within the pancreas; one or

more cells within the skin; one or more cells within the bone, one or more cells within the vasculature, one or more stem cells, or one or more cells within the eye.

[0078] The methods and compositions of the present invention can be used to treat and/or prevent fibrotic disorders. Exemplary types of fibrotic disorders include, but are not limited to, vascular fibrosis, pulmonary fibrosis (e.g., idiopathic pulmonary fibrosis), pancreatic fibrosis, liver fibrosis (e.g., cirrhosis), renal fibrosis, musculoskeletal fibrosis, cardiac fibrosis (e.g., endomyocardial fibrosis, idiopathic cardiomyopathy), skin fibrosis (e.g., scleroderma, post-traumatic, operative cutaneous scarring, keloids and cutaneous keloid formation), eye fibrosis (e.g., glaucoma, sclerosis of the eyes, conjunctival and corneal scarring, and pterygium), progressive systemic sclerosis (PSS), chronic graft versus-host disease, Peyronie's disease, post-cystoscopic urethral stenosis, idiopathic and pharmacologically induced retroperitoneal fibrosis, mediastinal fibrosis, progressive massive fibrosis, proliferative fibrosis, neoplastic fibrosis, Dupuytren's disease, strictures, and radiation induced fibrosis. In a particular embodiment, the fibrotic disorder is not myelofibrosis.

[0079] The methods and compositions of the present invention can be used to treat and/or prevent liver disorders that manifest as or result in liver fibrosis, including non-alcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and acquired fibrotic disorders that may result from long-term excessive alcohol consumption, cholestasis, autoimmune liver diseases, iron or copper overload and chronic viral hepatitis. NAFLD results from the metabolic conditions of obesity and type 2 diabetes. Patients with NAFLD may exhibit a range of histopathologic findings including steatosis alone (fatty liver), to necroinflammation, which is often termed NASH. NAFLD and NASH patients may progress to more advanced states of fibrosis including advanced fibrosis and cirrhosis. Patients with NASH develop progressive fibrosis in 25%-50% over a period of 4 to 6 years and 15% to 25% of individuals with NASH can progress to cirrhosis. NASH cirrhosis is an important cause of liver transplantation in the United States and it is associated with an increased risk for hepatocellular carcinoma and mortality in patients awaiting liver transplant. Alcoholism and viral infection can also cause liver damage that progresses to liver fibrosis and cirrhosis. A variety of tools may be used to assess liver health and the progression of fibrotic disease. Liver biopsy permits the assessment of histological features of the liver tissue, including staining for and quantitation of collagen levels in the tissue and well as lipid levels in the case of fatty liver diseases. The NAFLD Activity Score (NAS) provides a numerical score and is the sum of the separate scores for steatosis (0-3), hepatocellular ballooning (0-2) and lobular inflammation (0-3), with the majority of patients with NASH having a NAS score of ≥ 5 . See Kleiner et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. *Hepatology* 41(6), 1313-1321 (2005). Serum markers include markers of liver function, ALT and AST, and markers of extracellular matrix formation, markers of the fibrotic process, markers of extracellular matrix degradation and certain cytokines

[0080] The present invention contemplates the use of ENG polypeptides in combination with one or more other therapeutic modalities. Thus, in addition to the use of ENG polypeptides, one may also administer to the subject one or more "standard" therapies for treating fibrotic disorders. For example, the ENG polypeptides can be administered in com-

bination with (i.e., together with) cytotoxins, immunosuppressive agents, radiotoxic agents, and/or therapeutic antibodies. Particular co-therapeutics contemplated by the present invention include, but are not limited to, steroids (e.g., corticosteroids, such as Prednisone), immune-suppressing and/or anti-inflammatory agents (e.g., gamma-interferon, cyclophosphamide, azathioprine, methotrexate, penicillamine, cyclosporine, colchicines, antithymocyte globulin, mycophenolate mofetil, and hydroxychloroquine), cytotoxic drugs, calcium channel blockers (e.g., nifedipine), angiotensin converting enzyme inhibitors (ACE) inhibitors, para-aminobenzoic acid (PABA), dimethyl sulfoxide, transforming growth factor-beta (TGF- β) inhibitors, interleukin-5 (IL-5) inhibitors, and pan caspase inhibitors.

[0081] Additional anti-fibrotic agents that may be used in combination with ENG polypeptides include, but are not limited to, lectins (as described in, for example, U.S. Pat. No. 7,026,283, the entire contents of which is incorporated herein by reference), as well as the anti-fibrotic agents described by Wynn et al (2007, *J Clin Invest* 117:524-529, the entire contents of which is incorporated herein by reference). For example, additional anti-fibrotic agents and therapies include, but are not limited to, various anti-inflammatory/immunosuppressive/cytotoxic drugs (including colchicine, azathioprine, cyclophosphamide, prednisone, thalidomide, pentoxifylline and theophylline), TGF- β signaling modifiers (including relaxin, SMAD7, HGF, and BMP7, as well as TGF- β 1, TGF β RI, TGF β RII, EGR-1, and CTGF inhibitors), cytokine and cytokine receptor antagonists (inhibitors of IL-1 β , IL-5, IL-6, IL-13, IL-21, IL-4R, IL-13R α 1, GM-CSF, TNF- α , oncostatin M, W1SP-1, and PDGFs), cytokines and chemokines (IFN- γ , IFN- α/β , IL-12, IL-10, HGF, CXCL10, and CXCL11), chemokine antagonists (inhibitors of CXCL1, CXCL2, CXCL12, CCL2, CCL3, CCL6, CCL17, and CCL18), chemokine receptor antagonists (inhibitors of CCR2, CCR3, CCR5, CCR7, CXCR2, and CXCR4), TLR antagonists (inhibitors of TLR3, TLR4, and TLR9), angiogenesis antagonists (VEGF-specific antibodies and adenosine deaminase replacement therapy), antihypertensive drugs (beta blockers and inhibitors of ANG 11, ACE, and aldosterone), vasoactive substances (ET-1 receptor antagonists and bosentan), inhibitors of the enzymes that synthesize and process collagen (inhibitors of prolyl hydroxylase), B cell antagonists (rituximab), integrin/adhesion molecule antagonists (molecules that block α 1 β 1 and α v β 6 integrins, as well as inhibitors of integrin-linked kinase, and antibodies specific for ICAM-I and VCAM-I), proapoptotic drugs that target myofibroblasts, MMP inhibitors (inhibitors of MMP2, MMP9, and MMP12), and T1MP inhibitors (antibodies specific for TIMP-1).

[0082] The ENG polypeptide and the co-therapeutic agent or co-therapy can be administered in the same formulation or separately. In the case of separate administration, the ENG polypeptide can be administered before, after, or concurrently with the co-therapeutic or co-therapy. One agent may precede or follow administration of the other agent by intervals ranging from minutes to weeks. In embodiments where two or more different kinds of therapeutic agents are applied separately to a subject, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that these different kinds of agents would still be able to exert an advantageously combined effect on the target tissues or cells.

Angiogenesis

[0083] Angiogenesis, the process of forming new blood vessels, is critical in many normal and abnormal physiological states. Under normal physiological conditions, humans and animals undergo angiogenesis in specific and restricted situations. For example, angiogenesis is normally observed in wound healing, fetal and embryonic development and formation of the corpus luteum, endometrium and placenta.

[0084] Undesirable or inappropriately regulated angiogenesis occurs in many disorders, in which abnormal endothelial growth may cause or participate in the pathological process. For example, angiogenesis participates in the growth of many tumors. Deregulated angiogenesis has been implicated in pathological processes such as rheumatoid arthritis, retinopathies, hemangiomas, and psoriasis. The diverse pathological disease states in which unregulated angiogenesis is present have been categorized as angiogenesis-associated diseases.

[0085] Both controlled and uncontrolled angiogenesis are thought to proceed in a similar manner. Capillary blood vessels are composed primarily of endothelial cells and pericytes, surrounded by a basement membrane. Angiogenesis begins with the erosion of the basement membrane by enzymes released by endothelial cells and leukocytes. The endothelial cells, which line the lumen of blood vessels, then protrude through the basement membrane. Angiogenic factors induce the endothelial cells to migrate through the eroded basement membrane. The migrating cells form a "sprout" protruding from the parent blood vessel, where the endothelial cells undergo mitosis and proliferate. Endothelial sprouts merge with each other to form capillary loops, creating the new blood vessel.

[0086] Agents that inhibit angiogenesis have proven to be effective in treating a variety of disorders. AvastinTM (bevacizumab), a monoclonal antibody that binds to vascular endothelial growth factor (VEGF), is used in the treatment of a variety of cancers. MacugenTM, an aptamer that binds to VEGF has proven to be effective in the treatment of neovascular (wet) age-related macular degeneration. Antagonists of the SDF/CXCR4 signaling pathway inhibit tumor neovascularization and are effective against cancer in mouse models (Guleng et al. *Cancer Res.* Jul. 1, 2005; 65(13):5864-71). A variety of so-called multitargeted tyrosine kinase inhibitors, including vandetanib, sunitinib, axitinib, sorafenib, vatalanib, and pazopanib are used as anti-angiogenic agents in the treatment of various tumor types. Thalidomide and related compounds (including pomalidomide and lenalidomide) have shown beneficial effects in the treatment of cancer, and although the molecular mechanism of action is not clear, the inhibition of angiogenesis appears to be an important component of the anti-tumor effect (see, e.g., Dredge et al. *Microvasc Res.* January 2005; 69(1-2):56-63). Although many anti-angiogenic agents have an effect on angiogenesis regardless of the tissue that is affected, other angiogenic agents may tend to have a tissue-selective effect.

[0087] The disclosure provides methods and compositions for treating or preventing conditions of dysregulated angiogenesis, including both neoplastic and non-neoplastic disorders. Also provided are methods and compositions for treating or preventing certain cardiovascular disorders. In addition the disclosure provides methods for treating disorders associated with BMP9 and/or BMP10 activity.

[0088] The disclosure provides methods of inhibiting angiogenesis in a mammal by administering to a subject an

effective amount of an ENG polypeptide, including an ENG-Fc fusion protein or nucleic acid antagonists (e.g., antisense or siRNA) of the foregoing, hereafter collectively referred to as "therapeutic agents". The data presented indicate specifically that the anti-angiogenic therapeutic agents disclosed herein may be used to inhibit tumor-associated angiogenesis. It is expected that these therapeutic agents will also be useful in inhibiting angiogenesis in the eye.

[0089] Angiogenesis-associated diseases include, but are not limited to, angiogenesis-dependent cancer, including, for example, solid tumors, blood born tumors such as leukemias, and tumor metastases; benign tumors, for example hemangiomas, acoustic neuromas, neurofibromas, trachomas, and pyogenic granulomas; rheumatoid arthritis; psoriasis; ruberosis; Osler-Webber Syndrome; myocardial angiogenesis; plaque neovascularization; telangiectasia; hemophiliac joints; and angiofibroma.

[0090] In particular, polypeptide therapeutic agents of the present disclosure are useful for treating or preventing a cancer (tumor), and particularly such cancers as are known to rely on angiogenic processes to support growth. Unlike most anti-angiogenic agents, ENG polypeptides affect angiogenesis induced by multiple factors. This is highly relevant in cancers, where a cancer will frequently acquire multiple factors that support tumor angiogenesis. Thus, the therapeutic agents disclosed herein will be particularly effective in treating tumors that are resistant to treatment with a drug that targets a single angiogenic factor (e.g., bevacizumab, which targets VEGF), and may also be particularly effective in combination with other anti-angiogenic compounds that work by a different mechanism.

[0091] Dysregulation of angiogenesis can lead to many disorders that can be treated by compositions and methods of the invention. These disorders include both neoplastic and non-neoplastic conditions. The terms "cancer" and "cancerous" refer to, or describe, the physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation. Examples of cancer, or neoplastic disorders, include but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia. More particular examples of such cancers include squamous cell cancer, small-cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, squamous carcinoma of the lung, cancer of the peritoneum, hepatocellular cancer, gastrointestinal cancer, pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, hepatoma, breast cancer, colon cancer, colorectal cancer, endometrial or uterine carcinoma, salivary gland carcinoma, kidney cancer, prostate cancer, vulval cancer, thyroid cancer, hepatic carcinoma, gastric cancer, melanoma, and various types of head and neck cancer, including squamous cell head and neck cancer. Other examples of neoplastic disorders and related conditions include esophageal carcinomas, theomas, arrhenoblastomas, endometrial hyperplasia, endometriosis, fibrosarcomas, choriocarcinoma, nasopharyngeal carcinoma, laryngeal carcinomas, hepatoblastoma, Kaposi's sarcoma, skin carcinomas, hemangioma, cavernous hemangioma, hemangioblastoma, retinoblastoma, astrocytoma, glioblastoma, Schwannoma, oligodendrogloma, medulloblastoma, neuroblastomas, rhabdomyosarcoma, osteogenic sarcoma, leiomyosarcomas, urinary tract carcinomas, Wilm's tumor, renal cell carcinoma, prostate carcinoma, abnormal vascular proliferation associated with phakomatoses, and Meigs' syndrome. A cancer that is particularly amenable to treatment with the therapeutic agents

described herein may be characterized by one or more of the following: the cancer has angiogenic activity, elevated ENG levels detectable in the tumor or the serum, increased BMP-9 or BMP-10 expression levels or biological activity, is metastatic or at risk of becoming metastatic, or any combination thereof.

[0092] Non-neoplastic disorders with dysregulated angiogenesis that are amenable to treatment with ENG polypeptides useful in the invention include, but are not limited to, undesired or aberrant hypertrophy, arthritis, rheumatoid arthritis, psoriasis, psoriatic plaques, sarcoidosis, atherosclerosis, atherosclerotic plaques, diabetic and other proliferative retinopathies including retinopathy of prematurity, retrolental fibroplasia, neovascular glaucoma, age-related macular degeneration, diabetic macular edema, corneal neovascularization, corneal graft neovascularization, corneal graft rejection, retinal/choroidal neovascularization, neovascularization of the angle (ruberosis), ocular neovascular disease, vascular restenosis, arteriovenous malformations (AVM), meningioma, hemangioma, angiofibroma, thyroid hyperplasias (including Grave's disease), corneal and other tissue transplantation, chronic inflammation, lung inflammation, acute lung injury/ARDS, sepsis, primary pulmonary hypertension, malignant pulmonary effusions, cerebral edema (e.g., associated with acute stroke/closed head injury/trauma), synovial inflammation, pannus formation in RA, myositis ossificans, hypertrophic bone formation, osteoarthritis, refractory ascites, polycystic ovarian disease, endometriosis, 3rd spacing of fluid diseases (pancreatitis, compartment syndrome, burns, bowel disease), uterine fibroids, premature labor, chronic inflammation such as IBD (Crohn's disease and ulcerative colitis), renal allograft rejection, inflammatory bowel disease, nephrotic syndrome, undesired or aberrant tissue mass growth (non-cancer), hemophilic joints, hypertrophic scars, inhibition of hair growth, Osler-Weber syndrome, pyogenic granuloma retro-lental fibroplasias, scleroderma, trachoma, vascular adhesions, synovitis, dermatitis, preeclampsia, ascites, pericardial effusion (such as that associated with pericarditis), and pleural effusion. Further examples of such disorders include an epithelial or cardiac disorder.

[0093] In certain embodiments of such methods, one or more polypeptide therapeutic agents can be administered, together (simultaneously) or at different times (sequentially). In addition, polypeptide therapeutic agents can be administered with another type of compounds for treating cancer or for inhibiting angiogenesis.

[0094] In certain embodiments, the subject methods of the disclosure can be used alone. Alternatively, the subject methods may be used in combination with other conventional anti-cancer therapeutic approaches directed to treatment or prevention of proliferative disorders (e.g., tumor). For example, such methods can be used in prophylactic cancer prevention, prevention of cancer recurrence and metastases after surgery, and as an adjuvant of other conventional cancer therapy. The present disclosure recognizes that the effectiveness of conventional cancer therapies (e.g., chemotherapy, radiation therapy, phototherapy, immunotherapy, and surgery) can be enhanced through the use of a subject polypeptide therapeutic agent.

[0095] A wide array of conventional compounds have been shown to have anti-neoplastic activities. These compounds have been used as pharmaceutical agents in chemotherapy to shrink solid tumors, prevent metastases and further growth, or

decrease the number of malignant cells in leukemic or bone marrow malignancies. Although chemotherapy has been effective in treating various types of malignancies, many anti-neoplastic compounds induce undesirable side effects. It has been shown that when two or more different treatments are combined, the treatments may work synergistically and allow reduction of dosage of each of the treatments, thereby reducing the detrimental side effects exerted by each compound at higher dosages. In other instances, malignancies that are refractory to a treatment may respond to a combination therapy of two or more different treatments.

[0096] When a therapeutic agent disclosed herein is administered in combination with another conventional anti-neoplastic agent, either concomitantly or sequentially, such therapeutic agent may enhance the therapeutic effect of the anti-neoplastic agent or overcome cellular resistance to such anti-neoplastic agent. This allows decrease of dosage of an anti-neoplastic agent, thereby reducing the undesirable side effects, or restores the effectiveness of an anti-neoplastic agent in resistant cells.

[0097] According to the present disclosure, the antiangiogenic agents described herein may be used in combination with other compositions and procedures for the treatment of diseases. For example, a tumor may be treated conventionally with surgery, radiation or chemotherapy combined with the ENG polypeptide, and then the ENG polypeptide may be subsequently administered to the patient to extend the dormancy of micrometastases and to stabilize any residual primary tumor.

[0098] Many anti-angiogenesis agents have been identified and are known in the arts, including those listed herein and, e.g., listed by Carmeliet and Jain, *Nature* 407:249-257 (2000); Ferrara et al., *Nature Reviews:Drug Discovery*, 3:391-400 (2004); and Sato Int. J. Clin. Oncol, 8:200-206 (2003). See also, US Patent Application US20030055006. In one embodiment, an ENG polypeptide is used in combination with an anti-VEGF neutralizing antibody (or fragment) and/or another VEGF antagonist or a VEGF receptor antagonist including, but not limited to, for example, soluble VEGF receptor (e.g., VEGFR-1, VEGFR-2, VEGFR-3, neuropilins (e.g., NRP1, NRP2)) fragments, aptamers capable of blocking VEGF or VEGFR, neutralizing anti-VEGFR antibodies, low molecule weight inhibitors of VEGFR tyrosine kinases (RTK), antisense strategies for VEGF, ribozymes against VEGF or VEGF receptors, antagonist variants of VEGF; and any combinations thereof. Alternatively, or additionally, two or more angiogenesis inhibitors may optionally be co-administered to the patient in addition to VEGF antagonist and other agent. In certain embodiment, one or more additional therapeutic agents, e.g., anti-cancer agents, can be administered in combination with an ENG polypeptide, the VEGF antagonist, and an anti-angiogenesis agent.

[0099] The terms “VEGF” and “VEGF-A” are used interchangeably to refer to the 165-amino acid vascular endothelial cell growth factor and related 121-, 145-, 183-, 189-, and 206-amino acid vascular endothelial cell growth factors, as described by Leung et al. *Science*, 246:1306 (1989), Houck et al. *Mol Endocrinol*, 5:1806 (1991), and, Robinson & Stringer, *J Cell Sci*, 144(5):853-865 (2001), together with the naturally occurring allelic and processed forms thereof.

[0100] A “VEGF antagonist” refers to a molecule capable of neutralizing, blocking, inhibiting, abrogating, reducing or interfering with VEGF activities including its binding to one or more VEGF receptors. VEGF antagonists include anti-

VEGF antibodies and antigen-binding fragments thereof, receptor molecules and derivatives which bind specifically to VEGF thereby sequestering its binding to one or more receptors, anti-VEGF receptor antibodies and VEGF receptor antagonists such as small molecule inhibitors of the VEGFR tyrosine kinases, and fusions proteins, e.g., VEGF-Trap (Regeneron), VEGF121-gelonin (Peregrine). VEGF antagonists also include antagonist variants of VEGF, antisense molecules directed to VEGF, RNA aptamers, and ribozymes against VEGF or VEGF receptors.

[0101] An “anti-VEGF antibody” is an antibody that binds to VEGF with sufficient affinity and specificity. The anti-VEGF antibody can be used as a therapeutic agent in targeting and interfering with diseases or conditions wherein the VEGF activity is involved. See, e.g., U.S. Pat. Nos. 6,582,959, 6,703,020; WO98/45332; WO 96/30046; WO94/10202, WO2005/044853; ; EP 0666868B1; US Patent Applications 20030206899, 20030190317, 20030203409, 20050112126, 20050186208, and 20050112126; Popkov et al, *Journal of Immunological Methods* 288:149-164 (2004); and WO2005012359. An anti-VEGF antibody will usually not bind to other VEGF homologues such as VEGF-B or VEGF-C, nor other growth factors such as P1GF, PDGF or bFGF. The anti-VEGF antibody “Bevacizumab (BV)”, also known as “rhuMAb VEGF” or “Avastin®”, is a recombinant humanized anti-VEGF monoclonal antibody generated according to Presta et al. *Cancer Res.* 57:4593-4599 (1997). It comprises mutated human IgG1 framework regions and antigen-binding complementarity-determining regions from the murine anti-hVEGF monoclonal antibody A.4.6.1 that blocks binding of human VEGF to its receptors. Approximately 93% of the amino acid sequence of Bevacizumab, including most of the framework regions, is derived from human IgG1, and about 7% of the sequence is derived from the murine antibody A4.6.1. Bevacizumab has a molecular mass of about 149,000 daltons and is glycosylated. Bevacizumab and other humanized anti-VEGF antibodies, including the anti-VEGF antibody fragment “ranibizumab”, also known as “Lucentis®”, are further described in U.S. Pat. No. 6,884,879 issued Feb. 26, 2005.

[0102] The term “anti-neoplastic composition” refers to a composition useful in treating cancer comprising at least one active therapeutic agent, e.g., “anti-cancer agent”. Examples of therapeutic agents (anti-cancer agents, also termed “anti-neoplastic agent” herein) include, but are not limited to, e.g., chemotherapeutic agents, growth inhibitory agents, cytotoxic agents, agents used in radiation therapy, anti-angiogenesis agents, apoptotic agents, anti-tubulin agents, toxins, and other-agents to treat cancer, e.g., anti-VEGF neutralizing antibody, VEGF antagonist, anti-HER-2, anti-CD20, an epidermal growth factor receptor (EGFR) antagonist (e.g., a tyrosine kinase inhibitor), HER1/EGFR inhibitor, erlotinib, a COX-2 inhibitor (e.g., celecoxib), interferons, cytokines, antagonists (e.g., neutralizing antibodies) that bind to one or more of the ErbB2, ErbB3, ErbB4, or VEGF receptor(s), inhibitors for receptor tyrosine kinases for platelet-derived growth factor (PDGF) and/or stem cell factor (SCF) (e.g., imatinib mesylate (Gleevec ® Novartis)), TRAIL/Apo2L, and other bioactive and organic chemical agents, etc.

[0103] An “angiogenic factor or agent” is a growth factor which stimulates the development of blood vessels, e.g., promotes angiogenesis, endothelial cell growth, stability of blood vessels, and/or vasculogenesis, etc. For example, angiogenic factors, include, but are not limited to, e.g., VEGF

and members of the VEGF family, P1GF, PDGF family, fibroblast growth factor family (FGFs), TIE ligands (Angiopoietins), ephrins, ANGPTL3, ALK-1, etc. It would also include factors that accelerate wound healing, such as growth hormone, insulin-like growth factor-I (IGF-I), VIGF, epidermal growth factor (EGF), CTGF and members of its family, and TGF- α and TGF- β . See, e.g., Klagsbrun and D'Amore, *Annu. Rev. Physiol.*, 53:217-39 (1991); Streit and Detmar, *Oncogene*, 22:3172-3179 (2003); Ferrara & Alitalo, *Nature Medicine* 5(12): 1359-1364 (1999); Tonini et al., *Oncogene*, 22:6549-6556 (2003) (e.g., Table 1 listing angiogenic factors); and, Sato *Int. J. Clin. Oncol.*, 8:200-206 (2003).

[0104] An “anti-angiogenesis agent” or “angiogenesis inhibitor” refers to a small molecular weight substance, a polynucleotide (including, e.g., an inhibitory RNA (RNAi or siRNA)), a polypeptide, an isolated protein, a recombinant protein, an antibody, or conjugates or fusion proteins thereof, that inhibits angiogenesis, vasculogenesis, or undesirable vascular permeability, either directly or indirectly. For example, an anti-angiogenesis agent is an antibody or other antagonist to an angiogenic agent as defined above, e.g., antibodies to VEGF, antibodies to VEGF receptors, small molecules that block VEGF receptor signaling (e.g., PTK787/ZK2284, SU6668, SUTENT®/SU 11248 (sunitinib malate), AMG706, or those described in, e.g., international patent application WO 2004/113304). Anti-angiogenesis agents also include native angiogenesis inhibitors, e.g., angiostatin, endostatin, etc. See, e.g., Klagsbrun and D'Amore, *Annu. Rev. Physiol.*, 53:217-39 (1991); Streit and Detmar, *Oncogene*, 22:3172-3179 (2003) (e.g., Table 3 listing anti-angiogenic therapy in malignant melanoma); Ferrara & Alitalo, *Nat Med* 5(12): 1359-1364 (1999); Tonini et al., *Oncogene*, 22:6549-6556 (2003) (e.g., Table 2 listing antiangiogenic factors); and, Sato *Int. J. Clin. Oncol.*, 8:200-206 (2003) (e.g., Table 1 lists Anti-angiogenesis agents used in clinical trials).

[0105] In certain aspects of the invention, other therapeutic agents useful for combination tumor therapy with an ENG polypeptide include other cancer therapies: e.g., surgery, cytotoxic agents, radiological treatments involving irradiation or administration of radioactive substances, chemotherapeutic agents, anti-hormonal agents, growth inhibitory agents, anti-neoplastic compositions, and treatment with anti-cancer agents listed herein and known in the art, or combinations thereof.

[0106] The term “cytotoxic agent” as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., At²¹¹, ¹³¹, ¹²⁵, Y⁹⁰, Re¹⁸⁶, Re¹⁸⁸, Sm¹⁵³, Bi²¹², P³² and radioactive isotopes of Lu), chemotherapeutic agents e.g. methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents, enzymes and fragments thereof such as nucleolytic enzymes, antibiotics, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof, and the various antitumor or anticancer agents disclosed below. Other cytotoxic agents are described below. A tumoricidal agent causes destruction of tumor cells.

[0107] A “chemotherapeutic agent” is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include alkylating agents such as thiotepa

and CYTOXAN® cyclophosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide and trimethylololomelamine; acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL®); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue topotecan (HYCAMTIN®), CPT-11 (irinotecan, CAMPTOSAR®), acetylcamptothecin, scoopoletin, and 9-aminocamptothecin); bryostatin; callystatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic analogues); podophyllotoxin; podophyllinic acid; teniposide; cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, chlophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosoureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimustine; antibiotics such as the enediyne antibiotics (e.g., calicheamicin, especially calicheamicin gammall and calicheamicin omegall (see, e.g., Agnew, *Chem. Int. Ed. Engl.*, 33: 183-186 (1994)); dynemicin, including dynemicin A; an esperamicin; as well as neocarzinostatin chromophore and related chromoprotein enediyne antibiotic chromophores), aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabacin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, zorubicin; anti-metabolites such as methotrexate and 5-fluorouracil (5-FU); folic acid analogues such as denopterin, methotrexate, pteroferin, trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxifluridine, enocitabine, floxuridine; androgens such as calusterone, dromostanolone propionate, epitostanol, mepitiostane, testolactone; anti-adrenals such as aminoglutethimide, mitotane, trilostane; folic acid replenisher such as folinic acid; aceglatone; aldophosphamide glycoside; aminolevulinic acid; eniluracil; amsacrine; bestrabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; el fornithine; elliptinium acetate; an epothilone; etoglibucid; gallium nitrate; hydroxyurea; lentinan; lonidamine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; mopidamol; nitraridine; pentostatin; phenamet; pirarubicin; losoxantrone; 2-ethylhydrazide; procarbazine; PSK® polysaccharide complex (JHS Natural Products, Eugene, Oreg.); razoxane; rhizoxin; sизofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2',2"-trichloroethylamine; trichothecenes (especially T-2 toxin, verrucarin A, roridin A and anguidine); urethan; vindesine (ELDISINE®, FILDESIN®); dacarbazine; mannomustine; mitobronitol;

mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); thioteprin; taxoids, e.g., TAXOL® paclitaxel (Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANE™ Cremophor-free, albumin engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, Ill.), and TAXOTERE® doxetaxel (Rhone-Poulenc Rorer, Antony, France); chlorambucil; gemcitabine (GEMZAR®); 6-thioguanine; mercaptopurine; methotrexate; platinum analogs such as cisplatin and carboplatin; vinblastine (VELBAN®); platinum; etoposide (VP-16); ifosfamide; mitoxantrone; vincristine (ONCOVIN®); oxaliplatin; leucovorin; vinorelbine (NAVELBINE®); novantrone; edatrexate; daunomycin; aminopterin; ibandronate; topoisomerase inhibitor RFS 2000; difluoromethylhydantoin (DMFO); retinoids such as retinoic acid; capecitabine (XELODA®); pharmaceutically acceptable salts, acids or derivatives of any of the above; as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, vincristine, and prednisolone, and FOLFOX, an abbreviation for a treatment regimen with oxaliplatin (ELOXATIN™) combined with 5-FU and leucovorin.

[0108] Also included in this definition are anti-hormonal agents that act to regulate, reduce, block, or inhibit the effects of hormones that can promote the growth of cancer, and are often in the form of systemic, or whole-body treatment. They may be hormones themselves. Examples include anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX® tamoxifen), EVISTA® raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY1 17018, onapristone, and FARESTON® toremifene; anti-progesterones; estrogen receptor down-regulators (ERDs); agents that function to suppress or shut down the ovaries, for example, leutinizing hormone-releasing hormone (LHRH) agonists such as LUPRON® and ELIGARD® leuprolide acetate, goserelin acetate, buserelin acetate and triptorelin; other anti-androgens such as flutamide, nilutamide and bicalutamide; and aromatase inhibitors that inhibit the enzyme aromatase, which regulates estrogen production in the adrenal glands, such as, for example, 4(5)-imidazoles, aminoglutethimide, MEGASE® megestrol acetate, AROMASIN® exemestane, formestan, fadrozole, RIVIS OR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole. In addition, such definition of chemotherapeutic agents includes bisphosphonates such as clodronate (for example, BONEFOS® or OSTAC®), DIDROGAL® etidronate, NE-58095, ZOMET A® zoledronic acid/zoledronate, FOSAMAX® alendronate, AREDIA® pamidronate, SKELID® tiludronate, or ACTONEL® risedronate; as well as troxacitabine (a 1,3-dioxolane nucleoside cytosine analog); antisense oligonucleotides, particularly those that inhibit expression of genes in signaling pathways implicated in aberrant cell proliferation, such as, for example, PKC-alpha, Raf, H-Ras, and epidermal growth factor receptor (EGF-R); vaccines such as THERATOPE® vaccine and gene therapy vaccines, for example, ALLOVECTIN® vaccine, LEUVECTIN® vaccine, and VAXID® vaccine; LURTOTECAN® topoisomerase 1 inhibitor; ABARELIX® rmRH; lapatinib ditosylate (an ErbB-2 and EGFR dual tyrosine kinase small-molecule inhibitor also known as GW572016); and pharmaceutically acceptable salts, acids or derivatives of any of the above.

[0109] A "growth inhibitory agent" when used herein refers to a compound or composition which inhibits growth of

a cell either in vitro or in vivo. Thus, the growth inhibitory agent may be one which significantly reduces the percentage of cells in S phase. Examples of growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vinca (vincristine and vinblastine), taxanes, and topoisomerase II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in *The Molecular Basis of Cancer*, Mendelsohn and Israel, eds., Chapter 1, entitled "Cell cycle regulation, oncogenes, and antineoplastic drugs" by Murakami et al. (WB Saunders: Philadelphia, 1995), especially p. 13. The taxanes (paclitaxel and docetaxel) are anti-cancer drugs both derived from the yew tree. Docetaxel (TAXOTERE®, Rhone-Poulenc Rorer), derived from the European yew, is a semisynthetic analogue of paclitaxel (TAXOL®, Bristol-Myers Squibb). Paclitaxel and docetaxel promote the assembly of microtubules from tubulin dimers and stabilize microtubules by preventing depolymerization, which results in the inhibition of mitosis in cells.

