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(57) ABSTRACT 
A method for promoting fault tolerance and recovery in a 
computing system including at least one processing node 
includes promoting availability and recovery of a first pro 
cessing node, by, at the first processing node, generating first 
spawn using a spawner that has been assigned a first 
generation-indicator So that its spawn inherits the first gen 
eration indicator, beginning a checkpoint interval to generate 
nodal recovery information, Suspending the spawner from 
generating spawn, assigning, to the spawner, a second 
generation-indicator that differs from the first one, resuming 
the spawner, so that it generates second spawn that inherits 
the second generation-indicator, controlling an extent to 
which the second spawn writes to memory, and after com 
mitting nodal recovery information acquired during the 
checkpoint to durable storage, releasing control over the 
extent to which the second spawn can write to memory. 

58 Claims, 9 Drawing Sheets 
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1. 

RECOVERY AND FAULTTOLERANCE 
UNDER COMPUTATIONAL 

INDETERMINISM 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the benefit of the Oct. 20, 2014 
priority date of the U.S. application Ser. No. 62/065.941, the 
contents of which are herein incorporated by reference. 

BACKGROUND 

This description relates to recovery and fault-tolerance in 
the presence of computational indeterminism. 

Computational systems occasionally fail for a variety of 
reasons. When Such systems fail, data can be lost. It is 
desirable to take measures to prevent, or at least minimize, 
Such data loss. 

Examples of such measures include ACID (Atomic, Con 
sistent, Isolated until committed. Durable when committed) 
transactions in databases. These known measures are 
extremely robust. They can be made to meet very high 
standards of correctness, while also being made fault toler 
ant. 

However, all of this robustness comes at a cost. Known 
methods for guarding against failure have high latency and 
Sometimes cause extended periods during which the appa 
ratus is unavailable. Thus, they are less than optimal for 
high-volumes of transactions. 

In addition, some known methods require deterministic 
computation. In deterministic computation, the order in 
which tasks are performed is fixed, and the result of a 
computation remains the same each time it is carried out. It 
is not clear how these known methods can be adapted to 
efficiently handle non-deterministic computational environ 
mentS. 

Additional complexity arises when a computing apparatus 
includes multiple processing nodes that cooperate with each 
other. In Such an apparatus, it is possible for one node of the 
apparatus to fail, and others to keep working. When that 
failed node recovers, this is no guarantee that it has restored 
itself to a state that the other nodes expect it to be in. 

SUMMARY 

In one aspect, the invention features a method for pro 
moting fault tolerance and recovery in a computing system 
that includes at least one processing node. Such a method 
includes promoting availability and recovery of a first pro 
cessing node, wherein promoting availability and recovery 
includes, at a first processing node, executing a spawner at 
the node, wherein the spawner, in the course of execution, 
generates a first spawn, wherein executing the spawner 
includes assigning, to the spawner, a first generation indi 
cator, wherein the first spawn inherits the first generation 
indicator, beginning a checkpoint interval, at the end of 
which nodal recovery information, which is usable for 
recovery of the node, is committed to durable storage, 
wherein beginning the checkpoint interval includes suspend 
ing the spawner from generating spawn, assigning, to the 
spawner, a second generation indicator that differs from the 
first generation indicator, resuming the spawner, thereby 
enabling the spawner to generate a second spawn, wherein 
the second spawn inherits the second generation indicator, 
and controlling an extent to which the second spawn writes 
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2 
to memory; and after committing the nodal recovery infor 
mation, releasing control over the extent to which the second 
spawn can write to memory. 

In some practices, controlling an extent to which the 
second spawn writes to memory includes preventing the 
second spawn from consummating a write to the memory. 
Among these are practices that further include permitting the 
second spawn to queue the write to memory for eventual 
consummation thereof after the recovery information has 
been committed. 

In other practices, controlling an extent to which the 
second spawn writes to memory includes determining that 
the write operation is a commutable operation, and allowing 
consummation of the commutable operation. Among these 
practices are those in which determining that the write 
operation is a commutable operation includes determining 
that the write operation includes incrementing a variable, 
and those in which determining that the write operation is a 
commutable operation includes determining that the write 
operation includes inserting a record at a specified location. 

Also among the practices of the invention are those that 
further include, after Suspending the spawner, setting a 
deadline, thereby providing time for any spawn having the 
first task generation-indicator to execute to completion, and 
avoiding overhead associated with having to save states of 
the spawn having the first generation-indicator. Among these 
practices are those that include Suspending the first spawn if 
the first spawn is still executing as of the deadline, and those 
that include enabling the first spawn to avoid Suspension as 
a result of having failed to complete execution by the 
deadline, for example by changing the first task generation 
indicator to the second task generation-indicator in the first 
spawn if the first spawn is still executing as of the deadline. 

In those cases in which the first node has a nodal 
generation indicator, additional practices of the invention 
include causing a spawn to become a migrant that migrates 
to a second node, wherein the second node has a nodal 
generation indicator. Among these practices are those in 
which the nodal-generation counter of the second node 
indicates that the second node is in a younger generation 
than the first node, in which case the method further includes 
youthening the migrant, either by immigration-side youthen 
ing of the migrant, or by emigration-side youthening of the 
migrant. 

In some cases, the first node is a node in a multi-node 
system in which each node has a nodal generation-count, 
and the multi-node system includes at least a second node. 
In these cases, there are practices of the invention in which, 
upon recovery following a failure of the second node, the 
first node rolls back to a state that corresponds to a nodal 
generation count of the second node. 

In other cases, the first node is a node in a multi-node 
system in which each node has a nodal generation-count, 
and the multi-node system includes at least a second node. 
In these cases, some practices of the invention include, upon 
recovery following a failure of the first node, having the first 
node roll forward to a state that corresponds to a nodal 
generation count of the second node by restoring committed 
work from a checkpoint and restoring uncommitted work 
from a journal. 

In those cases in which the first node is a node in a 
multi-node system in which each node has a nodal genera 
tion-count, practices of the invention include those in which 
the first node carries out certain acts. These include receiv 
ing, from a master node, a message indicating that a check 
point is to be carried out, in response, youthening a nodal 
generation count of the first node, Suspending spawners 
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from generating spawn, saving spawner recovery informa 
tion for recovering spawner states, resuming the spawners, 
determining that no further older-generation immigrants are 
expected at the first node, and in response to the determi 
nation, committing, to the durable storage, the nodal recov 
ery information. Among these practices are those that also 
include setting a deadline, and, upon lapse of the deadline, 
Suspending all older-generation spawn that are still execut 
ing while younger-generation spawn continue to execute. 

In some cases, the first node is a node in a multi-node 
system. In Such cases, alternative practices of the invention 
include Saving a replica copy of working memory of the first 
node at the second node, upon failure of the first node, 
temporarily using the replica copy for processing that would 
otherwise have been carried out by the first node, and, upon 
recovery of the first node, communicating, to the first node, 
information required to update memory in the first node so 
that Subsequent computation can be carried out by the first 
node. 

In another aspect, the invention features software that has 
been stored in a non-transitory form on a computer-readable 
medium and that, when executed, promotes fault tolerance 
and recovery in a computing system that includes at least 
one processing node. The software has instructions for 
causing a computing system to: promote availability and 
recovery of a first processing node, wherein promoting 
availability and recovery includes, at a first processing node, 
executing a spawner at the node, wherein the spawner, in the 
course of execution, generates a first spawn, wherein execut 
ing the spawner includes assigning, to the spawner, a first 
generation indicator, wherein the first spawn inherits the first 
generation indicator; beginning a checkpoint interval, at the 
end of which nodal recovery information, which is usable 
for recovery of the node, is committed to durable storage, 
wherein beginning the checkpoint interval includes suspend 
ing the spawner from generating spawn, assigning, to the 
spawner, a second generation indicator that differs from the 
first generation indicator, resuming the spawner, thereby 
enabling the spawner to generate a second spawn, wherein 
the second spawn inherits the second generation indicator, 
and controlling an extent to which the second spawn writes 
to memory; and after committing the nodal recovery infor 
mation, releasing control over the extent to which the second 
spawn can write to memory. 

