発明の名称：監視方法、監視システム、および、構造物、建築物または移動体

(S1) Abstract: A n infrared sensor (42) detects infrared rays that are emitted from a region of a surface of a target object, said region having a coating ilm (20) of a coating material affixed thereto. The coating film (20) includes porous ceramic particles (22) and a binder (24), wherein the ceramic particles (22) include a compound expressed by one compositional formula among $A \gamma A_{1-\gamma}G_{1-x}O_{2}$, $R_{x}Al_{2}O_{3}$, and $R_{x}Ga_{2}O_{3}$. Here, A is one or more elements selected from the group consisting of Ca, Sr, and Ba, and R is one or more elements selected from the group consisting of the rare-earth elements. Additionally, x is 0.9 to 1.1, y is 0.9 to 1.1, c is 0.9 to 1.1, x is 2.9 to 3.1, and y is 4.9 to 5.1. The porosity of the ceramic particles (22) is 20% to 40%.

(Monitoring, method, monitoring system, and structure, building, or moving body)
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

添付公開書類：
一 国際調査報告（条約第21条（3））

(57) 要約：対象物の表面のうち塗料の塗膜（2.0）が付された領域から放射される赤外線が赤外線センサー（4.2）で検出される。塗膜（2.0）は、多孔質のセラミック粒子（2.2）と、バインダー（2.4）を含み、セラミック粒子（2.2）は、AaRbA1c0.4、AaRbGa0.4、RxAly0.2、およびRxaGa0.2のいずれかの組成式で表される化合物を含む。ここで、AはCa、Sr、およびBaからなる群から選択される一以上の元素であり、Rは希土類元素からなる群から選択される一以上の元素である。また、aは0.9以上1.1以下であり、bは0.9以上1.1以下であり、cは0.9以上1.1以下であり、xは2.9以上3.1以下であり、yは4.9以上5.1以下である。そして、セラミック粒子（2.2）の空孔率は20%以上40%以下である。
明細書

発明の名称:
監視方法、監視システム、および、構造物、建築物または移動体

技術分野

[0001] 本発明は監視方法、監視システム、および、構造物、建築物または移動体に関する。

背景技術

[0002] 壁面、路面等の構造の劣化はできるだけ早期に発見し、必要なメンテナンスを行うことが求められる。そのためには、構造の監視が容易に行えることが重要である。

[0003] 特許文献1には、トンネルのコンクリート覆工面を洗浄し、熱乾燥した後に赤外線カメラで撮影して、覆工面の損傷を検出することが記載されている。

先行技術文献

特許文献

[0004] 特許文献1:特開2002ー26743号公報

発明の概要

発明が解決しようとする課題

[0005] しかし特許文献1の技術では、構造物等の劣化を容易に検出することはできなかった。たとえば、特許文献1の方法は、検査対象とする面の洗浄や熱乾燥を必要とするため、時間も手間もかかるものであった。

[0006] 本発明は、上記の課題に鑑みてなされたものである。本発明の目的は、構造物等の劣化を容易に検出することにある。

課題を解決するための手段

[0007] 本発明の監視方法は、

対象物の表面のうち塗料の塗膜が付された領域から放射される赤外線を赤
外線センサで検出し、
前記塗膜は、多孔質のセラミック粒子と、バインダーとを含み、
前記セラミック粒子は、$A_a R_b A l_c O_4$、$A_a R_b G a_c O_4$、$R_x A l_y O_1$
および $R_x G a_y O_2$ のいずれかの組成式で表される化合物を含み、
A は C a 、 S r 、および B a からなる群から選択される一以上の元素であり、
R は希土類元素からなる群から選択される一以上の元素であり、
a は 0 . 9 以上 1. 1 以下であり、b は 0 . 9 以上 1. 1 以下であり、c は 0 . 9 以上 1. 1 以下であり、x は 2. 9 以上 3. 1 以下であり、y は 4. 9 以上 5. 1 以下であり、
前記セラミック粒子の空孔率が 20 % 以上 40 % 以下である。

[008] 本発明の監視システムは、
対象物の表面のうち塗料の塗膜が付された領域から放射される赤外線を検出する赤外線センサを備え、
前記塗膜は、多孔質のセラミック粒子と、バインダーとを含み、
前記セラミック粒子は、$A_a R_b A l_c O_4$、$A_a R_b G a_c O_4$、$R_x A l_y O_1$
および $R_x G a_y O_2$ のいずれかの組成式で表される化合物を含み、
A は C a 、 S r 、および B a からなる群から選択される一以上の元素であり、
R は希土類元素からなる群から選択される一以上の元素であり、
a は 0 . 9 以上 1. 1 以下であり、b は 0 . 9 以上 1. 1 以下であり、c は 0 . 9 以上 1. 1 以下であり、x は 2. 9 以上 3. 1 以下であり、y は 4. 9 以上 5. 1 以下であり、
前記セラミック粒子の空孔率が 20 % 以上 40 % 以下である。

[009] 本発明の構造物、建築物または移動体は、
表面の少なくとも一部に塗料の塗膜を有し、
前記塗膜は、多孔質のセラミック粒子と、バインダーとを含み、
前記セラミック粒子は、$A_a R_b A l_c O_4$、$A_a R_b G a_c O_4$、$R_x A l_y O_1$
2、および \(R_X G a \) のいずれかの組成式で表される化合物を含み、
AはCa、Sr、およびBaからなる群から選択される一以上の元素であり、
Rは希土類元素からなる群から選択される一以上の元素であり、
aは0.9以上1.1以下であり、bは0.9以上1.1以下であり、cは0.9以上1.1以下であり、xは2.9以上3.1以下であり、yは4.9以上5.1以下であり、
前記セラミック粒子の空孔率が20%以上40%以下である。

発明の効果

[0010] 本発明によれば、構造物等の劣化を容易に検出することができる。

図面の簡単な説明

[0011] 上述した目的およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。

[0012] [図1]実施形態に係る監視方法を説明するための図である。
[図2] (a) および (b) は、対象物の例を示す図である。
[図3] (a) および (b) は、対象物の例を示す図である。
[図4]実施形態に係る監視システムの機能構成を例示するブロック図である。
[図5]実施形態に係る監視システムのハードウェア構成を例示する図である。
[図6]赤外線センサにより得られた画像の例を示す図である。
[図7]実施例に係るYb₃Al₅O₁₂ペレットの放射特性を示す図である。
[図8]Yb₃Al₅O₁₂ペレットの表面を走査型電子顕微鏡で観察した結果を示す図である。