[0110] Angiogenesis-inhibiting agents can also be given prophylactically to individuals known to be at high risk for developing new or re-current cancers. Accordingly, an aspect of the disclosure encompasses methods for prophylactic prevention of cancer in a subject, comprising administrating to the subject an effective amount of an ENG polypeptide and/or a derivative thereof, or another angiogenesis-inhibiting agent of the present disclosure.

[0111] Certain normal physiological processes are also associated with angiogenesis, for example, ovulation, menstruation, and placentation. The angiogenesis inhibiting proteins of the present disclosure are useful in the treatment of disease of excessive or abnormal stimulation of endothelial cells. These diseases include, but are not limited to, intestinal adhesions, atherosclerosis, scleroderma, and hypertrophic scars, i.e., keloids. They are also useful in the treatment of diseases that have angiogenesis as a pathologic consequence such as cat scratch disease (*Rochele minalia quintosa*) and ulcers (*Helicobacter pylori*).

[0112] General angiogenesis-inhibiting proteins can be used as birth control agents by reducing or preventing uterine vascularization required for embryo implantation. Thus, the present disclosure provides an effective birth control method when an amount of the inhibitory protein sufficient to prevent embryo implantation is administered to a female. In one aspect of the birth control method, an amount of the inhibiting protein sufficient to block embryo implantation is administered before or after intercourse and fertilization have occurred, thus providing an effective method of birth control, possibly a "morning after" method. While not wanting to be bound by this statement, it is believed that inhibition of vascularization of the uterine endometrium interferes with implantation of the blastocyst. Similar inhibition of vascularization of the mucosa of the uterine tube interferes with implantation of the blastocyst, preventing occurrence of a tubal pregnancy. Administration methods may include, but are not limited to, pills, injections (intravenous, subcutaneous, intramuscular), suppositories, vaginal sponges, vaginal tampons, and intrauterine devices. It is also believed that administration of angiogenesis inhibiting agents of the

present disclosure will interfere with normal enhanced vascularization of the placenta, and also with the development of vessels within a successfully implanted blastocyst and developing embryo and fetus.

[0113] In the eye, angiogenesis is associated with, for example, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma, and retrobulbar fibroplasias. The therapeutic agents disclosed herein may be administered intra-ocularly or by other local administration to the eye. Other diseases associated with angiogenesis in the eye include, but are not limited to, epidemic keratoconjunctivitis, vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, pterygium keratitis sicca, sjogrens, acne rosacea, phlyctenulosis, syphilis, mycobacteria infections, lipid degeneration, chemical burns, bacterial ulcers, fungal ulcers, herpes simplex infections, herpes zoster infections, protozoan infections, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, marginal keratolysis, rheumatoid arthritis, systemic lupus, polyarteritis, trauma, Wegeners sarcoidosis, Scleritis, Steven's Johnson disease, periphigoid radial keratotomy, corneal graft rejection, sickle cell anemia, sarcoid, pseudoxanthoma elasticum, Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uveitis/vitritis, mycobacterial infections, Lyme disease, systemic lupus erythematosus, retinopathy of prematurity, Eales disease, Bechets disease, infections causing a retinitis or choroiditis, presumed ocular histoplasmosis, Bests disease, myopia, optic pits, Stargarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, trauma and post-laser complications. Other diseases include, but are not limited to, diseases associated with rubeosis (neovascularization of the angle) and diseases caused by the abnormal proliferation of fibrovascular or fibrous tissue including all forms of proliferative vitreoretinopathy.

[0114] Conditions of the eye can be treated or prevented by, e.g., systemic, topical, intraocular injection of a therapeutic agent, or by insertion of a sustained release device that releases a therapeutic agent. A therapeutic agent may be delivered in a pharmaceutically acceptable ophthalmic vehicle, such that the compound is maintained in contact with the ocular surface for a sufficient time period to allow the compound to penetrate the corneal and internal regions of the eye, as for example the anterior chamber, posterior chamber, vitreous body, aqueous humor, vitreous humor, cornea, iris/ciliary, lens, choroid/retina and sclera. The pharmaceutically acceptable ophthalmic vehicle may, for example, be an ointment, vegetable oil or an encapsulating material. Alternatively, the therapeutic agents of the disclosure may be injected directly into the vitreous and aqueous humour. In a further alternative, the compounds may be administered systemically, such as by intravenous infusion or injection, for treatment of the eye.

[0115] One or more therapeutic agents can be administered. The methods of the disclosure also include co-administration with other medicaments that are used to treat conditions of the eye. When administering more than one agent or a combination of agents and medicaments, administration can occur simultaneously or sequentially in time. The therapeutic agents and/or medicaments may be administered by different routes of administration or by the same route of administration. In one embodiment, a therapeutic agent and a medicament are administered together in an ophthalmic pharmaceutical formulation.

[0116] In one embodiment, a therapeutic agent is used to treat a disease associated with angiogenesis in the eye by concurrent administration with other medicaments that act to block angiogenesis by pharmacological mechanisms. Medicaments that can be concurrently administered with a therapeutic agent of the disclosure include, but are not limited to, pegaptanib (Macugen™), ranibizumab (Lucentis™), squalamine lactate (Evizone™), heparinase, and glucocorticoids (e.g. Triamcinolone). In one embodiment, a method is provided to treat a disease associated with angiogenesis is treated by administering an ophthalmic pharmaceutical formulation containing at least one therapeutic agent disclosed herein and at least one of the following medicaments: pegaptanib (Macugen™), ranibizumab (Lucentis™), squalamine lactate (Evizone™), heparinase, and glucocorticoids (e.g. Triamcinolone).

Other Diseases or Disorders

[0117] In some embodiments, ENG polypeptides can be used to treat a patient who suffers from a cardiovascular disorder or condition associated with BMP-9 or BMP-10 but not necessarily accompanied by angiogenesis. Exemplary disorders of this kind include, but are not limited to, heart disease (including myocardial disease, myocardial infarct, angina pectoris, and heart valve disease); renal disease (including chronic glomerular inflammation, diabetic renal failure, and lupus-related renal inflammation); disorders of blood pressure (including systemic and pulmonary types); disorders associated with atherosclerosis or other types of arteriosclerosis (including stroke, cerebral hemorrhage, subarachnoid hemorrhage, angina pectoris, and renal arteriosclerosis); thrombotic disorders (including cerebral thrombosis, pulmonary thrombosis, thrombotic intestinal necrosis); complications of diabetes (including diabetes-related retinal disease, cataracts, diabetes-related renal disease, diabetes-related neuropathology, diabetes-related gangrene, and diabetes-related chronic infection); vascular inflammatory disorders (systemic lupus erythematosus, joint rheumatism, joint arterial inflammation, large-cell arterial inflammation, Kawasaki disease, Takayasu arteritis, Churg-Strauss syndrome, and Henoch-Schoenlein purpura); and cardiac disorders such as congenital heart disease, cardiomyopathy (e.g., dilated, hypertrophic, restrictive cardiomyopathy), and congestive heart failure. The ENG polypeptide can be administered to the subject alone, or in combination with one or more agents or therapeutic modalities, e.g., therapeutic agents, which are useful for treating BMP-9/10 associated cardiovascular disorders and/or conditions. In one embodiment, the second agent or therapeutic modality is chosen from one or more of: angioplasty, beta blockers, anti-hypertensives, cardiotonics, anti-thrombotics, vasodilators, hormone antagonists, endotelin antagonists, calcium channel blockers, phosphodiesterase inhibitors, angiotensin type 2 antagonists and/or cytokine blockers/inhibitors.

[0118] In still other embodiments, ENG polypeptides may be useful in the treatment of inflammatory disorders or conditions likely to be BMP9-related but not already noted above. Exemplary disorders include liver disease (including acute hepatitis, chronic hepatitis, and cirrhosis); thoracic or abdominal edema; chronic pancreatic disease; allergies (including nasal allergy, asthma, bronchitis, and atopic dermatitis); Alzheimer's disease; Raynaud's syndrome; and diffuse sclerosis.

3. Formulations and Effective Doses

[0119] The therapeutic agents described herein may be formulated into pharmaceutical compositions. Pharmaceutical compositions for use in accordance with the present disclosure may be formulated in conventional manner using one or more physiologically acceptable carriers or excipients. Such formulations will generally be substantially pyrogen free, in compliance with most regulatory requirements.

[0120] In certain embodiments, the therapeutic method of the disclosure includes administering the composition systemically, or locally as an implant or device. When administered, the therapeutic composition for use in this disclosure is in a pyrogen-free, physiologically acceptable form. Therapeutically useful agents other than the ENG signaling antagonists which may also optionally be included in the composition as described above, may be administered simultaneously or sequentially with the subject compounds (e.g., ENG polypeptides) in the methods disclosed herein.

[0121] Typically, protein therapeutic agents disclosed herein will be administered parentally, and particularly intravenously or subcutaneously. Pharmaceutical compositions suitable for parenteral administration may comprise one or more ENG polypeptides in combination with one or more pharmaceutically acceptable sterile isotonic aqueous or non-aqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents. Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the disclosure include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.

[0122] In one embodiment, the ENG polypeptides disclosed herein are administered in an ophthalmic pharmaceutical formulation. In some embodiments, the ophthalmic pharmaceutical formulation is a sterile aqueous solution, preferable of suitable concentration for injection, or a salve or ointment. Such salves or ointments typically comprise one or more ENG polypeptides disclosed herein dissolved or suspended in a sterile pharmaceutically acceptable salve or ointment base, such as a mineral oil-white petrolatum base. In salve or ointment compositions, anhydrous lanolin may also be included in the formulation. Thimerosal or chlorobutanol are also preferably added to such ointment compositions as antimicrobial agents. In one embodiment, the sterile aqueous solution is as described in U.S. Pat. No. 6,071,958.

[0123] The disclosure provides formulations that may be varied to include acids and bases to adjust the pH; and buffering agents to keep the pH within a narrow range. Additional medicaments may be added to the formulation. These include, but are not limited to, pegaptanib, heparinase, ranibizumab, or glucocorticoids. The ophthalmic pharmaceutical formulation according to the disclosure is prepared by aseptic manipulation, or sterilization is performed at a suitable stage of preparation.

[0124] The compositions and formulations may, if desired, be presented in a pack or dispenser device which may contain

one or more unit dosage forms containing the active ingredient. The pack may for example comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

4. Soluble ENG Polypeptides

[0125] Except under certain conditions, naturally occurring ENG proteins are transmembrane proteins, with a portion of the protein positioned outside the cell (the extracellular portion) and a portion of the protein positioned inside the cell (the intracellular portion). Aspects of the present disclosure encompass polypeptides comprising a portion of the extracellular domain (ECD) of ENG.

[0126] In certain embodiments, the disclosure provides ENG polypeptides. ENG polypeptides may include a polypeptide consisting of, or comprising, an amino acid sequence at least 90% identical, and optionally at least 95%, 96%, 97%, 98%, 99%, or 100% identical to a truncated ECD domain of a naturally occurring ENG polypeptide, whose C-terminus occurs at any of amino acids 333-378 of SEQ ID NO: 1 and which polypeptide does not include a sequence consisting of amino acids 379-430 of SEQ ID NO: 1. Optionally, an ENG polypeptide does not include more than 5 consecutive amino acids, or more than 10, 20, 30, 40, 50, 52, 60, 70, 80, 90, 100, 150 or 200 or more consecutive amino acids from a sequence consisting of amino acids 379-586 of SEQ ID NO: 1 or from a sequence consisting of amino acids 379-581 of SEQ ID NO: 1. The unprocessed ENG polypeptide may either include or exclude any signal sequence, as well as any sequence N-terminal to the signal sequence. As elaborated herein, the N-terminus of the mature (processed) ENG polypeptide may occur at any of amino acids 26-42 of SEQ ID NO: 1. Examples of mature ENG polypeptides include amino acids 25-377 of SEQ ID NO: 23, amino acids 25-358 of SEQ ID NO: 25, and amino acids 25-345 of SEQ ID NO: 29. Likewise, an ENG polypeptide may comprise a polypeptide that is encoded by nucleotides 73-1131 of SEQ ID NO: 24, nucleotides 73-1074 of SEQ ID NO: 26, or nucleotides 73-1035 of SEQ ID NO: 30, or silent variants thereof or nucleic acids that hybridize to the complement thereof under stringent hybridization conditions (generally, such conditions are known in the art but may, for example, involve hybridization in 50% v/v formamide, 5×SSC, 2% w/v blocking agent, 0.1% N-lauroylsarcosine, and 0.3% SDS at 65° C. overnight and washing in, for example, 5×SSC at about 65° C.). The term "ENG polypeptide" accordingly encompasses isolated extracellular portions of ENG polypeptides, variants thereof (including variants that comprise, for example, no more than 2, 3, 4, 5, 10, 15, 20, 25, 30, or 35 amino acid substitutions in the sequence corresponding to amino acids 26-378 of SEQ ID NO: 1), fragments thereof, and fusion proteins comprising any of the preceding, but in each case preferably any of the foregoing ENG polypeptides will retain substantial affinity for BMP-9 and/or BMP-10. Generally, an ENG polypeptide will be designed to be soluble in aqueous solutions at biologically relevant temperatures, pH levels, and osmolarity.

[0127] Data presented here show that Fc fusion proteins comprising shorter C-terminally truncated variants of ENG polypeptides display no appreciable binding to TGF- β 1 and TGF- β 3 but instead display higher affinity binding to BMP-9, with a markedly slower dissociation rate, compared to either ENG(26-437)-Fc or an Fc fusion protein comprising the full-length ENG ECD. Specifically, C-terminally truncated variants ending at amino acids 378, 359, and 346 of SEQ ID NO:

1 were all found to bind BMP-9 with substantially higher affinity (and to bind BMP-10 with undiminished affinity) compared to ENG(26-437) or ENG(26-586). However, binding to BMP-9 and BMP-10 was completely disrupted by more extensive C-terminal truncations to amino acids 332, 329, or 257. Thus, ENG polypeptides that terminate between amino acid 333 and amino acid 378 are all expected to be active, but constructs ending at, or between, amino acids 346 and 359 may be most active. Forms ending at, or between, amino acids 360 and 378 are predicted to trend toward the intermediate ligand binding affinity shown by ENG(26-378). Improvements in other key parameters are expected with certain constructs ending at, or between, amino acids 333 and 378 based on improvements in protein expression and elimination half-life observed with ENG(26-346)-Fc compared to fusion proteins comprising full-length ENG ECD (see Examples). Any of these truncated variant forms may be desirable to use, depending on the clinical or experimental setting.

[0128] At the N-terminus, it is expected that an ENG polypeptide beginning at amino acid 26 (the initial glutamate), or before, of SEQ ID NO: 1 will retain ligand binding activity. As disclosed herein, an N-terminal truncation to amino acid 61 of SEQ ID NO: 1 abolishes ligand binding, as do more extensive N-terminal truncations. However, as also disclosed herein, consensus modeling of ENG primary sequences indicates that ordered secondary structure within the region defined by amino acids 26-60 of SEQ ID NO: 1 is limited to a four-residue beta strand predicted with high confidence at positions 42-45 of SEQ ID NO: 1 and a two-residue beta strand predicted with very low confidence at positions 28-29 of SEQ ID NO: 1. Thus, an active ENG polypeptide will begin at (or before) amino acid 26, preferentially, or at any of amino acids 27-42 of SEQ ID NO: 1.

[0129] Taken together, an active portion of an ENG polypeptide may comprise amino acid sequences 26-333, 26-334, 26-335, 26-336, 26-337, 26-338, 26-339, 26-340, 26-341, 26-342, 26-343, 26-344, 26-345, or 26-346 of SEQ ID NO: 1, as well as variants of these sequences starting at any of amino acids 27-42 of SEQ ID NO: 1. Exemplary ENG polypeptides comprise amino acid sequences 26-346, 26-359, and 26-378 of SEQ ID NO: 1. Variants within these ranges are also contemplated, particularly those having at least 80%, 85%, 90%, 95%, or 99% identity to the corresponding portion of SEQ ID NO: 1. An ENG polypeptide may not include the sequence consisting of amino acids 379-430 of SEQ ID NO: 1.

[0130] As described above, the disclosure provides ENG polypeptides sharing a specified degree of sequence identity or similarity to a naturally occurring ENG polypeptide. To determine the percent identity of two amino acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). The amino acid residues at corresponding amino acid positions are then compared. When a position in the first sequence is occupied by the same amino acid residue as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid "identity" is equivalent to amino acid "homology"). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of

gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

[0131] The comparison of sequences and determination of percent identity and similarity between two sequences can be accomplished using a mathematical algorithm. (Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991).

[0132] In one embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available at <http://www.gcg.com>). In a specific embodiment, the following parameters are used in the GAP program: either a BLOSUM 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (Devereux, J., et al., Nucleic Acids Res. 12(1):387 (1984)) (available at <http://www.gcg.com>). Exemplary parameters include using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. Unless otherwise specified, percent identity between two amino acid sequences is to be determined using the GAP program using a BLOSUM 62 matrix, a GAP weight of 10 and a length weight of 3, and if such algorithm cannot compute the desired percent identity, a suitable alternative disclosed herein should be selected.

[0133] In another embodiment, the percent identity between two amino acid sequences is determined using the algorithm of E. Myers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

[0134] Another embodiment for determining the best overall alignment between two amino acid sequences can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci., 6:237-245 (1990)). In a sequence alignment the query and subject sequences are both amino acid sequences. The result of said global sequence alignment is presented in terms of percent identity. In one embodiment, amino acid sequence identity is performed using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci., 6:237-245 (1990)). In a specific embodiment, parameters employed to calculate percent identity and similarity of an amino acid alignment comprise: Matrix=PAM 150, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5 and Gap Size Penalty=0.05.

[0135] In certain embodiments, an ENG polypeptide binds to BMP-9 and BMP-10, and the ENG polypeptide does not show substantial binding to TGF- β 1 or TGF- β 3. Binding may be assessed using purified proteins in solution or in a surface plasmon resonance system, such as a BiacoreTM system. ENG polypeptides may be selected to exhibit an anti-angiogenic activity. Bioassays for angiogenesis inhibitory activity

include the chick chorioallantoic membrane (CAM) assay, the mouse angioreactor assay, and assays for measuring the effect of administering isolated or synthesized proteins on implanted tumors. The CAM assay, the mouse angioreactor assay, and other assays are described in the Examples.

[0136] ENG polypeptides may additionally include any of various leader sequences at the N-terminus. Such a sequence would allow the peptides to be expressed and targeted to the secretion pathway in a eukaryotic system. See, e.g., Ernst et al., U.S. Pat. No. 5,082,783 (1992). Alternatively, a native ENG signal sequence may be used to effect extrusion from the cell. Possible leader sequences include honeybee mellitin, TPA, and native leaders (SEQ ID NOs. 13-15, respectively). Examples of ENG-Fc fusion proteins incorporating a TPA leader sequence include SEQ ID NOs: 23, 25, 27, and 29. Processing of signal peptides may vary depending on the leader sequence chosen, the cell type used and culture conditions, among other variables, and therefore actual N-terminal start sites for mature ENG polypeptides may shift by 1, 2, 3, 4 or 5 amino acids in either the N-terminal or C-terminal direction. Examples of mature ENG-Fc fusion proteins include SEQ ID NOs: 33-36, as shown below with the ENG polypeptide portion underlined.

Human ENG (26-378) -hFc (truncated Fc)
(SEQ ID NO: 33)

ETVHCD LQPGVPERDE VTYTTSQVSK GCVAQAPNAI
LEHVHLFLEF PTGPSOLELT LQASKQNGTW PREVLLVLSV
NSSVFLHLQA LGIPLHLAYN SSLVTQFQEPGVNNTTELPSE
PKTQILEWAA ERGPITSAAE LNDPQSILLR LGQAQGSLSF
CMLEASQDMG RTLEWRPRTP ALVRGCHLEG VAGHKEAHIL
RVLPGHSAGP RTVTVKVELS CAPGDLDAVL ILQGPPYVSW
LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI
QTPPKDTCS PELLMSLIQI KCADDAMTLV LKKELVATGG
GTHTCPPCPA PELLGGPSVF LFPPKPKDTL MISRTPEVTC
VVVDVSHEDP EVKFNWYVDG VEVHNAKTP REEQYNSTYR
VVSVLTVLHQ DWLNGKEYKC KVSNKALPAP IEKTISKAKG
QPREPQVYTL PPSREEMTKN QVSLTCLVKG FYPSDIAVEW
ESNGQPENNY KTPPPVLDSD GSFFFLYSKLT VDKSRWQGN
VFSCSVMHEA LHNHYTQKSL SLSPGK

Human ENG (26-359) -hFc
(SEQ ID NO: 34)

ETVHCD LQPGVPERDE VTYTTSQVSK GCVAQAPNAI
LEHVHLFLEF PTGPSOLELT LQASKQNGTW PREVLLVLSV
NSSVFLHLQA LGIPLHLAYN SSLVTQFQEPGVNNTTELPSE
PKTQILEWAA ERGPITSAAE LNDPQSILLR LGQAQGSLSF
CMLEASQDMG RTLEWRPRTP ALVRGCHLEG VAGHKEAHIL
RVLPGHSAGP RTVTVKVELS CAPGDLDAVL ILQGPPYVSW
LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG

-continued

EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI

QTPPKDTCS PELLMSLIQI GGPKSCDKTH TCPPCPAPEL
LGGPSVFLFP PKPKDTLMIS RTPEVTCVV DVSHEDEPKV
FNWYVDGVEV HNAKTKPREE QYNSTYRVVS VLTVLHQDWL
NGKEYKCKVS NKALPAPIEK TISKAKGQPR EPQVYTLPPS
REEMTKNQVS LTCLVKGFPY SDIAVEWESN QOPENNYKTT
PPVLDSDGSF FLYSKLTVDK SRWQQGNVFS CSVMHEALHN
HYTQKSLSL S PGK

Human ENG (26-359) -hFc (truncated Fc)
(SEQ ID NO: 35)

ETVHCD LQPGVPERDE VTYTTSQVSK GCVAQAPNAI

LEHVHLFLEF PTGPSOLELT LQASKQNGTW PREVLLVLSV
NSSVFLHLQA LGIPLHLAYN SSLVTQFQEPGVNNTTELPSE
PKTQILEWAA ERGPITSAAE LNDPQSILLR LGQAQGSLSF
CMLEASQDMG RTLEWRPRTP ALVRGCHLEG VAGHKEAHIL
RVLPGHSAGP RTVTVKVELS CAPGDLDAVL ILQGPPYVSW
LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI
QTPPKDTCS PELLMSLIQI GGTHTCPPCP APELLGGPSV
FLFPPPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD
GVEVHNAKTK PREEQYNSTY RVSVLTVLH QDWLNGKEYK
CKVSNKALPA PIEKTISKAK QOPREPQVYT LPPSREEMTK
NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTPPVLD
DGSFFFLYSKL TVDKSRWQOG NVFSCSVMHE ALHNHYTQKS
LSLSPGK

Human ENG (26-346) -hFc (truncated Fc)
(SEQ ID NO: 36)

ETVHCD LQPGVPERDE VTYTTSQVSK GCVAQAPNAI

LEHVHLFLEF PTGPSOLELT LQASKQNGTW PREVLLVLSV
NSSVFLHLQA LGIPLHLAYN SSLVTQFQEPGVNNTTELPSE
PKTQILEWAA ERGPITSAAE LNDPQSILLR LGQAQGSLSF
CMLEASQDMG RTLEWRPRTP ALVRGCHLEG VAGHKEAHIL
RVLPGHSAGP RTVTVKVELS CAPGDLDAVL ILQGPPYVSW
LIDANHNMQI WTTGEYSFKI FPEKNIRGFK LPDTPQGLLG
EARMLNASIV ASFVELPLAS IVSLHASSCG GRLQTSPAPI
QTPPKDTCS PELLMSLIQI GGTHTCPPCP APELLGGPSV
FLFPPPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD
GVEVHNAKTK PREEQYNSTY RVSVLTVLH QDWLNGKEYK
CKVSNKALPA PIEKTISKAK QOPREPQVYT LPPSREEMTK
NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTPPVLD
DGSFFFLYSKL TVDKSRWQOG NVFSCSVMHE ALHNHYTQKS
LSLSPGK

[0137] In certain embodiments, the present disclosure contemplates specific mutations of the ENG polypeptides so as to alter the glycosylation of the polypeptide. Such mutations may be selected so as to introduce or eliminate one or more glycosylation sites, such as O-linked or N-linked glycosylation sites. Asparagine-linked glycosylation recognition sites generally comprise a tripeptide sequence, asparagine-X-threonine (or asparagine-X-serine) (where "X" is any amino acid) which is specifically recognized by appropriate cellular glycosylation enzymes. The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the wild-type ENG polypeptide (for O-linked glycosylation sites). A variety of amino acid substitutions or deletions at one or both of the first or third amino acid positions of a glycosylation recognition site (and/or amino acid deletion at the second position) results in non-glycosylation at the modified tripeptide sequence. Another means of increasing the number of carbohydrate moieties on an ENG polypeptide is by chemical or enzymatic coupling of glycosides to the ENG polypeptide. Depending on the coupling mode used, the sugar(s) may be attached to (a) arginine and histidine; (b) free carboxyl groups; (c) free sulfhydryl groups such as those of cysteine; (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline; (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (f) the amide group of glutamine. These methods are described in WO 87/05330 published Sep. 11, 1987, and in Aplin and Wriston (1981) CRC Crit. Rev. Biochem., pp. 259-306, incorporated by reference herein. Removal of one or more carbohydrate moieties present on an ENG polypeptide may be accomplished chemically and/or enzymatically. Chemical deglycosylation may involve, for example, exposure of the ENG polypeptide to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the amino acid sequence intact. Chemical deglycosylation is further described by Hakimuddin et al. (1987) Arch. Biochem. Biophys. 259:52 and by Edge et al. (1981) Anal. Biochem. 118:131. Enzymatic cleavage of carbohydrate moieties on ENG polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al. (1987) Meth. Enzymol. 138:350. The sequence of an ENG polypeptide may be adjusted, as appropriate, depending on the type of expression system used, as mammalian, yeast, insect and plant cells may all introduce differing glycosylation patterns that can be affected by the amino acid sequence of the peptide. In general, ENG polypeptides for use in humans will be expressed in a mammalian cell line that provides proper glycosylation, such as HEK293 or CHO cell lines, although other mammalian expression cell lines, yeast cell lines with engineered glycosylation enzymes, and insect cells are expected to be useful as well.

[0138] This disclosure further contemplates a method of generating mutants, particularly sets of combinatorial mutants of an ENG polypeptide, as well as truncation mutants; pools of combinatorial mutants are especially useful for identifying functional variant sequences. The purpose of screening such combinatorial libraries may be to generate, for example, ENG polypeptide variants which can act as either agonists or antagonist, or alternatively, which possess novel activities all together. A variety of screening assays are provided below, and such assays may be used to evaluate vari-

ants. For example, an ENG polypeptide variant may be screened for ability to bind to an ENG ligand, to prevent binding of an ENG ligand to an ENG polypeptide or to interfere with signaling caused by an ENG ligand. The activity of an ENG polypeptide or its variants may also be tested in a cell-based or in vivo assay, particularly any of the assays disclosed in the Examples.

[0139] Combinatorially-derived variants can be generated which have a selective or generally increased potency relative to an ENG polypeptide comprising an extracellular domain of a naturally occurring ENG polypeptide. Likewise, mutagenesis can give rise to variants which have serum half-lives dramatically different than the corresponding wild-type ENG polypeptide. For example, the altered protein can be rendered either more stable or less stable to proteolytic degradation or other processes which result in destruction of, or otherwise elimination or inactivation of, a native ENG polypeptide. Such variants, and the genes which encode them, can be utilized to alter ENG polypeptide levels by modulating the half-life of the ENG polypeptides. For instance, a short half-life can give rise to more transient biological effects and can allow tighter control of recombinant ENG polypeptide levels within the patient. In an Fc fusion protein, mutations may be made in the linker (if any) and/or the Fc portion to alter the half-life of the protein.

[0140] A combinatorial library may be produced by way of a degenerate library of genes encoding a library of polypeptides which each include at least a portion of potential ENG polypeptide sequences. For instance, a mixture of synthetic oligonucleotides can be enzymatically ligated into gene sequences such that the degenerate set of potential ENG polypeptide nucleotide sequences are expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display).

[0141] There are many ways by which the library of potential ENG polypeptide variants can be generated from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be carried out in an automatic DNA synthesizer, and the synthetic genes then be ligated into an appropriate vector for expression. The synthesis of degenerate oligonucleotides is well known in the art (see for example, Narang, SA (1983) Tetrahedron 39:3; Itakura et al., (1981) Recombinant DNA, Proc. 3rd Cleveland Sympos. Macromolecules, ed. AG Walton, Amsterdam: Elsevier pp273-289; Itakura et al., (1984) Annu Rev. Biochem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al., (1983) Nucleic Acid Res. 11:477). Such techniques have been employed in the directed evolution of other proteins (see, for example, Scott et al., (1990) Science 249:386-390; Roberts et al., (1992) PNAS USA 89:2429-2433; Devlin et al., (1990) Science 249: 404-406; Cwirla et al., (1990) PNAS USA 87: 6378-6382; as well as U.S. Pat. Nos: 5,223,409, 5,198,346, and 5,096,815).

[0142] Alternatively, other forms of mutagenesis can be utilized to generate a combinatorial library. For example, ENG polypeptide variants can be generated and isolated from a library by screening using, for example, alanine scanning mutagenesis and the like (Ruf et al., (1994) Biochemistry 33:1565-1572; Wang et al., (1994) J. Biol. Chem. 269:3095-3099; Balint et al., (1993) Gene 137:109-118; Grodberg et al., (1993) Eur. J. Biochem. 218:597-601; Nagashima et al., (1993) J. Biol. Chem. 268:2888-2892; Lowman et al., (1991) Biochemistry 30:10832-10838; and Cunningham et al., (1989) Science 244:1081-1085), by linker scanning

mutagenesis (Gustin et al., (1993) *Virology* 193:653-660; Brown et al., (1992) *Mol. Cell Biol.* 12:2644-2652; McKnight et al., (1982) *Science* 232:316); by saturation mutagenesis (Meyers et al., (1986) *Science* 232:613); by PCR mutagenesis (Leung et al., (1989) *Method Cell Mol Biol* 1:11-19); or by random mutagenesis, including chemical mutagenesis, etc. (Miller et al., (1992) *A Short Course in Bacterial Genetics*, CSHL Press, Cold Spring Harbor, NY; and Greener et al., (1994) *Strategies in Mol Biol* 7:32-34). Linker scanning mutagenesis, particularly in a combinatorial setting, is an attractive method for identifying truncated (bioactive) forms of ENG polypeptides.

[0143] A wide range of techniques are known in the art for screening gene products of combinatorial libraries made by point mutations and truncations, and, for that matter, for screening cDNA libraries for gene products having a certain property. Such techniques will be generally adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of ENG polypeptides. The most widely used techniques for screening large gene libraries typically comprises cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates relatively easy isolation of the vector encoding the gene whose product was detected. Preferred assays include ENG ligand binding assays and ligand-mediated cell signaling assays.

[0144] In certain embodiments, the ENG polypeptides of the disclosure may further comprise post-translational modifications in addition to any that are naturally present in the ENG polypeptides. Such modifications include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, pegylation (polyethylene glycol) and acylation. As a result, the modified ENG polypeptides may contain non-amino acid elements, such as polyethylene glycols, lipids, poly- or mono-saccharide, and phosphates. Effects of such non-amino acid elements on the functionality of an ENG polypeptide may be tested as described herein for other ENG polypeptide variants. When an ENG polypeptide is produced in cells by cleaving a nascent form of the ENG polypeptide, post-translational processing may also be important for correct folding and/or function of the protein. Different cells (such as CHO, HeLa, MDCK, 293, WI38, NIH-3T3 or HEK293) have specific cellular machinery and characteristic mechanisms for such post-translational activities and may be chosen to ensure the correct modification and processing of the ENG polypeptides.

