(12) STANDARD PATENT (11) Application No. AU 2014362192 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Dynamically determing a mode of a data processing application

(61) International Patent Classification(s)
GOG6F 9/44 (2006.01) GOG6F 9/445 (2006.01)

(21) Application No: 2014362192 (22) Date of Filing: 2014.12.12
(87) WIPONo: WO15/089390

(30) Priority Data

(31) Number (32) Date (33) Country
61/915,805 2013.12.13 us
(43) Publication Date: 2015.06.18

(44) Accepted Journal Date: 2020.01.30

(71) Applicant(s)
Ab Initio Technology LLC

(72) Inventor(s)
Fisher, Ben

(74) Agent/ Attorney
Pizzeys Patent and Trade Mark Attorneys Pty Ltd, PO Box 291, WODEN, ACT, 2606, AU

(56) Related Art
US 20110307897 A1

wo 2015/089390 A 1[I I P00 OO 00 0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

18 June 2015 (18.06.2015)

WIPOIPCT

(10) International Publication Number

WO 2015/089390 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 9/44 (2006.01) GO6F 9/445 (2006.01)

International Application Number:
PCT/US2014/070002

International Filing Date:
12 December 2014 (12.12.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/915,805 13 December 2013 (13.12.2013) US

Applicant: AB INITIO TECHNOLOGY LLC [US/US];
201 Spring Street, Lexington, Massachusetts 02421 (US).

Inventor: FISHER, Ben; 1900 Rockville Drive, Baldwin,
New York 11510 (US).

Agent: DEVRIES, Gretchen A.; Fish & Richardson P.C.,
P.O. Box 1022, Minneapolis, Minnesota 55440-1022 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: DYNAMICALLY DETERMING A MODE OF A DATA PROCESSING APPLICATION

Data

208

L3

i
®

Framework 10

V4

: Batch mode 214 |

|
@ i
\ Interface Decision | : 1
| ~"| block 206 block 212 L — — Continuous mode |
I 216 '
\\ (!
-
—_—
V Threshold Data processing
lock 21
% block 218 application 200
210
220

(57) Abstract: A method includes receiving a request to process a set of data using a data processing application. The method in-
cludes, based on a feature associated with the set of data, selecting between (i) a first mode in which one or more running processes
of the data processing application are used to process the set of data and (2) a second mode in which one or more new processes of
the data processing application are started up. The method includes causing the data processing application to be executed according
to the selected mode to process the set of data.

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

DYNAMICALLY DETERMINING A MODE OF A DATA
PROCESSING APPLICATION

CLAIM OF PRIORITY
This application claims priority to U.S. Provisional Application Serial No.
61/915,805, filed on December 13, 2013, the entire contents of which are incorporated

here by reference in their entirety.

BACKGROUND

This description relates to dynamically determining a mode of operation of a
data processing application.

Complex computations can often be expressed as a data flow through a
directed graph (called a “dataflow graph”), with components of the computation being
associated with the vertices of the graph and data flows between the components
corresponding to links (arcs, edges) of the graph. The components can include data
processing components that receive data at one or more input ports, process the data,
and provide data from one or more output ports, and dataset components that act as a

source or sink of the data flows.

SUMMARY

In a general aspect, a method includes receiving a request to process a set of
data using a data processing application. The method includes, based on a feature
associated with the set of data, selecting between (i) a first mode in which one or
more running processes of the data processing application are used to process the set
of data and (2) a second mode in which one or more new processes of the data
processing application are started up. The method includes causing the data
processing application to be executed according to the selected mode to process the
set of data.

Embodiments may include one or more of the following features.

The one or more running processes are compiled and loaded into a memory
prior to receiving the request to process the set of data.

The one or more running processes are in a standby mode prior to receiving

the request to process the set of data.

10

15

20

25

30

WO 2015/089390

The method includes, when the second mode is selected, compiling the data
processing application and loading the compiled data processing application into a
memory.

