(54) Title: METHOD AND DEVICE FOR CONTROLLING AND INPUTTING DATA

(54) Titre : PROCEDE ET DISPOSITIF DE COMMANDES ET D’ENTREE DE DONNEES

(57) Abstract: The invention concerns the field of combinatorial devices and methods for controlling and inputting data. It associates three to five main sensitive zones themselves containing, from one to six sensitive zones monitoring at least one electronic pointer. To said device, maneuverable with one hand, is associated a method for designating, scanning and validating, in accordance with freely successive or simultaneous modalities applied with a number of actuators ranging from one to five, combinations of sensitive zones associated with boxes of a table capable of being activated and substituted, containing any computerized object, advantageously constructed and presentable in canonical and common forms, whatever the number of actuators used. The method may symbolically show how to designate an object contained in one box of the active table, the activated sensitive zones, what is being designated and accept adjustment or cancellation thereof. The parameters and the customized tables, are files exchangeable among the various data inputs or the systems controlled thereby. The flexibility of the invention enables an optimized data input to be created for an object or a data input highly adaptable in time to its user and to the objects he uses. A data input may be provided with stand-alone means, include authenticating and identifying means, be integrated in an electronic object or constitute a system with other data inputs and with a separate computerized or electronic object.

Publiée :
— avec rapport de recherche internationale

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

(57) Abrégé : La présente invention se rapporte au domaine des dispositifs et procédés combinatoires de commande et d'entrée de données (DED). Elle associe trois à cinq zones sensibles principales contenant elles-mêmes, de une à six zones sensibles et des moyens de pilotage d'au moins un pointeur électronique. A ce dispositif, maniable d'une seule main, est associé un procédé de désignation, exploration et validation, selon des modalités librement successives ou simultanées appliquées avec un nombre d'actuateurs allant de un à cinq, de combinaisons de zones sensibles associées aux cases d'une table activable et substituable, contenant tout objet informatique, avantagagement construite et présentables sous- formes canoniques et communes, quelque soit le nombre d’actuateurs utilisés. Le procédé peut présenter de façon symbolique comment désigner un objet contenu dans une case de la table active, les zones sensibles activées, ce qui est en cours d'être désigné et en accepter l'ajustement ou l'annulation. Les paramètres et les tables personnalisées, sont des fichiers échangeables entre les différents DED ou les systèmes commandés par eux. La flexibilité de l'invention permet de créer un DED optimisé pour un objet ou un DED très adaptable au cours du temps à son utilisateur et aux objets qu'il utilise. Un DED peut être doté de moyens autonomes, inclure des moyens d'authentification et d'identification, être intégré dans un objet électronique ou constituer un système avec d'autres DED et avec un objet informatique ou électronique distinct.
PROCEDE ET DISPOSITIF DE COMMANDES ET D'ENTREE DE DONNEES

La presente invention se rapporte au domaine des dispositifs et procedes de commande et d'entree de donnees (DED) dans un systeme electronique, informatique ou autre, et plus particulièrement des procedes combinatoires permettant une designation concurremment simultanee ou successive de combinaisons de touches.

On connait deja de nombreux claviers combinatoires, notamment celui decrit dans le brevet francais FR85/11532 (Guyot-Sionnest).

- un dispositif permettant de generer des caracteres par appui successif de deux touches, le caracter etant produit au releve de la derniere touche ;

- un dispositif permettant d'évaluer et de calculer des distances tridimensionnelles dans des applications telles que des claviers virtuels ;

- un dispositif de guidage pour un utilisateur se servant d'un clavier, le guidage consistant a afficher les moyens de production actives par l'utilisateur et le caracter produit par ces moyens actives ;

- un procede informatique pour l'identification d'un utilisateur en fonction de son profil comportemental ; et

- un manuel d'utilisation d'une calculatrice affectant plusieurs caracteres productibles par une meme touche au moyen d'une ou d'autres touches de selection (touche α).

L'inconvenient de ces solutions reside dans le fait qu'elles ne sont pas adaptees pour etre utilisees a la fois par un novice qui prend le temps d'acquérir le fonctionnement du dispositif et un expert qui cherche les performances du dispositif. En effet, de par sa complexite et sa lourdeur, la
première étape de découverte et d'apprentissage des claviers combinatoires a toujours rebuté l'utilisateur qui abandonne le plus souvent. Aucun guidage initiatique voire adapté en fonction de la dextérité et des hésitations de l'utilisateur n'est proposé. Aucune de ces solutions ne propose d'équipement unique permettant d'allier la production d'objets via un mode d'activation de touches simultané et successif.

La présente invention entend remédier à un ou plusieurs inconvénients de l'art antérieur des dispositifs de commande et d'entrée de données, notamment des claviers combinatoires permettant à l'utilisateur, avec le même dispositif, de tirer profit de ses performances débutantes ou expertes. Elle propose un dispositif universel d'entrée de commande et de données, combiné avec un dispositif de pointage pour les IHM graphiques, tenant sous une seule main ou même sous un seul doigt comme le pouce, pouvant convenir à tout dispositif informatique ou électronique et basé sur l'action combinée au sens large sur un nombre réduit de zones sensibles capables de fournir des informations avec lesquelles des programmes informatiques seront en mesure de déterminer les positions et mouvements des doigts d'une main, ou de tout actuateur manié par l'utilisateur. Les combinaisons ou successions de zones sensibles activées étant interprétées par un autre programme informatique paramétrable selon les préférences et contextes dans lesquels se trouve l'utilisateur et interprétant des tables personnalisées pour l'utilisateur dans lesquelles sont rangés des objets informatiques, avec leurs éléments d'exécution, au moins une représentation symbolique et au moins une étiquette de commentaires, selon l'exemple connu des icônes et menus déroulants des Interfaces Hommes Machine graphiques.

L'invention permet notamment au débutant de masse de démarrer en quelques minutes, tout en lui permettant de
progresser naturellement par l’usage vers le mode simultané, quelque soit la grammaire !

Pour faciliter l’exploration des contenus des tables et faciliter la capacité de l’utilisateur à désigner et activer un nombre important d’objets, de façon rapide et sans avoir à les mémoriser au préalable, l’invention propose des moyens paramétrables, selon l’expertise ou les besoins ou préférences de l’utilisateur, de présentation symbolique des tables contenant les objets. Ces moyens indiquent à l’utilisateur de façon immédiate les positions des doigts ou actuateurs permettant la désignation de l’adresse, dans la table active, de l’objet visé (quelles zones sensibles activer), quelles sont, à un moment donné, les zones sensibles que le système considère comme activées et quels objets sont désignables avec les zones déjà activées et d’autres ajoutables à la combinaison en cours de construction. Ce système est une sorte de transposition du fonctionnement des IHM graphiques, à la différence importante que le DED permet, si l’utilisateur y voit son avantage, d’éviter d’avoir à déplacer le pointeur électronique sur l’écran et au-dessus des objets informatiques qui y sont représentés par des icônes ou des items de menus fixes ou déroulants, mais seulement mouvementer les doigts disponibles ou actuateurs entre les différentes zones sensibles.

Pour parachever cette intégration, sous la main de l’utilisateur, d’un IHM polyvalent pour tout dispositif informatique ou électronique, l’invention intègre dans ou à côté des zones sensibles des moyens de suivis des déplacements d’un ou plusieurs actuateurs pour les lier à des pointeurs électroniques selon l’état de l’art.

Pour permettre à l’utilisateur de se servir des dispositifs de saisie et des modes de production les plus
adaptés à chaque contexte de mobilité tout en réutilisant le même référentiel de désignation des objets, l'invention introduit un mode canonique commun de représentation symbolique, lié à la morphologie universelle de la main humaine, des combinaisons en correspondance avec les adresses de désignation dans les tables des cases où sont rangés les objets à activer, qui peut être partagé par plusieurs types de combinatoires et plusieurs modes de production de ces combinatoires, et dont il est possible d'avancer que cette représentation symbolique des adresses constitue en quelque sorte une écriture, qui peut aussi avoir une forme cursive ou par points, électronique, virtuelle ou matérielle sur des supports papier ou autre. Cette représentation symbolique canonique s'écrit des systèmes d'écritures antérieurs qui ont comme base la stylisation de l'objet désigné, en ce qu'elle prend comme point de départ une représentation symbolique des possibilités de positionnements simples de chaque doigt d'une main humaine.

Le procédé selon la présente invention répond particulièrement bien aux besoins cumulés d'une personne en matière de saisie discrète, confortable et rapide en tout lieu, toute position et tout moment et d'intégration dans des dispositifs de petite taille qui prolifèrent comme les téléphones mobiles, les assistants personnels et les dispositifs d'écoute et d'enregistrement multimédia. L'invention permet également de fournir une solution unique de production d'objet qui s'adapte tout aussi bien aux performances d'un débutant qu'à celles d'un expert, sans nécessiter un changement d'équipement.

Il est entendu que les aspects techniques évoqués précédemment et largement décrits dans la suite pourront faire l'objet d'une protection spécifique, chacun de ces aspects étant protégé de façon indépendante. Notons l'importance :
- des mécanismes permettant de fournir au dispositif les fonctionnalités universelles et personnelles permettant de commander de façon très flexible tout objet électronique télécommandable de l’extérieur,

- des mécanismes et moyens techniques pour l’exploration et le guidage interactif permettant d’indiquer, illustrer et commenter, sur écran ou de façon audio ou tactile, quelles positions des doigts correspondent à un objet ou un groupe d’objets, et ceci de façon paramétrable selon les choix et les performances de l’utilisateur : d’un guidage permanent à un guidage optionnel apparaissant quand certaines hésitations sont perceptibles par le système,

- des mécanismes et moyens techniques pour l’apprentissage et le coaching de la progression des savoir-faire des utilisateurs, du moment de la découverte de la commande universelle à la phase où l’utilisateur l’utilise de façon réfléchie et à vitesse maximale pour les capacités kinétiques de sa main et les tables d’objets en mémoire, en passant par l’actualisation de ces tables selon l’évolution des besoins de l’utilisateur,

- de la structuration des objets activables les plus variés sous forme de bandes et de tables représentables de façon symbolique et commune aux différents modes d’usage du DED,

- de la création d’une écriture manuscrite facile à interpréter par des moyens électroniques, en différé ou en temps réel, qui complète le DED et en élargit les avantages pour un utilisateur,

- de l’intégration volontairement redondante sous une forme inégale des fonctions clavier, souris et commandes sous une seule main qui reste quasiment immobile et n’a pas besoin de se repositionner ni de délai pour passer d’un mode à un autre d’Interfaçage entre l’Homme et la Machine,

- de la capacité à remplacer les IHM de type penser/voir/pointer/sélectionner/cliquer telle que la souris
et les environnements à menus et barres déroulants dans les opérations de désignation d'objets, exploration de contenus et activation, par un IHM de type penser/voir/cliquer, puis penser/cliquer, infiniment plus rapide,

- de la possibilité d'implémenter une partie significative de ce procédé sur des dispositifs existants par simple installation de logiciels,

- de la possibilité de donner à un objet personnel une fonction d'authentification et d'identification performante sans être contraignante pour toute relation de l'utilisateur avec des dispositifs et systèmes tiers.

À cet effet, l'invention concerne dans son acception la plus générale un procédé combinatoire d'entrée de données sur un dispositif d'entrée de données (DED) comportant des moyens sensibles activables par l'intermédiaire d'au moins un actuateur, permettant, selon la combinaison des moyens sensibles activés, à un programme informatique ad hoc, de désigner et d'activer, un objet contenu dans une table active de correspondance en mémoire, les moyens sensibles étant constitués par au moins trois zones principales Zi de détection constituées chacune de Fi (Fi = 1, 2, 3...) zones sensibles distinctes, ledit procédé comprenant au moins une étape de désignation/sélection d'un objet de ladite table active et une étape postérieure de validation et de production de l'objet désigné, caractérisé en ce que, pour au moins une première partie des objets de ladite table active, ladite étape de désignation/sélection d'un même objet est indifféremment réalisée soit par la désignation dudit objet en mode combinatoire successif soit par la désignation dudit objet en mode combinatoire simultané.

Par la suite, on parlera de désignation d'une case ou d'un objet dans la table active pour la production de cet objet. Cette désignation nécessite la «production» de la combinaison associée à cette case/objet; il s'agit de
l'activation d'une zone physique ou logique. L'activation d'une zone physique consiste en l'action de l'actuateur sur cette zone physique. La zone logique est une zone abstraite associée à la zone physique d'un point de vue informatique.

L'activation de cette zone logique est consécutive à l'activation ou la désactivation d'une zone physique qui lui est liée. Cependant, cette activation n'est pas nécessairement synchronisée à l'activation d'une zone physique, notamment en ce qui concerne, par exemple, la validation d'une combinaison lorsque l'utilisateur tente de relever de façon simultanée les actuateurs sur les zones physiques mais qu'il existe un temps très petit entre le relevé des actuateurs sur deux zones distinctes. On introduit alors une temporisation d'oubli associé à une zone logique qui se déclenche lorsque l'actuateur d'une zone physique associée est relevé. La zone logique sera désactivée à l'expiration de cette temporisation. Ainsi, au moment de l'événement de validation, seront prises en compte les zones logiques encore actives, c'est-à-dire celles dont la temporisation d'oubli n'est pas expirée.

Selon divers modes de réalisation, :
- le procédé comprend, en outre, une étape de présentation visuelle symbolique d'informations indicatives de la façon de désigner les zones sensibles correspondant à la combinaison associée à chaque case de la table active, les dites présentations symboliques pouvant elles-mêmes être sensibles selon la technologie des claviers virtuels,
- le procédé comprend, entre ladite étape de désignation et ladite étape de validation, une étape d'exploration et d'ajustements des combinaisons désignables,
- ladite étape d'exploration comprend une étape de présentation symbolique visuelle, sonore ou tactile et de mise en exergue visuelle, sonore ou tactile, des zones sensibles activées ou désactivées au fur et à mesure que l'utilisateur interagit avec et des objets associés aux
combinaisons partageant les zones sensibles déjà désignées, jusqu’au stade où il n’y a plus qu’une combinaison associée à une case de la table active et à l’objet que celle-ci contient,

- ladite étape d’exploration comprend :
 - une étape de présentation, sur des moyens de visualisation reliés au DED, des différentes zones sensibles et, pour chaque zone sensible, des objets dont la production requiert l’activation de cette zone sensible en plus des zones sensibles déjà sélectionnées,
 - lorsque l’utilisateur sélectionne une nouvelle zone sensible ou libère une zone sensible, une étape temporisée de mise à jour de la présentation des zones sensibles sélectionnées et des objets associés aux combinaisons de zones sensibles pour tenir compte de toutes les zones sensibles désignées à cet instant ou qui l’étaient dans un délai passé inférieur à une ou plusieurs temporisations, et des objets pouvant encore être produits,

- sur un dispositif particulier comprenant deux zones sensibles distinctes pour chacune des trois zones principales, ladite désignation en mode successif d’un objet de ladite table active par une combinaison comprend l’activation successive d’au moins deux zones sensibles parmi les six zones,
 - pour au moins une deuxième partie des objets de ladite table active, ladite étape de désignation/sélection d’un objet est uniquement réalisée par la désignation de la combinaison en mode successif,

- pour au moins une sous-partie de la deuxième partie des objets, ladite étape de désignation/sélection d’un objet est réalisée par un seul appui-relevé sur une seule zone sensible
 - ladite étape de validation comprend la détection de la désélection de toutes les zones sensibles principales, la
combinaison validée étant celle constituée par les zones sensibles qui étaient encore sélectionnées jusqu’à un délai passé, ce délai étant :

- pour les combinaisons hors mode successif pur Bitap, égal à une première temporisation d’oubli (tempo2), et

- pour les combinaisons en mode successif pur Bitap, égal à une deuxième temporisation d’oubli (tempo0) supérieure à la première temporisation, afin de permettre un déplacement confortable de l’actuateur unique de la première zone sensible à la seconde,

- sur un dispositif particulier comprenant, en outre, au moins une zone principale additionnelle de détection constituée d’une pluralité de zones logiques et une pluralité de tables parmi laquelle se trouve la table active, caractérisé en ce qu’il comprend, en outre, une étape de substitution de ladite table active avec l’une de ladite pluralité de tables en activant au moins l’une desdites zones logiques de la au moins une zone principale additionnelle,

- le procédé comprend, en outre, une étape de correction, désambiguïsation et prédiction des chaînes d’objets désignés ou validés, ladite étape permettant la création d’une table de suggestions comprenant au moins une suggestion, et une étape de présentation visuelle, sonore ou tactile de la table des suggestions dont les objets sont désignables, explorables et validables par ladite étape de description/sélection,

- lesdits objets désignés, validés et produits sont choisis parmi l’ensemble des objets informatiques et électroniques, par exemple, un ou plusieurs caractère(s) alphanumérique(s), une phrase type, une image, un icône, un item de menu déroulant, une commande et un programme informatique internes audit dispositif, une commande et un programme informatique externes audit dispositif et résidant sur tout équipement informatique ou électronique auquel est relié le dispositif DED.
L'invention concerne également un dispositif d'entrée de données (DED) comportant des moyens sensibles activables par l'intermédiaire d'au moins un actuateur, permettant, selon la combinaison des moyens sensibles activés, à un programme informatique ad hoc, de désigner et d'activer, un objet contenu dans une case d'une table active en mémoire, les moyens sensibles étant constitués d'au moins 3 zones principales Z_i de détection constituées chacune de F_i ($F_i = 1, 2, 3, ...$) zones logiques distinctes, pour la mise en œuvre du procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend, en outre, des moyens logiciels et de mémoire, les moyens de mémoire stockant au moins la table active et un code informatique, les moyens logiciels exécutant ledit code informatique et étant aptes à traiter les informations d'activation desdites zones sensibles dans un mode indifféremment successif Bitap pur, successif ou simultané et à produire l'objet désigné lors de la validation de la combinaison de zones sensibles activées.