[0145] In certain aspects, functional variants or modified forms of the ENG polypeptides include fusion proteins having at least a portion of the ENG polypeptides and one or more fusion domains. Well known examples of such fusion domains include, but are not limited to, polyhistidine, Glu-Glu, glutathione S transferase (GST), thioredoxin, protein A, protein G, an immunoglobulin heavy chain constant region (Fc), maltose binding protein (MBP), or human serum albumin. A fusion domain may be selected so as to confer a desired property. For example, some fusion domains are particularly useful for isolation of the fusion proteins by affinity chromatography. For the purpose of affinity purification, relevant matrices for affinity chromatography, such as glutathione-, amylase-, and nickel- or cobalt-conjugated resins are used. Many of such matrices are available in "kit" form, such as the Pharmacia GST purification system and the

QIAexpress™ system (Qiagen) useful with (HIS₆) fusion partners. As another example, a fusion domain may be selected so as to facilitate detection of the ENG polypeptides. Examples of such detection domains include the various fluorescent proteins (e.g., GFP) as well as "epitope tags," which are usually short peptide sequences for which a specific antibody is available. Well known epitope tags for which specific monoclonal antibodies are readily available include FLAG, influenza virus hemagglutinin (HA), and c-myc tags. In some cases, the fusion domains have a protease cleavage site, such as for Factor Xa or Thrombin, which allows the relevant protease to partially digest the fusion proteins and thereby liberate the recombinant proteins therefrom. The liberated proteins can then be isolated from the fusion domain by subsequent chromatographic separation. In certain preferred embodiments, an ENG polypeptide is fused with a domain that stabilizes the ENG polypeptide in vivo (a "stabilizer" domain). By "stabilizing" is meant anything that increases serum half-life, regardless of whether this is because of decreased destruction, decreased clearance by the kidney, or other pharmacokinetic effect. Fusions with the Fc portion of an immunoglobulin are known to confer desirable pharmacokinetic properties on a wide range of proteins. Likewise, fusions to human serum albumin can confer desirable properties. Other types of fusion domains that may be selected include multimerizing (e.g., dimerizing, tetramerizing) domains and functional domains.

[0146] As specific examples, the present disclosure provides fusion proteins comprising variants of ENG polypeptides fused to one of two Fc domain sequences (e.g., SEQ ID NOS: 11, 12). Optionally, the Fc domain has one or more mutations at residues such as Asp-265, Lys-322, and Asn-434 (numbered in accordance with the corresponding full-length IgG). In certain cases, the mutant Fc domain having one or more of these mutations (e.g., Asp-265 mutation) has reduced ability of binding to the Fcγ receptor relative to a wildtype Fc domain. In other cases, the mutant Fc domain having one or more of these mutations (e.g., Asn-434 mutation) has increased ability of binding to the MHC class I-related Fc-receptor (FcRN) relative to a wildtype Fc domain.

[0147] It is understood that different elements of the fusion proteins may be arranged in any manner that is consistent with the desired functionality. For example, an ENG polypeptide may be placed C-terminal to a heterologous domain, or, alternatively, a heterologous domain may be placed C-terminal to an ENG polypeptide. The ENG polypeptide domain and the heterologous domain need not be adjacent in a fusion protein, and additional domains or amino acid sequences may be included C- or N-terminal to either domain or between the domains.

[0148] As used herein, the term "immunoglobulin Fc domain" or simply "Fc" is understood to mean the carboxyl-terminal portion of an immunoglobulin chain constant region, preferably an immunoglobulin heavy chain constant region, or a portion thereof. For example, an immunoglobulin Fc region may comprise 1) a CH1 domain, a CH2 domain, and a CH3 domain, 2) a CH1 domain and a CH2 domain, 3) a CH1 domain and a CH3 domain, 4) a CH2 domain and a CH3 domain, or 5) a combination of two or more domains and an immunoglobulin hinge region. In a preferred embodiment the immunoglobulin Fc region comprises at least an immunoglobulin hinge region a CH2 domain and a CH3 domain, and preferably lacks the CH1 domain.

[0149] In one embodiment, the class of immunoglobulin from which the heavy chain constant region is derived is IgG (Ig γ) (γ subclasses 1, 2, 3, or 4). Other classes of immunoglobulin, IgA (Ig α), IgD (Ig δ), IgE (Ig ϵ) and IgM (Ig μ), may be used. The choice of appropriate immunoglobulin heavy chain constant region is discussed in detail in U.S. Pat. Nos. 5,541,087, and 5,726,044. The choice of particular immunoglobulin heavy chain constant region sequences from certain immunoglobulin classes and subclasses to achieve a particular result is considered to be within the level of skill in the art. The portion of the DNA construct encoding the immunoglobulin Fc region preferably comprises at least a portion of a hinge domain, and preferably at least a portion of a CH₃ domain of Fc gamma or the homologous domains in any of IgA, IgD, IgE, or IgM.

[0150] Furthermore, it is contemplated that substitution or deletion of amino acids within the immunoglobulin heavy chain constant regions may be useful in the practice of the methods and compositions disclosed herein. One example would be to introduce amino acid substitutions in the upper CH₂ region to create an Fc variant with reduced affinity for Fc receptors (Cole et al. (1997) *J. Immunol.* 159:3613).

[0151] In certain embodiments, the present disclosure makes available isolated and/or purified forms of the ENG polypeptides, which are isolated from, or otherwise substantially free of (e.g., at least 80%, 90%, 95%, 96%, 97%, 98%, or 99% free of), other proteins and/or other ENG polypeptide species. ENG polypeptides will generally be produced by expression from recombinant nucleic acids.

[0152] In certain embodiments, the disclosure includes nucleic acids encoding soluble ENG polypeptides comprising the coding sequence for an extracellular portion of an ENG protein. In further embodiments, this disclosure also pertains to a host cell comprising such nucleic acids. The host cell may be any prokaryotic or eukaryotic cell. For example, a polypeptide of the present disclosure may be expressed in bacterial cells such as *E. coli*, insect cells (e.g., using a baculovirus expression system), yeast, or mammalian cells. Other suitable host cells are known to those skilled in the art. Accordingly, some embodiments of the present disclosure further pertain to methods of producing the ENG polypeptides. It has been established that ENG-Fc fusion proteins set forth in SEQ ID NOs: 25 and 29 and expressed in CHO cells have potent anti-angiogenic activity.

5. Nucleic Acids Encoding ENG Polypeptides

[0153] In certain aspects, the disclosure provides isolated and/or recombinant nucleic acids encoding any of the ENG polypeptides, including fragments, functional variants and fusion proteins disclosed herein. For example, SEQ ID NOs: 2 and 4 encode long and short isoforms, respectively, of the native human ENG precursor polypeptide, whereas SEQ ID NO: 30 encodes one variant of ENG extracellular domain fused to an IgG1 Fc domain. The subject nucleic acids may be single-stranded or double stranded. Such nucleic acids may be DNA or RNA molecules. These nucleic acids may be used, for example, in methods for making ENG polypeptides or as direct therapeutic agents (e.g., in an antisense, RNAi or gene therapy approach).

[0154] In certain aspects, the subject nucleic acids encoding ENG polypeptides are further understood to include nucleic acids that are variants of SEQ ID NOs: 24, 26, 28, or 30. Variant nucleotide sequences include sequences that dif-

fer by one or more nucleotide substitutions, additions or deletions, such as allelic variants.

[0155] In certain embodiments, the disclosure provides isolated or recombinant nucleic acid sequences that are at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to SEQ ID NOs: 24, 26, 28, or 30. One of ordinary skill in the art will appreciate that nucleic acid sequences complementary to SEQ ID NOs: 24, 26, 28, or 30, and variants of SEQ ID NOs: 24, 26, 28, or 30 are also within the scope of this disclosure. In further embodiments, the nucleic acid sequences of the disclosure can be isolated, recombinant, and/or fused with a heterologous nucleotide sequence, or in a DNA library.

[0156] In other embodiments, nucleic acids of the disclosure also include nucleotide sequences that hybridize under highly stringent conditions to the nucleotide sequences designated in SEQ ID NOs: 24, 26, 28, or 30, complement sequences of SEQ ID NOs: 24, 26, 28, or 30, or fragments thereof. As discussed above, one of ordinary skill in the art will understand readily that appropriate stringency conditions which promote DNA hybridization can be varied. For example, one could perform the hybridization at 6.0×sodium chloride/sodium citrate (SSC) at about 45° C., followed by a wash of 2.0×SSC at 50° C. For example, the salt concentration in the wash step can be selected from a low stringency of about 2.0×SSC at 50° C. to a high stringency of about 0.2×SSC at 50° C. In addition, the temperature in the wash step can be increased from low stringency conditions at room temperature, about 22° C., to high stringency conditions at about 65° C. Both temperature and salt may be varied, or temperature or salt concentration may be held constant while the other variable is changed. In one embodiment, the disclosure provides nucleic acids which hybridize under low stringency conditions of 6×SSC at room temperature followed by a wash at 2×SSC at room temperature.

[0157] Isolated nucleic acids which differ from the nucleic acids as set forth in SEQ ID NOs: 24, 26, 28, or 30 due to degeneracy in the genetic code are also within the scope of the disclosure. For example, a number of amino acids are designated by more than one triplet. Codons that specify the same amino acid, or synonyms (for example, CAU and CAC are synonyms for histidine) may result in “silent” mutations which do not affect the amino acid sequence of the protein. However, it is expected that DNA sequence polymorphisms that do lead to changes in the amino acid sequences of the subject proteins will exist among mammalian cells. One skilled in the art will appreciate that these variations in one or more nucleotides (up to about 3-5% of the nucleotides) of the nucleic acids encoding a particular protein may exist among individuals of a given species due to natural allelic variation. Any and all such nucleotide variations and resulting amino acid polymorphisms are within the scope of this disclosure.

[0158] In certain embodiments, the recombinant nucleic acids of the disclosure may be operably linked to one or more regulatory nucleotide sequences in an expression construct. Regulatory nucleotide sequences will generally be appropriate to the host cell used for expression. Numerous types of appropriate expression vectors and suitable regulatory sequences are known in the art for a variety of host cells. Typically, said one or more regulatory nucleotide sequences may include, but are not limited to, promoter sequences, leader or signal sequences, ribosomal binding sites, transcriptional start and termination sequences, translational start and termination sequences, and enhancer or activator sequences.

Constitutive or inducible promoters as known in the art are contemplated by the disclosure. The promoters may be either naturally occurring promoters, or hybrid promoters that combine elements of more than one promoter. An expression construct may be present in a cell on an episome, such as a plasmid, or the expression construct may be inserted in a chromosome. In a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selectable marker genes are well known in the art and will vary with the host cell used.

[0159] In certain aspects disclosed herein, the subject nucleic acid is provided in an expression vector comprising a nucleotide sequence encoding an ENG polypeptide and operably linked to at least one regulatory sequence. Regulatory sequences are art-recognized and are selected to direct expression of the ENG polypeptide. Accordingly, the term regulatory sequence includes promoters, enhancers, and other expression control elements. Exemplary regulatory sequences are described in Goeddel; *Gene Expression Technology: Methods in Enzymology*, Academic Press, San Diego, Calif. (1990). For instance, any of a wide variety of expression control sequences that control the expression of a DNA sequence when operatively linked to it may be used in these vectors to express DNA sequences encoding an ENG polypeptide. Such useful expression control sequences, include, for example, the early and late promoters of SV40, tet promoter, adenovirus or cytomegalovirus immediate early promoter, RSV promoters, the lac system, the trp system, the TAC or TRC system, T7 promoter whose expression is directed by T7 RNA polymerase, the major operator and promoter regions of phage lambda, the control regions for fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase, e.g., Pho5, the promoters of the yeast a-mating factors, the polyhedron promoter of the baculovirus system and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof. It should be understood that the design of the expression vector may depend on such factors as the choice of the host cell to be transformed and/or the type of protein desired to be expressed. Moreover, the vector's copy number, the ability to control that copy number and the expression of any other protein encoded by the vector, such as antibiotic markers, should also be considered.

[0160] A recombinant nucleic acid included in the disclosure can be produced by ligating the cloned gene, or a portion thereof, into a vector suitable for expression in either prokaryotic cells, eukaryotic cells (yeast, avian, insect or mammalian), or both. Expression vehicles for production of a recombinant ENG polypeptide include plasmids and other vectors. For instance, suitable vectors include plasmids of the types: pBR322-derived plasmids, pEMBL-derived plasmids, pEX-derived plasmids, pBTac-derived plasmids and pUC-derived plasmids for expression in prokaryotic cells, such as *E. coli*.

[0161] Some mammalian expression vectors contain both prokaryotic sequences to facilitate the propagation of the vector in bacteria, and one or more eukaryotic transcription units that are expressed in eukaryotic cells. The pcDNA1/amp, pcDNA1/neo, pRc/CMV, pSV2gpt, pSV2neo, pSV2-dhfr, pTk2, pRSVneo, pMSG, pSVT7, pko-neo and pHg derived vectors are examples of mammalian expression vectors suitable for transfection of eukaryotic cells. Some of these vectors are modified with sequences from bacterial plasmids, such as pBR322, to facilitate replication and drug

resistance selection in both prokaryotic and eukaryotic cells. Alternatively, derivatives of viruses such as the bovine papilloma virus (BPV-1), or Epstein-Barr virus (pHEBo, pREP-derived and p205) can be used for transient expression of proteins in eukaryotic cells. Examples of other viral (including retroviral) expression systems can be found below in the description of gene therapy delivery systems. The various methods employed in the preparation of the plasmids and in transformation of host organisms are well known in the art. For other suitable expression systems for both prokaryotic and eukaryotic cells, as well as general recombinant procedures, see *Molecular Cloning A Laboratory Manual*, 3rd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press, 2001). In some instances, it may be desirable to express the recombinant polypeptides by the use of a baculovirus expression system. Examples of such baculovirus expression systems include pVL-derived vectors (such as pVL1392, pVL1393 and pVL941), pAcUW-derived vectors (such as pAcUW1), and pBlueBac-derived vectors (such as the β -gal containing pBlueBac III).

[0162] In a preferred embodiment, a vector will be designed for production of the subject ENG polypeptides in CHO cells, such as a Pcmv-Script vector (Stratagene, La Jolla, Calif.), pcDNA4 vectors (Invitrogen, Carlsbad, Calif.) and pCI-neo vectors (Promega, Madison, Wisc.). As will be apparent, the subject gene constructs can be used to cause expression of the subject ENG polypeptides in cells propagated in culture, e.g., to produce proteins, including fusion proteins or variant proteins, for purification.

[0163] This disclosure also pertains to a host cell transfected with a recombinant gene including a coding sequence (e.g., SEQ ID NOS: 24, 26, 28, or 30) for one or more of the subject ENG polypeptides. The host cell may be any prokaryotic or eukaryotic cell. For example, an ENG polypeptide disclosed herein may be expressed in bacterial cells such as *E. coli*, insect cells (e.g., using a baculovirus expression system), yeast, or mammalian cells. Other suitable host cells are known to those skilled in the art.

[0164] Accordingly, the present disclosure further pertains to methods of producing the subject ENG polypeptides. For example, a host cell transfected with an expression vector encoding an ENG polypeptide can be cultured under appropriate conditions to allow expression of the ENG polypeptide to occur. The ENG polypeptide may be secreted and isolated from a mixture of cells and medium containing the ENG polypeptide. Alternatively, the ENG polypeptide may be retained cytoplasmically or in a membrane fraction and the cells harvested, lysed and the protein isolated. A cell culture includes host cells, media and other byproducts. Suitable media for cell culture are well known in the art. The subject ENG polypeptides can be isolated from cell culture medium, host cells, or both, using techniques known in the art for purifying proteins, including ion-exchange chromatography, gel filtration chromatography, ultrafiltration, electrophoresis, immunoaffinity purification with antibodies specific for particular epitopes of the ENG polypeptides and affinity purification with an agent that binds to a domain fused to the ENG polypeptide (e.g., a protein A column may be used to purify an ENG-Fc fusion). In a preferred embodiment, the ENG polypeptide is a fusion protein containing a domain which facilitates its purification. As an example, purification may be achieved by a series of column chromatography steps, including, for example, three or more of the following, in any order: protein A chromatography, Q sepharose chromatography,

phenylsepharose chromatography, size exclusion chromatography, and cation exchange chromatography. The purification could be completed with viral filtration and buffer exchange.

[0165] In another embodiment, a fusion gene coding for a purification leader sequence, such as a poly-(His)/enterokinase cleavage site sequence at the N-terminus of the desired portion of the recombinant ENG polypeptide, can allow purification of the expressed fusion protein by affinity chromatography using a Ni²⁺ metal resin. The purification leader sequence can then be subsequently removed by treatment with enterokinase to provide the purified ENG polypeptide (e.g., see Hochuli et al., (1987) *J. Chromatography* 411:177; and Janknecht et al., *PNAS USA* 88:8972).

[0166] Techniques for making fusion genes are well known. Essentially, the joining of various DNA fragments coding for different polypeptide sequences is performed in accordance with conventional techniques, employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel et al., John Wiley & Sons: 1992).

[0167] Examples of categories of nucleic acid compounds that are antagonists of ENG, BMP-9, or BMP-10 include antisense nucleic acids, RNAi constructs and catalytic nucleic acid constructs. A nucleic acid compound may be single or double stranded. A double stranded compound may also include regions of overhang or non-complementarity, where one or the other of the strands is single stranded. A single stranded compound may include regions of self-complementarity, meaning that the compound forms a so-called "hairpin" or "stem-loop" structure, with a region of double helical structure. A nucleic acid compound may comprise a nucleotide sequence that is complementary to a region consisting of no more than 1000, no more than 500, no more than 250, no more than 100 or no more than 50, 35, 30, 25, 22, 20 or 18 nucleotides of the full-length ENG nucleic acid sequence or ligand nucleic acid sequence. The region of complementarity will preferably be at least 8 nucleotides, and optionally at least 10 or at least 15 nucleotides, and optionally between 15 and 25 nucleotides. A region of complementarity may fall within an intron, a coding sequence, or a noncoding sequence of the target transcript, such as the coding sequence portion. Generally, a nucleic acid compound will have a length of about 8 to about 500 nucleotides or base pairs in length, and optionally the length will be about 14 to about 50 nucleotides. A nucleic acid may be a DNA (particularly for use as an antisense), RNA, or RNA:DNA hybrid. Any one strand may include a mixture of DNA and RNA, as well as modified forms that cannot readily be classified as either DNA or RNA. Likewise, a double stranded compound may be DNA:DNA, DNA:RNA or RNA:RNA, and any one strand may also include a mixture of DNA and RNA, as well as modified forms that cannot readily be classified as either DNA or RNA. A nucleic acid compound may include any of a variety of modifications, including one or modifications to

the backbone (the sugar-phosphate portion in a natural nucleic acid, including internucleotide linkages) or the base portion (the purine or pyrimidine portion of a natural nucleic acid). An antisense nucleic acid compound will preferably have a length of about 15 to about 30 nucleotides and will often contain one or more modifications to improve characteristics such as stability in the serum, in a cell or in a place where the compound is likely to be delivered, such as the stomach in the case of orally delivered compounds and the lung for inhaled compounds. In the case of an RNAi construct, the strand complementary to the target transcript will generally be RNA or modifications thereof. The other strand may be RNA, DNA, or any other variation. The duplex portion of double stranded or single stranded "hairpin" RNAi construct will preferably have a length of 18 to 40 nucleotides in length and optionally about 21 to 23 nucleotides in length, so long as it serves as a Dicer substrate. Catalytic or enzymatic nucleic acids may be ribozymes or DNA enzymes and may also contain modified forms. Nucleic acid compounds may inhibit expression of the target by about 50%, 75%, 90%, or more when contacted with cells under physiological conditions and at a concentration where a nonsense or sense control has little or no effect. Preferred concentrations for testing the effect of nucleic acid compounds are 1, 5 and 10 micromolar. Nucleic acid compounds may also be tested for effects on, for example, angiogenesis.

6. Alterations in Fc-Fusion Proteins

[0168] The application further provides ENG-Fc fusion proteins with engineered or variant Fc regions. Such antibodies and Fc fusion proteins may be useful, for example, in modulating effector functions, such as, antigen-dependent cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Additionally, the modifications may improve the stability of the antibodies and Fc fusion proteins. Amino acid sequence variants of the antibodies and Fc fusion proteins are prepared by introducing appropriate nucleotide changes into the DNA, or by peptide synthesis. Such variants include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the antibodies and Fc fusion proteins disclosed herein. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired characteristics. The amino acid changes also may alter post-translational processes of the antibodies and Fc fusion proteins, such as changing the number or position of glycosylation sites.

[0169] Antibodies and Fc fusion proteins with reduced effector function may be produced by introducing changes in the amino acid sequence, including, but are not limited to, the Ala-Ala mutation described by Bluestone et al. (see WO 94/28027 and WO 98/47531; also see Xu et al. 2000 *Cell Immunol* 200: 16-26). Thus in certain embodiments, antibodies and Fc fusion proteins of the disclosure with mutations within the constant region including the Ala-Ala mutation may be used to reduce or abolish effector function. According to these embodiments, antibodies and Fc fusion proteins may comprise a mutation to an alanine at position 234 or a mutation to an alanine at position 235, or a combination thereof. In one embodiment, the antibody or Fc fusion protein comprises an IgG4 framework, wherein the Ala-Ala mutation would describe a mutation(s) from phenylalanine to alanine at position 234 and/or a mutation from leucine to alanine at position 235. In another embodiment, the antibody or Fc fusion pro-

tein comprises an IgG1 framework, wherein the Ala-Ala mutation would describe a mutation(s) from leucine to alanine at position 234 and/or a mutation from leucine to alanine at position 235. The antibody or Fc fusion protein may alternatively or additionally carry other mutations, including the point mutation K322A in the CH2 domain (Hezareh et al. 2001 J Virol. 75: 12161-8).

[0170] In particular embodiments, the antibody or Fc fusion protein may be modified to either enhance or inhibit complement dependent cytotoxicity (CDC). Modulated CDC activity may be achieved by introducing one or more amino acid substitutions, insertions, or deletions in an Fc region (see, e.g., U.S. Pat. No. 6,194,551). Alternatively or additionally, cysteine residue(s) may be introduced in the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved or reduced internalization capability and/or increased or decreased complement-mediated cell killing. See Caron et al., J. Exp Med. 176:1191-1195 (1992) and Shopes, B. J. Immunol. 148:2918-2922 (1992), WO99/51642, Duncan & Winter Nature 322: 738-40 (1988); U.S. Pat. No. 5,648,260; U.S. Pat. No. 5,624,821; and WO94/29351.

EXAMPLES

[0171] The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain embodiments and embodiments of the present invention, and are not intended to limit the invention.

Example 1

Expression of Fusion Protein Comprising Full-Length Extracellular Domain of Human ENG

[0172] Applicants constructed a soluble endoglin (ENG) fusion protein (hENG(26-586)-hFc) in which the full-length extracellular domain (ECD) of human ENG (FIG. 9, SEQ ID NO: 9) was attached to a human IgG₁ Fc domain (FIG. 11, SEQ ID NO: 11) with a minimal linker between these domains. hENG(26-586)-hFc was expressed by transient transfection in HEK 293 cells. In brief, HEK 293 cells were set up in a 500-ml spinner at 6+10⁵ cells/ml in a 250 ml volume of Freestyle media (Invitrogen) and grown overnight. Next day, these cells were treated with DNA:PEI (1:1) complex at 0.5 ug/ml final DNA concentration. After 4 hrs, 250 ml media was added and cells were grown for 7 days. Conditioned media was harvested by spinning down the cells and concentrated. For expression in CHO cells, ENG polypeptide constructs were transfected into a CHO DUKX B11 cell line. Clones were selected in methotrexate (MTX), typically at an initial concentration of 5 nM or 10 nM, and optionally followed by amplification in 50 nM MTX to increase expression. A high expressing clone could be identified by dilution cloning and adapted to serum-free suspension growth to generate conditioned media for purification. Optionally, a ubiquitous chromatin opening element (UCOE) may be included in the vector to facilitate expression. See, e.g., Cytotechnology, January 2002; 38(1-3):43-6.

[0173] Three different leader sequences may be used:

- (i) Honey bee mellitin (HBML) : (SEQ ID NO: 13)
MKFLVNVALVFMVYYISYIYA
- (ii) Tissue plasminogen activator (TPA) : (SEQ ID NO: 14)
MDAMKRGLCCVLLLCGAVFVSP
- (iii) Native human ENG: (SEQ ID NO: 15)
MDRGTPLAVALLLASCSLSPTSLA

[0174] The selected form of hENG(26-586)-hFc uses the TPA leader, has the unprocessed amino acid sequence shown in FIG. 13 (SEQ ID NO: 16), and is encoded by the nucleotide sequence shown in FIG. 14 (SEQ ID NO: 17). Applicants also envision an alternative hENG(26-586)-hFc sequence with TPA leader (FIG. 15, SEQ ID NO: 18) comprising an N-terminally truncated hFc domain (FIG. 12, SEQ ID NO: 12) attached to hENG(26-586) by a TGGG linker. Purification was achieved using a variety of techniques, including, for example, filtration of conditioned media, followed by protein A chromatography, elution with low-pH (3.0) glycine buffer, sample neutralization, and dialysis against PBS. Purity of samples was evaluated by analytical size-exclusion chromatography, SDS-PAGE, silver staining, and Western blot. Analysis of mature protein confirmed the expected N-terminal sequence.

Example 2

Expression of Fusion Protein Comprising Full-Length Extracellular Domain of Murine ENG

[0175] Applicants constructed a soluble murine ENG fusion protein (mENG(27-581)-mFc) in which the full-length extracellular domain of murine ENG (FIG. 10, SEQ ID NO: 10) was fused to a murine IgG_{2a} Fc domain with a minimal linkers between these domains. mENG(27-581)-mFc was expressed by transient transfection in HEK 293 cells.

[0176] The selected form of mENG(27-581)-mFc uses the TPA leader, has the unprocessed amino acid sequence shown in FIG. 16 (SEQ ID NO: 19), and is encoded by the nucleotide sequence shown in FIG. 17 (SEQ ID NO: 20). Purification was achieved by filtration of conditioned media from transfected HEK 293 cells, followed by protein A chromatography. Purity of samples was evaluated by analytical size-exclusion chromatography, SDS-PAGE, silver staining, and Western blot analysis.

Example 3

Selective Binding of BMP-9/BMP-10 to Proteins Comprising Full-Length Extracellular ENG Domain

[0177] Considered a co-receptor, ENG is widely thought to function by facilitating the binding of TGF- β 1 and -3 to multiprotein complexes of type I and type II receptors. To investigate the possibility of direct ligand binding by isolated ENG, Applicants used surface plasmon resonance (SPR) methodology (BiacoreTM instrument) to screen for binding of captured proteins comprising the full-length extracellular domain of ENG to a variety of soluble human TGF- β family ligands.

Ligand	Construct Binding		
	hENG(26-586)-hFc*	hENG(26-586)**	mENG(27-581)-hFc***
hBMP-2	—	—	—
hBMP-2/7	—	—	—
hBMP-7	—	—	—
hBMP-9	++++	++++	++++
hBMP-10	++++	++++	++++
hTGF- β 1	—	—	—
hTGF- β 2	—	—	—
hTGF- β 3	—	—	—
hActivin A	—	—	—

*[hBMP-9], [hBMP-10] = 2.5 nM; all other ligands tested at 100 nM

**[hBMP-9], [hBMP-10] = 2.5 nM; all other ligands tested at 25 nM

***[hBMP-9], [hBMP-10] = 0.5 nM; [hTGF- β 1], [hTGF- β 2], [hTGF- β 3] = 10 nM; all other ligands tested at 25 nM

[0178] As shown in this table, binding affinity to hENG(26-586)-hFc was high (++++, K_D <1 nM) for hBMP-9 and hBMP-10 as evaluated at low ligand concentrations. Even at concentrations 40-fold higher, binding of TGF- β 1, TGF- β 2, TGF- β 3, activin A, BMP-2, and BMP-7 to hENG(26-586)-hFc was undetectable (—). For this latter group of ligands, lack of direct binding to isolated ENG fusion protein is noteworthy because multiprotein complexes of type I and type II receptors have been shown to bind most of them better in the presence of ENG than in its absence. As also shown in the table above, similar results were obtained when ligands were screened for their ability to bind immobilized hENG(26-586) (R&D Systems, catalog #1097-EN), a human variant with no Fc domain, or their ability to bind captured mENG(27-581)-hFc (R&D Systems, catalog #1320-EN), consisting of the extracellular domain of murine ENG (residues 27-581) attached to the Fc domain of human IgG₁ via a six-residue linker sequence (IEGRMD). Characterization by SPR (FIGS. 18, 19) determined that captured hENG(26-586)-hFc binds soluble BMP-9 with a K_D of 29 pM and soluble BMP-10 with a K_D of 400 pM. Thus, selective high-affinity binding of BMP-9 and BMP-10 is a previously unrecognized property of the ENG extracellular domain that is generalizable across species.

Example 4

Soluble Extracellular Domain of hENG Inhibits Binding of BMP-9/BMP-10 to ALK1 and Other Cognate Receptors

[0179] BMP-9 and BMP-10 are high-affinity ligands at the type I receptor ALK1 (activin receptor-like kinase 1). An SPR-based assay was used to determine the effect of soluble hENG(26-586) (R&D Systems, catalog #1097-EN) on binding of BMP-9 and BMP-10 to ALK1. ALK1-hFc was captured and then exposed to solutions containing soluble hENG(26-586) premixed with BMP-9 in various ratios. As shown in FIG. 20, soluble hENG(26-586) inhibited binding of BMP-9 to ALK1-hFc in a concentration-dependent manner with an IC_{50} less than 10 nM. Similar results were obtained with BMP-10 (FIG. 21). Separate experiments have demonstrated that soluble hENG(26-586) does not bind ALK1 and therefore does not inhibit ligand binding to ALK1 by this mechanism. Indeed, additional SPR-based experiments indicate that soluble hENG(26-586) binds neither type I receptors ALK2-ALK7 nor type II receptors such as activin receptor II A, activin receptor JIB, bone morphogenetic protein receptor II,

and TGF- β receptor II. These results provide further evidence that ENG inhibits binding of BMP-9 and BMP-10 to ALK1 primarily through a direct interaction with these ligands.

[0180] Taken together, these data demonstrate that soluble ENG-Fc chimeric proteins as well as non-chimeric soluble ENG can be used as antagonists of BMP-9 and BMP-10 signaling through multiple signaling pathways, including ALK1.

Example 5

Effect of mENG(27-581)-hFc on Human Umbilical Vein Endothelial Cells (HUVEC) in Culture

[0181] Applicants investigated the angiogenic effect of mENG(27-581)-hFc in a HUVEC-based culture system. HUVECs were cultured on a polymerized Matrigel substrate, and the effect of test articles on formation of endothelial-cell tubes (cords) was assessed by phase-contrast microscopy after 12 h exposure. Cords possessing single-cell width and at least three branches were identified visually, and computer-assisted image analysis was used to determine the total length of such cords. Mean values are based on duplicate culture wells per experimental condition, with each well characterized as the average of three fields of observation. Compared to basal conditions (no treatment), the strong inducing agent endothelial cell growth substance (ECGS, 0.2 μ g/ml) doubled mean cord length (FIG. 22). mENG(27-581)-hFc (R&D Systems, catalog #1320-EN; 10 μ g/ml) cut this increase by nearly 60%, an effect specific for stimulated conditions because the same concentration of mENG(27-581)-hFc had little effect in the absence of ECGS (FIG. 22). These results demonstrate that ENG-Fc fusion protein can inhibit endothelial cell aggregation under otherwise stimulated conditions in a cell-culture model of angiogenesis.

Example 6

ENG-Fc Inhibits VEGF-Inducible Angiogenesis in a Chick Chorioallantoic Membrane (CAM) Assay

[0182] A chick chorioallantoic membrane (CAM) assay system was used to investigate effects of ENG-Fc fusion protein on angiogenesis. In brief, nine-day-old fertilized chick embryos were maintained in an egg incubator at controlled temperature (37° C.) and humidity (60%). The egg shell was softened with alcohol, punctured with a tiny hole to create a “blister” between the shell membrane and CAM, and removed to create a window overlying prominent blood vessels. Small filter disks were treated with VEGF (50 ng daily) in the presence or absence of mENG(27-581)-hFc protein (R&D Systems, catalog #1320-EN; 14 μ g daily) dissolved in buffer (pH 7.4) containing 0.01 M HEPES, 0.5 M NaCl, 3 mM EDTA, 0.005% v/v Surfactant P20, and 0.5 mg/ml bovine serum albumin. Filter disks containing test article were then inserted through the opening and apposed to the CAM. Eggs (n=8 per group) were treated with fresh test article daily for three days, and on the fourth day the number of blood vessels associated with the filter disk was determined by visual inspection with the assistance of an egg lamp.

