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(57) Abstract: An artificial vision system traning method starts
by forming (S2) a feature matrix including feature sample vectors
and a corresponding response sample vector including response
sample scalars. The method then uses an iterative procedure to
determine a linkage vector linking the response sample vector to
the feature matrix. This iterative procedure includes the steps: de-
termining (S4) a response sample vector error estimate in the re-
sponse sample vector domain; transforming (S6) the response sam-
ple vector error estimate into a corresponding linkage vector error
estimate in the linkage vector domain; determining (S7) a linkage
vector estimate in the linkage vector domain by using the linkage
vector error estimate; transforming (S8) the linkage vector esti-
mate into a corresponding response sample vector estimate in the
response sample vector domain. These steps are repeated until
(S5) the response sample vector error estimate is sufficiently small.
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TRAINING OF ASSOCIATIVE NETWORKS
TECHNICAL FIELD

The present invention relates to training of associative networks, and
particularly to training of artificial vision systems or percept-response

systems.
BACKGROUND

Reference [1] describes a percept-response system based on channel repre-
sentation of information. A link matrix C links a feature vector a, which has
‘been formed from a measured percept (column) vector X, to a response

(column) vector u using the matrix equation:
u=Ca (1)

A fundamental consideration in these systems is system training, i.e. how to
determine the linkage matrix C. In [1] this is accomplished by collecting
different training sample pairs of feature vectors a! and response vectors ul.
Since each pair should be linked by the same linkage matrix C, the following

set of equations is obtained:

1 .2 N 1 2 ... N

u w1 Ci1 ‘12 CH || @1 9 [

1 2 N 1 2 N

u u ey Cy1 Cyy ¢ Cry a a v a
U=|"2 "2 = TR 2 T2 - CA 2)

1 2 N 1 2 ... N

Ug uUg " Ug Ck1 Ck2 Ckg )\ay ayg ag

where N denotes the number of training samples or the length of the training
sequence and A is denoted a feature matrix. These equations may be solved
by conventional approximate methods (typically methods that minimize

mean squared errors) to determine the linkage matrix C (see [2]). However, a
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drawback of these approximate methods is that they restrict the complexities
of associative networks to an order of thousands of features and thousands

of samples, which is not enough for many systems.
SUMMARY

An object of the present invention is a more efficient training procedure that

allows much larger associative networks.

This object is achieved in accordance with the attached claims.
BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further objects and advantages thereof, may best
be understood by making reference to the following description taken together
with the accompanying drawings, in which:

Fig. 1 is a flow chart illustrating an exemplary embodiment of the
training method in accordance with the present invention; and

Fig. 2 is a diagram illustrating the structure of a training system in

accordance with the present invention.

DETAILED DESCRIPTION

Studying the structure of equation (2) reveals that each row of U actually

requires knowledge of only the corresponding row of C. For example, row k of
U, which is denoted uk, requires knowledge of only row k of C, which is

denoted ck. This can be seen from the explicit equation:
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3
Do 1Y (1 & @ g
1 2 N 1 2 N
u u R u Cl C2 “ee CkH a a “e a
u, = .k k . k = k k . . ,2 ,2 . 2 =CkA (3)
1 2 ... N
ag Ady ag

Thus, equation (1) may be solved by independently determining each row of
linkage matrix C. Furthermore, it has been shown in [1] that it is possible to
represent a response state either in scalar representation or channel (vector)
representation, and that it is possible to transform a scalar quantity into a
vector quantity, or vice versa. Thus, it is possible to transform each column
vector of response matrix U into a écalar, thereby obtaining a response
sample (row) vector u containing these scalars as components. This response

sample vector u will be linked to feature matrix A in accordance with:

all ai2 alN
12 N
a, a; ‘v a
u=(”l u uN)=(Cl ¢ ey) P L T |=cA (4)
alH' aé_ .0 ag

Thus, since equations (3) and (4) have the same structure, it is appreciated

that the fundamental problem is to solve an equation having the form:

u=cA (5)

where u and A are known, while ¢ is to be determined.

