a2 United States Patent

Stanfill

US009678834B2

US 9,678,834 B2
Jun. 13, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

RECOVERY AND FAULT-TOLERANCE
UNDER COMPUTATIONAL

INDETERMINISM

Applicant: Ab Initio Technology LL.C, Lexington,
MA (US)

Inventor: Craig W. Stanfill, Lincoln, MA (US)

Assignee: Ab Initio Technology, LL.C, Lexington,
MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/886,363

Filed: Oct. 19, 2015

Prior Publication Data

US 2016/0110271 Al Apr. 21, 2016

Related U.S. Application Data

Provisional application No. 62/065,941, filed on Oct.
20, 2014.

Int. CL.

GO6F 11/00 (2006.01)

GO6F 11/14 (2006.01)

GO6F 9/52 (2006.01)

U.S. CL

CPC ... GO6F 11/1438 (2013.01); GO6F 9/526

(2013.01); GO6F 11/1479 (2013.01)
Field of Classification Search
CPC GOGF 11/1438; GOGF 11/1446-11/1471;
GOGF 9/526
See application file for complete search history.

'™

(56) References Cited
U.S. PATENT DOCUMENTS

6,584,581 Bl
7,305,582 Bl

6/2003 Bay et al.
12/2007 Moser et al.

(Continued)
FOREIGN PATENT DOCUMENTS

EP 05333446

WO 01/42920

3/1993
6/2001

OTHER PUBLICATIONS

International Search Report and Written Opinion, International
Application No. PCT/US2015/056159, mailed Mar. 2, 2016 (11
pages).

(Continued)

Primary Examiner — Jason Bryan
(74) Attorney, Agent, or Firm — Occhiuti & Rohlicek
LLP

(57) ABSTRACT

A method for promoting fault tolerance and recovery in a
computing system including at least one processing node
includes promoting availability and recovery of a first pro-
cessing node, by, at the first processing node, generating first
spawn using a spawner that has been assigned a first
generation-indicator so that its spawn inherits the first gen-
eration indicator, beginning a checkpoint interval to generate
nodal recovery information, suspending the spawner from
generating spawn, assigning, to the spawner, a second
generation-indicator that differs from the first one, resuming
the spawner, so that it generates second spawn that inherits
the second generation-indicator, controlling an extent to
which the second spawn writes to memory, and after com-
mitting nodal recovery information acquired during the
checkpoint to durable storage, releasing control over the
extent to which the second spawn can write to memory.

58 Claims, 9 Drawing Sheets

Memory 10
12

14 22A - \

//’

S

US 9,678,834 B2
Page 2

(56)

2005/0034014 Al* 2/2005 Moserccccooevnne

2007/0277056 Al* 11/2007 Varadarajan

References Cited

U.S. PATENT DOCUMENTS

8,826,070 B1* 9/2014 Havemose

2012/0222034 Al 8/2012 Ishikawa et al.

2014/0282605 Al* 9/2014 Jacobson ...

OTHER PUBLICATIONS

GO6F 11/1461

714/13

GOG6F 9/485

714/17

GO6F 11/1438

714/15

GO6F 9/461

718/107

Akidau, Tyler, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh
Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul
Nordstrom, and Sam Whittle. “MillWheel: fault-tolerant stream
processing at internet scale.” Proceedings of the VLDB Endowment
6, No. 11 (2013): 1033-1044.

* cited by examiner

U.S. Patent Jun. 13,2017 Sheet 1 of 9 US 9,678,834 B2

8\
Memory 10
12
144 |22A1%~_ "\ /
AN |
20
T
(p 26 H
24 _—
\
A D
\{ —s o
FIG. 1
L A — A A — J
32 34 32 34

FIG. 2

U.S. Patent Jun. 13,2017 Sheet 2 of 9 US 9,678,834 B2

SAVE STATE OF SPAWNER
38

v

SUSPEND SPAWNER
40

v

START TIMER
42

v

> ALLOW SPAW;\;TO PROCESS

WAITED LONG ENOUGH?
46

YES

SUSPEND REMAINING SPAWN
48

v

SAVE STATE OF REMAINING SPAWN
50

FIG. 3

U.S. Patent

Jun. 13,2017 Sheet 3 of 9

US 9,678,834 B2

SUSPEND SPAWNER
52

v

SAVE SPAWNER STATE
54

Y

YOUTHEN SPAWNER
56

v

UNSUSPEND SPAWNER
58

FIG. 4

RECEIVE WRITE REQUEST FROM SPAWN
60

COMMUTABLE? SUSPEND SPAWN
62 ' 68
QUEUE WRITE
64

CONTINUE EXECUTION OF SPAWN

66

FIG. 5

U.S. Patent Jun. 13,2017 Sheet 4 of 9 US 9,678,834 B2

P~ 100 100
72
T T 78 -
100
76
FIG. 6
88 76
227 228
-~ H / H ~

g
)
% -
o /I
T
X
] -
/
?\\
/T5
\
Sy o’
] b
] fs

FIG. 7

U.S. Patent Jun. 13,2017 Sheet 5 of 9 US 9,678,834 B2

RECEIVE CHECKPOINT MESSAGE
102

Y

YOUTHEN NODE
104

Y

CREATE JOURNAL ENTRY
106

Y

SUSPEND SPAWNERS
108

Y

SAVE SPAWNER STATES
110

Y

YOUTHEN SPAWNERS
112

Y

UNSUSPEND SPAWNERS
113

v

SET DEADLINE FOR OLDER-GENERATION SPAWN
116

Y

AWAIT FLUSH MESSAGE
118

Y

COMMIT MEMORY TO DURABLE STORAGE
120

FIG. 8

US 9,678,834 B2

Sheet 6 of 9

Jun. 13, 2017

U.S. Patent

6 DIA
41 ONJ 41 aN3
{(6£)3ZINYNYNOr {(6£)3zITyNHNOr
‘++(6£)28} ++(6L)e8}
(92)88>(6£)28 4I (6L)88>(6£)28 I
WN \\\\\\\\\\‘I\ IIIIII WN
\ \
| #
(6L)28 (6L)28
97 (97)88 74 (87)88

U.S. Patent

Jun. 13,2017 Sheet 7 of 9

RECEIVE RESTART SIGNAL
122

US 9,678,834 B2

AM | THE YES
ROLL BACK EAILED NODE? ROLL FORWARD
128 124 126
FIG. 10
130 128 | 136
132 134 d]
70

FIG. 11

U.S. Patent Jun. 13,2017 Sheet 8 of 9 US 9,678,834 B2

DESIGNATE REPLICA AS MASTER AT NODE "B"
138

v

KILL PROCESSES AT NODE "B"
140

Y

RESTART NODE "B"
142

Y

ROLL BACK NEW MASTER TO LAST CHECKPOINT AT
NODE "B" WHILE NODE "A" RECOVERS

144

FIG. 12

US 9,678,834 B2

Sheet 9 of 9

Jun. 13, 2017

U.S. Patent

051"

14

0] 4 R

0L

©
Lo
pid

T
—»

961

F+N

0S1

i

£1 °OIA

US 9,678,834 B2

1
RECOVERY AND FAULT-TOLERANCE
UNDER COMPUTATIONAL
INDETERMINISM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of the Oct. 20, 2014
priority date of the U.S. application Ser. No. 62/065,941, the
contents of which are herein incorporated by reference.

BACKGROUND

This description relates to recovery and fault-tolerance in
the presence of computational indeterminism.

Computational systems occasionally fail for a variety of
reasons. When such systems fail, data can be lost. It is
desirable to take measures to prevent, or at least minimize,
such data loss.

Examples of such measures include ACID (Atomic, Con-
sistent, Isolated until committed, Durable when committed)
transactions in databases. These known measures are
extremely robust. They can be made to meet very high
standards of correctness, while also being made fault toler-
ant.

However, all of this robustness comes at a cost. Known
methods for guarding against failure have high latency and
sometimes cause extended periods during which the appa-
ratus is unavailable. Thus, they are less than optimal for
high-volumes of transactions.

In addition, some known methods require deterministic
computation. In deterministic computation, the order in
which tasks are performed is fixed, and the result of a
computation remains the same each time it is carried out. It
is not clear how these known methods can be adapted to
efficiently handle non-deterministic computational environ-
ments.

Additional complexity arises when a computing apparatus
includes multiple processing nodes that cooperate with each
other. In such an apparatus, it is possible for one node of the
apparatus to fail, and others to keep working. When that
failed node recovers, this is no guarantee that it has restored
itself to a state that the other nodes expect it to be in.

SUMMARY

In one aspect, the invention features a method for pro-
moting fault tolerance and recovery in a computing system
that includes at least one processing node. Such a method
includes promoting availability and recovery of a first pro-
cessing node, wherein promoting availability and recovery
includes, at a first processing node, executing a spawner at
the node, wherein the spawner, in the course of execution,
generates a first spawn, wherein executing the spawner
includes assigning, to the spawner, a first generation indi-
cator, wherein the first spawn inherits the first generation
indicator; beginning a checkpoint interval, at the end of
which nodal recovery information, which is usable for
recovery of the node, is committed to durable storage,
wherein beginning the checkpoint interval includes suspend-
ing the spawner from generating spawn, assigning, to the
spawner, a second generation indicator that differs from the
first generation indicator, resuming the spawner, thereby
enabling the spawner to generate a second spawn, wherein
the second spawn inherits the second generation indicator,
and controlling an extent to which the second spawn writes

15

20

25

35

40

45

2

to memory; and after committing the nodal recovery infor-
mation, releasing control over the extent to which the second
spawn can write to memory.