発明を実施するための形態

[0013] 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。

[0014] なお、以下に示す説明において、監視システム40の検出手段44は、ハ
ドウエア単位の構成ではなく、機能単位のブロックを示している。監視システム４０の検出手段４４は、任意のコンピュータのCPU、メモリ、メモリにロードされた本図の構成要素を実現するプログラム、そのプログラムを格納するハードディスクなどの記憶メディア、ネットワーク接続用インタフェースを中心にハードウェアとソフトウェアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。

[0015]（実施形態）

図１は、本実施形態に係る監視方法を説明するための図である。本方法では、対象物の表面のうち塗料の塗膜２０が付された領域から放射される赤外線が赤外線センサ４２で検出される。塗膜２０は、多孔質のセラミック粒子２２と、バインダー２４とを含み、セラミック粒子２２は、A_aR_bA_1yO_4
、A_aR_bG_a c O_4
、R_xA_1yO_12
、およびR_xG_a yO_12
のいずれかの組成式で表される化合物を含む。ここで、A はC a、S r、およびB aからなる群から選択される一以上の元素であり、R は希土類元素からなる群から選択される一以上の元素である。また、a は0.9以上1.1以下であり、b は0.9以上1.1以下であり、c は0.9以上1.1以下であり、x は2.9以上3.1以下であり、y は4.9以上5.1以下である。そして、セラミック粒子２２の空孔率は２０％以上40％以下である。以下に詳しく説明する。

[0016]図２（a）、図２（b）、図３（a）および図３（b）は、対象物１０の例を示す図である。対象物１０はたとえば構造物１０a、建築物１０b、または移動体１０cである。構造物１０aとしては、橋、トンネル、路面、鉄柱、鉄塔、堤防、塗、プラットホーム、遊戯設備等が挙げられる。建築物１０bとしては、ビル、家屋、倉庫、その他の施設等が挙げられる。移動体１０cとしては、船舶、車両、航空機等が挙げられる。対象物１０の表面を構成する材料としては、特に限定されないが、コンクリート、磁器、プラスチック、石、金属、木材等が挙げられる。対象物１０は、図２（a）の例において橋であり、図２（b）の例においてトンネルであり、図３（a）の例に
おいてビルであり、図3（b）の例において船舶である。各例において、たとえば対象物10の面11を監視対象とすることができる。

赤外線センサ42はたとえばフォトダイオードを用いたセンサや赤外線カメラである。本実施形態に係る塗料に含まれるセラミック粒子22は、赤外線帯域の特定波長における光の放射率や透過率が小さいという特性を有する。したがって、赤外線センサ42で検出される赤外線強度は塗膜20の表面では小さい。一方、塗膜20に、割れ、亀裂、剥がれ、ヨレ等の欠陥が生じた場合、塗膜20の隙間からは赤外線が放射される。そして、赤外線センサ42の検出結果では、塗膜20が形成されている領域と、亀裂等が生じている領域とのコントラストが強く現れる。よって、微細なクラック等も容易に発見することができる。

また、本実施形態に係る方法では、劣化検知のための振動センサや歪みセンサを設置する必要がなく、電源確保や電池交換の必要もない。赤外線センサ42を用いて所定のタイミングで（たとえば定期的に）、予め塗膜20が形成された表面を検査すればよい。たとえば赤外線センサ42を遠隔操作が可能な飛行体に取り付けて移動させながら検査を行うことで、人が作業しにくい場所の監視も可能となる。

さらに、塗料の成分やセラミック粒子22の構造を調整することにより塗膜20の強度を調整し、対象物10の表面よりも塗膜20に欠陥が入りやすくしてもよい。そうすれば、実際に対象物10に、引っ張り応力、圧縮応力、歪み等の荷重によるヒビ等が生じる前に、その予兆を検知することができると。

セラミックスは、特定波長領域において放射率が小さいという特性を持つ。しかし、セラミックスは透過性も有するために、セラミックスの裏面に存在する材料の放射を透過してしまうという課題があった。本実施形態に係る塗料に含まれるセラミック粒子22は、赤外線帯域の特定波長における光の放射率や透過率が小さいという特性を有する。具体的には、セラミック粒子22の空孔率が20％以上である。これにより、光が透過される前に赤外線
を散乱させることができるため赤外線の透過が少ない。したがって、塗料を
塗布した表面は特定波長における赤外線放出が少なくなる。

セラミック粒子 2 2 は空孔と緻密部を有する。緻密部は、セラミック結晶
の焼結体からなり、空孔は、セラミック結晶の隙間に形成されている。すな
わち、セラミック粒子 2 2 は多結晶焼結体であるといえる。たとえば空孔は
、セラミック粒子 2 2 の内部で連結しているが直線的に連続していない部分
を含む。セラミック粒子 2 2 の空孔の大きさは特に限定されないが、たとえ
ば空孔の断面積は 5 け m² 以下である。空孔の断面積は、たとえば電子顕微鏡
でセラミック粒子 2 2 の断面を観察することで確認できる。

塗膜 2 0 の熱放射特性の例について、以下に説明する。たとえば、本実施
形態における塗膜 2 0 の 8 0 0 n m 以上 1 1 0 0 n m 以下の波長領域におけ
る放射強度の最大値は、1 1 0 0 n m より長波長側の領域における放射強度
の 2 倍以上であり、より好ましくは 3 倍以上である。ここで、放射強度を測
定する温度は特に限定されず、全温度領域でこのような波長選択性を有する
必要は無い。少なくとも一つの温度条件の下で塗膜 2 0 の熱放射特性が、上
記の波長選択性を有していてならばよい。ただし、8 0 0 n m 以上 1 1 0 0 n m
以下の波長領域における放射強度を測定する温度と、1 1 0 0 n m より長波
長側の領域における放射強度を測定する温度は同一とする。

ここで、1 1 0 0 n m より長波長側の波長領域とは、たとえば 1 1 0 0 n
m で 1 7 0 0 n m 以下の波長領域である。また、8 0 0 n m 以上 1 1 0 0
n m 以下の波長領域における放射強度の最大値が、1 1 0 0 n m より長波長
側の波長領域における放射強度の 2 倍以上であるとは、たとえば 8 0 0 n m
以上 1 1 0 0 n m 以下の波長領域における放射強度の最大値が、1 1 0 0 n
m より長波長側の波長領域における放射強度の 2 倍以上であること
をいう。

