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namics simulations are described. The methods, which employ impulses to achieve transfer
of thermal energy between solvent and solute, are particularly useful in simulations which
make use of an implicit solvent model.
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METHOD FOR PROVIDING THERMAL EXCITATION TO
MOLECULAR DYNAMICS MODELS

CROSS-REFERENCES TO RELATED APPLICATIONS
This application is entitled to the benefit of the priority filing date of United
States Provisional Patent Application No. 60/358,659, filed 21 February 2002, United
States Provisional Patent Application No. 60/358,637, filed 21 February 2002, and
United States Provisional Patent Application No. 60/358,660, filed 21 February 2002, all

of which are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

The present invention is related to the field of molecular modeling and, more
particularly, to computer-implemented methods for the dynamic modeling of solute
molecules in a solvent environment.

Molecular modeling is concerned with mimicking the behavior of molecules and
molecular systems, typically through the use of computers. Molecular modeling
applications have included enzyme-ligand docking, molecular diffusion, reaction
pathways, phase transitions, and protein folding studies. Researchers in the biological
sciences and the pharmaceutical, polymer, and chemical industries are beginning to use
these techniques to understand the nature of chemical processes in complex molecules
and to design new drugs and materials accordingly.

In molecular dynamics, successive configurations of the molecule or molecular
system being modeled are generated by integrating Newton’s laws of motion. A
molecule, such as a protein, contains multiple bodies (atoms of the molecule or groups of
such atoms) whose motions must be considered. Each of these bodies are subject to
multiple and complex forces. Thus the calculation of the motion and the shape of the
molecule involves the determination of the position and motion of each atom or body of
the molecule.

Furthermore, an accurate simulation of the behavior of a selected molecule, such
as a peptide or protein, typically needs to account for the effects of the bulk medium, or
solvent, which provides the environment for the molecule of interest. The solvent is

typically an aqueous liquid, although it may comprise hydrophobic membranes, other
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organic or inorganic molecules, or mixtures of the above. Solvent properties that one
may choose to model include electrostatic screening, cavitation effects, pH, local
interactions with other molecules, viscosity, and the provision of a constant-temperature
environment. Some or all the solvent’s properties may vary spatially, so that the solvent
could consist, for example, of an aqueous intracellular region, a hydrophobic membrane
region, and an aqueous extracellular region. Temporal changes in solvent properties,

such as temperature changes, may also occur.

Molecules interacting within the environment provided by the bulk solvent
medium are referred to as the “solute” molecules, or just “solute”. One may choose to
model a single solute molecule, such as a protein, or several interacting solute molecules,
such as would appear in a protein/ligand or protein/protein interaction. In addition, the
model may include an assortment of locally-interacting molecules, such as ions or

explicitly modeled water molecules.

Bulk solvent behavior may be simulated in a computer with either an “explicit”
or “implicit” solvent model. An explicit model consists of a very large number of
individually-modeled solvent molecules, where the positions, orientations and velocities
of each explicit molecule are carefully tracked and their interactions with one another as
well as with the solute molecules are calculated. To obtain good bulk behavior this way
typically requires thousands to hundreds of thousands of individual molecules to be
tracked, and is therefore computationally expensive. In fact, the explicit solvent
computation is usually the most expensive part of a molecular simulation. Even so, it
represents only a small finite region of the effectively-infinite solvent volume, so special
treatment is required at the boundaries. Boundary conditions are chosen to account for
the long-range effects of the unmodeled portion of the solvent, and to keep the explicit
solvent molecules within the desired spatial region. Typically, periodic boundary
conditions are used, meaning that the infinite solvent medium is assumed to consist of

regularly-repeating volumes with properties identical to the one modeled region.

An implicit solvent model can be considerably more efficient, because it is
designed to model the aggregate effects of a bulk solvent’s molecules on the solute
without modeling the individual solvent molecules. One may include some explicitly-
modeled solvent molecules in the system, but they are considered solute molecules and
are themselves affected by the bulk solvent medium in which they are embedded.

Implicit solvent models can range from simple to complicated, depending on the
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application and desired fidelity (see, e.g., Cramer and Truhlar, “Implicit Solvation
Models: Equilibria, Structure, Spectra, and Dynamics”, Chem. Rev. 99:2161-2200
(1999); and Orozco and Luque, “Theoretical Methods for the Description of the Solvent
Effect in Biomolecular Systems”, Chem. Rev. 100:4187-4225 (2000)).

Molecular simulations using implicit solvent models typically contain stochastic
terms to account for thermal interactions between the target molecule and the solvent.
The Langevin equation is commonly used to represent the effects of molecular collisions
on a particle (T. Schick. Molecular Modeling and Simulation: An Interdisciplinary
Guide. Springer-Verlag, New York, 2002.), and has been used in the past to eliminate
explicit representation of individual solvent molecules (see, €.8., R. W. Pastor.
Techniques and applications of Langevin dynamics simulations. In G. R. Luckhurst and
C. A. Veracini, editors, The Molecular Dynamics of Liquid Crystals, pages 85-138.
Kluwer Academic, Dordrecht, The Netherlands, 1994). The Langevin equation is
represented, for one dimensional motion of a particle, as:

x=v

. (11)
mv=—-myv+ F(x)+ R(t)

where m is the particle mass, x is the position, v is the velocity, y is the damping constant,
and F'is a deterministic force (usually the negative of the energy gradient). The
stochastic force R is a stationary Gaussian process with mean and variance (T. Schick.
Molecular Modeling and Simulation: An Interdisciplinary Guide. Springer-Verlag, New
York, 2002.):

(R()=0
(12)
(RUOR(")) =2myk,S(t 1)
where kp is Boltzmann’s constant. The equations of motions for the system may be
written as
A4
Th= (13)
v —yv+—1—F(x)+—}~R(t)
m m

In practice, these equations are solved numerically. A numerical integrator can
take this description and initial conditions to advance time by a specified amount. This
process yields a new set of initial conditions and the process is repeated as desired. The

2-vector may be defined as:
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y(t)é{"} (14)
%

One can then generate a sequence such as y(0), y(%), y(24), ... where A is the desired
time step.