Selon divers modes de réalisation :

- le dispositif comprend, en outre, des moyens de détection de déplacement pilotant au moins un pointeur électronique, lesdits moyens de détection de déplacement étant l'un parmi le groupe constitué de toute ou partie des zones sensibles de détection, des moyens juxtaposés auxdites zones principales Z_i et des moyens porteurs des zones de détection,

- le dispositif comprend, en outre, au moins une zone principale additionnelle de détection constituée d'une pluralité de zones logiques et une pluralité de tables parmi laquelle se trouve la table active, ladite au moins une zone principale additionnelle étant apte via les moyens logiciels, lorsque au moins une de ses zones logiques est désignée, à substituer ladite table active par l'une de ladite pluralité de tables,
- le dispositif comprend des moyens d'authentification du DED
de type puce électronique spécifique audit dispositif, la
puce étant apte à produire une chaîne alphanumérique en
fonction du profil d'utilisation en cours du dispositif par
l'utilisateur et d'une chaîne de caractères saisie par
l'utilisateur grâce aux moyens sensibles activables de
production d'objets dudit dispositif,
- lesdites zones sensibles logiques Fi d'une même zone
principale Zi sont exclusives entre-elles.

L'invention concerne également un système d'entrée
de données comprenant au moins un dispositif d'entrée de
données DED précédemment présenté et un équipement
informatique, lesdits DED pilotant concurremment, à l'aide des
objets produits par ceux-ci, l'équipement informatique auquel
ils sont reliés.

Selon un mode de réalisation, le système comprend,
en outre, des moyens de présentation visuelle, sonore ou
tactile permettant de restituer symboliquement la table
active, les zones sensibles logiques sélectionnées et celles à
désigner pour activer au moins un des éléments de la table

L'invention a également pour objet un Programme
d'ordinateur destiné à la mise en œuvre du procédé, comprenant
une pluralité d'instructions aptes à traiter les informations
de désignation/désélection des zones logiques et produire un
objet en fonction des zones logiques désignés en mode
combinatoire successif ou simultané lorsque l'utilisateur
valide la sélection.

On comprendra mieux l'invention à l'aide de la
description, faite ci-après à titre purement explicatif, d'un
mode de réalisation de l'invention, en référence aux figures
annexées où :
- les figures 1, 2, 3, 9 et 10 représentent des modes
de réalisation de la présente invention ;
- la figure 4 illustre un exemple de feedback tactile, apporté par les deux positions différentes des bouts de doigts, lors de l’utilisation de la présente invention ;
- les figures 5, 6, 7 et 8 illustrent des exemples de bandes ou tables d’objets (généralement des caractères alphanumériques) mise en œuvre dans la présente invention ;
- la figure 11 est un ordionogramme de l’activation d’un objet selon la présente invention ;
- la figure 12 illustre un système selon la présente invention dans lequel interagissent trois utilisateurs ;
- les figures 13, 14 et 15 sont des présentations des moyens de guidage visuels interactifs de la désignation et l’activation des objets selon la présente invention ;
- la figure 16 est un exemple de représentation canonique d’une table de 5 bandes contenant des objets ;
- la figure 17 illustre un exemple de mise en exergue des possibles combinaisons lors de l’interaction d’un utilisateur pour la représentation canonique de la figure 16 ;
- la figure 18 illustre plusieurs formes cursive et par points de l’écriture créée de fait par la présente invention ;
- la figure 19 illustre comment le guidage visuel permet de démultiplier l’utilité des logiciels de correction et prédiction sémantiques ;
- les figures 20, 21 et 22 illustrent différentes implémentations d’un DED sur des téléphones mobiles ;
- la figure 23 illustre l’implémentation d’un DED comme un jeu de 6, 9 ou 12 touches ajoutées sur le dos d’une souris disposant par ailleurs d’un nombre classique de contacteurs (clics gauche, droit, molette, sous le pouce …),
- les figures 24a à 24d représentent des tables d’activation de combinaisons coexistant sur un même équipement afin de le rendre accessible aussi bien à un débutant qu’à un expert, et
- les figures 25a et 25b représentent une alternative aux modes des figures 24a à 24d.

REALISATION 1.

La figure 1 représente un mode de réalisation de la présente invention selon lequel le dispositif combinatoire d'entrée de données, ci-après nommé DED, présente trois zones principales (11, 12, 13) de détection adjacentes associées aux trois doigts « agiles » (index, majeur, annulaire) de la main. Ces zones sont disposées pour correspondre de façon morphologique aux doigts de la main et comportent chacune deux zones sensibles adjacentes (zone supérieure ou « avant » et zone inférieure ou « arrière »), telles que, souvent et notamment en mode expert, une seule à la fois est logiquement activée par le doigt agile correspondant, par exemple par un traitement logiciel, ou par construction matérielle. Comme illustré sur les figures 24(c), 24(d) et 25(b), cela peut ne pas convenir aux débutants. Ce mode de réalisation permet de tirer profit maximum des possibilités kinétiques de la main et du cerveau qui les commande et les contrôle car les mouvements demandés aux seuls doigts sont simples et ont une plage de tolérance large. De plus, les sensations tactiles des bouts de doigts et kinestésiques dans les doigts eux-mêmes, associées aux positions sont simples et bien distinctes pour une main et un cerveau humains. Il est entendu que ce mode de réalisation n'est pas limitatif et qu'une réalisation dans laquelle le nombre de zones sensibles logiques est variable d'une zone principale à l'autre est aussi envisageable dans le cadre de la présente invention.

Chacune de ces zones est assimilable à une zone « logique » à laquelle est associé un état. Dans le présent mode de réalisation, pour chaque zone principale, trois états sont possibles : zone supérieure ou avant activée, zone inférieure ou arrière activée et aucune zone activée (état équivalent à « doigt relevé »). De façon générale, N zones
logiques de détection permettent d’utiliser N+1 états différents, même si d’autres modes de réalisation sont envisageables notamment pour éviter les ambigüités entre différentes zones logiques et créer une redondance d’information entre la zone qui est désactivée et celle qui s’active au cours de cette transition.

Par exemple, si la détection d’activation d’une zone se fait par détection acoustique d’impact, il est nécessaire de pouvoir détecter la désactivation de la zone, c’est-à-dire l’entrée dans l’état non activé d’aucune des N zones sensibles. En sens inverse, une solution pourrait ne pas prendre en compte le N+ième état et ne se servir que des N états associés à N zones sensibles.

Selon un autre exemple, la réalisation 1 serait faite avec 3 zones telles que l’utilisateur n’aurait pas à relever ses doigts, donc avec le même nombre trois d’états utiles, ce qui lui permettrait, par glissé ou appuyé vertical plus ou moins profond (comme dans une touche de trompette), de continuer à tenir le DED ou l’objet, par exemple téléphone ou guidon ou manette, tout en désignant et validant les zones sensibles des combinaisons voulues.

L’action de tous ou partie des trois doigts agiles sur les zones sensibles du dispositif produit une combinaison de zones logiques activées à laquelle est associé un objet informatique, par exemple un caractère alphanumérique.

VARIETE DES ACTUATEURS

L’utilisation des doigts en tant qu’actuateurs principaux sur les zones sensibles d’un DED selon l’invention, s’impose comme solution la plus évidente. Cependant tout type d’actuateurs peuvent être utilisés et même mélangés entre eux pour désigner les différentes zones logiques : stylet, stylo, extrémités de membres, parties mobiles du corps, dont les dispositifs de suivis des yeux et des paupières, (pour les handicapés), tête, doigts, de un à trois dans le cadre de la
réalisation 1, pointeur électronique de toute nature, etc. ...
Dans la suite, les différents termes désignant un actuateur
sont utilisés sans que, pour autant, cela restreigne la
description de la présente invention.

Il faut simplement se souvenir que selon le nombre
d'actuateurs disponibles le mode de désignation peut être
successif, glissé, simultané ou mixte, donc plus ou moins
rapide et nécessitant plus ou moins d'attention, mais toujours
permettre de désigner une case donnée dans une table de
référence, représentable de façon symbolique, notamment à
l'écran.

PRECISIONS SUR LES COMBINAISONS
Dans tous les cas, et notamment pour la réalisation de
la figure 1, le mot combinaison doit s'entendre au sens large,
et comprend soit des Arrangements (tenant compte de l'ordre de
désignation/activation), soit des Combinaisons au sens
mathématique (ne tenant pas compte de l'ordre de
désignation/activation), ou un mélange « mixte » des deux. Cet
élargissement des concepts habituels des « chord keyboards »,
jusqu'ici presque exclusivement combinatoires au sens
mathématique, a pour but de permettre l'usage d'un même
dispositif donné, comme celui de la réalisation 1, avec un
nombre de doigts ou d'actuateurs ou maniés par eux, variable
de un à cinq, pour tenir compte des différents contextes où se
trouve l'utilisateur et de ses préférences. Pour cela,
l'invention s'appuie sur un rangement canonique, selon les
caractéristiques de la main humaine à cinq doigts, dans des
tables communes à tous les contextes, contenant des « cases »
dont le même contenu est désigné puis validé selon un
processus « d'écriture » de son « adresse » dans la table qui
est adaptée au contexte, aux technologies avec lesquels le DED
est réalisé, aux nombres d'actuateurs mobilisables et aux
préférences de l'utilisateur. Pour tenir compte des
contraintes examinées ci-après, un petit nombre de cases
peuvent ne pas être accessibles par tous les processus et
leurs contenus sont éventuellement dupliqués dans d'autres cases du rangement canonique. Alternativement, certaines combinaisons s'appuyant sur une non exclusivité entre zones sensibles d'une même zone principale peuvent être ajoutées aux modes n'accédant qu'à un nombre inférieur de combinaisons. Alternativement, pour les technologies ne permettant pas le multitouche de deux zones sensibles, une zone supplémentaire peut être ajoutée pour permettre l'équivalent de l'appui simultané de deux zones sensibles normalement exclusives entre elles.

MODE COMBINATOIRE SIMULTANE ET MODE SUCCESSIF
En ce qui concerne les combinaisons mathématiques possibles avec une réalisation de type 1, chaque doigt peut prendre trois états ce qui correspond à 27 combinaisons au sens mathématique, et permet comme décrit dans le brevet FR85/11532 de Guyot-Sionnest, d'adresser un alphabet de 26 signes. La figure 5 illustre, selon une présentation en bande, un exemple d'association entre les 26 combinaisons utiles possibles selon le dispositif de la figure 1 et les caractères de l'alphabet latin. Dans l'exemple de la figure 5, cette bande fait correspondre à chacune des lettres de l'alphabet une représentation sous forme de damier de la combinaison à réaliser sur le dispositif pour produire cette lettre (les cases en noir sont celles qui ont été désignées par les doigts de l'utilisateur). Par exemple, si les trois doigts agiles activent chacun la zone sensible supérieure ou avant de leur zone de détection, alors le dispositif, pour la bande de la figure 5, présentera un « Y » qui sera activé lorsque les doigts quitteront ensemble les 3 zones sensibles supérieures.
C'est une caractéristique généralisée de l'état de l'art des systèmes combinatoires de ne valider principalement une combinaison qu'après le relevé du dernier doigt impliqué, au contraire des claviers conventionnels qui déclenchent à l'appuyé. Un logiciel ad hoc permet d'interpréter la
combinaison fournie pour activer l'objet correspondant. Le logiciel peut par exemple récupérer l'identifiant des zones activées et, à l'aide d'une table active de correspondance telle qu'illustrée par la figure 5, produire le caractère déterminé par la combinaison de ces identifiants.

Mais le même dispositif selon la réalisation de la figure 1 peut aussi adresser facilement 36 adresses logiques différentes si l'utilisateur choisit le mode « Bitap » successif pour désigner deux zones sensibles parmi les six. La figure 6 donne une représentation de ces 36 « combinaisons », qui sont des arrangements au sens mathématique, deux parmi six. Dans cette représentation, on voit quelle est la première (carré blanc) zone sensible à activer et désactiver et la seconde (carré noir), dont le relevé validera la « combinaison ».

Nous allons décrire ci-après le continuum des processus selon l'invention, allant du plus simple à implémenter avec des zones sensibles réalisées avec des touches classiques désignées, activées et relâchées successivement par un seul doigt, au plus élaboré, mixant arrangements et combinaisons produits par 3 doigts agissant sur un DED selon une réalisation de type 1 avec une technologie « multitouch » permettant un mélange (mix) d'actions successives, simultanées et glissées. Ce faisant nous examinerons les différentes variantes associées à différents compromis en matière de nombre de combinaisons, de facilité, de rapidité, de taille…

PROCESSUS SELON LE MODE SUCCESSIF

Un des intérêts du mode successif est qu'il peut facilement se réaliser avec un seul actuateur, ce qui est souvent pratique, notamment pour les DED selon l'invention qui seront implémentés sur des objets mobiles manipulés préférentiellement d'une seule main (télphones, lecteurs
multimédia ...), ou lorsque l'autre main est occupée ou qu'il n'y a pas de support pour tenir le DED ou que celui-ci est réalisé dans une technologie qui ne permet pas l'appui simultané (écrans tactiles courants, zones virtuelles), comme décrit ci-après au paragraphe « technologies ». Ce mode successif avec un seul actuateur permet aussi l'action avec un stylet, qui est aussi un dispositif de pointage, et l'action distante sur les zones sensibles ou leurs représentations symboliques avec un simple pointeur.

La variante de base du mode successif et le processus « Bitap » déjà décrit plus haut.

Une première variante successive, particulièrement intéressante car assez naturelle et applicable avec une grande variété d'actuateurs consiste à faire glisser celui-ci sur une surface de type touchpad ou écrans tactiles (touch screens). Dans cette variante du mode successif appelée « Glissé » un actuateur unique descend sur une zone puis glisse vers une autre zone, en passant éventuellement par une ou deux autres, puis est relevé, ce qui valide l'arrangement. Ce mode glissé peut se pratiquer avec un stylet ou un doigt sur écran tactile, un pointeur sur zones virtuelles, par exemple les représentations mêmes des zones sensibles à l'écran, ou un doigt comme le pouce, sur une zone capable de suivre son mouvement, comme un touchpad (nom commercial), standard selon l'état de l'art, ou un écran tactile (touchscreen). La combinaison constituée peut être l'association des première et dernière zones ou l'association de toutes les zones décrites par le glissé. Quand on réalise ce « Glissé » avec un stylet, on se rapproche d'une écriture cursive. On verra plus loin que cette écriture cursive peut aussi se faire sans zone sensible, avec un papier et un crayon/stylo, ou sur une tablette écran sensible, dans une surface très petite, par exemple de la taille d'un gros curseur, ce qui la rapproche alors des systèmes de reconnaissance de l'écriture manuscrite, mais avec une écriture simplifiée donc facilement reconnaissable.
Une seconde variante avantageuse pour la vitesse du mode successif, dite "Successitatap", consiste, lorsque l'utilisateur peut mobiliser deux doigts, par exemple les deux pouces, à dispenser l'utilisateur de relever le premier doigt avant d'activer, avec un deuxième doigt, la deuxième zone, si elle est différente de la première, puis de relever les deux doigts ensemble ce qui représente une validation simultanée analogue à celle du mode combinaison. Cette première variante, laissant à l'utilisateur le choix d'utiliser un ou deux doigts, ou trois, réalise ainsi un premier exemple de mode mixte. Les six arrangements qui se valident par deux appuis-relevés successifs d'un même doigt sur une seule zone, restent produits de cette façon. Il y a toujours 36 "combinaisons".