上記した通り、セラミック粒子 2 2 は、A₃R₆A₁ₓC₃O₇、A₃R₆Gₐ₀C₃O₇
、RₓA₁ₓC₃O₇1₂、および RₓGₐ₀C₃O₇1₂ のいずれかの組成式で表される化合物
を含む。この化合物はたとえば結晶である。特に、セラミック粒子 2 2 の主
成分が上記の組成で表される結晶であることが好ましく、たとえばセラミック粒子22において、AaRbAlcO4、AaRbGacO4、RxAlO12、およびRxGaO4のいずれかの組成式で表される結晶の含有率が75重量%以上であることが好ましい。ここで、AはCa、Sr、およびBaからなる群から選択される以上の元素であり、Rは希土類元素からなる群から選択される以上の元素である。なかでもRはたとえばランタノイドとすることができる。ランタノイドはたとえばPr、Nd、Sm、Eu、 Tb、Dy、Ho、Er、Tm、およびYbからなる群から選択される以上である。ランタノイドイオンの放射は、例えばセンサやカメラのキャリブレーションに使用できる。また、RをランタノイドのYbとすることで、Yb3+イオンの放射を示したまま、それ以外の近赤外領域の放射を低減できる。

AaRbAlcO4またはAaRbGacO4の組成で表される結晶はたとえばK2NiF4型構造を有する。また、RxAlO12または RxGaO12の組成で表される結晶はたとえばガーネット型構造を有する。セラミック粒子22に含まれる結晶の組成および構造は、たとえばX線回折法によって確認できる。

上記した通り、セラミック粒子22の空孔率は20%以上40%以下である。セラミック粒子22の空孔率を20%以上とすることにより対象物10からの放射の透過に起因する赤外線の放出を十分低減できる。また、セラミック粒子22の空孔率を40%以下とすることにより、塗料中でのセラミック粒子22の強度を保つことができると共に、R3+の放射を保つことができると。セラミック粒子22の空孔率は35%以下であることがより好ましい。一方、塗膜20に欠陥が生じやすくし、対象物10の損傷の予兆を検知しやすくなる観点から、セラミック粒子22の空孔率は25%以上であることがより好ましく、30%以上であることがさらに好ましい。

セラミック粒子22の「空孔率」は、セラミック粒子22の全体積に対するセラミック粒子22内に存在する隙間の全体積の割合である。空孔率は以下の式を用いて算出される。
空孔率 = 1 - (セラミックの実密度 / セラミックの理論密度)

ここで、セラミック粒子 22 の空孔率の測定は、たとえば以下のように行うことができる。

まず、セラミック粒子 22 の表面に樹脂を塗布し、乾燥させ、空気中での重量を測定する。次いで、樹脂を塗布したセラミック粒子 22 を液体中に入れ、液体中での重量を測定する。これらを用いて、セラミック粒子 22 の実密度を測定する。

また、セラミック粒子 22 の重量、結晶構造、体積から理論密度を計算により求める。セラミック粒子 22 の理論密度は、セラミック粒子 22 に空孔が存在しないと仮定した場合の理論的な密度である。上記の実密度と理論密度とを用いて、セラミック粒子 22 の空孔率を求めることができる。

本測定において、セラミック粒子 22 の表面に樹脂を塗布することにより、空孔への液体の侵入を防ぐことができる。セラミック粒子 22 の表面に塗布する樹脂の種類は特に限定されない。ただし、表面に塗布することから、比重が小さく粘性の高いものであることが好ましい。また、アルキメデス法に用いる液体と反応しないことが好ましい。樹脂としては、例えばアクリル樹脂やセルロース系樹脂などを用いることができる。

セラミック粒子 22 はたとえば以下のように製造できる。セラミック粒子 22 に含まれる元素を含有する複数の材料、たとえば酸化物を準備し、上記したいずれかの組成式の結晶を得るよう量論比に秤量する。ただし、空気中での安定性の観点から、アルカリ土類金属の元素を含有する材料としては、炭酸塩が好適に用いられる。アルカリ土類金属の炭酸塩は、空気中での焼成時に酸化物に変化するので、アルカリ土類金属の量論比で秤量すればよい。

そして、材料を混合して焼成することにより多結晶体を得る。その後、多結晶体を粉砕して一次粒子を得る。さらに一次粒子をプレス成型してたとえば再度焼成（焼結）し、ペレットを得る。ペレットを粗く砕くことにより、セラミック粒子 22 が得られる。
多結晶体を粉砕して得る一次粒子は、その粒径サイズが大きいことが好ましい。そうすれば一次粒子と一次粒子との間に隙間が形成されやすく、大きな空孔を作ることができる。くわえて、塗膜20に欠陥が生じやすくなることができ、対象物10の損傷の予兆を検知しやすくなる。

また、一次粒子は、粒径が大きいいことが好ましい。粒径の小さな粒子を含むことにより、一次粒子と一次粒子との連結が容易になるため焼結しやすくなる。一方、一次粒子の粒径が小さく、かつ、粒径サイズが大きい場合には、高温下または長時間での焼結が必要となる。なお、空孔率と焼結時間とのバランスを考慮して、粒径の大きな粒子の割合が、粒径の小さな粒子の割合よりも多いことが好ましい。

また、たとえば一次粒子の粒径やプレス成型での圧力、ベレット形成時の焼成温度等を調整することにより、セラミック粒子22の空孔率を調整することができる。たとえば、セラミック粒子22に含まれる化合物が組成式AₐRₐA₁cO₄で表される場合、ベレット形成時の焼結温度は1350℃以上1400℃以下であることが好ましい。また、セラミック粒子22に含まれる化合物が組成式AₐRₐGa₁cO₄で表される場合、ベレット形成時の焼結温度は1250℃以上1300℃以下であることが好ましい。焼結温度を下限以上とすることで、焼結時間を短く抑え、コスト低減が図れる。焼結温度を上限以下とすることで、空孔率が低下したり、焼成体が溶融したりすることなく、好適な空孔率の焼結体を安定して得られる。