In some practices, controlling an extent to which the
second spawn writes to memory includes preventing the
second spawn from consummating a write to the memory.
Among these are practices that further include permitting the
second spawn to queue the write to memory for eventual
consummation thereof after the recovery information has
been committed.

In other practices, controlling an extent to which the
second spawn writes to memory includes determining that
the write operation is a commutable operation, and allowing
consummation of the commutable operation. Among these
practices are those in which determining that the write
operation is a commutable operation includes determining
that the write operation includes incrementing a variable,
and those in which determining that the write operation is a
commutable operation includes determining that the write
operation includes inserting a record at a specified location.

Also among the practices of the invention are those that
further include, after suspending the spawner, setting a
deadline, thereby providing time for any spawn having the
first task generation-indicator to execute to completion, and
avoiding overhead associated with having to save states of
the spawn having the first generation-indicator. Among these
practices are those that include suspending the first spawn if
the first spawn is still executing as of the deadline, and those
that include enabling the first spawn to avoid suspension as
a result of having failed to complete execution by the
deadline, for example by changing the first task generation-
indicator to the second task generation-indicator in the first
spawn if the first spawn is still executing as of the deadline.

In those cases in which the first node has a nodal-
generation indicator, additional practices of the invention
include causing a spawn to become a migrant that migrates
to a second node, wherein the second node has a nodal-
generation indicator. Among these practices are those in
which the nodal-generation counter of the second node
indicates that the second node is in a younger generation
than the first node, in which case the method further includes
youthening the migrant, either by immigration-side youthen-
ing of the migrant, or by emigration-side youthening of the
migrant.

In some cases, the first node is a node in a multi-node
system in which each node has a nodal generation-count,
and the multi-node system includes at least a second node.
In these cases, there are practices of the invention in which,
upon recovery following a failure of the second node, the
first node rolls back to a state that corresponds to a nodal-
generation count of the second node.

In other cases, the first node is a node in a multi-node
system in which each node has a nodal generation-count,
and the multi-node system includes at least a second node.
In these cases, some practices of the invention include, upon
recovery following a failure of the first node, having the first
node roll forward to a state that corresponds to a nodal-
generation count of the second node by restoring committed
work from a checkpoint and restoring uncommitted work
from a journal.

In those cases in which the first node is a node in a
multi-node system in which each node has a nodal genera-
tion-count, practices of the invention include those in which
the first node carries out certain acts. These include receiv-
ing, from a master node, a message indicating that a check-
point is to be carried out, in response, youthening a nodal
generation count of the first node, suspending spawners

US 9,678,834 B2

3

from generating spawn, saving spawner recovery informa-
tion for recovering spawner states, resuming the spawners,
determining that no further older-generation immigrants are
expected at the first node, and in response to the determi-
nation, committing, to the durable storage, the nodal recov-
ery information. Among these practices are those that also
include setting a deadline, and, upon lapse of the deadline,
suspending all older-generation spawn that are still execut-
ing while younger-generation spawn continue to execute.

In some cases, the first node is a node in a multi-node
system. In such cases, alternative practices of the invention
include saving a replica copy of working memory of the first
node at the second node, upon failure of the first node,
temporarily using the replica copy for processing that would
otherwise have been carried out by the first node, and, upon
recovery of the first node, communicating, to the first node,
information required to update memory in the first node so
that subsequent computation can be carried out by the first
node.

In another aspect, the invention features software that has
been stored in a non-transitory form on a computer-readable
medium and that, when executed, promotes fault tolerance
and recovery in a computing system that includes at least
one processing node. The software has instructions for
causing a computing system to: promote availability and
recovery of a first processing node, wherein promoting
availability and recovery includes, at a first processing node,
executing a spawner at the node, wherein the spawner, in the
course of execution, generates a first spawn, wherein execut-
ing the spawner includes assigning, to the spawner, a first
generation indicator, wherein the first spawn inherits the first
generation indicator; beginning a checkpoint interval, at the
end of which nodal recovery information, which is usable
for recovery of the node, is committed to durable storage,
wherein beginning the checkpoint interval includes suspend-
ing the spawner from generating spawn, assigning, to the
spawner, a second generation indicator that differs from the
first generation indicator, resuming the spawner, thereby
enabling the spawner to generate a second spawn, wherein
the second spawn inherits the second generation indicator,
and controlling an extent to which the second spawn writes
to memory; and after committing the nodal recovery infor-
mation, releasing control over the extent to which the second
spawn can write to memory.

In yet another aspect, the invention features a data storage
system including durable storage; and one or more process-
ing nodes including least one processor configured to pro-
mote availability and recovery of a first processing node,
wherein promoting availability and recovery includes, at a
first processing node, executing a spawner at the node,
wherein the spawner, in the course of execution, generates a
first spawn, wherein executing the spawner includes assign-
ing, to the spawner, a first generation indicator, wherein the
first spawn inherits the first generation indicator; beginning
a checkpoint interval, at the end of which nodal recovery
information, which is usable for recovery of the node, is
committed to durable storage, wherein beginning the check-
point interval includes suspending the spawner from gener-
ating spawn, assigning, to the spawner, a second generation
indicator that differs from the first generation indicator,
resuming the spawner, thereby enabling the spawner to
generate a second spawn, wherein the second spawn inherits
the second generation indicator, and controlling an extent to
which the second spawn writes to memory; and after com-
mitting the nodal recovery information, releasing control
over the extent to which the second spawn can write to
memory.

10

15

20

25

30

35

40

45

50

55

60

65

4

Yet another aspect of the invention features an apparatus
that includes means for durably storing data in durable
storage; and means for promoting availability and recovery
of a first processing node, wherein promoting availability
and recovery includes, at a first processing node, executing
a spawner at the node, wherein the spawner, in the course of
execution, generates a first spawn, wherein executing the
spawner includes assigning, to the spawner, a first genera-
tion indicator, wherein the first spawn inherits the first
generation indicator; beginning a checkpoint interval, at the
end of which nodal recovery information, which is usable
for recovery of the node, is committed to durable storage,
wherein beginning the checkpoint interval includes suspend-
ing the spawner from generating spawn, assigning, to the
spawner, a second generation indicator that differs from the
first generation indicator, resuming the spawner, thereby
enabling the spawner to generate a second spawn, wherein
the second spawn inherits the second generation indicator,
and controlling an extent to which the second spawn writes
to memory; and after committing the nodal recovery infor-
mation, releasing control over the extent to which the second
spawn can write to memory.

Aspects can have one or more of the following advan-
tages.

The techniques for promoting fault tolerance and recovery
described herein enable the computing system to remain
highly available. By strategically relaxing certain ACID
constraints, the computing system can still provide recov-
erability, but without the high overhead of more extreme
measures. Thus, there are more computing resources avail-
able for useful work. Also, by controlling the extent to which
spawn (e.g., operating system processes or threads) write to
memory, useful work can still be accomplished during a
checkpoint interval, while ensuring that integrity of the fault
tolerance mechanisms is maintained. Thus, these techniques
enhance the internal functioning of the computing system,
both in the event of faults, and during normal fault-free
operation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a single-node computing apparatus for
carrying our fault-tolerance and recovery in the presence of
computational indeterminism;

FIG. 2 shows checkpoint intervals and working intervals
encountered during operation of the node of FIG. 1;

FIG. 3 shows a method in which spawn are allowed to run
to completion during the checkpoint interval of FIG. 2;

FIG. 4 shows a method in which a spawning process can
continue to generate spawn during the checkpoint interval of
FIG. 2,

FIG. 5 shows a method in which spawn can continue to
work during a checkpoint interval by queuing writes to
memory;

FIG. 6 shows a multi-node computing apparatus;

FIG. 7 shows two generations co-existing in a node from
the apparatus of FIG. 7;

FIG. 8 shows method steps carried out by a slave node in
response to a checkpoint message;

FIG. 9 shows method steps involving incrementing a
migrant generation count;

FIG. 10 shows method steps for recovery after failure;

FIG. 11 shows a replica maintained at another node to
enable more rapid recovery;

FIG. 12 shows a procedure for using the replica shown in
FIG. 11 for rapid recovery; and

US 9,678,834 B2

5

FIG. 13 shows an example of execution of the method
shown in FIG. 5 in connection with multiple nodes as
illustrated in FIG. 9.

DETAILED DESCRIPTION

FIG. 1 shows an example of a data processing system in
which techniques for fault tolerance and recovery in the
presence of computational indeterminism can be used. The
data processing system includes a single-node computing
apparatus 8 having a node 10 that includes a working-
memory 12. Processes 14 running on that node 10 use this
working-memory 12 to save their respective process states
and to store intermediate results of their respective compu-
tations. In different embodiments, the processes 14 may be
implemented as any of a variety of types of computing
resources within an operating system running on the node
10. For example, the processes 14 may be implemented as
operating system ‘processes’ that have their own address
space, or as operating system ‘threads’ that have their own
execution context (e.g., stage, registers, etc.), or as some
other type of ‘task’ that includes a sequence of operations to
be performed but does not necessarily have a particular
operating system process or thread dedicated to it.