Une troisième variante successive et "Successitatap" favorise l'usage à trois doigts agiles positionnés au dessus du DED, chacun se chargeant de deux zones sensibles, avant et arrière, la main restant immobile. Cette variante, en annulant les déplacements du ou des deux doigts entre les colonnes du DED, et permettant l'action parallèle des doigts, favorise la vitesse. Le léger problème concerne les six arrangements sur une seule zone, qui nécessitent presque inutillement deux appuis successifs. Si on souhaite ne faire qu'un appui, alors les six arrangements normalement produits par un doigt en allant successivement d'une de ses deux zones sensibles à l'autre ne sont plus faisables. Une solution consiste, lorsque la technologie le permet, à permettre qu'un même doigt puisse activer successivement mais sans relevé, ses 2 zones sensibles principalement exclusives. Cela peut se faire avec des technologies de type touchpad ou écrans tactiles, par un glissé, ou avec des touches par un basculement/glissement du doigt. En pratique ce problème est plus important quand on veut mixer du combinatoire simultané avec du successitatap, car, en successif, faire deux appuis-relevés successifs sur une
même zone n’est pas très pénalisant. Une autre façon, favorisant la rapidité et ne perdant que 3 combinaisons, consiste à autoriser l’appui simultané d’un doigt sur ses deux zones sensibles, principalement exclusives, ce qui redonne 3 « combinaisons » (sans ordre) aux $6 \times 4 + 6 = 30$ arrangements du mode Successitap initial où l’on désire un seul appui-relevé pour les combinaisons avec un seul doigt sur la même zone, et le rend « mixte ». Pour compenser les 3 combinaisons encore manquantes en Successitap rapide, par rapport au Bitap, on peut autoriser l’ajout de combinaisons à 3 doigts, par exemple les deux combinaisons « simples » à 3 doigts avant et 3 doigts arrière, ou les 3 combinaisons faisant appuyer simultanément les 4 zones avant et arrière de 2 colonnes par deux doigts ou même un seul quand les deux colonnes sont contiguës, et une $4^{\text{ème}}$ en appuyant les six zones simultanément. Ces solutions ne sont possibles qu’avec certaines technologies, soit des touches classiques à faible force d’enfoncement et surfaces adaptées, en formes, inclinaisons et interstices, soit des zones touchpad ou touchscreen autorisant le multitouch, ce qui n’est pas encore fréquent. Bien que les ambiguïtés et les risques d’erreurs soient encore faibles, il est avantageux d’accentuer la différenciation entre combinaisons successitap et simultanées par la définition d’un seuil de temporisation (tempol) qui délimite la désignation Simultanée (sans ordre et donc courte) de la désignation Successive (selon un ordre, donc un peu plus lente). Une valeur typique pour une habileté moyenne à appuyer simultanément les doigt est de 20 millisecondes pour la tempol.

Une quatrième variante du mode successif, appelée « Tritap », consiste à ajouter un troisième doigt, sans se préoccuper de sa nature ou position (index, majeur ou annulaire) et à ne considérer que le fait qu’il active une zone sensible « avant » ou « arrière » pour lui faire jouer en quelque sorte le rôle d’un actuateur de rotation de bande,
(fonctionnalité décrite plus loin à l’occasion de la réalisation 2) permettant ainsi d’accéder à 3 x 36 ou 3 x 33, ou 3*30 combinaisons selon que l’utilisateur a choisi le Bitap ou un des différents Successitap n’utilisant que deux doigts pour une combinaison. Comme si la troisième zone activée correspondait à une commande de substitution de la bande active de 36 (33, 30) en cours pour une seconde de 36 (33, 30) lorsque le troisième appui se fait en position « avant » ou supérieur et une troisième de 36 (33, 30) lorsque le troisième appui se fait en position « arrière » ou inférieure.

PROCESSUS BASE SUR LE MODE SIMULTANE

Le mode de désignation et de validation le plus rapide mais nécessitant le plus d’actuateurs est celui qui peut s’appeler « Simultané » dans lequel l’ordre de désignation des zones sensibles n’est pas pris en compte et la validation se fait en constatant que les zones principales gérées par les trois doigts agiles sont physiquement désactivées et en ne prenant en compte que les zones qui étaient encore activées au temps de validation moins une certaine temporisation (tempo2) paramétrable. Ce dispositif de temporisation arrière est nécessaire pour tenir compte que les relevés des doigts ne sont pas absolument simultanés et éviter que toute zone qui a été activée puis désactivée depuis la précédente validation soit prise en compte, comme cela se voit sur la plupart des claviers combinatoires (comme le CyKey). A chaque relevé d’une zone physique, la tempo2 est déclenchée et à expiration de celle-ci la zone logique associée est à son tour désactivée. Cette tempo2 joue comme une temporisation d’oubli des zones activées puis désactivées, par exemple au cours d’une exploration ou d’un tâtonnement. Elle ne peut être réduite à zéro, car dans ce cas, des zones voulues par l’utilisateur seraient vues comme ne faisant pas partie de la combinaison validée. Une valeur typique pour une habileté moyenne à relever simultanément les doigts est de 50 millisecondes pour

la tempo2. Elle ne peut pas être trop grande également car l’oubli serait lent, ce qui freinerait l’exploration, fonctionnalité importante du guidage, décrite plus loin. La non prise en compte de l’ordre d’activation des zones facilite l’action des doigts, notamment les transitions entre combinaisons, mais ne permet que 26 combinaisons utiles sur 6 zones et nécessite trois doigts pour 8 d’entre elles. Lorsque l’événement déclencheur de la validation de la combinaison activée arrive (par exemple, plus aucune zone physique activée), l’objet produit est celui correspondant à la combinaison dont les zones logiques sont encore actives, c’est-à-dire dont la temporisation d’oubli tempo2 n’est pas encore expirée.

Une manière de ne pas avoir à ajouter de troisième doigt et de faire du simultané avec suffisamment de combinaisons, est possible quand on saisit du texte et des mots significatifs dans une langue donnée. Le principe s’appelle la désambiguïsation et a été rendu célèbre par la technique T9 de la société Tegic. Il consiste à ne pas demander à l’utilisateur de produire des lettres exactes mais de se contenter de produire un code associé à deux (Suretype) ou trois/quatre (T9 ou iTap) ou six lettres (Tengo) et à laisser le logiciel et ses tables de vocabulaire, lever les ambiguïtés en proposant des syllabes ou des mots que l’utilisateur n’a plus qu’à choisir au lieu de les taper, ce qui n’est pas toujours avantageux avec les systèmes existants. Dans le cas de l’invention, si on tape simultanément deux touches, chacune des dix-huit combinaisons possibles ne peut correspondre qu’à deux arrangements distincts par l’ordre de frappe des deux mêmes touches, ce qui correspond à une ambiguïté faible, facile à traiter. Un radical ou un mot unique seront très souvent la seule possibilité. Dans le cas de plusieurs choix, le fait qu’avec les claviers combinatoires on ne regarde pas le clavier, permet de ne regarder que l’écran, et de donc de
voir immédiatement les messages du système, puis, avec le guidage dynamique associé à la présentation interactive (décrite ci-après), de présenter les choix de façon à les sélectionner avec une combinaison liée à la position du choix dans le guidage dynamique, donc, sans avoir à aller activer des touches de déplacement et de validation : on voit et on clique en produisant la combinaison implicite, ce qui est alors plus rapide que de finir la frappe du mot... Donc on peut, quand un logiciel de désambiguïsation est disponible pour la langue de création d'un texte, avoir une frappe simultanée à deux doigts, très facile et donc rapide, et naturelle pour un utilisateur ayant commencé en « Bitap » puis en « Successitap ». Une variante intéressante consiste alors à utiliser le 3ème doigt libéré pour faire du Tritap où les deux premiers doigts agissent simultanément, et le troisième successivement.

Un second mode « Mixte » consiste à mixer le mode Successitap et le mode Simultané pour, à la fois, avoir accès à 30 combinaisons et profiter pour 26 d'entre elles de la vitesse du Simultané ou du confort de un ou deux doigts seulement (6+12 combinaisons simultanées seulement, et respect de l'ordre d'activation pour les 8 combinaisons qui autrement nécessitent trois doigts et les 4 arrangements à 2 doigts qui n'ont pas de correspondance possible dans la bande des 26 combinaisons). Ce mode est illustré par la figure 7. Dans ce mode mixte rapide, les combinaisons avec un seul doigt sur une seule zone, colonne 73 de la figure 7, se font obligatoirement avec un seul appui-relevé, ce qui ne laisse que 30 cases accessibles sur les 36 du « Bitap » de référence. Les 6 combinaisons correspondant à la colonne 77 de la figure 7 ne sont plus possibles. Les 3 premières combinaisons supplémentaires possibles, déjà évoquées ci-dessus, sont celles que l'on peut produire en appuyant simultanément, lorsque les technologies le permettent, avec un seul
actuateur-doigt, sur les deux zones sensibles d'une même zone principale figure 24(c), 24(d) et 25(b), colonne 77. Pour compenser les 3 combinaisons encore manquantes dans ce deuxième mode mixte rapide, par rapport au « Bitap » de référence, on peut encore autoriser l'ajout des 3 combinaisons faisant appuyer simultanément les 4 zones « avant » et « arrière » de 2 zones principales (colonnes dans la réalisation de la figure 1) par deux doigts (ou même un seul quand les deux colonnes sont contiguës) et une 4ème en appuyant les six zones simultanément, figure 24(c), 24(d) et 25(b), colonne 77. Ces solutions ne sont possibles qu'avec certaines technologies, soit des touches classiques à faible force d'enfoncement et surfaces adaptées en formes, inclinaisons et interstices de séparation, soit des zones touchpad ou touchscreen autorisant le multitouch, ce qui n'est pas encore fréquent. Du point de vue manipulations, ces combinaisons « anormales » sont un peu moins faciles à bien faire sans erreur, et donc se font plus lentement. Il est alors assez légitime d'afecter à ces cases plus lentes à « adresser » un contenu que l'on appelle moins souvent, et par souci de compatibilité ascendante et descendante selon le nombre de doigts disponibles, ces contenus seront logiquement rangées dans les 6 cases correspondant aux 6 arrangements « successif » produits par un actuateur allant d'« avant » à « arrière » ou d'« arrière » à « avant » d'une même zone principale (colonne dans la réalisation de la figure 1), combinaisons illustrées dans la colonne 77 de la figure 7. Dans ce second mode mixte à objectif de rapidité, les risques d'erreurs sont significatifs entre les appuis simultanés et les appuis successifs dans les deux ordres opposés, il est alors impératif de prévoir la définition d'un seuil de temporisation (tempol) qui permet de délimiter la désignation Simultanée (sans ordre et donc courte) de la désignation Successive (selon un ordre, donc un peu plus lente). Un ordre de grandeur de 20 millisecondes permet à l'utilisateur moyen
de produire des combinaisons simultanées correctes sans lui imposer un délai trop long pour que les combinaisons successives soient bien vues comme telles.

5 TROISIÈME PROCESSUS MIXTE PRÉFÉRÉ

Un troisième mode mixte particulièrement intéressant consiste à rendre possible simultanément les modes « Bitap », « Successitap » et « Simultané » (« Simultap ») sous la seule contrainte que les six combinaisons particulières du mode « Simultané » qui se font normalement par un seul appui-relevé, appelées « combinaisons pivot », colonne 73 dans la figure 7 et dans les figures 25, soient produites par un double appui-relevé, comme dans le processus « Bitap ». L’avantage de ce mode mixte est que le même DED avec les mêmes paramétrages peut être utilisé avec un à trois doigts ou actuateurs, figures 24, colonne 73. Il ne s’agit pas, comme dans le processus « Tritap » ou les processus « Avancés » décrits ci-après d’augmenter le nombre de combinaisons différentes, mais de rendre possible la production des mêmes 36 combinaisons au sens large d’une bande « Bitap », par différents processus, selon le nombre de doigts disponibles.

En référence aux figures 24a à 24d, le mode mixte fait cohabiter plusieurs modes de production : le mode (a) simple pour le débutant, le mode (b) intermédiaire, le mode (c) confirmé et enfin le mode (d) expert.

Le mode simple débutant (a) propose 36 combinaisons, toutes activables par le mode successif Bitap.

Le mode (b) est similaire à celui décrit pour la figure 6, permettant d’allier les modes BiTap et Successitap : la case claire étant la première zone activée, la foncée la deuxième au-delà du temps de simultanéité (tempo 1). On peut noter les 8 combinaisons Bitap (soulignées deux fois sur les figures) qui ont un concurrent antérieur mais qui peuvent être différenciées facilement de ces concurrents par l’ajout d’une troisième case provoquant la désignation Simultap de la
combinaison. Pour désambiguer certaines combinaisons successives proches, par exemple a1 et a2, l’utilisateur peut utiliser une troisième zone de désambiguïsation (case avec un losange) qui permet de confirmer la combinaison activée.

Le mode confirmé (c) conserve le mode BiTap pour les six combinaisons « pivot ». Grâce à la troisième touche de désambiguïsation, un grand nombre de combinaisons est désormais activable de façon simultanée (deux ou trois cases claires), la validation de la combinaison se faisant par relevé simultané de toutes les cases. Comme cela procure un gain de temps important dans la production, on choisit ces combinaisons pour les objets à produire les plus fréquents. Quatre combinaisons ne sont activables que par deux zones sélectionnées uniquement en mode successif, figures 24(d) et 25(b), partie 78, donc avec un ordre explicite afin de les différencier des combinaisons simultanées sélectionnées par les mêmes paires de zones sensibles. Enfin, les six combinaisons 77 « avant »—« arrière » sont activées de façon simultanée pour trois d’entre elles et les trois autres combinaisons sont activées en conservant un ordre d’appui, permettant la désambiguïsation avec les trois autres combinaisons 77.

Le mode expert (d) accélère la production d’objets par rapport au mode (c) en ne nécessitant plus le respect d’un ordre pour ces 3 combinaisons grâce à l’autorisation d’un appui simultané de quatre zones adjacentes pour fournir la désambiguïsation immédiate nécessaire.

Ces quatre modes coexistent dans le dispositif afin de permettre au débutant et à l’expert d’utiliser le même dispositif. Cette cohabitation est essentiellement due à la présence de la temporisation de simultanéité. Le débutant étant moins rapide, son activation de deux zones logiques est naturellement supérieure à cette temporisation ; il utilise alors le mode débutant essentiellement basé sur le Bitap (un seul actuateur) ou Successitap (au moins 2 actuateurs). Quant
à l’expert, il produit suffisamment rapidement pour pouvoir activer deux zones dans un laps de temps inférieur à la temporisation de simultanéité : il peut donc privilégier l’utilisation du mode expert essentiellement basé sur le mode Simultap.

Les variantes illustrées par les figures 25a et 25b diffèrent des précédentes en ce que le mode successif Bitap pur des six combinaisons pivots est supprimé au profit d’une désignation par un seul appui-relevé.

Dans le mode débutant 25a (équivalent au mode 24a), les combinaisons autres que les pivots sont désignables par action successive des deux zones composant ces combinaisons. Il s’agit d’un successitap commun.

Le mode expert (25b) fournit un maximum de combinaisons productibles de façon simultanée et offrant donc des performances accrues : les six combinaisons pivot sont activables par une unique zone en appui-relevé.

Il est à noter qu’un mode intermédiaire peut être mis en place regroupant les désignations du mode illustré par la figure 24c parmi lesquelles la désignation des combinaisons pivots n’est plus réalisée que par un seul appui-relevé.

Dans la première variante évoquée (figures 24), la désignation se fait par deux appuis minimum et la première partie de la table active composée de 20 + 6 = 26 objets (77+79, figure 24d) adressables aussi bien en Bitap pur, qu’en successif maintenu et simultané. Il est à noter que les combinaisons 79, à l’inverse des combinaisons 77, sont adressables à l’aide de dispositifs dont les zones sensibles d’une même zone principale peuvent être exclusives.

Dans la deuxième variante (figures 25), la désignation est réalisée par 1, 2, 3 ou 4 appuis et seulement selon les seuls mode successitap maintenu et simultané, les 26 objets (77+79) de la première partie de la table active étant faits
de la même manière dans les deux variantes. La différence entre ces variantes porte sur les 6 cases pivot qui se font, dans la deuxième variante, par un seul appui-relevé sur une seule zone sensible, portant à 32 le nombre de cases pouvant être adressées sans avoir à respecter un ordre.

Concernant les désignations correspondant à 2 cases avec le même doigt, elles ne sont faisables que si on utilise une techno permettant le glissé ou des touches incurvées vers leurs séparations pour faire une sorte de glissé de la première à la deuxième, sans relever.

PROCESSUS AVANCÉS

Dans un processus « Avancé » illustré par la figure 8 pour utilisateurs adroits, le mode de désignation cumule les combinaisons Simultanées (81, 83 et 84) et Successives (82). Comme ci-dessus, la définition d’un seuil de temporisation (tempol) permet de délimiter la désignation Simultanée (sans ordre et donc courte) de la désignation Successive (selon un ordre, donc un peu plus lente), portant par la même le nombre de combinaisons possibles à 6 arrangements/combinaisons mono-doigt + 24 arrangements successitap bi-doigts + 20 combinaisons simultanées bi et tri-doigts, soit 50 combinaisons. Le choix entre le « Tritap » et ce mode « Avancé », pour augmenter le nombre de combinaisons accessibles en un seul cycle de désignation-validation sur une réalisation selon la figure 1, relèvera de l’utilisateur, selon ses préférences et habiletés, et doit aussi se comparer avec des solutions de type de la réalisation 2 décrite ci-après, qui met en jeu, en plus des trois doigts agiles sur une réalisation de type 1, le pouce sur une quatrième zone principale comportant jusqu’à cinq zones sensibles (multiplication par six des choix, par exemple 6*27-1 = 161 combinaisons accessibles en un seul cycle) et le petit doigt sur une cinquième zone principale comportant jusqu’à 2 zones
sensibles (multiplication par 3, soit par exemple 3*6*27-1 = 486 combinaisons accessibles en un seul cycle).

Dans un mode « très Avancé » des désignations et validations par « Glissé » sont ajoutées pour tirer parti du fait que certains de ces mouvements sont naturels, bien que lents, et associables par mimétisme à des commandes typiques comme « fermer » ou « avancer ». Techniquement cela consiste à ajouter à l'éditeur de tables déjà évoqué, une capacité d'enregistrement de ces « Glissé » et de leur mise en correspondance avec une case des tables où sera logé l'objet souhaité pour cette action enregistrée.