セラミック粒子22の粒径は特に限定されないが、セラミック粒子22の粒径分布曲線における最大ピークは、5μm以上100μm以下の範囲内に位置することが好ましい。そうすれば、セラミック粒子22が対象物10に対して均一に固定されやすくなるとともに、塗膜20に欠陥が生じやすくなり、対象物10の損傷の予兆を検知しやすくなることができる。セラミック粒子22の粒径分布曲線における最大ピークは、10μm以上60μm以下の範囲内に位置することがより好ましく、20μm以上50μm以下の範囲内に位置することがさらに好ましい。
また、塗料の塗膜20に対するセラミック粒子22の含有率は、75重量％以上92重量％以下であることが好ましい。そうすれば、バインダー24でセラミック粒子22を十分結合することができるとともに、対象物10からの赤外線をセラミック粒子22で十分遮蔽できる。塗料の塗膜20に対するセラミック粒子22の含有率は、たとえば塗料の塗膜20を高温加熱し、バインダー24等の成分を灰化させ、その後、灰化の前後の重量の比率を計算することにより求めることができる。

バインダー24は塗料の塗膜20においてセラミック粒子22を互いに結合する。たとえばバインダー24は樹脂を含む。セラミック粒子22の赤外線帯域における光の放射率や透過率を低く維持するために、塗料および塗料の塗膜20において、セラミック粒子22の空孔にはバインダー24が入り込まないと好ましい。ただし、バインダー24の状態は特に限定されず、バインダー24は塗料および塗料の塗膜20の少なくとも一方において、セラミック粒子22の空孔の少なくとも一部に入り込んでいても良い。また、バインダー24の屈折率が1.0以上1.4以下であることが好ましい。バインダー24の屈折率が1.0以上1.4以下であれば、空孔にバインダー24が入り込んだ場合にもセラミック粒子22の赤外線帯域における光の透過抑制効果に対する影響が小さい。

バインダー24としては、フッ素樹脂が挙げられる。なかでもバインダー24は非晶性フッ素樹脂を含むことが好ましく、非晶性フッ素樹脂であることがより好ましい。そうすれば、バインダー24の屈折率を低くすることができる。

バインダー24の光の吸収率は1200nｍ以上1700nｍ以下の波長範囲にわたって、0.1以下であることが好ましい。物質の吸収率と放射率とは等しくなることから、1200nｍ以上1700nｍ以下の波長範囲における吸収率を0.1以下とすることにより、バインダー24の赤外線の放射率を低くすることができる。ひいては、塗膜20の赤外線の放射を低減することができる。
塗料は、セラミック粒子2 2 およびバインダー2 4 の他に顔料、溶剤、可塑剤、分散材、増粘剤、その他の添加剤を含んでも良い。これらの添加剤の含有量の合計は、たとえば塗料の塗膜2 0 に対して5 重量％以下である。

塗料は、セラミック粒子2 2 、バインダー2 4 および必要に応じてその他の成分を混合することにより得ることができる。

塗料は、対象物1 0 の表面に塗布して用いることができる。対象物1 0 はバインダー2 4 が固化又は硬化することにより塗料の塗膜2 0 で覆われる。そうすると、たとえば対象物1 0 を撮影した赤外線検出画像において、塗膜2 0 のクラック等を容易に見発でき、ひいては、対象物1 0 の損傷を早期に見発したり、対象物1 0 の損傷の予兆を検知したりすることができる。

対象物1 0 からの赤外線の透過を抑制する観点から、塗膜2 0 の厚さは5 0 µm以上であることが好ましく、1 00 µm以上であることがより好ましい。一方、塗膜2 0 の厚さは5 00 µm以下であることが好ましく、2 00 µm以下であることがより好ましい。そうすれば、塗膜2 0 に欠陥が生じやすくすることができ、対象物1 0 の損傷の予兆を検知しやすくなる。

図4は、本実施形態に係る監視システム4 0 の機能構成を例示するブロック図である。本実施形態の監視方法は、たとえば以下のような監視システム4 0 により実現される。監視システム4 0 は、赤外線センサ4 2 および検出手段4 4 を備える。赤外線センサ4 2 は、対象物1 0 の表面のうち塗料の塗膜2 0 が付された領域から放射される赤外線を検出する。検出手段4 4 は、赤外線センサ4 2 の検出結果を分析することにより、塗膜2 0 の劣化を検出する。上記した通り、塗膜2 0 は、多孔質のセラミック粒子2 2 と、バインダー2 4 とを含み、セラミック粒子2 2 は、A a R b A 1 c O 4 、A a R b G a c O 4 、R x A 1 y O 12 、およびR x G a y O 2 のいずれかの組成式で表される化合物を含む。ここで、A はCa 、Sr 、およびBa からなる群から選択される一以上の元素であり、R は希土類元素からなる群から選択される一以上の元素である。また、a は0 . 9 以上1 . 1 以下であり、b は0 . 9 以上1 . 1 以下であり、c は0 . 9 以上1 . 1 以下であり、x は2 . 9 以上3 . 1 以
下であり、y は 4.9 以上 5.1 以下である。そして、セラミック粒子 2.2
の空孔率は 20% 以上 40% 以下である。以下に詳しく説明する。

[0047] 検査対象とする領域の少なくとも一部には、塗膜 20.0 が予め形成されてい
る。赤外線センサ 4.2 が赤外線カメラである場合、赤外線センサ 4.2 は検出
結果として画像データを出力する。この画像では、検出された赤外線強度に
応じたコントラストが示されている。

[0048] 図 5 は、監視システム 4.0 のハードウェア構成を示す図である。本図
において、検出手段 4.4 は集積回路 1.0.0 を用いて実装されている。集積回
路 1.0.0 は、例えば SoC (System On Chip) である。

[0049] 集積回路 1.0.0 は、バス 1.0.2、プロセッサ 1.0.4、メモリ 1.0.6、スト
レージデバイス 1.0.8、入出カインタフェース 1.1.0、及びネットワークイ
ンタフェース 1.1.2 を有する。バス 1.0.2 は、プロセッサ 1.0.4、メモリ 1.0
6、ストレージデバイス 1.0.8、入出カインタフェース 1.1.0、及びネット
ワークインタフェース 1.1.2 が、相互にデータを送受信するためのデータ
伝送路である。ただし、プロセッサ 1.0.4 などを互いに接続する方法は、バ
ス接続に限定される。プロセッサ 1.0.4 は、マイクロプロセッサなど、用
いて実装される演算処理装置である。メモリ 1.0.6 は、RAM (Random Access
Memory) など、用いて実装されるメモリである。ストレージデバイス 1.0.8
は、ROM (Read Only Memory) やフラッシュメモリなど、用いて実装されるス
トレージデバイスである。