The selection of a suitable integrator depends in part on the damping constant y,
which determines the strength of coupling between the molecule being modeled and the
solvent environment. At small values of y, inertial forces dominate; as y increases, we
move to a diffusive regime. Therefore, in cases where yh <« 1, one can employ, for
example, the numerical integration scheme provided in A. R. Leach. Molecular

Modeling: Principles and Applications Second Edition. Addison Wesley Longman
Limited, Essex, 2001, page 389:

Xt =X +Vih+%h2 [_7"1 +l(F; +Ri)j|

" (15)

Vi =V, +h[—yv,. +i(17; + R,)]
m

where the random force R, is a taken from a Gaussian distribution with a variance
2myk,T [h. A more complex variation that can generate values of yh is described in

van Gunsteren, et al., “Algorithms for Brownian dynamics.” Molecular Physics 45:637-
647 (1982). Another approach useful when yh <1, referred to as the “BBK algorithm”,

is described by Brunger, A., et al., “Stochastic boundary conditions for molecular
dynamics simulations of ST2 water.” Chem. Phys. Lett. 105:495-500 (1982).

The above schemes are explicit integrators (no relation to explicit solvent
models), and therefore limit the size of the time step 4 than can be taken. Implicit
integration approaches, such as Langevin/Implicit-Euler (“LI’) and LI with normal-mode
analysis (“LIN”) can be advantageous in that they allow for the possibility of larger
timesteps during the integration (see, e.g., Zhang and Schlick (1993) “A new algorithm
combining implicit integration and normal mode techniques for molecular dynamics.” J.
Comput. Chem. 14:1212-1233; Zhang and Schlick (1994) “The Langevin/implicit-
Euler/Normal-Mode scheme (LIN) for molecular dynamics at large time steps.” J. Chem.
Phys. 101:4995-5012; and Zhang and Schlick (1995) “Implicit discretization schemes
for Langevin dynamics. Mol. Phys. 84:1077-1098).

However, regardless of the type of integrator used, the approaches based on the

Langevin equation to model solute-solvent interactions have certain limitations. One
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limitation is that these methods typically provide no error estimate -- an error estimate is
important to building an adaptive numerical integrator which can divide # as needed to
achieve a specified accuracy. Another limitation is that they involve working with
stochastic differential equations (SDEs), which are more difficult to solve numerically
than ordinary differential equations (ODEs). Solving stochastic differential equations
typically requires using abstract mathematical methods such as Ito calculus (P. E.
Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.
Springer-Verlag, Heidelberg, 1992, p 75). These methods are often far less accurate than
methods for solving ordinary differential equations, and are not conducive to error
control or implicit integration. Thus, stochastic terms generally preclude the use of more
efficient integration schemes that may be implicit and/or use an adaptive time step, and
results in smaller time steps and no error control, even when used with implicit
integrators. The present invention provides novel methods of modeling such thermal
interactions which do not require the solution of stochastic differential equations and can

provide effective error estimates during the simulation.

SUMMARY OF THE INVENTION

In a general aspect, the present invention provides a method for modeling
solvent-solute thermal interactions in a molecular dynamics simulation. Steps in the
method (which may be evaluated in any computationally-feasible order) include (1)
providing a representation of a solute molecule (e.g., as a plurality of connected bodies);
(i1) running a molecular dynamics simulation of the solute molecule (e.g., a computer-
implemented simulation) where (a) positions and velocities of the bodies are computed at
discrete timesteps during the simulation, and (b) the simulation uses an implicit solvent
model; (iii) applying one or more impulses to the bodies during the simulation; and (iv)
calculating the effect of the impulses on the velocities of the bodies. The effect of the
impulses on the velocities of the bodies (which constitute the solute molecule) reflects
the solvent-solute thermal interactions in the molecular dynamics simulation. For
example, the impulses may be thought of as reflecting the effects of collisions between
solvent and solute atoms.

In any embodiment herein, the solvent may be selected, e.g., from the group
consisting of an aqueous solvent and an organic solvent. Other examples of solvent
include a structured solvent, such as a lipid bilayer, a uniform solvent, and a non-uniform

solvent. Furthermore, in any embodiment herein, the solute molecule may be, for
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example, a polymer, such as a polypeptide, a polynucleotide, polysaccharide, etc., or a
small molecule, such as a small organic molecule, e.g., drug, ligand, etc. The method
may be used, for example, to model two or more solute molecules simultaneously, e.g., a
polypeptide and a small molecule.

In one embodiment, the representation of the solute molecule is formulated in
Cartesian coordinates. In another embodiment, the representation is expressed in internal
(e.g., torsion angle) coordinates. In yet another embodiment, the bodies comprise
individual atoms of the molecule. In still another embodiment, the bodies comprise rigid
bodies, each rigid body being formed of a group of individual atoms. The impulses may
be applied directionally, or non-directionally.

In one embodiment, the running of the simulation includes the use of an adaptive
integrator, or an integrator which includes error control. In another embodiment, the
running of the simulation includes the use of an explicit integrator. In yet another
embodiment, the running of the simulation includes the use of an implicit integrator. In
one embodiment, the running of the simulation does not require solving stochastic
differential equations.

In one embodiment, the impulses are applied using a “bulk impulse” model. In
another embodiment, the impulses are applied using a “collision impulse” model. In still
another embodiment, the applying of impulses is carried out during some, but not all, the
discrete timesteps, i.e., such that the thermal transfer does not occur at each “time step”
taken by the integrator during the simulation, but rather occurs intermittently, at regular
or random intervals. In yet another embodiment, the representation of the solute
molecule has a calculated temperature, and the impulses are applied when the
temperature is outside a selected range.

In another embodiment, the one or more impulses are generated by simulating a
bath particle with a random velocity. In another embodiment, the impulses are generated
through use of a random impulse vector. In a related embodiment, the calculating
includes computing a discriminant of a quadratic equation.

Also included in the preset invention is method for modeling kinetic behavior of
a solute molecule in a solvent. The methods includes, in any computationally-feasible
order, (i) running a computer-implemented molecular dynamics simulation of the solute
molecule using an implicit solvent model; (ii) simulating solvent-solute thermal

interaction by applying one or more impulses to the solute molecule during the running;
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and (iv) calculating an effect of the impulses on the kinetic behavior of the solute
molecule.

The present invention also provides for a computer system and computer code.
The computer system preferably includes at least one processor and an associated
memory subsystem, where the memory subsystem holds computer code to instruct the at
least one processor to carry our any of the methods described herein.