In yet another aspect, the invention features a data storage 
system including durable storage; and one or more process 
ing nodes including least one processor configured to pro 
mote availability and recovery of a first processing node, 
wherein promoting availability and recovery includes, at a 
first processing node, executing a spawner at the node, 
wherein the spawner, in the course of execution, generates a 
first spawn, wherein executing the spawner includes assign 
ing, to the spawner, a first generation indicator, wherein the 
first spawn inherits the first generation indicator, beginning 
a checkpoint interval, at the end of which nodal recovery 
information, which is usable for recovery of the node, is 
committed to durable storage, wherein beginning the check 
point interval includes Suspending the spawner from gener 
ating spawn, assigning, to the spawner, a second generation 
indicator that differs from the first generation indicator, 
resuming the spawner, thereby enabling the spawner to 
generate a second spawn, wherein the second spawn inherits 
the second generation indicator, and controlling an extent to 
which the second spawn writes to memory; and after com 
mitting the nodal recovery information, releasing control 
over the extent to which the second spawn can write to 
memory. 
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4 
Yet another aspect of the invention features an apparatus 

that includes means for durably storing data in durable 
storage; and means for promoting availability and recovery 
of a first processing node, wherein promoting availability 
and recovery includes, at a first processing node, executing 
a spawner at the node, wherein the spawner, in the course of 
execution, generates a first spawn, wherein executing the 
spawner includes assigning, to the spawner, a first genera 
tion indicator, wherein the first spawn inherits the first 
generation indicator, beginning a checkpoint interval, at the 
end of which nodal recovery information, which is usable 
for recovery of the node, is committed to durable storage, 
wherein beginning the checkpoint interval includes suspend 
ing the spawner from generating spawn, assigning, to the 
spawner, a second generation indicator that differs from the 
first generation indicator, resuming the spawner, thereby 
enabling the spawner to generate a second spawn, wherein 
the second spawn inherits the second generation indicator, 
and controlling an extent to which the second spawn writes 
to memory; and after committing the nodal recovery infor 
mation, releasing control over the extent to which the second 
spawn can write to memory. 

Aspects can have one or more of the following advan 
tages. 
The techniques for promoting fault tolerance and recovery 

described herein enable the computing system to remain 
highly available. By strategically relaxing certain ACID 
constraints, the computing system can still provide recov 
erability, but without the high overhead of more extreme 
measures. Thus, there are more computing resources avail 
able for useful work. Also, by controlling the extent to which 
spawn (e.g., operating system processes or threads) write to 
memory, useful work can still be accomplished during a 
checkpoint interval, while ensuring that integrity of the fault 
tolerance mechanisms is maintained. Thus, these techniques 
enhance the internal functioning of the computing system, 
both in the event of faults, and during normal fault-free 
operation. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows a single-node computing apparatus for 
carrying our fault-tolerance and recovery in the presence of 
computational indeterminism; 

FIG. 2 shows checkpoint intervals and working intervals 
encountered during operation of the node of FIG. 1; 

FIG.3 shows a method in which spawn are allowed to run 
to completion during the checkpoint interval of FIG. 2; 

FIG. 4 shows a method in which a spawning process can 
continue to generate spawn during the checkpoint interval of 
FIG. 2: 

FIG. 5 shows a method in which spawn can continue to 
work during a checkpoint interval by queuing writes to 
memory; 

FIG. 6 shows a multi-node computing apparatus; 
FIG. 7 shows two generations co-existing in a node from 

the apparatus of FIG. 7: 
FIG. 8 shows method steps carried out by a slave node in 

response to a checkpoint message; 
FIG. 9 shows method steps involving incrementing a 

migrant generation count; 
FIG. 10 shows method steps for recovery after failure; 
FIG. 11 shows a replica maintained at another node to 

enable more rapid recovery; 
FIG. 12 shows a procedure for using the replica shown in 

FIG. 11 for rapid recovery; and 
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FIG. 13 shows an example of execution of the method 
shown in FIG. 5 in connection with multiple nodes as 
illustrated in FIG. 9. 

DETAILED DESCRIPTION 

FIG. 1 shows an example of a data processing system in 
which techniques for fault tolerance and recovery in the 
presence of computational indeterminism can be used. The 
data processing system includes a single-node computing 
apparatus 8 having a node 10 that includes a working 
memory 12. Processes 14 running on that node 10 use this 
working-memory 12 to save their respective process states 
and to store intermediate results of their respective compu 
tations. In different embodiments, the processes 14 may be 
implemented as any of a variety of types of computing 
resources within an operating system running on the node 
10. For example, the processes 14 may be implemented as 
operating system processes that have their own address 
space, or as operating system threads that have their own 
execution context (e.g., stage, registers, etc.), or as some 
other type of task that includes a sequence of operations to 
be performed but does not necessarily have a particular 
operating system process or thread dedicated to it. 

Because the working-memory 12 is often volatile, it is 
prudent to periodically save its state in checkpoint files 18 
stored in durable storage 16. These checkpoint files 18 can 
be used to recover state information in case of an interrup 
tion in operation of the node 10. 
Among the processes 14 running on the node are spawn 

ers 20. A 'spawner is a type of process that has, among its 
properties, the ability to generate one or more other pro 
cesses. The processes that are generated by a spawner are 
referred to herein, both in the singular and in the plural, as 
"spawn.' The act of generating Such spawn is referred to by 
appropriate variants of the verb “to spawn.” FIG. 1 shows a 
spawner 20 that has generated spawn 22A, 22B. A spawner 
20 is generally a long-lived process, whereas the spawn 
22A, 22B, although numerous, tend to be much shorter 
lived. In some instances, a spawner is a process that lives 
longer than spawn generated by that spawner. The spawn 
22A, 22B are also independent of and asynchronous relative 
to each other so that the extent to which a spawn 22A, 22B 
has completed its computation is unrelated to when the 
spawner 20 generated that spawn 22A, 22B in the first place. 
As a result, the order in which spawn 22A, 22B carry out 
computations is indeterminate. Since the order in which 
computations are carried out can often affect the results, this 
makes the computation as a whole indeterminate. 

During the course of its operation, the computing appa 
ratus 8 communicates with the outside world. For example, 
the computing apparatus 8 may receive one or more streams 
of incoming messages 24 and produce one or more streams 
of outgoing messages 28. As will be described in greater 
detail below, these messages 24, 28 are temporarily stored 
by the apparatus 8 within the durable storage 16. These 
messages 24, 28 may be temporarily stored for escrow 
within respective areas that are physically and/or logically 
separate. Incoming messages 24 can be stored in an incom 
ing-message escrow area 26 in durable storage 16, and 
outgoing messages 28 can be stored in an outgoing-message 
escrow area 30 in durable storage 16. 

Referring to FIG. 2, the node's operation is marked by 
checkpoint intervals 32 and working intervals 34. During a 
working interval 34, the node performs useful work as 
processes advance towards completion. During the check 
point interval 32, the node 10 suspends all processes, 
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6 
serializes them, and saves the result to durable storage 16. 
The node 10 then saves anything else that is in working 
memory into the durable storage 16. At this point, the 
checkpoint is said to have been “committed” and the pro 
cesses 14 are said to have been “checkpointed.” 

It is preferable that the checkpoint interval 32 be much 
shorter than the working interval 34. The apparatus and 
methods described herein are intended to increase the 
amount of processing that can be performed in the working 
intervals 34 by reducing the length of the checkpoint interval 
32. 
Once a checkpoint is committed, the node 10 allows 

processes 14 to resume and releases outgoing messages 28 
that are in the outgoing-message escrow area 30. 
The storing of outgoing messages 28 in an outgoing 

message escrow area 30, rather than sending them immedi 
ately, is useful to guard against inconsistency that may result 
from a failure of the node 10. For example, it would be quite 
possible for a process 14 to send an outgoing message 28 
announcing the result of some computation. If the node 10 
were to fail after this message 28 has already been sent but 
before the computational result is committed to durable 
storage 16, the node 10 would re-start and re-execute the 
uncommitted computation. Upon completion, another mes 
sage 28 would be sent announcing the result of this second 
computation. If the two results are different, which is not 
unlikely in the case of non-deterministic computations, one 
of the messages will be invalid. 
As a concrete example, consider the case in which a 

process 14 awards a prize to a customer based on the result 
of a random number generator. Without the outgoing-mes 
sage escrow area 30, the process 14 would send a message 
28 to a first customer announcing that a prize was forth 
coming. The node 10 would then crash and re-start. Since 
the state of the process 14 was never saved, there is no 
record of that customer having been awarded any prize, or 
of the process 14 having Successfully completed execution. 
The node 10 may then re-execute the process 14, which 
would then generate a different random number, thus caus 
ing a second message 28 to be sent to another customer 
announcing that a prize was forthcoming. This would 
require either awarding two prizes where only one was 
intended, or managing at least one disappointed customer. 
To recover after a failure, the node 10 retrieves, from 

durable storage 16, the state of all processes 14 and the state 
of working-memory 12. It then retransmits any outgoing 
messages 28 that are stored in the outgoing-message escrow 
area 30, retrieves incoming messages from incoming-mes 
sage escrow area 16 for processing, and then resumes 
normal operation on live data. 
The retransmission of all messages 28 in the outgoing 

message escrow area 30 can result in recipients receiving 
duplicate messages. In one embodiment, the recipient is 
configured to ignore repeated messages 28. In another 
embodiment, upon recovery, the recipient and the recovered 
node 10 communicate to identify messages 28 that have 
been received. This permits the node 10 to avoid sending 
duplicate messages 28. 
The procedure described above introduces results in a 

lengthy checkpoint interval 32, which may, in turn, result in 
either low throughput or an increased latency between the 
receipt of an incoming message and the production of a 
corresponding outgoing message. A variety of methods can 
be used to reduce this latency, and/or increase the through 
put. 
A first optimization method features the maintenance of a 

journal 36 in the background. Every time an item in the 
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working-memory 12 is altered a corresponding entry will be 
written to the journal 36 such that the journal entry may be 
used to reproduce the alteration at recovery time. The 
journal 36 may be asynchronously transferred to durable 
storage 16. During the checkpoint interval 32 the node 10 
will ensure that all journal entries have indeed been made 
durable. Recovery can then be achieved by using an older 
checkpoint file 18 containing a Snapshot of working 
memory 12 and applying the changes as set forth in the 
journal 36. 