VALIDATIONS PARTICULIÈRES

D'une manière générale, dans l'invention décrite ici, une combinaison est validée au relevé, soit du dernier doigt (Bitap, Glissé) soit des différents doigts constituant la combinaison (Successitap et Simultané). Tant qu'un doigt agile est appuyé, il n'y a pas validation, ce qui permet de corriger une combinaison avant de la produire de façon erronée, et avec les dispositifs d'oubli temporisé et de présentation à l'écran ou autre, comme décrit ci-après, d'explorer le contenu des bandes et tables actives (émulant ainsi la recherche sur un clavier classique ou virtuel et permettant au débutant et à l'expert de retrouver un objet qu'ils n'ont plus en mémoire, consciente ou réflexe).

Pour le débutant, ce processus peut être trop sophistiqué pour son état d'habileté. Selon l'état de l'art, pour certaines validations d'objets importants, comme des phrases types présentées par des icônes, on peut prévoir, dans la case concernée, que la validation ne se fait pas au relevé, mais après ce relevé, qui fait apparaître une fenêtre de validation selon l'état de l'art, et avoir confirmé en répondant « oui » ou annulé en répondant « non ». Dans le cas du « non » le DED revient à l'état antérieur, dans le cas du « oui », le DED passe à l'état normal après une validation.
Dans un mode « particulier », certaines cases de la table pourront être validées en ne relevant que les 2ème ou 3ème doigt de la combinaison associée, ce qui facilitera les répétitions, selon une gestuelle habituelle, par exemple pour augmenter ou diminuer le volume ou tourner des pages. Dans ce cas, l’exploration immédiate décrite ci-après sera perdue pour ces cases (elle restera valable en laissant le doigt final de la combinaison levé au-delà de la temporisation (tempo2) d’oubli/exploration).

Ce mode particulier correspond à un besoin général de répétition d’une combinaison. Pour éviter d’avoir à faire répéter la combinaison complète, ou pour permettre des répétitions plus rapides que ce que peuvent faire les doigts, il y a plusieurs possibilités d’obtenir la répétition, d’une combinaison ou d’une suite de combinaisons, sans perdre l’importante capacité d’exploration et de correction avant validation. Exemple 1 : par un déclenchement au maintien appuyé des claviers classiques seulement à la 2ème désignation successive de la même combinaison. Exemple 2 : par la création d’une fonction interne au logiciel qui serait rangée dans une case particulièrement pratique où logique et dont la désignation et le maintien appuyé déclencherait la répétition de la combinaison précédente (ou d’une succession comme Alt + Tab, ou Ctrl + --> ou Ctrl + Del), répétition qui s’arrêterait au relevé et recommencerait au re-appuyé.

COMPARAISON DES CAPACITÉS SELON PROCESSUS

Bien que cela ne soit pas une obligation pour les utilisateurs, l’invention s’est attachée à permettre que les tables personnelles de l’utilisateur puissent être logiquement les mêmes, pour les différents processus de désignation et de validation. Ce qui suppose un nombre égal de cases adressables par des arrangements ou combinaisons ou un mix de celles-ci.

Sur six zones sensibles, le mode successif donne accès à 36 combinaisons (arrangements) (figure 6) et le mode simultané
à 26 combinaisons (figures 5 et 7). La figure 7, regroupe les 36 arrangements et les 26 combinaisons, en les distinguant par des signes distincts d'activation des zones (point clair, noir ou carré). On distingue que les 36 arrangements se répartissent entre 12 arrangements (71, figure 6 ou 7) faits avec le même doigt et 24 avec deux doigts différents (72, figure 6 ou 7) et que les 26 combinaisons comprennent 6 faites avec un doigt (73), 12 faites avec deux doigts (74) et 8 faites avec trois doigts (75 et 76).

Une première solution logique pour un utilisateur qui veut pouvoir, selon les contextes, agir avec un, deux ou trois actuateurs et garder les mêmes tables d'objets, sera d'abandonner les 6 arrangements difficiles à faire en mode combinaison (77), de rajouter un troisième doigt (représenté par un carré noir sur la figure) à 8 arrangements (75 et 76) pour pouvoir s'affranchir d'une frappe successive en respectant un ordre et de garder ou non les quatre arrangements (78) qui nécessiteront toujours un ordre précis d'action successive. Avec un mode mixte de désignation et de validation, l'utilisateur pourra conserver 30 « combinaisons » dans tous les cas d'utilisation de un à trois actuateurs et donc y placer durablement et de façon mémorisable des objets à activer. Il aura aussi souvent avantage à placer dans les cases associées aux combinaisons qui ne sont pas accessibles dans le mode le plus rapide qui est le mode mixte 2 (successitap plus simultané), donc nécessitant trois actuateurs distincts, des objets qui comprennent la plus grande lenteur du mode successif ou de l'absence de zones principales activées par le pouce ou le petit doigt (voir la réalisation 2 ci-après). Cette première solution est assez logique, mais ne permet d'avoir que 30 combinaisons communes entre les trois processus principaux et leurs variantes mixtes.

Une deuxième solution, qui n'est pas possible avec toutes les technologies, consiste, comme évoqué plusieurs fois ci-dessus, à enfreindre partiellement le choix dominant
d'exclusivité entre deux zones sensibles d'une même zone principale. On peut alors disposer de sept combinaisons encore assez faciles à produire et les mettre en correspondance avec les 6 arrangements difficiles à faire en mode combinaison (77 de la figure 7), en y rangeant les mêmes contenus. Ce qui permet alors de gérer une bande commune de référence contenant 36 objets distincts.

NATURE DES OBJETS.

La présente invention ne se limite pas à des objets informatiques de type caractères alphanumériques puisqu'elle permet, par exemple, d'attribuer à une combinaison particulière des doigts une fonction du dispositif à piloter, comme par exemple l'ouverture d'une application sur un ordinateur ou l'extinction du poste TV.

De façon générale, un objet désigné et validé peut être, de façon non restrictive : un ou plusieurs caractères alphanumériques, une phrase type, une image, une icône informatique, un item d'un menu déroulant, une commande interne au fonctionnement propre du DED, ou pilotant un équipement externe, un programme interne au dispositif ou externe résidant sur un équipement informatique ou électronique tiers.

L'intérêt de pouvoir désigner tout type d'objet réside dans la possibilité de commander avec les doigts de la main quasiment immobile, tout ce qui peut être commandable sur un équipement sans utiliser un dispositif dédié (clavier et commandes clavier, souris pour tout ce qui est informatique, télécommande pour les équipements électroniques ...).

Pour que cela soit opérationnel, il est clairement nécessaire de séparer dans l'objet, selon l'état de l'art informatique, sa représentation symbolique (lettre ou mot ou icône), son contenu exécutable, ses moyens de transmission et d'exécution dans un certain contexte et au moins une éventuelle étiquette explicative, analogue à ce qui peut être
affiché quand on passe sur un item de menu déroulant ou une icône des IHM graphiques.

La table contenant les objets avec leurs différentes composantes sont naturellement, selon l’état de l’art, des fichiers échangeables et adaptables, notamment au niveau des éléments d’exécution, aux différents contextes et dispositifs que l’utilisateur voudra utiliser et commander avec les mêmes éléments visibles de ses tables personnelles.

Tout ceci, selon l’état de l’art, s’appuiera sur des éditeurs de tables capables et de capter ou saisir les objets à placer dans les tables et d’en adapter les éléments.

CONSTRUCTION DES TABLES/BANDES.

Les bandes peuvent contenir des objets de nature hétérogènes dont des exemples sont fournis précédemment. Dans certains contextes, notamment dans le domaine informatique, il sera avantageux de disposer d’un dispositif ou logiciel permettant d’enregistrer tous les objets informatiques (icônes, commandes, applications, …) disponibles et de les organiser sous forme de bandes et de tables afin qu’ils puissent être présentés, désignés et activés par le dispositif de la présente invention, bien plus rapide qu’un pointeur électronique, bien plus compact qu’un clavier classique, bien plus puissant que les dispositifs des petits objets électroniques portables ou personnels.

La représentation de ces objets peut être l’objet lui-même (c’est notamment le cas pour les caractères alphanumériques) ou par exemple une icône représentative de l’objet (un exemple est les icônes des barres d’outils de Word permettant d’exécuter une commande spécifique).

TECHNOLOGIES.

Les solutions « souris » ne conviennent pas pour une grande partie des situations de mobilité. Dans ces cas, diverses technologies existent pour mettre en œuvre les
différentes zones de détection et un pointeur quand on ne dispose pas de surface où poser une souris. Notons entre autres les technologies associées aux capteurs capacitifs ou résistifs, du type TouchPad (nom commercial), qui permettent sur une unique surface de créer, pour cette réalisation 1, les trois zones principales indépendantes (« multi touch ») et les deux zones sensibles logiques dans chacune de ces zones. La gestion des frontières inter-zones peut être réalisée par un logiciel qui interprètera les coordonnées délivrées par ce capteur pour activer les zones logiques correspondant aux différents appuis des différents doigts. Certains capteurs fournissent un ensemble de coordonnées correspondant à la zone étendue d’influence et d’appui du doigt. Dans ce cas-là, un logiciel permet d’associer un point significatif à l’ensemble des coordonnées fournies par le capteur (et constituant donc les coordonnées du doigt), par exemple le barycentre ou le point supérieur (inférieur) si la majorité des coordonnées sont dans une des zones supérieures ou avant (inférieures ou arrière). Le choix du point significatif doit être fait afin de maximiser la discrimination des actions de l’actuateur sur les différentes zones logiques de détection. Un avantage des solutions capacitives réside dans la faible épaisseur des capteurs permettant leur intégration dans des systèmes tels que les téléphones portables (figures 21 et 22). Des technologies résistives permettent de réaliser des zones sensibles équivalentes, les différences portant principalement sur la force nécessaire pour activer la zone sensible, non nulle en technologie résistive, ce qui ralentira la désignation et la validation d’objets, nulle avec le capacitif, ce qui pourra donner lieu à des activations involontaires.

De nombreuses technologies de détection sont envisageables dans le cadre de cette invention : soit que la détection se fasse sur et par la surface où se positionnent et bougent les doigts, comme les touchpad capacitifs ou
résistifs, des touches classiques, ou à membranes, ou au bruit d’impact, soit que la détection se fasse par des capteurs non intégrés à la surface d’arrêt et de rebond des doigts, qui peut d’ailleurs ne pas être nécessaire, comme des détections lumineuses ou radios (technologies RFID), différents capteurs directs et indirects de l’angle des phalanges intégrés par exemple dans des gants électroniques... (brevet US5194862 déposé en 1993 par Philips, ou technologie par fibres optiques longeant chaque doigt). Ces dernières peuvent notamment être mises en œuvre en faisant porter dans un bracelet au poignet de la main concernée le cœur du dispositif de détection des positions de doigts. La figure 2 illustre un mode de réalisation sous la forme d’un bracelet (21) porté au poignet. Ce bracelet est doté de moyens de détection (22) par ondes (lumineuses, infrarouges ...) des caractéristiques et positions des doigts de l’utilisateur. Les valeurs des distances D_{doigt} et des angles α_{doigt} permettent, selon des paramètres prédéfinis par l’utilisateur, d’identifier les zones du clavier virtuel qui sont activées.

Ces dernières solutions permettent de détecter les positions des doigts s’arrêtant et rebondissant sur n’importe quelle surface, ou se passant totalement de surface de rebond, quoique probablement avec des vitesses inférieures, et sont particulièrement intéressantes, car la main peut écrire seule, avec tous les doigts disponibles, sans que l’autre main ou un support tiers ne soit nécessaire et en étant dans une situation de confort et de performances bien plus grandes qu’en tenant l’objet électronique dans la main et en disposant du seul pouce pour agir sur le DED intégré.

Parmi les détections lumineuses pouvant être performantes et économiques, on peut utiliser des capteurs CCD (charge-coupled device) à couplage de charge, de type caméra CCD, qui vont permettre de délimiter des volumes de l’espace correspondants aux différentes zones évoquées précédemment, et de créer des images analysables de la présence et des
positions des différents doigts. L’utilisateur place alors un doigt, ou une main, dans le volume correspondant à la zone logique qu’il veut activer pour désigner une combinaison et activer un objet voulu.

La présente invention s’applique également quand les zones sensibles sont créées sur un écran tactile selon l’état de l’art. Dans le cas général, ces écrans tactiles ne sont pas actuellement fabriqués pour accepter un appui multiple, (« multitouch ») bien que cela soit tout à fait possible, comme pour la réalisation avec des technologies touchpad décrite ci-dessus. Dans ce cas, on ne peut utiliser, en mode successif ou glissé, qu’un actuateur, soit doigt ou pouce, sur des surfaces analogues à celles d’un clavier virtuel (par exemple un clavier représenté sur un écran tactile ou activable par la souris d’un ordinateur, soit stylet, sur des surfaces de la taille d’un gros curseur (figure 3). La figure 3 illustre un exemple de mise en œuvre de l’invention. Dans un logiciel de traitement de texte, un curseur intelligent propose une grille (31) représentant le clavier virtuel et dans laquelle les différentes zones à activer sont désignées par le stylet (32) pour produire l’objet désiré (ici la case « arrière droit » a été désignée, afin de produire la lettre « U » conformément à la table de la figure 5.

La présente invention s’applique également lorsque la zone de détection est virtuelle, par exemple lorsque les zones logiques sont simulées par un ordinateur pour interagir avec un pointeur électronique, type souris, qui est alors l’actuateur unique manié, en mode successif ou glissé, par la main de l’utilisateur, qui peut être à distance de l’écran sans aucun autre dispositif que l’équipement courant d’un ordinateur et un logiciel à installer pour émuler le clavier du système. En pratique, cette réalisation virtuelle sera avantageusement cumulée avec des réalisations de zones sensibles placées sous les doigts, notamment de manière à faciliter la transition cognitive de l’utilisateur des IHM
graphiques dominants avec pointeur vers l'utilisation de l'IHM
additionnel où le mouvement des doigts suffit à désigner et
valider un objet informatique, présenté dans la représentation
symbolique qui réalise de fait un dispositif de commande
virtuel classique.

C'est une caractéristique significative de l'invention
que de pouvoir être mise en œuvre de multiples façons selon
les matériels disponibles, notamment par une simple
installation des logiciels ad hoc et des tables personnelles
de l'utilisateur.

FEEDBACK VISUELS, AUDIOS, TACTILES ET KINESTHÉSIQUES

Alors qu'avec les claviers classiques la grande majorité
des utilisateurs, notamment sur leurs réalisations pour les
objets mobiles, regardent sur quelles touches agir avec leurs
doigts qu'ils guident des yeux, ou qu'avec la souris, le
feedback est visuel à l'écran, les claviers combinatoires bien
conçus, simplifient les mouvements réalisés par les doigts et
peuvent tirer parti, pour la majeure partie des utilisateurs,
de feedback tactiles de bouts des doigts et kinesthésiques de
mouvements des phalanges entre elles.

Cette capacité tactile et kinesthésique est
particulièrement optimisée avec la réalisation 1. Les deux
seules positions (figure 4, (a) et (b)) du bout des doigts
avec la surface de rebond donnent lieu à des sensations
distinctes du bout des doigts qui permettent au cerveau de
l'utilisateur de savoir, avant de relever les doigts, s'ils
sont bien positionnés là où ils doivent l'être pour désigner
une combinaison donnée. En effet, le bout des doigts est
extrêmement sensible et permet d'effectuer la différenciation
entre deux positions du doigt même très rapprochées, telles
qu'illustrées par la figure 4. Cette information est renforcée
par des réalisations différenciées, éventuellement avec
générateurs de vibrations, des surfaces des différentes zones
sensibles affectées à un même doigt, éventuellement en créant
une frontière sensible, comme un creux de séparation, et par
la sensation kinesthésique des angles des phalanges. Ce bon
feedback tactile possible avec la réalisation 1 permettra aux
utilisateurs d’atteindre plus vite le mode réflexe où le
cerveau conscient n’est plus sollicité pour contrôler les
mouvements des doigts, ce qui libère l’attention de
l’utilisateur vis à vis de la saisie et permet d’atteindre
plus vite, après moins de temps d’utilisation, la vitesse
maximale permise par la capacité de vitesse intrinsèque de
battement des doigts de la main de l’utilisateur (de quinze
coups (cycles) par seconde maximum pour un virtuose pianiste
ou flûtiste à trois à cinq pour une personne peu agile de ses
doigts).

Ces capacités tactiles et kinesthésiques de la main et
du cerveau humains n’empêchent pas le réalisateur d’un DED
selon l’invention de prévoir une présentation en écho de la
position des doigts, par exemple sous la forme d’une plage
tactile de zones actives en correspondance avec les zones
sensibles du DED, ou d’un écho audio ou visuel, selon les
modalités de guidage interactif avant validation des
combinaisons évoquées ci-après.

**DIMENSIONS POSSIBLES POUR LA RÉALISATION 1 À 6 ZONES
SENSIBLES.**

Les dimensions d’un DED selon la réalisation 1 varient
selon les actuateurs utilisés.

Lorsque le DED est réalisé pour être activé par trois
doigts, le DED doit avoir à minima la largeur du doigt central
et la moitié des deux doigts gauche et droit, augmentée de
deux espaces de mouvements, soit, selon les personnes, une
largeur totale minimale pouvant descendre à 30 mm.