It will be appreciated by one of skill in the art that the embodiments summarized
above may be used together in any suitable combination to generate additional
embodiments not expressly recited above, and that such embodiments are considered to

be part of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a process flowchart showing an overview of the steps used in a typical
molecular dynamics simulation;

Fig. 2 is a process flowchart showing an embodiment of the invention
implemented in a bulk impulse model.

Fig. 3 is a process flowchart showing an embodiment of the invention
implemented in a collision impulse model.

Fig. 4 is a 2-dimensional representation of an atom and a bath particle colliding.

Fig. 5 is a 2-dimensional representation of atoms of a molecule used to illustrate a
method of determining whether a point is on a solvent-accessible surface.

Fig. 6 is diagram of a computer system useful for executing methods of the
present invention.

Fig. 7 shows a simple molecular system modeled as a pendulum with bath
collisions.

Fig. 8 shows the cumulative average temperature of the pendulum of Fig. 7.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

L DEFINITIONS

Unless specified otherwise, an “atom” is defined herein as a representation of (i)

an elemental atom, or (ii) a “unified” atom, in the modeling method or algorithm under
consideration. Such a representation is often, but not always, a sphere. A unified atom

refers to a small group of atoms that, for the purposes of molecular modeling &
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simulation, are treated as a single atomic unit. For example, although a water molecule
comprises an oxygen atom and two hydrogen atoms, represented in a space-filling model
as a larger sphere with two smaller spheres embedded in it at a characteristic angle
relative to one another, the water molecule is often represented in molecular models,
simulations & related algorithms as a “unified” spherical atom having a van der Waals
radius of 1.4 Angstroms.

A “body”, in the context of a component of a molecule, is defined as a unit of the
molecule which is treated as a single mass or geometric structure for purposes of
modeling the molecule. Accordingly, a body can be an individual atom of the molecule,
a collection of atoms, or other abstract system of masses. A “rigid body” is a body that
is modeled as rigid (i.e., it does not deform in response to forces exerted on it).

A “computationally-feasible order” refers to any order in which a particular
sequence of tasks can be executed without altering the ultimate result. This concept is
invoked, because in some methods, the order of certain steps is not important, so long as
the steps are executed and the result is the same as if they were executed in the order
originally presented.

An “explicit solvent model” is a model of the effects of solvent in a molecular
dynamics simulation that simulates the dynamics of each molecule of the solvent in the
vicinity of a solute molecule under study, and does not simulate the effects of the solvent
on the solute via bulk solvent properties (with the exception of enforcement of boundary
conditions).

A “geometrical object” is any two- or three-dimensional object that can be placed
adjacent or mapped onto a sphere. Exemplary geometrical objects are “caps” and
“disks”.

An “implicit solvent model” is any model of the effects of solvent in a molecular
dynamics simulation that is not an explicit solvent model. Implicit solvent models use at
least some bulk solvent properties to represent the effect of the solvent on the solute, but
may contain several individual “local” solvent molecules (e.g., in the vicinity of a ligand-
binding site on the solute molecule) which are simulated as they would be in an explicit
solvent model.

A “non-uniform solvent” is a solvent comprising two or more types of solvent,
e.g., an aqueous solvent and an organic solvent. An exemplary non-uniform solvent is a

lipid bilayer membrane surrounded by aqueous solvent.
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A “polymer” is any organic polymer molecule. Examples of polymers include
biopolymers (e.g., polypeptides, polynucleotides and polysaccharides); polymer plastics
(e.g., polyethylene, polypropylene, polystyrene, etc.); polymer fluids (e.g., polyethylene
glycol, etc.), and the like.

A “representation of a solvent-accessible surface” refers to a set of data which
represents the surface of a selected molecule. The data set may include the solvent-
accessible surface area (SASA), the spatial location of selected points on the surface,
and/or information on the geometric orientation of the surface relative to the molecule.
An exemplary representation of a solvent accessible surface is a set of surface normal
vectors arranged on atoms of the molecule that are accessible to the solvent.

A “small molecule” refers to any molecule that is not a polypeptides,
polynucleotides or polysaccharide, and that has a molecular weight less than about §
kDa. A small molecule is generally not a polymer, and can be a small organic molecule,
a ligand, a lead compound, a drug, a new chemical entity (NCE), etc.

A “solvent” refers to any medium which can contain a solute molecule. Non-
limiting examples of a solvent include water & other aqueous solvents, as well as organic
solvents (e.g., DMSQ, lipids, alcohol, etc.). The solvent may be uniform or non-
uniform, and may be in solid, liquid or gaseous form.

A “station point” is a unique location on the surface of, or within a body, that is
stationary with respect to that surface or body. A “center point” is a station point that is
located at a body’s center of mass. Station points are used in defining specific locations
on a body which can have defined positions, velocities, accelerations, geometric
attributes, charges, etc., and which can be acted on by outside forces to change the

body’s static or dynamic properties.

1L OVERVIEW

Prior art Langevin dynamics approaches for modeling solvent-solute thermal
interactions typically employ a stochastic force term, which results in stochastic
differential equations and precipitates the problems outlined above. Work performed in
support of the present invention demonstrates that it is possible to use a stochastic
impulse to model such thermal interactions, without need to use any aspect of the
Langevin approach. Using a stochastic impulse simplifies the differential equations and
allows them to be solved using standard methods for the numerical solution of ordinary

differential equations. Further, this impulse does not need to be derived from a
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stochastic force and may instead be determined by more fundamental criteria which are
described in greater detail below.

The goal of a thermal impulse according to the present invention is to model
thermal effects, and not necessarily to approximate the action of a stochastic force.
Therefore, the impulse need not be applied during each integration step. Indeed, if
desired, one may apply the impulse only as necessary to maintain, e.g.,. the temperature
of the solvent at a selected value. For example, in an equilibrium simulation of one or
more large molecules, the temperature will remain fairly stable and the velocities will
have a canonical distribution. Therefore, an impulse may be required infrequently and
may be used to, e.g., correct errors introduced by numerical approximations. The
method may also be used during a nonequilibrium simulation, where the solute is
undergoing large changes in energy and the solvent has a dissipative effect. By applying
impulses, the kinetic energy can be regulated during the transition.