Because the working-memory 12 is often volatile, it is
prudent to periodically save its state in checkpoint files 18
stored in durable storage 16. These checkpoint files 18 can
be used to recover state information in case of an interrup-
tion in operation of the node 10.

Among the processes 14 running on the node are spawn-
ers 20. A “spawner” is a type of process that has, among its
properties, the ability to generate one or more other pro-
cesses. The processes that are generated by a spawner are
referred to herein, both in the singular and in the plural, as
“spawn.” The act of generating such spawn is referred to by
appropriate variants of the verb “to spawn.” FIG. 1 shows a
spawner 20 that has generated spawn 22A, 22B. A spawner
20 is generally a long-lived process, whereas the spawn
22A, 22B, although numerous, tend to be much shorter-
lived. In some instances, a spawner is a process that lives
longer than spawn generated by that spawner. The spawn
22A, 22B are also independent of and asynchronous relative
to each other so that the extent to which a spawn 22A, 22B
has completed its computation is unrelated to when the
spawner 20 generated that spawn 22A, 22B in the first place.
As a result, the order in which spawn 22A, 22B carry out
computations is indeterminate. Since the order in which
computations are carried out can often affect the results, this
makes the computation as a whole indeterminate.

During the course of its operation, the computing appa-
ratus 8 communicates with the outside world. For example,
the computing apparatus 8 may receive one or more streams
of incoming messages 24 and produce one or more streams
of outgoing messages 28. As will be described in greater
detail below, these messages 24, 28 are temporarily stored
by the apparatus 8 within the durable storage 16. These
messages 24, 28 may be temporarily stored for escrow
within respective areas that are physically and/or logically
separate. Incoming messages 24 can be stored in an incom-
ing-message escrow area 26 in durable storage 16, and
outgoing messages 28 can be stored in an outgoing-message
escrow area 30 in durable storage 16.

Referring to FIG. 2, the node’s operation is marked by
checkpoint intervals 32 and working intervals 34. During a
working interval 34, the node performs useful work as
processes advance towards completion. During the check-
point interval 32, the node 10 suspends all processes,

10

15

20

25

30

35

40

45

50

55

60

65

6

serializes them, and saves the result to durable storage 16.
The node 10 then saves anything else that is in working-
memory into the durable storage 16. At this point, the
checkpoint is said to have been “committed” and the pro-
cesses 14 are said to have been “checkpointed.”

It is preferable that the checkpoint interval 32 be much
shorter than the working interval 34. The apparatus and
methods described herein are intended to increase the
amount of processing that can be performed in the working
intervals 34 by reducing the length of the checkpoint interval
32.

Once a checkpoint is committed, the node 10 allows
processes 14 to resume and releases outgoing messages 28
that are in the outgoing-message escrow area 30.

The storing of outgoing messages 28 in an outgoing-
message escrow area 30, rather than sending them immedi-
ately, is useful to guard against inconsistency that may result
from a failure of the node 10. For example, it would be quite
possible for a process 14 to send an outgoing message 28
announcing the result of some computation. If the node 10
were to fail after this message 28 has already been sent but
before the computational result is committed to durable
storage 16, the node 10 would re-start and re-execute the
uncommitted computation. Upon completion, another mes-
sage 28 would be sent announcing the result of this second
computation. If the two results are different, which is not
unlikely in the case of non-deterministic computations, one
of the messages will be invalid.

As a concrete example, consider the case in which a
process 14 awards a prize to a customer based on the result
of' a random number generator. Without the outgoing-mes-
sage escrow area 30, the process 14 would send a message
28 to a first customer announcing that a prize was forth-
coming. The node 10 would then crash and re-start. Since
the state of the process 14 was never saved, there is no
record of that customer having been awarded any prize, or
of the process 14 having successtully completed execution.
The node 10 may then re-execute the process 14, which
would then generate a different random number, thus caus-
ing a second message 28 to be sent to another customer
announcing that a prize was forthcoming. This would
require either awarding two prizes where only one was
intended, or managing at least one disappointed customer.

To recover after a failure, the node 10 retrieves, from
durable storage 16, the state of all processes 14 and the state
of working-memory 12. It then retransmits any outgoing
messages 28 that are stored in the outgoing-message escrow
area 30, retrieves incoming messages from incoming-mes-
sage escrow area 16 for processing, and then resumes
normal operation on live data.

The retransmission of all messages 28 in the outgoing-
message escrow area 30 can result in recipients receiving
duplicate messages. In one embodiment, the recipient is
configured to ignore repeated messages 28. In another
embodiment, upon recovery, the recipient and the recovered
node 10 communicate to identify messages 28 that have
been received. This permits the node 10 to avoid sending
duplicate messages 28.

The procedure described above introduces results in a
lengthy checkpoint interval 32, which may, in turn, result in
either low throughput or an increased latency between the
receipt of an incoming message and the production of a
corresponding outgoing message. A variety of methods can
be used to reduce this latency, and/or increase the through-
put.

A first optimization method features the maintenance of a
journal 36 in the background. Every time an item in the

US 9,678,834 B2

7

working-memory 12 is altered a corresponding entry will be
written to the journal 36 such that the journal entry may be
used to reproduce the alteration at recovery time. The
journal 36 may be asynchronously transferred to durable
storage 16. During the checkpoint interval 32 the node 10
will ensure that all journal entries have indeed been made
durable. Recovery can then be achieved by using an older
checkpoint file 18 containing a snapshot of working-
memory 12 and applying the changes as set forth in the
journal 36.

This optimization reduces the length of the checkpoint
interval 32 but at the cost of increasing the time to recover.
In particular, the longer it has been since the last full image
of working-memory 12 was obtained, the greater the number
of entries there will be in the journal 36. This will increase
recovery time.

A second optimization method relies on the fact that the
node 10 has only a few spawning processes 20, each of
which generates (or “spawns”) multitudes of short-lived
processes, referred to herein in both the singular and plural
as the “spawn 22A, 22B.”

The lifetime of spawn 22A, 22B is random, but has an
expected value that is much shorter than the expected value
of' the lifetime of a spawner 20. As such, it makes little sense
to spend time serializing spawn 22A, 22B during a check-
point. In fact, in some cases, the time required to serialize
spawn 22A, 22B is an appreciable fraction the spawn’s
expected lifetime. It is therefore often advantageous to
instead suspend the spawner 20, thus preventing generating
of' new spawn and to then allow the existing spawn 22A, 22B
to terminate naturally.

To save time, the checkpoint-generating method, as
shown in FIG. 3, includes suspending a spawner 20 (step 38)
and serializing it (step 40). However, existing spawn 22A
continue executing (step 42). Then, after a straggler’s dead-
line, which is selected to define a sufficiently long idle-down
interval be long enough to allow most spawn 22A to finish
executing but not so long as to appreciably impact latency
(step 46), spawn that are still executing, referred to as
“straggling spawn,” are suspended (step 48), and serialized
(step 50).

The foregoing method thus reduces the length of the
checkpoint interval 32 by reducing the number of processes
14 that need to be serialized. It does so by allowing
processes 22 that are expected to terminate quickly to do so,
thus eliminating the need to serialize those processes 22 as
part of creating a valid checkpoint.

Athird optimization procedure arises from the recognition
that the evil to be avoided is actually a change to the
working-memory 12 during the checkpoint interval 32.
Therefore, if a process 14 does not actually have to write to
working-memory 12, but instead only has to read working-
memory 12, it makes no sense to suspend it.

To implement this third optimization procedure, the node
10 relies on a generation count associated with each process.
Since the spawner 20 is a process, it has a generation count.
Since the spawn 22A, 22B of a spawner is also a process, it
too has a generation count. The generation counts of a spawn
22A and a spawner 20 that spawned that spawn 22A are
related. In particular, the generation count of a spawn 22A,
22B is equal to the generation count of the spawner 20 that
spawned it. The act of causing the generate count of a spawn
22A, 22B to be related to, or derivable from, the generation
count of the spawner that spawned it is described by the
appropriate form of the verb “to inherit.” When a spawner 20

10

15

20

25

30

35

40

45

50

55

60

65

8

with a particular generation count generates spawn 22A,
22B, the spawn 22A, 22B is said to have inherited the
spawner’s generation count.

In operation, prior to the onset of a checkpoint interval 32,
a spawner 20 will have generated older-generation spawn
22A. At the beginning of the checkpoint interval 32, the
spawner 20 is “youthened.”

The verb “to youthen” and its variants and cognates
describes a particular computational operation that can be
carried out on an integer. As used herein, the particular
integer upon which the youthening operation operates is the
generation count. describes an operation that can be carried
out on a generation count.

In the particular example described herein, the act of
youthening a spawner 20 means the act of incrementing its
generation count. After having been youthened, the spawner
20 then continues to generate spawn during the checkpoint
interval 32, only now, it generates younger-generation
spawn 22B. The result of this is that two kinds of spawn 22
coexist within the node 10: older-generation spawn 22A,
which the spawner 20 generated before having been
youthened, and a younger-generation spawn 22B, which the
spawned 20 generated after having been youthened.

Referring to FIG. 4, at the beginning of a checkpoint
interval, the spawner 20 is suspended (step 52), such that it
does not generate any new spawn while being suspended,
and its process state saved (step 54). The spawner 20 then
has its generation count incremented (step 56), after which
the spawner 20 resumes (i.e., is un-suspended). After resum-
ing, the spawner 20 is once again able to generate spawn 22,
though this time, all its spawn 22B will be in the younger-
generation spawi.