A problem with equation (5) is that response sample vector u and linkage
vector ¢ typically lie in different vector spaces or domains, since feature
matrix A typically is rectangular and not square (H is generally not equal to
N in equation (4)). Thus, feature matrix A has no natural inverse. In accor-

dance with the present invention an iterative method is used to determine ¢
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from A and u. Since u is known, a current estimate i(j of response sample
vector u is formed in the response domain, and the error Au={i()-u is trans-

formed into a corresponding linkage vector error Ac in the linkage vector

domain using the transpose of feature matrix A. This linkage vector error is
subtracted from a current linkage vector estimate €(j) to form an updated
linkage vector estimate €(i+1). This updated estimate is transformed back to
the response sample vector domain using feature matrix A, thereby forming
an updated response sample vector estimate G(i+1). Thus, the iterative steps
of this process may be written as:
Ac
&i+1)=¢&@) - @@)-u)A”
S

u

(6)
QG+ =8G+1)-A

This procedure is illustrated in the flow chart of fig. 1. The procedure starts
in step S1. Step S2 collects feature and response samples. Step S3 deter-
mines an initial response sample vector estimate, typically the zero vector.
Step S4 determines the error in the response safnple vector domain. Step S5

tests whether this error is sufficiently small. If not, the procedure proceeds

to step S6, in which the error is transformed to the linkage vector domain.

Step S7 determines a linkage vector estimate using the transformed error.
Step S8 transforms this estimate back to the response sample vector do-
main. Thereafter the procedure loops back to step S4. If the error is suffi-

ciently small in step S5, the procedure ends in step S9.

Fig. 2 illustrates an exemplary structure of a training system suitable to
perform the described method. An response domain error is formed in an
adder 10 by subtracting the actual response sample vector u from its
corresponding estimate @. The response domain error is forwarded to a
transformation or sampling block 12 (the transformation of the error by AT
may be viewed as a form of sampling). This block may also perform a

normalization, a process that will be further described below. The resulting
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linkage vector domain error is subtracted from a current linkage vector
estimate in an adder 14. This current linkage vector estimate is stored and
has been delayed in a delay and storage block 16. The updated linkage
vector estimate is forwarded to a transformation or reconstruction block 18,
which produces an updated response sample vector estimate. This block
may also perform a normalization, a process that will be further described
below. The updated linkage vector estimate is also forwarded to delay and
storage block 16. Both transformation blocks 12, 18 base their transforma-
tions on feature matrix A. Typically the blocks of fig. 2 are implemented by
one or several micro processors or micro/signal processor combinations and
corresponding software. They may, however, also be implemented by one or

several ASICs (application specific integrated circuits).

An alternative to (6) is to change the order in the iteration in accordance
with: |

i+ =20)-A

&i+1)= () - @G +1)—u) A7 0
In a preferred embodiment of the present invention feature matrix A, its
transpose or both are normalized. For example, in a mixed normahzatmn
embodiment the matrix AT in the linkage vector equation is feature normal-

ized by the diagonal normalization matrix NF defined as:

N
1/ Za{’ 0 0
n=1
/N >0
1
NF = 0 E:laz ®)
0 0
N
0 0 1/> ap
\ n=l )

and the matrix A in the response vector equation is feature normalized by

the diagonal normalization matrix NS defined as:
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6
( H )
1/¥a, 0 0
h=1
q 2
NS= 0 ]./hzr_lah 0 (9)
: o .0
0 e 0 1/ Ya)
\ =

Thus, in this mixed embodiment the feature normalization factors are
obtained as the inverted values of the row sums of feature matrix A, while
the sample normalization factors are obtained as the inverted values of the

column sums of A. With this normalization (6) and (7) may be rewritten as:

8@+ =28()- @@ -u)N"-AT (10)
i +1)=8G+1)-N°-A

and
(i +1)=¢@F) N5 -A )
ei+1)=e0@) - (@@ +1)—u)N". AT

respectively. As a further illustration Appendix A includes an explicit

MATLAB® code implementation of (10).