The one or more new processes include a process that is not compiled or
loaded into memory prior to receiving the request to process the set of data.

The feature associated with the set of data includes one or more of a size of the
set of data, a format of the set of data, or a complexity of the set of data.

Selecting between the first mode and the second mode includes selecting the
first mode when the size of the set of data is equal to or less than a threshold size; and
selecting the second mode when the size of the set of data exceeds the threshold size.

In some cases, the threshold size is based on a format of the set of data, and at
least two different formats are each associated with a different threshold size. In some
cases, the threshold size is based on a processing requirement associated with the set
of data, and at least two different processing requirements are each associated with a
different threshold size. In some cases, the threshold size is based on historical data
indicative of the operation of the data processing application. In some cases, the
method includes determining the threshold size during execution of the data
processing application, for instance, by decreasing the threshold size if the data
processing application executed according to the first mode executes more slowly
than a reference rate; and increasing the threshold size if the data processing
application executed according to the second mode executes more slowly than a
reference rate.

The method includes determining a size of the set of data. In some cases, the
set of data includes a file, and determining the size of the set of data includes
determining the size of the file. In some cases, the set of data includes data stored in a
database, and determining the size of the set of data includes querying the database.

The feature associated with the set of data includes a processing requirement
associated with the set of data, such as an allowed time for processing the set of data.

In the first mode, a component of the data processing application is compiled
to machine code prior to receiving the request, and in the second mode, the
component is compiled to machine code after receiving the request.

In the first mode, the one or more running processes are executed serially, and
in the second mode, at least some of the one or more new processes are executed

concurrently.

PCT/US2014/070002

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

In a general aspect, software is stored on a computer-readable medium, the
software including instructions for causing a computing system to receive a request to
process a set of data using a data processing application; based on a feature associated
with the set of data, select between (i) a first mode in which one or more running
processes of the data processing application are used to process the set of data and (2)
a second mode in which one or more new processes of the data processing application
are started up; and cause the data processing application to be executed according to
the selected mode to process the set of data.

In a general aspect, a computing system includes at least one processor
configured to receive a request to process a set of data using a data processing
application; based on a feature associated with the set of data, select between (i) a first
mode in which one or more running processes of the data processing application are
used to process the set of data and (2) a second mode in which one or more new
processes of the data processing application are started up; and cause the data
processing application to be executed according to the selected mode to process the
set of data. In an aspect, the operations performed by the methods described herein
can be executed by the computing system and/or the software stored on a computer-
readable medium.

In a general aspect, a computing system includes means for receiving a request
to process a set of data using a data processing application; means for, based on a
feature associated with the set of data, selecting between (i) a first mode in which one
or more running processes of the data processing application are used to process the
set of data and (2) a second mode in which one or more new processes of the data
processing application are started up; and means for causing the data processing
application to be executed according to the selected mode to process the set of data.

In a general aspect, a method includes receiving a request to process a set of
data using a data processing application; identifying a particular mode of operation
from multiple modes of operation of the data processing application based on a size of
the set of data; and executing the data processing application according to the
particular mode of operation to process the set of data.

Embodiments can include one or more of the following features.

Identifying the particular mode of operation includes selecting either a batch
processing mode or a continuous processing mode. Identifying the particular mode of

operation includes selecting the batch processing mode when the size of the set of

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

data exceeds a threshold size; and selecting the continuous processing mode when the
size of the set of data is less than the threshold size.

The method includes determining the size of the set of data. The set of data
includes a file, and wherein determining the size of the set of data includes
determining the size of the file. The set of data includes data stored in a database, and
wherein determining the size of the set of data includes querying the database.

Identifying a particular mode of operation includes determining whether the
size of the set of data exceeds a threshold size. The threshold size is based on a format
of the set of data or a processing requirement associated with the set of data. The
processing requirement includes an allowed time for processing the set of data. The
method includes determining the threshold size. The method includes determining the
threshold size based on historical data indicative of the operation of the data
processing application. The method includes dynamically determining the threshold
size.