Any younger-generation spawn 22B that attempt to write
to the working-memory 12, are blocked until the checkpoint
interval 32 is completed. Thus, younger-generation spawn
22 cannot run to completion. They can only run until it is
time to actually write to working-memory 12 for the first
time. Nevertheless, younger-generation spawn 22 can at
least run partway to completion. This allows some process-
ing to occur even during a checkpoint interval 32.

In general, during the checkpoint interval 32, all processes
14 in memory 12 will be serialized. However, in the opti-
mization method of FIG. 4, it is desirable to serialize only
older-generation spawn 22A.

The generation count enables the node 10 to identify
which spawn is younger-generation spawn 22B and to
therefore avoid saving their state.

Unfortunately, having to wait for older-generation spawn
22A to complete processing tended to increase latency
because younger-generation spawn 22B could not proceed
full bore until either all older-generation spawn 22A were
done or until the straggler deadline triggered suspension of
stragglers from the older-generation spawn 22A.

In a variant of the second optimization method, instead of
blocking younger-generation spawn 22B that attempt to
modify working-memory 12, and thus losing the opportunity
to continue doing useful work, the node 10 can tag each data
item in working-memory 12 with a generation number. If a
younger-generation spawn 22B modifies a memory location,
rather than blocking until after the checkpoint, the node 10
will youthen the memory location by updating its generation
number. Then, if an old-generation spawn 22A attempts to
read or write such a youthened memory location the older-
generation spawn 22A will spontaneously youthen itself by
suspending itself, writing its state to the checkpoint, updat-
ing its generation number, and resuming execution in a
youthened state. The node 10 also tags the entries written to

US 9,678,834 B2

9

the journal with the generation number so that it can
distinguish journal entries corresponding to the older gen-
eration of spawn from journal entries corresponding to the
younger generation of spawn.

A fourth optimization method relies on the idea of allow-
ing younger-generation spawn 22B to continue processing
even past the first attempted write to working-memory 12.
This method relies on the fact that sometimes, the order in
which computational results are written into working-
memory 12 does not matter. If this is the case, writes to
working-memory 12 can simply be queued until later. This
method allows a younger-generation spawn 22B to keep
working during a checkpoint interval 32 even after the first
time attempts to write to working-memory 12.

In general, whenever one carries out a sequence of
operations, a question that arises is whether or not the order
of operations in the sequence makes a difference in the result
of the sequence. An operation within this sequence is said to
be “commutable” if the location of that operation within the
sequence does not affect the result. Otherwise, the operation
is “non-commutable.” Examples of commutable operations
are instructions to increment or decrement a value, instruc-
tions to insert a record into a list at some defined location,
and in general, any operation that does not require reading
a value to be carried out. The fourth optimization method
exploits these commutable operations.

Referring now to FIG. 5, in this fourth optimization
method, a node 10 receives a write request from a younger-
generation spawn 22B (step 60) at a time when normally the
younger-generation spawn 22B would not be permitted to
write to memory 12. However, in this method, the node 10
distinguishes between commutable operations and non-com-
mutable operations (step 62). If the proposed write is com-
mutable, the node 10 queues it (step 64). The younger-
generation spawn 22B then continues execution (step 66).
This allows the younger-generation spawn 22B to continue
processing past the first time it tries to write to working-
memory 12. As a result, younger-generation spawn 22B
continue to execute during the checkpoint interval 32 for as
long as any write operations carried out by that younger-
generation spawn 22B are commutable. On the other hand,
if the proposed write is a non-commutable write, then the
node 10 suspends execution of the younger-generation
spawn 22B (step 68).

In addition to non-commutable writes, there may be other
conditions in which a spawn 22B may be allowed to write
under conditions when it would normally not be able to do
s0. One other example arises when a younger-generation
spawn 22B, after having inspected memory 12, recognizes
that no further memory access by an older-generation spawn
22A is possible.

A fifth optimization method is one that reduces the latency
that arises because the outgoing-message escrow area 30
does not release outgoing messages 28 until a checkpoint
interval 32 is complete and all computations associated with
generating the outgoing messages 28 have been committed
to durable storage 16. The idea of waiting until the end of a
checkpoint interval 32 before releasing messages 28 from
outgoing-message escrow area 30 is useful where the con-
sequences of sending the wrong message are severe. How-
ever, there are times when the consequence of sending an
incorrect message is minimal, but the consequence of send-
ing a delayed message is severe.

As an example, consider the case in which the outgoing
message 28 is a coupon for goods in a particular retail store.
Suppose the apparatus has detected that a user is in the
vicinity of that particular retail store at a particular instant.

10

20

25

30

35

40

45

50

55

60

65

10

Obviously, it would be desirable to transmit the message 28
immediately, before the user has had a chance to leave the
retail store. If this message 28 were to languish on the
outgoing-message escrow area 30 waiting to be sent, the
opportunity for the coupon to be useful would be lost. On the
other hand, if that coupon were the result of a computation
that was subsequently lost because of a failure in the node
10, it is unlikely anybody would complain. After all, the
store would have made a sale it might not otherwise have
made, and the user would have obtained a good at some
discount.

This fifth optimization method, in which outgoing mes-
sages 28 are released without waiting for the underlying data
to be committed to durable storage 16, presupposes that time
is of the essence in delivering an outgoing message 28, and
that the cost of an incorrect or inconsistent outgoing mes-
sage 28 is minimal in comparison with adverse conse-
quences of its late delivery. In the fifth optimization method,
outgoing messages 28 are released from the outgoing-
message escrow area 30 prior to completion of the check-
point interval 32 or bypass the outgoing-message escrow
area 30 completely.

FIG. 6 shows a multi-node apparatus 70 in which multiple
nodes 72, 74, 76, 78 of the type described in connection with
FIGS. 1-6 are in communication with each other and coop-
erate with each other in carrying out data processing. In such
a case, a task may send a message from a first node 72 to a
second node 74.

In some cases the message may have the effect of migrat-
ing a task from the first node 72 to the second node 74. A task
that migrates from one node to another is referred to as a
“migrant” task. Depending on point-of-view, a migrant task
is either an “immigrant” task or an “emigrant” task. From
the point of view of the first node 72, the migrant task is an
“emigrant” task because the task is leaving the first node.
Conversely, from the point of view of the second node 74,
the migrant task is an “immigrant” task because it is arriving
at the second node 74.

In other cases the message might be a remote procedure
call or a remote data access request such that the requesting
task cannot proceed until it receives a message in return. In
other cases the task may simply asynchronously transmit
information from the first node 72 to the second node 74
using the message. A computing system such as that
described in U.S. patent application Ser. No. 14/842,956,
entitted “EXECUTING GRAPH-BASED PROGRAM
SPECIFICATIONS;,” filed on Sep. 2, 2015, incorporated
herein by reference, for example, can be configured using
the techniques for promoting fault tolerance and recovery
described herein.

In such a case, application of the foregoing methods
would be less than optimal in part because a message 80
from the first node 72 to the second node 76 cannot be
transmitted until it is released from escrow at the completion
of the next checkpoint interval 32. This introduces consid-
erable latency. While this latency could potentially be
reduced by exempting messages transmitted from node to
node within the multi-node apparatus 70 from being
escrowed, such an exemption is not sufficient due to inde-
terminism.

For example, this and other difficulties arise when mul-
tiple nodes 72, 74, 76, 78 are present because many com-
putations are non-deterministic. Examples of such non-
deterministic computations are those in which results
depend on the order in which reads and writes occur, those
that rely on real time clocks, and those that rely on the
outcome of a random number generator, an example of

US 9,678,834 B2

11

which has already been described above in connection with
the desirability of an outgoing-message escrow area 30.

If a first node 72 communicates with a second node 74,
then loses contact (e.g., due to failure) before the next
checkpoint interval 32, the apparatus 70 may end up with
inconsistencies owing to this non-determinism as follows.
After the failure the apparatus 70 will recover the first node
72 from the most recent checkpoint and restart the compu-
tation. The computation may be restarted from a point in the
computation before transmission of a message from the first
node 72 to the second node 74. Owing to the non-determin-
istic nature of the computations, the first node 72 may well
send a completely different message to the second node 74
after recovery from the checkpoint. But, that second node 74
may have already received the original message, potentially
placing the two nodes 72 and 74 in an inconsistent state. For
example, node 72 is in a state in which it has sent node 74
the “new” version of the message, but node 74 is in a state
in which it has already acted on the “old” version of the
message. Furthermore, node 74 may have sent a message to
yet another node 76, based on that original message received
from node 72, so node 72 and node 76 are also may also be
in an inconsistent state. Thus, inconsistency may spread
through all nodes in the apparatus 70 like a virus.

One way to avoid the foregoing difficulty is to ensure that
all the nodes 72, 74, 76, 78 synchronize their checkpoints,
for example, using a ‘barrier sync’ operation, as follows. A
‘checkpoint leader’ transmits a message to all nodes com-
manding them to begin a checkpoint interval. Then, after
each checkpoint is complete, each node responds to the
checkpoint leader affirming that the checkpoint is complete.
When the checkpoint leader has received affirmations from
all nodes, it will then command all nodes to commit the
checkpoint and then resume processing.