A thermal impulse of the invention may be designed simply to adjust the
temperature — in this case, it is termed a bulk impulse. Alternatively, in a collision
impulse model, the impulse is designed not only to accurately model the temperature, but
also to reflect simulated collisions with bath particles, thereby producing a more realistic
simulation. However, such bath particles are not tracked or simulated individually (as
they would be in an explicit solvent model); rather, they are “created” de novo for each
impulse computations. In a preferred embodiment, the atomic velocities have the correct
canonical averages (A. R. Leach. Molecular Modeling: Principles and Applications
Second Edition. Addison Wesley Longman Limited, Essex, 2001, p 344). In another
embodiment, the directionality of the solvent accessible surface is used to produce a
more accurate model — the impulse is directed at random, solvent accessible points
created as described below. In another embodiment, although the impulse is stochastic,

it is not applied in a totally random manner, but rather at, e.g., regular intervals.

II1. MATHEMATICAL OVERVIEW

The mathematical approach underlying the methods of the invention can be

summarized as follows. In a general system with generalized coordinates q and
generalized speeds u, the equations of motion can be expressed as:
a=B(q)u

M(q)u=f(q) (1)

10
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where B is the kinematic matrix, M is the system mass matrix, and f is the vector of
generalized forces.

The kinematic matrix B is block diagonal and relates generalized speeds to
generalized coordinate derivates. In general, the choice of generalized speeds is arbitrary
(see, e.g., T. R. Kane and D. A. Levinson. Dynamics: Theory and Applications.
McGraw-Hill, 1985, page 40). In the case of a Cartesian coordinate system this is the
identity matrix because the atom positions x, y, and z are used as the generalized
coordinates and their derivatives dx/dt, dy/dt, and dz/dt as the generalized speeds.

If one chooses to use torsion angles as generalized coordinates, then the torsion
angle derivatives may be used as the generalized speeds, so the kinematic matrix is the
identity matrix. To allow a model with torsion coordinates to move freely in the solvent,
one needs to choose a base body and assign translation and rotation coordinates to this
body. A convenient set of translation coordinates are the Cartesian coordinates and a
convenient set of rotation coordinates are Euler parameters. For the generalized speeds
of the base body, it is convenient to use the translational and angular velocities. Then the
motion of the base body is determined by seven generalized coordinates and six

generalized speeds:

X 200 O 0 0 W
\%
¥y 020 0 0 0}°
v
z 002 O 0 01"’
vV
g, =10 00 ¢ —-& &l|° (16a)
|2 W
£, 000 & g -—¢g w
g, 0 00 — ¢ ¢ w2
é, 000 —g —g —g°

The base body translation is [x, y,z|. The Euler parameters are [g,,€,,€;,&,]. The
translational speed is [vx,vy,vz] and the angular speeds are [w;,w,,w;]. See, e.g., H.

Goldstein. Classical Mechanics, 2" Edition. Addison-Wesley, 1980, page 153 regarding
Euler parameters.

The mass matrix M and generalized force vector f are computed
according to the selected generalized speeds using known methods (see, e.g., Rosenthal,
D., PCT Patent Publication W002/36744, “Method for Residual Form in Molecular
Modeling”).

11
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In the case where the force f is impulsive, the second of Eq. 16 is integrated over

the duration of the impulse:

]M(q)ﬁdt = ]f(q)dt (17)

The time interval of the impulse is infinitesimally small, so the coordinates may be

assumed to be constant. This leads to the impulse-momentum equation:

M(u, —u,)=f (18)
Here the vector u, contains the initial speeds and u, contains the final speeds. The

vector f is the applied impulse, which contains no intermolecular or inertial forces due
to their small variation during the impulse.

In a model employing the thermal impulse methods of the invention, a stochastic

impulse f isthus periodically applied to the system via the impulse-momentum equation
to achieve thermal control. The impulse may be modeled, e.g., using Newton’s collision
law (F. Pfeiffer and C. Glocker. Multibody Dynamics with Unilateral Constraints. John
Wiley & Sons, 1996). Newton’s collision law is suitable because atomic collisions may
be assumed to be frictionless so that the effect of the tangential component of the
impulse is zero. Assuming the coefficient of restitution € is one, the relative velocity
after the collision is the negative of the relative velocity before the collision. The
magnitude of the impulse is scaled to reach a desired temperature as described in more
detail below.

Any suitable numerical integrator may then be used to advance time by time step
h (also referred to as 8t or At). Examples of suitable integrators are described in more
detail below. The step size 7 may selected by the integrator to achieve a satisfactory
error level, as is further described below. The next integrator step in the simulation is
started with the generalized coordinates from the preceding step, and with generalized
speeds which include contributions from the impulse-momentum equation. This process

is then repeated as necessary to maintain the solute at the desired temperature.

IV.  MOLECULAR SIMULATIONS

The steps followed in a basic computer-assisted molecular dynamics simulation
are known (see, e.g., A. R. Leach. Molecular Modeling: Principles and Applications
Second Edition. Addison Wesley Longman Limited, Essex, 2001; Sherman, et al., PCT

12
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Patent Application number W002/39087; and Gronbech-Jensen , et al., U.S. Patent
Number 5,553,004), and are briefly summarized in the flowchart of Fig. 1. The
simulation generally begins with a representation of a selected molecular system
(typically in a computer usable format) at step 64. The coordinates of the atoms within
the representation are specified, either using Cartesian coordinates or a relative
coordinate system, such as torsion angle coordinates (see, e.g., Rice and Brunger,
Proteins 19:277-290 (1994); Sherman, et al., PCT Patent Application number
WO002/39087). Depending on the simulation, the atoms in the molecular system may
each be modeled as separate entities, or combined into “rigid” or “semi-rigid” bodies
(see, e.g., Sherman, et al., PCT Patent Application number W(0Q02/39087; Turner, et al.,
U.S. Patent Number 5,424,963), forming a multibody system (MBS).

Once the coordinate system and the physical representation (i.e., individual atoms
or MBS) have been defined, the initial variables are set for each atom or body in the
representation at step 66, and the interatomic forces acting on each atom of the
representation are calculated using any of a number of known techniques at step 68. For
example, expressions for the interatomic potential energies between the atom or body
under consideration and the other atoms or bodies in the representation may be provided
as a function of distance. These expressions may then be differentiated with respect to
the distance vectors between the atom or body under consideration and the other atoms
or bodies in the representation to give forces. Furthermore, the potential energy and
forces may include a solvation model, such as Generalized Born or Poisson-Boltzmann,
to account for the dielectric effect of the solvent.