This optimization reduces the length of the checkpoint 
interval 32 but at the cost of increasing the time to recover. 
In particular, the longer it has been since the last full image 
of working-memory 12 was obtained, the greater the number 
of entries there will be in the journal 36. This will increase 
recovery time. 
A second optimization method relies on the fact that the 

node 10 has only a few spawning processes 20, each of 
which generates (or "spawns') multitudes of short-lived 
processes, referred to herein in both the singular and plural 
as the “spawn 22A, 22B.' 
The lifetime of spawn 22A, 22B is random, but has an 

expected value that is much shorter than the expected value 
of the lifetime of a spawner 20. As such, it makes little sense 
to spend time serializing spawn 22A, 22B during a check 
point. In fact, in Some cases, the time required to serialize 
spawn 22A, 22B is an appreciable fraction the spawn's 
expected lifetime. It is therefore often advantageous to 
instead Suspend the spawner 20, thus preventing generating 
of new spawn and to then allow the existing spawn 22A, 22B 
to terminate naturally. 

To save time, the checkpoint-generating method, as 
shown in FIG.3, includes suspending a spawner20 (step 38) 
and serializing it (step 40). However, existing spawn 22A 
continue executing (step 42). Then, after a straggler's dead 
line, which is selected to define a sufficiently long idle-down 
interval be long enough to allow most spawn 22A to finish 
executing but not so long as to appreciably impact latency 
(step 46), spawn that are still executing, referred to as 
“straggling spawn,” are Suspended (step 48), and serialized 
(step 50). 
The foregoing method thus reduces the length of the 

checkpoint interval 32 by reducing the number of processes 
14 that need to be serialized. It does so by allowing 
processes 22 that are expected to terminate quickly to do so, 
thus eliminating the need to serialize those processes 22 as 
part of creating a valid checkpoint. 
A third optimization procedure arises from the recognition 

that the evil to be avoided is actually a change to the 
working-memory 12 during the checkpoint interval 32. 
Therefore, if a process 14 does not actually have to write to 
working-memory 12, but instead only has to read working 
memory 12, it makes no sense to Suspend it. 

To implement this third optimization procedure, the node 
10 relies on a generation count associated with each process. 
Since the spawner 20 is a process, it has a generation count. 
Since the spawn 22A, 22B of a spawner is also a process, it 
too has a generation count. The generation counts of a spawn 
22A and a spawner 20 that spawned that spawn 22A are 
related. In particular, the generation count of a spawn 22A, 
22B is equal to the generation count of the spawner 20 that 
spawned it. The act of causing the generate count of a spawn 
22A, 22B to be related to, or derivable from, the generation 
count of the spawner that spawned it is described by the 
appropriate form of the verb “to inherit.” When a spawner 20 
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8 
with a particular generation count generates spawn 22A, 
22B, the spawn 22A, 22B is said to have inherited the 
spawner's generation count. 

In operation, prior to the onset of a checkpoint interval 32, 
a spawner 20 will have generated older-generation spawn 
22A. At the beginning of the checkpoint interval 32, the 
spawner 20 is “youthened.” 
The verb “to youthen and its variants and cognates 

describes a particular computational operation that can be 
carried out on an integer. As used herein, the particular 
integer upon which the youthening operation operates is the 
generation count. describes an operation that can be carried 
out on a generation count. 

In the particular example described herein, the act of 
youthening a spawner 20 means the act of incrementing its 
generation count. After having been youthened, the spawner 
20 then continues to generate spawn during the checkpoint 
interval 32, only now, it generates younger-generation 
spawn 22B. The result of this is that two kinds of spawn 22 
coexist within the node 10: older-generation spawn 22A, 
which the spawner 20 generated before having been 
youthened, and a younger-generation spawn 22B, which the 
spawned 20 generated after having been youthened. 

Referring to FIG. 4, at the beginning of a checkpoint 
interval, the spawner 20 is suspended (step 52), such that it 
does not generate any new spawn while being Suspended, 
and its process state saved (step 54). The spawner 20 then 
has its generation count incremented (step 56), after which 
the spawner 20 resumes (i.e., is un-Suspended). After resum 
ing, the spawner 20 is once again able to generate spawn 22, 
though this time, all its spawn 22B will be in the younger 
generation spawn. 
Any younger-generation spawn 22B that attempt to write 

to the working-memory 12, are blocked until the checkpoint 
interval 32 is completed. Thus, younger-generation spawn 
22 cannot run to completion. They can only run until it is 
time to actually write to working-memory 12 for the first 
time. Nevertheless, younger-generation spawn 22 can at 
least run partway to completion. This allows some process 
ing to occur even during a checkpoint interval 32. 

In general, during the checkpoint interval 32, all processes 
14 in memory 12 will be serialized. However, in the opti 
mization method of FIG. 4, it is desirable to serialize only 
older-generation spawn 22A. 
The generation count enables the node 10 to identify 

which spawn is younger-generation spawn 22B and to 
therefore avoid saving their state. 

Unfortunately, having to wait for older-generation spawn 
22A to complete processing tended to increase latency 
because younger-generation spawn 22B could not proceed 
full bore until either all older-generation spawn 22A were 
done or until the Straggler deadline triggered Suspension of 
stragglers from the older-generation spawn 22A. 

In a variant of the second optimization method, instead of 
blocking younger-generation spawn 22B that attempt to 
modify working-memory 12, and thus losing the opportunity 
to continue doing useful work, the node 10 can tag each data 
item in working-memory 12 with a generation number. If a 
younger-generation spawn 22B modifies a memory location, 
rather than blocking until after the checkpoint, the node 10 
will youthen the memory location by updating its generation 
number. Then, if an old-generation spawn 22A attempts to 
read or write such a youthened memory location the older 
generation spawn 22A will spontaneously youthen itself by 
Suspending itself, writing its state to the checkpoint, updat 
ing its generation number, and resuming execution in a 
youthened state. The node 10 also tags the entries written to 
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the journal with the generation number so that it can 
distinguish journal entries corresponding to the older gen 
eration of spawn from journal entries corresponding to the 
younger generation of spawn. 
A fourth optimization method relies on the idea of allow 

ing younger-generation spawn 22B to continue processing 
even past the first attempted write to working-memory 12. 
This method relies on the fact that sometimes, the order in 
which computational results are written into working 
memory 12 does not matter. If this is the case, writes to 
working-memory 12 can simply be queued until later. This 
method allows a younger-generation spawn 22B to keep 
working during a checkpoint interval 32 even after the first 
time attempts to write to working-memory 12. 

In general, whenever one carries out a sequence of 
operations, a question that arises is whether or not the order 
of operations in the sequence makes a difference in the result 
of the sequence. An operation within this sequence is said to 
be “commutable' if the location of that operation within the 
sequence does not affect the result. Otherwise, the operation 
is “non-commutable.” Examples of commutable operations 
are instructions to increment or decrement a value, instruc 
tions to insert a record into a list at Some defined location, 
and in general, any operation that does not require reading 
a value to be carried out. The fourth optimization method 
exploits these commutable operations. 

Referring now to FIG. 5, in this fourth optimization 
method, a node 10 receives a write request from a younger 
generation spawn 22B (step 60) at a time when normally the 
younger-generation spawn 22B would not be permitted to 
write to memory 12. However, in this method, the node 10 
distinguishes between commutable operations and non-com 
mutable operations (step 62). If the proposed write is com 
mutable, the node 10 queues it (step 64). The younger 
generation spawn 22B then continues execution (step 66). 
This allows the younger-generation spawn 22B to continue 
processing past the first time it tries to write to working 
memory 12. As a result, younger-generation spawn 22B 
continue to execute during the checkpoint interval 32 for as 
long as any write operations carried out by that younger 
generation spawn 22B are commutable. On the other hand, 
if the proposed write is a non-commutable write, then the 
node 10 Suspends execution of the younger-generation 
spawn 22B (step 68). 