The data processing application includes at least one computation graph. The
computation graph can be executed in a batch processing mode or a continuous
processing mode.

Aspects can include one or more of the following advantages.

The approach to dynamically determining a mode of operation of a data
processing application enables a single application to efficiently process both large
sets of data and small sets of data in a flexible manner. For instance, in a situation in
which most requests involve a small set of data and only occasional requests involve a
large set of data, both types of requests can be processed efficiently by the same
processing framework. In addition, because the data processing application uses the
same algorithms and the same code regardless of its mode of operation, design and
editing of the data processing application can be simplified thereby reducing costs,
development efforts and downtime in environments such as research, development or
logistics.

Other features and advantages of the invention will become apparent from the

following description, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of a data processing system.

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

FIG. 2 is a block diagram of a processing framework for a data processing
application.

FIG. 3 is an example of a lookup table.

FIG. 4 is a flowchart.

FIG. 5 is a block diagram of a processing framework.

FIG. 6A is a block diagram of a data processing application.

FIGS. 6B and 6C are screenshots of portions of the data processing application
of FIG. 6A.

DESCRIPTION

We describe here an approach to dynamically determining a mode of
operation of a data processing application. A data processing application that is
executable to process a set of data can be executed in multiple modes, depending on
features of the data to be processed, such as characteristics of the data and
requirements associated with the processing of the data. The mode of execution can
also depend on operational characteristics associated with a computing system
executing the data processing application. For instance, a batch processing mode can
be used for processing large sets of data and a continuous processing mode that has
minimal startup time can be used for processing smaller sets of data. The mode of
operation of the data processing application can be dynamically selected, e.g., when a
request to process a set of data by the data processing application is received.

FIG. 1 shows an example of a data processing system 100 in which the
techniques for dynamically determining a mode of operation of a data processing
application can be used. The system 100 includes a data source 102 that may include
one or more sources of data such as storage devices or connections to online data
streams, each of which may store or provide data in any of a variety of formats (e.g.,
database tables, spreadsheect files, flat text files, or a native format used by a
mainframe computer). The data may be logistical data, analytic data or machine data.
An execution environment 104 includes a pre-processing module 106 and an
execution module 112. The execution environment 104 may be hosted, for example,
on one or more general-purpose computers under the control of a suitable operating
system, such as a version of the UNIX operating system. For example, the execution
environment 104 can include a multiple-node parallel computing environment

including a configuration of computer systems using multiple central processing units

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

(CPUs) or processor cores, either local (e.g., multiprocessor systems such as
symmetric multi-processing (SMP) computers), or locally distributed (e.g., multiple
processors coupled as clusters or massively parallel processing (MPP) systems, or
remote, or remotely distributed (e.g., multiple processors coupled via a local arca
network (LAN) and/or wide-area network (WAN)), or any combination thereof.

Storage devices providing the data source 102 may be local to the execution
environment 104, for example, being stored on a storage medium (e.g., hard drive
108) connected to a computer hosting the execution environment 104, or may be
remote to the execution environment 104, for example, being hosted on a remote
system (e.g., mainframe computer 110) in communication with a computer hosting
the execution environment 104, over a remote connection (e.g., provided by a cloud
computing infrastructure).

The pre-processing module 106 reads data from the data source 102 and
prepares data processing applications for execution. For instance, the pre-processing
module 106 can compile a data processing application, store and/or load a compiled
data processing application to and/or from a data storage system 116 accessible to the
execution environment 104, and perform other tasks to prepare a data processing
application for execution.