This approach forms the basis of a solution to the multi-
node checkpoint problem, but does not completely solve it
for two reasons. First, in a multi-node apparatus it is possible
that some nodes survive a failure, in which case the surviv-
ing nodes must be rolled back from their current state to the
checkpoint state (rather than being rolled forward to the
checkpoint state). Second, when the checkpoint is performed
there may be messages in transit, which might allow non-
determinism to leak from the old processing interval, across
the checkpoint, and into the new processing interval.

In a single-node apparatus, if the node 10 fails, it only has
to roll forward to recover uncommitted work. But in a
multi-node apparatus 70, other nodes 72, 74, 76, which did
not fail, may have to roll backward when a node 78 fails.
This mechanism, in which a distributed apparatus 70 recov-
ers by having some nodes 78 roll forward and other nodes
72, 74, 76 roll backward means that in effect, all nodes 72,
74,76, 78 can be made to restart at the same checkpoint. The
resulting apparatus 70 thus achieves the effect of simulta-
neous checkpoints across all nodes. It does not, however, do
so by trying to actually synchronize operation across all
nodes, which as noted above is difficult. Instead, it does so
by manipulating the states of the nodes 72, 74, 76, 78 to reap
the benefits of synchronized checkpoints without actually
having to provide such checkpoints.

To implement the foregoing recovery method, the nodes
72, 74, 76, 78 execute a distributed checkpoint method as
described in detail below. Referring to FIG. 7, when imple-
menting the distributed checkpoint method, every process
and every message acquires a generation count 82. In
addition, a running count 84 is maintained of the tasks
associated with each checkpoint. Each node also maintains

5

10

15

20

25

30

35

40

45

50

55

60

12

a spawner-registry 86 of its spawners 20. Additionally, each
node 72 maintains a nodal generation count 88.

The nodal generation count 88 enables a node 76 to
enforce a generation gap in which work carried out by
younger-generation spawn 22A and work carried out by
older-generation spawn 22B do not interfere with each other.
As a result of the generation gap, the older generation and
the younger generation can more or less ignore each other.
In effect, the node 76 becomes two virtual machines, one
seen by the older-generation spawn 22A and another seen by
the younger-generation spawn 22B. These two virtual
machines coexist on the same physical platform but are
otherwise orthogonal to each other.

In addition, each node 76 also implements a bidirectional
journal 90 that enables that node 76 to roll forward or
backward to a particular state as needed. The bidirectional
journal 90 includes changes to working storage 92, a listing
of checkpointed task states 94, and checkpointed messages
96. These elements provide a way to roll forward in time. In
addition, the bidirectional journal 90 features an undo log 98
in memory 12 to enable the node 76 to roll backward in time.
In general, rolling forward in time is how a failed node
recovers. Rolling backward in time is what a node does
when another node in the apparatus 70 has failed.

In operation, as shown in FIG. 6, a master node 72
transmits a checkpoint message 100 to all other nodes 74,
76,78, i.e. “slave nodes,” indicating that a checkpoint is due.
However, there is no requirement that this checkpoint occur
at the same time in all nodes 72, 74, 76, 78.

FIG. 8 shows a flowchart for an exemplary fault-tolerance
and recovery procedure in the presence of computational
indeterminism. In response to receiving a checkpoint mes-
sage (step 102), a slave node 76 will not immediately begin
a checkpoint interval. As noted above, this is impractical.
Instead, the slave node 76 increments its nodal generation
count 88 (step 104) and create a journal entry indicating the
incrementing of its nodal generation count 88 (step 106).

The slave node 76 then suspends all of its spawners 20
(step 108), and writes their states to the bidirectional journal
90 (step 110). Then, for each of its spawners 20, the slave
node 76 increments that spawner’s generation count 82 (step
112). With its generation count 82 having been incremented,
the spawner 20 is allowed to resume operation (step 114).
However, since the spawner’s generation count 82 will have
been incremented, any resulting spawn 22B will be in the
younger generation.

At this point, two generations will co-exist in the slave
node 76. The older-generation spawn 22A, namely those
having a generation count that is one less than the node’s
generation count, can continue to process to completion,
writing to memory 12 as necessary. The younger-generation
spawn 22B, namely those whose generation counts match
the nodal generation count 88, may process until it is time
to write to memory 12. At that point, younger generation
spawn 22B are blocked.

It should be noted that in the description thus far, there are
only two generations of spawn involved: older-generation
spawn 22A, whose generation count 82 is one less than the
nodal generation count 88, and a younger-generation spawn
22B, whose generation count 82 matches the nodal genera-
tion count 88. However, in principle there is no reason that
more than two generations cannot coexist on the same
platform.

Referring to FIG. 9, in a multi-node apparatus 70, it is
possible for a task 79 to emigrate from a sending node 78
and immigrate into a receiving node 76. As described in

US 9,678,834 B2

13

connection with FIG. 6, such a task 79 is referred to as a
“migrant task” or a “migrant.”

In the following discussion, it is necessary to refer to
values associated with particular objects. To avoid ambigu-
ity with reference numerals in the figures, and in a manner
consistent with standard mathematical notation, the paren-
theses will be used to mean “of.”” Thus, since “88” has been
assigned to “nodal generation count” and “76” is a node, the
nodal generation count 88 of node 76 will be written as
88(76).

A difficulty can arise when the migrant’s generation count
82(79) is not the same as the nodal generation count 88(76)
of the receiving node 76. These difficulties can be avoided
by implementing message escrow areas between nodes. But
this would reintroduce the latency that the distributed check-
point method was intended to avoid in the first place.

According to the distributed checkpoint method, there are
three possibilities: the sending node’s nodal count 88(78) is
the same as the receiving node’s nodal count 88(76); the
sending node 78 has a lower nodal generation count 88(78)
than the receiving node’s nodal count 88(76); and the
sending node 78 has a higher nodal generation count 88(78)
than the receiving node’s 88(76).

In the first possibility, a migrant will have the same
generation count 82(79) as the nodal count 88(78) of the
sending node 78. Therefore, the sending node 78, the
receiving node 76, and the migrant 79 all have the same
generation count. In that case, nothing special has to be
done.

The second possibility can arise when the receiving node
76 increments its generation count 88(76) while the migrant
79 is in transit. This means that, upon immigrating into the
receiving node 76, the migrant 79 presents itself as a
member of what has now become the older generation of the
receiving node 76. In that case, the receiving node 76 will
youthen the migrant 79 by incrementing the migrant’s
generation count 82(79). As a result, the migrant task 79 will
be able to continue processing, but, like the rest of the
younger generation spawn 22B, it will be blocked from
writing to memory 12. The youthening of the migrant 79 is
then journalized at the receiving node 76. Since the act of
youthening takes place at the receiving node 76, it is referred
to as “immigrant-side youthening.”

The third possibility can arise when the sending node 78
will increment its generation count 88(78) before the
migrant 79 has emigrated. In that case, the sending node 78
youthens the migrant 79 by incrementing the migrant’s
generation count 82(79) before it is sent, and journalizes the
youthening event at the sending node. Since the act of
youthening takes place at the sending node 78, it is referred
to as “emigrant-side youthening.”

In either case, a node 76 that has received a checkpoint
message from a master node will set a deadline to allow the
older-generation spawn 22A to finish execution, thereby
insuring near-extinction of the older generation, and avoid-
ing the need to record their states (step 116). Nevertheless,
there may be spawn 22A of the older generation that are
slow to terminate. It is impractical for a node 76 to wait for
an extended period for once the deadline is reached, any
older generation spawn 22 that is still running will be
suspended, serialized, journaled, and youthened, after which
it is allowed to resume execution subject to the constraint
that it not write to the working-memory 12 until after the
working-memory 12 has been committed to durable storage
16.

The slave node 76 will not begin the actual checkpoint
until it knows that no more older-generation immigrants are

10

15

20

25

30

35

40

45

50

55

60

65

14

expected to arrive. In order to implement this, whenever a
node 72 recognizes that all older-generation emigrants have
successfully emigrated, it broadcasts a flush message to all
other nodes 74, 76, 78. Once the slave node 76 has received
flush messages from all nodes 72, 74, 78, it knows that the
flow of older-generation immigrants has been quenched
(step 118). Younger-generation immigrants may still arrive
at a slave node 76, just as younger-generation emigrants may
still leave from the slave node 76. However, these younger-
generation emigrants are not pertinent to the checkpoint
process.

At this point, the slave node 76 is now ready to commit
its working-memory 12 to durable storage 16 (step 120).
This is carried out in the same manner described above for
the single-node case.

The procedure for restarting after failure of'a node, shown
in FIG. 10, depends on whether the node involved is one that
failed or not. After receiving an instruction to restart (step
122), the node determines if it is the node that failed, or if
another node in the apparatus 70 failed (step 124). If the
node is one that failed, it retrieves the log and rolls forward
from its last valid checkpoint (step 126). If the node is not
one that failed (i, it rolls back to its last checkpoint (step
128).

An example of a “roll back™ operation involves the
following steps: (1) terminate all tasks currently running
(including both spawners and spawn); (2) use the bidirec-
tional journal entries to undo any changes to memory.

After any failed nodes have been rolled forward and any
surviving nodes have been rolled back, the apparatus 70 may
also perform other operations as part of restarting the tasks.
For example, the apparatus 70 may perform the following
operations: (1) flush the communications network to ensure
that all messages predating the failure have been discarded,
(2) restart all tasks that were part of the checkpoint by
retrieving their saved state from the journal and restarting
them, (3) retransmit any messages that were not sent prior to
the checkpoint, and (4) process any messages were received
but not yet processed as of the checkpoint.