In addition to non-commutable writes, there may be other 
conditions in which a spawn 22B may be allowed to write 
under conditions when it would normally not be able to do 
so. One other example arises when a younger-generation 
spawn 22B, after having inspected memory 12, recognizes 
that no further memory access by an older-generation spawn 
22A is possible. 
A fifth optimization method is one that reduces the latency 

that arises because the outgoing-message escrow area 30 
does not release outgoing messages 28 until a checkpoint 
interval 32 is complete and all computations associated with 
generating the outgoing messages 28 have been committed 
to durable storage 16. The idea of waiting until the end of a 
checkpoint interval 32 before releasing messages 28 from 
outgoing-message escrow area 30 is useful where the con 
sequences of sending the wrong message are severe. How 
ever, there are times when the consequence of sending an 
incorrect message is minimal, but the consequence of send 
ing a delayed message is severe. 
As an example, consider the case in which the outgoing 

message 28 is a coupon for goods in a particular retail store. 
Suppose the apparatus has detected that a user is in the 
vicinity of that particular retail store at a particular instant. 
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10 
Obviously, it would be desirable to transmit the message 28 
immediately, before the user has had a chance to leave the 
retail store. If this message 28 were to languish on the 
outgoing-message escrow area 30 waiting to be sent, the 
opportunity for the coupon to be useful would be lost. On the 
other hand, if that coupon were the result of a computation 
that was subsequently lost because of a failure in the node 
10, it is unlikely anybody would complain. After all, the 
store would have made a sale it might not otherwise have 
made, and the user would have obtained a good at Some 
discount. 

This fifth optimization method, in which outgoing mes 
sages 28 are released without waiting for the underlying data 
to be committed to durable storage 16, presupposes that time 
is of the essence in delivering an outgoing message 28, and 
that the cost of an incorrect or inconsistent outgoing mes 
sage 28 is minimal in comparison with adverse conse 
quences of its late delivery. In the fifth optimization method, 
outgoing messages 28 are released from the outgoing 
message escrow area 30 prior to completion of the check 
point interval 32 or bypass the outgoing-message escrow 
area 30 completely. 

FIG. 6 shows a multi-node apparatus 70 in which multiple 
nodes 72, 74,76, 78 of the type described in connection with 
FIGS. 1-6 are in communication with each other and coop 
erate with each other in carrying out data processing. In Such 
a case, a task may send a message from a first node 72 to a 
second node 74. 

In some cases the message may have the effect of migrat 
ing a task from the first node 72 to the second node 74. A task 
that migrates from one node to another is referred to as a 
“migrant task. Depending on point-of-view, a migrant task 
is either an “immigrant’ task or an "emigrant task. From 
the point of view of the first node 72, the migrant task is an 
'emigrant’ task because the task is leaving the first node. 
Conversely, from the point of view of the second node 74, 
the migrant task is an “immigrant’ task because it is arriving 
at the second node 74. 

In other cases the message might be a remote procedure 
call or a remote data access request Such that the requesting 
task cannot proceed until it receives a message in return. In 
other cases the task may simply asynchronously transmit 
information from the first node 72 to the second node 74 
using the message. A computing system such as that 
described in U.S. patent application Ser. No. 14/842.956, 
entitled “EXECUTING GRAPH-BASED PROGRAM 
SPECIFICATIONS, filed on Sep. 2, 2015, incorporated 
herein by reference, for example, can be configured using 
the techniques for promoting fault tolerance and recovery 
described herein. 

In Such a case, application of the foregoing methods 
would be less than optimal in part because a message 80 
from the first node 72 to the second node 76 cannot be 
transmitted until it is released from escrow at the completion 
of the next checkpoint interval 32. This introduces consid 
erable latency. While this latency could potentially be 
reduced by exempting messages transmitted from node to 
node within the multi-node apparatus 70 from being 
escrowed, such an exemption is not sufficient due to inde 
terminism. 

For example, this and other difficulties arise when mul 
tiple nodes 72, 74, 76, 78 are present because many com 
putations are non-deterministic. Examples of Such non 
deterministic computations are those in which results 
depend on the order in which reads and writes occur, those 
that rely on real time clocks, and those that rely on the 
outcome of a random number generator, an example of 
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which has already been described above in connection with 
the desirability of an outgoing-message escrow area 30. 

If a first node 72 communicates with a second node 74, 
then loses contact (e.g., due to failure) before the next 
checkpoint interval 32, the apparatus 70 may end up with 
inconsistencies owing to this non-determinism as follows. 
After the failure the apparatus 70 will recover the first node 
72 from the most recent checkpoint and restart the compu 
tation. The computation may be restarted from a point in the 
computation before transmission of a message from the first 
node 72 to the second node 74. Owing to the non-determin 
istic nature of the computations, the first node 72 may well 
send a completely different message to the second node 74 
after recovery from the checkpoint. But, that second node 74 
may have already received the original message, potentially 
placing the two nodes 72 and 74 in an inconsistent state. For 
example, node 72 is in a state in which it has sent node 74 
the “new” version of the message, but node 74 is in a state 
in which it has already acted on the “old” version of the 
message. Furthermore, node 74 may have sent a message to 
yet another node 76, based on that original message received 
from node 72, so node 72 and node 76 are also may also be 
in an inconsistent state. Thus, inconsistency may spread 
through all nodes in the apparatus 70 like a virus. 
One way to avoid the foregoing difficulty is to ensure that 

all the nodes 72, 74, 76, 78 synchronize their checkpoints, 
for example, using a barrier sync operation, as follows. A 
checkpoint leader transmits a message to all nodes com 
manding them to begin a checkpoint interval. Then, after 
each checkpoint is complete, each node responds to the 
checkpoint leader affirming that the checkpoint is complete. 
When the checkpoint leader has received affirmations from 
all nodes, it will then command all nodes to commit the 
checkpoint and then resume processing. 

This approach forms the basis of a solution to the multi 
node checkpoint problem, but does not completely solve it 
for two reasons. First, in a multi-node apparatus it is possible 
that some nodes survive a failure, in which case the surviv 
ing nodes must be rolled back from their current state to the 
checkpoint state (rather than being rolled forward to the 
checkpoint state). Second, when the checkpoint is performed 
there may be messages in transit, which might allow non 
determinism to leak from the old processing interval, across 
the checkpoint, and into the new processing interval. 

In a single-node apparatus, if the node 10 fails, it only has 
to roll forward to recover uncommitted work. But in a 
multi-node apparatus 70, other nodes 72, 74, 76, which did 
not fail, may have to roll backward when a node 78 fails. 
This mechanism, in which a distributed apparatus 70 recov 
ers by having some nodes 78 roll forward and other nodes 
72, 74, 76 roll backward means that in effect, all nodes 72, 
74, 76, 78 can be made to restart at the same checkpoint. The 
resulting apparatus 70 thus achieves the effect of simulta 
neous checkpoints across all nodes. It does not, however, do 
So by trying to actually synchronize operation across all 
nodes, which as noted above is difficult. Instead, it does so 
by manipulating the states of the nodes 72, 74,76, 78 to reap 
the benefits of synchronized checkpoints without actually 
having to provide Such checkpoints. 

To implement the foregoing recovery method, the nodes 
72, 74, 76, 78 execute a distributed checkpoint method as 
described in detail below. Referring to FIG. 7, when imple 
menting the distributed checkpoint method, every process 
and every message acquires a generation count 82. In 
addition, a running count 84 is maintained of the tasks 
associated with each checkpoint. Each node also maintains 
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a spawner-registry 86 of its spawners 20. Additionally, each 
node 72 maintains a nodal generation count 88. 
The nodal generation count 88 enables a node 76 to 

enforce a generation gap in which work carried out by 
younger-generation spawn 22A and work carried out by 
older-generation spawn 22B do not interfere with each other. 
As a result of the generation gap, the older generation and 
the younger generation can more or less ignore each other. 
In effect, the node 76 becomes two virtual machines, one 
seen by the older-generation spawn 22A and another seen by 
the younger-generation spawn 22B. These two virtual 
machines coexist on the same physical platform but are 
otherwise orthogonal to each other. 

In addition, each node 76 also implements a bidirectional 
journal 90 that enables that node 76 to roll forward or 
backward to a particular state as needed. The bidirectional 
journal 90 includes changes to working storage 92, a listing 
of checkpointed task states 94, and checkpointed messages 
96. These elements provide a way to roll forward in time. In 
addition, the bidirectional journal 90 features an undo log 98 
in memory 12 to enable the node 76 to roll backward in time. 
In general, rolling forward in time is how a failed node 
recovers. Rolling backward in time is what a node does 
when another node in the apparatus 70 has failed. 