The execution module 112 executes the data processing application prepared
by the pre-processing module 106 to process a set of data and generate output data
114 that results from the processing. The output data 114 may be stored back in the
data source 102 or in a data storage system 116 accessible to the execution
environment 104, or otherwise used. The data storage system 116 is also accessible to
a development environment 118 in which a developer 120 is able to design and edit
the data processing applications to be executed by the execution module 112. The
development environment 118 is, in some implementations, a system for developing
applications as dataflow graphs that include vertices (representing data processing
components or datasets) connected by directed links (representing flows of work
clements, i.c., data) between the vertices. For example, such an environment is
described in more detail in U.S. Patent Publication No. 2007/0011668, titled
“Managing Parameters for Graph-Based Applications,” incorporated herein by
reference. A system for executing such graph-based computations is described in U.S.
Patent 5,966,072, titled “EXECUTING COMPUTATIONS EXPRESSED AS

GRAPHS,” the contents of which are incorporated herein by reference in their

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

entirety. Dataflow graphs made in accordance with this system provide methods for
getting information into and out of individual processes represented by graph
components, for moving information between the processes, and for defining a
running order for the processes. This system includes algorithms that choose
interprocess communication methods from any available methods (for example,
communication paths according to the links of the graph can use TCP/IP or UNIX
domain sockets, or use shared memory to pass data between the processes).

The pre-processing module 106 can receive data from a variety of types of
systems that may embody the data source 102, including different forms of database
systems. The data may be organized as records having values for respective fields
(also called “attributes” or “columns”), including possibly null values. When first
reading data from a data source, the pre-processing module 106 typically starts with
some initial format information about records in that data source. In some
circumstances, the record structure of the data source may not be known initially and
may instead be determined after analysis of the data source or the data. The initial
information about records can include, for example, the number of bits that represent
a distinct value, the order of fields within a record, and the type of value (e.g., string,
signed/unsigned integer) represented by the bits.

Referring to FIG. 2, in some examples, the execution module 112 executes a
processing framework 10 that acts as an interface to a data processing application 200.
The data processing application 200 can be any executable application that processes
data from a data source, such as a file 202, a database 204, or another type of data
source. For instance, the data processing application 200 can be an application that
records telephone transaction data, an application that retrieves requested credit card
transaction data, or another type of application. In some cases, the data processing
application 200 can be implemented as a dataflow graph. The processing framework
10 is a set of one or more computational components that can interface to the data
processing application 200 but that is agnostic to the nature of the particular data
processing application 200. The processing framework 10 can be reusable. That is, for
instance, the same components of the processing framework 10 can be used to
interface with different data processing applications 200.

In some implementations, the processing framework 10 includes an interface
block 206 that receives a request 208 to process a particular set of data, such as a

specific file 202 or certain records from a specific database 204. The request 208 can

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

be sent by a requester 210, such as a person or an automated computing system. In
some cases, the request 208 can be received from a queue 209 that stores one or more
requests that are waiting to be processed. The request 208 can include information
about the type of job that is to be executed for the set of data (e.g., an identifier of the
data processing application 200) and information about the source of the set of data
(e.g., an identifier of the file 202 or database 204).

In some examples, the set of data to be processed is an inbound feed, meaning
that the request 208 includes or directly identifies the set of data (e.g., the request 208
can include a path and filename for the file 202). An example of an inbound feed is a
payment file, provided with the request 208, that includes data indicative of credit
card activity for multiple customers and that is provided to the data processing
application 200 to be validated, mapped, and loaded into a database table. In some
examples, the set of data to be processed is an outbound feed, meaning that the
request 208 identifies data that is to be retrieved by the data processing application
200 from the database 204. For instance, the request 208 can include information that
can be used by the data processing application 200 to generate a query to be applied to
the database 204. One example of an outbound feed is the set of data that satisfies an
individual credit card customer’s request to view his credit card transactions for the
month of October. Another example of an outbound feed is the set of data that
satisfies a request from an automated accounting system for all sales transactions at
Shopping World department store during the second quarter of 2013.