The new positions of the atoms or bodies are determined by numerically
integrating the velocity and acceleration expressions at step 70. As discussed below,
various numerical integration techniques are suitable for use with the present invention.

Eq. 16 may be written in the standard first order form:

L (19)
Any method for the integration of ordinary differential equations in the first order
form may be used. They include, without limitation, explicit integrators and implicit
integrators. Error control may be used in the form of embedded methods and step
doubling may be used. Exemplary integrator families include explicit Euler, Runge-
Kutta integrators (RADAUS, SDIRK4, DOPRIS), multi-step integrators (DASSL; L. R.
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Petzold, “A Description of DASSL: A Differential/Algebraic System Solver”, In
Proceedings of the 10th IMACS World Congress, August 8-13, Montreal, 1982),
Backward Differentiation Formulae (BDF), e.g., Gear’s method (Gear, C.W., Numerical
Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, 1971.), and
predictor-corrector integrators.

After the expressions have been integrated, a decision step 72 determines whether
enough steps have been taken to complete the simulation. This might involve, e.g.,
simply determining whether a predefined number of steps have been achieved
(corresponding to a specified length of time). Alternatively, the decision may be based
on an evaluation of whether the molecular representation has evolved to a predetermined
state (such as adopting a conformation that binds with a ligand, or reaching a certain
energy level). Other decision factors may also be considered. If decision step 72
determines that enough steps have been taken, the process is concluded at step 74. If not,
the process is repeated based on the new positions & velocities of the atoms or bodies by

returning to step 68 and continuing as described above.

V. DETERMINING AND MAINTAINING TEMPERATURE

In a molecular system, the temperature is directly related to the kinetic energy of
the atoms which constitute the system. In this context, the relationship between kinetic

energy and temperature may be expressed as:

KE = %kBT(3N—NC) (20)

where KE is the kinetic energy, k, is Boltzmann’s constant, T is the temperature, N is
the number of atoms, and N_. is the number of constraints.

For a Cartesian formulation, the kinetic energy is summed over all the atoms.
KE2=%" mv, v, @1
where m is the mass of an atom and v is its velocity vector.

A comparable expression relating temperature and kinetic energy in torsion space

1s

KE = %kBT(é +N,-N,) (22)
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where N, is the number of torsion angles and N¢ is the number of constraints. This

formula assumes the molecule is connected to ground by a free joint (i.e. not constrained
to ground). The expression for the kinetic energy in this system is
1
KE = Eu’Mu (23)
where u is the array of torsion angle speeds (generalized speeds) and M is the system
mass matrix. Alternatively, one may use the generalized speeds to compute the velocity
vectors then use the Cartesian formula (Eq. 20) to compute the kinetic energy by

calculating atomic velocities and using Eq. 21.

V1. BULK IMPULSE MODEL

Application of the methods of the invention in a bulk impulse thermal model is

described with reference to Fig. 2. The method begins at step 82, by initiating, at step
84, a molecular dynamics simulation, such as the simulation described with reference to
Fig. 1. Any suitable iterative molecular dynamics environment can be used to run the
simulation, including without limitation, IMAGIRO (Protein Mechanics, Mountain
View, CA), TINKER (J. Ponder, Washington University School of Medicine, St. Louis,
MO, at http://dasher.wustl.edu/tinker/), GROMACS (http://www.gromacs.org/),
AMBER (UCSF, San Francisco, California, at
http://www.amber.ucsf.eduw/amber/amber.html), or NAMD (University of Illinois,

Urbana, Illinois, at http://www.ks.uiuc.edu/Research/namd/).

As was the case with the general simulation of Fig. 1, a decision is made at each
time step during the simulation whether enough steps had been taken (step 86).
Assuming the decision at step 86 is not to conclude (step 88), but rather to continue the
simulation, a second decision at step 90 is made as to whether to invoke the bulk impulse
model. Items which may be factored into the decision of whether to apply an impulse, or
invoke the model, include elapsed time, temperature deviation, or it may be decided
randomly. For example, one may apply impulses periodically to mimic the thermal
interaction with solvent, and check the temperature at any selected point during the
simulation to determine if it is within a specified range. Alternatively, the decision may
be based on evaluating the temperature of the solute molecule, and applying the impulse

if the temperature falls outside a specified range. For example, in a simulation using

15



10

15

20

25

30

WO 03/073207 PCT/US03/05115

torsion angle coordinates, the temperature of the molecule is calculated by rearranging
Eq. 22:

e 2KE
ky(6+N, —N,)

(24)

If the temperature is within a set number of degrees of the threshold (e.g., within 5
degrees), no impulse is applied. If the temperature is outside of this range, a decision 90
is made to apply the impulse.

If decision 90 is affirmative, the desired kinetic energy KE, is determined in step

92 by picking a desired temperature. The actual kinetic energy KE, is then computed

from Eqgs. 20 or 22, depending on the coordinate system.
Parameters for calculating the impulse are then determined using one of several

approaches. For example, in the embodiment described in step 94, a random impulse
vector is generated by expressing f as

f=ar (25)

where r is a dimensionless vector of real numbers randomly selected from a suitable
distribution (e.g., a Gaussian distribution with a unit variance). Other criteria may be
applied to the development of the impulse, such as directionality and/or atomic
distribution. For example, r may be calculated to represent the velocities of bath
molecules by. To include directionality, one would adjust r so that impulses are only
applied to the solvent accessible surface (see Section IX — Generating Random Solvent
Accessible Points, below). In this case, o would be a positive value. One may query
several random points on each atom to find more contributions to r, and may query one
or more atoms for each impulse calculation.