In operation, as shown in FIG. 6, a master node 72 
transmits a checkpoint message 100 to all other nodes 74, 
76, 78, i.e. “slave nodes, indicating that a checkpoint is due. 
However, there is no requirement that this checkpoint occur 
at the same time in all nodes 72, 74, 76, 78. 
FIG.8 shows a flowchart for an exemplary fault-tolerance 

and recovery procedure in the presence of computational 
indeterminism. In response to receiving a checkpoint mes 
sage (step 102), a slave node 76 will not immediately begin 
a checkpoint interval. As noted above, this is impractical. 
Instead, the slave node 76 increments its nodal generation 
count 88 (step 104) and create a journal entry indicating the 
incrementing of its nodal generation count 88 (step 106). 
The slave node 76 then suspends all of its spawners 20 

(step 108), and writes their states to the bidirectional journal 
90 (step 110). Then, for each of its spawners 20, the slave 
node 76 increments that spawner's generation count 82 (step 
112). With its generation count 82 having been incremented, 
the spawner 20 is allowed to resume operation (step 114). 
However, since the spawner's generation count 82 will have 
been incremented, any resulting spawn 22B will be in the 
younger generation. 
At this point, two generations will co-exist in the slave 

node 76. The older-generation spawn 22A, namely those 
having a generation count that is one less than the node's 
generation count, can continue to process to completion, 
writing to memory 12 as necessary. The younger-generation 
spawn 22B, namely those whose generation counts match 
the nodal generation count 88, may process until it is time 
to write to memory 12. At that point, younger generation 
spawn 22B are blocked. 

It should be noted that in the description thus far, there are 
only two generations of spawn involved: older-generation 
spawn 22A, whose generation count 82 is one less than the 
nodal generation count 88, and a younger-generation spawn 
22B, whose generation count 82 matches the nodal genera 
tion count 88. However, in principle there is no reason that 
more than two generations cannot coexist on the same 
platform. 

Referring to FIG. 9, in a multi-node apparatus 70, it is 
possible for a task 79 to emigrate from a sending node 78 
and immigrate into a receiving node 76. As described in 
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connection with FIG. 6, such a task 79 is referred to as a 
“migrant task’ or a "migrant.” 

In the following discussion, it is necessary to refer to 
values associated with particular objects. To avoid ambigu 
ity with reference numerals in the figures, and in a manner 5 
consistent with standard mathematical notation, the paren 
theses will be used to mean "of.” Thus, since "88” has been 
assigned to “nodal generation count” and “76' is a node, the 
nodal generation count 88 of node 76 will be written as 
88(76). 10 
A difficulty can arise when the migrant’s generation count 

82(79) is not the same as the nodal generation count 88(76) 
of the receiving node 76. These difficulties can be avoided 
by implementing message escrow areas between nodes. But 
this would reintroduce the latency that the distributed check- 15 
point method was intended to avoid in the first place. 

According to the distributed checkpoint method, there are 
three possibilities: the sending node's nodal count 88(78) is 
the same as the receiving node's nodal count 88(76); the 
sending node 78 has a lower nodal generation count 88(78) 20 
than the receiving node's nodal count 88(76); and the 
sending node 78 has a higher nodal generation count 88(78) 
than the receiving node's 88(76). 

In the first possibility, a migrant will have the same 
generation count 82079) as the nodal count 88(78) of the 25 
sending node 78. Therefore, the sending node 78, the 
receiving node 76, and the migrant 79 all have the same 
generation count. In that case, nothing special has to be 
done. 
The second possibility can arise when the receiving node 30 

76 increments its generation count 88(76) while the migrant 
79 is in transit. This means that, upon immigrating into the 
receiving node 76, the migrant 79 presents itself as a 
member of what has now become the older generation of the 
receiving node 76. In that case, the receiving node 76 will 35 
youthen the migrant 79 by incrementing the migrants 
generation count 82(79). As a result, the migrant task 79 will 
be able to continue processing, but, like the rest of the 
younger generation spawn 22B, it will be blocked from 
writing to memory 12. The youthening of the migrant 79 is 40 
then journalized at the receiving node 76. Since the act of 
youthening takes place at the receiving node 76, it is referred 
to as “immigrant-side youthening.” 

The third possibility can arise when the sending node 78 
will increment its generation count 88(78) before the 45 
migrant 79 has emigrated. In that case, the sending node 78 
youthens the migrant 79 by incrementing the migrants 
generation count 82(79) before it is sent, and journalizes the 
youthening event at the sending node. Since the act of 
youthening takes place at the sending node 78, it is referred 50 
to as "emigrant-side youthening.” 

In either case, a node 76 that has received a checkpoint 
message from a master node will set a deadline to allow the 
older-generation spawn 22A to finish execution, thereby 
insuring near-extinction of the older generation, and avoid- 55 
ing the need to record their states (step 116). Nevertheless, 
there may be spawn 22A of the older generation that are 
slow to terminate. It is impractical for a node 76 to wait for 
an extended period for once the deadline is reached, any 
older generation spawn 22 that is still running will be 60 
Suspended, serialized, journaled, and youthened, after which 
it is allowed to resume execution Subject to the constraint 
that it not write to the working-memory 12 until after the 
working-memory 12 has been committed to durable storage 
16. 65 

The slave node 76 will not begin the actual checkpoint 
until it knows that no more older-generation immigrants are 
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expected to arrive. In order to implement this, whenever a 
node 72 recognizes that all older-generation emigrants have 
Successfully emigrated, it broadcasts a flush message to all 
other nodes 74,76, 78. Once the slave node 76 has received 
flush messages from all nodes 72, 74, 78, it knows that the 
flow of older-generation immigrants has been quenched 
(step 118). Younger-generation immigrants may still arrive 
at a slave node 76, just as younger-generation emigrants may 
still leave from the slave node 76. However, these younger 
generation emigrants are not pertinent to the checkpoint 
process. 
At this point, the slave node 76 is now ready to commit 

its working-memory 12 to durable storage 16 (step 120). 
This is carried out in the same manner described above for 
the single-node case. 
The procedure for restarting after failure of a node, shown 

in FIG. 10, depends on whether the node involved is one that 
failed or not. After receiving an instruction to restart (step 
122), the node determines if it is the node that failed, or if 
another node in the apparatus 70 failed (step 124). If the 
node is one that failed, it retrieves the log and rolls forward 
from its last valid checkpoint (step 126). If the node is not 
one that failed (i, it rolls back to its last checkpoint (step 
128). 
An example of a “roll back operation involves the 

following steps: (1) terminate all tasks currently running 
(including both spawners and spawn); (2) use the bidirec 
tional journal entries to undo any changes to memory. 

After any failed nodes have been rolled forward and any 
surviving nodes have been rolled back, the apparatus 70 may 
also perform other operations as part of restarting the tasks. 
For example, the apparatus 70 may perform the following 
operations: (1) flush the communications network to ensure 
that all messages predating the failure have been discarded, 
(2) restart all tasks that were part of the checkpoint by 
retrieving their saved state from the journal and restarting 
them, (3) retransmit any messages that were not sent prior to 
the checkpoint, and (4) process any messages were received 
but not yet processed as of the checkpoint. 
The task of rolling forward from the last valid checkpoint 

on a failed node is one that is potentially time-consuming. 
Referring to FIG. 11, in some practices, it is useful to 
maintain a replica 128 of memory 130 from a first node 132 
on a second node 134. Preferably, the second node 134 does 
not have the same failure mode as the first node 132. In 
normal operation, the replica 128 is synchronized with the 
memory 130 at the first node 132 at each checkpoint. The 
replica 128 also has an associated undo log 136 to enable it 
to roll backward to its state at the most recent checkpoint. 

Referring now to FIG. 12, upon failure of the first node 
132, the replica 128 at the second node 124 is designated a 
master (step 138). All processes on the second node 124 are 
killed (step 140), after which the second node 134 is 
restarted (step 142). The former replica 128, which now 
serves as a master copy, is rolled back to the last checkpoint 
with the aid of the undo log 136 (step 144). Operation of the 
multi-node apparatus 70 can then resume with the wait for 
recovery being on the order of the roll-back time. This is 
typically much shorter than the roll-forward time. Mean 
while, the recovered first node 132 can proceed to roll 
forward to the correct state without slowing down the 
overall recovery of the multi-node apparatus 70. Once the 
first node 132 is ready, it takes over as master again, and the 
former replica 128 becomes a replica again. 

Although FIG. 11 shows only one second node 134, it is 
understood that there can be more than one second node, 
each of which has a replica 128 and an undo log 136. In that 
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case, upon failure of the first node 132, one of the second 
nodes must be elected to serve as proprietor of the new 
master copy of the first node's memory. 

In some cases, there may be many idempotent operations. 
In Such cases, instead of rolling forward it is not unreason 
able to simply repeat computations that would carry out 
idempotent operations since those computations would not 
cause any harm. 
The end result of recovery is that all points are at a state 

consistent with the transition from one generation to the 
next. As a result, no work from older-generation processes 
is lost, but all work done by younger generation processes is 
lost. This ensures a state that is consistent across all nodes. 
In this context, a state is “consistent if it could have been 
arrived at in the absence of any fault. In contrast, a state is 
“inconsistent if it can only be explained by the occurrence 
of one or more faults. 

FIG. 13 illustrates the states of several spawned processes 
in both the sending node 78 and receiving node 76 in the 
multi-node apparatus 70 referred to in connection with 
FIGS. 6 and 9. In FIG. 13, time increases downward along 
the vertical axis. The time axis shows a first interval 146, a 
second interval 148 following the first interval 146, and a 
third interval 150 following the second interval 148. 