[0050] 入出カインタフェース 1.1.0 は、集積回路 1.0.0 を周辺デバイスと接続す
るためのインタフェースである。本図において、入出カインタフェース 1.1
0 は赤外線センサ 42、表示部 4.6、および入力部 4.8 が接続されている
。表示部 4.6 は、たとえば検出手段 4.4 の処理結果を表示するモニタであり
、入力部 4.8 は、たとえば検出手段 4.4 に処理を指示する入力装置である。

[0051] ネットワークインタフェース 1.1.2 は、集積回路 1.0.0 を通信網に関連す
るためのインタフェースである。この通信網は、例えば CAN (Controller Ar
ea Network) 通信網である。なお、ネットワークインタフェース 1.1.2 が通
信終に接続する方法は、無線接続であってもよいし、有線接続であってもよい。

0052 ストレージデバイス108は、検出手段44の機能を実現するためのプログラムモジュールを記憶している。プロセッサ104は、このプログラムモジュールをメモリ106に読み出して実行することで、検出手段44の機能を実現する。

0053 集積回路100のハードウェア構成は本図に示した構成に限定されない。例えば、プログラムモジュールはメモリ106に格納されてもよい。この場合、集積回路100は、ストレージデバイス108を備えていなくてもよい。

0054 図4に戻り、監視システム40の動作について以下に説明する。監視システム40において、赤外線センサ42は固定カメラでも良いし、撮像する領域を変化させることができる可動カメラでも良い。

0055 検出手段44は赤外線センサ42から画像データを取得し、処理することで、塗膜20の劣化を検出し、対象物10の劣化の有無を監視する。検出手段44が塗膜20の劣化を検出する方法の例について、以下に説明する。

0056 図6は、赤外線センサ42により得られた画像の例を示す図である。本図において、検出された強度が高い部分を黒で、低い部分を白で表している。たとえば、塗膜20が形成されている領域は、赤外線の放射や透過が少ないことから、画像中で白く表示される。一方、塗膜20にひび割れが生じた場合、本図のように塗膜20に隙間ができ、対象物10からの赤外線の透過が大きくなる。したがって、赤外線が強い強度で検出され、黒く表示される。

0057 たとえば検出手段44は具体的には赤外線センサ42から取得した画像を二値化する。そして、二値化した画像のうち、赤外線強度が高い領域を、塗膜20が形成されていない領域として抽出する。そこで、塗膜20が形成されている領域における赤外線の検出強度は特に小さいことから、塗膜20が形成されている領域と、形成されていない領域を低ノイズで分離することができる。
さらに検出手段44は、抽出した塗膜20が形成されていない領域の面積を画像から算出し、算出した面積が予め定められた基準面積よりも大きい場合、対象物10に劣化が生じていると判定する。基準面積を示す情報は、たとえば予めストレージデバイス108に保持されており、それを検出手段44が読み出して用いることができる。なお、対象物10に劣化が生じている場合とは、対象物10にすでにヒビや割れなどの欠陥が生じている場合と、まだ対象物10に欠陥は生じていないが近いうちに欠陥が生じると推測される場合とを含んでよい。また、検出手段44は、画像に対してパターンマッチングを行い、ヒビや剥がれを検出してもよい。

また、検出手段44は、塗膜20が形成されていない領域の形状パターンに基づいて、対象物10に加わっている負荷の種類を判定してもよい。たとえば、二値化した画像に対して予めストレージデバイス108に記憶されたパターンでのマッチング処理を行う。具体的にはたとえば検出手段44は、塗膜20が形成されていない領域がおよそ平行な方向の線状領域を複数含む場合、対象物10にせん断応力や引張応力が加わっていると判定し、塗膜20が形成されていない領域が面状領域、すなわち、塗膜20が剥がれた領域を含む場合、対象物10に圧縮応力が加わっていると判定できる。

また、本実施形態に係る監視方法は、以下のような構造物10a、建築物10b、または移動体10cを用いて実現される。構造物10a、建築物10b、または移動体10cは、表面の少なくとも一部に塗料の塗膜20を有する。上記した通り、塗膜20は、多孔質のセラミック粒子22と、バインダー24を含み、セラミック粒子22は、AₐRₐAlₐO₄、AₐRₐGaₐO₄、RₓAl₁yO₁₂、およびRₓGaₐ₁yO₁₂のいずれかの組成式で表される化合物を含む。ここで、AはCa、Sr、およびBaからなる群から選択される一以上の元素であり、Rは希土類元素からなる群から選択される一以上の元素である。また、aは0.9以上1.1以下であり、bは0.9以上1.1以下であり、cは0.9以上1.1以下であり、xは2.9以上3.1以下であり、yは4.9以上5.1以下である。そして、セラミック粒子22
の空孔率が20％以上40％以下である。

次に、本実施形態の作用および効果について説明する。本実施形態に係る監視方法によれば、セラミック粒子22は赤外線の放出が少ない。また、対象物10からの赤外線もセラミック粒子22が散乱（反射）することにより遮ることができると、したがって、塗膜20の表面からは赤外線放出が少なくなる。そして、対象物10に予めこのような塗膜20を形成し、赤外線センサや赤外線カメラによる検出を行うことにより、対象物10の劣化を容易に検知することができる。

実施例

以下、本実施形態を、実施例を参照して詳細に説明する。なお、本実施形態は、これらの実施例の記載に何ら限定されるものではない。

図7は、実施例に係るYb₃Al₅O₁₂ペレツトの放射特性を示す図である。本図中、1107℃のSiCセラミックスの表面からの放射強度を実線で示し、1070℃のYb₃Al₅O₁₂ペレツトの表面からの放射強度を破線で示している。SiCセラミックスは、放射率約0.9の灰色体である。Yb₃Al₅O₁₂ペレツトは、Yb₃Al₅O₁₂の組成式で表される結晶の多結晶焼結体であり、ペレツト状に成形されている。Yb₃Al₅O₁₂ペレツトの測定では、ペレツト裏面に熱源となるSiCセラミックスを設置して測定した。本図では、SiCからの放射がペレツトを透過した成分も、ペレツトからの放射とみなして示している。

図8は、Yb₃Al₅O₁₂ペレツトの表面を走査型電子顕微鏡で観察した結果を示す図である。本図から、ペレツトが一次粒子からなる緻密部222aと、空孔221aとを有することが分かれる。