The task of rolling forward from the last valid checkpoint
on a failed node is one that is potentially time-consuming.
Referring to FIG. 11, in some practices, it is useful to
maintain a replica 128 of memory 130 from a first node 132
on a second node 134. Preferably, the second node 134 does
not have the same failure mode as the first node 132. In
normal operation, the replica 128 is synchronized with the
memory 130 at the first node 132 at each checkpoint. The
replica 128 also has an associated undo log 136 to enable it
to roll backward to its state at the most recent checkpoint.

Referring now to FIG. 12, upon failure of the first node
132, the replica 128 at the second node 124 is designated a
master (step 138). All processes on the second node 124 are
killed (step 140), after which the second node 134 is
restarted (step 142). The former replica 128, which now
serves as a master copy, is rolled back to the last checkpoint
with the aid of the undo log 136 (step 144). Operation of the
multi-node apparatus 70 can then resume with the wait for
recovery being on the order of the roll-back time. This is
typically much shorter than the roll-forward time. Mean-
while, the recovered first node 132 can proceed to roll-
forward to the correct state without slowing down the
overall recovery of the multi-node apparatus 70. Once the
first node 132 is ready, it takes over as master again, and the
former replica 128 becomes a replica again.

Although FIG. 11 shows only one second node 134, it is
understood that there can be more than one second node,
each of which has a replica 128 and an undo log 136. In that

US 9,678,834 B2

15

case, upon failure of the first node 132, one of the second
nodes must be elected to serve as proprietor of the new
master copy of the first node’s memory.

In some cases, there may be many idempotent operations.
In such cases, instead of rolling forward it is not unreason-
able to simply repeat computations that would carry out
idempotent operations since those computations would not
cause any harm.

The end result of recovery is that all points are at a state
consistent with the transition from one generation to the
next. As a result, no work from older-generation processes
is lost, but all work done by younger generation processes is
lost. This ensures a state that is consistent across all nodes.
In this context, a state is “consistent” if it could have been
arrived at in the absence of any fault. In contrast, a state is
“inconsistent” if it can only be explained by the occurrence
of one or more faults.

FIG. 13 illustrates the states of several spawned processes
in both the sending node 78 and receiving node 76 in the
multi-node apparatus 70 referred to in connection with
FIGS. 6 and 9. In FIG. 13, time increases downward along
the vertical axis. The time axis shows a first interval 146, a
second interval 148 following the first interval 146, and a
third interval 150 following the second interval 148.

FIG. 13 shows several spawned processes 22A-H, each of
which has an associated generation count. Spawn having a
generation count of N will be referred to herein as “first-
generation spawn.” Spawn having a generation count of N+1
will be referred to herein as “second-generation spawn.” The
adjectives “first-generation” and “second-generation” will
also be used to refer to other entities that are tagged with a
generation count, including nodes, migrant tasks, and
spawned process.

During the first interval 146, the sending node 78 is a
first-generation node. During the second and third interval
150, the sending node 78 is a second-generation node. It
should be noted that this progression of nodes is cyclic so
that the third interval 150 will be followed by an interval that
plays the same role, for the second generation, that the
second interval 148 played for the first generation. This
same progression occurs on the receiving node 76, though
not necessarily in synchrony with the progression occurring
at the sending node 78. For convenience, the same reference
numbers are used to designate intervals in both the sending
and receiving nodes 78, 76. However, this is not meant to
imply that they are synchronized.

During the first interval 146, a spawning process 20
spawns various first-generation spawned processes 22A-
22E. Throughout this first interval 146, any first-generation
spawned process 22A-22FE is free to write to a sending-node
memory 12A.

During the second interval 148, the sending node 78
becomes a second-generation node. As such, the spawning
process 20 now spawns only second-generation spawned
processes. During this second interval 148, any first-gen-
eration spawned processes 22A-22E remain free to write to
the sending-node memory 12A. Second-generation spawned
processes 22F-22G are free to execute, but are forbidden
from writing to the sending-node memory 12A. The purpose
of this second interval 148 is therefore to allow any residual
first-generation spawn 22C, 22D, 22F some time to finish
executing before a checkpoint interval 32 occurs.

During the third interval 150, the spawning process 20
spawns another second-generation spawned process 22H.
During this third interval 150, no first-generation spawn
remain, and all second-generation spawn 22F-22H are free
to write to the sending-node memory 12A.

10

15

20

25

30

35

40

45

50

55

60

65

16

At the sending node 78, a first first-generation spawned
process 22A, a second first-generation spawned process
22B, a third first-generation spawned process 22C, a fourth
first-generation spawned process 22D, and a fifth first-
generation spawned process 22EF all begin execution during
the first interval 146. However, of these, only the first
first-generation spawned process 22A and the second first-
generation spawned process 22B manage to finish execution
during the first interval 146. The third first-generation
spawned process 22C manages to finish during the second
interval 148. The fourth first-generation spawned process
22D takes so long it cannot finish until the third interval 150
has already begun. The fifth first-generation spawned pro-
cess 22E never actually finishes at the sending node 78.
Instead, it migrates to the receiving node 76 part way
through the second interval 148. It does so while the
receiving node 76 is still in its own second interval 148.

During execution, the first first-generation spawned pro-
cess 22 A writes to the sending-node memory 12A during the
first interval 146 and the third first-generation spawned
process 22C writes to the sending-node memory 12A during
the second interval 148. The second first-generation
spawned process 22B does not write to the sending-node
memory 12A at all during execution. The fifth first-genera-
tion spawned process 22E eventually writes to the sending-
node memory 12A, but only at the receiving node 76.

During the second interval 148, a first second-generation
spawned process 22F and a second second-generation
spawned process 22G both begin execution. Sometime
during the second interval 148, the first second-generation
spawned process 22F reaches a point at which it must write
to the sending-node memory 12A. However, since it is still
the second interval 148, it is forbidden from writing to the
sending-node memory 12A. Therefore, it becomes sus-
pended, as indicated by the dashed lines. Once the third
interval 150 begins, the first second-generation spawned
process 22F writes to the sending-node memory 12A and
completes execution.

Meanwhile, the second second-generation spawned pro-
cess 22G has started late enough during the second interval
148 so that by the time it actually has to write to the
sending-node memory 12A, the third interval 150 has
already begun. Accordingly, the second second-generation
spawned process 22G executes without interruption.

A third second-generation spawned process 22H begins
during the third interval 150. This is essentially a mirror
image of the first first-generation spawned process 22A.

In the course of execution, the first first-generation
spawned process 22A causes a first task 152 to migrate to the
receiving node 76. The first task 152 inherits the generation
number of the first first-generation spawned process 22A. As
such, it begins its existence as a first-generation task. This
first task 152 arrives at the receiving node 76 while the
receiving node 76 is still operating in the first interval 146.
The receiving node 76 is thus acting as a first-generation
node. Accordingly, the first task 152 is free to execute and
to write to a receiving-node memory 12B provided it does so
before a third interval 150 begins on the receiving node 76.

Also in the course of execution, the second first-genera-
tion spawned process 22B causes a second task 154 to
migrate to the receiving node 76. The second task 154
inherits the generation number of the first first-generation
spawned process 22A. As such, it starts its existence as a
first-generation task. However, this second task 154 arrives
at the receiving node 76 while the receiving node 76 is
already operating in its second interval 148. Accordingly, the
second task 154 is changed into a second-generation task

US 9,678,834 B2

17

from a first-generation task. This includes an accompanying
step of journalizing the second task 154 in a receiving node
journal file 156.

A similar event occurs in connection with the fifth first-
generation spawned process 22E at the sending node 78.
This fifth first-generation spawned process 22E migrates to
the receiving node 76 midway through execution. However,
by the time it arrives at the receiving node 76, the receiving
node 76 has already begun its own second interval 148. As
such, the second node is has become a second-generation
node. Therefore, the fifth first-generation spawned process
22E is changed into a second-generation spawned process.
This change is accompanied by journalizing the fifth first-
generation spawned process 22E in a sending-node journal
file 158. The fifth first-generation spawned process 22F then
continues execution on the receiving node 76, though as a
second-generation spawned process.

Meanwhile, back at the sending node 78, the fourth
first-generation spawned process 22D has not yet finished
execution by the end of the second interval 148. At this
point, the fourth first-generation spawned process 22D is
both journalized at the sending-node journal file 158 and has
its generation count incremented so that it now becomes a
second-generation spawned process. The fourth first-gen-
eration spawned process 22D then continues to execute
during the third interval 150.

It should be noted that the fourth first-generation spawned
process 22D sustained the same two steps that were sus-
tained by the fifth first-generation spawned process 22E
during its migration to the receiving node 76, namely a
journalizing step, and a generation change. Thus, it is not
unreasonable to say that fourth first-generation spawned
process 22D in some sense also migrated. The main differ-
ence is that the fifth first-generation spawned process 22E
underwent an inter-node migration whereas the fourth first-
generation spawned process 22D underwent an intra-node
migration.

The checkpoint and recovery method described herein is
thus based on the recognition that the desirability of simul-
taneously executing checkpoints across multiple nodes does
not stem from temporal synchronicity but rather from a side
effect of temporal synchronicity. The method thus repro-
duces the side effect of temporal synchronicity of check-
points across multiple nodes without actually having to
achieve it.