FIG. 13 shows several spawned processes 22A-H, each of 
which has an associated generation count. Spawn having a 
generation count of N will be referred to herein as “first 
generation spawn.' Spawn having a generation count of N+1 
will be referred to herein as “second-generation spawn. The 
adjectives “first-generation' and “second-generation' will 
also be used to refer to other entities that are tagged with a 
generation count, including nodes, migrant tasks, and 
spawned process. 

During the first interval 146, the sending node 78 is a 
first-generation node. During the second and third interval 
150, the sending node 78 is a second-generation node. It 
should be noted that this progression of nodes is cyclic so 
that the third interval 150 will be followed by an interval that 
plays the same role, for the second generation, that the 
second interval 148 played for the first generation. This 
same progression occurs on the receiving node 76, though 
not necessarily in Synchrony with the progression occurring 
at the sending node 78. For convenience, the same reference 
numbers are used to designate intervals in both the sending 
and receiving nodes 78, 76. However, this is not meant to 
imply that they are synchronized. 

During the first interval 146, a spawning process 20 
spawns various first-generation spawned processes 22A 
22E. Throughout this first interval 146, any first-generation 
spawned process 22A-22E is free to write to a sending-node 
memory 12A. 

During the second interval 148, the sending node 78 
becomes a second-generation node. As such, the spawning 
process 20 now spawns only second-generation spawned 
processes. During this second interval 148, any first-gen 
eration spawned processes 22A-22E remain free to write to 
the sending-node memory 12A. Second-generation spawned 
processes 22F-22G are free to execute, but are forbidden 
from writing to the sending-node memory 12A. The purpose 
of this second interval 148 is therefore to allow any residual 
first-generation spawn 22C, 22D, 22E some time to finish 
executing before a checkpoint interval 32 occurs. 

During the third interval 150, the spawning process 20 
spawns another second-generation spawned process 22H. 
During this third interval 150, no first-generation spawn 
remain, and all second-generation spawn 22F-22H are free 
to write to the sending-node memory 12A. 
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At the sending node 78, a first first-generation spawned 

process 22A, a second first-generation spawned process 
22B, a third first-generation spawned process 22C, a fourth 
first-generation spawned process 22D, and a fifth first 
generation spawned process 22E all begin execution during 
the first interval 146. However, of these, only the first 
first-generation spawned process 22A and the second first 
generation spawned process 22B manage to finish execution 
during the first interval 146. The third first-generation 
spawned process 22C manages to finish during the second 
interval 148. The fourth first-generation spawned process 
22D takes so long it cannot finish until the third interval 150 
has already begun. The fifth first-generation spawned pro 
cess 22E never actually finishes at the sending node 78. 
Instead, it migrates to the receiving node 76 part way 
through the second interval 148. It does so while the 
receiving node 76 is still in its own second interval 148. 

During execution, the first first-generation spawned pro 
cess 22A writes to the sending-node memory 12A during the 
first interval 146 and the third first-generation spawned 
process 22C writes to the sending-node memory 12A during 
the second interval 148. The second first-generation 
spawned process 22B does not write to the sending-node 
memory 12A at all during execution. The fifth first-genera 
tion spawned process 22E eventually writes to the sending 
node memory 12A, but only at the receiving node 76. 

During the second interval 148, a first second-generation 
spawned process 22F and a second second-generation 
spawned process 22G both begin execution. Sometime 
during the second interval 148, the first second-generation 
spawned process 22F reaches a point at which it must write 
to the sending-node memory 12A. However, since it is still 
the second interval 148, it is forbidden from writing to the 
sending-node memory 12A. Therefore, it becomes Sus 
pended, as indicated by the dashed lines. Once the third 
interval 150 begins, the first second-generation spawned 
process 22F writes to the sending-node memory 12A and 
completes execution. 

Meanwhile, the second second-generation spawned pro 
cess 22G has started late enough during the second interval 
148 so that by the time it actually has to write to the 
sending-node memory 12A, the third interval 150 has 
already begun. Accordingly, the second second-generation 
spawned process 22G executes without interruption. 
A third second-generation spawned process 22H begins 

during the third interval 150. This is essentially a mirror 
image of the first first-generation spawned process 22A. 

In the course of execution, the first first-generation 
spawned process 22A causes a first task 152 to migrate to the 
receiving node 76. The first task 152 inherits the generation 
number of the first first-generation spawned process 22A. As 
Such, it begins its existence as a first-generation task. This 
first task 152 arrives at the receiving node 76 while the 
receiving node 76 is still operating in the first interval 146. 
The receiving node 76 is thus acting as a first-generation 
node. Accordingly, the first task 152 is free to execute and 
to write to a receiving-node memory 12B provided it does so 
before a third interval 150 begins on the receiving node 76. 

Also in the course of execution, the second first-genera 
tion spawned process 22B causes a second task 154 to 
migrate to the receiving node 76. The second task 154 
inherits the generation number of the first first-generation 
spawned process 22A. As such, it starts its existence as a 
first-generation task. However, this second task 154 arrives 
at the receiving node 76 while the receiving node 76 is 
already operating in its second interval 148. Accordingly, the 
second task 154 is changed into a second-generation task 
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from a first-generation task. This includes an accompanying 
step of journalizing the second task 154 in a receiving node 
journal file 156. 
A similar event occurs in connection with the fifth first 

generation spawned process 22E at the sending node 78. 
This fifth first-generation spawned process 22E migrates to 
the receiving node 76 midway through execution. However, 
by the time it arrives at the receiving node 76, the receiving 
node 76 has already begun its own second interval 148. As 
Such, the second node is has become a second-generation 
node. Therefore, the fifth first-generation spawned process 
22E is changed into a second-generation spawned process. 
This change is accompanied by journalizing the fifth first 
generation spawned process 22E in a sending-node journal 
file 158. The fifth first-generation spawned process 22E then 
continues execution on the receiving node 76, though as a 
second-generation spawned process. 

Meanwhile, back at the sending node 78, the fourth 
first-generation spawned process 22D has not yet finished 
execution by the end of the second interval 148. At this 
point, the fourth first-generation spawned process 22D is 
both journalized at the sending-node journal file 158 and has 
its generation count incremented so that it now becomes a 
second-generation spawned process. The fourth first-gen 
eration spawned process 22D then continues to execute 
during the third interval 150. 

It should be noted that the fourth first-generation spawned 
process 22D Sustained the same two steps that were sus 
tained by the fifth first-generation spawned process 22E 
during its migration to the receiving node 76, namely a 
journalizing step, and a generation change. Thus, it is not 
unreasonable to say that fourth first-generation spawned 
process 22D in Some sense also migrated. The main differ 
ence is that the fifth first-generation spawned process 22E 
underwent an inter-node migration whereas the fourth first 
generation spawned process 22D underwent an intra-node 
migration. 
The checkpoint and recovery method described herein is 

thus based on the recognition that the desirability of simul 
taneously executing checkpoints across multiple nodes does 
not stem from temporal synchronicity but rather from a side 
effect of temporal synchronicity. The method thus repro 
duces the side effect of temporal synchronicity of check 
points across multiple nodes without actually having to 
achieve it. 
The fault-tolerance and recovery approach described 

above can be implemented, for example, using a program 
mable computing system executing Suitable Software 
instructions or it can be implemented in suitable hardware 
Such as a field-programmable gate array (FPGA) or in some 
hybrid form. For example, in a programmed approach the 
Software may include procedures in one or more computer 
programs that execute on one or more programmed or 
programmable computing system (which may be of various 
architectures such as distributed, client/server, or grid) each 
including at least one processor, at least one data storage 
system (including Volatile and/or non-volatile memory and/ 
or storage elements), at least one user interface (for receiv 
ing input using at least one input device or port, and for 
providing output using at least one output device or port). 
The Software may include one or more modules of a larger 
program, for example, that provides services related to the 
design, configuration, and execution of dataflow graphs. The 
modules of the program (e.g., elements of a dataflow graph) 
can be implemented as data structures or other organized 
data conforming to a data model stored in a data repository. 
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The software may be stored in non-transitory form, such 

as being embodied in a volatile or non-volatile storage 
medium, or any other non-transitory medium, using a physi 
cal property of the medium (e.g., Surface pits and lands, 
magnetic domains, or electrical charge) for a period of time 
(e.g., the time between refresh periods of a dynamic memory 
device Such as a dynamic RAM). In preparation for loading 
the instructions, the Software may be provided on a tangible, 
non-transitory medium, such as a CD-ROM or other com 
puter-readable medium (e.g., readable by a general or spe 
cial purpose computing system or device), or may be deliv 
ered (e.g., encoded in a propagated signal) over a 
communication medium of a network to a tangible, non 
transitory medium of a computing system where it is 
executed. Some or all of the processing may be performed 
on a special purpose computer, or using special-purpose 
hardware, such as coprocessors or field-programmable gate 
arrays (FPGAs) or dedicated, application-specific integrated 
circuits (ASICs). The processing may be implemented in a 
distributed manner in which different parts of the computa 
tion specified by the software are performed by different 
computing elements. Each such computer program is pref 
erably stored on or downloaded to a computer-readable 
storage medium (e.g., Solid state memory or media, or 
magnetic or optical media) of a storage device accessible by 
a general or special purpose programmable computer, for 
configuring and operating the computer when the storage 
device medium is read by the computer to perform the 
processing described herein. The inventive system may also 
be considered to be implemented as a tangible, non-transi 
tory medium, configured with a computer program, where 
the medium so configured causes a computer to operate in a 
specific and predefined manner to perform one or more of 
the processing steps described herein. 
A number of embodiments of the invention have been 

described. Nevertheless, it is to be understood that the 
foregoing description is intended to illustrate and not to limit 
the scope of the invention, which is defined by the scope of 
the following claims. Accordingly, other embodiments are 
also within the scope of the following claims. For example, 
various modifications may be made without departing from 
the scope of the invention. Additionally, some of the steps 
described above may be order independent, and thus can be 
performed in an order different from that described. 