[0183] As expected, VEGF treatment in the CAM assay system increased the number of blood vessels markedly over that of vehicle. The number of additional blood vessels induced by VEGF treatment was decreased by 65% with concurrent mENG(27-581)-hFc treatment (FIG. 23). SPR-based studies indicate that VEGF does not bind mENG(27-

581)-mFc, and thus effects of mENG(27-581)-hFc on angiogenesis in the present CAM experiment were not due to a direct interaction between the fusion protein and VEGF. The foregoing results indicate that ENG-Fc can significantly inhibit the well-established angiogenic effect of VEGF in an *in vivo* model without contacting VEGF itself.

Example 7

Effect of mENG(27-581)-mFc on Angiogenesis in a Mouse Angioreactor Assay

[0184] Effects of ENG-Fc fusion protein on angiogenesis were further investigated in a mouse angioreactor assay, also known as a directed *in vivo* angiogenesis assay (DIVAATM; Guedez et al., 2003, Am J Pathol 162:1431-1439), which was performed according to instructions of the manufacturer (Trevigen[®]). In brief, hollow cylinders made of implant-grade silicone and closed at one end were filled with 20 μ l of basement membrane extract (BME) premixed with or without a combination of basic fibroblast growth factor (FGF-2, 1.8 g) and VEGF (600 ng). After the BME had gelled, angioreactors were implanted subcutaneously in athymic nude mice (four per mouse). Mice were treated daily with mENG(27-581)-mFc (10 mg/kg, s.c.) or vehicle (Tris-buffered saline) for 11 days, at which time mice were injected with fluorescein isothiocyanate (FITC)-labeled dextran (20 mg/kg, i.v.) and euthanized 20 min later. Angioreactors were removed, and the amount of FITC-dextran contained in each was quantified with a fluorescence plate reader (Infinite[®] M200, Tecan) at 485 nm excitation/520 nm emission as an index of blood vessel formation. As shown in FIG. 24, addition of FGF-2 and VEGF to the BME led to a significant increase in vascularization within the angioreactors at study completion, whereas the concurrent administration of mENG(27-581)-mFc prevented this increase completely. These results obtained in a mammalian system complement those obtained with the CAM assay described above and demonstrate the *in vivo* anti-angiogenic activity of ENG-Fc fusion proteins incorporating a full-length ENG extracellular domain.

Example 8

Expression of Variants with Truncated hENG Extracellular Domain

[0185] Applicants generated soluble ENG fusion proteins in which truncated variants of the human ENG ECD were fused to a human IgG₁ Fc domain with a minimal linker. These variants are listed below, and the structures of selected variants are shown schematically in FIG. 25.

-continued

	Human Construct	Transient Expression	Purified	Stable Expression (CHO Cells)
Amino-Terminal	hENG(360-586)-hFc	HEK 293	Yes	No
	hENG(438-586)-hFc	HEK 293	Yes	No
Truncations	hENG(458-586)-hFc	COS	No	No
Double	hENG(61-346)-hFc	HEK 293	Yes	No
Truncations	hENG(129-346)-hFc	HEK 293	Yes	No
	hENG(133-346)-hFc	HEK 293	Yes	No
	hENG(166-346)-hFc	HEK 293	Yes	No
	hENG(258-346)-hFc	HEK 293	Yes	No
	hENG(360-581)-hFc	HEK 293	Yes	No
	hENG(360-457)-hFc	COS	No	No
	hENG(360-437)-hFc	COS	No	No
	hENG(458-581)-hFc	COS	No	No

[0186] These variants were expressed by transient transfection in HEK 293 cells or COS cells, as indicated.

[0187] The selected form of hENG(26-437)-hFc uses the TPA leader, has the unprocessed amino acid sequence shown in FIG. 26 (SEQ ID NO: 21), and is encoded by the nucleotide sequence shown in FIG. 27 (SEQ ID NO: 22). The selected form of hENG(26-378)-hFc also uses the TPA leader, has the unprocessed amino acid sequence shown in FIG. 28 (SEQ ID NO: 23), and is encoded by the nucleotide sequence shown in FIG. 29 (SEQ ID NO: 24). The selected form of hENG(26-359)-hFc also uses the TPA leader, has the unprocessed amino acid sequence shown in FIG. 30 (SEQ ID NO: 25), and is encoded by the nucleotide sequence shown in FIG. 31 (SEQ ID NO: 26). Applicants also envision an alternative hENG(26-359)-hFc sequence with TPA leader (FIG. 32, SEQ ID NO: 27) comprising an N-terminally truncated hFc domain (FIG. 12, SEQ ID NO: 12) attached to hENG(26-359) by a TGGG linker. The nucleotide sequence encoding this alternative hENG(26-359)-hFc protein is shown in FIG. 33 (SEQ ID NO: 28). The selected form of hENG(26-346)-hFc uses the TPA leader, has the unprocessed amino acid sequence shown in FIG. 34 (SEQ ID NO: 29) comprising an N-terminally truncated hFc domain, and is encoded by the nucleotide sequence shown in FIG. 35 (SEQ ID NO: 30).

[0188] Selected hENG-hFc variants, each with an N-terminally truncated Fc domain (SEQ ID NO: 12), were stably expressed in CHO cells (using methodology described above) and purified from conditioned media by filtration and protein A chromatography. Analysis of mature protein expressed in CHO cells confirmed the N-terminal sequences of hENG(26-359)-hFc and hENG(26-346)-hFc to be as expected. On the basis of protein yield (uncorrected for differences in theoretical molecular weight), hENG(26-346)-hFc (90 mg/liter) was superior to both hENG(26-359)-hFc (9 mg/liter) and full-length hENG(26-586)-hFc (31 mg/liter). As shown in FIG. 36, analysis of these purified samples by size-exclusion chromatography revealed the quality of hENG(26-346)-hFc protein (96% monomeric) to be superior to that of hENG(26-359)-hFc protein (84% monomeric) and equivalent to that of hENG(26-586)-hFc protein (96% monomeric). Thus, greater levels of high-molecular-weight aggregates require the use of additional purification steps for hENG(26-359)-hFc compared to hENG(26-346)-hFc.

Example 9

High-Affinity Binding of BMP-9/BMP-10 to Truncated hENG-hFc Variants

[0189] Applicants used SPR methodology to screen the following hENG-hFc protein variants for high-affinity bind-

	Human Construct	Transient Expression	Purified	Stable Expression (CHO Cells)
Full Length	hENG(26-586)-hFc	HEK 293	Yes	Yes
Carboxy-Terminal	hENG(26-581)-hFc	HEK 293	Yes	No
Truncations	hENG(26-437)-hFc	HEK 293	Yes	No
	hENG(26-378)-hFc	HEK 293	Yes	No
	hENG(26-359)-hFc	HEK 293	Yes	Yes
	hENG(26-346)-hFc	HEK 293	Yes	Yes
	hENG(26-332)-hFc	HEK 293	Yes	No
	hENG(26-329)-hFc	HEK 293	Yes	No
	hENG(26-257)-hFc	HEK 293	Yes	No

ing to human BMP-9 and BMP-10. In these experiments, captured hENG-hFc proteins were exposed to soluble BMP-9 or BMP-10 at 100 nM each.

	Human Construct	Binding to hBMP-9 and hBMP-10
Full Length	hENG(26-586)-hFc	++++
Carboxy-Terminal Truncations	hENG(26-581)-hFc	++++
	hENG(26-437)-hFc	++++
	hENG(26-378)-hFc	++++
	hENG(26-359)-hFc	++++
	hENG(26-346)-hFc	++++
	hENG(26-332)-hFc	—
	hENG(26-329)-hFc	—
	hENG(26-257)-hFc	—
Amino-Terminal Truncations	hENG(360-586)-hFc	—
	hENG(438-586)-hFc	—
	hENG(458-586)-hFc	—
	hENG(61-346)-hFc	—
Double Truncations	hENG(129-346)-hFc	—
	hENG(133-346)-hFc	—
	hENG(166-346)-hFc	—
	hENG(258-346)-hFc	—
	hENG(360-581)-hFc	—
	hENG(360-457)-hFc	—
	hENG(360-437)-hFc	—
	hENG(458-581)-hFc	—

++++ KD < 1 nM

— Binding undetectable

[0190] As indicated in the table above, high-affinity binding to BMP-9 and BMP-10 was observed only for the full-length construct and for C-terminally truncated variants as short as hENG(26-346)-hFc. High-affinity binding to BMP-9 and BMP-10 was lost for all N-terminal truncations of greater than 61 amino acids that were tested.

[0191] A panel of ligands were screened for potential binding to the C-terminal truncated variants hENG(26-346)-hFc, hENG(26-359)-hFc, and hENG(26-437)-hFc. High-affinity binding of these three proteins was selective for BMP-9 and BMP-10. Neither hENG(26-346)-hFc, hENG(26-359)-hFc, nor hENG(26-437)-hFc displayed detectable binding to BMP-2, BMP-7, TGF- β 1, TGF- β 2, TGF- β 3, or activin A, even at high ligand concentrations.

Ligand	Construct Binding		
	hENG(26-346)-hFc*	hENG(26-359)-hFc**	hENG(26-437)-hFc**
	—	—	—
hBMP-2	—	—	—
hBMP-2/7	—	—	—
hBMP-7	—	—	—
hBMP-9	++++	++++	++++
hBMP-10	++++	++++	++++
hTGF- β 1	—	—	—
hTGF- β 2	—	—	—
hTGF- β 3	—	—	—
hActivin A	—	—	—

*[hBMP-9], [hBMP-10] = 5 nM; [hTGF- β 3] = 50 nM; all other ligands tested at 100 nM

**[hBMP-9], [hBMP-10] = 5 nM; [hTGF- β 3] = 50 nM; all other ligands tested at 100 nM

++++ KD < 1 nM

— Binding undetectable

[0192] Applicants used SPR methodology to compare the kinetics of BMP-9 binding by five constructs: hENG(26-586)-hFc, hENG(26-437)-hFc, hENG(26-378)-hFc, hENG(26-359)-hFc, and hENG(26-346)-hFc. FIG. 37 shows binding curves for several of the constructs, and the table below

lists calculated values for the equilibrium dissociation constants and dissociation rate constants (k_d). The affinity of human BMP-9 for hENG(26-359)-hFc or hENG(26-346)-hFc (with K_D s in the low picomolar range) was nearly an order of magnitude stronger than for the full-length construct. It is highly desirable for ligand traps such as ENG-Fc to exhibit a relatively slow rate of ligand dissociation, so the ten-fold improvement (decrease) in the BMP-9 dissociation rate for hENG(26-346)-hFc compared to the full-length construct is particularly noteworthy.

Ligand	Construct	K_D ($\times 10^{-12}$ M)	k_d ($\times 10^{-4}$ s $^{-1}$)
hBMP-9	hENG(26-586)-hFc*	33	25
	hENG(26-437)-hFc**	19	14
	hENG(26-378)-hFc**	6.7	3.4
	hENG(26-359)-hFc*	4.2	3.5
	hENG(26-346)-hFc*	4.3	2.4

*CHO-cell-derived protein

**HEK293-cell-derived protein

[0193] As shown below, each of the truncated variants also bound BMP-10 with higher affinity, and with better kinetics, compared to the full-length construct. Even so, the truncated variants differed in their degree of preference for BMP-9 over BMP-10 (based on K_D ratio), with hENG(26-346)-hFc displaying the largest differential and hENG(26-437)-hFc the smallest. This difference in degree of ligand preference among the truncated variants could potentially translate into meaningful differences in their activity *in vivo*.

Ligand	Construct	K_D ($\times 10^{-12}$ M)	k_d ($\times 10^{-4}$ s $^{-1}$)
hBMP-10	hENG(26-586)-hFc*	490	110
	hENG(26-437)-hFc**	130	28
	hENG(26-378)-hFc**	95	19
	hENG(26-359)-hFc*	86	23
	hENG(26-346)-hFc*	140	28

*CHO-cell-derived protein

**HEK293-cell-derived protein

[0194] The foregoing results indicate that fusion proteins comprising certain C-terminally truncated variants of the hENG ECD display high-affinity binding to BMP-9 and BMP-10 but not to a variety of other TGF- β family ligands, including TGF- β 1 and TGF- β 3. In particular, the truncated variants hENG(26-359)-hFc, hENG(26-346)-hFc, and hENG(26-378)-hFc display higher binding affinity at equilibrium and improved kinetic properties for BMP-9 compared to both the full-length construct hENG(26-586)-hFc and the truncated variant hENG(26-437)-hFc.

Example 10

Prediction of Secondary Structure for ENG N-Terminal Region

[0195] As disclosed above, N-terminal truncations as short as 36 amino acids (hENG(61-346)-hFc) were found to abolish ligand binding to ENG polypeptides. To anticipate the effect of even shorter N-terminal truncations on ligand binding, the secondary structure for the human endoglin orphan domain was predicted computationally with a modified PsiPred version 3 (Jones, 1999, *J Mol Biol* 292:195-202). The analysis indicates that ordered secondary structure within the ENG polypeptide region defined by amino acids 26-60 of

SEQ ID NO: 1 is limited to a four-residue beta strand predicted with high confidence at positions 42-45 of SEQ ID NO: 1 and a two-residue beta strand predicted with very low confidence at positions 28-29 of SEQ ID NO: 1. Accordingly, ENG polypeptide variants beginning at amino acids 27 or 28 and optionally those beginning at any of amino acids 29-42 of SEQ ID NO: 1 are likely to retain important structural elements and ligand binding.

Example 11

Potency of ENG-Fc Variants in a Cell-Based Assay

[0196] A reporter-gene assay in A204 cells was used to determine the potency with which hENG-hFc fusion proteins inhibit signaling by BMP-9 and BMP-10. This assay is based on a human rhabdomyosarcoma cell line transfected with a pGL3 BRE-luciferase reporter plasmid (Korchynskyi et al, 2002, *J Biol Chem* 277: 4883-4891), as well as a Renilla reporter plasmid (pRLCMV-luciferase) to control for transfection efficiency. BRE motifs are present in BMP-responsive genes (containing a Id1 promoter), so this vector is of general use for factors signaling through Smad1 and/or Smad5. In the absence of ENG-Fc fusion proteins, BMP-9 and BMP-10 dose-dependently stimulate signaling in A204 cells.

[0197] On the first day of the assay, A204 cells (ATCC® number: HTB-82™; depositor: D.J. Giard) were distributed in 48-well plates at 10^5 cells per well. On the next day, a solution containing 12 μ g pGL3 BRE-luciferase, 0.1 μ g pRLCMV-luciferase, 30 μ l Fugene 6 (Roche Diagnostics), and 970 μ l OptiMEM (Invitrogen) was preincubated for 30 min at room temperature before addition to 24 ml of assay buffer (McCoy's medium supplemented with 0.1% BSA). This mixture was applied to the plated cells (500 μ l/well) for incubation overnight at 37° C. On the third day, medium was removed and replaced with test substances (250 μ l/well) diluted in assay buffer. After an overnight incubation at 37° C., the cells were rinsed and lysed with passive lysis buffer (Promega E1941) and frozen at -70° C. Prior to assay, the plates were warmed to room temperature with gentle shaking. Cell lysates were transferred in duplicate to a chemoluminescence plate (96-well) and analyzed in a luminometer with reagents from a Dual-Luciferase Reporter Assay system (Promega E1980) to determine normalized luciferase activity.

[0198] Results indicate that hENG-hFc proteins are potent inhibitors of cellular signaling mediated by BMP-9 and BMP-10. As shown in the table below, the full-length construct hENG(26-586)-hFc inhibits signaling by BMP-9 and BMP-10 with IC₅₀ values in the sub-nanomolar and low-nanomolar ranges, respectively. Moreover, truncated variants hENG(26-359)-hFc and hENG(26-346)-hFc were both more potent than hENG(26-586)-hFc.

Construct	IC ₅₀ (nM)	
	hBMP-9	hBMP-10
hENG(26-586)-hFc	0.26	7.9
hENG(26-359)-hFc	0.16	3.5
hENG(26-346)-hFc	0.19	4.6

Example 12

Truncated Variant hENG(26-359)-hFc Inhibits VEGF-Inducible Angiogenesis in a CAM Assay

[0199] Applicants investigated effects of the truncated variant hENG(26-359)-hFc on angiogenesis in the same CAM assay system described in Example 6, in which VEGF is used to induce angiogenesis. The number of additional blood vessels induced by VEGF treatment (50 ng daily) was decreased by 75% with concurrent hENG(26-359)-hFc (SEQ ID NO: 25; 20 μ g daily) (FIG. 38). SPR-based studies confirmed that VEGF does not bind hENG(26-359)-hFc, and thus effects of this variant on angiogenesis in the present CAM experiment were not due to a direct interaction between the fusion protein and VEGF. Note that, for hENG(26-359)-hFc, a dose of 10 μ g corresponds to the dose of 14 μ g used for the longer ENG-Fc constructs tested in Example 6, based on the theoretical molecular weight of each construct. Thus, the truncated variant hENG(26-359)-hFc displayed equivalent, if not greater, effectiveness in inhibiting VEGF-inducible angiogenesis compared to ENG constructs with full-length ECD (FIG. 23) in this same assay system.

Example 13

Truncated Variant hENG(26-346)-hFc Inhibits Angiogenesis in a Mouse Angioreactor Assay

[0200] Truncated variant hENG(26-346)-hFc was tested in the same mouse angioreactor assay described in Example 7. Angioreactors were implanted subcutaneously in athymic nude mice (four per mouse), and mice were treated daily with hENG(26-346)-hFc (10 mg/kg, s.c.) or vehicle (Tris-buffered saline) for 11 days, at which time the mice were injected with fluorescein isothiocyanate (FITC)-labeled dextran (20 mg/kg, i.v.) and euthanized 20 min later. The quantity of FITC-dextran contained in each angioreactor was then measured as an index of blood vessel formation. As shown in FIG. 39, addition of the growth factors (GF) FGF-2 and VEGF to the angioreactors led to a significant increase in vascularization, whereas concurrent administration of hENG(26-346)-hFc prevented this increase completely. SPR-based studies confirmed that hENG(26-346)-hFc binds neither FGF-2 nor VEGF, thereby excluding the possibility that effects of hENG(26-346)-hFc on inducible angiogenesis in the present experiment were due to a direct interaction between the fusion protein and either FGF-2 or VEGF. The present results in this mammalian assay system complement those obtained for the truncated variant hENG(26-359)-hFc in a CAM assay (Example 12). Together, they demonstrate anti-angiogenic activity in vivo of ENG-Fc fusion proteins incorporating preferred truncations of the ENG extracellular domain.

Example 14

Longer in Vivo Half-Life of Truncated Variant hENG(26-346)-hFc

[0201] Applicants conducted a modified pharmacokinetic study to determine the whole-body elimination half-life of hENG(26-346)-hFc and compared it to that of the full-length protein mENG(27-581)-mFc. hENG(26-346)-hFc protein was fluorescently labeled with Alexa Fluor® 750 dye using a SAIVITM (small animal in vivo imaging) Rapid Antibody Labeling kit according to instructions of the manufacturer

(Invitrogen™). Labeled protein was separated from free label by size exclusion chromatography. Athymic nude mice (n=3, 17-20 g) were injected with labeled hENG(26-346)-hFc (2 mg/kg, s.c.), and whole-body imaging was performed with an IVIS imaging system (Xenogen®/Caliper Life Sciences) to determine fusion protein levels at 2, 4, 6, 8, 24, 32, 48, and 72 h post injection. The mean elimination half-life of hENG(26-346)-hFc was 26.5 h, which is 20% longer than the 22 h half-life of mENG(27-581)-mFc determined in a similar study.

Example 15

Effect of ENG-Fc Proteins on Tumor Growth in Mouse Xenograft Models

[0202] ENG-Fc proteins were tested in two different mouse xenograft models to determine whether these proteins can inhibit tumor growth. In the first experiment, athymic nude mice were injected subcutaneously at 6 weeks of age with 10^6 4T1 mammary carcinoma cells (ATCC® number: CRL-2539™; depositor: BA Pulaski). Mice (n=10 per group) were dosed daily (s.c.) with mENG(27-581)-mFc (10 mg/kg) or vehicle (Tris-buffered saline). Tumors were measured manually with digital calipers, and tumor volume was calculated

ume, with decreases of 55% and nearly 70% compared to vehicle at doses of 10 mg/kg and 30 mg/kg, respectively, by day 58 post implantation. Thus, mENG(27-581)-mFc markedly slowed the growth of two different tumor types in mouse xenograft models, consistent with the aforementioned anti-angiogenic activity of fusion proteins incorporating the full-length murine ENG extracellular domain (Examples 5-7). In a preliminary experiment, the truncated variant hENG(26-346) also slowed tumor growth compared to vehicle in the Colon-26 xenograft model, consistent with the antiangiogenic activity of this variant in the mouse angioreactor assay (Example 13).

[0204] Taken together, the aforementioned results demonstrate that fusion proteins comprising the full-length ENG ECD, and certain truncated variants thereof, display high-affinity binding to BMP-9 and BMP-10 but not a variety of other TGFβ-family ligands, including TGFβ-1 and TGFβ-3. These ENG polypeptides can inhibit angiogenesis and tumor growth in model systems and thus have the potential to treat patients with unwanted angiogenesis, including those with cancer. Compared to constructs comprising the full-length ENG ECD, the truncated ENG polypeptides hENG(26-346)-hFc and/or hENG(26-359)-hFc displayed higher potency and improved performance on several other key parameters (see summary table below).

ECD Polypeptide in Fusion Protein (CHO cell derived)				
Parameter	Full length ECD -			
	Human 26-586 or	Murine 27-581	Human 26-359	Human 26-346
Expression	Quantity	31 mg/L	9 mg/L	90 mg/L
	Quality	96% monomeric	84% monomeric	96% monomeric
Binding affinity	BMP-9	33 pM	4.2 pM	4.3 pM
(K_D)	BMP-10	490 pM	86 pM	140 pM
Dissociation rate	BMP-9	$25 \times 10^{-4} \text{ s}^{-1}$	$3.5 \times 10^{-4} \text{ s}^{-1}$	$2.4 \times 10^{-4} \text{ s}^{-1}$
(k_d)	BMP-10	$110 \times 10^{-4} \text{ s}^{-1}$	$23 \times 10^{-4} \text{ s}^{-1}$	$28 \times 10^{-4} \text{ s}^{-1}$
Potency	BMP-9	0.26 nM	0.16 nM	0.19 nM
(cell-based IC ₅₀)	BMP-10	7.9 nM	3.5 nM	4.6 nM
Elimination half-life		22 h	—	26.5 h
Anti-angiogenesis	HUVEC	Yes	—	—
activity	CAM	65% inhibition	75% inhibition	—
	Angioreactor	100% inhibition	—	100% inhibition
Anti-tumor	4T1 tumor	Yes	—	—
activity	Colon-26 tumor	Yes	—	Yes
		Dose-dependent		

— Not investigated

according to the formula: volume=0.5(length)(width²). As shown in FIG. 40, treatment with mENG(27-581)-mFc reduced tumor volume by 45% compared to vehicle by day 24 post implantation.

[0203] ENG-Fc fusion proteins were also tested in a Colon-26 carcinoma xenograft model. BALB/c mice were injected subcutaneously at 7 weeks of age with 1.5×10^6 Colon-26 carcinoma cells (ATCC® number: CRL-2638™; depositor: N Restifo). Mice (n=10 per group) were dosed daily (s.c.) with mENG(27-581)-mFc (at 1, 10, or 30 mg/kg) or vehicle (Tris-buffered saline). Tumor volume was determined as described above. As shown in FIG. 41, mENG(27-581)-mFc treatment caused a dose-dependent reduction in tumor vol-

[0205] Variant hENG(26-346)-hFc, in particular, possessed a superior combination of attributes, with higher potency, stronger binding affinity, slower dissociation rate, longer elimination half-life, and better protein production than full-length ENG ECD constructs. As ligand traps, truncated ENG polypeptides should preferably exhibit a slow rate of ligand dissociation, so the ten-fold reduction in the BMP-9 dissociation rate for hENG(26-346)-hFc compared to the full-length construct is highly desirable. The variant hENG(26-378)-hFc displayed BMP-9 binding properties (affinity and dissociation rate) intermediate between hENG(26-346)-hFc and hENG(26-359)-hFc, on one hand, and hENG(26-437)-hFc, on the other, with hENG(26-378) more closely resembling the shorter constructs.

Example 16

Treatment of a Mouse Model of Liver Fibrosis with ENG-Fc Proteins

[0206] The effectiveness of ENG-Fc proteins in the treatment of fibrosis was evaluated in the mouse CCL4 (carbon tetrachloride) model of liver fibrosis. Fifty mice were used in this study. Male and female A/J mice of approximately 14 weeks of age at the start (day 0) of the experiment were acclimated in the laboratory for at least 48 hours. Animals were monitored daily during the course of the experiment and were sacrificed if any signs of morbidity, mortality and Test Article Toxicity were observed.

[0207] Animals received a dose of 1 ml/kg of 50% CCl4 in olive oil via oral gavage twice a week to induce liver fibrosis. Animals were dosed for 13 weeks with mENG(27-581)-mFc as described in the table below.

Group	N	Liver Fibrosis Treatment	Dose	Frequency	Admin.
1	20	CCl4 + Olive Oil	PBS	Isovolumic	B.I.W.
2	20	CCl4 + Olive Oil	mu-Endoglin	10 mg/kg	T.I.W.
3	5	Olive Oil	PBS	Isovolumic	B.I.W.
4	5	Olive Oil	mu-Endoglin	10 mg/kg	T.I.W.

[0208] Animals were analyzed for changes in body weight (BW), liver weight, liver performance, and histology. On day 0, day 28, day 56, and day 90, animals were NMR scanned. Animals were euthanized on Day 45 or 90 using CO2. For serum analysis, animals were fasted 12 hrs prior to sacrifice and serum sampling. Whole blood was collected for liver function analysis, and the liver from each animal was collected and weighed. Half of the liver was put in a cartridge in 10% Formalin, and a lobe of the liver was flash frozen in liquid nitrogen.

[0209] Treatment with mENG(27-581)-mFc did not affect liver weight (measured as a percentage of body weight) over a period of 13 weeks (FIG. 42). After the 13-week dosing period, animals were sacrificed and liver sections were stained with H&E and Masson's Trichrome staining (FIGS. 43-45). Treatment animals exhibited markedly reduced fibrosis relative to untreated animals (FIG. 45). Additionally, staining with Oil Red O revealed that mENG(27-581)-mFc treatment resulted in decreased accumulation of fatty deposits in liver tissue, which are often a precursor of liver damage and fibrotic deposition (FIG. 46). Additionally, mENG(27-581)-mFc treatment appeared to reduce ballooning degeneration of hepatocytes, which is associated with apoptosis and is seen in connection with inflammation of the liver. Serum alkaline phosphatase levels were lower in the endoglin-treated cohorts as compared to the untreated ones (FIG. 47). Collectively, these data indicate that mENG(27-581)-mFc treatment can decrease liver damage in this mouse model of liver fibrosis, and thus ENG-Fc proteins are likely to be useful in the treatment of fibrotic disorders of the liver, including cirrhosis and the eventual hepatocellular carcinomas.

Example 17

Effect of ENG-Fc Protein in a Mouse Dietary Model of Liver Fibrosis

[0210] Effectiveness of ENG-Fc proteins was also evaluated in a mouse model of nonalcoholic steatohepatitis (NASH) caused by methionine and choline dietary deficiency (MCDD). Wild-type C57BL/6 mice were fed either a standard chow diet or a diet containing high sucrose (40%) and fat (10%) but lacking methionine and choline, which are essential for hepatic β -oxidation and production of very low density lipoprotein (Takahashi et al., 2012, World J Gastroenterol 18:2300-2308). As a result, MCDD mice exhibit fatty deposits considered to be a precursor of liver damage and fibrotic deposition (Corbin et al., 2012, Curr Opin Gastroenterol 28:159-165). At 12 weeks of age, mice were placed on their respective diets and began intraperitoneal treatment with either mENG(27-581)-mFc (10 mg/kg) or vehicle (n=10 per group) twice weekly for 3 weeks. At the conclusion of dosing, mice were killed and liver sections were stained with Oil Red O a lipid-soluble diazo dye, to assess the extent of lipid deposition.

[0211] As expected, mice fed the chow diet exhibited only tiny lipid deposits in liver tissue (data not shown), whereas MCDD mice exhibited many large lipid deposits that collectively occupied a considerable fraction of total tissue area (FIG. 48A, C). In MCDD mice, mENG(27-581)-mFc treatment markedly reduced hepatic lipid deposits compared with vehicle (FIG. 48). Although endogenous TGF β is heavily implicated in progression of liver disease (Dooley et al., 2012, Cell Tissue Res 347:245-256), an Fc fusion protein which comprises TGF β receptor type II and binds TGF β with high affinity had little effect on the accumulation of hepatic lipid deposits (data not shown). As disclosed in Example 3, mENG(27-581)-mFc and other ENG-Fc proteins bind neither TGF β 1, TGF β 2, nor TGF β 3, so the bioactivity of mENG(27-581)-mFc in MCDD mice is not due to inhibition of signaling by these ligands. Together, these results indicate that mENG(27-581)-mFc can markedly reduce deposition of lipids in a mouse model in which dietary deficiency leads eventually to fibrosis and nonalcoholic steatohepatitis, thereby providing additional evidence that ENG-Fc proteins are likely to be useful in the treatment of liver fibrosis.

INCORPORATION BY REFERENCE

[0212] All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.