To process the set of data responsive to the request 208, the data processing
application 200 can be executed in any of multiple modes of operation (e.g., a batch
mode 214 or a continuous mode 216). A decision block 212 of the processing
framework 10 can select the mode of operation to be used by the data processing
application 200 to process a particular set of data (e.g., data from a specific file 202 or
database 204). For instance, the decision block 212 can select the mode of operation
of the data processing application 200 based on one or more features of the set of
data. The features of the set of data can include, e.g., characteristics of the set of data
or requirements associated with processing the set of data. Example characteristics of
the set of data include, e.g., the size of the set of data (e.g., the volume of the set of
data, the number of records in the set of data, the complexity of the set of data, etc.),
the format of the set of data (e.g., the file format of the file 202 or the record format of

records in the database 204), the complexity of the set of data (e.g., the vectors or

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

subvectors associated with the set of data), and/or other characteristics of the set of
data. For instance, in one example, the data processing application 200 can operate in
batch mode 214 to process large volumes of data and can operate in continuous mode
216 to process small volumes of data. An example requirement associated with
processing the set of data includes an amount of time allotted to processing the set of
data. In some examples, the decision block 212 can select the mode of operation of
the data processing application 200 based on one or more operational characteristics
associated with the computing system executing the data processing application 200,
such as the time of day or day of the week, the capacity of the system (e.g., a real time
capacity, a forecasted capacity, or an average capacity), or another operational
characteristic.

Operating the data processing application in batch mode 214 allows the data
processing application 200 to process large amounts of data quickly but at the cost of
a relatively long startup time. When operated in continuous mode 216, the data
processing application 200 has little to no startup time but does not process data as
quickly. That is, when operated in continuous mode 216, the data processing
application is running and startup processes such as compilation and loading do not
need to be carried out in order to process data, as discussed in more detail below. The
same data processing algorithms that are implemented by the data processing
application 200 can be executed in either batch mode or continuous mode.

In some examples, the decision block 212 can assess the size of the set of data
to be processed (e.g., the size of the file 202 or the size of the records that will be
retrieved from the database 204 responsive to a query) and compare that size to a
threshold size for the data processing application 200. If the size of the set of data is
greater than the threshold size, the decision block 212 can send a command 213 to
execute the data processing application 200 in batch mode 214. If the size of the set of
data is less than the threshold size, the command 213 causes the data processing
application 200 to be executed in continuous mode 216. The data (e.g., the file 202 or
records from the database 204) are received at the data processing application 200 and
processed according to the mode specified by the command 213.

The threshold size can depend on one or more features of the set of data. For
instance, in some examples, the threshold size can depend on the format of the set of
data, such as a file format of the file 202 or a record format of records in the database

204. That is, for instance, each file format or record format can have an associated

- 0.

10

15

20

25

30

WO 2015/089390

threshold size. For instance, a first database may contain sales transaction records that
have a large number of fields (e.g., 50 fields, including a sale price field), while a
second database contains sales transaction records that have a small number of fields
(e.g., 5 fields, including a sale price field). For a data processing application 200 that
operates only on the sale price field of any record, the absolute size of the records is
less important than the number of records that will be processed. That is, because the
records of the first database are ten times larger than the records of the second
database, the threshold size for records of the first database may be approximately ten
times larger than the threshold size for records of the second database.

In some examples, the threshold size can depend on requirements associated
with processing the set of data. For instance, a client whose data is processed using
the data processing application 200 (e.g., a credit card company) may have an
agreement, such as a service-level agreement (SLA), with the provider of the data
processing application 200 that specifies contracted processing times for that client’s
data. In some examples, a client can have a tiered SLA that specifies a contracted
processing time for each of multiple sizes of the data to be processed. For instance, a
tiered SLA may specify that a set of data representing less than 100,000 transactions
is to be processed within 10 seconds, a set of data representing between 100,000 and
one million transactions is to be processed within 3 minutes, and a set of data
representing between one to ten million transactions is to be processed within 30
minutes. The processing times specified by an SLA of a particular client can be used
to determine the threshold size for that client. For instance, threshold size can be set
so as to allow the client’s SLA to be satisfied (e.g., based on how large of a set of data
can be processed by continuous mode execution of the data processing application in
order to satisfy the SLA).