I claim: 
1. A method for promoting fault tolerance and recovery in 

a computing system including at least one processing node, 
said method including: promoting availability and recovery 
of a first processing node, wherein promoting availability 
and recovery includes, at a first processing node, 

executing a spawner at said node, wherein said spawner, 
in the course of execution, generates a first spawn, 
wherein executing said spawner includes assigning, to 

said spawner, a first generation indicator, 
wherein said first spawn inherits said first generation 

indicator, 
beginning a checkpoint interval, at the end of which nodal 

recovery information, which is usable for recovery of 
said node, is committed to durable storage, wherein 
beginning said checkpoint interval includes 
Suspending said spawner from generating spawn, 
assigning, to said spawner, a second generation indi 

cator that differs from said first generation indicator, 
resuming said spawner, thereby enabling said spawner 

to generate a second spawn, wherein said second 
spawn inherits said second generation indicator, and 
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controlling an extent to which said second spawn writes 
to memory; and 

after committing said nodal recovery information, releas 
ing control over said extent to which said second spawn 
can write to memory. 5 

2. The method of claim 1, wherein controlling an extent 
to which said second spawn writes to memory includes 
preventing said second spawn from completing a write to 
said memory. 

3. The method of claim 2, further including permitting 
said second spawn to queue said write to memory for 
eventual completion thereof after said recovery information 
has been committed. 

4. The method of claim 1, wherein controlling an extent 
to which said second spawn writes to memory includes 
determining that said write operation is a commutable 
operation, and allowing completion of said commutable 
operation. 

5. The method of claim 4, wherein determining that said 20 
write operation is a commutable operation includes deter 
mining that said write operation includes incrementing a 
variable. 

6. The method of claim 4, wherein determining that said 
write operation is a commutable operation includes deter- 25 
mining that said write operation includes inserting a record 
at a specified location. 

7. The method of claim 1, further including, after sus 
pending said spawner, setting a deadline, thereby providing 
time for any spawn having said first generation indicator to 30 
execute to completion, and avoiding overhead associated 
with having to save states of said spawn having said first 
generation indicator. 

8. The method of claim 7, further including suspending 
said first spawn if said first spawn is still executing as of said 35 
deadline. 

9. The method of claim 7, further including enabling said 
first spawn to avoid Suspension as a result of having failed 
to complete execution by said deadline. 

10. The method of claim 9, wherein enabling said first 40 
spawn to avoid suspension as a result of having failed to 
complete execution by said deadline includes changing said 
first generation indicator to said second generation indicator 
in said first spawn if said first spawn is still executing as of 
said deadline. 45 

11. The method of claim 1, wherein said first node has a 
nodal-generation indicator, said method further including 
causing a spawn to become a migrant that migrates to a 
second node, wherein said second node has a nodal-genera 
tion indicator. 50 

12. The method of claim 11, wherein said nodal-genera 
tion indicator of said second node indicates that said second 
node is in a younger generation than said first node, wherein 
said method further includes youthening said migrant. 

13. The method of claim 12, wherein youthening said 55 
migrant includes immigration-side youthening of said 
migrant. 

14. The method of claim 12, wherein youthening said 
migrant includes emigration-side youthening of said 
migrant. 60 

15. The method of claim 1, wherein said first node is a 
node in a multi-node system in which each node has a nodal 
generation-count, wherein said multi-node system includes 
at least a second node, wherein, upon recovery following a 
failure of said second node, said first node rolls back to a 65 
state that corresponds to a nodal-generation count of said 
second node. 
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16. The method of claim 1, wherein said first node is a 

node in a multi-node system in which each node has a nodal 
generation-count, wherein said multi-node system includes 
at least a second node, wherein, upon recovery following a 
failure of said first node, said first node rolls forward to a 
state that corresponds to a nodal-generation count of said 
second node by restoring committed work from a checkpoint 
and restoring uncommitted work from a journal. 

17. The method of claim 1, wherein said first node is a 
node in a multi-node system in which each node has a nodal 
generation-count, said method including, at said first node, 

receiving, from a master node, a message indicating that 
a checkpoint is to be carried out, 

in response, youthening a nodal generation count of said 
first node, 

Suspending spawners from generating spawn, 
saving spawner recovery information for recovering 

spawner states, 
resuming said spawners, 
determining that no further older-generation immigrants 

are expected at said first node, and 
in response to said determination, committing, to said 

durable storage, said nodal recovery information. 
18. The method of claim 17, further including setting a 

deadline, and, upon lapse of said deadline, Suspending all 
older-generation spawn that are still executing while 
younger-generation spawn continue to execute, wherein said 
older-generation spawn and said younger-generation spawn 
are relative to a particular generation indicator. 

19. The method of claim 1, wherein said first node is a 
node in a multi-node system, said method including saving 
a replica copy of working memory of said first node at said 
second node, upon failure of said first node, temporarily 
using said replica copy for processing that would otherwise 
have been carried out by said first node, and, upon recovery 
of said first node, communicating, to said first node, infor 
mation required to update memory in said first node so that 
Subsequent computation can be carried out by said first node. 

20. A non-transitory medium, storing software for pro 
moting fault tolerance and recovery in a computing system 
including at least one processing node, the Software includ 
ing instructions for causing a computing system to: promote 
availability and recovery of a first processing node, wherein 
promoting availability and recovery includes, at a first 
processing node, 

executing a spawner at said node, wherein said spawner, 
in the course of execution, generates a first spawn, 
wherein executing said spawner includes assigning, to 

said spawner, a first generation indicator, 
wherein said first spawn inherits said first generation 

indicator, 
beginning a checkpoint interval, at the end of which nodal 

recovery information, which is usable for recovery of 
said node, is committed to durable storage, wherein 
beginning said checkpoint interval includes 
Suspending said spawner from generating spawn, 
assigning, to said spawner, a second generation indi 

cator that differs from said first generation indicator, 
resuming said spawner, thereby enabling said spawner 

to generate a second spawn, wherein said second 
spawn inherits said second generation indicator, and 

controlling an extent to which said second spawn writes 
to memory; and 

after committing said nodal recovery information, releas 
ing control over said extent to which said second spawn 
can write to memory. 
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21. A computing system including: 
a data storage system including durable storage; and 
one or more processing nodes including least one proces 

Sor configured to promote availability and recovery of 
a first processing node, wherein promoting availability 
and recovery includes, at a first processing node, 
executing a spawner at said node, wherein said 

spawner, in the course of execution, generates a first 
Spawn, 
wherein executing said spawner includes assigning, 

to said spawner, a first generation indicator, 
wherein said first spawn inherits said first generation 

indicator; 
beginning a checkpoint interval, at the end of which 

nodal recovery information, which is usable for 
recovery of said node, is committed to durable 
storage, wherein beginning said checkpoint interval 
includes 
Suspending said spawner from generating spawn, 
assigning, to said spawner, a second generation indi 

cator that differs from said first generation indi 
Cator, 

resuming said spawner, thereby enabling said 
spawner to generate a second spawn, wherein said 
second spawn inherits said second generation 
indicator, and 

controlling an extent to which said second spawn 
writes to memory; and 

after committing said nodal recovery information, 
releasing control over said extent to which said 
second spawn can write to memory. 

22. An apparatus including: 
means for durably storing data in durable storage; and 
means for promoting availability and recovery of a first 

processing node, wherein promoting availability and 
recovery includes, at a first processing node, 
executing a spawner at said node, wherein said 

spawner, in the course of execution, generates a first 
Spawn, 
wherein executing said spawner includes assigning, 

to said spawner, a first generation indicator, 
wherein said first spawn inherits said first generation 

indicator; 
beginning a checkpoint interval, at the end of which 

nodal recovery information, which is usable for 
recovery of said node, is committed to durable 
storage, wherein beginning said checkpoint interval 
includes 
Suspending said spawner from generating spawn, 
assigning, to said spawner, a second generation indi 

cator that differs from said first generation indi 
Cator, 

resuming said spawner, thereby enabling said 
spawner to generate a second spawn, wherein said 
second spawn inherits said second generation 
indicator, and 

controlling an extent to which said second spawn 
writes to memory; and 

after committing said nodal recovery information, 
releasing control over said extent to which said 
second spawn can write to memory. 