EQUIVALENTS

[0213] While specific embodiments of the subject inventions are explicitly disclosed herein, the above specification is illustrative and not restrictive. Many variations of the inventions will become apparent to those skilled in the art upon review of this specification and the claims below. The full scope of the inventions should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 36

<210> SEQ ID NO 1

<211> LENGTH: 658

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 1

Met Asp Arg Gly Thr Leu Pro Leu Ala Val Ala Leu Leu Ala Ser
1 5 10 15

Cys Ser Leu Ser Pro Thr Ser Leu Ala Glu Thr Val His Cys Asp Leu
20 25 30

Gln Pro Val Gly Pro Glu Arg Gly Glu Val Thr Tyr Thr Thr Ser Gln
35 40 45

Val Ser Lys Gly Cys Val Ala Gln Ala Pro Asn Ala Ile Leu Glu Val
50 55 60

His Val Leu Phe Leu Glu Phe Pro Thr Gly Pro Ser Gln Leu Glu Leu
65 70 75 80

Thr Leu Gln Ala Ser Lys Gln Asn Gly Thr Trp Pro Arg Glu Val Leu
85 90 95

Leu Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Gln Ala Leu
100 105 110

Gly Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Gln
115 120 125

Glu Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr
130 135 140

Gln Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala
145 150 155 160

Glu Leu Asn Asp Pro Gln Ser Ile Leu Leu Arg Leu Gly Gln Ala Gln
165 170 175

Gly Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Gln Asp Met Gly Arg
180 185 190

Thr Leu Glu Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Gly Cys His
195 200 205

Leu Glu Gly Val Ala Gly His Lys Glu Ala His Ile Leu Arg Val Leu
210 215 220

Pro Gly His Ser Ala Gly Pro Arg Thr Val Thr Val Lys Val Glu Leu
225 230 235 240

Ser Cys Ala Pro Gly Asp Leu Asp Ala Val Leu Ile Leu Gln Gly Pro
245 250 255

Pro Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Gln Ile Trp
260 265 270

Thr Thr Gly Glu Tyr Ser Phe Lys Ile Phe Pro Glu Lys Asn Ile Arg
275 280 285

Gly Phe Lys Leu Pro Asp Thr Pro Gln Gly Leu Leu Gly Glu Ala Arg
290 295 300

Met Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala
305 310 315 320

Ser Ile Val Ser Leu His Ala Ser Ser Cys Gly Gly Arg Leu Gln Thr
325 330 335

Ser Pro Ala Pro Ile Gln Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro
340 345 350

-continued

Glu Leu Leu Met Ser Leu Ile Gln Thr Lys Cys Ala Asp Asp Ala Met
 355 360 365
 Thr Leu Val Leu Lys Lys Glu Leu Val Ala His Leu Lys Cys Thr Ile
 370 375 380
 Thr Gly Leu Thr Phe Trp Asp Pro Ser Cys Glu Ala Glu Asp Arg Gly
 385 390 395 400
 Asp Lys Phe Val Leu Arg Ser Ala Tyr Ser Ser Cys Gly Met Gln Val
 405 410 415
 Ser Ala Ser Met Ile Ser Asn Glu Ala Val Val Asn Ile Leu Ser Ser
 420 425 430
 Ser Ser Pro Gln Arg Lys Lys Val His Cys Leu Asn Met Asp Ser Leu
 435 440 445
 Ser Phe Gln Leu Gly Leu Tyr Leu Ser Pro His Phe Leu Gln Ala Ser
 450 455 460
 Asn Thr Ile Glu Pro Gly Gln Gln Ser Phe Val Gln Val Arg Val Ser
 465 470 475 480
 Pro Ser Val Ser Glu Phe Leu Leu Gln Leu Asp Ser Cys His Leu Asp
 485 490 495
 Leu Gly Pro Glu Gly Gly Thr Val Glu Leu Ile Gln Gly Arg Ala Ala
 500 505 510
 Lys Gly Asn Cys Val Ser Leu Leu Ser Pro Ser Pro Glu Gly Asp Pro
 515 520 525
 Arg Phe Ser Phe Leu Leu His Phe Tyr Thr Val Pro Ile Pro Lys Thr
 530 535 540
 Gly Thr Leu Ser Cys Thr Val Ala Leu Arg Pro Lys Thr Gly Ser Gln
 545 550 555 560
 Asp Gln Glu Val His Arg Thr Val Phe Met Arg Leu Asn Ile Ile Ser
 565 570 575
 Pro Asp Leu Ser Gly Cys Thr Ser Lys Gly Leu Val Leu Pro Ala Val
 580 585 590
 Leu Gly Ile Thr Phe Gly Ala Phe Leu Ile Gly Ala Leu Leu Thr Ala
 595 600 605
 Ala Leu Trp Tyr Ile Tyr Ser His Thr Arg Ser Pro Ser Lys Arg Glu
 610 615 620
 Pro Val Val Ala Val Ala Ala Pro Ala Ser Ser Glu Ser Ser Ser Thr
 625 630 635 640
 Asn His Ser Ile Gly Ser Thr Gln Ser Thr Pro Cys Ser Thr Ser Ser
 645 650 655

Met Ala

<210> SEQ ID NO 2
 <211> LENGTH: 2030
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <400> SEQUENCE:

 cctgccactg gacacaggat aaggccccagc gcacaggccc ccacgtggac agcatggacc 60
 gcggcacgct ccctctggct gttgccctgc tgctggccag ctgcagccctc agccccacaa 120
 gtcttgcaga aacagtccat tgtgacccatc agcctgtggg ccccgagagg ggcgaggtga 180
 catataccac tagccaggtc tcgaagggctc gcgtggctca ggcccccaat gccatccctg 240
 aagtccatgt cctttccctg gagttcccaa cggcccgctc acagctggag ctgactctcc 300

-continued

aggcatccaa	gcaaaatggc	acctggcccc	gagaggtgct	tctggtcctc	agtgtaaaca	360
gcagtgtctt	cctgcatctc	caggccctgg	gaatcccact	gcacttggcc	tacaattcca	420
gcctggcac	cttccaagag	ccccgggggg	tcaacaccac	agagctgcc	tccttcccc	480
agacccagat	ccttgagtgg	gcagctgaga	ggggcccat	cacctctgt	gctgagctga	540
atgaccccca	gagcatcctc	ctccgactgg	gccaagecca	ggggtaactg	tccttctgca	600
tgctgaaagc	cagccaggac	atggggcgc	cgctcgagtg	gcccgcgt	actccagcct	660
tggtccgggg	ctgcccactt	gaaggcgtgg	ccggccacaa	ggaggcgcac	atcctgaggg	720
tcctgcccc	ccactcggcc	ggggcccgga	cggtgacgt	gaaggtgaa	ctgagctgc	780
cacccgggaa	tctcgatgcc	gtcctcatcc	tgcagggtcc	cccctacgt	tcctggctca	840
tcgacgc	ccacaacatg	cagatctgg	ccactggaga	atactcc	aagatcttc	900
cagagaaaaa	cattcggtgc	ttcaagctcc	cagacacacc	tcaaggcctc	ctggggagg	960
cccgatgtct	caatgcgc	atttgccat	ccttcgtgg	gctaccgctg	gccagcattt	1020
tctcacttca	tgcctcc	tgcgggtgta	ggctgcagac	ctcacccgca	ccgatccaga	1080
ccactcctcc	caaggacact	tgtagcccc	agctgctcat	gtccttgatc	cagacaaagt	1140
gtgccgacga	cgcgc	ctggactaa	agaaagagct	tgttgcgc	ttgaagtgc	1200
ccatcacggg	cctgaccc	tgggacccca	gctgtgag	agaggacagg	ggtgacaagt	1260
ttgtcttgc	cagtgc	tccagctgt	gcatgcaggt	gtcagca	atgtatc	1320
atgaggcggt	ggtcaat	ctgtcgag	catcaccaca	gcccggaaa	gtgcactgc	1380
tcaacatgg	cagectctc	ttccagctgg	gcctctac	cagccacac	ttcctccagg	1440
cctccaa	catcgaccc	ggcagcaga	gtttgtca	ggtcaga	tcccatcc	1500
tctccgagtt	cctgc	ttagacag	gccac	cttggggct	gaggaggca	1560
ccgtggaa	cattcgaggc	cggcggcc	aggcaact	tgtgagct	ctgtccccaa	1620
cccccgaggg	tgacccgc	ttcagctcc	tctccactt	ctacacag	cccatacca	1680
aaacccggac	cctcagctc	acggtagcc	tgcgtccaa	gaccgggt	caagaccagg	1740
aagtccatag	gactgtctc	atgcgttgc	acatcatc	ccctgac	tctgggtgc	1800
caagcaaagg	cctcgtct	ccgcgcgt	tgggcatc	cttgggtgc	tccctcatc	1860
ggccctgt	cactgctc	ctctggta	tctactgc	cacgcgttcc	cccagca	1920
gggagcccg	ggtggcggt	gtggcccg	cctcctgg	gagcagc	accaaccaca	1980
gcatcgagg	cacccag	acccctgt	ccaccag	catggc	atag	2030

<210> SEQ ID NO 3

<211> LENGTH: 625

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 3

Met	Asp	Arg	Gly	Thr	Leu	Pro	Leu	Ala	Val	Ala	Leu	Leu	Leu	Ala	Ser
1					5				10					15	

Cys	Ser	Leu	Ser	Pro	Thr	Ser	Leu	Ala	Glu	Thr	Val	His	Cys	Asp	Leu
							20		25			30			

Gln	Pro	Val	Gly	Pro	Glu	Arg	Gly	Glu	Val	Thr	Tyr	Thr	Ser	Gln
								35	40			45		

-continued

Val	Ser	Lys	Gly	Cys	Val	Ala	Gln	Ala	Pro	Asn	Ala	Ile	Leu	Glu	Val	
50					55				60							
His	Val	Leu	Phe	Leu	Glu	Phe	Pro	Thr	Gly	Pro	Ser	Gln	Leu	Glu	Leu	
65					70			75					80			
Thr	Leu	Gln	Ala	Ser	Lys	Gln	Asn	Gly	Thr	Trp	Pro	Arg	Glu	Val	Leu	
									85		90		95			
Leu	Val	Leu	Ser	Val	Asn	Ser	Ser	Val	Phe	Leu	His	Leu	Gln	Ala	Leu	
								100		105		110				
Gly	Ile	Pro	Leu	His	Leu	Ala	Tyr	Asn	Ser	Ser	Leu	Val	Thr	Phe	Gln	
								115		120		125				
Glu	Pro	Pro	Gly	Val	Asn	Thr	Thr	Glu	Leu	Pro	Ser	Phe	Pro	Lys	Thr	
								130		135		140				
Gln	Ile	Leu	Glu	Trp	Ala	Ala	Glu	Arg	Gly	Pro	Ile	Thr	Ser	Ala	Ala	
								145		150		155		160		
Glu	Leu	Asn	Asp	Pro	Gln	Ser	Ile	Leu	Leu	Arg	Leu	Gly	Gln	Ala	Gln	
								165		170		175				
Gly	Ser	Leu	Ser	Phe	Cys	Met	Leu	Glu	Ala	Ser	Gln	Asp	Met	Gly	Arg	
								180		185		190				
Thr	Leu	Glu	Trp	Arg	Pro	Arg	Thr	Pro	Ala	Leu	Val	Arg	Gly	Cys	His	
								195		200		205				
Leu	Leu	Gly	Val	Ala	Gly	His	Lys	Glu	Ala	His	Ile	Leu	Arg	Val	Leu	
								210		215		220				
Pro	Gly	His	Ser	Ala	Gly	Pro	Arg	Thr	Val	Thr	Val	Lys	Val	Glu	Leu	
								225		230		235		240		
Ser	Cys	Ala	Pro	Gly	Asp	Leu	Asp	Ala	Val	Ile	Leu	Gln	Gly	Pro		
								245		250		255				
Pro	Tyr	Val	Ser	Trp	Leu	Ile	Asp	Ala	Asn	His	Asn	Met	Gln	Ile	Trp	
								260		265		270				
Thr	Thr	Gly	Glu	Tyr	Ser	Phe	Lys	Ile	Phe	Pro	Glu	Lys	Asn	Ile	Arg	
								275		280		285				
Gly	Phe	Lys	Leu	Pro	Asp	Thr	Pro	Gln	Gly	Leu	Leu	Gly	Glu	Ala	Arg	
								290		295		300				
Met	Leu	Asn	Ala	Ser	Ile	Val	Ala	Ser	Phe	Val	Glu	Leu	Pro	Leu	Ala	
								305		310		315		320		
Ser	Ile	Val	Ser	Leu	His	Ala	Ser	Ser	Cys	Gly	Gly	Arg	Leu	Gln	Thr	
								325		330		335				
Ser	Pro	Ala	Pro	Ile	Gln	Thr	Thr	Pro	Pro	Lys	Asp	Thr	Cys	Ser	Pro	
								340		345		350				
Glu	Leu	Leu	Met	Ser	Leu	Ile	Gln	Thr	Lys	Cys	Ala	Asp	Asp	Ala	Met	
								355		360		365				
Thr	Leu	Val	Leu	Lys	Lys	Glu	Leu	Val	Ala	His	Leu	Lys	Cys	Thr	Ile	
								370		375		380				
Thr	Gly	Leu	Thr	Phe	Trp	Asp	Pro	Ser	Cys	Glu	Ala	Glu	Asp	Arg	Gly	
								385		390		395		400		
Asp	Lys	Phe	Val	Leu	Arg	Ser	Ala	Tyr	Ser	Ser	Cys	Gly	Met	Gln	Val	
								405		410		415				
Ser	Ala	Ser	Met	Ile	Ser	Asn	Glu	Ala	Val	Val	Asn	Ile	Leu	Ser	Ser	
								420		425		430				
Ser	Ser	Pro	Gln	Arg	Lys	Lys	Val	His	Cys	Leu	Asn	Met	Asp	Ser	Leu	
								435		440		445				
Ser	Phe	Gln	Leu	Gly	Leu	Tyr	Leu	Ser	Pro	His	Phe	Leu	Gln	Ala	Ser	

-continued

450	455	460
Asn Thr Ile Glu Pro Gly Gln Gln Ser Phe Val Gln Val Arg Val Ser		
465	470	475
Pro Ser Val Ser Glu Phe Leu Leu Gln Leu Asp Ser Cys His Leu Asp		
485	490	495
Leu Gly Pro Glu Gly Gly Thr Val Glu Leu Ile Gln Gly Arg Ala Ala		
500	505	510
Lys Gly Asn Cys Val Ser Leu Leu Ser Pro Ser Pro Glu Gly Asp Pro		
515	520	525
Arg Phe Ser Phe Leu Leu His Phe Tyr Thr Val Pro Ile Pro Lys Thr		
530	535	540
Gly Thr Leu Ser Cys Thr Val Ala Leu Arg Pro Lys Thr Gly Ser Gln		
545	550	555
Asp Gln Glu Val His Arg Thr Val Phe Met Arg Leu Asn Ile Ile Ser		
565	570	575
Pro Asp Leu Ser Gly Cys Thr Ser Lys Gly Leu Val Leu Pro Ala Val		
580	585	590
Leu Gly Ile Thr Phe Gly Ala Phe Leu Ile Gly Ala Leu Leu Thr Ala		
595	600	605
Ala Leu Trp Tyr Ile Tyr Ser His Thr Arg Glu Tyr Pro Arg Pro Pro		
610	615	620
Gln		
625		

<210> SEQ ID NO 4

<211> LENGTH: 1931

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 4

cctgccactg gacacaggat aaggcccage gcacaggccc ccacgtggac agcatggacc	60
gcggcacgct ccctctggct gttgcccgc tgcgcggctc agccccacaa	120
gtttgcaga aacagtccat tggacccctc agccctgtggg ccccgagagg ggcgaggtga	180
catataccac tagccaggtc tcgaaggctc gcgtggctca ggcccccata gcccatttt	240
aagtccatgt cctttccctg gagttcccaa cggggccggtc acagctggag ctgactctcc	300
aggcatccaa gcaaaatggc acctggccccc gagagggtgt tctggctctc agtgtaaaca	360
gcagtgtctt cctgcacatc caggccctgg gaatcccact gcacttggcc tacaattcca	420
gcctggcac cttccaagag ccccccgggg tcaacaccac agagctgcca tccttcccc	480
agacccagat ctttgagtgg gcagctgaga gggggcccat cacctctgtc gctgagctga	540
atgaccccca gacatccctc ctccgactgg gccaageccca ggggtcaactg tccttctgca	600
tgcttggaaagc cagccaggac atggggccca cgctcgatgt gggccggcgt actccagcc	660
tggtccgggg ctgccacttg gaaggcggtt cggccacaa ggaggcgac atccctgagg	720
tcctggccggg ccactcggcc gggcccccggc cggtgacggt gaagggtggaa ctgagctg	780
cacccgggaa tctcgatgcc gtcctcatcc tgcagggtcc cccctacgtg tcctggctca	840
tcgacgccaa ccacaacatg cagatctggc ccactggaga atactccctc aagattttc	900
cagagaaaaa cattcgatggc ttcaagctcc cagacacacc tcaaggctc ctggggagg	960
cccgatgtc caatgccaggc atttgccat cttcgatggc gctaccgctg gccagcattt	1020

-continued

tctcaactca	tgcctccagc	tgcgggtggta	ggctgcagac	ctcacccgca	ccgatccaga	1080
ccactcctcc	caaggacact	tgtagcccg	agctgctcat	gtccttgatc	cagacaaagt	1140
gtgccgacga	cgcacatgacc	ctggactaa	agaaagagct	tgttgccat	ttgaagtgc	1200
ccatcacggg	cctgacccctc	tgggacecca	gctgtgaggc	agaggacagg	ggtgacaagt	1260
tgtcttgcg	cagtgcattac	tccagctgt	gcatgcaggt	gtcagcaagt	atgatcagca	1320
atgaggcggt	ggtcaatata	ctgtcgagct	catcaccaca	gcggaaaaag	gtgcactgcc	1380
tcaacatgga	cagcctctct	ttccagctgg	gcctctacct	cagcccacac	tccctccagg	1440
cctccaacac	catcgagccg	gggcagcaga	gctttgtca	ggtcagatg	tcccatccg	1500
tctccgagtt	cctgctccag	ttagacagct	gccacctgga	cttggggcct	gagggaggca	1560
ccgtggaact	catccagggc	cgggcggcca	agggcaactg	tgtgagctg	ctgtccccaa	1620
cccccgaggg	tgacccggcgc	ttcagctcc	tcctccaccc	ctacacagta	cccataccca	1680
aaaccggcac	cctcagctgc	acggtagccc	tgcgccccaa	gaccgggtct	caagaccagg	1740
aagtccatag	gactgtcttc	atgcgcttga	acatcatcag	ccctgacctg	tctggttgc	1800
caagcaaagg	cctcgtcctg	ccgcgcgtgc	tgggcatcac	cttgggtgcc	ttcctcatcg	1860
gggcctgtct	cactgctgca	ctctggtaca	tctactcgca	cacgcgtgag	tacccaggc	1920
ccccacagtg	a					1931

<210> SEQ ID NO 5

<211> LENGTH: 653

<212> TYPE: PRT

<213> ORGANISM: Mus musculus

<400> SEQUENCE: 5

Met	Asp	Arg	Gly	Val	Leu	Pro	Leu	Pro	Ile	Thr	Leu	Leu	Phe	Val	Ile
1				5				10						15	

Tyr	Ser	Phe	Val	Pro	Thr	Thr	Gly	Leu	Ala	Glu	Arg	Val	Gly	Cys	Asp
				20				25					30		

Leu	Gln	Pro	Val	Asp	Pro	Thr	Arg	Gly	Glu	Val	Thr	Phe	Thr	Ser
					35			40				45		

Gln	Val	Ser	Glu	Gly	Cys	Val	Ala	Gln	Ala	Ala	Asn	Ala	Val	Arg	Glu
					50			55			60				

Val	His	Val	Leu	Phe	Leu	Asp	Phe	Pro	Gly	Met	Leu	Ser	His	Leu	Glu
65					70			75		80					

Leu	Thr	Leu	Gln	Ala	Ser	Lys	Gln	Asn	Gly	Thr	Glu	Thr	Gln	Glu	Val
					85			90		95					

Phe	Leu	Val	Leu	Val	Ser	Asn	Lys	Asn	Val	Phe	Val	Lys	Phe	Gln	Ala
					100			105		110					

Pro	Glu	Ile	Pro	Leu	His	Leu	Ala	Tyr	Asp	Ser	Ser	Leu	Val	Ile	Phe
		115				120			125						

Gln	Gly	Gln	Pro	Arg	Val	Asn	Ile	Thr	Val	Leu	Pro	Ser	Leu	Thr	Ser
					130			135		140					

Arg	Lys	Gln	Ile	Leu	Asp	Trp	Ala	Ala	Thr	Lys	Gly	Ala	Ile	Thr	Ser
145					150			155		160					

Ile	Ala	Ala	Leu	Asp	Asp	Pro	Gln	Ser	Ile	Val	Leu	Gln	Leu	Gly	Gln
					165			170		175					

Asp	Pro	Lys	Ala	Pro	Phe	Leu	Cys	Leu	Pro	Glu	Ala	His	Lys	Asp	Met
					180			185		190					

-continued

Gly Ala Thr Leu Glu Trp Gln Pro Arg Ala Gln Thr Pro Val Gln Ser
 195 200 205
 Cys Arg Leu Glu Gly Val Ser Gly His Lys Glu Ala Tyr Ile Leu Arg
 210 215 220
 Ile Leu Pro Gly Ser Glu Ala Gly Pro Arg Thr Val Thr Val Met Met
 225 230 235 240
 Glu Leu Ser Cys Thr Ser Gly Asp Ala Ile Leu Ile Leu His Gly Pro
 245 250 255
 Pro Tyr Val Ser Trp Phe Ile Asp Ile Asn His Ser Met Gln Ile Leu
 260 265 270
 Thr Thr Gly Glu Tyr Ser Val Lys Ile Phe Pro Gly Ser Lys Val Lys
 275 280 285
 Gly Val Glu Leu Pro Asp Thr Pro Gln Gly Leu Ile Ala Glu Ala Arg
 290 295 300
 Lys Leu Asn Ala Ser Ile Val Thr Ser Phe Val Glu Leu Pro Leu Val
 305 310 315 320
 Ser Asn Val Ser Leu Arg Ala Ser Ser Cys Gly Gly Val Phe Gln Thr
 325 330 335
 Thr Pro Ala Pro Val Val Thr Pro Pro Lys Asp Thr Cys Ser Pro
 340 345 350
 Val Leu Leu Met Ser Leu Ile Gln Pro Lys Cys Gly Asn Gln Val Met
 355 360 365
 Thr Leu Ala Leu Asn Lys Lys His Val Gln Thr Leu Gln Cys Thr Ile
 370 375 380
 Thr Gly Leu Thr Phe Trp Asp Ser Ser Cys Gln Ala Glu Asp Thr Asp
 385 390 395 400
 Asp His Leu Val Leu Ser Ser Ala Tyr Ser Ser Cys Gly Met Lys Val
 405 410 415
 Thr Ala His Val Val Ser Asn Glu Val Ile Ile Ser Phe Pro Ser Gly
 420 425 430
 Ser Pro Pro Leu Arg Lys Lys Val Gln Cys Ile Asp Met Asp Ser Leu
 435 440 445
 Ser Phe Gln Leu Gly Leu Tyr Leu Ser Pro His Phe Leu Gln Ala Ser
 450 455 460
 Asn Thr Ile Glu Leu Gly Gln Gln Ala Phe Val Gln Val Ser Val Ser
 465 470 475 480
 Pro Leu Thr Ser Glu Val Thr Val Gln Leu Asp Ser Cys His Leu Asp
 485 490 495
 Leu Gly Pro Glu Gly Asp Met Val Glu Leu Ile Gln Ser Arg Thr Ala
 500 505 510
 Lys Gly Ser Cys Val Thr Leu Leu Ser Pro Ser Pro Glu Gly Asp Pro
 515 520 525
 Arg Phe Ser Phe Leu Leu Arg Val Tyr Met Val Pro Thr Pro Thr Ala
 530 535 540
 Gly Thr Leu Ser Cys Asn Leu Ala Leu Arg Pro Ser Thr Leu Ser Gln
 545 550 555 560
 Glu Val Tyr Lys Thr Val Ser Met Arg Leu Asn Ile Val Ser Pro Asp
 565 570 575
 Leu Ser Gly Lys Gly Leu Val Leu Pro Ser Val Leu Gly Ile Thr Phe
 580 585 590

-continued

Gly	Ala	Phe	Leu	Ile	Gly	Ala	Leu	Leu	Thr	Ala	Ala	Leu	Trp	Tyr	Ile
595					600					605					

Tyr	Ser	His	Thr	Arg	Gly	Pro	Ser	Lys	Arg	Glu	Pro	Val	Val	Ala	Val
610					615					620					

Ala	Ala	Pro	Ala	Ser	Ser	Glu	Ser	Ser	Ser	Thr	Asn	His	Ser	Ile	Gly
625				630			635				640				

Ser	Thr	Gln	Ser	Thr	Pro	Cys	Ser	Thr	Ser	Ser	Met	Ala			
645					650										

<210> SEQ ID NO 6

<211> LENGTH: 1965

<212> TYPE: DNA

<213> ORGANISM: Mus musculus

<400> SEQUENCE: 6

agcatggacc	gtggcgtgct	ccctctgccc	attaccctgc	tgtttgcata	ctatagttt	60
gtacccacaa	caggtctcgc	agaaagagtc	ggctgtgatc	tacagectgt	ggaccocaca	120
aggggtgagg	tgacgtttac	caccagccag	gtctccgagg	gctgtgtagc	tcaggotgcc	180
aatgctgtgc	gtgaagtcga	cgttctcttc	ctggatttgc	ccggaatgt	gtcacatctg	240
gagctgactc	ttcaggcattc	caagcaaaat	ggcacggaga	cccaggaggt	gttcctggtc	300
ctcgtttca	acaaaaatgt	cttcgtgaag	ttccaggccc	cgaaaaatccc	attgeacttg	360
gcctacgact	ccagccttgt	catcttccaa	ggacagccaa	gagtcaacat	cacagtgcata	420
ccatccctta	cctccaggaa	acagatcctc	gactgggcag	ccaccaaggg	cgccatcacc	480
tcgatagcag	cactggatga	ccccaaagc	atcgctcttc	agttgggcca	agacccaaag	540
gcaccattct	tgtgcttgcc	agaagctcac	aaggacatgg	gcccacact	tgaatggcaa	600
ccacgagccc	agaccccaagt	ccaaagctgt	cgcttggaaag	gtgtgtctgg	ccacaaggag	660
gcctacatcc	tgaggatct	gccaggttct	gaggccggc	cccgacgggt	gaccgtaatg	720
atggaaactga	gttgcacatc	tggggacgcc	attctcatcc	tgcataggcc	tccatatagtc	780
tcctgggttca	tcgacatcaa	ccacagcatg	cagatcttgc	ccacagggtg	atactccgtc	840
aagatcttcc	caggaagcaa	ggtcaaaggc	gtggagatcc	cagacacacc	ccaaaggctg	900
atagcggagg	cccgcaagct	caatgccagc	attgtcacct	cctttgtaga	gtccctctg	960
gtcagcaatg	tctcccttag	ggcctccagc	tgcgggtgg	tgttccagac	cacccctgca	1020
cccggtgtga	ccacacccctcc	caaggacaca	tgcagccccg	tgctactcat	gtccctgtac	1080
cagccaaatgt	gtggcaatca	ggtcatgact	ctggcactca	ataaaaaaaca	cgtcagact	1140
ctccagtgca	ccatcacagg	cctgacttcc	tgggactcca	gctgcccaggc	tgaagacact	1200
gacgaccatc	ttgtcctgag	taggcctac	tccagctgcg	gcatgaaatgt	gacagcccat	1260
gtggtcagca	atgaggtat	catcagtttc	ccgtcaggct	caccaccact	tcggaaaaag	1320
gtacagtgc	tcgacatgga	cagcctctcc	ttccagctgg	gcctctaccc	cagccccac	1380
ttccatccagg	catccaacac	catcgaacta	ggccagcagg	ccttcgtaca	ggtgagcgt	1440
tctccattga	cctctgaggt	cacagtccag	ctagatagct	gccatcttgc	cttggggccc	1500
gaaggggaca	tggtggaaact	catccagagc	cgaacagcc	agggcagctg	tgtgaccttg	1560
ctgtctccaa	gccctgaagg	tgaccccacgc	ttcagcttcc	tcctccgggt	ctacatgg	1620
cccacaccca	ccgctggcac	cctcagttgc	aacttagctc	tgcgccttag	cacccctgtcc	1680

-continued

caggaagtct acaagacagt	ctccatgcgc	ctgaacatcg	tcagccctga	cctgtctgg	1740	
aaaggcctt	tcctgcctc	tgtactgggt	atcaccttg	gtgccttct	gattggggcc	1800
ctgctcacag	ctgcaactcg	gtacatctat	tctcacacac	gtggcccccag	caagcgggag	1860
cccggtgg	cagtggctgc	cccgccctcc	tctgagagca	gcagtagccaa	ccacagcatc	1920
gggacaccc	agagcacccc	ctgtccacc	agcagcatgg	cgtag		1965

<210> SEQ ID NO 7

<211> LENGTH: 641

<212> TYPE: PRT

<213> ORGANISM: Mus musculus

<400> SEQUENCE: 7

Met	Asp	Arg	Gly	Val	Leu	Pro	Leu	Pro	Ile	Thr	Leu	Leu	Phe	Val	Ile
1				5			10				15				

Tyr	Ser	Phe	Val	Pro	Thr	Thr	Gly	Leu	Ala	Glu	Arg	Val	Gly	Cys	Asp
					20			25				30			

Leu	Gln	Pro	Val	Asp	Pro	Thr	Arg	Gly	Glu	Val	Thr	Phe	Thr	Thr	Ser
						35		40			45				

Gln	Val	Ser	Glu	Gly	Cys	Val	Ala	Gln	Ala	Ala	Asn	Ala	Val	Arg	Glu
						50		55			60				

Val	His	Val	Leu	Phe	Leu	Asp	Phe	Pro	Gly	Met	Leu	Ser	His	Leu	Glu
65					70			75			80				

Leu	Thr	Leu	Gln	Ala	Ser	Lys	Gln	Asn	Gly	Thr	Glu	Thr	Gln	Glu	Val
					85			90			95				

Phe	Leu	Val	Leu	Val	Ser	Lys	Asn	Val	Phe	Val	Lys	Phe	Gln	Ala
					100			105			110			

Pro	Glu	Ile	Pro	Leu	His	Leu	Ala	Tyr	Asp	Ser	Ser	Leu	Val	Ile	Phe
115					120			125							

Gln	Gly	Gln	Pro	Arg	Val	Asn	Ile	Thr	Val	Leu	Pro	Ser	Leu	Thr	Ser
130						135			140						

Arg	Lys	Gln	Ile	Leu	Asp	Trp	Ala	Ala	Thr	Lys	Gly	Ala	Ile	Thr	Ser
145					150			155			160				

Ile	Ala	Ala	Leu	Asp	Asp	Pro	Gln	Ser	Ile	Val	Leu	Gln	Leu	Gly	Gln
						165		170			175				

Asp	Pro	Lys	Ala	Pro	Phe	Leu	Cys	Leu	Pro	Glu	Ala	His	Lys	Asp	Met
					180			185			190				

Gly	Ala	Thr	Leu	Glu	Trp	Gln	Pro	Arg	Ala	Gln	Thr	Pro	Val	Gln	Ser
195					200			205							

Cys	Arg	Leu	Glu	Gly	Val	Ser	Gly	His	Lys	Glu	Ala	Tyr	Ile	Leu	Arg
						210		215			220				

Ile	Leu	Pro	Gly	Ser	Glu	Ala	Gly	Pro	Arg	Thr	Val	Thr	Val	Met	Met
225					230			235			240				

Glu	Leu	Ser	Cys	Thr	Ser	Gly	Asp	Ala	Ile	Leu	Ile	Leu	His	Gly	Pro
					245			250			255				

Pro	Tyr	Val	Ser	Trp	Phe	Ile	Asp	Ile	Asn	His	Ser	Met	Gln	Ile	Leu
					260			265			270				

Thr	Thr	Gly	Glu	Tyr	Ser	Val	Lys	Ile	Phe	Pro	Gly	Ser	Lys	Val	Lys
275					280			285							

Gly	Val	Glu	Leu	Pro	Asp	Thr	Pro	Gln	Gly	Leu	Ile	Ala	Glu	Ala	Arg
					290			295			300				

Lys Leu Asn Ala Ser Ile Val Thr Ser Phe Val Glu Leu Pro Leu Val

-continued

305	310	315	320
Ser Asn Val Ser Leu Arg Ala Ser Ser Cys Gly Gly Val Phe Gln Thr			
325	330	335	
Thr Pro Ala Pro Val Val Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro			
340	345	350	
Val Leu Leu Met Ser Leu Ile Gln Pro Lys Cys Gly Asn Gln Val Met			
355	360	365	
Thr Leu Ala Leu Asn Lys Lys His Val Gln Thr Leu Gln Cys Thr Ile			
370	375	380	
Thr Gly Leu Thr Phe Trp Asp Ser Ser Cys Gln Ala Glu Asp Thr Asp			
385	390	395	400
Asp His Leu Val Leu Ser Ser Ala Tyr Ser Ser Cys Gly Met Lys Val			
405	410	415	
Thr Ala His Val Val Ser Asn Glu Val Ile Ile Ser Phe Pro Ser Gly			
420	425	430	
Ser Pro Pro Leu Arg Lys Lys Val Gln Cys Ile Asp Met Asp Ser Leu			
435	440	445	
Ser Phe Gln Leu Gly Leu Tyr Leu Ser Pro His Phe Leu Gln Ala Ser			
450	455	460	
Asn Thr Ile Glu Leu Gly Gln Gln Ala Phe Val Gln Val Ser Val Ser			
465	470	475	480
Pro Leu Thr Ser Glu Val Thr Val Gln Leu Asp Ser Cys His Leu Asp			
485	490	495	
Leu Gly Pro Glu Gly Asp Met Val Glu Leu Ile Gln Ser Arg Thr Ala			
500	505	510	
Lys Gly Ser Cys Val Thr Leu Leu Ser Pro Ser Pro Glu Gly Asp Pro			
515	520	525	
Arg Phe Ser Phe Leu Leu Arg Val Tyr Met Val Pro Thr Pro Thr Ala			
530	535	540	
Gly Thr Leu Ser Cys Asn Leu Ala Leu Arg Pro Ser Thr Leu Ser Gln			
545	550	555	560
Glu Val Tyr Lys Thr Val Ser Met Arg Leu Asn Ile Val Ser Pro Asp			
565	570	575	
Leu Ser Gly Lys Gly Leu Val Leu Pro Ser Val Leu Gly Ile Thr Phe			
580	585	590	
Gly Ala Phe Leu Ile Gly Ala Leu Leu Thr Ala Ala Leu Trp Tyr Ile			
595	600	605	
Tyr Ser His Thr Arg Glu Tyr Pro Lys Pro Pro His Ser His Ser			
610	615	620	
Lys Arg Ser Gly Pro Val His Thr Thr Pro Gly His Thr Gln Trp Ser			
625	630	635	640
Leu			