The fault-tolerance and recovery approach described
above can be implemented, for example, using a program-
mable computing system executing suitable software
instructions or it can be implemented in suitable hardware
such as a field-programmable gate array (FPGA) or in some
hybrid form. For example, in a programmed approach the
software may include procedures in one or more computer
programs that execute on one or more programmed or
programmable computing system (which may be of various
architectures such as distributed, client/server, or grid) each
including at least one processor, at least one data storage
system (including volatile and/or non-volatile memory and/
or storage elements), at least one user interface (for receiv-
ing input using at least one input device or port, and for
providing output using at least one output device or port).
The software may include one or more modules of a larger
program, for example, that provides services related to the
design, configuration, and execution of dataflow graphs. The
modules of the program (e.g., elements of a dataflow graph)
can be implemented as data structures or other organized
data conforming to a data model stored in a data repository.

10

15

20

25

30

35

40

45

50

55

60

65

18

The software may be stored in non-transitory form, such
as being embodied in a volatile or non-volatile storage
medium, or any other non-transitory medium, using a physi-
cal property of the medium (e.g., surface pits and lands,
magnetic domains, or electrical charge) for a period of time
(e.g., the time between refresh periods of a dynamic memory
device such as a dynamic RAM). In preparation for loading
the instructions, the software may be provided on a tangible,
non-transitory medium, such as a CD-ROM or other com-
puter-readable medium (e.g., readable by a general or spe-
cial purpose computing system or device), or may be deliv-
ered (e.g., encoded in a propagated signal) over a
communication medium of a network to a tangible, non-
transitory medium of a computing system where it is
executed. Some or all of the processing may be performed
on a special purpose computer, or using special-purpose
hardware, such as coprocessors or field-programmable gate
arrays (FPGAs) or dedicated, application-specific integrated
circuits (ASICs). The processing may be implemented in a
distributed manner in which different parts of the computa-
tion specified by the software are performed by different
computing elements. Each such computer program is pref-
erably stored on or downloaded to a computer-readable
storage medium (e.g., solid state memory or media, or
magnetic or optical media) of a storage device accessible by
a general or special purpose programmable computer, for
configuring and operating the computer when the storage
device medium is read by the computer to perform the
processing described herein. The inventive system may also
be considered to be implemented as a tangible, non-transi-
tory medium, configured with a computer program, where
the medium so configured causes a computer to operate in a
specific and predefined manner to perform one or more of
the processing steps described herein.

A number of embodiments of the invention have been
described. Nevertheless, it is to be understood that the
foregoing description is intended to illustrate and not to limit
the scope of the invention, which is defined by the scope of
the following claims. Accordingly, other embodiments are
also within the scope of the following claims. For example,
various modifications may be made without departing from
the scope of the invention. Additionally, some of the steps
described above may be order independent, and thus can be
performed in an order different from that described.

I claim:
1. A method for promoting fault tolerance and recovery in
a computing system including at least one processing node,
said method including: promoting availability and recovery
of a first processing node, wherein promoting availability
and recovery includes, at a first processing node,
executing a spawner at said node, wherein said spawner,
in the course of execution, generates a first spawn,
wherein executing said spawner includes assigning, to
said spawner, a first generation indicator,
wherein said first spawn inherits said first generation
indicator;
beginning a checkpoint interval, at the end of which nodal
recovery information, which is usable for recovery of
said node, is committed to durable storage, wherein
beginning said checkpoint interval includes
suspending said spawner from generating spawn,
assigning, to said spawner, a second generation indi-
cator that differs from said first generation indicator,
resuming said spawner, thereby enabling said spawner
to generate a second spawn, wherein said second
spawn inherits said second generation indicator, and

US 9,678,834 B2

19

controlling an extent to which said second spawn writes
to memory; and

after committing said nodal recovery information, releas-

ing control over said extent to which said second spawn
can write to memory.

2. The method of claim 1, wherein controlling an extent
to which said second spawn writes to memory includes
preventing said second spawn from completing a write to
said memory.

3. The method of claim 2, further including permitting
said second spawn to queue said write to memory for
eventual completion thereof after said recovery information
has been committed.

4. The method of claim 1, wherein controlling an extent
to which said second spawn writes to memory includes
determining that said write operation is a commutable
operation, and allowing completion of said commutable
operation.

5. The method of claim 4, wherein determining that said
write operation is a commutable operation includes deter-
mining that said write operation includes incrementing a
variable.

6. The method of claim 4, wherein determining that said
write operation is a commutable operation includes deter-
mining that said write operation includes inserting a record
at a specified location.

7. The method of claim 1, further including, after sus-
pending said spawner, setting a deadline, thereby providing
time for any spawn having said first generation indicator to
execute to completion, and avoiding overhead associated
with having to save states of said spawn having said first
generation indicator.

8. The method of claim 7, further including suspending
said first spawn if said first spawn is still executing as of said
deadline.

9. The method of claim 7, further including enabling said
first spawn to avoid suspension as a result of having failed
to complete execution by said deadline.

10. The method of claim 9, wherein enabling said first
spawn to avoid suspension as a result of having failed to
complete execution by said deadline includes changing said
first generation indicator to said second generation indicator
in said first spawn if said first spawn is still executing as of
said deadline.

11. The method of claim 1, wherein said first node has a
nodal-generation indicator, said method further including
causing a spawn to become a migrant that migrates to a
second node, wherein said second node has a nodal-genera-
tion indicator.

12. The method of claim 11, wherein said nodal-genera-
tion indicator of said second node indicates that said second
node is in a younger generation than said first node, wherein
said method further includes youthening said migrant.

13. The method of claim 12, wherein youthening said
migrant includes immigration-side youthening of said
migrant.

14. The method of claim 12, wherein youthening said
migrant includes emigration-side youthening of said
migrant.

15. The method of claim 1, wherein said first node is a
node in a multi-node system in which each node has a nodal
generation-count, wherein said multi-node system includes
at least a second node, wherein, upon recovery following a
failure of said second node, said first node rolls back to a
state that corresponds to a nodal-generation count of said
second node.

10

40

45

50

55

60

20

16. The method of claim 1, wherein said first node is a
node in a multi-node system in which each node has a nodal
generation-count, wherein said multi-node system includes
at least a second node, wherein, upon recovery following a
failure of said first node, said first node rolls forward to a
state that corresponds to a nodal-generation count of said
second node by restoring committed work from a checkpoint
and restoring uncommitted work from a journal.

17. The method of claim 1, wherein said first node is a
node in a multi-node system in which each node has a nodal
generation-count, said method including, at said first node,

receiving, from a master node, a message indicating that

a checkpoint is to be carried out,

in response, youthening a nodal generation count of said

first node,

suspending spawners from generating spawn,

saving spawner recovery information for recovering

Sspawner states,

resuming said spawners,

determining that no further older-generation immigrants

are expected at said first node, and

in response to said determination, committing, to said

durable storage, said nodal recovery information.

18. The method of claim 17, further including setting a
deadline, and, upon lapse of said deadline, suspending all
older-generation spawn that are still executing while
younger-generation spawn continue to execute, wherein said
older-generation spawn and said younger-generation spawn
are relative to a particular generation indicator.

19. The method of claim 1, wherein said first node is a
node in a multi-node system, said method including saving
a replica copy of working memory of said first node at said
second node, upon failure of said first node, temporarily
using said replica copy for processing that would otherwise
have been carried out by said first node, and, upon recovery
of said first node, communicating, to said first node, infor-
mation required to update memory in said first node so that
subsequent computation can be carried out by said first node.

20. A non-transitory medium, storing software for pro-
moting fault tolerance and recovery in a computing system
including at least one processing node, the software includ-
ing instructions for causing a computing system to: promote
availability and recovery of a first processing node, wherein
promoting availability and recovery includes, at a first
processing node,

executing a spawner at said node, wherein said spawner,

in the course of execution, generates a first spawn,

wherein executing said spawner includes assigning, to
said spawner, a first generation indicator,

wherein said first spawn inherits said first generation
indicator;

beginning a checkpoint interval, at the end of which nodal

recovery information, which is usable for recovery of
said node, is committed to durable storage, wherein
beginning said checkpoint interval includes
suspending said spawner from generating spawn,
assigning, to said spawner, a second generation indi-
cator that differs from said first generation indicator,
resuming said spawner, thereby enabling said spawner
to generate a second spawn, wherein said second
spawn inherits said second generation indicator, and
controlling an extent to which said second spawn writes
to memory; and
after committing said nodal recovery information, releas-
ing control over said extent to which said second spawn
can write to memory.

US 9,678,834 B2

21

21. A computing system including:

a data storage system including durable storage; and

one or more processing nodes including least one proces-

sor configured to promote availability and recovery of
a first processing node, wherein promoting availability
and recovery includes, at a first processing node,
executing a spawner at said node, wherein said
spawner, in the course of execution, generates a first
spawn,
wherein executing said spawner includes assigning,
to said spawner, a first generation indicator,
wherein said first spawn inherits said first generation
indicator;
beginning a checkpoint interval, at the end of which
nodal recovery information, which is usable for
recovery of said node, is committed to durable
storage, wherein beginning said checkpoint interval
includes
suspending said spawner from generating spawn,
assigning, to said spawner, a second generation indi-
cator that differs from said first generation indi-
cator,
resuming said spawner, thereby enabling said
spawner to generate a second spawn, wherein said
second spawn inherits said second generation
indicator, and
controlling an extent to which said second spawn
writes to memory; and
after committing said nodal recovery information,
releasing control over said extent to which said
second spawn can write to memory.