図7から分かるように、各スペクトラムはYb³⁺の4f電子の2F₅/₂ → 2F₇/₂遷移に相当するピークを800nm以上1200ηm以下の波長範囲に有する。そして、1200nm以上1700nm以下の波長帯の放射率が特に低くなっている。なお、空孔率が保持される限り、ペレツトに限らず、粒子状の多結晶であっても同様の特性を奏する。
[0066] 本ペレットを粉碎して、セラミック粒子を得、バインダーと混合して実施形態で説明したような塗料を作製した。なお、セラミック粒子の空孔率は20%以上40%以下の範囲内であった。この塗料を基材に塗布して赤外線カメラで撮影したところ、塗料を塗布していない場合に比べて検出される赤外線強度が小さかった。

[0067] 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。

[0068] 上記の実施形態の一部又は全部は、以下の付記のようにも記載されるが、以下には限られない。

1. 対象物の表面のうち塗料の塗膜が付された領域から放射される赤外線を赤外線センサで検出し、

前記塗膜は、多孔質のセラミック粒子と、バインダーとを含み、

前記セラミック粒子は、A_a R_b A_1 c O_4, A_a R_b G a c O_4, R_x A_1 y O_1

およびR_1 x Ga y O_2 のいずれかの組成式で表される化合物を含み、

A はC a, S r, およびB aからなる群から選択される以上の元素であり、

R は希土類元素からなる群から選択される以上の元素であり、

a は0.9以上1.1以下であり、b は0.9以上1.1以下であり、c

は0.9以上1.1以下であり、x は2.9以上3.1以下であり、y は4

.9以上5.1以下であり、

前記セラミック粒子の空孔率が20%以上40%以下である監視方法。

1. に記載の監視方法において、

前記塗膜の厚さは200μm以下である監視方法。

1. または1—2. に記載の監視方法において、

前記セラミック粒子の粒径分布曲線における最大ピークは、5μm以上1

0 0 μm以下の範囲内に位置する監視方法。

1. のいずれか一つに記載の監視方法において
前記セラミック粒子の空孔率が30%以上である監視方法。
1 - 5. 1 - 1. から1 - 4. のいずれか一つに記載の監視方法において
、
前記塗膜に対する前記セラミック粒子の含有率は、75重量%以上92重量%以下である監視方法。
1 - 6. 1 - 1. から1 - 5. のいずれか一つに記載の監視方法において
、
前記バインダーの屈折率は1.0以上1.4以下である監視方法。
1 - 7. 1 - 1. から1 - 6. のいずれか一つに記載の監視方法において
、
1200nm以上1700nm以下の波長範囲にわたって、前記バインダー
の光の吸収率が0.1以下である監視方法。
1 - 8. 1 - 1. から1 - 7. のいずれか一つに記載の監視方法において
、
前記バインダーは樹脂を含む監視方法。
1 - 9. 1 - 8. に記載の監視方法において、
前記バインダーは、非晶性フッ素樹脂を含む監視方法。
1 - 10. 1 - 1. から1 - 9. のいずれか一つに記載の監視方法におい
て、
前記セラミック粒子は多結晶焼結体である監視方法。
1 - 11. 1 - 1. から1 - 10. のいずれか一つに記載の監視方法にお
いて、
前記対象物は、構造物、建築物、または移動体である監視方法。
2 - 1. 対象物の表面のうち塗料の塗膜が付された領域から放射される赤
外線を検出する赤外線センサと、
前記赤外線センサの検出結果を分析することにより、前記塗膜の劣化を検
出する検出手段とを備え、
前記塗膜は、多孔質のセラミック粒子と、バインダーとを含み、
前記セラミック粒子は、\(A_a R_b A l_c O_4 \)、\(A_a R_b G a_c O_4 \)、\(R X A I_y O_2 \)、および\(R X G a y O_2 \)のいずれかの組成式で表される化合物を含み、