En hauteur, une des caractéristiques importantes de
l’invention est que, du fait que les zones sensibles d’une
zone principale affectée à un doigt ne sont que très peu
souvent logiquement activées ensemble, il suffit que la zone
principale détecte que l'actuateur est plutôt en avant ou plutôt en arrière pour distinguer les deux cas. Appuyer/Activer simultanément deux zones sensibles d'une zone principale avec le même doigt équivaut à créer en fait une troisième zone entre les deux et oblige à plus de précaution pour éviter les mauvais appuis par rapport à ce qui est visé et ralentit ainsi l'action et augmente les surfaces nécessaires, mais cela peut être un compromis préférable, dans certains cas et avec certaines technologies. Dans tous les cas ces appuis simultanés par un même doigt de plusieurs zones doivent rester limités aux quelques cas (pas plus de 10), faciles à faire par les doigts. En hauteur, un DED selon l'invention peut ainsi descendre à quelques millimètres. La contrepartie d'une hauteur faible est que l'on ne peut aller aussi vite qu'avec des hauteurs plus largement dimensionnées, de peur d'être en dehors de la zone détectable. Mais cela peut être un compromis très intéressant en situations mobiles et discrètes.

Ces dimensions minimales ne sont pas une obligation puisque souvent l'utilisateur préférera disposer d'une surface confortable pouvant aussi servir de pad de suivi des déplacements associé à un pointeur. 60mm par 20mm semblent des dimensions pouvant convenir à beaucoup d'utilisateurs.

Quand le DED est utilisé en mode successif par deux actuateurs doigts (comme deux pouces) ou un seul les dimensions peuvent se réduire sans que l'utilisateur n'ait à regarder ses doigts, comme par exemple dans la réalisation de la figure 21.

En mode successif activé par un stylet les dimensions peuvent descendre à quelques mm2, mais l'attention de l'utilisateur est mobilisée.

En résumé, le DED selon la réalisation 1 peut être un outil très compact tout en étant puissant (36 en base mais pouvant monter à 108 combinaisons possibles en un seul cycle d'action des doigts). La diminution de taille se traduit alors
par une certaine diminution des vitesses possibles mais sans
descendre en dessous de la vitesse d'écriture avec les autres
moyens connus sur les objets mobiles.

RÉALISATION 2.

Comme illustré par la figure 9, un autre mode de
réalisation consiste à définir cinq zones principales : trois
identiques au mode de réalisation 1 défini précédemment (91)
pour les trois doigts agiles, une zone principale (92)
associée au pouce et une zone principale (93) associée à
l'auriculaire.

La zone principale du pouce comprend cinq zones
sensibles logiques (94) permettant six états et celle du petit
doigt en comprend deux (95) pour trois états.

En positionnant logiquement ces deux zones principales
supplémentaires comme des touches « modificatrices », (comme
Maj ou Ctrl ou Alt sur des claviers classiques), ce type de
réalisation accroît considérablement le nombre de combinaisons
possibles en un seul cycle d'action des doigts, dépassant les
contraintes discutées plus haut lors de la description de la
réalisation 1, ce qui permet d'aller vers des processus
« Simultanés », sans ordre, donc beaucoup plus rapides et
favorisant l'atteinte du mode réflexe, facteur supplémentaire
de rapidité. La contrainte est reportée sur la taille, les
réalisations de type 2 étant par nature plus grandes que les
réalisations de type 1.

**DIMENSIONS POSSIBLES POUR LA REALISATION 2 A 5 ZONES
PRINCIPALES.**

Par rapport à la réalisation 1 qui avait pour objectif
principal la taille la plus petite, l'objectif principal d'une
réalisation de type 2 est de permettre l'utilisation efficace
et confortable des 5 doigts.

La taille minimale est alors celle d'une carte de
 crédit, le pouce et le petit doigt étant obligés de rentrer un
peu sous la main. La taille confortable est ensuite celle d’un agenda, par exemple 70 mm x 110 mm. Des objets pour un usage sur une table atteindraient le format A5. Les tailles effectives des mains et leurs formes, très différentes et variées, laissent à penser qu’il existera une grande variété de DED.

Les technologies sont a priori les mêmes que pour la réalisation 1, avec une plus grande importance de la fonction « pointeur », unique ou multiple.

Dans ce cas, la réalisation aurait tendance à faire en sorte que les cinq zones principales soient contiguës et réalisent ensemble une sorte de tablette graphique, comme illustrée par la figure 10. Dans cette illustration, les traits continus indiquent les limites des cinq zones principales indépendantes (100 à 104) et les traits en pointillé, les séparations entre zones sensibles exclusives (10xa, 10xb, ...), où x = 0 à 4) l’une des autres au sein d’une même zone principale.

Pour les souris augmentées d’une réalisation de type 2, le fait que le pouce et le petit doigt sont utilisés, pose le problème du bougé involontaire de la souris pendant les opérations de saisie. En fait, les solutions évoquées ci-dessus (touche au centre de gravité, formes plutôt plates, patins anti-glissement et dispositif logiciel de découplage temporaire du pointeur à l’écran) s’avèrent suffisantes. Alternativement, le dispositif de pointage peut aussi avantageusement ne plus être une souris mais un touchpad ou autre solution où c’est un actuateur qui se déplace et non le DED tout entier. Ces réalisations statiques correspondent à des utilisateurs plus orientés « claviers » et « raccourcis claviers », pour lesquels le pointeur est un appoint, et non l’inverse pour les utilisateurs orientés souris (très majoritaires actuellement), et aux usages où l’on ne peut disposer de surface où faire agir la souris.
ROTATION ou SUBSTITUTION DES TABLES

Toujours en référence à la figure 9, les zones principales associées au pouce (92) et à l’auriculaire (93) permettent, selon un angle conceptuel de rangement des combinaisons brutes disponibles et selon leur combinaison, de modifier la table active de 36, 33, 30 ou 26 cases dont les objets sont désignables par une combinaison des trois doigts agiles. On parlera alors de bande, la bande étant l’ensemble, de 26, 30, 33 ou 36, (portable à 50 ou 108 pour les processus « Avancé » et « Tritap ») objets désignables par une combinaison des doigts agiles sur une réalisation de type 1 exposée ci-dessus, pour des positions pouce et auriculaire données. Les zones pouces et auriculaire sont alors en situation de type Maj, Ctrl, Alt, AltGr, Fn, Win ou Pomme ..., c’est-à-dire des touches « modificatrices », concept universellement utilisé depuis longtemps pour augmenter le nombre de signes et commandes possibles avec un nombre de touches donné. Le terme de table regroupe alors l’ensemble des bandes possibles selon les combinaisons « pouce + auriculaire ». Dans le cas de la réalisation 2, il y a six bandes différentes désignables selon les six états possibles du pouce sur sa zone principale, ce qui, avec l’action du petit doigt entre ses trois états permet de désigner 18 bandes différentes par le simple positionnement du pouce ou du petit doigt fait à l’intérieur d’un cycle de base de désignation validation d’une combinaison. Dans une réalisation et un paramétrage particuliers des modalités de validation des combinaisons, il n’est pas nécessaire de désactiver les zones pouces ou petit doigt pour valider une combinaison faisant appel aux trois doigts agiles. Ce qui permet de limiter les cas où les quatre ou cinq doigts doivent bouger dans un seul cycle, ce qui est quand même toujours plus difficile, pour tout le monde, mais surtout pour le débutant, que de mouvemen ter un, deux ou trois doigts agiles seulement. Comme on l’a vu ci-dessus et on le verra ci-après pour le guidage,
il existe dans la conception selon l'invention, une temporisation d'oubli (la tempo2) qu'une zone sensible particulière a été activée, puis désactivée avant que la validation soit calculée et actée. De ce fait le mouvement du pouce ou du petit doigt, alors qu'au moins un des trois doigts agiles active une zone sensible, se traduit par le simple changement de la bande associée, et donc de la case et du contenu qui seront validés et activés par la désactivation des seules zones des trois doigts agiles.

Bien que le rôle des zones affectées au pouce et au petit doigt soit préférentiellement vu pour des raisons de repérage mental par l’utilisateur et pour permettre le fonctionnement du guidage arborescent comme celui de rotation de bande et table, il est naturellement affecté à la combinaison particulière ne faisant appel qu'à un seul doigt agissant seul sur une des zones pouce ou petit doigt une case utile pour y ranger des objets fréquemment utilisés. Ce qui définit un second rôle pour ces zones sensibles du pouce ou du petit doigt. Pour favoriser la production de ces objets, comme le caractère espace, il peut être paramétré de l’ajouter à l’objet activé par la validation des doigts agiles, lorsque la zone pouce ou petit doigt est désactivée en même temps. Par exemple si l’objet activé est la dernière lettre d’un mot, l’espace est ajouté automatiquement par le seul relevé du pouce simultanément à la validation de cette dernière lettre d’un mot, le pouce ayant été préalablement posé sur la zone appelant une bande des lettres minuscules ou majuscules et associé à une case où se trouve l’espace.

Ce mode d’action de rotation/substitution d’une bande à une autre est complété par le fait que, selon l’invention, on prévoit que des commandes de rotation de bande ou de table peuvent être placées comme des objets dans des cases d’une bande, appelant des petits programmes informatiques internes au dispositif DED. Ces objets internes au DED de commande de rotation de bandes ou de tables sont particulièrement utiles
quand on se trouve dans une situation de type réalisation 1 avec seulement 36 cases disponibles ou accessibles du fait d'un nombre réduit d'actuateurs disponibles. Ces rotations de tables ou de bandes peuvent, selon l'état de l'art, être soit temporaires pour une combinaison à suivre, soit verrouillées jusqu'à ce qu'un ordre différent de rotation de table mette fin au rôle actif tenue par la table ou la bande appelée. Ces petits programmes peuvent être des objets très flexibles permettant par exemple de verrouiller la table ou bande appelée en laissant le ou les doigts qui ont appelé la bande et de la déverrouiller en revenant à la bande précédente quand on relève le ou lesdits doigts, ce qui recrée en quelque sorte l'usage combinatoire classique de type majuscule.

Dans un autre mode de réalisation, la rotation entre deux bandes ou tables est réalisée de manière automatique par la détection d'un nouveau contexte applicatif. Par exemple, si le DED est utilisé pour la saisie d'un texte dans une application de traitement de texte, le basculement dans une application tableur de type Excel (nom commercial) va rendre utile le changement de bande afin de disposer en désignation rapide des fonctions et commandes spécifiques à ce contexte.

Dans la réalisation 2, avec 5 zones principales, il est normalement prévu que l'utilisateur mette en jeu ses cinq doigts. Il peut arriver que cela ne lui soit pas possible ou voulu. Auquel cas, il pourra paramétrer son processus de désignation, par exemple via un programme informatique interne rangé comme un objet dans une case, pour que des zones sensibles pouce et des zones sensibles auriculaire, ou même quelconques, puissent être verrouillées, c'est-à-dire bloquées, sans que l'on ait besoin de laisser un doigt dans la zone sensible correspondante, tout en maintenant la capacité de validation des combinaisons auxquelles elles participent.

DISPOSITIFS DE POINTAGE DES DED
Si l'on considère la figure 1 ou la figure 9, l'utilisation de certaines technologies pour les zones de détection permet d'obtenir une surface ou un volume continu, figure 10, sur ou dans lequel le déplacement continu d'un actuateur peut être déterminé.

Dans ce cas, la réalisation fera avantageusement en sorte que les cinq zones principales réalisent ensemble une sorte de tablette graphique, comme illustrée par la figure 10. Dans cette illustration, les traits continus indiquent les limites des cinq zones principales indépendantes (100 à 104) et les traits en pointillé, les séparations entre zones sensibles exclusives (10xa, 10xb, ..., où x = 0 à 4) l'une des autres au sein d'une même zone principale.

Dans un mode de réalisation, le dispositif comprend alors des moyens permettant d'interpréter le glissé d'un actuateur sur les zones de détection comme le glissé d'un pointeur électronique de type souris informatique. Les moyens sont de type logiciel permettant d'interpréter les coordonnées transmises par le module capteur pour les convertir en déplacement d'un pointeur dans un système informatique. Ceci permet notamment de passer rapidement sans bouger significativement la main d'un mode de saisie de données à celui de pointeur électronique et vice-versa.

De façon spécifique, applicable dans le cas où les zones principales sont indépendantes (« multi-touch » selon le jargon), à chaque zone principale correspond une partie de l'écran sur lequel est disponible le dispositif pointeur ou un dispositif pointeur spécifique à chaque partie de l'écran définie de la sorte. Cette solution permet notamment de passer très rapidement d'une partie de l'écran à l'autre sans avoir à faire glisser son actuateur d'un bout de l'écran à l'autre, ou de gérer et aller et venir entre plusieurs curseurs indépendants qui permettent de gérer plusieurs taches.
éloignées dans un ou plusieurs documents ou fenêtres. Dans le cas d'une présentation audio du contenu de l'écran, cette correspondance absolue associée à des zones principales physiquement perceptibles par les cinq parties de la main, rend possible une analyse rapide du contenu d'un écran et de ce qui a bougé où, sans avoir à regarder un écran, par exemple par présentation audio ou tactile, selon des processus connus des non-voyants utilisant un ordinateur.

De façon particulière, toutes les zones principales forment une seule super zone dans un mode d'utilisation de la souris.

Dans un mode de réalisation particulier, la fonction souris est mise en œuvre sur des moyens, de type joystick, ou touchpad, juxtaposés aux zones sensibles de détection du dispositif.

Dans un mode de réalisation particulier, notamment pour usage sur une surface de table ou autre, le DED est naturellement installé sur la partie supérieure d'une souris réalisée selon l'état de l'art, système de pointage ultra dominant. La solution la plus simple, mais pas forcément adaptée aux contextes mobiles, pour implémenter l'objet de l'invention est en effet de placer des touches classiques sur le dessus d'une souris selon l'état de l'art et les figures 23. La figure 23a correspond à l'installation d'une réalisation de type 1, la figure 23b et 23c à l'installation de réalisations de type 2. La réalisation 23a est naturellement ambidextre, les trois zones principales gauche, milieu et droite, restant telles quelles, quels que soient les doigts qui les prennent en charge. Les réalisations 23b et 23c sont aussi ambidextres, moyennant une permutation des zones affectées au pouce et au petit doigt. Pour rendre l'ensemble maniable il est nécessaire de faire une souris assez plate, de faire en sorte que les clics souris et la molette soient orientées vers l'intérieur de la surface, que les touches combinatoires soient sensiblement plus douces et à courses
plus limitées que pour un clavier standard, que la forme vue
de dessus de la souris permette une tenue efficace entre le
pouce et le petit doigt et enfin que la masse totale et les
patins de glissement de la souris limitent les mouvements
involontaires de la souris pendant que l’on agit dessus avec
les 3 doigts ou même avec les 3 doigts et le pouce, figure
23b, ou les 5 doigts, figure 23c. Une optique à grande
définition (au-dessus de 800 dpi) bien adaptée à des souris à
petits déplacements convient bien à une réalisation selon
l’objet de l’invention. Des dispositifs logiciels inhibant
l’éventuel déplacement du pointeur pendant la frappe
permettent, sans rien demander à l’utilisateur, de conserver
pour la souris toute l’ergonomie à laquelle il est habitué.
Pour tenir compte du petit délai séparant la dernière
utilisation souris/pointeur de la validation d’une première
zone sensible du DED, ce qui inhibe le pointeur, et entre
deux productions successives du DED, une temporisation,
(tempo6) permet d’oublier et d’annuler le déplacement
involontaire éventuel pendant ce petit délai.

DEROULEMENT D’UN PROCESSUS DESIGNATION-VALIDATION.
La figure 11 illustre la production d’un objet selon la
présente invention.

En se référant au mode de réalisation de la figure 1, et
selon la bande de la figure 5, l’utilisateur désigne
(désignation interactive guidée ou non) (112) une combinaison
de zones logiques à l’aide de un à trois de ses trois doigts
agiles, par exemple si chacun des trois doigts est en position
« avant » sur sa zone principale, la combinaison désigne la
case contenant la lettre « Y ». L’utilisateur effectue alors
une opération de validation (114) qui active l’objet (115).

Dans un mode de réalisation plus complet pour lequel le
DED est équipé, par exemple, d’un écran de présentation, Le
processus de création relève de l’enchaînement suivant :
110 : l’utilisateur détermine par la pensée quel objet il souhaite produire ;

111 : la présentation visuelle symbolique (décrite ci-après) des informations lui permet de voir comment désigner cet objet ;

112 : il désigne donc cet objet avec ou sans assistance interactive guidée, à l’aide des actuateurs (doigts) ;

113 : l’utilisateur vérifie qu’il a bien désigné l’objet désiré, et exploite parfois des informations complémentaires (117, par exemple une petite bulle ou étiquette informative affichant la fonctionnalité de l’objet lorsque celui-ci est désigné, à l’instar des bulles d’informations qui s’activent sur les ordinateurs lorsque le curseur de la souris est positionné sur un bouton de Word _ nom commercial) et qui lui sont présentées pour le conforter ;

114 : l’utilisateur valide son choix, par exemple en relevant ses doigts ; les différents moyens et modes de validation ont été décrits plus en détail ci-dessus ;

115 : l’objet désigné et validé est ainsi activé ;

116 : un retour (feedback, par exemple lettre qui s’écrit sur l’écran de visualisation ou écho vocal ou tactile) permet à l’utilisateur de contrôler le résultat.