Another possibility involves only feature normalizing AT and retaining A
without normalization in (6) and (7). In this case a suitable normalization

matrix NF is given by:
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7
( N(H }
I/Z(ZaZJa{’ 0 0
n=1\}=1
Y H n n
NP < 0 1/2(2%}12 0 (12)
n=1\/=1
: 0 .. 0
N[ H
0 0 I/Z(Za}fja}f[

n=1\ =1

With this normalization (6) and (7) may be rewritten as:

¢i+1)=8@) - @@ -u)- N7 AT .
G+ =8G+1)-A

u(i+1)=¢3G)-A y
i+ =8 - @G+ -u) N7 -AT (14)

respectively. As a further illustration Appendix B includes an explicit

MATLAB® code implementation of (13).

Still another possibility involves only sample normalizing A and retaining AT
without normalization in (6) and (7). In this case a suitable normalization

matrix NS is given by:

H(N
1/2[2@’;}1}, 0 0
h=I\n=1
0 1/%[% ] 20 :
S a, A, :
N = h=1\n=1 ’ (13)
: 0 R 0
H(N
0 0 I/Z(Za,'f)a,],v
h=1\n=1 Y,

With this normalization (6) and (7) may be rewritten as:
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&G +1) = &) - @@) —u) AT (16)
(i +1)=8G+1)-N°-A

and
(i +1)=¢83G)-N°-A a7
&i+1)=¢@) —@GE+1)—u) AT

respectively. As a further illustration Appendix C includes an explicit

MATLAB® implementation of (16).

In the description above the normalization has been expressed in matrix
form. However, since these matrices are diagonal matrices, it is possible to
write the iteration equations in an equivalent mathematical form that
expresses the normalizations as vectors. For example, (10) may be rewritten
as:

&G +1)=¢&() - N” ® (@) -u) A7) 18
i +1)=N°*®@@E+1)-A)
where NF and NS now are row vectors defined by the diagonal elements of the

corresponding matrices.

An essential feature of the present invention is the fact that feature matrix A
only contains non-negative elements. It is possible to show that the gradient
of the error function Ay is directly related to the elements of feature matrix

A. A straightforward derivation gives:

OAu,
=4a (19)

ach

Thus, it is appreciated that the gradient will also only contain non-negative

values. This implies that it is not necessary to test the sign of the gradient.
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An increase of the value of a linkage vector component ch will move the error
in a positive direction or not affect it at all. This feature is the basis for the
fast iterative procedure in accordance with the present invention. A closer
examination of the underlying problem reveals that the nonzero elements of
A do not necessarily have to be positive. What is required is that they have a
consistent sign (they are either all positive or all negative). Similar comments

apply to u and c.

In the description above the entire feature matrix A is involved in the
iteration. In an approximate embodiment, feature matrix A may be replaced
by an approximation in which only the maximum value in each row is
retained. This approximation may be used either throughout all equations,
in one of the equations or only in selected occurrences of feature matrix A in

the equations. An example of an approximate mixed normalization embodi-

ment corresponding to equation (6) is given by the MATLAB® implementa-
tion in Appendix D. In this example the approximation is used in the first
row of equation (6). The advantage of such an approximate method is that it
is very fast, since only‘ the maximum element in each row is retained, while
the rest of the elements are approximated by zeros. After normalization, the
resulting normalized matrix will only contain ones and zeros. This means

that a computationally complex matrix multiplication can be replaced by a
simple reshuffling of error components in error vector Ay,

In a similar approximation it is also possible to approximate feature matrix A
with a matrix in which only the maximum value of each column (sample
vector) is retained. In a mixed normalization it is also possible to use both
approximations, i.e. to use approximate both feature and sample normaliza-

tion.

There are several possible choices of stopping criteria for the iterative

training process described above.
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One possibility is to use the average of the absolute value of the components
of Ay, i.e.:

1
v [, — 4, (20)

n=1

' The iteration is repeated as long as a threshold epsilon is exceeded.

An alternative is to use the maximum error component of Ay, j.e.: |

max@ﬁn —u, [) (21

n

If large errors are considered more detrimental than smaller errors, the

squared error can be used, i.e.:

>

n=1

A 2
, — | (22)

The above described stopping criteria are based on an absolute scalar error
estimate. However, relative estimates are also possible. As an example, the

estimate:

N
Zun_un

=l (23)

2.ty

n=1

~ ‘2

has been used in the code in the appendices.