前記塗膜の厚さは200\(\mu m \)以下である監視システム。

2 - 2 . 2 - 1 . に記載の監視システムにおいて、

前記塗膜の厚さは200\(\mu m \)以下である監視システム。

2 - 3 . 2 - 1 . または2 - 2 . に記載の監視システムにおいて、

前記セラミック粒子の空孔率が20\%以上40\%以下である監視システム。

2 - 4 . 2 - 1 . から2 - 3 . のいずれか一つに記載の監視システムにおいて。

前記セラミック粒子の空孔率が30\%以上である監視システム。

2 - 5 . 2 - 1 . から2 - 4 . のいずれか一つに記載の監視システムにおいて。

前記塗膜に対する前記セラミック粒子の含有率は、75\%以上92\%重

量\%以下である監視システム。

2 - 6 . 2 - 1 . から2 - 5 . のいずれか一つに記載の監視システムにおいて。

前記バインダーの屈折率は1.0以上1.4以下である監視システム。

2 - 7 . 2 - 1 . から2 - 6 . のいずれか一つに記載の監視システムにおいて、
1200 ηm以上1700 ηm以下の波長範囲にわたって、前記バインダー—の光の吸収率が0.1以下である監視システム。
2-8. 2-1. から2-7. のいずれか一つに記載の監視システムにおいて、
前記バインダーは樹脂を含む監視システム。
2-9. 2-8. に記載の監視システムにおいて、
前記バインダーは、非晶性フッ素樹脂を含む監視システム。
2-10. 2-1. から2-9. のいずれか一つに記載の監視システムにおいて、
前記セラミック粒子は多結晶焼結体である監視システム。
2-11. 2-1. から2-10. のいずれか一つに記載の監視システムにおいて、
前記対象物は、構造物、建築物、または移動体である監視システム。
3-1. 表面の少なくとも一部に塗料の塗膜を有し、
前記塗膜は、多孔質のセラミック粒子と、バインダーを含み、
前記セラミック粒子は、A_aR_bA_cO_4、A_aR_bGa_cO_4、R_xA_4O_1
2、およびR_xGa_yO_2のいずれかの組成式で表される化合物を含み、
AはCa、Sr、およびBaからなる群から選択される一以上の元素であり、
Rは希土類元素からなる群から選択される一以上の元素であり、
aは0.9以上1.1以下であり、bは0.9以上1.1以下であり、cは0.9以上1.1以下であり、xは2.9以上3.1以下であり、yは4.9以上5.1以下であり、
前記セラミック粒子の空孔率が20%以上40%以下である構造物、建築物または移動体。
3-2. 3-1. に記載の構造物、建築物または移動体において、
前記塗膜の厚さは200μm以下である構造物、建築物または移動体。
3-3. 3-1. または3-2. に記載の構造物、建築物または移動体に
前記セラミック粒子の粒径分布曲線における最大ピークは、5 μm以上100μm以下の範囲内に位置する構造物、建築物または移動体。
３－４．３－１．か ら３－３．のいずれか一つに記載の構造物、建築物または移動体において、
前記セラミック粒子の空孔率が30%以上である構造物、建築物または移動体。
３－５．３－１．か ら３－４．のいずれか一つに記載の構造物、建築物または移動体において、
前記塗膜に対する前記セラミック粒子の含有率は、75重量％以上92重量％以下である構造物、建築物または移動体。
３－６．３－１．か ら３－５．のいずれか一つに記載の構造物、建築物または移動体において、
前記バインダーの屈折率は1.0以上1.4以下である構造物、建築物または移動体。
３－７．３－１．か ら３－６．のいずれか一つに記載の構造物、建築物または移動体において、
１２００ｎｍ以上１７００ｎｍ以下の波長範囲にわたって、前記バインダーの光の吸収が0.1以下である構造物、建築物または移動体。
３－８．３－１．か ら３－７．のいずれか一つに記載の構造物、建築物または移動体において、
前記バインダーは樹脂を含む構造物、建築物または移動体。
３－９．３－８．に記載の構造物、建築物または移動体において、
前記バインダーは、非晶性フッ素樹脂を含む構造物、建築物または移動体。
３－１０．３－１．か ら３－９．のいずれか一つに記載の構造物、建築物または移動体において、
前記セラミック粒子は多結晶焼結体である構造物、建築物または移動体。
この出願は、2016年12月7日に出願された日本出願特願2016-237665号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
請求の範囲

[請求項1] 対象物の表面のうち塗料の塗膜が付された領域から放射される赤外線を赤外線センサで検出し、
前記塗膜は、多孔質のセラミック粒子と、バインダーを含み、
前記セラミック粒子は、$A_a R_b C_1 c$、$A_a R_b G a c O_4$、$R_x A l y O_1 2$、および$R_x G a y O_2$のいずれかの組成式で表される化合物を含み、
A は $C a$、$S r$、および $B a$ からなる群から選択される一つ以上の元素であり、
R は希土類元素からなる群から選択される一つ以上の元素であり、
a は 0.9 以上 1.1 以下であり、b は 0.9 以上 1.1 以下であり、
c は 0.9 以上 1.1 以下であり、x は 2.9 以上 3.1 以下であり、
y は 4.9 以上 5.1 以下であり、
前記セラミック粒子の空孔率が 20％以上 40％以下である監視方法。

[請求項2] 請求項1に記載の監視方法において、
前記塗膜の厚さは 200 μm 以下である監視方法。

[請求項3] 請求項1または2に記載の監視方法において、
前記セラミック粒子の粒径分布曲線における最大ピークは、5 μm
以上 100 μm 以下の範囲内に位置する監視方法。

[請求項4] 請求項1から3のいずれか一項に記載の監視方法において、
前記セラミック粒子の空孔率が 30％以上である監視方法。

[請求項5] 請求項1から4のいずれか一項に記載の監視方法において、
前記塗膜に対する前記セラミック粒子の含有率は、7.5 重量％以上
9.2 重量％以下である監視方法。

[請求項6] 請求項1から5のいずれか一項に記載の監視方法において、
前記バインダーの屈折率は 1.0 以上 1.4 以下である監視方法。

[請求項7] 請求項1から6のいずれか一項に記載の監視方法において、
１２００ｎｍ以上１７００ｎｍ以下の波長範囲にわたって、前記バインダーの光の吸収率が１以下である監視方法。

[請求項8] 請求項１から７のいずれか一項に記載の監視方法において、前記バインダーは樹脂を含む監視方法。

[請求項9] 請求項８に記載の監視方法において、前記バインダーは、非晶性フッ素樹脂を含む監視方法。

[請求項10] 請求項１から９のいずれか一項に記載の監視方法において、前記セラミック粒子は多結晶焼結体である監視方法。

[請求項11] 請求項１から１０のいずれか一項に記載の監視方法において、前記対象物は、構造物、建築物、または移動体である監視方法。

[請求項12] 請求項１から１１のいずれか一項に記載の監視方法において、検出手段によって、前記赤外線センサの検出結果を分析することにより、前記塗膜の劣化を検出する監視方法。

[請求項13] 請求項１２に記載の監視方法において、前記検出手段によって、前記赤外線センサの検出結果を分析することにより、前記塗膜が形成されていない領域の面積を算出し、算出された面積に基づいて、前記塗膜の劣化の有無を判定する監視方法。

[請求項14] 請求項１３に記載の監視方法において、前記検出手段によって、前記赤外線センサにより得られた画像を二値化し、二値化された画像に基づいて、前記塗膜が形成されていない領域の面積を算出する監視方法。

[請求項15] 請求項１から１１のいずれか一項に記載の監視方法において、検出手段によって、前記赤外線センサの検出結果を分析することにより、前記対象物に加わっている負荷の種類を判定する監視方法。

[請求項16] 請求項１５に記載の監視方法において、前記検出手段によって、前記赤外線センサの検出結果を分析することにより、前記塗膜が形成されていない領域の形状パターンを抽出し、抽出された形状パターンに基づいて、前記負荷の種類を判定する監視方法。
[請求項17] 請求項16に記載の監視方法において、
前記検出手段によって、前記赤外線センサにより得られた画像を二
値化し、二値化された画像に基づいて、前記塗膜が形成されていない
領域の形状/バーンを抽出する監視方法。

[請求項18] 対象物の表面のうち塗料の塗膜が付された領域から放熱される赤外
線を検出する赤外線センサを備え、
前記塗膜は、多孔質のセラミック粒子と、バインダーを含み、
前記セラミック粒子は、
$A_a R_b A l_c O_4, A_a R_b G a_c O_4, R_x A l_y O_12$ および
$R_X G a_y O_2$ のいずれかの組成式で表される化合物
を含み、
A は $C a$、$S r$、および$B a$ からなる群から選択される以上の元素
であり、
R は希土類元素からなる群から選択される以上の元素であり、
a は 0.9 以上 $1\frac{1}{2}$ 以下であり、b は 0.9 以上 $1\frac{1}{2}$ 以下であ
り、c は 0.9 以上 $1\frac{1}{2}$ 以下であり、x は 2.9 以上 $3\frac{1}{2}$ 以下で
あり、y は 4.9 以上 $5\frac{1}{2}$ 以下であり、
前記セラミック粒子の空孔率が 20% 以上 40% 以下である監視シ
ステム。