PRESENTATION SYMBOLIQUE

Dans la présente invention, il est également question de la présentation des informations sur l’écran de visualisation (ou tout autre moyen de présentation) alors même que le dispositif est en cours d’utilisation.

Des moyens, par exemple logiciels, permettent d’afficher symboliquement à l’écran la bande active et les moyens (c’est-à-dire les zones sensibles devant former les combinaisons) pour activer chacun des éléments de la bande.

En référence aux figures 13 et 14, pour une disposition de type réalisation 1, telle que celle de la figure 1, et pour une bande dont l’ordre de rangement des 26 combinaisons est
selon la figure 5, la présentation symbolique compacte consiste en une carte de 36 cases ou moins réparties en 6 grandes zones symbolisées elles-mêmes comme des damiers de 6 cases (dont certaines peuvent être non remplies par une illustration).

Dans cette représentation symbolique, où, par rapport à l'illustration 5, il n'y a plus la représentation de chaque damier pour chaque combinaison, la combinaison donnant accès à une case et à son contenu iconique doit se comprendre comme comprenant, comme première zone sensible à activer en Bitap ou Successitap, la zone sensible qui est dans la même position relative que la grande zone qui contient la case visée et son contenu, et comme seconde zone sensible celle qui est en correspondance positionnelle avec la case elle-même vis-à-vis des cinq autres.

Par exemple pour désigner un « B » on activera d'abord la zone sensible « avant gauche » puis la zone sensible « avant centre », et pour désigner un « T » on activera d'abord la zone sensible « avant droit » puis la zone sensible « arrière centre ».

Cette représentation reste similaire, même quand, pour indiquer que certaines combinaisons se font avec 3 doigts, on rajoute quelques signes ou symboles. De même les combinaisons contenues dans une grande case peuvent être représentées collectivement par une icône, et n'apparaîtra individuellement que lorsque l'on a sélectionné/activé une zone.

Dans la version dynamique de cette présentation, l'activation d'une première zone sensible déclenchera un affichage ne présentant plus que les 6 cases qui étaient dans la grande zone de la carte, puis après activation de la seconde zone sensible, l'indication des zones sensibles activées et la seule icône correspondant au contenu de la case ainsi désignée. Grâce à l'oubli temporisé, la désactivation d'une zone fait revenir la visualisation en arrière.
Cette présentation de la bande elle-même est complétée d’une présentation qui met à jour les objets présentés lors d’une rotation de bande déclenchée, par exemple, par l’action sur une zone logique de modification (pouce et/ou auriculaire), ou toute autre cause comme évoqué ci-dessus.

Dans un autre mode de réalisation de la présentation dynamique illustré par la figure 16, sous la forme d’une matrice à 26 (ou 36) colonnes et N lignes (N = 2 à 18 de façon réaliste correspondant au nombre de combinaisons possibles dans les zones de modification, gérées par le pouce et le petit doigt, et aux besoins courants sur un ordinateur, permettant de basculer entre les bandes) où chaque colonne correspond à la combinaison des doigts de la case associée à un des 26 (36) dominos à 6 cases de la bande de référence, le dynamisme de la présentation peut être limité à la mise en exergue de plus en plus restreinte des zones de la table qui partagent entre elles les zones sensibles déjà activées (figure 17). Dans l’exemple de la figure 17, l’utilisateur a activé une zone pouce extérieure et la zone milieu avant et les quatre choix possibles sont les lettres i, j, k, l de la bande des lettres de l’alphabet latin, sélectionnée par la position du pouce. En ajoutant le doigt de droite sur sa position avant, on désignerait la seule lettre « j ».

Pour guider l’utilisateur entre plusieurs tables ou de nombreuses bandes, les composantes peuvent être représentées, selon l’état de l’art des IHM graphiques et arborescentes, par des icônes illustrant des groupes de combinaisons (d’autres bandes par exemple) plutôt que l’ensemble des icônes de chaque combinaison, chaque icône, lorsqu’elle est désignée, pouvant être expliquée par une étiquette de texte, selon l’état de l’art.

D’autres représentations sont également possibles, notamment celle illustrée par la figure 18 dont les formes
cursives peuvent être considérées comme étant un alphabet de production : à chaque signe correspond une combinaison.

Cette écriture manuscrite qui est initialement une variante de la représentation des positions des doigts sur les zones sensibles, s’avère être d’une grande simplicité à produire sous forme manuscrite, soit de façon cursive liée, soit glissée ou pointée dans une grille préexistante, et s’avère aussi facile à reconnaître parce qu’elle est formée d’éléments simples, faciles à distinguer pour un dispositif simple de reconnaissance d’écriture. Par exemple, un crayon optique de quelques diodes ou équivalent, déctéterait facilement les successions de bâtons supérieurs et inférieurs par rapport au début et à la fin du tracé central. De même, par rapport à une grille, physiquement représentée ou non, les vecteurs et les points sont très faciles à dessiner, puis, en temps réel ou a posteriori, détecter, identifier et relier aux modèles associés aux 36 combinaisons de base. Jusqu’à 6 accents supérieurs et inférieurs sont simples à identifier aussi et permettent de définir un jeu de signes de base, hors commandes de changement de tables de références, allant jusqu’à 216 possibilités.

De même un système de tablette graphique ou d’écran tactile et des logiciels de reconnaissance peuvent facilement faire ces traitements, alors qu’ils sont à la peine pour reconnaître au-delà de 95% des signes d’une écriture manuscrite courante ou même simplifiée.

L’avantage de cette écriture, plus rapide à dessiner et ayant un taux de reconnaissance significativement plus élevé que les écritures proches des graphies classiques, est d’étendre le domaine d’utilité de l’apprentissage du système combinatoire aux situations où il est avantageux de manier un stylet ou un crayon, avec ou sans électronique en temps réel, ou pour annoter de façon reconnaissable des documents imprimés avant scanning. La simplification de la reconnaissance
permettant de la réaliser avec moins de ressources, plus en
temps réel, au point d'écriture, sans zone spéciale ...

Comme évoqué précédemment, la représentation symbolique
selon la figure 13, peut être avantageusement rendue
equivalente à celle d'un clavier virtuel selon l'état de
l'art, où le pointeur et le clic permettent de désigner
successivement à distance, avec ou sans zones sensibles
matérielles, puis de valider les combinaisons selon le procédé
objet de l'invention.

Selon le degré d'expertise de l'utilisateur, la nature,
la taille, l'importance et la permanence de la présentation
symbolique seront avantageusement ajustables. On peut ainsi
distinguer plusieurs niveaux paramétrables :

1. le niveau permanent et dynamique mais limité à une
bande de 36 combinaisons selon la représentation symbolique de
l'illustration 13, avec zoom sur les 6 combinaisons restantes
possibles après un premier appui (figure 14) ;

2. le niveau permanent limité à une bande ou étendu à
une table de plusieurs bandes où la dynamique est limitée à la
mise en exergue des zones activées et des combinaisons avec
leur contenu qui partagent ces zones activées, comme dans les
figures 16 et 17 ;

3. un niveau, par exemple au point de curseur où seul le
signe ou la commande prête à être validée est affichée, et
éventuellement changé selon l'exploration avant validation ou
annulation, selon la figure 3 ;

4. un niveau où l'affichage a été évanoui partiellement
ou totalement après une certaine temporisation (tempo3), et ne
revient en avant-plan que quand on active une zone sensible,
ce qui permet l'usage normal du pointeur de la souris sur la
zone d'écran qu'aurait occupée la présentation ;

5. un niveau où un affichage de plusieurs bandes ou de
toutes les bandes actives se tient en arrière plan et ne
réapparaît qu'après l'écoulement d'une certaine autre
temporisation (tempo4) de maintien activé d'au moins une zone
sensible, cette temporisation étant interprétée comme une hésitation de l’utilisateur, l’affichage s’évanouissant de nouveau après la validation d’une combinaison ;

6. un niveau où l’affichage de comment faire les commandes possibles dans un contexte donné, (par une image symbolique des zones à activer) se fait dynamiquement, non pas en bloc spécifique au DED selon l’invention, mais à côté de chaque icône ou élément de menu déroulant au fur à mesure du déplacement du pointeur ou du changement de contexte ;

7. un niveau des différents types ci-dessus, augmenté, pour l’objet désigné et prêt à être validé, de l’affichage d’une étiquette explicative analogue à celle associée à une icône ou un item de menu déroulant selon l’état de l’art des IHM graphiques, cette étiquette explicative pouvant être réduite à quelques mots ou constituer un véritable paragraphe de Help,

EXPLORATION - APPRENTISSAGE

La combinaison des présentations dynamique et statique décrites précédemment avec le dispositif d’oubli déjà décrit pour les processus de désignation, permet à l’utilisateur novice ou hésitant (experts compris) d’explorer le contenu des diverses bandes et d’ajuster ses doigts de façon à réaliser correctement la combinaison désirée alors même qu’il n’a pas encore validé sa combinaison.

Cette exploration et ces ajustements sont nécessaires à l’utilisation non experte des claviers combinatoires qui induit inévitablement des hésitations et des corrections de la combinaison désignée.

Ils sont notamment réalisables en utilisant le dispositif d’oubli déjà décrit ci-dessus avec les processus « Bitap », « Successitap » et « Simultané », qui considèrent comme logiquement actives les zones qui n’ont pas été physiquement libérées et celles qui n’ont été libérées que depuis une durée inférieure à une durée seuil paramétrable,
(tempo2, et tempo0), qui caractérise l'oubli qu'une zone sensible a été activée, toutes les zones sensibles étant logiquement désactivées après la validation. Cette solution permet aussi de bien distinguer les zones sensibles faisant partie d'une combinaison car validées ensemble et celles qui n'en font pas partie.

Dans le cas du « Bitap », comme le relevé de l'actuateur de la deuxième zone sensible réalise la validation, il n'est pas possible de réaliser l'exploration ci-dessus, sauf si les technologies utilisées pour les zones sensibles permettent le glissé vers une autre zone sensible sans relever l'actuateur, ou si un deuxième actuateur peut activer une autre zone sensible sans avoir d'abord à relever le premier actuateur. Dans le cas où le « Bitap » n'est pas implémenté dans un processus mixte avec du « Successitap » ou « Simultané », on peut implémenter le fait que laisser l'actuateur en contact de la zone sensible une durée supérieure à une temporisation, (tempo5) équivaut à revenir en arrière, ce qui se signale à l'utilisateur en revenant à la présentation précédente créée après le premier appui, et autorise le relevé de l'actuateur sans que la validation n'ait lieu.

Pour un débutant, le logiciel de présentation met en exergue visuelle les zones logiques activées et désactivées au fur et à mesure que l'utilisateur débutant interagit avec le DED. Cette mise en exergue est fondamentale pour que les débutants sachent ce qu’ils ont déjà fait pour aller vers la case et l’objet contenu désirés. Cette mise en exergue se fait selon la représentation choisie. Par exemple, la mise en exergue se fera soit sous forme d'écrans successifs (enchaînement des figures 13, 14 et 15) soit en mettant en valeur le groupe de cases partageant la zone activée puis la case désignée avant validation et éventuel recul ou abandon, la bande affichée étant changée selon l’état ou l’activation d’une zone logique de modification (figures 16 et 17). Dans une représentation selon la figure 13, où la fonction zoom ne
serait pas active ou disponible, la mise en exergue des touches activées peut se faire en ajoutant des index de différentes couleurs dans les grilles et en mettant en exergue ce qui est désigné. Les différentes couleurs peuvent permettre de distinguer parmi toutes les touches qui sont activées physiquement, celles qui le sont valablement selon le processus actif, et celles qui ne le sont pas, car interdites.

Dans un mode de réalisation paramétrable, la présentation peut ne devenir active qu'à l'expiration d'une temporisation (tempo4) à partir de la désignation d'une première zone logique, l'écoulement de cette temporisation étant interprété comme une hésitation de la part de l'utilisateur. La présentation est alors proposée comme une aide, selon les modalités paramétrées par l'utilisateur, avantageusement en réunissant plusieurs bandes ou zoom. De même la représentation peut s'évanouir, soit juste après la validation, soit après une temporisation (tempo3) et passer en arrière plan de la fenêtre active, permettant l'action du pointeur, et ne revenir en avant-plan que lorsque l'on active une zone sensible, soit immédiatement pour le débutant, soit après la temporisation paramétrable (tempo4) évoquée ci-dessus.

L'apprentissage et sa crainte étant ce qui a le plus empêché les dispositifs combinatoires d'émerger vers le grand public, dans une variante adaptative au contexte, la présentation visuelle peut être non pas constituée en tant que telle, en bloc graphique en plus, ce qui oblige à une certaine navette visuelle entre zones de l'écran, et cache plus ou moins selon le taux de transparence choisi pour la représentation graphique interactive, ce qui est en dessous, mais être associée à la présentation existante des commandes disponibles. Par exemple, les représentations symboliques en damiers, des positions des doigts peuvent être accolées en permanence ou dynamiquement à côté des icônes et menus fixes ou déroulants et des différents choix. De cette façon, le
débutant voit au fur et à mesure qu’il pratique à l’ancienne comment il pourra une autre fois n’utiliser que le mouvement de ses doigts pour activer une commande.

Comme mentionnée plus haut, la présentation visuelle est une solution mais non unique. Notamment, toujours dans le cadre de la présente invention, en cas d’absence d’écran, ce qui correspond à un usage avantageux des DED en situations sociales ou de mouvement ou d’autres activités d’observation, la présentation pourra se faire sous forme vocale ou tactile. Dans ce dernier cas, les zones sensibles sont chacune associées à un picot qui agit sur la peau quand la zone sensible est activée, soit statiquement une fois, soit en vibrant. Cette présentation tactile est par ailleurs intéressante pour pouvoir présenter des informations de tout type quand ni un écran ni un écouteur ne sont possibles, techniquement ou socialement. Cette présentation tactile pourrait être, dans un mode de réalisation particulier, associée à un bracelet-montre ou au bracelet contenant le cœur d’un DED dématérialisé (figure 2).

HESITATION - ANNULATION.

Pour un utilisateur qui a désigné une zone logique par erreur, le DED peut « oublier » la zone logique désignée par erreur dès qu’une durée supérieure à la temporisation (tempo2) définie précédemment dans les différents processus de relevés simultanés s’est écoulée après que l’utilisateur a relevé son doigt de la zone erronée, à condition qu’il y ait toujours une zone sensible affectée à un doigt agile qui soit physiquement activée, ce qui peut nécessiter d’activer physiquement une autre zone affectée à un doigt agile avant de relever le doigt ayant une position erronée. Cette possibilité permet à l’utilisateur un apprentissage exploratoire accessible et offre également une rassurante tolérance à l’erreur pour le débutant.
Parmi les corrections possibles, lorsque l'utilisateur change complètement d'avis avant la validation d'un objet qu'il commence à désigner, une fonction d'annulation est possible. Celle-ci peut être mise en œuvre par un mécanisme principal, mais non limitatif : la bande active ou la bande sans pouce ni petit doigt de la table active, présente au moins une combinaison associée à cet objet vide ou Null, créée comme une fonction interne au DED d'annulation. Par exemple, lorsque la technologie le permet, la combinaison spéciale d'appui des 6 touches affectées aux trois doigts agiles, ou plus généralement, une combinaison facile de construction par déplacement des doigts selon le processus d'oubli. L'utilisateur, en désignant cet objet, par utilisation des mécanismes de correction, hésitation et oubli décrits précédemment, puis en le validant, ne produit aucun objet. Cette particularité de l'invention évite à l'utilisateur d'avoir à corriger le résultat d'une activation intempestive, souvent facile avec les logiciels modernes mais pas toujours, et la plupart du temps coûteux en temps et rythme de travail.

En variante intéressante, cette fonction Null réalise en même temps la remise à zéro des mémoires contenant des informations sur les touches modificatrices et les lock de toutes natures dans des positions particulières, entraînant ainsi le retour à une position de référence bien connue et sans ambiguïté ni décalage entre ce que croit l'utilisateur et ce que sait le système.

CORRECTION—DESAMBIGUISATION—PREDICTION—COMPLETION

La présente invention concerne également des moyens de correction, de désambiguïsation, de prédiction et de complétion qui sont mis en œuvre sur le DED. Deux aspects peuvent être considérés : l'aspect détection des doigts et l'aspect sémantique de ce qui est saisi.

Lors de la saisie rapide de données par l'utilisateur, celui-ci peut réaliser une saisie erronée d'autant plus que la
transition entre certaines paires de désignations d'objets n'est pas évidente pour des doigts non entraînés. Ainsi le dispositif comprend des moyens, matériels, par construction et paramétrage des sensibilités, éventuellement logiciels, de correction des erreurs de frappe, notamment des frappes très courtes et sans forces (effleurements). Selon la présente invention, les zones sensibles d'une même zone principale, sont quasi totalement exclusives entre elles, sauf, dans certains cas, pour des actions qui ne se font pas très rapidement. De ce fait, si l'actuateur agit malencontreusement sur deux zones, le système donne la priorité à la première qui est effleurée, et dans le cas d'un effleurement simultané, à celle où la force ou la surface, selon les technologies, sont les plus grandes. Basiquement, les zones sensibles adaptées à l'invention n'ont pas besoin, comme des touches d'un clavier classique, de leur faire dépasser un seuil de déplacement et fournir une sensation d'effondrement de résistance, et sont au contraire à faible ou nul déplacement, à force faible ou nulle. En effet, d'une part les doigts qui galopent à plusieurs coups par seconde seraient ralentis par ces déplacements et ces forces, d'autre par du fait que les mouvements des doigts sont simples il n'y a pas d'utilité de discriminer entre la touche voulue et ses voisines, pratiquement constamment effleurées en touch typing de doigts se déplaçant sur des surfaces importantes.