As an alternative, the iterations may be stopped after a predetermined

number of iterations. A combination is also possible, i.e. if the error is not
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sufficiently small after a predetermined number of iterations the procedure is
stopped. This may happen, for example, when some error components of the
error vector remain large even after many iterations. In such a case the

components of linkage vector ¢ that have converged may still be of interest.

In many cases some elements of linkage vector estimate € approach the
value zero during the iterative process. The result of this is that the corre-
sponding rows of feature matrix A will be ignored and will not be linked to
the response vector. In accordance with a procedure denoted “compaction”,
this feature may be used to remove the zero element in the linkage vector
estimate (storing its position) and its corresponding row in the feature
matrix. A new normalization may then be performed on the compacted
feature matrix, whereupon the iterative procedure is re-entered. This com-
paction may be performed each time a linkage vector element approaches
zero, preferably when it falls below a predetermined limit near zero. Since the
position of the removed values is stored, the complete linkage vector can be

restored when the non-zero elements have converged.

As has been noted above, equation (1) may be solved by independently
determining each row of linkage matrix C. However, the described iterative

procedure may be used also for the full matrices. As an example, (6) may be

~ rewritten as:

AC
E+1)=C@)-(0()-U) AT
AU

~

(24)
Ui+ =C@+1)-A

for the matrix case.

Since feature matrix A generally is a sparse matrix (most of the matrix

elements are 0), it is preferable to implement the above described procedures
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in a computational system that supports sparse matrix operations. An

example of such a system is MATLAB® by MathWorks Inc. This will reduce
the storage requirements, since only non-zero elements are explicitly stored,
and will also speed up computation, since multiplications and additions are

only performed for non-zero elements.

In the description above the invention has been described with reference to
an artificial vision system. However, the same principles may be applied to
any percept-response system or associative network in which a feature
vector including only non-negative elements is mapped onto a response
vector (possibly including only 1 element) including only non-negative
elements. Examples are sound processing systems and control systems
based on changes in sensor variables, such as temperature, pressure,

position, velocity, etc.

It will be understood by those skilled in the art that various modifications
and changes may be made to the present invention without departure from

the scope thereof, which is defined by the appended claims.
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APPENDIX A

In MATLAB® notation the mixed normalization procedure may be written as:

Ng=sum(A) ; %Sample norms of A
Asn=(diag(1l./Ng)*A")'; %¥Sample normalize A

Nf=sum(A') ; %$Feature norms of A
Afn=diag(1./Nf) *A; %Feature normalize A

epsilon=0.05; $Desired relative accuracy
c_hat=0; %Initial estimate of c=zero vector
u_hat=0; %Initial estimate of u=zero vector

while norm(u_hat-u)/norm(u)>epsilon

¢_hat=c_hat- (u_hat-u)*Afn'; %Update estimate of c
u_hat=c_hat*Asn; %Update estimate of u

end;

Here “.” denotes elementwise operations and “'” denotes transpose.

APPENDIX B

In MATLAB® notation the feature domain normalization procedure may be

written as:

Nf=sum(A) *A'; %Feature norms of A
Afn=diag(1./Nf) *A; $Feature normalize A

epsilon=0.05; $Desired relative accuracy
c_hat=0; %$Initial estimate of c=zero vector
u_hat=0; $Initial estimate of u=zero vector

while norm(u_hat-u)/norm(u)>epsilon

c_hat=c_hat- (u_hat-u) *Afn'; %Update estimate of c
u_hat=c_hat*A; %Update estimate of u

end;
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In MATLAB® notation the sample domain normalization procedure may be

written as:

Ng=sum(A') *A; %Sample norms of A
Asn=(diag(l./Ns)*A')"'; %Sample normalize A

epsilon=0.05; $Desired relative accuracy
c_hat=0; %Initial estimate of c=zero vector
u_hat=0; %Initial estimate of u=zero vector

while norm(u_hat-u) /norm(u)>epsilon

c_hat=c_hat- (u_hat-u)*A"'; %Update
u_hat=c_hat*Asn; %Update

end;

APPENDIX D

estimate of c

estimate of u

In MATLAB® notation the mixed approximate normalization procedure may

be written as:

[ra cal=size(A); $Determine number of row and columns
[av apl=max(A') ; $Find maxima of feature functions
Ns=av*A; ' %$Sample domain norms
Asn=(diag(1./Ns)*A') '; %Sample normalize A

epsilon=0.05; %¥Desired relative accuracy

c_hat=0; %$Initial estimate of c=zero vector

u_hat=0; %Initial estimate

while norm(u_hat-u) /norm(u)>epsilon
delta_u=u_hat-u;

c_hat=c_hat-delta u(ap); %Update
u_hat=c_hat*Asn; sUpdate

end;

of u=zero vector

estimate of c

estimate of u
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CLAIMS

1. An artificial vision system training method, including the steps:

forming a feature matrix including feature sample vectors and a corre-
sponding response sample vector including response sample scalars;

determining a linkage vector linking said feature matrix to said response
sample vector, characterized by an iterative linkage vector determining
method including the steps:

determining a response sample vector error estimate in the response
sample vector domain;

transforming said response sample vector error estimate into a corre-
sponding linkage vector error estimate in the linkage vector domain,;

determining a linkage vector estimate in the linkage vector domain by
using said linkage vector error estimate;

transforming said linkage vector estimate into a corresponding response
sample vector estimate in the response sample vector domain,;

repeating the previous steps until the response sample vector error es-

timate is sufficiently small.

2. The method of claim 1, characterized by an iteration step including:
determining a response sample vector error estimate representing the

difference between a current response sample vector estimate and said

 response sample vector;

using the transpose of said feature matrix for transforming said re-
sponse sample vector error estimate into said linkage vector error estimate;

forming an updated linkage vector estimate by subtracting said linkage
vector error estimate from a current linkage vector estimate; ‘

using said feature matrix for transforming said updated linkage vector

estimate into an updated response sample vector estimate.

3. The method of claim 1, characterized by an iteration step including;
using said feature matrix for transforming a current linkage vector

estimate into an updated response sample vector estimate;
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determining a response sample vector error estimate representing the
difference between said updated response sample vector estimate and said
response sample vector;

using the transpose of said feature matrix for transforming said re-
sponse sample vector error estimate into a linkage vector error estimate;

forming an updated linkage vector estimate by subtracting said linkage

vector error estimate from said current linkage vector estimate.

4. The method of claim 2 or 3, characterized by feature normalizing said

linkage vector error estimate.

5. The method of claim 4, characterized by a feature normalization repre-

sented by the diagonal elements of the matrix:

N(H
I/Z(Za}f}zf‘ 0 0
n=I\h=1
N(H
NF = 0 I/Z(ZaZ)a'j 0
n=I\/A=1
: 0 . 0
N (H
0 0 1/2(2(12}1}1{
\ n=I\h=1 J

where

aj, denote the elements of said feature matrix,

N represents the number of feature sample vectors, and

H represents the number of components in each feature sample vector.

6. The method of claim 2 or 3, characterized by sample normalizing said

updated response sample vector estimate.



WO 02/37302

7. The method of claim 6, characterized by a sample normalization repre-

PCT/SE01/02285

18

sented by the diagonal elements of the matrix:

1y

h=1

where

2p:

2.4

n=1

1
jah

0

1y

h=1

3

.

n=1

0

Jét o

0
N
2
n=l1

. 4

a, denote the elements of said feature matrix,

N represents the number of feature sample vectors, and

10

8. The method of claim 2 or 3, characterized by

a]a
J

H represents the number of components in each feature sample vector.

feature normalizing said linkage vector error estimate; and

sample normalizing said updated response sample vector estimate.

15

9. The method of claim 8, characterized by a feature normalization repre-

sented by the diagonal elements of the matrix:

20

(1/%61{1

n=l1

0

0

N
17> a3

n=1
0

0
N

0 1/> ay
n=1
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and a sample normalization represented by the diagonal elements of the

matrix:
H \
/Ya, 0 - 0
h=1
Yt 0
S _ 0 1/ ay, :
N"= h=l (
0 . 0
H
0 0 1Y)
h=1
where

a, denote the elements of said feature matrix,

N represents the number of feature sample vectors, and

H represents the number of components in each feature sample vector.