The scalar « is computed as described below to achieve a desired kinetic energy,
and has units of momentum (mass multiplied by velocity). To determine « , Eq. 25 is
substituted into Eq. 18, and the resulting expression rearranged to give:

u =u,+ad (20)

where d is defined by:
d=M7'r (27)

Then, by substituting Eq. 26 into Eq. 23, one obtains
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KE, = %(uo +ad) M(u, +ad)

(28)
_ I s T
= Ea d'Md +au,Md +KE,
This yields a quadratic polynomial in & :
1 arma+ auMd +KE,-KE, =0 (29)
2

Eq. 29 can be solved for a at step 96 using standard methods as long as the discriminant

is non-negative, i.e., as long as:

(uiMd)’ +2d"Md(KE, - KE,)2 0 (30)

Eq. 30 is evaluated at step 98. The discriminant will always be non-negative if the
kinetic energy is to be increased, i.e., if the solute was “too cold”. a can be computed if
the discriminant is positive or zero. The discriminant may be negative when the kinetic
energy should be decreased, depending on r. In this case it is possible to find an r that
leads to a positive discriminant. However, it may be more convenient to simply scale the
generalized speeds. The velocity is scaled downward at step 100 using the following

expression:

u, = KE, u
1 0
KE,

3D

If the discriminant is positive, then in step 99, Eq. 29 is solved for a real-valued
« . The quadratic equation yields 2 solutions — in one embodiment, the solution having
the smallest amplitude is selected, because this will lead to a smaller modification of the
molecule’s generalized speeds. However, the larger solution may also be utilized, for
example, when one is trying to rapidly explore all the possible configurations of the
molecule. If directionality is being used, then one would choose a positive solution (if
one exists) so that impulses are only applied to the solvent accessible surface. Once « is

determined, the new generalized speeds are computed using Eq. 26 at step 99.

VII. COLLISION IMPULSE MODEL

A flow chart summarizing the steps involved in applying a collision impulse
algorithm is shown in Fig. 3. Steps 102, 104, 106, 108, and 110 are the same as the

corresponding steps in Fig. 2. The difference between the two is in how the impulse is
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computed. In this sense, the collision impulse model is a special case of the bulk
impulse model.

In step 112, a first atom of the solute molecule is selected or visited. In step 114
a bath particle with a random velocity is created touching the atom created in step 112.

The bath particle has mass m, that is equal to the mass of a solvent particle. Each

velocity component in Cartesian space is chosen from a Gaussian distribution with

variance chosen in accordance with Eq. 20 and Eq. 21:

o /l‘ﬁ (32)
m,

A collision analysis is conducted in step 116 using a fully elastic Newton’s
collision model. The collision analysis begins by computing the relative velocity of the
colliding particles, as illustrated in Fig. 4. The velocity of an atom 122 of the solute

molecule is v, and the velocity of a bath particle 124 is v,. At the contact point 126

between the solute atom and bath particle, the surface normal 128 is n. With this data,

the relative velocity may be computed as:

vrel:(vb—va)'n (33)

If the initial relative velocity v, is non-negative, then no collision occurs. In this case the
next bath particle is generated or the simulation proceeds to step 118 in Fig. 3.

During the collision calculation, impulse-momentum balance of Eq. 18 is extended
to include the bath particle. The generalized speeds are extend to include the bath

particle’s velocity:

u
u= (34)
\£
The mass matrix is extended to contain the bath particle’s mass:
-~ M 0 (35)
10 ml,

With these definitions, Eq. 18 is extended to contain the bath particle without changing
the structure of the formula.
The relative velocity in Eq. 33 may be expressed in terms of the expanded

generalized speeds according to a linear relationship:
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=Wi (36)

Example 1, below, demonstrates an application of matrix W. Assuming that W is

already computed, the impulse in term of a Lagrange multipliers A may be expressed as:

f=W\ (37)

Now Eq. 18 becomes:
M(ii, —d,) = WX (38)

Eq. 38 is a system of equations equal in number to the size of . This is not a

sufficient number of equations to determine the unknowns i, and A. The perfectly

elastic version of Newton’s collision law provides that the final relative velocity is the

negative of the initial relative velocity:

v, =V (39)

re rel

Using Egs. 36 and 38, one may write:

1 0 T/~ ~
vrel _vrel =W (ul ‘“o)

= WM W\ (40)
=G\

For convenience one may introduce the scalar G:

GEW'M'W (41)

Using Eq. 39, Eq. 40 may be solved for the Lagrange multiplier:

20’
A= 42
G (42)
This provides the Lagrange multiplier in terms of known quantities. The final value of

the generalized speeds is then computed from Eq. 38:

i, =1, +M WX (43)

This model provides that the final relative velocity between the solute atom and
bath particle is equal in magnitude but of opposite sign to the initial relative velocity.
The collision may be assumed to be perfectly elastic so that no energy is lost. Ina

Cartesian formulation, this will simply modify the velocity of the atom. In a torsion
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angle formulation, the entire solute molecule’s velocity distribution may be affected.
This is evident in Eq. 42 because M and W are usually dense matrices. After the
collision the bath “particle” is not considered further.

Returning again to Fig. 3, in step 118, it is decided whether all requisite atoms
have been visited. One may successively visit all atoms having a surface exposed to
solvent, or a subset of such atoms, depending on the degree of realism desired in the
simulation. If not enough atoms have been visited, then the next atom is visited in step
120, which continues to step 114 where another bath particle is created. Otherwise, the

simulation is continued by integrating Newton’s laws of motion as expressed in Eq. 16.

VIII. ERROR CONTROL IN NUMERICAL INTEGRATION

Error control is achieved by estimating the error in each time-step (e.g., as
detailed below) and then accepting or rejecting the step based on the estimate. Generally,
the user will state a priori the desired accuracy and the integrator (if it supports error
control) will compare the desired accuracy to the error estimate to determine if the
solution is acceptable. Furthermore, an adequate step size may be predicted uSing the
error estimate.

An effective integrator should exert some adaptive control over its own progress,
making frequent changes in its step size. Usually the purpose of this adaptive step size
control is to achieve some predetermined accuracy in the solution with minimum
computational effort. Implementation of adaptive step size control requires that the
stepping algorithm signal information about its performance, most important, an estimate
of its truncation error. An integrator which is capable of modifying the time step size is
referred to herein as an “adaptive” integrator.

Error control can be achieved with any integration method for ordinary
differential equations. For example, some integrators have embedded method which
provides a low cost, yet accurate, comparison result. If the integrator does not have an
embedded method, it is possible to use step doubling to obtain an error estimate. The
step doubling method computes the step over one full step and over two half steps and
then compares the results.