Par ailleurs, dans le cas où l'utilisateur a du mal à enchaîner la production d'un premier objet suivi d'un second objet parce que ses doigts se positionnent mal et désignent par erreur un troisième objet, des moyens logiciels mettent en mémoire cette donnée (enchaînement objet1-objet2 délicat pour cet utilisateur) et fournissent des moyens pour palier et anticiper (donc prédire et corriger) les erreurs : lorsque le premier objet est produit, les zones logiques associées au deuxième objet peuvent être agrandies au détriment de celles
du troisième objet, afin de faciliter la production de ce deuxième objet.

Une autre manière de diminuer les erreurs est de proposer des processus à deux doigts sans ordre. Cela est possible, comme évoqué précédemment quand on saisit du texte et des mots significatifs dans une langue donnée. Le principe s'appelle la désambiguïsation et a été rendu célèbre par la technique T9 de la société Tegic. Il consiste à ne pas demander à l'utilisateur de produire des lettres exactes mais de se contenter de produire un code associé à deux (Suretype) ou trois/quatre (T9 ou iTap) ou six lettres (Tengo) et à laisser le logiciel et ses tables de vocabulaire, lever les ambiguïtés en proposant des syllabes ou des mots que l'utilisateur n'a plus qu'à choisir au lieu de les taper, ce qui n'est pas toujours avantageux avec les systèmes existants.

Dans le cas de l'invention, si on tape simultanément deux touches parmi six, chacune des dix-huit combinaisons possibles ne peut correspondre qu'à deux arrangements distincts par l'ordre de frappe des deux mêmes touches, par exemple le « C » et le « P » selon la figure 7, ce qui correspond à une ambiguïté linguistique faible, facile à traiter. Un radical ou un mot unique seront très souvent la seule possibilité. Dans le cas de plusieurs choix, le fait qu'avec les claviers combinatoires on ne regarde pas le clavier, permet de ne regarder que l'écran, et donc de voir immédiatement les messages du système, puis, avec le guidage dynamique associé à la présentation interactive (déjà décrite), de présenter les choix de façon à les sélectionner avec une combinaison liée à la position du choix dans le guidage dynamique, comme illustré sur la figure 19, donc, sans avoir à aller activer des touches de déplacement, plus ou moins lointaines et de validation : on voit et on clique en produisant la combinaison implicite, ce qui est alors plus rapide que de finir la frappe du mot ... Donc on peut, quand un logiciel de désambiguïsation est disponible pour la langue de création d'un texte, avoir une frappe
simultanée à deux doigts, très facile et donc rapide, et naturelle pour un utilisateur ayant commencé en "Bitap" puis en "Successitap". Dans le cadre de la désambiguïsation sur deux éléments seulement il est souvent aussi possible de procéder à des corrections automatiques d'erreurs (élimination de mots n'ayant pas de sens) ou à des propositions pour que l'utilisateur corrige lui-même en précisant dans la foulée de sa frappe le radical ou le mot qu'il veut vraiment à la place du radical erroné.

Au-delà de la désambiguïsation, l'art antérieur connaît aussi des moyens de prédiction et de complétion sémantique basés sur les dictionnaires et les phrases les plus fréquentes de l'utilisateur, notamment mis en œuvre dans les téléphones portables. Par des moyens logiciels, le DED propose des suggestions sémantiques à l'utilisateur en fonction, par exemple, des objets immédiatement saisis, d'une analyse syntaxique et sémantique du début de phrase saisie, du contexte (logiciel) dans lequel est utilisé le DED. Lorsque la bande active présentée à l'écran contient des cases vides, ou des cases contenant des objets sans utilisation à ce moment, elle est modifiée pour présenter à l'utilisateur un ou plusieurs objets (mot, portion de phrase, commande ...) proposés au fur et à mesure par la prédiction sémantique ou langagière. Alternativement, une bande optionnelle est créée avec un ou plusieurs de ces nouveaux objets et présentée à l'utilisateur à un endroit favorable de l'écran. C'est notamment le cas sur la figure 19 qui présente trois propositions désignables suite à la saisie du début de mot "Per". Cette bande modifiée ou créée est présentée, visuellement ou par tout autre moyen, à l'utilisateur, si celui-ci le désire. Ainsi ce dernier peut effectivement produire plus rapidement l'objet désiré si celui-ci fait partie des suggestions, alors que souvent avec les systèmes classiques, sélectionner une suggestion est plus lent que de finir de taper les lettres du mot visé, sans
compter que s’il regarde ses touches l’utilisateur ne voit pas la suggestion très tôt.

Lorsque l’écran est assez grand et les choix pas trop nombreux, les objets suggérés sont présentés dans les cases d’un grand domino ou de dominos emboités de telle façon que la sélection de l’objet préféré se fasse par une action des doigts analogue à celle de la production des objets élémentaires restant à ajouter pour atteindre un mot ou une phrase sémantiquement corrects et adaptés à la pensée voulue par l’utilisateur. Cette présentation revêt son intérêt par le fait que l’utilisateur d’un DED selon l’invention ne regarde jamais ni ses mains ni le DED, est entraîné à interpréter mimétiquement les représentations symboliques et les produit rapidement.

Cette présentation compacte et facilement désignable s’applique à des mots ou des phrases types. Pour faciliter la production de textes répétitifs, conventionnels ou typiques, la présentation symbolique peut porter sur des bandes où les phrases sont représentées par des icônes qui sélectionnées affichent la phrase puis la produisent en bloc lorsque la combinaison correspondante est validée. Ce procédé a un sens avec l’invention car l’utilisateur peut garder son regard sur l’écran et appeler à volonté des bandes d’objets particuliers et personnels. Dans le cas évoqué, la production de texte est grandement accélérée et correspond bien aux contextes d’Instant Messaging ou de SMS.

PARAMETRAGE ET ADAPTATION AUTOMATIQUE

Selon un mode de réalisation, le dispositif comprend des modules logiciels pour la gestion des étapes et mécanismes précédemment décrits. Cela permet notamment d’offrir une interface de paramétrage à l’utilisateur en fonction de ses aspirations :

- Choix des durées seuil de temporisation :
• tempo0, en mode Bitap pur, définit le temps disponible à l’utilisateur pour déplacer l’actuateur unique de la première zone sensible à la seconde,
• tempo1 pour le temps de séparation entre le simultané et le successif,
• tempo2 pour la validation et pour l’oubli temporisé des zones physiquement libérées,
• tempo3 pour gérer la vitesse d’évanouissement du guidage interactif
• tempo4 pour gérer la réapparition d’une visualisation de guidage quand l’utilisateur hésite avant de valider ou d’ajouter un doigt,
• tempo5 pour l’oubli du deuxième appui Bitap,
• tempo6 pour l’oubli des mouvements pointeur avant l’inhibition déclenchée par l’activation d’une zone sensible du DED,
 -Choix des niveaux de transparence de la visualisation interactive,
 -Choix des modes de désignation et validation préférés (Bitap, Glissé, Successitap, Simultané, Mixte, Avancé ...),
 -Paramétrage des zones sensibles logiques en fonction de la morphologie de la main de l’utilisateur,
 -Choix des actuateurs,
 -Paramétrage des tables/bandes (nature des objets, positionnements des objets selon préférences).

SYSTÈME.

Dans un mode de réalisation illustré par la figure 12, le dispositif DED (120) est relié, par une liaison filaire (122) (câble USB, câble réseau) ou non filaire (123) (Infrarouge, Bluetooth, Wifi, RF ...), à l’équipement (121) où entrer des données.

Dans une réalisation le DED comporte des moyens logiciels permettant de mettre en œuvre le procédé décrit dans la présente invention et de communiquer avec l’équipement
auquel il est relié. De façon similaire, l’équipement comprend des moyens logiciels et peut communiquer avec le DED et interpréter les données envoyées pour exécuter une action par exemple.

L’utilisateur qui désire effectuer une action sur l’équipement en question, produit au moyen du DED la combinaison correspondant à l’action souhaitée. Le DED transmet à l’équipement, certaines données qui sont interprétées par l’équipement pour produire l’action. Selon les possibilités d’installer des programmes et de mettre en mémoire des tables mettant en œuvre l’invention, ou d’accéder aux moyens de présentations de l’équipement, une part plus ou moins grande, éventuellement nulle du procédé selon l’invention sera réalisée dans l’équipement, et le DED réalisera ce qui ne peut être fait par cet équipement.

Dans un mode de réalisation particulier, plusieurs DED peuvent piloter concurremment un même équipement. Un tel cas de figure permet notamment des applications de type jeu ou conférence ou séance de travail en commun. Ce système présente certains avantages : pour une seule personne mais aussi pour plusieurs personnes travaillant ou jouant ensemble en ne partageant qu’un écran local ou dupliqué et des applications, chacun étant en mesure d’intervenir de sa place tout en regardant aisément ce qui se passe sur l’écran commun. Par rapport à ce qui est faisable avec les claviers classiques, l’utilisation de DED selon l’invention apporte des avantages significatifs, notamment le fait qu’une seule main est sollicitée pour, à la fois les saisies, les commandes et le dispositif de pointage. Un autre avantage concerne le fait que les positions physiques possibles pour les participants sont plus confortables et plus variées (moins besoin de tables, positions debout et en se déplaçant possibles, etc.) et que les utilisateurs n’ayant pas besoin de regarder même furtivement le clavier, peuvent se concentrer sur ce qui se
montre à l'écran commun ou dans l'écoute globale attentive de celui qui s'exprime.

Un cas particulier concerne le cas où deux DED, éventuellement d'architectures différentes, sont connectés et maniés par chacune des deux mains du même utilisateur (utilisateur 2 de la figure 12), mettant ainsi en jeu jusqu'à 10 actuateurs. Cette configuration qui ne concernera que des utilisateurs déjà experts des deux mains permet, notamment mais pas nécessairement, de rendre totalement indépendantes les frappes de deux signes successifs, alors que, sur les claviers classiques à deux mains, l'indépendance est inférieure à 80 %. Cumulés avec des logiciels de correction et prédiction sémantique, éventuellement en utilisant des frappes de syllabes phonétiques (plusieurs dizaines seulement en français contre un peu plus de mille en orthographiquement correct) ce système pourrait être plus productif que ce qui existe actuellement de plus rapide : Qwerty-Azerty, Stenotypie directe et VeloType (nom commercial).

Le DED peut également être un dispositif indépendant disposant de ses propres moyens de calcul (logiciel d'interprétation pour le capteur, logiciel de gestion des tables, ...) et éventuellement de moyens de présentation de l'objet produit par l'utilisateur : écran de visualisation propre, par exemple fixé sur le dos de la main qui agit sur le DED, écran de visualisation externe, moyens de présentation sonore (synthétiseur vocal, haut-parleur, écouteurs, oreillettes...), moyens de présentation tactile...

À l'opposé, le DED peut s'inscrire dans une architecture client-serveur. Dans une mise en œuvre particulière, le DED comprend les moyens sensibles de détection (capteurs), des moyens de présentation (un écran, un haut-parleur), des moyens de communication avec un réseau (par exemple, Wifi, GSM ou UMTS), des moyens logiciels permettant l'interfaçage homme-machine IHM et la transmission des données sur le réseau. Dans ce mode de réalisation, le DED n'est qu'une interface Homme-
Machine et les services applicatifs du procédé sont déportés sur un serveur connecté au réseau. Ce DED peut être soit personnel ou banalisé, ou spécifique à un lieu et contexte donné, selon l'état de l'art des terminaux. Ainsi, les données de personnalisation (structure des bandes, dimensionnement des zones sensibles ...) sont stockées sur le serveur et seules les coordonnées des actuateurs déterminées au travers du/des capteur(s) sont transmises au serveur. L'utilisation en temps réel, c'est-à-dire une utilisation fluide comparée à la production d'un utilisateur normal, peut être réalisable sur les réseaux actuels de communication performants (GPRS, WiFi, UMTS...).

En variante, les paramètres de l'utilisateur et des programmes adaptés sont installés temporairement dans le terminal DED, selon l'état de l'art des terminaux et des serveurs.

DED + ÉCRAN.

Dans un mode de réalisation particulier mais d'un usage courant, le DED est relié au moins à un écran de visualisation éventuellement par l'intermédiaire d'un ordinateur. L'écran de visualisation permet d'enrichir le DED de modules utiles pour l'apprentissage et l'utilisation de ce dispositif combinatoire d'entrée de données.

Des variantes encore plus favorables à un usage en situations de mobilité, associeraient au DED une synthèse vocale et une présentation audio via un écouteur, beaucoup moins intrusifs qu'un écran vis-à-vis des tiers. Le moins intrusif étant la présentation tactile sur une surface de peau assez grande, par exemple sous le poignet dans un bracelet éventuellement associé au cœur du dispositif de détection, selon la figure 2.

EXEMPLE DE REALISATION : DED INTEGRE DANS UN TELEPHONE PORTABLE.
Une application particulière du DED concerne les téléphones mobiles qui deviennent de plus en plus des terminaux et ont donc besoin d’un Interface Homme Machine allant plus loin que les douze touches historiques, le gestionnaire de déplacements de curseur et les touches « entrée » et « échappement ».

Selon le choix du constructeur ou ensuite de l’utilisateur, cinq modes de réalisation principaux sont possibles avec un DED selon l’invention :

- Installation limitée à du logiciel implémentant le processus selon l’invention et basé sur $6 + 4 + 2$ touches reprises sur un clavier numérique standard, par exemple, selon la figure 20. Seuls les modes Bitap et Successitap à deux pouces sont pratiquement possibles du fait de la dureté d’appui des touches standard, mais permettent déjà des saisies et des commandes sans regarder du tout les touches, beaucoup plus rapides et sophistiquées qu’avec les claviers et processus classiques. Dans l’exemple de la figure 20, et avec la grammaire de la figure 5, les touches usuelles du téléphone mobile sont utilisées et l’appui des touches « 1 » et « 2 » produit la lettre « B ». De fait, cette implémentation logicielle apporte la puissance et la flexibilité d’un clavier virtuel sans nécessiter d’avoir à installer un écran tactile plus coûteux et fragile.

- Installation d’une réalisation de type 1 à partir de technologies touchpad multitouch en remplacement du seul gestionnaire de curseur selon la figure 21. Le bandeau DED a la largeur du téléphone et un centimètre de hauteur. Il peut s’utiliser en Bitap, Glisé, Successitap, Tritap, Simultap, Mixtes et Avancés, selon que l’utilisateur dispose d’une seule main ou de deux mains pour tenir et actionner son appareil. Le DED permet de réaliser et d’accélérer toutes les actions de l’IHM d’un téléphone. Dans l’exemple de la figure 21, le bandeau (210) est utilisé en mode glisé. À cet effet, le
glissé (211) entre les deux cases « gauche avant » et « milieu avant » produit la lettre « B » (grammaire de la figure 5).

- Installation3 d’une réalisation de type 2 à partir de technologies touchpad du commerce, selon la figure 22. Le multi-touchpad recouvre toute ou partie de la surface non écran du téléphone. Les touches classiques sont représentées sur la surface et peuvent être actives par simple basculement logiciel. En mode DED selon l’invention, par simple adjonction de logiciel, il permet les utilisations de la réalisation 1 plus un usage à quatre ou cinq doigts, main droite ou main gauche et l’usage d’une souris. Le constructeur peut notamment augmenter significativement les déjà fréquentes, selon l’état de l’art, fonctionnalités de télécommande universelle sans fil de son téléphone, actuellement limitées et lentes à cause des contraintes des claviers classiques d’objets mobiles. Avec un DED selon l’invention, le téléphone peut alors vraiment agir de façon très puissante et rapide sur tous les objets électroniques portés par la personne et ceux qu’il rencontre.

- Installation4 d’une réalisation de type 1 ou 2 directement dans l’écran tactile, soit multitouch ne permettant que des appuis Bitap ou Glissé avec les doigts ou un stylet, soit multitouch et permettant aussi les usages Successitap, Tritap, Simultap, Mixtes, et Avancés,

- Enfin, installation5, l’utilisateur peut se procurer directement auprès du constructeur ou d’un fournisseur séparé de DED, un DED selon l’invention, distinct du téléphone et agissant à distance sur celui-ci ou réintégré avec celui-ci via un étui et des connectiques ad hoc selon l’état de l’art, et des situations correspondant à la figure 12.

EXEMPLE DE RÉALISATION de DED AVEC AUTHENTIFICATION et IDENTIFICATION

Le DED est un objet électronique qui communique avec des moyens extérieurs. Lorsque ceux-ci ne sont pas passifs et peuvent dialoguer avec le DED et contrôler ce que celui-ci
transmet, il est avantageux d'inclure dans le système électronique du DED des moyens d'authentification du DED et d'Identification de l'utilisateur dialoguant avec ces moyens extérieurs selon des processus que ne peut, selon l'état de l'art, remettre en cause l'utilisateur.