10. The method of any of the preceding claims 2-9, characterized by selec-
tively replacing said feature matrix by an approximate feature matrix, in which
only the maximum element is retained in each row and all other elements are

replaced by zero.

11. The method of any of the preceding claims 2-10, characterized by
selectively replacing said feature matrix by an approximate feature matrix, in
which only the maximum element is retained in each column and all other

elements are replaced by zero.

12. The method of any of the preceding claims, characterized in that
all non-zero elements of said feature matrix have the same sign; and

all non-zero elements of said response sample vector have the same

sign.

13. An artificial vision system training method, including the steps:
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forming a feature matrix including feature sample vectors and a corre-
sponding response sample matrix including response sample vectors;

determining a linkage matrix linking said feature matrix to said re-
sponse sample matrix, characterized by an iterative linkage matrix deter-
mining method including the steps:

determining a response sample matrix error estimate in the response
sample matrix domain;

transforming said response sample matrix error estimate into a corre-
spondiﬁg linkage matrix error estimate in the linkage matrix domain;

determining a linkage matrix estimate in the linkage matrix domain by
using said linkage matrix error estimate;

transforming said linkage matrix estimate into a corresponding re-
sponse sample matrix estimate in the response sample matrix domain;

repeating the previoﬁs steps until the response sample matrix error es-

timate is sufficiently small.

14. An associative network training method, including the steps:

forming a feature matrix including feature sample vectors and a corre-
sponding response sample vector including response sample scalars;

determining a linkage vector linking said feature matrix to said response
sample vector, characterized by an iterative linkage vector determining
method including the steps: | ‘

determining a response sample vector error estimate in the response
sample vector domain;

transforming said response sample vector error estimate into a corre-
sponding linkage vector error estimate in the linkage vector domain,;

determining a linkage vector estimate in the linkage vector domain by
using said linkage vector error estimate;

transforming said linkage vector estimate into a corresponding response
sample vector estimate in the response sample vector domain;

repeating the previous steps until the response sample vector error es-

timate is sufficiently small.
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15. An associative network training method, including the steps:

forming a feature matrix including feature sample vectors and a corre-
sponding response sample matrix including response sample vectors;

determining a linkage matrix linking said feature matrix to said re-
sponse sample matrix, characterized by an iterative linkage matrix deter-
mining method including the steps:

determining a response sample matrix error estimate in the response
sample matrix domain;

transforming said response sample matrix error estimate into a corre-
sponding linkage matrix error estimate in the linkage matrix domain;

determining a linkage matrix estimate in the linkage matrix domain by
using said linkage matrix error estimate;

transforming said linkage matrix estimate into a corresponding re-
sponse sample matrix estimate in the response sample matrix domain;

repeating the previous steps until the response sample matrix error es-

timate is sufficiently small.

16. An artificial vision system linkage vector training apparatus, including
means for forming a feature matrix including feature sample vectors and a
corresponding response sample vector including response sample scalars,
characterized by:

means (10) for determining a response sample vector error estimate in
the response sample vector domain;

means (12) for transforming said response sample vector error estimate
into a corresponding linkage vector error estimate in the linkage vector
domain;

means (14, 16) for determining a linkage vector estimate in the linkage
vector domain by using said linkage vector error estimate; and

means (18) for transforming said linkage vector estimate into a corre-
sponding response sample vector estimate in the response sample vector

domain.
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17. An artificial vision system linkage matrix training apparatus, including
means for forming a feature matrix including feature sample vectors and a
corresponding response sample matrix including response sample vectors,
characterized by:

means (10) for determining a response sample matrix error estimate in
the response sample matrix domain;

means (12) for transforming said response sample matrix error estimate
into a corresponding linkage matrix error estimate in the linkage matrix
domain;

means (14, 16) for determining a linkage matrix estimate in the linkage
matrix domain by using said linkage matrix error estimate; and

means (18) for transforming said linkage matrix estimate into a corre-
sponding response sample matrix estimate in the response sample matrix

domain.