<210> SEQ ID NO 8
<211> LENGTH: 1929
<212> TYPE: DNA
<213> ORGANISM: Mus musculus

<400> SEQUENCE: 8

agcatggacc	gtggcgtgct	ccctctgccc	attaccctgc	tgtttgtcat	ctatacgctt	60
gtacccacaa	caggtctcgc	agaaagagtc	ggctgtgatc	tacagcctgt	ggacccacaa	120

-continued

aggggtgagg	tgacgtttac	caccagccag	gtctccgagg	gctgtgtac	tcaggctgcc	180
aatgctgtgc	gtgaagtcca	cgttctttc	ctggatttc	ccggaatgt	gtcacatctg	240
gagctgactc	ttcaggcattc	caagcaaaat	ggcacggaga	cccaggaggt	gttcctggtc	300
ctcgtttca	acaaaaatgt	cttcgtgaag	ttccaggccc	cgaaaaatccc	attgcacttg	360
gcctacgact	ccagcctgg	catcttccaa	ggacagccaa	gagtcaacat	cacagtgcata	420
ccatccctta	cetccaggaa	acagatcctc	gactggggag	ccaccaaggg	cgccatcacc	480
tcgatagcag	cactggatga	cccccaaagc	atcgctctcc	agttgggcca	agacccaaag	540
gcaccattct	tgtgcttgc	agaagctcac	aaggacatgg	gcccacact	tgaatggcaa	600
ccacgagccc	agaccccagt	ccaaagctgt	cgcttggaaag	gtgtgtctgg	ccacaaggag	660
gcctacatcc	tgaggatctt	gccagggtct	gaggccgggc	cccgacgggt	gaccgtaatg	720
atggaaactga	gttgcacatc	ttgggacgc	attctcatcc	tgcacatggcc	tccatatgtc	780
tcctggttca	tcgacatcaa	ccacagcatg	cagatcttga	ccacaggtga	atactccgtc	840
aatatcttcc	caggaagcaa	ggtcaaaggc	gtggagctcc	cagacacacc	ccaaaggctg	900
atagcggagg	cccgcaagct	caatgccagc	attgtcacct	ccttgcata	gtccctctg	960
gtcagcaatg	tctccctgag	ggcctccagc	tgcgggtgg	tgttccagac	cacccctgca	1020
cccggtgtga	ccacaccc	caaggacaca	tgcagcccc	tgcatactcat	gtccctgatc	1080
cagccaaagt	gtggcaatca	ggtcatgact	ctggcactca	ataaaaaaaca	cgtgcagact	1140
ctccagtgea	ccatcacagg	cctgacttcc	tgggactcca	gctgccaggc	tgaagacact	1200
gacgaccatc	ttgtccctgag	tagcgcctac	tccagctgc	gcatgaaagt	gacagccat	1260
gtggtcagea	atgaggtgat	catcagttt	ccgtcaggt	caccaccact	tccggaaaaag	1320
gtacagtgea	tcgacatgga	cagccttc	ttccagctgg	gctctactt	cagccgcac	1380
tccctccagg	catccaaacac	catcgaacta	ggccagcagg	ccttcgtaca	ggtgagcgt	1440
tctccattga	cctctgaggt	cacagtcagc	ctagatagct	gcatctgg	cttggggccc	1500
gaaggggaca	tggtggaaact	catccagagc	cgaacagcca	agggcagctg	tgtgacctt	1560
ctgtctccaa	gcccgtgaagg	tgacccacgc	ttcagttcc	tccctgggt	ctacatgg	1620
cccacaccca	ccgctggcac	cctcagttgc	aacttagctc	tgcgccttag	cacccctgtcc	1680
caggaagtct	acaagacagt	ctccatgcgc	ctgaacatcg	tccgccttgc	cctgtctgg	1740
aaaggccttgc	tccgtccctc	tgtactgggt	atcaccttgc	gtgccttct	gattggggcc	1800
ctgctcacag	ctgcactctg	gtacatctat	tctcacacac	gtgagtatcc	caagccctca	1860
ccccatcccc	acagcaagcg	ctcaggcccc	gtccacacca	ccccggggca	cacccagtg	1920
agcctctga						1929

<210> SEQ ID NO 9

<211> LENGTH: 561

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 9

Glu	Thr	Val	His	Cys	Asp	Leu	Gln	Pro	Val	Gly	Pro	Glu	Arg	Gly	Glu
1					5			10			15				

Val	Thr	Tyr	Thr	Thr	Ser	Gln	Val	Ser	Lys	Gly	Cys	Val	Ala	Gln	Ala
							20		25			30			

-continued

Pro Asn Ala Ile Leu Glu Val His Val Leu Phe Leu Glu Phe Pro Thr
 35 40 45
 Gly Pro Ser Gln Leu Glu Leu Thr Leu Gln Ala Ser Lys Gln Asn Gly
 50 55 60
 Thr Trp Pro Arg Glu Val Leu Leu Val Leu Ser Val Asn Ser Ser Val
 65 70 75 80
 Phe Leu His Leu Gln Ala Leu Gly Ile Pro Leu His Leu Ala Tyr Asn
 85 90 95
 Ser Ser Leu Val Thr Phe Gln Glu Pro Pro Gly Val Asn Thr Thr Glu
 100 105 110
 Leu Pro Ser Phe Pro Lys Thr Gln Ile Leu Glu Trp Ala Ala Glu Arg
 115 120 125
 Gly Pro Ile Thr Ser Ala Ala Glu Leu Asn Asp Pro Gln Ser Ile Leu
 130 135 140
 Leu Arg Leu Gly Gln Ala Gln Gly Ser Leu Ser Phe Cys Met Leu Glu
 145 150 155 160
 Ala Ser Gln Asp Met Gly Arg Thr Leu Glu Trp Arg Pro Arg Thr Pro
 165 170 175
 Ala Leu Val Arg Gly Cys His Leu Glu Gly Val Ala Gly His Lys Glu
 180 185 190
 Ala His Ile Leu Arg Val Leu Pro Gly His Ser Ala Gly Pro Arg Thr
 195 200 205
 Val Thr Val Lys Val Glu Leu Ser Cys Ala Pro Gly Asp Leu Asp Ala
 210 215 220
 Val Leu Ile Leu Gln Gly Pro Pro Tyr Val Ser Trp Leu Ile Asp Ala
 225 230 235 240
 Asn His Asn Met Gln Ile Trp Thr Thr Gly Glu Tyr Ser Phe Lys Ile
 245 250 255
 Phe Pro Glu Lys Asn Ile Arg Gly Phe Lys Leu Pro Asp Thr Pro Gln
 260 265 270
 Gly Leu Leu Gly Glu Ala Arg Met Leu Asn Ala Ser Ile Val Ala Ser
 275 280 285
 Phe Val Glu Leu Pro Leu Ala Ser Ile Val Ser Leu His Ala Ser Ser
 290 295 300
 Cys Gly Gly Arg Leu Gln Thr Ser Pro Ala Pro Ile Gln Thr Thr Pro
 305 310 315 320
 Pro Lys Asp Thr Cys Ser Pro Glu Leu Leu Met Ser Leu Ile Gln Thr
 325 330 335
 Lys Cys Ala Asp Asp Ala Met Thr Leu Val Leu Lys Lys Glu Leu Val
 340 345 350
 Ala His Leu Lys Cys Thr Ile Thr Gly Leu Thr Phe Trp Asp Pro Ser
 355 360 365
 Cys Glu Ala Glu Asp Arg Gly Asp Lys Phe Val Leu Arg Ser Ala Tyr
 370 375 380
 Ser Ser Cys Gly Met Gln Val Ser Ala Ser Met Ile Ser Asn Glu Ala
 385 390 395 400
 Val Val Asn Ile Leu Ser Ser Ser Pro Gln Arg Lys Lys Val His
 405 410 415
 Cys Leu Asn Met Asp Ser Leu Ser Phe Gln Leu Gly Leu Tyr Leu Ser
 420 425 430
 Pro His Phe Leu Gln Ala Ser Asn Thr Ile Glu Pro Gly Gln Gln Ser

-continued

435	440	445
Phe Val Gln Val Arg Val Ser Pro Ser Val Ser Glu Phe Leu Leu Gln		
450	455	460
Leu Asp Ser Cys His Leu Asp Leu Gly Pro Glu Gly Gly Thr Val Glu		
465	470	475
Leu Ile Gln Gly Arg Ala Ala Lys Gly Asn Cys Val Ser Leu Leu Ser		
485	490	495
Pro Ser Pro Glu Gly Asp Pro Arg Phe Ser Phe Leu Leu His Phe Tyr		
500	505	510
Thr Val Pro Ile Pro Lys Thr Gly Thr Leu Ser Cys Thr Val Ala Leu		
515	520	525
Arg Pro Lys Thr Gly Ser Gln Asp Gln Glu Val His Arg Thr Val Phe		
530	535	540
Met Arg Leu Asn Ile Ile Ser Pro Asp Leu Ser Gly Cys Thr Ser Lys		
545	550	555
Gly		

<210> SEQ ID NO 10

<211> LENGTH: 555

<212> TYPE: PRT

<213> ORGANISM: Mus musculus

<400> SEQUENCE: 10

Glu Arg Val Gly Cys Asp Leu Gln Pro Val Asp Pro Thr Arg Gly Glu		
1	5	10
		15
Val Thr Phe Thr Thr Ser Gln Val Ser Glu Gly Cys Val Ala Gln Ala		
20	25	30
Ala Asn Ala Val Arg Glu Val His Val Leu Phe Leu Asp Phe Pro Gly		
35	40	45
Met Leu Ser His Leu Glu Leu Thr Leu Gln Ala Ser Lys Gln Asn Gly		
50	55	60
Thr Glu Thr Arg Glu Val Phe Leu Val Leu Val Ser Asn Lys Asn Val		
65	70	75
		80
Phe Val Lys Phe Gln Ala Pro Glu Ile Pro Leu His Leu Ala Tyr Asp		
85	90	95
Ser Ser Leu Val Ile Phe Gln Gly Gln Pro Arg Val Asn Ile Thr Val		
100	105	110
Leu Pro Ser Leu Thr Ser Arg Lys Gln Ile Leu Asp Trp Ala Ala Thr		
115	120	125
Lys Gly Ala Ile Thr Ser Ile Ala Ala Leu Asp Asp Pro Gln Ser Ile		
130	135	140
Val Leu Gln Leu Gly Gln Asp Pro Lys Ala Pro Phe Leu Cys Leu Pro		
145	150	155
		160
Glu Ala His Lys Asp Met Gly Ala Thr Leu Glu Trp Gln Pro Arg Ala		
165	170	175
Gln Thr Pro Val Gln Ser Cys Arg Leu Glu Gly Val Ser Gly His Lys		
180	185	190
Glu Ala Tyr Ile Leu Arg Ile Leu Pro Gly Ser Glu Ala Gly Pro Arg		
195	200	205
Thr Val Thr Val Met Met Glu Leu Ser Cys Thr Ser Gly Asp Ala Ile		
210	215	220
Leu Ile Leu His Gly Pro Pro Tyr Val Ser Trp Phe Ile Asp Ile Asn		

-continued

225	230	235	240
His Ser Met Gln Ile Leu Thr Thr Gly Glu Tyr Ser Val Lys Ile Phe			
245	250	255	
Pro Gly Ser Lys Val Lys Gly Val Glu Leu Pro Asp Thr Pro Gln Gly			
260	265	270	
Leu Ile Ala Glu Ala Arg Lys Leu Asn Ala Ser Ile Val Thr Ser Phe			
275	280	285	
Val Glu Leu Pro Leu Val Ser Asn Val Ser Leu Arg Ala Ser Ser Cys			
290	295	300	
Gly Gly Val Phe Gln Thr Thr Pro Ala Pro Val Val Thr Thr Pro Pro			
305	310	315	320
Lys Asp Thr Cys Ser Pro Val Leu Leu Met Ser Leu Ile Gln Pro Lys			
325	330	335	
Cys Gly Asn Gln Val Met Thr Leu Ala Leu Asn Lys Lys His Val Gln			
340	345	350	
Thr Leu Gln Cys Thr Ile Thr Gly Leu Thr Phe Trp Asp Ser Ser Cys			
355	360	365	
Gln Ala Glu Asp Thr Asp Asp His Leu Val Leu Ser Ser Ala Tyr Ser			
370	375	380	
Ser Cys Gly Met Lys Val Thr Ala His Val Val Ser Asn Glu Val Ile			
385	390	395	400
Ile Ser Phe Pro Ser Gly Ser Pro Pro Leu Arg Lys Lys Val Gln Cys			
405	410	415	
Ile Asp Met Asp Ser Leu Ser Phe Gln Leu Gly Leu Tyr Leu Ser Pro			
420	425	430	
His Phe Leu Gln Ala Ser Asn Thr Ile Glu Leu Gly Gln Gln Ala Phe			
435	440	445	
Val Gln Val Ser Val Ser Pro Leu Thr Ser Glu Val Thr Val Gln Leu			
450	455	460	
Asp Ser Cys His Leu Asp Leu Gly Pro Glu Gly Asp Met Val Glu Leu			
465	470	475	480
Ile Gln Ser Arg Thr Ala Lys Gly Ser Cys Val Thr Leu Leu Ser Pro			
485	490	495	
Ser Pro Glu Gly Asp Pro Arg Phe Ser Phe Leu Leu Arg Val Tyr Met			
500	505	510	
Val Pro Thr Pro Thr Ala Gly Thr Leu Ser Cys Asn Leu Ala Leu Arg			
515	520	525	
Pro Ser Thr Leu Ser Gln Glu Val Tyr Lys Thr Val Ser Met Arg Leu			
530	535	540	
Asn Val Val Ser Pro Asp Leu Ser Gly Lys Gly			
545	550	555	

<210> SEQ ID NO 11

<211> LENGTH: 233

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 11

Gly Gly Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro			
1	5	10	15

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys			
20	25	30	

-continued

Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
 35 40 45

Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
 50 55 60

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
 65 70 75 80

Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
 85 90 95

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
 100 105 110

Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
 115 120 125

Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
 130 135 140

Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
 145 150 155 160

Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
 165 170 175

Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
 180 185 190

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
 195 200 205

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
 210 215 220

Lys Ser Leu Ser Leu Ser Pro Gly Lys
 225 230

<210> SEQ ID NO 12
 <211> LENGTH: 225
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 12

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
 1 5 10 15

Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser
 20 25 30

Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp
 35 40 45

Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn
 50 55 60

Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val
 65 70 75 80

Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
 85 90 95

Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
 100 105 110

Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
 115 120 125

Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr
 130 135 140

Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
 145 150 155 160

-continued

Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
165 170 175

Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys
180 185 190

Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
195 200 205

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
210 215 220

Lys
225

<210> SEQ ID NO 13

<211> LENGTH: 21

<212> TYPE: PRT

<213> ORGANISM: Apis mellifera

<400> SEQUENCE: 13

Met Lys Phe Leu Val Asn Val Ala Leu Val Phe Met Val Val Tyr Ile
1 5 10 15

Ser Tyr Ile Tyr Ala
20

<210> SEQ ID NO 14

<211> LENGTH: 22

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polypeptide

<400> SEQUENCE: 14

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
1 5 10 15

Ala Val Phe Val Ser Pro
20

<210> SEQ ID NO 15

<211> LENGTH: 25

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 15

Met Asp Arg Gly Thr Leu Pro Leu Ala Val Ala Leu Leu Leu Ala Ser
1 5 10 15

Cys Ser Leu Ser Pro Thr Ser Leu Ala
20 25

<210> SEQ ID NO 16

<211> LENGTH: 820

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 16

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
1 5 10 15

Ala Val Phe Val Ser Pro Gly Ala Glu Thr Val His Cys Asp Leu Gln
20 25 30

Pro Val Gly Pro Glu Arg Asp Glu Val Thr Tyr Thr Ser Gln Val
35 40 45

-continued

Ser Lys Gly Cys Val Ala Gln Ala Pro Asn Ala Ile Leu Glu Val His
 50 55 60
 Val Leu Phe Leu Glu Phe Pro Thr Gly Pro Ser Gln Leu Glu Leu Thr
 65 70 75 80
 Leu Gln Ala Ser Lys Gln Asn Gly Thr Trp Pro Arg Glu Val Leu Leu
 85 90 95
 Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Gln Ala Leu Gly
 100 105 110
 Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Gln Glu
 115 120 125
 Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr Gln
 130 135 140
 Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala Glu
 145 150 155 160
 Leu Asn Asp Pro Gln Ser Ile Leu Leu Arg Leu Gly Gln Ala Gln Gly
 165 170 175
 Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Gln Asp Met Gly Arg Thr
 180 185 190
 Leu Glu Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Gly Cys His Leu
 195 200 205
 Glu Gly Val Ala Gly His Lys Glu Ala His Ile Leu Arg Val Leu Pro
 210 215 220
 Gly His Ser Ala Gly Pro Arg Thr Val Thr Val Lys Val Glu Leu Ser
 225 230 235 240
 Cys Ala Pro Gly Asp Leu Asp Ala Val Leu Ile Leu Gln Gly Pro Pro
 245 250 255
 Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Gln Ile Trp Thr
 260 265 270
 Thr Gly Glu Tyr Ser Phe Lys Ile Phe Pro Glu Lys Asn Ile Arg Gly
 275 280 285
 Phe Lys Leu Pro Asp Thr Pro Gln Gly Leu Leu Gly Glu Ala Arg Met
 290 295 300
 Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala Ser
 305 310 315 320
 Ile Val Ser Leu His Ala Ser Ser Cys Gly Gly Arg Leu Gln Thr Ser
 325 330 335
 Pro Ala Pro Ile Gln Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Glu
 340 345 350
 Leu Leu Met Ser Leu Ile Gln Thr Lys Cys Ala Asp Asp Ala Met Thr
 355 360 365
 Leu Val Leu Lys Lys Glu Leu Val Ala His Leu Lys Cys Thr Ile Thr
 370 375 380
 Gly Leu Thr Phe Trp Asp Pro Ser Cys Glu Ala Glu Asp Arg Gly Asp
 385 390 395 400
 Lys Phe Val Leu Arg Ser Ala Tyr Ser Ser Cys Gly Met Gln Val Ser
 405 410 415
 Ala Ser Met Ile Ser Asn Glu Ala Val Val Asn Ile Leu Ser Ser Ser
 420 425 430
 Ser Pro Gln Arg Lys Lys Val His Cys Leu Asn Met Asp Ser Leu Ser
 435 440 445

-continued

Phe Gln Leu Gly Leu Tyr Leu Ser Pro His Phe Leu Gln Ala Ser Asn
 450 455 460

Thr Ile Glu Pro Gly Gln Gln Ser Phe Val Gln Val Arg Val Ser Pro
 465 470 475 480

Ser Val Ser Glu Phe Leu Leu Gln Leu Asp Ser Cys His Leu Asp Leu
 485 490 495

Gly Pro Glu Gly Gly Thr Val Glu Leu Ile Gln Gly Arg Ala Ala Lys
 500 505 510

Gly Asn Cys Val Ser Leu Leu Ser Pro Ser Pro Glu Gly Asp Pro Arg
 515 520 525

Phe Ser Phe Leu Leu His Phe Tyr Thr Val Pro Ile Pro Lys Thr Gly
 530 535 540

Thr Leu Ser Cys Thr Val Ala Leu Arg Pro Lys Thr Gly Ser Gln Asp
 545 550 555 560

Gln Glu Val His Arg Thr Val Phe Met Arg Leu Asn Ile Ile Ser Pro
 565 570 575

Asp Leu Ser Gly Cys Thr Ser Lys Gly Thr Gly Gly Pro Lys Ser
 580 585 590

Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu
 595 600 605

Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
 610 615 620

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser
 625 630 635 640

His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu
 645 650 655

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr
 660 665 670

Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
 675 680 685

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro
 690 695 700

Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
 705 710 715 720

Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val
 725 730 735

Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val
 740 745 750

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
 755 760 765

Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr
 770 775 780

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val
 785 790 795 800

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu
 805 810 815

Ser Pro Gly Lys
 820

<210> SEQ ID NO 17
 <211> LENGTH: 2463
 <212> TYPE: DNA

-continued

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 17

atggatcaa tgaagagagg	gctctgctgt	gtgctgctgc	tgtgtggagc	agtcttcgtt	60	
tcgccccggcg	ccgaaacagt	ccattgtgac	cttcagccctg	tgggccccga	gagggacgag	120
gtgacatata	ccactagcca	ggctctcgaa	ggctcgctgg	ctcaggcccc	caatgcacatc	180
cttgaagtcc	atgtccttctt	cctggagttc	ccaaacggggc	cgtcacaagct	ggagctgact	240
ctccaggcat	ccaagcaaaa	tggcacctgg	ccccgagagg	tgcttctggt	cctcagtgta	300
aacagcagtg	tcttcctgca	tctccaggcc	ctgggaatcc	cactgcactt	ggcctacaat	360
tccagcctgg	tcaccttcca	agagcccccg	ggggtcaaca	ccacagagct	gccatcttc	420
cccaagaccc	agatccttga	gtgggcagct	gagagggggc	ccatcacctc	tgctgtgag	480
ctgaatgacc	cccagagcat	cctcctccga	ctgggccaag	cccaggggtc	actgtcttc	540
tgcatgctgg	aagccagccaa	ggacatgggc	cgcacgctcg	agtgggggcc	gcgtactcca	600
gccttggtcc	ggggctgeca	cttggaaaggc	gtggccggcc	acaaggaggc	gcacatctcg	660
agggtctgc	cggggccactc	ggcggggccc	cgacgggtga	cggtgaaggt	ggaactgagc	720
tgcgccacccg	gggatctega	tgccgtctc	atcctgcagg	gtccccctca	cgtgtctgg	780
ctcatcgacg	ccaaccacaa	catgcagatc	tggaccactg	gagaataactc	cttcaagatc	840
tttccagaga	aaaacattcg	tggcttcaag	ctcccagaca	cacctaagg	cctcctgggg	900
gaggcccgga	tgtcaatgc	cagcattgtg	gcatccttcg	tggagetacc	gctggccagc	960
attgtctcac	ttcatgcctc	cagctgcgggt	ggtaggctgc	agacctacc	cgcaccgatc	1020
cagaccactc	ctcccaagga	cacttgtagc	ccggagctgc	tcatgtcctt	gatccagaca	1080
aagtgtcccg	acgacgccc	gaccctggta	ctaaagaaag	agcttgtgc	gcatttgaag	1140
tgccacatca	cggggcctgac	cttctggac	cccagctgtg	aggcagagga	caggggtgac	1200
aagtttgtct	tgegcagtgc	ttactccagc	tgtggcatgc	aggtgtcagc	aagtatgatc	1260
agcaatgagg	cggtggtcaa	tatcctgtcg	agctcatcac	cacageggaa	aaaggtgcac	1320
tgcctcaaca	tggacagect	ctcttccag	ctgggcccct	acctcagccc	acacttcctc	1380
caggcctcca	acaccatcga	gcccgggcag	cagagcttgc	tgcaggtcag	agtgtcccc	1440
tccgtctccg	agttcctgtct	ccagttagac	agctgccacc	tggacttggg	gcctgaggga	1500
ggcaccgtgg	aactcatcca	ggccggggcg	gccaaggggca	actgtgtgag	cctgctgtcc	1560
ccaagccccg	agggtgaccc	gcccctcagc	ttcctctcc	acttctacac	agtaccata	1620
cccaaaaaccg	gcaccctcag	ctgcacggta	gcccctcg	ccaaagacccg	gtctcaagac	1680
caggaagttcc	ataggactgt	cttcatgcgc	ttgaacatca	tcagccctga	cctgtctgg	1740
tgcacaagca	aaggcaccgg	tggtggaccc	aaatcttgc	acaaaactca	cacatgccca	1800
ccgtgcccag	cacctgaact	cctgggggga	ccgtcagct	tccttcccc	ccaaaaaccc	1860
aaggacaccc	tcatgatctc	ccggaccct	gaggtcacat	gcgtgggtgt	ggacgtgagc	1920
cacgaagacc	ctgaggtcaa	gttcaactgg	tacgtggacg	gcgtggaggt	gcataatgcc	1980
aagacaaagc	cgcggggagga	gcagttacaac	agcacgtacc	gtgtggtcag	cgtcctcacc	2040
gtcctgcacc	aggactggct	gaatggcaag	gagttacaagt	gcaaggcttc	caacaaagcc	2100
ctcccaagccc	ccatcgagaa	aaccatctcc	aaagccaaag	ggcagccccg	agaaccacag	2160

-continued

gtgtacaccc	tgc	ccccatc	ccgggaggag	atgaccaaga	accaggtcag	cctgacatgc	2220
ctggtaaaag	gcttctatcc	cagcgacatc	gccgtggagt	gggagagcaa	tgggcagccg	2280	
gagaacaact	acaagaccac	gcctccgtg	ctggactccg	acggctcctt	cttccttat	2340	
agcaagctca	ccgtggacaa	gagcaggtgg	cagcagggga	acgtcttctc	atgctccgtg	2400	
atgcatgagg	ctctgcacaa	ccactacacg	cagaagagcc	tctccctgtc	ccgggtaaa	2460	
tga						2463	

<210> SEQ ID NO 18

<211> LENGTH: 814

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 18

Met	Asp	Ala	Met	Lys	Arg	Gly	Leu	Cys	Cys	Val	Leu	Leu	Leu	Cys	Gly
1				5			10			15					

Ala	Val	Phe	Val	Ser	Pro	Gly	Ala	Glu	Thr	Val	His	Cys	Asp	Leu	Gln
					20			25			30				

Pro	Val	Gly	Pro	Glu	Arg	Asp	Glu	Val	Thr	Tyr	Thr	Ser	Gln	Val
					35		40		45					

Ser	Lys	Gly	Cys	Val	Ala	Gln	Ala	Pro	Asn	Ala	Ile	Leu	Glu	Val	His
					50		55		60						

Val	Leu	Phe	Leu	Glu	Phe	Pro	Thr	Gly	Pro	Ser	Gln	Leu	Glu	Leu	Thr
					65		70		75		80				

Leu	Gln	Ala	Ser	Lys	Gln	Asn	Gly	Thr	Trp	Pro	Arg	Glu	Val	Leu	Leu
					85		90		95						

Val	Leu	Ser	Val	Asn	Ser	Ser	Val	Phe	Leu	His	Leu	Gln	Ala	Leu	Gly
					100		105		110						

Ile	Pro	Leu	His	Leu	Ala	Tyr	Asn	Ser	Ser	Leu	Val	Thr	Phe	Gln	Glu
					115		120		125						

Pro	Pro	Gly	Val	Asn	Thr	Thr	Glu	Leu	Pro	Ser	Phe	Pro	Lys	Thr	Gln
					130		135		140						

Ile	Leu	Glu	Trp	Ala	Ala	Glu	Arg	Gly	Pro	Ile	Thr	Ser	Ala	Ala	Glu
					145		150		155		160				

Leu	Asn	Asp	Pro	Gln	Ser	Ile	Leu	Leu	Arg	Leu	Gly	Gln	Ala	Gln	Gly
					165		170		175						

Ser	Leu	Ser	Phe	Cys	Met	Leu	Glu	Ala	Ser	Gln	Asp	Met	Gly	Arg	Thr
					180		185		190						

Leu	Glu	Trp	Arg	Pro	Arg	Thr	Pro	Ala	Leu	Val	Arg	Gly	Cys	His	Leu
					195		200		205						

Glu	Gly	Val	Ala	Gly	His	Lys	Glu	Ala	His	Ile	Leu	Arg	Val	Leu	Pro
					210		215		220						

Gly	His	Ser	Ala	Gly	Pro	Arg	Thr	Val	Thr	Val	Lys	Val	Glu	Leu	Ser
					225		230		235		240				

Cys	Ala	Pro	Gly	Asp	Leu	Asp	Ala	Val	Leu	Ile	Leu	Gln	Gly	Pro	Pro
					245		250		255						

Tyr	Val	Ser	Trp	Leu	Ile	Asp	Ala	Asn	His	Asn	Met	Gln	Ile	Trp	Thr
					260		265		270						

Thr	Gly	Glu	Tyr	Ser	Phe	Lys	Ile	Phe	Pro	Glu	Lys	Asn	Ile	Arg	Gly
					275		280		285						

Phe	Lys	Leu	Pro	Asp	Thr	Pro	Gln	Gly	Leu	Leu	Glu	Ala	Arg	Met	
					290		295		300						

-continued

Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala Ser
 305 310 315 320
 Ile Val Ser Leu His Ala Ser Ser Cys Gly Gly Arg Leu Gln Thr Ser
 325 330 335
 Pro Ala Pro Ile Gln Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Glu
 340 345 350
 Leu Leu Met Ser Leu Ile Gln Thr Lys Cys Ala Asp Asp Ala Met Thr
 355 360 365
 Leu Val Leu Lys Lys Glu Leu Val Ala His Leu Lys Cys Thr Ile Thr
 370 375 380
 Gly Leu Thr Phe Trp Asp Pro Ser Cys Glu Ala Glu Asp Arg Gly Asp
 385 390 395 400
 Lys Phe Val Leu Arg Ser Ala Tyr Ser Ser Cys Gly Met Gln Val Ser
 405 410 415
 Ala Ser Met Ile Ser Asn Glu Ala Val Val Asn Ile Leu Ser Ser Ser
 420 425 430
 Ser Pro Gln Arg Lys Lys Val His Cys Leu Asn Met Asp Ser Leu Ser
 435 440 445
 Phe Gln Leu Gly Leu Tyr Leu Ser Pro His Phe Leu Gln Ala Ser Asn
 450 455 460
 Thr Ile Glu Pro Gly Gln Gln Ser Phe Val Gln Val Arg Val Ser Pro
 465 470 475 480
 Ser Val Ser Glu Phe Leu Leu Gln Leu Asp Ser Cys His Leu Asp Leu
 485 490 495
 Gly Pro Glu Gly Gly Thr Val Glu Leu Ile Gln Gly Arg Ala Ala Lys
 500 505 510
 Gly Asn Cys Val Ser Leu Leu Ser Pro Ser Pro Glu Gly Asp Pro Arg
 515 520 525
 Phe Ser Phe Leu Leu His Phe Tyr Thr Val Pro Ile Pro Lys Thr Gly
 530 535 540
 Thr Leu Ser Cys Thr Val Ala Leu Arg Pro Lys Thr Gly Ser Gln Asp
 545 550 555 560
 Gln Glu Val His Arg Thr Val Phe Met Arg Leu Asn Ile Ile Ser Pro
 565 570 575
 Asp Leu Ser Gly Cys Thr Ser Lys Gly Thr Gly Gly Thr His Thr
 580 585 590
 Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe
 595 600 605
 Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
 610 615 620
 Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val
 625 630 635 640
 Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
 645 650 655
 Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
 660 665 670
 Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
 675 680 685
 Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
 690 695 700