Par exemple le DED peut intégrer une puce électronique de sécurité par laquelle le DED peut passer lorsqu'il reçoit des requêtes particulières après avoir ou avant d'avoir intercalé des informations saisies par l'utilisateur.

Par ailleurs, comme cela est connu par l'état de l'art, la manière de bouger les doigts peut caractériser de façon assez forte une personne donnée. Dans une telle implémentation, au-delà du dialogue sous-jacent de la puce électronique authentifiant l'objet DED qui est connecté, le système peut ajouter, de façon automatisée, sans solliciter l'utilisateur, des vérifications régulières sur l'identité de l'utilisateur en cours. Cette solution nouvelle se juxtaposerait, pour des enjeux de sécurité définis par les responsables ad hoc, aux demandes classiques de saisie d'informations que l'utilisateur est réputé seul connaître et protéger de divulgation, ou de pose d'un doigt sur un lecteur biométrique. En intégrant les moyens d'authentification et d'identification d'une personne dans un DED personnel que transporte et utilise cette personne pour ses propres raisons, on rend les objets, nommés « Token » par l'état de l'art, beaucoup plus confortables à utiliser. Par cela, le DED selon l'invention rend bien plus facile d'augmenter de façon sensible la sécurité sur les réseaux et les mobiles, c'est-à-dire de dépasser la seule combinaison « login » + « mot de passe » dont les faiblesses bien connues n'empêchent pas, à cause des contraintes lourdes des Token, (ils obligent à porter un objet spécifique à usage interruptif) qu'elles restent dominantes.

En appliquant les réalisations ci-dessus aux réseaux de téléphonie (fixe, DECT, GSM, CDMA, UMTS...) et informatiques
(GPRS, WiFi, UMTS) mobiles, il apparaît que la puce qui est actuellement logé de façon assez peu mobile dans un terminal donné, peut logiquement en être sortie et créer des conditions bien plus flexibles d'utilisation de toutes sortes de terminaux, personnels ou mis à dispositions par des tiers et d'accès à des lieux protégés, via un DED personnel, doté de moyens d'authentification et d'identification, que la personne utilise par ailleurs de façon assez naturelle et fréquente pour l'avoir toujours avec elle.
1. Procédé combinatoire d’entrée de données sur un dispositif d’entrée de données (DED) comportant des moyens sensibles activables par l’intermédiaire d’au moins un actuateur, permettant, selon la combinaison des moyens sensibles activés, à un programme informatique ad hoc, de désigner et d’activer, un objet contenu dans une table active de correspondance en mémoire, les moyens sensibles étant constitués par au moins trois zones principales Z_i de détection constituées chacune de F_i ($F_i = 1, 2, 3...$) zones sensibles distinctes, ledit procédé comprenant au moins une étape de désignation/sélection d’un objet de ladite table active et une étape postérieure de validation et de production de l’objet désigné, caractérisé en ce que, pour au moins une première partie des objets de ladite table active, ladite étape de désignation/sélection d’un même objet est indifféremment réalisée soit par la désignation dudit objet en mode combinatoire successif soit par la désignation dudit objet en mode combinatoire simultané.

2. Procédé selon la revendication 1, caractérisé en ce qu’il comprend, en outre, une étape de présentation visuelle symbolique d’informations indicatives de la façon de désigner les zones sensibles correspondant à la combinaison associée à chaque case de la table active, les dites présentations symboliques pouvant elles-mêmes être sensibles selon la technologie des claviers virtuels.

3. Procédé selon l’une des revendications précédentes, caractérisé en ce qu’il comprend, entre ladite étape de désignation et ladite étape de validation, une étape d’exploration et d’ajustements des combinaisons désignables.
4. Procédé selon la revendication 3, caractérisé en ce que ladite étape d’exploration comprend une étape de présentation symbolique visuelle, sonore ou tactile et de mise en exergue visuelle, sonore ou tactile, des zones sensibles activées ou désactivées au fur et à mesure que l’utilisateur interagit avec et des objets associés aux combinaisons partageant les zones sensibles déjà désignées, jusqu’au stade où il n’y a plus qu’une combinaison associée à une case de la table active et à l’objet que celle-ci contient.

5. Procédé selon la revendication 3 ou 4, sur un DED relié à des moyens de visualisation, caractérisé en ce que ladite étape d’exploration comprend :
 - une étape de présentation, sur lesdits moyens de visualisation, des différentes zones sensibles et, pour chaque zone sensible, des objets dont la production requiert l’activation de cette zone sensible en plus des zones sensibles déjà sélectionnées,
 - lorsque l’utilisateur sélectionne une nouvelle zone sensible ou libère une zone sensible, une étape temporisée de mise à jour de la présentation des zones sensibles sélectionnées et des objets associés aux combinaisons de zones sensibles pour tenir compte de toutes les zones sensibles désignées à cet instant ou qui l’étaient dans un délai passé inférieur à une ou plusieurs temporisations, et des objets pouvant encore être produits.

6. Procédé selon l’une des revendications précédentes, sur un dispositif particulier comprenant deux zones sensibles distinctes pour chacune des trois zones principales, caractérisé en ce que ladite désignation en mode successif d’un objet de ladite table active par une combinaison comprend l’activation successive d’au moins deux zones sensibles parmi les six zones.
7. Procédé selon l’une des revendications précédentes, caractérisé en ce que, pour au moins une deuxième partie des objets de ladite table active, ladite étape de désignation/sélection d’un objet est uniquement réalisée par la désignation de la combinaison en mode successif.

8. Procédé selon la revendication précédente, caractérisé en ce que, pour au moins une sous-partie de la deuxième partie des objets, ladite étape de désignation/sélection d’un objet est réalisée par un seul appui-relevé sur une seule zone sensible.

9. Procédé selon l’une des revendications précédentes, caractérisé en ce que ladite étape de validation comprend la détection de la désélection de toutes les zones sensibles principales, la combinaison validée étant celle constituée par les zones sensibles qui étaient encore sélectionnée jusqu’à un délai passé, ce délai étant :

• pour les combinaisons hors mode successif pur Bitap, égal à une première temporisation d’oubli (tempo2), et
• pour les combinaisons en mode successif pur Bitap, égal à une deuxième temporisation d’oubli (tempo0) supérieure à la première temporisation.

10. Procédé selon l’une des revendications précédentes, sur un dispositif particulier comprenant, en outre, au moins une zone principale additionnelle de détection constituée d’une pluralité de zones logiques et une pluralité de tables parmi laquelle se trouve la table active, caractérisé en ce qu’il comprend, en outre, une étape de substitution de ladite table active avec l’une de ladite pluralité de tables en activant au moins l’une desdites zones logiques de la au moins une zone principale additionnelle.
11. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend, en outre, une étape de correction, désambiguïsation et prédiction des chaînes d'objets désignés ou validés, ladite étape permettant la création d'une table de suggestions comprenant au moins une suggestion, et une étape de présentation visuelle, sonore ou tactile de la table des suggestions dont les objets sont désignables, explorables et validables par ladite étape de description/sélection.

12. Procédé selon l'une des revendications précédentes, caractérisé en ce que lesdits objets désignés, validés et produits sont choisis parmi l'ensemble des objets informatiques et électroniques, par exemple, un ou plusieurs caractère(s) alphanumérique(s), une phrase type, une image, un icône, un item de menu déroulant, une commande et un programme informatique internes audit dispositif, une commande et un programme informatique externes audit dispositif et résidant sur tout équipement informatique ou électronique auquel est relié le dispositif DED.

13. Dispositif d'entrée de données (DED) comportant des moyens sensibles activables par l'intermédiaire d'au moins un actuateur, permettant, selon la combinaison des moyens sensibles activés, à un programme informatique ad hoc, de désigner et d'activer, un objet contenu dans une case d'une table active en mémoire, les moyens sensibles étant constitués d'au moins 3 zones principales Z_i de détection constituées chacune de F_i ($F_i = 1, 2, 3...$) zones logiques distinctes, pour la mise en œuvre du procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend, en outre, des moyens logiciels et de mémoire, les moyens de mémoire stockant au moins la table active et un code informatique, les moyens logiciels exécutant ledit code informatique et étant aptes à traiter les informations
d'activation desdites zones sensibles dans un mode indifféremment successif Bitap pur, successif ou simultané et à produire l'objet désigné lors de la validation de la combinaison de zones sensibles activées.

14. Dispositif DED selon la revendication précédente, caractérisé en ce qu'il comprend, en outre, des moyens de détection de déplacement pilotant au moins un pointeur électronique, lesdits moyens de détection de déplacement étant l'un parmi le groupe constitué de toute ou partie des zones sensibles de détection, des moyens juxtaposés auxdites zones principales Z_i et des moyens porteurs des zones de détection.

15. Dispositif DED selon l'une des revendications 13 à 14, caractérisé en ce qu'il comprend, en outre, au moins une zone principale additionnelle de détection constituée d'une pluralité de zones logiques et une pluralité de tables parmi laquelle se trouve la table active, ladite au moins une zone principale additionnelle étant apte via les moyens logiciels, lorsque au moins une de ses zones logique est désignée, à substituer ladite table active par l'une de ladite pluralité de tables.

16. Dispositif DED selon l'une des revendications 13 à 15, caractérisé en ce qu'il comprend des moyens d'authentification du DED de type puce électronique spécifique audit dispositif, la puce étant apte à produire une chaîne alphanumérique en fonction du profil d'utilisation en cours du dispositif par l'utilisateur et d'une chaîne de caractères saisie par l'utilisateur grâce aux moyens sensibles activables de production d'objets dudit dispositif.

17. Dispositif DED selon l'une des revendications 13 à 16, caractérisé en ce que lesdites zones sensibles
logiques F_i d'une même zone principale Z_i sont exclusives entre-elles.

18. Système d'entrée de données comprenant au moins un dispositif d'entrée de données DED selon l'une quelconque des revendications 13 à 17 et un équipement informatique, lesdits DED pilotant concurremment, à l'aide des objets produits par ceux-ci, l'équipement informatique auquel ils sont reliés.

19. Système selon la revendication 18, caractérisé en ce qu'il comprend, en outre, des moyens de présentation visuelle, sonore ou tactile permettant de restituer symboliquement la table active, les zones sensibles logiques sélectionnée et celles à désigner pour activer au moins un des éléments de la table.

20. Programme d'ordinateur destiné à la mise en œuvre du procédé selon la revendication 1, caractérisé en ce qu'il comprend une pluralité d'instructions aptes à traiter les informations de désignation/désélection des zones logiques et produire un objet en fonction des zones logiques désignés en mode combinatoire successif ou simultané lorsque l'utilisateur valide la sélection.
Figure 13

Figure 14

Figure 15

Figure 16
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

G06F3/023 G06F3/041

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO–Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td>1–12,14, 16,19,20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Date of the actual completion of the international search

26 January 2006

Date of mailing of the international search report

02/02/2006

Name and mailing address of the ISA

European Patent Office, P.B. 5018 Patentlaan 2 NL–2280 HV Rijswijk
Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

Authorized officer

Piriou, Y.N.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| Y | US 4 344 069 A (PRAME ET AL)
10 August 1982 (1982-08-10)
column 2, lines 41-68
column 3, lines 34-40
column 4, lines 9-18
column 5, line 11 - column 6, line 16
column 7, lines 34-53
figures 3,4
figure 5 | 1-12,14, 20 |
| Y | WO 97/23816 A (PHILIPS ELECTRONICS N.V; PHILIPS NORDEN AB)
3 July 1997 (1997-07-03)
page 1, lines 25-28
page 2, lines 10-19 | 16 |
| Y | US 5 535 421 A (WEINREICH ET AL)
9 July 1996 (1996-07-09)
column 5, line 59 - column 6, line 54
column 7, line 63 - column 8, line 23
column 10, line 57 - column 11, line 60
column 13, lines 41-46
column 23, lines 38-49
column 23, line 64 - column 24, line 14 | 19 |
3 April 2003 (2003-04-03)
paragraph '0049!
paragraphs '0055!, '0056!
paragraphs '0099! - '0102!
paragraphs '0108!, '0109!
figures 1B-1D | 3-5,8,11 |
| A | US 6 107 997 A (URE ET AL)
22 August 2000 (2000-08-22)
figure 4
figure 17
column 2, lines 8-44
column 3, lines 31-54
column 4, lines 5-14
column 6, line 15 - column 7, line 40 | 1-4,6-8, 13-15, 18,20 |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 0213022</td>
<td>04-03-1987</td>
<td>CA 1297967 C</td>
<td>24-03-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3681660 D1</td>
<td>31-10-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 213022 T1</td>
<td>23-07-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2585487 A1</td>
<td>30-01-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 63036322 A</td>
<td>17-02-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5087910 A</td>
<td>11-02-1992</td>
</tr>
<tr>
<td>US 4344069</td>
<td>10-08-1982</td>
<td>DE 2962591 D1</td>
<td>03-06-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1122051 C</td>
<td>12-11-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 55072237 A</td>
<td>30-05-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 57013013 B</td>
<td>15-03-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 420447 B</td>
<td>05-10-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 7811983 A</td>
<td>22-05-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4381502 A</td>
<td>26-04-1983</td>
</tr>
<tr>
<td>WO 9723816</td>
<td>03-07-1997</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 5535421</td>
<td>09-07-1996</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2003063775</td>
<td>03-04-2003</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 6107997</td>
<td>22-08-2000</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

A. CLASSEMENT DE L'OBJET DE LA DEMANDE

606F3/023 **606F3/041**

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

606F

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO–Internal, WPI Data

C. DOCUMENTS CONSIDERES COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>page 7, ligne 16–29 page 8, ligne 1 – page 9, ligne 1 page 10, ligne 1 – page 12, ligne 2;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 1–7 page 13, ligne 29 – page 14, ligne 8 page 15, ligne 1 – page 16, ligne 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 19, ligne 5–23 page 20, ligne 11 – page 21, ligne 3 page 22, ligne 9 – page 23, ligne 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 24, ligne 30 – page 25, ligne 12 page 26, ligne 19 – page 28, ligne 3 figures 15,16</td>
<td>1–12,14, 16,19,20</td>
</tr>
</tbody>
</table>

Catégories spéciales de documents cités:

- **A** document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- **E** document antérieur, mais publié à la date de dépôt international ou après cette date
- **L** document pouvant être un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation où pour une raison spéciale (telle qu'indiquée)
- **O** document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- **P** document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

Catégories spéciales de documents cités:

- **T** document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'invention ou au théorème constituant la base de l'invention
- **X** document particulièrement pertinent, l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- **Y** document particulièrement pertinent, l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

Date à laquelle la recherche internationale a été effectivement achevée

26 janvier 2006

Date d'expédition du présent rapport de recherche internationale

02/02/2006

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV RIJWELD

Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

Fonctionnaire autorisé

Piriou, Y.N.
C.(suite) DOCUMENTS CONSIDERÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 4 344 069 A (FRAME ET AL) 10 août 1982 (1982-08-10) colonne 2, ligne 41-68 colonne 3, ligne 34-40 colonne 4, ligne 9-18 colonne 5, ligne 11 - colonne 6, ligne 16 colonne 7, ligne 34-53 figures 3,4 figure 5</td>
<td>1-12,14, 20</td>
</tr>
<tr>
<td>Y</td>
<td>WO 97/23816 A (PHILIPS ELECTRONICS N.V; PHILIPS NORDEN AB) 3 juillet 1997 (1997-07-03) page 1, ligne 25-28 page 2, ligne 10-19</td>
<td>16</td>
</tr>
<tr>
<td>A</td>
<td>US 6 107 997 A (URE ET AL) 22 août 2000 (2000-08-22) figure 4 figure 17 colonne 2, ligne 8-44 colonne 3, ligne 31-54 colonne 4, ligne 5-14 colonne 6, ligne 15 - colonne 7, ligne 40</td>
<td>3-5,8,11</td>
</tr>
</tbody>
</table>

Formulaires PCT/IBA/210 (suite de la deuxième feuille) (Janvier 2004)
RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 0213022 A</td>
<td>04-03-1987</td>
<td>CA 1297967 C</td>
<td>24-03-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3681660 D1</td>
<td>31-10-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 213022 T1</td>
<td>23-07-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2585487 A1</td>
<td>30-01-1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 63036322 A</td>
<td>17-02-1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5087910 A</td>
<td>11-02-1992</td>
</tr>
<tr>
<td>US 4344069 A</td>
<td>10-08-1982</td>
<td>DE 2962591 D1</td>
<td>03-06-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1122051 C</td>
<td>12-11-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 55072237 A</td>
<td>30-05-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 57013013 B</td>
<td>15-03-1982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 420447 B</td>
<td>05-10-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 7811983 A</td>
<td>22-05-1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4381502 A</td>
<td>26-04-1983</td>
</tr>
<tr>
<td>WO 9723816 A</td>
<td>03-07-1997</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>US 5535421 A</td>
<td>09-07-1996</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>US 2003063775 A1</td>
<td>03-04-2003</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>US 6107997 A</td>
<td>22-08-2000</td>
<td>AUCUN</td>
<td></td>
</tr>
</tbody>
</table>