According to one embodiment of the invention, methods with error control allow
an error estimate to be computed using an embedded method of a lower order (see, €.g.,

J. D. Lambert. Numerical Methods for Ordinary Differential Equations: The Initial

20



10

15

20

25

WO 03/073207 PCT/US03/05115

Value Problem. John Wiley & Sons, 1991, page 182). For example, one computes two
solutions to the differential equation Eq. 16. These solutions have two different orders of

accuracy in the time step /. As a first step, a state variable may be defined as follows:

q
= 0
u
Using this expression, Eq. 16 may be written as
y=g) (45)
where
»| Bu (46)
B M

Eq. 45 expresses Newton’s laws as a set of first order ordinary differential equations. If

there are the two integrator solutions and the integration method is of order p, then

Yon =Y, +h)+0h"") (47)

and the companion method is order p-1:

Yo =Y(x, +h)+O(h") (48)

The companion method may be developed as an embedded method or by step doubling
(W. H. Press et al. Numerical Recipes in C++, Second Edition. Cambridge University
Press, 2002).

The error estimate is given as:
err2y,  —¥.., (49)
or

err = 0(h") (50)

So, if one desires to reduce the error by a quantity , the expression becomes:

err,, = 1-err,, (51)
Accordingly, one then needs to choose a reduced time-step, such that
héy = /‘h(,;) (52)

(2)

or
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hay = ful/ph(l) (53)

Eq. 53 thus provides a means of adjusting the time step to reduce or increase the error.

In a molecular simulation, error tolerances may be adjusted based on several
criteria. There is generally a tradeoff between accuracy and CPU cost. However, this
relationship is often nonlinear. Accordingly, it may be preferable to perform numerical
experiments with the system of interest, starting with tight tolerances and a high
accuracy. Then, to boost performance, the tolerance may be loosened until accuracy
diminishes to a unacceptable level. The tolerance may then be tightened again to achieve
the most recent acceptable level of accuracy.

Accuracy may be determined using criteria other than the integrator’s error
estimate. For example, one may monitor energy variations when the system is
conservative. This energy should preferably include contributions from both potential

and kinetic energy.

IX. GENERATING RANDOM SOLVENT ACCESSIBLE POINTS

In cases where one wishes to model solute-solvent interactions at discrete
locations on the solute surface, e.g., in a collision impulse model, it may be desirable to
have the ability of generating random locations on the solute where a solvent molecule
can collide with the solute. One suitable method of computing such points is to calculate
which regions of the solute are accessible to the solvent (for example, using known
methods (e.g., Fraczkiewicz & Braun (1998) J. Comp. Chem. 19:319; Connolly (1983)
Journal of Applied Crystallography 16:548; Richmond (1984) Journal of Molecular
Biology 178:63; Shrake & Rupley (1973) J. Mol. Biol. 79:351-371 (1973); and Lee &
Richards (1971) J. Mol. Biol. 55:379-400), and then pick random points on the solvent-
accessible surface (or portions of the surface). However, this approach can be
computationally expensive, because it requires a recalculation of the entire solvent
accessible surface for each time point at which it is desired to simulate a thermal
interaction.

An alternative algorithm, which can provide the same statistical behavior at a
much lower computational cost, was therefore developed. According to this method,
after an atom is chosen from the molecule being modeled, a point or location on or near

the atom’s surface is selected. The selected point is then tested to determine if it is inside
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any other sphere, using, e.g., information obtained from a voxel diagram. If the point is
not inside any other sphere, then that location is used. Otherwise the process is repeated.

The method is illustrated with reference to Fig. 5. Molecule 130 consists of 3
atoms, represented by Van der Waals surface spheres 132, 136 and 140. The spheres
have radii 134, 138 and 142, respectively. A point 144 is randomly generated on sphere
132, and is tested to determine if it resides within any neighboring spheres, e.g., by
asking if it is within the radius of any neighboring spheres. A quick calculation
determines that it is not within radius 142 of sphere 140, but is within the radius 138 of
sphere 136. The process is therefore repeated, and point 146 is generated on sphere 140.
A quick calculation determines that point 146 is not within either radius 134 or radius
138, and the point is noted as having a location on the surface of molecule 140. This
point may be used to define a surface normal vector 148 perpendicular to the surface of
the sphere at point 146.

This approach may be used in a method (e.g., a computer-implemented method)
for determining “collision points” or directional solvent-accessible surfaces of an atom.
By way of example with continued reference to Fig. 5, point 146 is located on or near the
surface of the atom, and surface normal vector 148 is defined at point 146. An
assessment is made as to whether point 146 is inside of any of the neighboring atoms
(i.e., whether it is inside atoms 132 or 136). Since point 146 is not inside any
neighboring atoms, it defines a “collision point”, and surface normal vector 148 at the
collision point determines a directional solvent-accessible surface. Although many
points may need to be generated and tested, it is an extremely simple and
computationally-efficient operation, since it is not necessary to calculate the solvent-

accessible surface in order to generate the points.

X. COMPUTER SYSTEM

To carry out the calculations described above, a computer system may be used
with at least one processor and associated memory subsystem for holding the computer
code to instruct the processor to perform the operations described above. Fig. 6
illustrates the basic architecture of such a computer system having a processor 151, a
memory subsystem 152, peripherals 153 such as input/output devices (keyboard, mouse,
display, etc.), perhaps a co-processor 154 to aid in the computations, and network
interface devices 155, all interconnected by a bus 150. The memory subsystem

optimally includes, in increasing order of access latency, cache memory, main memory
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and permanent storage memory, such as hard disk drives. Given the amount of intensity
of computation, it should be understood that the computer system could include multiple
processors with multiple associated memory subsystems to perform the computations in
parallel; or, rather than having the various computer elements connected by a bus in
conventional computer architecture as illustrated by Fig. 6, the computer system might
formed by multiple processors and multiple memory subsystems interconnected by a

network.

XI1.  INDUSTRIAL APPLICABILITY

The approaches described herein are useful in a number of molecular dynamics
modeling applications, including long time-scale molecular dynamics modeling where an
implicit solvent model is used to increase computational efficiency, and/or where it is
desired to take large time steps. Typical existing molecular simulation codes take time
steps of about one femtosecond with no error control. The methods described herein
allows for time steps to be much greater, often orders of magnitude greater, while
maintaining thermal accuracy. Nonlimiting applications of such molecular dynamics
simulations include biomolecular structure prediction such as protein, nucleic acid and
smaller molecule structures, protein-ligand interaction calculations such as structure and
binding affinity, protein-protein interactions and in silico drug lead synthesis and activity

determination.