18. An associative network linkage vector training apparatus, including means
for forming a feature matrix including feature sample vectors and a corre-
sponding response sample vector including response sample scalars, charac-
terized by:

means (10) for determining a response sample vector error estimate in
the response sample vector domain;

means (12) for transforming said response sample vector error estimate
into a corresponding linkage vector error estimate in the linkage vector
domain;

means (14, 16) for determining a linkage vector estimate in the linkage
vector domain by using said linkage vector error estimate; and

means (18) for transforming said linkage vector estimate into a corre-
sponding response sample vector estimate in the response sample vector

domain.

19. An associative network system linkage matrix training apparatus, includ-

ing means for forming a feature matrix including feature sample vectors and a
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corresponding response sample matrix including response sample vectors,
characterized by:

means (10) for determining a response sample matrix error estimate in
the response sample matrix domain,;

means (12) for transforming said response sample matrix error estimate
into a corresponding linkage matrix error estimate in the linkage matrix
domain;

means (14, 16) for determining a linkage matrix estimate in the linkage
matrix domain by using said linkage matrix error estimate; and

means (18) for transforming said linkage matrix estimate into a corre-
sponding response sample matrix estimate in the response sample matrix

domain.

20. A computer program product for determining a linkage vector linking a
feature matrix to a response sample vector, comprising program elements for
performing the steps:

determining a response sample vector error estimate in the response
sample vector domain;

transforming said response sample vector error estimate into a corre-
sponding linkage vector error estimate in the linkage vector domain;

determining a linkage vector estimate in the linkage vector domain by
using said linkage vector error estimate;

transforming said linkage vector estimate into a corresponding response
sample vector estimate in the response sample vector domain;

repeating the previous steps until the response sample vector error es-

timate is sufficiently smalil.

21. A computer program product for determining a linkage matrix linking a
feature matrix to a response sample matrix, comprising program elements for
performing the steps:

determining a response sample matrix error estimate in the response

sample matrix domain,;
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transforming said response sample matrix error estimate into a corre-
sponding linkage matrix error estimate in the linkage métrix domain,; |

determining a linkage matrix estimate in the linkage matrix domain by
using said linkage matrix error estimate;

transforming said linkage matrix estimate into a corresponding re-
sponse sample matrix estimate in the response sample matrix domain;

repeating the previous steps until the response sample matrix error es-

timate is sufficiently small.



WO 02/37302 PCT/SE01/02285

1/2

START S1
52

COLLECT FEATURE
AND RESPONSE SAMPLES

DETERMINE INITIAL RESPONSE
SAMPLE VECTOR ESTIMATE

5S4
DETERMINE ERROR IN RESPONSE
SAMPLE VECTOR DOMAIN

ERROR
SUFFICIENTLY

SMALL
?

TRANSFORM ERROR TO
LINKAGE VECTOR DOMAIN

DETERMINE LINKAGE
VECTOR ESTIMATE

TRANSFORM LINKAGE
VECTOR ESTIMATE TO RESPONSE
SAMPLE VECTOR DOMAIN

S8

S9

Fig. 1 END

SUBSTITUTE SHEET (RULE 26)



PCT/SE01/02285

WO 02/37302

|_
|

2/2

1
I NOLLV.LOJINOD HAILVIALI
! {
| 1
4!
NOLLVZITYINMON ! " NOILVZITYINION
aNv _ - i any
(NOLLOMALSNOOTY | © _ ? (1+12 + ov ! (ONITdNVS)
NOILLVINIOASN VYL _ : NOILVIAOASNY YL
| |
w _ _ ¢ t
I _ “ 4! n.g
| ]
| 1
I |
1 |
“ AOVIOLS “
s | > anv - |
7" | |
7 819 ! ! AVIAA |
] |
| |
_ ot _
| !
I |
| 1
| |
1 i
I - |
! v no
| |
| |
|
i !

SUBSTITUTE SHEET (RULE 26)



INTERNATIONAL SEARCH REPORT

nternational application No.