-continued

Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
 705 710 715 720

Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 725 730 735

Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 740 745 750

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 755 760 765

Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 770 775 780

Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 785 790 795 800

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 805 810

<210> SEQ ID NO 19

<211> LENGTH: 821

<212> TYPE: PRT

<213> ORGANISM: Mus musculus

<400> SEQUENCE: 19

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
 1 5 10 15

Ala Val Phe Val Ser Pro Gly Gly Glu Arg Val Gly Cys Asp Leu Gln
 20 25 30

Pro Val Asp Pro Thr Arg Gly Glu Val Thr Phe Thr Thr Ser Gln Val
 35 40 45

Ser Glu Gly Cys Val Ala Gln Ala Ala Asn Ala Val Arg Glu Val His
 50 55 60

Val Leu Phe Leu Asp Phe Pro Gly Met Leu Ser His Leu Glu Leu Thr
 65 70 75 80

Leu Gln Ala Ser Lys Gln Asn Gly Thr Glu Thr Gln Glu Val Phe Leu
 85 90 95

Val Leu Val Ser Asn Lys Asn Val Phe Val Lys Phe Gln Ala Pro Glu
 100 105 110

Ile Pro Leu His Leu Ala Tyr Asp Ser Ser Leu Val Ile Phe Gln Gly
 115 120 125

Gln Pro Arg Val Asn Ile Thr Val Leu Pro Ser Leu Thr Ser Arg Lys
 130 135 140

Gln Ile Leu Asp Trp Ala Ala Thr Lys Gly Ala Ile Thr Ser Ile Ala
 145 150 155 160

Ala Leu Asp Asp Pro Gln Ser Ile Val Leu Gln Leu Gly Gln Asp Pro
 165 170 175

Lys Ala Pro Phe Leu Cys Leu Pro Glu Ala His Lys Asp Met Gly Ala
 180 185 190

Thr Leu Glu Trp Gln Pro Arg Ala Gln Thr Pro Val Gln Ser Cys Arg
 195 200 205

Leu Glu Gly Val Ser Gly His Lys Glu Ala Tyr Ile Leu Arg Ile Leu
 210 215 220

Pro Gly Ser Glu Ala Gly Pro Arg Thr Val Thr Val Met Met Glu Leu
 225 230 235 240

Ser Cys Thr Ser Gly Asp Ala Ile Leu Ile Leu His Gly Pro Pro Tyr
 245 250 255

-continued

Val Ser Trp Phe Ile Asp Ile Asn His Ser Met Gln Ile Leu Thr Thr
 260 265 270

Gly Glu Tyr Ser Val Lys Ile Phe Pro Gly Ser Lys Val Lys Gly Val
 275 280 285

Glu Leu Pro Asp Thr Pro Gln Gly Leu Ile Ala Glu Ala Arg Lys Leu
 290 295 300

Asn Ala Ser Ile Val Thr Ser Phe Val Glu Leu Pro Leu Val Ser Asn
 305 310 315 320

Val Ser Leu Arg Ala Ser Ser Cys Gly Gly Val Phe Gln Thr Thr Pro
 325 330 335

Ala Pro Val Val Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Val Leu
 340 345 350

Leu Met Ser Leu Ile Gln Pro Lys Cys Gly Asn Gln Val Met Thr Leu
 355 360 365

Ala Leu Asn Lys Lys His Val Gln Thr Leu Gln Cys Thr Ile Thr Gly
 370 375 380

Leu Thr Phe Trp Asp Ser Ser Cys Gln Ala Glu Asp Thr Asp Asp His
 385 390 395 400

Leu Val Leu Ser Ser Ala Tyr Ser Ser Cys Gly Met Lys Val Thr Ala
 405 410 415

His Val Val Ser Asn Glu Val Ile Ile Ser Phe Pro Ser Gly Ser Pro
 420 425 430

Pro Leu Arg Lys Lys Val Gln Cys Ile Asp Met Asp Ser Leu Ser Phe
 435 440 445

Gln Leu Gly Leu Tyr Leu Ser Pro His Phe Leu Gln Ala Ser Asn Thr
 450 455 460

Ile Glu Leu Gly Gln Gln Ala Phe Val Gln Val Ser Val Ser Pro Leu
 465 470 475 480

Thr Ser Glu Val Thr Val Gln Leu Asp Ser Cys His Leu Asp Leu Gly
 485 490 495

Pro Glu Gly Asp Met Val Glu Leu Ile Gln Ser Arg Thr Ala Lys Gly
 500 505 510

Ser Cys Val Thr Leu Leu Ser Pro Ser Pro Glu Gly Asp Pro Arg Phe
 515 520 525

Ser Phe Leu Leu Arg Val Tyr Met Val Pro Thr Pro Thr Ala Gly Thr
 530 535 540

Leu Ser Cys Asn Leu Ala Leu Arg Pro Ser Thr Leu Ser Gln Glu Val
 545 550 555 560

Tyr Lys Thr Val Ser Met Arg Leu Asn Ile Val Ser Pro Asp Leu Ser
 565 570 575

Gly Lys Gly Thr Gly Gly Glu Pro Arg Val Pro Ile Thr Gln Asn
 580 585 590

Pro Cys Pro Pro Leu Lys Glu Cys Pro Pro Cys Ala Ala Pro Asp Leu
 595 600 605

Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val
 610 615 620

Leu Met Ile Ser Leu Ser Pro Met Val Thr Cys Val Val Val Asp Val
 625 630 635 640

Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val
 645 650 655

-continued

Glu Val His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser
 660 665 670
 Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Met
 675 680 685
 Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Arg Ala Leu Pro Ser
 690 695 700
 Pro Ile Glu Lys Thr Ile Ser Lys Pro Arg Gly Pro Val Arg Ala Pro
 705 710 715 720
 Gln Val Tyr Val Leu Pro Pro Ala Glu Glu Met Thr Lys Lys Glu
 725 730 735
 Phe Ser Leu Thr Cys Met Ile Thr Gly Phe Leu Pro Ala Glu Ile Ala
 740 745 750
 Val Asp Trp Thr Ser Asn Gly Arg Thr Glu Gln Asn Tyr Lys Asn Thr
 755 760 765
 Ala Thr Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser Lys Leu
 770 775 780
 Arg Val Gln Lys Ser Thr Trp Glu Arg Gly Ser Leu Phe Ala Cys Ser
 785 790 795 800
 Val Val His Glu Gly Leu His Asn His Leu Thr Thr Lys Thr Ile Ser
 805 810 815
 Arg Ser Leu Gly Lys
 820

<210> SEQ ID NO 20
 <211> LENGTH: 2466
 <212> TYPE: DNA
 <213> ORGANISM: Mus musculus
 <400> SEQUENCE: 20

atggatcaa	tgaagagagg	gctctgctgt	gtgctgctgc	tgtgtggagc	agtcttcgtt	60
tcgccccggcg	gggaaagagt	cggctgtat	ctacagcctg	tggacccac	aagggggtgag	120
gtgacgttta	ccaccagcca	ggctccgag	ggctgttag	ctcaggctgc	caatgtgt	180
cgtgaagtcc	acgttcttt	cctggatttt	cccgaaatgc	tgtcacatct	ggagctgact	240
cttcaggcat	ccaagaaaa	tggcacggag	acccaggagg	tgttcctgg	cctcgtttcg	300
aacaaaaatg	tcttcgtaa	gttccaggcc	ccggaaatcc	cattgcactt	ggcctacgac	360
tccagcctgg	tcatcttcca	aggacagccca	agagtcaaca	tcacagtgt	accatccctt	420
acctccagga	aacagatcct	cgactggca	gccaccaagg	gcccacatcac	ctcgatagca	480
gcactggatg	acccccaaag	catcgctctc	cagttggcc	aagacccaaa	ggcaccattc	540
ttgtgcttgc	cagaagctca	caaggacatg	ggcgccacac	ttgaatggca	accacgagcc	600
cagaccccaag	tccaaagctg	tgcgttggaa	ggtgtgtctg	gccacaagga	ggcctacatc	660
ctgaggatcc	tgccaggatc	tgaggccgg	ccccggacgg	tgaccgtat	gatggaactg	720
agttgcacat	ctggggacgc	cattctcattc	ctgcatggtc	ctccatatgt	ctcctggttc	780
atcgacatca	accacagcat	gcagatctt	accacagggt	aatactccgt	caagatcttt	840
ccaggaagca	aggtcaaagg	cgtggagctc	ccagacacac	cccaaggct	gatagccggag	900
gcccccaagc	tcaatgccag	cattgtcacc	tcctttgttag	agctccctct	ggtcagcaat	960
gtctccctga	gggcctccag	ctgcgggtgg	gtgttccaga	ccacccctgc	acccgtgt	1020
accacacctc	ccaaggacac	atgcagcccc	gtgctactca	tgtccctgtat	ccagccaaag	1080

-continued

tgtggcaatc	aggtcatgac	tctggcactc	aataaaaaac	acgtgcagac	tctccagtgc	1140
accatcacag	gcctgacttt	ctgggactcc	agctgccagg	ctgaagacac	tgacgaccat	1200
cttgcctga	gtagcgccta	ctccagctgc	ggcatgaaag	tgacagccca	tgtggtcagc	1260
aatgaggtga	tcatcagttt	cccgctcaggc	tcaccaccac	ttcggaaaaa	ggtacagtgc	1320
atcgacatgg	acagcctctc	cttccagctg	ggcctctacc	tcagccgca	cttcctccag	1380
gcatccaaca	ccatcgaact	aggccagcag	gccttegtac	aggtgagcgt	gtctccattg	1440
acctctgagg	tcacagtcca	gctagatagc	tgccatctgg	acttggggcc	cgaaggggac	1500
atggtggAAC	tcatccagag	ccgaacagcc	aagggcagct	gtgtgacatt	gtgtctcca	1560
agccctgaag	gtgaccccacg	cttcagcttc	ctccctccggg	tctacatgg	gcccacaccc	1620
accgctggca	ccctcagttg	caacttagct	ctgcgcctta	gcaccttgc	ccaggaagtc	1680
tacaagacag	tctccatgct	cctgaacatc	gtcagccctg	acctgtctgg	taaaggcacc	1740
ggtgggggtg	agcccagagt	gcccataaca	cagaacccct	gtcctccact	caaagagtgt	1800
cccccatgcg	cagctccaga	cctctgggt	ggaccatccg	tcttcatctt	ccctccaaag	1860
atcaaggatg	tactcatgat	ctccctgagc	cccatggtca	catgtgtgg	ggtggatgt	1920
agcgaggatg	acccagacgt	ccagatcagc	tgggttgta	acaacgtgga	agtacacaca	1980
gctcagacac	aaacccatag	agaggattac	aacagtactc	tccgggtgg	cagtgcctc	2040
cccatccagc	accaggactg	gatgagtggc	aaggagttca	aatgcaaggt	caacaacaga	2100
gccctccat	cccccatcga	gaaaaccatc	tcaaaaccca	gagggccagt	aagagctcca	2160
caggtatatg	tcttgccctc	accagcagaa	gagatgacta	agaaagagtt	cagtctgacc	2220
tgcatgatca	caggcttctt	acctgcccga	attgctgtgg	actggaccag	caatggcgt	2280
acagagcaaa	actacaagaa	cacgcacaaca	gtcctggact	ctgatggttc	ttacttcatg	2340
tacagcaagc	tcaagagtaca	aaagagcact	tggaaaagag	gaagtcttt	cgctgtca	2400
gtggtccacg	agggtctgca	caatcacctt	acgactaaga	ccatctcccg	gtctctgggt	2460
aaatga						2466

<210> SEQ ID NO 21

<211> LENGTH: 671

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 21

Met	Asp	Ala	Met	Lys	Arg	Gly	Leu	Cys	Cys	Val	Leu	Leu	Cys	Gly
1				5			10				15			

Ala	Val	Phe	Val	Ser	Pro	Gly	Ala	Glu	Thr	Val	His	Cys	Asp	Leu	Gln
				20			25			30					

Pro	Val	Gly	Pro	Glu	Arg	Asp	Glu	Val	Thr	Tyr	Thr	Ser	Gln	Val
35			40					45						

Ser	Lys	Gly	Cys	Val	Ala	Gln	Ala	Pro	Asn	Ala	Ile	Leu	Glu	Val	His
50				55			60								

Val	Leu	Phe	Leu	Glu	Phe	Pro	Thr	Gly	Pro	Ser	Gln	Leu	Glu	Leu	Thr
65			70			75		80							

Leu	Gln	Ala	Ser	Lys	Gln	Asn	Gly	Thr	Trp	Pro	Arg	Glu	Val	Leu	Leu
85				90				95							

Val	Leu	Ser	Val	Asn	Ser	Ser	Val	Phe	Leu	His	Leu	Gln	Ala	Leu	Gly
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

-continued

100	105	110
Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Gln Glu		
115	120	125
Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr Gln		
130	135	140
Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala Glu		
145	150	155
Leu Asn Asp Pro Gln Ser Ile Leu Leu Arg Leu Gly Gln Ala Gln Gly		
165	170	175
Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Gln Asp Met Gly Arg Thr		
180	185	190
Leu Glu Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Gly Cys His Leu		
195	200	205
Glu Gly Val Ala Gly His Lys Glu Ala His Ile Leu Arg Val Leu Pro		
210	215	220
Gly His Ser Ala Gly Pro Arg Thr Val Thr Val Lys Val Glu Leu Ser		
225	230	235
Cys Ala Pro Gly Asp Leu Asp Ala Val Leu Ile Leu Gln Gly Pro Pro		
245	250	255
Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Gln Ile Trp Thr		
260	265	270
Thr Gly Glu Tyr Ser Phe Lys Ile Phe Pro Glu Lys Asn Ile Arg Gly		
275	280	285
Phe Lys Leu Pro Asp Thr Pro Gln Gly Leu Leu Gly Glu Ala Arg Met		
290	295	300
Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala Ser		
305	310	315
Ile Val Ser Leu His Ala Ser Ser Cys Gly Gly Arg Leu Gln Thr Ser		
325	330	335
Pro Ala Pro Ile Gln Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Glu		
340	345	350
Leu Leu Met Ser Leu Ile Gln Thr Lys Cys Ala Asp Asp Ala Met Thr		
355	360	365
Leu Val Leu Lys Lys Glu Leu Val Ala His Leu Lys Cys Thr Ile Thr		
370	375	380
Gly Leu Thr Phe Trp Asp Pro Ser Cys Glu Ala Glu Asp Arg Gly Asp		
385	390	395
Lys Phe Val Leu Arg Ser Ala Tyr Ser Ser Cys Gly Met Gln Val Ser		
405	410	415
Ala Ser Met Ile Ser Asn Glu Ala Val Val Asn Ile Leu Ser Ser Ser		
420	425	430
Ser Pro Gln Arg Thr Gly Gly Pro Lys Ser Cys Asp Lys Thr His		
435	440	445
Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val		
450	455	460
Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr		
465	470	475
Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu		
485	490	495
Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys		
500	505	510

-continued

Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser
 515 520 525
 Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys
 530 535 540
 Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile
 545 550 555 560
 Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
 565 570 575
 Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
 580 585 590
 Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn
 595 600 605
 Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser
 610 615 620
 Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
 625 630 635 640
 Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu
 645 650 655
 His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 660 665 670

<210> SEQ ID NO 22
 <211> LENGTH: 2016
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 22

atggatgcaa tgaagagagg gctctgctgt gtgctgctgc tgtgtggagg agtcttcgtt 60
 tcgccccggcg ccgaaacagt ccattgtgac ctccagcctg tggggcccgaa gaggggacgag 120
 gtgacatata ccaactagcca ggtctcgaag ggctgcgtgg ctcaggcccc caatgcccac 180
 cttgaagtcc atgtcctt cctggagttc ccaacggggcc cgtcacagct ggagctgact 240
 ctccaggcat ccaagcaaaa tggcacctgg ccccgagagg tgcttctggt cctcagtgtta 300
 aacagcagtgc tcttcctgc tctccaggcc ctgggaatcc cactgcacatt ggcctacaat 360
 tccagcctgg tcaccttcca agagcccccg ggggtcaaca ccacagagct gccatcctc 420
 cccaagaccc agatccttga gtgggcagct gagagggggcc ccatcacctc tgctgtgag 480
 ctgaatgacc cccagagcat cctcctccga ctgggc当地 cccaggggtc actgtcctc 540
 tgcatgctgg aagccagcca ggacatgggc cgcacgctcg agtggggcc ggcgtactcca 600
 gccttggcc ggggtctgcca cttggaaaggc gtggccggcc acaaggaggc gcacatcctg 660
 agggtcctgc cggggccactc ggccggggcc cggacgggtga cggtaagggt ggaactgagc 720
 tgcgcacccg gggatcttga tgccgtcctc atcctgcagg gtccccctca cgtgtcctgg 780
 ctcatcgacg ccaaccacaa catgcagatc tggaccactg gagaataactc cttcaagatc 840
 tttccagaga aaaacattcg tggcttcaag ctccccagaca cacctcaagg cctcctgggg 900
 gagggccggaa tgctcaatgc cagcattgtg gcatccttcg tggagctacc gctggccagc 960
 attgtctcac ttcatgcctc cagctgcgggt ggtaggctgc agacatcacc cgcacccatc 1020
 cagaccactc ctcccaagga cactttagc ccggagctgc tcatgtcctt gatccagaca 1080
 aagtgtgccc acgacgccc acgcattgtgta ctaaagaaaag agttgttgc gcatttgaag 1140

-continued

tgcaccatca	cgggcctgac	cttctggac	cccagctgtg	aggcagagga	caggggtgac	1200
aagtttgtct	tgegcagtgc	ttactccagc	tgtggatgc	aggtgtcagc	aagtatgatc	1260
agcaatgagg	cggtggtcaa	tatcctgtcg	agctcatcac	cacagcggac	cggtggtgga	1320
ccaaatctt	gtgacaaaac	tcacacatgc	ccaccgtgcc	cagcacctga	actcctgggg	1380
ggaccgtcag	tcttccttt	cccccaaaa	cccaaggaca	ccctcatgtat	ctccggacc	1440
cctgagggtca	catgcgtgg	ggtggacgtg	agccacgaaag	accctgaggt	caagttcaac	1500
tggtacgtgg	acggcgtgga	ggtgcataat	gccaagacaa	agccgcggga	ggagcagttac	1560
aacagcacgt	accgtgtgg	cagcgtcctc	accgtcctgc	accaggactg	gctgaatggc	1620
aaggagtaca	agtgcacagg	ctccaaacaaa	gcccctccag	cccccatcga	gaaaaccatc	1680
tccaaagcca	aagggcagcc	ccgagaacca	caggtgtaca	ccctgcccc	atccgggag	1740
gagatgacca	agaaccagg	cagcctgacc	tgcctggtca	aaggcttcta	tcccagcgac	1800
atcgccgtgg	agtgggagag	caatgggac	ccggagaaca	actacaagac	cacgcctccc	1860
gtgctggact	ccgacggc	tcttcctc	tatagcaagc	tcaccgtgga	caagagcagg	1920
tggcagcagg	ggaacgtt	ctcatgctcc	gtgatgcatg	aggctctgca	caaccactac	1980
acgcagaaga	gcctctccct	gtccccgggt	aaatga			2016

<210> SEQ ID NO 23

<211> LENGTH: 606

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 23

Met	Asp	Ala	Met	Lys	Arg	Gly	Leu	Cys	Cys	Val	Leu	Leu	Leu	Cys	Gly
1				5			10			15					

Ala	Val	Phe	Val	Ser	Pro	Gly	Ala	Glu	Thr	Val	His	Cys	Asp	Leu	Gln
		20			25			30							

Pro	Val	Gly	Pro	Glu	Arg	Asp	Glu	Val	Thr	Tyr	Thr	Thr	Ser	Gln	Val
		35			40			45							

Ser	Lys	Gly	Cys	Val	Ala	Gln	Ala	Pro	Asn	Ala	Ile	Leu	Glu	Val	His
	50				55			60							

Val	Leu	Phe	Leu	Glu	Phe	Pro	Thr	Gly	Pro	Ser	Gln	Leu	Glu	Leu	Thr
65				70			75			80					

Leu	Gln	Ala	Ser	Lys	Gln	Asn	Gly	Thr	Trp	Pro	Arg	Glu	Val	Leu	Leu
				85			90			95					

Val	Leu	Ser	Val	Asn	Ser	Ser	Val	Phe	Leu	His	Leu	Gln	Ala	Leu	Gly
				100			105			110					

Ile	Pro	Leu	His	Leu	Ala	Tyr	Asn	Ser	Ser	Leu	Val	Thr	Phe	Gln	Glu
	115				120			125							

Pro	Pro	Gly	Val	Asn	Thr	Thr	Glu	Leu	Pro	Ser	Phe	Pro	Lys	Thr	Gln
	130				135			140							

Ile	Leu	Glu	Trp	Ala	Ala	Glu	Arg	Gly	Pro	Ile	Thr	Ser	Ala	Ala	Glu
145				150			155			160					

Leu	Asn	Asp	Pro	Gln	Ser	Ile	Leu	Leu	Arg	Leu	Gly	Gln	Ala	Gln	Gly
					165			170			175				

Ser	Leu	Ser	Phe	Cys	Met	Leu	Glu	Ala	Ser	Gln	Asp	Met	Gly	Arg	Thr
				180			185			190					

Leu	Glu	Trp	Arg	Pro	Arg	Thr	Pro	Ala	Leu	Val	Arg	Gly	Cys	His	Leu
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

-continued

195	200	205													
Glu	Gly	Val	Ala	Gly	His	Lys	Glu	Ala	His	Ile	Leu	Arg	Val	Leu	Pro
210							215				220				
Gly	His	Ser	Ala	Gly	Pro	Arg	Thr	Val	Thr	Val	Lys	Val	Glu	Leu	Ser
225							230			235			240		
Cys	Ala	Pro	Gly	Asp	Leu	Asp	Ala	Val	Leu	Ile	Leu	Gln	Gly	Pro	Pro
245							250			255				255	
Tyr	Val	Ser	Trp	Leu	Ile	Asp	Ala	Asn	His	Asn	Met	Gln	Ile	Trp	Thr
260						265				270					
Thr	Gly	Glu	Tyr	Ser	Phe	Lys	Ile	Phe	Pro	Glu	Lys	Asn	Ile	Arg	Gly
275						280				285					
Phe	Lys	Leu	Pro	Asp	Thr	Pro	Gln	Gly	Leu	Leu	Gly	Glu	Ala	Arg	Met
290						295				300					
Leu	Asn	Ala	Ser	Ile	Val	Ala	Ser	Phe	Val	Glu	Leu	Pro	Leu	Ala	Ser
305						310				315			320		
Ile	Val	Ser	Leu	His	Ala	Ser	Ser	Cys	Gly	Gly	Arg	Leu	Gln	Thr	Ser
325						330				335				335	
Pro	Ala	Pro	Ile	Gln	Thr	Thr	Pro	Pro	Lys	Asp	Thr	Cys	Ser	Pro	Glu
340						345				350					
Leu	Leu	Met	Ser	Leu	Ile	Gln	Thr	Lys	Cys	Ala	Asp	Asp	Ala	Met	Thr
355						360				365					
Leu	Val	Leu	Lys	Lys	Glu	Leu	Val	Ala	Thr	Gly	Gly	Gly	Thr	His	Thr
370						375				380					
Cys	Pro	Pro	Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe
385						390				395			400		
Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro
405						410				415					
Glu	Val	Thr	Cys	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	
420						425				430					
Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr
435						440				445					
Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	Val
450						455				460					
Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys
465						470				475			480		
Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser
485						490				495				495	
Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro
500						505				510					
Ser	Arg	Glu	Glu	Met	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val
515						520				525					
Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly
530						535				540					
Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp
545						550				555			560		
Gly	Ser	Phe	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp
565						570				575				575	
Gln	Gln	Gly	Asn	Val	Phe	Ser	Cys	Ser	Val	Met	His	Glu	Ala	Leu	His
580						585				590					
Asn	His	Tyr	Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser	Pro	Gly	Lys		
595						600				605					

-continued

```

<210> SEQ ID NO 24
<211> LENGTH: 1821
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 24

atggatgcaa tgaagagagg gctctgtgt gtgctgtgc tgtgtggagc agtctcggt 60
tcgccccggcg ccgaaacagt ccattgtgac cttcagectg tggggcccgaa gaggggacgg 120
gtgacatata ccaactagcca ggtctcgaaag ggctgcgtgg ctcaggcccc caatgcac 180
cttgaagtcc atgtcctt cctggagttc ccaacggggc cgtcacagct ggaggtgact 240
ctccaggcat ccaagcaaaa tggcacctgg ccccgagagg tgcttctggg cctcagtgt 300
aacagcagtg tttccctgca tctccaggcc ctgggaatcc cactgcac 360
tccagcctgg tcaccccttca agagcccccg ggggtcaaca ccacagagct gcccac 420
ccaaagaccc agatccttga gtgggcagct gagagggggcc ccatcac 480
ctgaatgacc cccagagcat cccatcccgta ctggggcaag cccaggggcc actgtcctt 540
tgcacatgtgg aagccagccaa ggacatggggc cgcacgctcg agtggccggcc gctgtacttca 600
gccttggtcc ggggctgcca cttggaaaggc gtggccggcc acaaggaggc gcacatcctg 660
agggtcctgc cggggccactc ggccggggcc cggacgggtga cggtaaggt ggaactgagc 720
tgcgcaccccg gggatctcgta tgccgtcctc atccctgcagg gtccccccta cgtgtcctgg 780
ctcatcgacg ccaaccacaa catgcac 840
tttccagaga aaaacattcg tggcttcaag ctcccagaca cacctcaagg cttccctggg 900
gaggcccgga tgctcaatgc cagcattgtg gcac 960
attgtctcac ttcatgcctc cagctgcgggt ggtaggctgc agac 1020
cagaccactc ctcccaagga cactttagc cccggagctgc tcatgtcctt gatccagaca 1080
aaatgtgtcc acgacgcccattt gaccctggta ctaaaagaaag agcttggctgc gaccgggtgg 1140
ggaactcaca catgcccacc gtggccagca cctgaactcc tggggggacc gtcagtc 1200
ctttccccc caaaacccaa ggaccccttc atgatctccca ggacccttga ggtcacatgc 1260
gtgggtggtgg acgtgagccaa cgaagacccctt gaggtcaagt tcaactggta cgtggacggc 1320
gtggaggtgc ataatgc 1380
gtgggtcagcg tcctcaccgt cctgcaccag gactggctga atggcaagga gtacaagtgc 1440
aaaggcttcca acaaaggcccctt cccagccccccatc atcgagaaaa ccatctccaa agccaaagg 1500
cagccccggag aaccacaggt gtacaccctg ccccatccc gggaggagat gaccaagaac 1560
cagggtcagcc tgacccctgcgtt ggtcaaaaggc ttctatccca ggcacatcgac cgtgggtgg 1620
gagagcaatg ggcagccgga gaacaactac aagaccacgc cttccgtgt ggactccgac 1680
ggcttccttc tccctatag caagctcacc gtggacaaga gcaggtggca gcaggggaac 1740
gtcttctcat gctccgtgat gcatgaggct ctgcacaacc actacacgca gaagac 1800
tccctgtccc cgggtaaatg a 1821

```

```

<210> SEQ ID NO 25
<211> LENGTH: 593
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

```

-continued

<400> SEQUENCE: 25

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
 1 5 10 15

Ala Val Phe Val Ser Pro Gly Ala Glu Thr Val His Cys Asp Leu Gln
 20 25 30

Pro Val Gly Pro Glu Arg Asp Glu Val Thr Tyr Thr Ser Gln Val
 35 40 45

Ser Lys Gly Cys Val Ala Gln Ala Pro Asn Ala Ile Leu Glu Val His
 50 55 60

Val Leu Phe Leu Glu Phe Pro Thr Gly Pro Ser Gln Leu Glu Leu Thr
 65 70 75 80

Leu Gln Ala Ser Lys Gln Asn Gly Thr Trp Pro Arg Glu Val Leu Leu
 85 90 95

Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Gln Ala Leu Gly
 100 105 110

Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Gln Glu
 115 120 125

Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr Gln
 130 135 140

Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala Glu
 145 150 155 160

Leu Asn Asp Pro Gln Ser Ile Leu Leu Arg Leu Gly Gln Ala Gln Gly
 165 170 175

Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Gln Asp Met Gly Arg Thr
 180 185 190

Leu Glu Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Gly Cys His Leu
 195 200 205

Glu Gly Val Ala Gly His Lys Glu Ala His Ile Leu Arg Val Leu Pro
 210 215 220

Gly His Ser Ala Gly Pro Arg Thr Val Thr Val Lys Val Glu Leu Ser
 225 230 235 240

Cys Ala Pro Gly Asp Leu Asp Ala Val Leu Ile Leu Gln Gly Pro Pro
 245 250 255

Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Gln Ile Trp Thr
 260 265 270

Thr Gly Glu Tyr Ser Phe Lys Ile Phe Pro Glu Lys Asn Ile Arg Gly
 275 280 285

Phe Lys Leu Pro Asp Thr Pro Gln Gly Leu Leu Gly Glu Ala Arg Met
 290 295 300

Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala Ser
 305 310 315 320

Ile Val Ser Leu His Ala Ser Ser Cys Gly Gly Arg Leu Gln Thr Ser
 325 330 335

Pro Ala Pro Ile Gln Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Glu
 340 345 350

Leu Leu Met Ser Leu Ile Thr Gly Gly Pro Lys Ser Cys Asp Lys
 355 360 365

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
 370 375 380

Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser

-continued

385	390	395	400
Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp			
405	410	415	
Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn			
420	425	430	
Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val			
435	440	445	
Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu			
450	455	460	
Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys			
465	470	475	480
Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr			
485	490	495	
Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr			
500	505	510	
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu			
515	520	525	
Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu			
530	535	540	
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys			
545	550	555	560
Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu			
565	570	575	
Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly			
580	585	590	

Lys

<210> SEQ ID NO 26
<211> LENGTH: 1782
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 26

atggatcaa tgaagagagg gctctgtgt gtgctgtgc tgggtggagg agtcttcgtt	60
tgcggccggcg ccgaaacagt ccattgtgac cttcagectg tggggcccgaa gagggacgag	120
gtgacatata ccaactagcca ggtctcgaaag ggctcggtgg ctcaggcccc caatgcacatc	180
cttgaagtcc atgtcctttt cctggagttt ccaacggggcc cgtcacagct ggagctgact	240
ctccaggcat ccaagcaaaa tggcacctgg ccccgagagg tgcttctggt cctcagtgtta	300
aacagcagtgc tttccctgca tctccaggcc ctgggaatcc cactgcaccc ggcctacaat	360
tccagcctgg tcaccttcca agagcccccc ggggtcaaca ccacagagct gccatccttc	420
cccaagaccc agatccttga gtgggcagct gagagggggcc ccatcaccc tgcgtgtgag	480
ctgaatgacc cccagagcat cttccctccga ctggggccaag cccaggggtc actgtccttc	540
tgcgtgtggc aagccagccaa ggacatggggc cgcacgctcg agtggggggcc gcgtactcca	600
gccttggcc ggggctgcca ctggaaaggc gtggccggcc acaaggaggc gcacatcctg	660
agggtcctgc cggggccactc ggccggggcc cggacggtga cggtaaggt ggaactgagc	720
tgcgcaccccg gggatctcga tggcgatcttc atccctgcagg gtcggccctca cgtgtcctgg	780
ctcatcgacg ccaaccacaa catgcagatc tggaccactg gagaataactc cttcaagatc	840

-continued

tttccagaga	aaaacatcg	tggcttcaag	ctcccagaca	cacctcaagg	cctcctgggg	900
gaggccccga	tgtcaatgc	cagcattgtg	gcatcctcg	tggagctacc	gctggccagc	960
attgtctcac	ttcatgcctc	cagctgcgg	ggtaggctgc	agacctacc	cgcaccgatc	1020
cagaccactc	ctcccaagga	cacttgtage	ccggagctgc	tcatgtcctt	gatcaccggt	1080
ggtgcccca	aatcttgtga	caaaactcac	acatgcccac	cgtgcccagc	acctgaactc	1140
ctggggggac	cgtcagtctt	cctttcccc	ccaaaaccca	aggacaccc	catgatctcc	1200
cggaccctg	aggtcacatg	cgtgggttg	gacgtgagcc	acgaagaccc	tgaggtcaag	1260
ttcaactgg	acgtggacgg	cgtggaggtg	cataatgcca	agacaaagcc	gcgggaggag	1320
cagtacaaca	gcacgttacgg	tgtggtcagg	gtcctcacgg	tcctgcacca	ggactggctg	1380
aatggcaagg	agtacaagtg	caaggtctcc	aacaaagccc	tcccagccccc	catcgagaaa	1440
accatctcca	aagccaaagg	gcagccccga	gaaccacagg	tgtacaccc	gccccatcc	1500
cgggaggaga	tgaccaagaa	ccaggtcagg	ctgacctgcc	tggtaaagg	cttctatccc	1560
agcgacatcg	ccgtggagtg	ggagagcaat	gggcageccgg	agaacaacta	caagaccacg	1620
cctccctgtc	tggactccga	cggctcttc	ttcctctata	gcaagctcac	cgtggacaag	1680
agcagggtggc	agcaggggaa	cgtttctca	tgctccgtga	tgcatgaggc	tctgcacaac	1740
caactacacgc	agaagagect	ctccctgtcc	ccgggtaaat	ga		1782