The following example illustrates but in no way is intended to limit the present

invention.

EXAMPLE 1
PENDULUM IN BATH

Fig. 7 shows an application of the collision impulse model to a molecular system
160 modeled as a simple pendulum 162 that is subjected to collisions from bath bodies.
The pendulum has a length L and mass m. The pendulum makes an angle ¢ with the

vertical axis 164 and is subjected to a uniform gravitational field g acting downwards. A

typical bath body 166 is shown with mass m, and velocity v, . The pendulum and bath

body 166 come into contact at an angle « from the horizontal axis 168. This angle

defines the normal vector n.
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The equation of motion for pendulum 162 is given by:
g=u

mli+mgLsing =0 (54)

This equation has the same form as Eq. 16:

B=1
M = ml’ (55)
f =—mgLsing

Eq. 54 is an ordinary differential equation (ODE) since it contains no stochastic terms.
The collisions are assumed to be frictionless, and the pendulum tip and bath bodies are
assumed to be circular. The radii of the pendulum tip and bath bodies are therefore not
relevant to the calculation, and the system is treated as a central impact problem. This
means that collisions are resolved at the mass centers of the pendulum tip and bath
bodies, and these objects are therefore treated as particles.

The relative velocity is computed in terms of the pendulum angle and speed and

the bath particle’s speed:

V,q = —uL(cosgcosa +singsina) +v, cosa + v, sina (56)

re

From this, W in Eq. 36 may be expressed as:

—L(cosgcosa +singsina)
W= cosa (57)

sina

The extended generalized speed vector is formed by concatenating the pendulum

speed and bath particle speed:

(58)

Similarly, the extended mass matrix is determined by concatenating the pendulum mass

and bath particle mass:
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ml>? 0 0
M=|0 m 0 (59)
0 0 m

Egs. 55, 57, and 59 provide enough information to use Eqgs. 42 and 43 to compute
the impulse and impulse response.

The pendulum was simulated using the above formulas. The results of the
simulation are summarized in Fig. 8, which shows the cumulative average temperature of
the pendulum. The instantaneous temperature of the pendulum is computed according to
(using Egs. 21 and 20):

_mly?
= L

T

(60)

As the figure shows, the pendulum temperature is very close to the bath temperature of 8.
The time solution between collisions was generated using MATLAB® solver ode23 (an

explicit, adaptive integrator; The MathWorks, Inc., Natick, MA).

While the invention has been described with reference to specific methods and
embodiments, it is appreciated that various modifications, changes, alternatives and
equivalents may be made and used without departing from the invention. Accordingly,
the above description should not be taken as limiting the scope of the invention, which is

defined by the metes and bounds of the appended claims.
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WHAT IS CLAIMED 1S:

1. A method for modeling solvent-solute thermal interactions in a molecular
dynamics simulation, said method comprising

(1) providing a representation of a solute molecule as a plurality of connected
bodies;

(ii) running a computer-implemented molecular dynamics simulation of said
representation of said solute molecule wherein (a) positions and velocities of said bodies
are computed at discrete timesteps during said simulation, and (b) said simulation uses
an implicit solvent model;

(iii) applying one or more impulses to one or more of said connected bodies
during said running; and

(iv) calculating an effect of said impulses on said velocities of said bodies,

wherein said effect of said impulses on said velocities reflects solvent-solute

thermal interactions in said molecular dynamics simulation of said solute molecule.

2. A method of Claim 1, wherein said modeling includes modeling solvent-

solute thermal interactions of two or more solute molecules simultaneously.

3. A method of any of Claims 1-2, wherein said solvent is selected from the

group consisting of an aqueous solvent and an organic solvent.

4. A method of any of Claims 1-2, wherein said solvent is a lipid bilayer.

5. A method of any of Claims 1-4, wherein said solvent is a non-uniform
solvent.

6. A method of any of Claims 1-5, wherein said solute molecule is a
polymer.

7. A method of any of Claims 1-6 wherein said solute molecule is selected

from the group consisting of a polypeptide, a polynucleotide and a polysaccharide.
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8. A method of any of Claims 1-5, wherein said solute molecule is a small
molecule.
9. A method of any of Claims 1-8, wherein said representation is in

Cartesian coordinates.

10. A method of any of Claims 1-8, wherein said representation is in internal
coordinates.
11. A method of any of Claims 1-8, wherein said representation is in torsion

angle coordinates.

12. A method of any of Claims 1-11, wherein said bodies are representations

of individual atoms of said molecule.

13. A method of any of Claims 1-11, wherein said bodies comprise rigid

bodies, each rigid body being formed of a group of individual atoms.

14. A method of any of Claims 1-13, wherein said running includes use of an

explicit integrator.

15. A method of any of Claims 1-13, wherein said running includes use of an

implicit integrator.

16. A method of any of Claims 1-15, wherein said running includes use of

error control.

17. A method of any of Claims 1-16, wherein said running does not require

solving stochastic differential equations.

18. A method of any of Claims 1-17, wherein said one or more impulses are

applied using a bulk impulse model.
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19. A method of any of Claims 1-17, wherein said one or more impulses are

applied using a collision impulse model.

20. A method of Claim 19, wherein said one or more impulses are applied

using a directional collision impulse model.

21. A method of any of Claims 1-20, wherein said calculating includes

scaling the velocities.

22. A method of any of Claims 1-20, wherein said calculating includes

solving a quadratic polynomial in a.

23. A method of any of Claims 1-22, wherein said representation of said
solute molecule has a calculated temperature, and said one or more impulses are applied

when said temperature is outside a selected range.

24, A method for modeling kinetic behavior of a solute molecule in a solvent,
comprising

(1) running a computer-implemented molecular dynamics simulation of said
solute molecule using an implicit solvent model;

(i1) simulating solvent-solute thermal interaction by applying one or more
impulses to said solute molecule during said running; and

(iv) calculating an effect of said impulses on the kinetic behavior of said solute

molecule.
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