23. The non-transitory medium of claim 20, wherein 
controlling an extent to which said second spawn writes to 
memory includes preventing said second spawn from com 
pleting a write to said memory. 

24. The non-transitory medium of claim 23, further stor 
ing instructions for causing the computing system to permit 
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said second spawn to queue said write to memory for 
eventual completion thereof after said recovery information 
has been committed. 

25. The non-transitory medium of claim 20, wherein 
controlling an extent to which said second spawn writes to 
memory includes determining that said write operation is a 
commutable operation, and allowing completion of said 
commutable operation. 

26. The non-transitory medium of claim 25, wherein 
determining that said write operation is a commutable 
operation includes determining that said write operation 
includes incrementing a variable. 

27. The non-transitory medium of claim 25, wherein 
determining that said write operation is a commutable 
operation includes determining that said write operation 
includes inserting a record at a specified location. 

28. The non-transitory medium of claim 20, further stor 
ing instructions for causing the computing system to, after 
Suspending said spawner, set a deadline, thereby providing 
time for any spawn having said first generation indicator to 
execute to completion, and avoiding overhead associated 
with having to save states of said spawn having said first 
generation indicator. 

29. The non-transitory medium of claim 28, further stor 
ing instructions for causing the computing system to Sus 
pend said first spawn if said first spawn is still executing as 
of said deadline. 

30. The non-transitory medium of claim 28, further stor 
ing instructions for causing the computing system to enable 
said first spawn to avoid Suspension as a result of having 
failed to complete execution by said deadline. 

31. The non-transitory medium of claim 30, wherein 
enabling said first spawn to avoid suspension as a result of 
having failed to complete execution by said deadline 
includes changing said first generation indicator to said 
second generation indicator in said first spawn if said first 
spawn is still executing as of said deadline. 

32. The non-transitory medium of claim 20, wherein said 
first node has a nodal-generation indicator, said method 
further including causing a spawn to become a migrant that 
migrates to a second node, wherein said second node has a 
nodal-generation indicator. 

33. The non-transitory medium of claim 32, wherein said 
nodal-generation indicator of said second node indicates that 
said second node is in a younger generation than said first 
node, wherein said method further includes youthening said 
migrant. 

34. The non-transitory medium of claim 33, wherein 
youthening said migrant includes immigration-side youthen 
ing of said migrant. 

35. The non-transitory medium of claim 33, wherein 
youthening said migrant includes emigration-side youthen 
ing of said migrant. 

36. The non-transitory medium of claim 20, wherein said 
first node is a node in a multi-node system in which each 
node has a nodal generation-count, wherein said multi-node 
system includes at least a second node, wherein, upon 
recovery following a failure of said second node, said first 
node rolls back to a state that corresponds to a nodal 
generation count of said second node. 

37. The non-transitory medium of claim 20, wherein said 
first node is a node in a multi-node system in which each 
node has a nodal generation-count, wherein said multi-node 
system includes at least a second node, wherein, upon 
recovery following a failure of said first node, said first node 
rolls forward to a state that corresponds to a nodal-genera 
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tion count of said second node by restoring committed work 
from a checkpoint and restoring uncommitted work from a 
journal. 

38. The non-transitory medium of claim 20, wherein said 
first node is a node in a multi-node system in which each 
node has a nodal generation-count, said method including, at 
said first node, 

receiving, from a master node, a message indicating that 
a checkpoint is to be carried out, 

in response, youthening a nodal generation count of said 
first node, 

Suspending spawners from generating spawn, 
saving spawner recovery information for recovering 

spawner states, 
resuming said spawners, 
determining that no further older-generation immigrants 

are expected at said first node, and 
in response to said determination, committing, to said 

durable storage, said nodal recovery information. 
39. The non-transitory medium of claim 38, further stor 

ing instructions for causing the computing system to set a 
deadline, and, upon lapse of said deadline, Suspend all 
older-generation spawn that are still executing while 
younger-generation spawn continue to execute, wherein said 
older-generation spawn and said younger-generation spawn 
are relative to a particular generation indicator. 

40. The non-transitory medium of claim 20, wherein said 
first node is a node in a multi-node system, said method 
including saving a replica copy of working memory of said 
first node at said second node, upon failure of said first node, 
temporarily using said replica copy for processing that 
would otherwise have been carried out by said first node, 
and, upon recovery of said first node, communicating, to 
said first node, information required to update memory in 
said first node so that Subsequent computation can be carried 
out by said first node. 

41. The computing system of claim 21, wherein control 
ling an extent to which said second spawn writes to memory 
includes preventing said second spawn from completing a 
write to said memory. 

42. The computing system of claim 41, the processor 
further configured to permit said second spawn to queue said 
write to memory for eventual completion thereof after said 
recovery information has been committed. 

43. The computing system of claim 21, wherein control 
ling an extent to which said second spawn writes to memory 
includes determining that said write operation is a commut 
able operation, and allowing completion of said commutable 
operation. 

44. The computing system of claim 43, wherein deter 
mining that said write operation is a commutable operation 
includes determining that said write operation includes 
incrementing a variable. 

45. The computing system of claim 43, wherein deter 
mining that said write operation is a commutable operation 
includes determining that said write operation includes 
inserting a record at a specified location. 

46. The computing system of claim 21, the processor 
further configured to, after Suspending said spawner, set a 
deadline, thereby providing time for any spawn having said 
first generation indicator to execute to completion, and 
avoiding overhead associated with having to save states of 
said spawn having said first generation indicator. 

47. The computing system of claim 46, the processor 
further configured to Suspend said first spawn if said first 
spawn is still executing as of said deadline. 
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48. The computing system of claim 46, the processor 

further configured to enable said first spawn to avoid Sus 
pension as a result of having failed to complete execution by 
said deadline. 

49. The computing system of claim 48, wherein enabling 
said first spawn to avoid Suspension as a result of having 
failed to complete execution by said deadline includes 
changing said first generation indicator to said second gen 
eration indicator in said first spawn if said first spawn is still 
executing as of said deadline. 

50. The computing system of claim 21, wherein said first 
node has a nodal-generation indicator, said method further 
including causing a spawn to become a migrant that 
migrates to a second node, wherein said second node has a 
nodal-generation indicator. 

51. The computing system of claim 50, wherein said 
nodal-generation indicator of said second node indicates that 
said second node is in a younger generation than said first 
node, wherein said method further includes youthening said 
migrant. 

52. The computing system of claim 51, wherein youthen 
ing said migrant includes immigration-side youthening of 
said migrant. 

53. The computing system of claim 51, wherein youthen 
ing said migrant includes emigration-side youthening of said 
migrant. 

54. The computing system of claim 21, wherein said first 
node is a node in a multi-node system in which each node 
has a nodal generation-count, wherein said multi-node sys 
tem includes at least a second node, wherein, upon recovery 
following a failure of said second node, said first node rolls 
back to a state that corresponds to a nodal-generation count 
of said second node. 

55. The computing system of claim 21, wherein said first 
node is a node in a multi-node system in which each node 
has a nodal generation-count, wherein said multi-node sys 
tem includes at least a second node, wherein, upon recovery 
following a failure of said first node, said first node rolls 
forward to a state that corresponds to a nodal-generation 
count of said second node by restoring committed work 
from a checkpoint and restoring uncommitted work from a 
journal. 

56. The computing system of claim 21, wherein said first 
node is a node in a multi-node system in which each node 
has a nodal generation-count, said method including, at said 
first node, 

receiving, from a master node, a message indicating that 
a checkpoint is to be carried out, 

in response, youthening a nodal generation count of said 
first node, 

Suspending spawners from generating spawn, 
saving spawner recovery information for recovering 

spawner states, 
resuming said spawners, 
determining that no further older-generation immigrants 

are expected at said first node, and 
in response to said determination, committing, to said 

durable storage, said nodal recovery information. 
57. The computing system of claim 56, the processor 

further configured to set a deadline, and, upon lapse of said 
deadline, Suspend all older-generation spawn that are still 
executing while younger-generation spawn continue to 
execute, wherein said older-generation spawn and said 
younger-generation spawn are relative to a particular gen 
eration indicator. 

58. The computing system of claim 21, wherein said first 
node is a node in a multi-node system, said method includ 
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ing saving a replica copy of working memory of said first 
node at said second node, upon failure of said first node, 
temporarily using said replica copy for processing that 
would otherwise have been carried out by said first node, 
and, upon recovery of said first node, communicating, to 5 
said first node, information required to update memory in 
said first node so that Subsequent computation can be carried 
out by said first node. 
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