22. An apparatus including:

means for durably storing data in durable storage; and

means for promoting availability and recovery of a first

processing node, wherein promoting availability and
recovery includes, at a first processing node,
executing a spawner at said node, wherein said
spawner, in the course of execution, generates a first
spawn,
wherein executing said spawner includes assigning,
to said spawner, a first generation indicator,
wherein said first spawn inherits said first generation
indicator;
beginning a checkpoint interval, at the end of which
nodal recovery information, which is usable for
recovery of said node, is committed to durable
storage, wherein beginning said checkpoint interval
includes
suspending said spawner from generating spawn,
assigning, to said spawner, a second generation indi-
cator that differs from said first generation indi-
cator,
resuming said spawner, thereby enabling said
spawner to generate a second spawn, wherein said
second spawn inherits said second generation
indicator, and
controlling an extent to which said second spawn
writes to memory; and
after committing said nodal recovery information,
releasing control over said extent to which said
second spawn can write to memory.

23. The non-transitory medium of claim 20, wherein
controlling an extent to which said second spawn writes to
memory includes preventing said second spawn from com-
pleting a write to said memory.

24. The non-transitory medium of claim 23, further stor-
ing instructions for causing the computing system to permit

5

10

15

20

25

30

35

40

45

50

55

60

65

22

said second spawn to queue said write to memory for
eventual completion thereof after said recovery information
has been committed.

25. The non-transitory medium of claim 20, wherein
controlling an extent to which said second spawn writes to
memory includes determining that said write operation is a
commutable operation, and allowing completion of said
commutable operation.

26. The non-transitory medium of claim 25, wherein
determining that said write operation is a commutable
operation includes determining that said write operation
includes incrementing a variable.

27. The non-transitory medium of claim 25, wherein
determining that said write operation is a commutable
operation includes determining that said write operation
includes inserting a record at a specified location.

28. The non-transitory medium of claim 20, further stor-
ing instructions for causing the computing system to, after
suspending said spawner, set a deadline, thereby providing
time for any spawn having said first generation indicator to
execute to completion, and avoiding overhead associated
with having to save states of said spawn having said first
generation indicator.

29. The non-transitory medium of claim 28, further stor-
ing instructions for causing the computing system to sus-
pend said first spawn if said first spawn is still executing as
of said deadline.

30. The non-transitory medium of claim 28, further stor-
ing instructions for causing the computing system to enable
said first spawn to avoid suspension as a result of having
failed to complete execution by said deadline.

31. The non-transitory medium of claim 30, wherein
enabling said first spawn to avoid suspension as a result of
having failed to complete execution by said deadline
includes changing said first generation indicator to said
second generation indicator in said first spawn if said first
spawn is still executing as of said deadline.

32. The non-transitory medium of claim 20, wherein said
first node has a nodal-generation indicator, said method
further including causing a spawn to become a migrant that
migrates to a second node, wherein said second node has a
nodal-generation indicator.

33. The non-transitory medium of claim 32, wherein said
nodal-generation indicator of said second node indicates that
said second node is in a younger generation than said first
node, wherein said method further includes youthening said
migrant.

34. The non-transitory medium of claim 33, wherein
youthening said migrant includes immigration-side youthen-
ing of said migrant.

35. The non-transitory medium of claim 33, wherein
youthening said migrant includes emigration-side youthen-
ing of said migrant.

36. The non-transitory medium of claim 20, wherein said
first node is a node in a multi-node system in which each
node has a nodal generation-count, wherein said multi-node
system includes at least a second node, wherein, upon
recovery following a failure of said second node, said first
node rolls back to a state that corresponds to a nodal-
generation count of said second node.

37. The non-transitory medium of claim 20, wherein said
first node is a node in a multi-node system in which each
node has a nodal generation-count, wherein said multi-node
system includes at least a second node, wherein, upon
recovery following a failure of said first node, said first node
rolls forward to a state that corresponds to a nodal-genera-

US 9,678,834 B2

23

tion count of said second node by restoring committed work
from a checkpoint and restoring uncommitted work from a
journal.

38. The non-transitory medium of claim 20, wherein said
first node is a node in a multi-node system in which each
node has a nodal generation-count, said method including, at
said first node,

receiving, from a master node, a message indicating that

a checkpoint is to be carried out,

in response, youthening a nodal generation count of said

first node,

suspending spawners from generating spawn,

saving spawner recovery information for recovering

spawner states,

resuming said spawners,

determining that no further older-generation immigrants

are expected at said first node, and

in response to said determination, committing, to said

durable storage, said nodal recovery information.

39. The non-transitory medium of claim 38, further stor-
ing instructions for causing the computing system to set a
deadline, and, upon lapse of said deadline, suspend all
older-generation spawn that are still executing while
younger-generation spawn continue to execute, wherein said
older-generation spawn and said younger-generation spawn
are relative to a particular generation indicator.

40. The non-transitory medium of claim 20, wherein said
first node is a node in a multi-node system, said method
including saving a replica copy of working memory of said
first node at said second node, upon failure of said first node,
temporarily using said replica copy for processing that
would otherwise have been carried out by said first node,
and, upon recovery of said first node, communicating, to
said first node, information required to update memory in
said first node so that subsequent computation can be carried
out by said first node.

41. The computing system of claim 21, wherein control-
ling an extent to which said second spawn writes to memory
includes preventing said second spawn from completing a
write to said memory.

42. The computing system of claim 41, the processor
further configured to permit said second spawn to queue said
write to memory for eventual completion thereof after said
recovery information has been committed.

43. The computing system of claim 21, wherein control-
ling an extent to which said second spawn writes to memory
includes determining that said write operation is a commut-
able operation, and allowing completion of said commutable
operation.

44. The computing system of claim 43, wherein deter-
mining that said write operation is a commutable operation
includes determining that said write operation includes
incrementing a variable.

45. The computing system of claim 43, wherein deter-
mining that said write operation is a commutable operation
includes determining that said write operation includes
inserting a record at a specified location.

46. The computing system of claim 21, the processor
further configured to, after suspending said spawner, set a
deadline, thereby providing time for any spawn having said
first generation indicator to execute to completion, and
avoiding overhead associated with having to save states of
said spawn having said first generation indicator.

47. The computing system of claim 46, the processor
further configured to suspend said first spawn if said first
spawn is still executing as of said deadline.

10

15

20

30

35

40

45

50

24

48. The computing system of claim 46, the processor
further configured to enable said first spawn to avoid sus-
pension as a result of having failed to complete execution by
said deadline.

49. The computing system of claim 48, wherein enabling
said first spawn to avoid suspension as a result of having
failed to complete execution by said deadline includes
changing said first generation indicator to said second gen-
eration indicator in said first spawn if said first spawn is still
executing as of said deadline.

50. The computing system of claim 21, wherein said first
node has a nodal-generation indicator, said method further
including causing a spawn to become a migrant that
migrates to a second node, wherein said second node has a
nodal-generation indicator.

51. The computing system of claim 50, wherein said
nodal-generation indicator of said second node indicates that
said second node is in a younger generation than said first
node, wherein said method further includes youthening said
migrant.

52. The computing system of claim 51, wherein youthen-
ing said migrant includes immigration-side youthening of
said migrant.

53. The computing system of claim 51, wherein youthen-
ing said migrant includes emigration-side youthening of said
migrant.

54. The computing system of claim 21, wherein said first
node is a node in a multi-node system in which each node
has a nodal generation-count, wherein said multi-node sys-
tem includes at least a second node, wherein, upon recovery
following a failure of said second node, said first node rolls
back to a state that corresponds to a nodal-generation count
of said second node.

55. The computing system of claim 21, wherein said first
node is a node in a multi-node system in which each node
has a nodal generation-count, wherein said multi-node sys-
tem includes at least a second node, wherein, upon recovery
following a failure of said first node, said first node rolls
forward to a state that corresponds to a nodal-generation
count of said second node by restoring committed work
from a checkpoint and restoring uncommitted work from a
journal.

56. The computing system of claim 21, wherein said first
node is a node in a multi-node system in which each node
has a nodal generation-count, said method including, at said
first node,

receiving, from a master node, a message indicating that

a checkpoint is to be carried out,

in response, youthening a nodal generation count of said

first node,

suspending spawners from generating spawn,

saving spawner recovery information for recovering

Sspawner states,

resuming said spawners,

determining that no further older-generation immigrants

are expected at said first node, and

in response to said determination, committing, to said

durable storage, said nodal recovery information.

57. The computing system of claim 56, the processor
further configured to set a deadline, and, upon lapse of said
deadline, suspend all older-generation spawn that are still
executing while younger-generation spawn continue to
execute, wherein said older-generation spawn and said
younger-generation spawn are relative to a particular gen-
eration indicator.

58. The computing system of claim 21, wherein said first
node is a node in a multi-node system, said method includ-

US 9,678,834 B2
25 26

ing saving a replica copy of working memory of said first
node at said second node, upon failure of said first node,
temporarily using said replica copy for processing that
would otherwise have been carried out by said first node,
and, upon recovery of said first node, communicating, to 5
said first node, information required to update memory in
said first node so that subsequent computation can be carried
out by said first node.

#* #* #* #* #*