<210> SEQ ID NO 27

<211> LENGTH: 587

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 27

Met	Asp	Ala	Met	Lys	Arg	Gly	Leu	Cys	Cys	Val	Leu	Leu	Leu	Cys	Gly
1				5			10				15				
Ala	Val	Phe	Val	Ser	Pro	Gly	Ala	Glu	Thr	Val	His	Cys	Asp	Leu	Gln
		20			25			30							
Pro	Val	Gly	Pro	Glu	Arg	Asp	Glu	Val	Thr	Tyr	Thr	Ser	Gln	Val	
	35			40			45								
Ser	Lys	Gly	Cys	Val	Ala	Gln	Ala	Pro	Asn	Ala	Ile	Leu	Glu	Val	His
	50				55			60							
Val	Leu	Phe	Leu	Glu	Phe	Pro	Thr	Gly	Pro	Ser	Gln	Leu	Glu	Leu	Thr
	65			70			75			80					
Leu	Gln	Ala	Ser	Lys	Gln	Asn	Gly	Thr	Trp	Pro	Arg	Glu	Val	Leu	Leu
	85				90			95							
Val	Leu	Ser	Val	Asn	Ser	Ser	Val	Phe	Leu	His	Leu	Gln	Ala	Leu	Gly
	100			105			110								
Ile	Pro	Leu	His	Leu	Ala	Tyr	Asn	Ser	Ser	Leu	Val	Thr	Phe	Gln	Glu
	115				120			125							
Pro	Pro	Gly	Val	Asn	Thr	Thr	Glu	Leu	Pro	Ser	Phe	Pro	Lys	Thr	Gln
	130				135			140							
Ile	Leu	Glu	Trp	Ala	Ala	Glu	Arg	Gly	Pro	Ile	Thr	Ser	Ala	Ala	Glu
	145				150			155			160				
Leu	Asn	Asp	Pro	Gln	Ser	Ile	Leu	Leu	Arg	Leu	Gly	Gln	Ala	Gln	Gly
	165				170			175							
Ser	Leu	Ser	Phe	Cys	Met	Leu	Glu	Ala	Ser	Gln	Asp	Met	Gly	Arg	Thr
	180				185			190							

-continued

Leu Glu Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Gly Cys His Leu
 195 200 205

Glu Gly Val Ala Gly His Lys Glu Ala His Ile Leu Arg Val Leu Pro
 210 215 220

Gly His Ser Ala Gly Pro Arg Thr Val Thr Val Lys Val Glu Leu Ser
 225 230 235 240

Cys Ala Pro Gly Asp Leu Asp Ala Val Leu Ile Leu Gln Gly Pro Pro
 245 250 255

Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Gln Ile Trp Thr
 260 265 270

Thr Gly Glu Tyr Ser Phe Lys Ile Phe Pro Glu Lys Asn Ile Arg Gly
 275 280 285

Phe Lys Leu Pro Asp Thr Pro Gln Gly Leu Leu Gly Glu Ala Arg Met
 290 295 300

Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala Ser
 305 310 315 320

Ile Val Ser Leu His Ala Ser Ser Cys Gly Gly Arg Leu Gln Thr Ser
 325 330 335

Pro Ala Pro Ile Gln Thr Thr Pro Pro Lys Asp Thr Cys Ser Pro Glu
 340 345 350

Leu Leu Met Ser Leu Ile Thr Gly Gly Thr His Thr Cys Pro Pro
 355 360 365

Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro
 370 375 380

Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr
 385 390 395 400

Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn
 405 410 415

Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
 420 425 430

Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val
 435 440 445

Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser
 450 455 460

Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys
 465 470 475 480

Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu
 485 490 495

Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
 500 505 510

Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu
 515 520 525

Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe
 530 535 540

Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly
 545 550 555 560

Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
 565 570 575

Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 580 585

-continued

```

<210> SEQ ID NO 28
<211> LENGTH: 1764
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 28

atggatcaa tgaagagagg gctctgtgt gtgctgtgc tgggtggagc agtcttcgtt      60
tcgccccggcg ccgaaacagt ccattgtgac cttcagectg tggggccccga gagggacgag      120
gtgacatata ccaactagcca ggtctcgaag ggctgcgtgg ctcaggcccc caatgcacatc      180
cttgaagtcc atgtcctt cctggagttc ccaacggggc cgtcacagct ggagctgact      240
ctccaggcat ccaagcaaaa tggcacctgg ccccgagagg tgcttctgg cctcagtgtt      300
aacagcagtg tttccctgca tctccaggcc ctgggaatcc cactgcaccc ggcctacaat      360
tccagcctgg tcaccccttca agagcccccg ggggtcaaca ccacagagct gccatccctc      420
ccaaagaccc agatcccttga gtgggcagct gagagggggcc ccatcaccc tgcgtgtgag      480
ctgaatgacc cccagagcat cccctccga ctggggcaag cccaggggtc actgtccttc      540
tgcatgctgg aagccagcca ggacatgggc cgcacgctcg agtggcgcc gcgtactcca      600
gccttggtcc ggggctgcca ctgggaaggc gtggccggcc acaaggaggc gcacatccctg      660
agggtcctgc cggggccactc ggccggggcc cggacgggtga cgggtgaaggt ggaactgagc      720
tgcgcaccccg gggatctcgta tgccgtcctc atccctgcagg gtccccccta cgtgtctgg      780
ctcatcgacg ccaaccacaa catgcagatc tggaccactg gagaatactc cttcaagatc      840
tttccagaga aaaacattcg tggcttcaag ctcccaagaca cacctcaagg cctcctgggg      900
gaggccccgga tgctcaatgc cagcattgttgc gcatccctcg tggagctacc gctggccagc      960
attgtctcac ttcatgcctc cagctgcggt ggtaggctgc agacctcacc cgcaccgatc      1020
cagaccactc ctcccaagga cacttgcgtc cccggagctgc tcatgtcctt gatcaccgggt      1080
ggtggaaactc acacatgccc accgtgccc gcacactgaac tccctgggggg accgtcaatc      1140
ttccctttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca      1200
tgcgtgggg tggacgtgag ccacgaagac cctgagggtca agttcaactg gtacgtggac      1260
ggcgtggagg tgcataatgc caagacaaag cccggggagg agcagtacaa cagcacgtac      1320
cgtgtggtca gcgtccctac cgtcctgcac caggactggc tgaatggcaa ggagtacaag      1380
tgcaagggtct ccaacaaagc cctcccgacc cccatcgaga aaaccatctc caaagccaaa      1440
gggcagccccc gagaaccaca ggtgtacacc ctgccccat cccggggagga gatgaccaag      1500
aaccagggtca gcctgaccc cctggtcaaa ggcttctatc ccagcgcacat cggcgtggag      1560
tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctccctgt gctggactcc      1620
gacgggtccct tcttcctcta tagcaagatc accgtggaca agacgagggtg gcagcagggg      1680
aacgtcttct catgctccgt gatgcacatgag gctctgcaca accactacac gcagaagagc      1740
ctctccctgt ccccggttaa atga                                         1764

```

```

<210> SEQ ID NO 29
<211> LENGTH: 574
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens

```

<400> SEQUENCE: 29

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly

-continued

1	5	10	15
Ala Val Phe Val Ser Pro Gly Ala Glu Thr Val His Cys Asp Leu Gln			
20	25	30	
Pro Val Gly Pro Glu Arg Asp Glu Val Thr Tyr Thr Ser Gln Val			
35	40	45	
Ser Lys Gly Cys Val Ala Gln Ala Pro Asn Ala Ile Leu Glu Val His			
50	55	60	
Val Leu Phe Leu Glu Phe Pro Thr Gly Pro Ser Gln Leu Glu Leu Thr			
65	70	75	80
Leu Gln Ala Ser Lys Gln Asn Gly Thr Trp Pro Arg Glu Val Leu Leu			
85	90	95	
Val Leu Ser Val Asn Ser Ser Val Phe Leu His Leu Gln Ala Leu Gly			
100	105	110	
Ile Pro Leu His Leu Ala Tyr Asn Ser Ser Leu Val Thr Phe Gln Glu			
115	120	125	
Pro Pro Gly Val Asn Thr Thr Glu Leu Pro Ser Phe Pro Lys Thr Gln			
130	135	140	
Ile Leu Glu Trp Ala Ala Glu Arg Gly Pro Ile Thr Ser Ala Ala Glu			
145	150	155	160
Leu Asn Asp Pro Gln Ser Ile Leu Leu Arg Leu Gly Gln Ala Gln Gly			
165	170	175	
Ser Leu Ser Phe Cys Met Leu Glu Ala Ser Gln Asp Met Gly Arg Thr			
180	185	190	
Leu Glu Trp Arg Pro Arg Thr Pro Ala Leu Val Arg Gly Cys His Leu			
195	200	205	
Glu Gly Val Ala Gly His Lys Glu Ala His Ile Leu Arg Val Leu Pro			
210	215	220	
Gly His Ser Ala Gly Pro Arg Thr Val Thr Val Lys Val Glu Leu Ser			
225	230	235	240
Cys Ala Pro Gly Asp Leu Asp Ala Val Leu Ile Leu Gln Gly Pro Pro			
245	250	255	
Tyr Val Ser Trp Leu Ile Asp Ala Asn His Asn Met Gln Ile Trp Thr			
260	265	270	
Thr Gly Glu Tyr Ser Phe Lys Ile Phe Pro Glu Lys Asn Ile Arg Gly			
275	280	285	
Phe Lys Leu Pro Asp Thr Pro Gln Gly Leu Leu Gly Glu Ala Arg Met			
290	295	300	
Leu Asn Ala Ser Ile Val Ala Ser Phe Val Glu Leu Pro Leu Ala Ser			
305	310	315	320
Ile Val Ser Leu His Ala Ser Ser Cys Gly Gly Arg Leu Gln Thr Ser			
325	330	335	
Pro Ala Pro Ile Gln Thr Thr Pro Pro Thr Gly Gly Thr His Thr			
340	345	350	
Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe			
355	360	365	
Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro			
370	375	380	
Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val			
385	390	395	400
Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr			
405	410	415	

-continued

Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
 420 425 430

Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
 435 440 445

Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
 450 455 460

Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro
 465 470 475 480

Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
 485 490 495

Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
 500 505 510

Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
 515 520 525

Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
 530 535 540

Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His
 545 550 555 560

Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 565 570

<210> SEQ ID NO 30
 <211> LENGTH: 1725
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 30

atggatgcaa tgaagagagg gctctgctgt gtgctgctgc tgtgtggagg agtcttcgtt 60
 tcgccccggcg ccgaaacagt ccattgtgac cttcagcctg tggggcccgaa gaggacgag 120
 gtgacatata ccaactagcca ggtctcgaag ggctgcgtgg ctcaggcccc caatgccc 180
 cttgaagtcc atgtcctt cctggagttc ccaacggggcc cgtcacagct ggagctgact 240
 ctccaggcat ccaagcaaaa tggcacctgg ccccgagagg tgcttctggt ctcagtgt 300
 aacagcagtg tcttcctgca tctccaggcc ctggaaatcc cactgcacatt ggcctacaat 360
 tccagcctgg tcaccttcca agagcccccg ggggtcaaca ccacagagct gccatcctc 420
 cccaagaccc agatcctgaa gtgggcagct gagagggggcc ccatcacctc tgctgtgag 480
 ctgaatgacc cccagagcat cctcctccga ctgggccaag cccaggggtc actgtcctc 540
 tgcatgctgg aagccagcca ggacatgggc cgcacgctcg agtgggggcc ggcgtactcca 600
 gccttggtcc ggggctgcca cttggaaaggc gtggccggcc acaaggaggc gcacatcctg 660
 agggtcctgc cggggccactc ggccggggcc cggacgggtga cggtaaggt ggaactgagc 720
 tgcgcacccg gggatctgaa tgccgtcctc atcctgcagg gtccccctca cgtgtcctgg 780
 ctcatcgacg ccaaccacaa catgcagatc tggaccactg gagaataactc cttcaagatc 840
 tttccagaga aaaacattcg tggcttcaag ctcccagaca cacctcaagg cctcctgggg 900
 gaggccccga tgcataatgc cagcattgtg gcatccttcg tggagctacc gctggccagc 960
 attgtctcac ttcatgcctc cagctgcggg ggtaggctgc agacatcacc cgcacccatc 1020
 cagaccactc ctcccacccgg tgggtggaaact cacacatgcc caccgtgccc agcacctgaa 1080
 ctcctggggg gaccgtcagt cttccttcc cccccaaaaac ccaaggacac cctcatgatc 1140

-continued

tcccgaccc	ctgaggtcac	atgcgtggtg	gtggacgtga	gccacgaaga	ccctgaggc	1200
aagttcaact	ggtacgtgga	cggcgtggag	gtgcataatg	ccaagacaaa	gccgegggag	1260
gagcagtaca	acagcacgta	ccgtgtggtc	agcgtctca	ccgtctgca	ccaggactgg	1320
ctgaatggca	aggagttacaa	gtgcaagggtc	tccaacaaag	ccctcccaagc	ccccatcgag	1380
aaaaccatct	ccaaagccaa	agggcagccc	cgagaaccac	aggtgtacac	cctgccccca	1440
tcccgggagg	agatgaccaa	gaaccagggtc	agcctgaccc	gcctggtcaa	aggcttctat	1500
cccagcaca	tcgcccgtgga	gtggggagagc	aatgggcagc	cgggagaacaa	ctacaagacc	1560
acgcctcccg	tgctggactc	cgacggctcc	ttcttcctct	atagcaagct	caccgtggac	1620
aagagcaggt	ggcagcaggg	gaacgtcttc	tcatgctccg	tcatgctccg	ggctctgcac	1680
aaccactaca	cgcagaagag	cctctccctg	tcccccggta	aatga		1725

<210> SEQ ID NO 31

<211> LENGTH: 4

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polypeptide

<400> SEQUENCE: 31

Thr Gly Gly Gly

1

<210> SEQ ID NO 32

<211> LENGTH: 3

<212> TYPE: PRT

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Synthetic Polypeptide

<400> SEQUENCE: 32

Gly Gly Gly

1

<210> SEQ ID NO 33

<211> LENGTH: 582

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 33

Glu	Thr	Val	His	Cys	Asp	Leu	Gln	Pro	Val	Gly	Pro	Glu	Arg	Asp	Glu
1						5			10			15			

Val	Thr	Tyr	Thr	Thr	Ser	Gln	Val	Ser	Lys	Gly	Cys	Val	Ala	Gln	Ala
												20	25	30	

Pro	Asn	Ala	Ile	Leu	Glu	Val	His	Val	Leu	Phe	Leu	Glu	Phe	Pro	Thr
												35	40	45	

Gly	Pro	Ser	Gln	Leu	Glu	Leu	Thr	Leu	Gln	Ala	Ser	Lys	Gln	Asn	Gly
												50	55	60	

Thr	Trp	Pro	Arg	Glu	Val	Leu	Leu	Val	Leu	Ser	Val	Asn	Ser	Ser	Val
												65	70	75	80

Phe	Leu	His	Leu	Gln	Ala	Leu	Gly	Ile	Pro	Leu	His	Leu	Ala	Tyr	Asn
												85	90	95	

Ser	Ser	Leu	Val	Thr	Phe	Gln	Glu	Pro	Pro	Gly	Val	Asn	Thr	Thr	Glu
												100	105	110	

-continued

Leu Pro Ser Phe Pro Lys Thr Gln Ile Leu Glu Trp Ala Ala Glu Arg
 115 120 125

Gly Pro Ile Thr Ser Ala Ala Glu Leu Asn Asp Pro Gln Ser Ile Leu
 130 135 140

Leu Arg Leu Gly Gln Ala Gln Gly Ser Leu Ser Phe Cys Met Leu Glu
 145 150 155 160

Ala Ser Gln Asp Met Gly Arg Thr Leu Glu Trp Arg Pro Arg Thr Pro
 165 170 175

Ala Leu Val Arg Gly Cys His Leu Glu Gly Val Ala Gly His Lys Glu
 180 185 190

Ala His Ile Leu Arg Val Leu Pro Gly His Ser Ala Gly Pro Arg Thr
 195 200 205

Val Thr Val Lys Val Glu Leu Ser Cys Ala Pro Gly Asp Leu Asp Ala
 210 215 220

Val Leu Ile Leu Gln Gly Pro Pro Tyr Val Ser Trp Leu Ile Asp Ala
 225 230 235 240

Asn His Asn Met Gln Ile Trp Thr Thr Gly Glu Tyr Ser Phe Lys Ile
 245 250 255

Phe Pro Glu Lys Asn Ile Arg Gly Phe Lys Leu Pro Asp Thr Pro Gln
 260 265 270

Gly Leu Leu Gly Glu Ala Arg Met Leu Asn Ala Ser Ile Val Ala Ser
 275 280 285

Phe Val Glu Leu Pro Leu Ala Ser Ile Val Ser Leu His Ala Ser Ser
 290 295 300

Cys Gly Gly Arg Leu Gln Thr Ser Pro Ala Pro Ile Gln Thr Thr Pro
 305 310 315 320

Pro Lys Asp Thr Cys Ser Pro Glu Leu Leu Met Ser Leu Ile Gln Thr
 325 330 335

Lys Cys Ala Asp Asp Ala Met Thr Leu Val Leu Lys Lys Glu Leu Val
 340 345 350

Ala Thr Gly Gly Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu
 355 360 365

Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
 370 375 380

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
 385 390 395 400

Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
 405 410 415

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn
 420 425 430

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
 435 440 445

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro
 450 455 460

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
 465 470 475 480

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn
 485 490 495

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
 500 505 510

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

-continued

515	520	525
Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys		
530	535	540
Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys		
545	550	555
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu		
565	570	575
Ser Leu Ser Pro Gly Lys		
580		
<210> SEQ ID NO 34		
<211> LENGTH: 569		
<212> TYPE: PRT		
<213> ORGANISM: Homo sapiens		
<400> SEQUENCE: 34		
Glu Thr Val His Cys Asp Leu Gln Pro Val Gly Pro Glu Arg Asp Glu		
1	5	10
Val Thr Tyr Thr Ser Gln Val Ser Lys Gly Cys Val Ala Gln Ala		
20	25	30
Pro Asn Ala Ile Leu Glu Val His Val Leu Phe Leu Glu Phe Pro Thr		
35	40	45
Gly Pro Ser Gln Leu Glu Leu Thr Leu Gln Ala Ser Lys Gln Asn Gly		
50	55	60
Thr Trp Pro Arg Glu Val Leu Leu Val Leu Ser Val Asn Ser Ser Val		
65	70	75
Phe Leu His Leu Gln Ala Leu Gly Ile Pro Leu His Leu Ala Tyr Asn		
85	90	95
Ser Ser Leu Val Thr Phe Gln Glu Pro Pro Gly Val Asn Thr Thr Glu		
100	105	110
Leu Pro Ser Phe Pro Lys Thr Gln Ile Leu Glu Trp Ala Ala Glu Arg		
115	120	125
Gly Pro Ile Thr Ser Ala Ala Glu Leu Asn Asp Pro Gln Ser Ile Leu		
130	135	140
Leu Arg Leu Gly Gln Ala Gln Gly Ser Leu Ser Phe Cys Met Leu Glu		
145	150	155
Ala Ser Gln Asp Met Gly Arg Thr Leu Glu Trp Arg Pro Arg Thr Pro		
165	170	175
Ala Leu Val Arg Gly Cys His Leu Glu Gly Val Ala Gly His Lys Glu		
180	185	190
Ala His Ile Leu Arg Val Leu Pro Gly His Ser Ala Gly Pro Arg Thr		
195	200	205
Val Thr Val Lys Val Glu Leu Ser Cys Ala Pro Gly Asp Leu Asp Ala		
210	215	220
Val Leu Ile Leu Gln Gly Pro Pro Tyr Val Ser Trp Leu Ile Asp Ala		
225	230	235
Asn His Asn Met Gln Ile Trp Thr Gly Glu Tyr Ser Phe Lys Ile		
245	250	255
Phe Pro Glu Lys Asn Ile Arg Gly Phe Lys Leu Pro Asp Thr Pro Gln		
260	265	270
Gly Leu Leu Gly Glu Ala Arg Met Leu Asn Ala Ser Ile Val Ala Ser		
275	280	285

-continued

Phe Val Glu Leu Pro Leu Ala Ser Ile Val Ser Leu His Ala Ser Ser
 290 295 300

Cys Gly Gly Arg Leu Gln Thr Ser Pro Ala Pro Ile Gln Thr Thr Pro
 305 310 315 320

Pro Lys Asp Thr Cys Ser Pro Glu Leu Leu Met Ser Leu Ile Thr Gly
 325 330 335

Gly Gly Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro
 340 345 350

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
 355 360 365

Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
 370 375 380

Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
 385 390 395 400

Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu
 405 410 415

Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His
 420 425 430

Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
 435 440 445

Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
 450 455 460

Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
 465 470 475 480

Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
 485 490 495

Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn
 500 505 510

Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
 515 520 525

Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
 530 535 540

Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
 545 550 555 560

Lys Ser Leu Ser Leu Ser Pro Gly Lys
 565

<210> SEQ ID NO 35
 <211> LENGTH: 563
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 35

Glu Thr Val His Cys Asp Leu Gln Pro Val Gly Pro Glu Arg Asp Glu
 1 5 10 15

Val Thr Tyr Thr Ser Gln Val Ser Lys Gly Cys Val Ala Gln Ala
 20 25 30

Pro Asn Ala Ile Leu Glu Val His Val Leu Phe Leu Glu Phe Pro Thr
 35 40 45

Gly Pro Ser Gln Leu Glu Leu Thr Leu Gln Ala Ser Lys Gln Asn Gly
 50 55 60

Thr Trp Pro Arg Glu Val Leu Leu Val Leu Ser Val Asn Ser Ser Val
 65 70 75 80

-continued

Phe Leu His Leu Gln Ala Leu Gly Ile Pro Leu His Leu Ala Tyr Asn
 85 90 95
 Ser Ser Leu Val Thr Phe Gln Glu Pro Pro Gly Val Asn Thr Thr Glu
 100 105 110
 Leu Pro Ser Phe Pro Lys Thr Gln Ile Leu Glu Trp Ala Ala Glu Arg
 115 120 125
 Gly Pro Ile Thr Ser Ala Ala Glu Leu Asn Asp Pro Gln Ser Ile Leu
 130 135 140
 Leu Arg Leu Gly Gln Ala Gln Gly Ser Leu Ser Phe Cys Met Leu Glu
 145 150 155 160
 Ala Ser Gln Asp Met Gly Arg Thr Leu Glu Trp Arg Pro Arg Thr Pro
 165 170 175
 Ala Leu Val Arg Gly Cys His Leu Glu Gly Val Ala Gly His Lys Glu
 180 185 190
 Ala His Ile Leu Arg Val Leu Pro Gly His Ser Ala Gly Pro Arg Thr
 195 200 205
 Val Thr Val Lys Val Glu Leu Ser Cys Ala Pro Gly Asp Leu Asp Ala
 210 215 220
 Val Leu Ile Leu Gln Gly Pro Pro Tyr Val Ser Trp Leu Ile Asp Ala
 225 230 235 240
 Asn His Asn Met Gln Ile Trp Thr Thr Gly Glu Tyr Ser Phe Lys Ile
 245 250 255
 Phe Pro Glu Lys Asn Ile Arg Gly Phe Lys Leu Pro Asp Thr Pro Gln
 260 265 270
 Gly Leu Leu Gly Glu Ala Arg Met Leu Asn Ala Ser Ile Val Ala Ser
 275 280 285
 Phe Val Glu Leu Pro Leu Ala Ser Ile Val Ser Leu His Ala Ser Ser
 290 295 300
 Cys Gly Gly Arg Leu Gln Thr Ser Pro Ala Pro Ile Gln Thr Thr Pro
 305 310 315 320
 Pro Lys Asp Thr Cys Ser Pro Glu Leu Leu Met Ser Leu Ile Thr Gly
 325 330 335
 Gly Gly Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
 340 345 350
 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
 355 360 365
 Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
 370 375 380
 Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
 385 390 395 400
 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr
 405 410 415
 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly
 420 425 430
 Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
 435 440 445
 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
 450 455 460
 Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
 465 470 475 480

-continued

Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
 485 490 495

Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
 500 505 510

Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
 515 520 525

Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
 530 535 540

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser
 545 550 555 560

Pro Gly Lys

<210> SEQ ID NO 36

<211> LENGTH: 550

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 36

Glu Thr Val His Cys Asp Leu Gln Pro Val Gly Pro Glu Arg Asp Glu
 1 5 10 15

Val Thr Tyr Thr Thr Ser Gln Val Ser Lys Gly Cys Val Ala Gln Ala
 20 25 30

Pro Asn Ala Ile Leu Glu Val His Val Leu Phe Leu Glu Phe Pro Thr
 35 40 45

Gly Pro Ser Gln Leu Glu Leu Thr Leu Gln Ala Ser Lys Gln Asn Gly
 50 55 60

Thr Trp Pro Arg Glu Val Leu Leu Val Leu Ser Val Asn Ser Ser Val
 65 70 75 80

Phe Leu His Leu Gln Ala Leu Gly Ile Pro Leu His Leu Ala Tyr Asn
 85 90 95

Ser Ser Leu Val Thr Phe Gln Glu Pro Pro Gly Val Asn Thr Thr Glu
 100 105 110

Leu Pro Ser Phe Pro Lys Thr Gln Ile Leu Glu Trp Ala Ala Glu Arg
 115 120 125

Gly Pro Ile Thr Ser Ala Ala Glu Leu Asn Asp Pro Gln Ser Ile Leu
 130 135 140

Leu Arg Leu Gly Gln Ala Gln Gly Ser Leu Ser Phe Cys Met Leu Glu
 145 150 155 160

Ala Ser Gln Asp Met Gly Arg Thr Leu Glu Trp Arg Pro Arg Thr Pro
 165 170 175

Ala Leu Val Arg Gly Cys His Leu Glu Gly Val Ala Gly His Lys Glu
 180 185 190

Ala His Ile Leu Arg Val Leu Pro Gly His Ser Ala Gly Pro Arg Thr
 195 200 205

Val Thr Val Lys Val Glu Leu Ser Cys Ala Pro Gly Asp Leu Asp Ala
 210 215 220

Val Leu Ile Leu Gln Gly Pro Pro Tyr Val Ser Trp Leu Ile Asp Ala
 225 230 235 240

Asn His Asn Met Gln Ile Trp Thr Thr Gly Glu Tyr Ser Phe Lys Ile
 245 250 255

Phe Pro Glu Lys Asn Ile Arg Gly Phe Lys Leu Pro Asp Thr Pro Gln
 260 265 270

-continued

Gly	Leu	Leu	Gly	Glu	Ala	Arg	Met	Leu	Asn	Ala	Ser	Ile	Val	Ala	Ser
275				280											285
Phe	Val	Glu	Leu	Pro	Leu	Ala	Ser	Ile	Val	Ser	Leu	His	Ala	Ser	Ser
290					295										300
Cys	Gly	Gly	Arg	Leu	Gln	Thr	Ser	Pro	Ala	Pro	Ile	Gln	Thr	Thr	Pro
305					310										320
Pro	Thr	Gly	Gly	Thr	His	Thr	Cys	Pro	Pro	Cys	Pro	Ala	Pro	Glu	
							325			330				335	
Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp
					340										350
Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val	Val	Val	Asp
							355			360					365
Val	Ser	His	Glu	Asp	Pro	Glu	Val	Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly
							370			375					380
Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn
							385			390					400
Ser	Thr	Tyr	Arg	Val	Val	Ser	Val	Leu	Thr	Val	Leu	His	Gln	Asp	Trp
							405			410					415
Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro
							420			425					430
Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu
							435			440					445
Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Glu	Glu	Met	Thr	Lys	Asn
							450			455					460
Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile
							465			470					480
Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr
							485			490					495
Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe	Leu	Tyr	Ser	Lys
							500			505					510
Leu	Thr	Val	Asp	Ser	Arg	Trp	Gln	Gln	Gly	Asn	Val	Phe	Ser	Cys	
							515			520					525
Ser	Val	Met	His	Glu	Ala	Leu	His	Asn	His	Tyr	Thr	Gln	Lys	Ser	Leu
							530			535					540
Ser	Leu	Ser	Pro	Gly	Lys										
					545										550

1. A method of treating or preventing a fibrotic disorder in a patient in need thereof, the method comprising administering to the patient an effective amount of an endoglin polypeptide comprising an amino acid sequence at least 95% identical to amino acids 42-333 of SEQ ID NO: 1.

2. The method of claim 1, wherein the fibrotic disorder is liver fibrosis.

3. The method of claim 2, wherein the liver fibrosis is liver cirrhosis, alcohol-induced liver fibrosis, biliary duct injury, primary biliary cirrhosis, infection-induced liver fibrosis, congenital hepatic fibrosis or autoimmune hepatitis.

4. (canceled)

5. The method of claim 1, wherein the endoglin polypeptide does not include a sequence consisting of amino acids 379-430 of SEQ ID NO: 1.

6. The method of claim 1, wherein the endoglin polypeptide comprises an amino acid sequence at least 95% identical

to a sequence beginning at an amino acid corresponding to any of positions 26-42 of SEQ ID NO: 1 and ending at an amino acid corresponding to any of positions 333-378 of SEQ ID NO: 1.

7. The method of claim 1, wherein the endoglin polypeptide comprises an amino acid sequence at least 95% identical to a sequence selected from a group consisting of:

- amino acids 26-346 of SEQ ID NO: 1,
- amino acids 26-359 of SEQ ID NO: 1, and
- amino acids 26-378 of SEQ ID NO: 1.

8. The method of claim 1, wherein the endoglin polypeptide consists of a first portion consisting of an amino acid sequence at least 95% identical to a sequence selected from a group consisting of:

- amino acids 26-346 of SEQ ID NO: 1,
- amino acids 26-359 of SEQ ID NO: 1, and
- amino acids 26-378 of SEQ ID NO: 1

and a second portion that is heterologous to SEQ ID NO: 1.

9. The method of claim **8**, wherein the second portion of the endoglin polypeptide comprises an Fc portion of an IgG.

10. The method of claim **1**, wherein the endoglin polypeptide is a dimer.

11. The method of claim **1**, wherein the endoglin polypeptide is a homodimer.

12. The method of claim **1**, wherein the endoglin polypeptide does not include more than 50 consecutive amino acids from a sequence consisting of amino acids 379-586 of SEQ ID NO: 1.

13. The method of claim **1**, wherein the endoglin polypeptide binds human BMP-9 with an equilibrium dissociation constant (KD) less than 1×10^{-9} M or a dissociation rate constant (kd) less than 1×10^{-3} s $^{-1}$.

14. The method of claim **1**, wherein the endoglin polypeptide binds human BMP-9 with an equilibrium dissociation constant (KD) less than 1×10^{-9} M or a dissociation rate constant (kd) less than 5×10^{-4} s $^{-1}$.

15. The method of claim **1**, wherein the endoglin polypeptide binds human BMP-10 with an equilibrium dissociation constant (KD) less than 1×10^{-9} M or a dissociation rate constant (kd) less than 5×10^{-3} s $^{-1}$.

16. The method of claim **1**, wherein the endoglin polypeptide binds human BMP-10 with an equilibrium dissociation

constant (KD) less than 1×10^{-9} M or a dissociation rate constant (kd) less than 2.5×10^{-3} s $^{-1}$.

17. The method of claim **1**, wherein the endoglin polypeptide does not bind human TGF- β 1, human TGF- β 3, human VEGF, or human basic fibroblast growth factor (FGF-2).

18. (canceled)

19. The method of claim **1**, wherein the endoglin polypeptide includes a portion selected from the group consisting of: a constant domain of an immunoglobulin and a serum albumin.

20. The method of claim **1**, wherein the endoglin polypeptide comprises an immunoglobulin Fc domain.

21. The method of claim **20**, wherein the immunoglobulin Fc domain is joined to the ENG polypeptide portion by a linker.

22. (canceled)

23. The method of claim **1**, wherein the endoglin polypeptide includes one or more modified amino acid residues selected from: a glycosylated amino acid, a PEGylated amino acid, a farnesylated amino acid, an acetylated amino acid, a biotinylated amino acid, an amino acid conjugated to a lipid moiety, and an amino acid conjugated to an organic derivatizing agent.

24. (canceled)

* * * * *