[請求項19] 請求項18に記載の監視システムにおいて、
前記赤外線センサの検出結果を分析することにより、前記塗膜の劣
化を検出する検出手段をさらに備える監視システム。

[請求項20] 請求項19に記載の監視システムにおいて、
前記検出手段は、前記赤外線センサの検出結果を分析することによ
り、前記塗膜が形成されていない領域の面積を算出し、算出された面
積に基づいて、前記塗膜の劣化の有無を判定する監視システム。

[請求項21] 請求項20に記載の監視システムにおいて、
前記検出手段は、前記赤外線センサにより得られた画像を二値化し
、二値化された画像に基づいて、前記塗膜が形成されていない領域の面積を算出する監視システム。

[請求項22] 請求項18に記載の監視システムにおいて、

前記赤外線センサの検出結果を分析することにより、前記対象物に加わっている被荷の種類を判定する検出手段をさらに備える監視システム。

[請求項23] 請求項22に記載の監視システムにおいて、

前記検出手段は、前記赤外線センサの検出結果を分析することにより、前記塗膜が形成されていない領域の形状パターンを抽出し、抽出された形状パターンに基づいて、前記負荷の種類を判定する監視システム。

[請求項24] 請求項23に記載の監視システムにおいて、

前記検出手段は、前記赤外線センサにより得られた画像を二値化し、二値化された画像に基づいて、前記塗膜が形成されていない領域の形状パターンを抽出する監視システム。

[請求項25] 表面の少なくとも一部に塗料の塗膜を有し、

前記塗膜は、多孔質のセラミック粒子と、バインダーを含み、

前記セラミック粒子は、$A_a R_b A I_c O_4$、$A_a R_b G a_c O_4$、$R_x A I_y O_12$、および$R_x G a_y O_2$のいずれかの組成式で表される化合物を含み、

AはC、S、およびBからなる群から選択される以上の元素であり、

Rは希土類元素からなる群から選択される以上の元素であり、

aは0.9以上1.1以下であり、bは0.9以上1.1以下であり、

cは0.9以上1.1以下であり、xは2.9以上3.1以下であり、

yは4.9以上5.1以下であり、

前記セラミック粒子の空孔率が20％以上40％以下である構造物、建築物または移動体。
[図4]

40

42 赤外線センサ

44 検出手段
[図7]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int. CI. G01N 2/18 (2006.01)i, B63B 9/00 (2006.01)i, C04B 38/00 (2006.01)i, E01D 22/00 (2006.01)i, E04G 23/00 (2006.01)i, E21D 11/00 (2006.01)i, G01N 2/35 (2014.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. CI. G01N 2/18—21/958, B63B 9/00, C04B 38/00, E01D 22/00, E04G 23/00, E21D 11/00, G01N 2/35

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Published examined utility model applications of Japan 1992-1996
Published unexamined utility model applications of Japan 1971-2018
Registered utility model specifications of Japan 1996-2018
Published registered utility model applications of Japan 1994-2018

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

JSTP lus / JMEDP lus / JST 7580 (JDreaml II)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2003-98134 A (TOSHIBA CORP.) 03 April 2003 (Family: none)</td>
<td>1-25</td>
</tr>
<tr>
<td>A</td>
<td>JP 62-157555 A (NKK CORP.) 13 July 1987 (Family: none)</td>
<td>1-25</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C. See patent family annex.

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed
 - "P" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "Z" document member of the same patent family

Date of the actual completion of the international search
05 January 2018 (05.01.2018)

Date of mailing of the international search report
23 January 2018 (23.01.2018)

Name and mailing address of the ISA/Authorized officer
Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku,
Tokyo 100-8015, Japan

Telephone No.

Form PCT/ISA210 (second sheet) (January 2015)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
国際調査報告

国際出願番号 PCT / JP2017/037778

A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. G01N21/84 (2006.01) i.,...

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. G01N21/84-2 1/958, B63B9/00, C04B38/00, E01D22/00, E04G23/00, E21D1 1/00, G01N21/35

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新型公報 1 g -
日本国公開実用新型公報 1 2 - 1
日本国実用新型登録公報 1 - 1
日本国登録実用新型公報 1 - 2

国際調査で使用した電子データベース（データベースの名前、調査に使用した用語）
JSTPlus/JMEDPlus/JST7580 (JDreamer II)

C. 関連すると認められる文献
引用文献のカテゴリ必須
引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 関連する項目の番号

A JP 2003-98134 A (株式会社東芝) 2003. 04. 03 (ファミリーなし) 1-25
A JP 2008-224464 A (グンゼ株式会社) 2008. 09. 25 (ファミリーなし) 1-25

c 欄の続きにも文献が挙げられている。
パレントファミリーに関する別紙を参照。}

* 引用文献のカテゴリ
A 特に関連のある文献ではなく、一般的な技術水準を示すもの
M 国際出願当日の出願または特許であるが、国際出願日以後に公表されたもの
L 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
δ 口頭による開示、使用、展示等に言及する文献
P 国際出願当日で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 05. 01. 2018
国際調査報告の発送日 23. 01. 2018

国際調査機関の名称及びあて先
日本国特許庁（ISA / JP）
郵便番号 100—8915
東京都千代田区霞が関二丁目4番3号

特許庁審査官（権限のある職員） 藏田 眞彦
電話番号 03-3581-1101 内線 3258

様式PCT / ISA / 210（第2ページ） (2015年1月)
<table>
<thead>
<tr>
<th>発表形式</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>No 2016/042749 A1 (日本電気株式会社) 2016. 03. 24 & US 2017/0253797 A1</td>
<td>1-25</td>
</tr>
<tr>
<td>A</td>
<td>BURLEIGH et al., The influence of optical properties of paints and coatings on the efficiency of infrared nondestructive testing applied to aluminum aircraft structures, Infrared Physics & Technology, 2016. 06. 15, 77, 230—238</td>
<td>1-25</td>
</tr>
</tbody>
</table>