PCT/SE 01702285

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: GO6F 15/18, GO6T 1/00, GO6GK 9/66

According to International Patent Classification (1PC) or to both national classification and 1PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: GO6F, GO6K, GO6T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI DATA, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*| Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
gory pprop passag

A US 6134537 A (Y-H PAD ET AL), 17 October 2000 1-21
(17.10.00), figure 1, abstract

A US 5249259 A (R.L. HARVEY), 28 Sept 1993 1-21
(28.09.93), figure 8, abstract ‘

A WO 0055790 A2 (MARKETSWITCH CORP), 21 Sept 2000 1-21
(21.09.00), figure 1, abstract

A WO 0058914 Al (GRANLUND, GGSTA), 5 October 2000 1-21
(05.10.00) ‘

El Furthier documents are listed in the continuation of Box C. See patent family annex.

¥ Special categorics of cited documents: “T” later document published after the international filing date or priority
“A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
E” ;:_?yhcrdfx{:phcalmn or patent but published on or after the international X" document of particular relevance: the claimed invention cannot he
, ting dale L . o considered novel or cannot be considered to involve an inventive
"L document which may throw doubts on priority claim(s) or which is ‘step when the document is taken alone
cited Lo cstablish the publication date of another citation or other ) . . .
special reason (as specified) Y docur(;lcntd of parhcl*\.llar rclevance: the claimed invention cannot be
neyu . - e . I considered to involve an inventive step when the document is
0 dm'u"."“m referring to an oral disclosure, use, exhibition or other combined with unce or more other such documents, such combination
means . X . being ohvious Lo a person skilled in the art
“P”  document published prior to the international filing date but later than ) ) .
the priorily date claimed “&" document memher of the same patent family
Date of the actual cornpletion of the international search Date of mailing of the international search report

20 -02- 2007
15 February 2002

Name and mailing address of the ISA/ Authaorized officer

Swedish Patent Office

Box 5055, §-102 42" STOCKHOLM Patrik Blidefalk/AE
Facsimile No. +4d6 & 666 02 80 ' Telephone No, 46 8 782 25 00

‘orm PCTASASLIO (second sheet) (July 1998)



INTERNATIONAL SEARCH REPORT International application No.
PC/SE01/02285
Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: 4

[X] Claims Nos.:1=21
because they relate to subject matter not required to be searched by this Authority, namely:
mathematical theories.
See PCT-rule 39.1(i).
However, a search for prior art is done, but any opininion of

the documents is not formed.

2. D Claims Nos.:
because they relate to parts of the international application that do-not comply with the prescribed requirements to-such
an extent that no meaningful international search-can be earried out, specifieally:

3. D Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4¢a).

Box H Observations where unity of invention is lacking (Continuation of itemy 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

D As all required additional search fees were timely paid by the applicant, this-international search report covers-all
searchable claims..

2. I:[ As all searchable claims could be searched without effort justifying an additional fee, this Authority did'not invite payment
of any additional fee.

3. D As only some of the required additional search. fees were timely paid by the applicant, this mtematxonalscarch report
covers only those claims for which fees were paid, specifically claims Nos.:

4, |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Reémark on Protest [] The additional search fees were accompanied by the applicant’s protest.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of tirst sheet (1)) (July1998)




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

28/01/02 | PCT/SE 01/02285

Patent document Publication Patent family Publication

cited in search report date member(s) date
us 6134537 A 17/10/00 AU 737276 B 16/08/01
AU 1912699 A 05/07/99

BR 9813585 A 26/12/01

CN 1282435 T 31/01/01

EP 1038261 A 27/09/00

us 6212509 B 03/04/01

US 2001032198 A 18/10/01

WO 9931624 A 24/06/99

us 5734796 A 31/03/98

us 5249259 A 28/09/93 Wo 9111771 A 08/08/91
WO 0055790 A2 21/09/00 AU 3884000 A 04/10/00
WO 0058914 Al  05/10/00 AU 4938699 A 16/10/00
AU 5073699 A ©05/01/00.

BR 9911333 A 03/04/01

EP 1095332 A 02/05/01

EP 1171846 A 16/01/02

SE 513728 C 30/10/00

SE 9901110 A 27/09/00

P ot e e o M0 bt S S O B S ) ) D B A S B P D S B S B et P S % S St o 0 WA W S e e e e D S S (4 P e e e e P B S B P

Form PCT/ISAJ210 (patent Tamily annex) (July 1998)




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