In some examples, the threshold size can depend on operational characteristics
associated with the computing system executing the data processing application 200.
For instance, the threshold size can be based on historical data indicative of the
performance of the data processing application 200 in batch mode 214 and continuous
mode 216. The threshold size can be based on real time data indicative of the on-
going performance of the data processing application 200. For instance, in one
example, if real-time data indicate that the continuous mode 216 data processing
application 200 is running more slowly than a reference rate (e.g., an historical

average rate), the threshold size can be dynamically decreased to shift more sets of

-10-

PCT/US2014/070002

10

15

20

25

30

WO 2015/089390

data to batch mode processing 214. If real-time data indicate that the batch mode 214
data processing application 200 is running more slowly than a reference rate (e.g., an
historical average rate), the threshold size can be dynamically increased. In one
example, if real-time data indicate that the computing system executing the data
processing application 200 has less capacity than usual, the threshold size can be
dynamically changed to adjust for the reduced capacity of the computing system.

In some examples, a threshold block 218 can look up the threshold size for a
particular set of data to be processed by a particular data processing application for a
particular client in a threshold database 220, such as in a lookup table of the threshold
database. For instance, the threshold database 220 can include a lookup table for a
particular data processing application in which the lookup table includes records that
indicate the threshold size for various data formats and for various clients.

FIG. 3 shows a portion of an example of a lookup table 30 in the threshold
database 220. Each entry 32 in the lookup table 30 represents the threshold size for a
particular data format 34 and for a particular client 36. If a client 36 has an agreement,
such as an SLA, that specifies one or more contracted processing times for processing
data of a particular size, the threshold time can reflect that client’s agreement. If a
client 36 has no agreement, a default threshold size can be used. In the example of
FIG. 3, the clients ABC Corp. and The Credit Co. share common default threshold
sizes. The client Smith’s has an agreement, such as an SLA, that provides for a faster
contracted processing time, thus requiring processing of Smith’s data to be completed
in less time. To meet Smith’s SLA, the threshold size for Smith’s data is larger, which
allows larger sets of data to be processed in continuous mode.

In some examples, the threshold size for a given data processing application,
data format, and/or client is specified by a user, e.g., by a system operator. In some
examples, the threshold size is determined by the threshold block 218. For instance,
the threshold block 218 can determine a default threshold size for a particular data
processing application 200 and for a particular data format by identifying the size of a
set of data at which the processing time in batch mode 214 equals or is faster than the
processing time in continuous mode 216. To incorporate client-specific agreements
regarding processing time, the threshold block 218 can determine the size of a data set
that can be processed in the contracted amount of time by batch mode 214 and/or
continuous mode 216. In some examples, the threshold block 218 can determine a

threshold size, such as a default threshold size or a client-specific threshold size based

-11-

PCT/US2014/070002

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

on historical data indicative of the performance of the data processing application 200
in batch mode 214 and continuous mode 216.

In some cases, the threshold block 218 can dynamically determine the
threshold size, e.g., based on real time data indicative of the on-going performance of
the data processing application 200. For instance, in one example, if real-time data
indicate that the continuous mode 216 data processing application 200 is running
more slowly than its historical average, the threshold block 218 can dynamically
decrease the threshold size to shift more sets of data to batch mode processing 214. In
one example, if real-time data indicate that the computing system executing the data
processing application 200 has less capacity than usual, the threshold block 218 can
dynamically change the threshold size to adjust for the reduced capacity of the
computing system.

As mentioned above, batch mode operation 214 of the data processing
application 200 can be selected for processing large sets of data. By batch mode, we
mean a data processing application 200 that is started up (e.g., compiled and launched
as a new process) after receiving a request to process a set of data. A new process is a
process that is compiled and loaded into memory after the request to process data is
received. In some examples a batch mode data processing application can be
terminated after processing the entire set of data. In some examples, in batch mode
processing, multiple processes of the data processing application can be run
concurrently once the data processing application is compiled and launched. In
general, batch mode operation 214 involves a longer startup time than continuous
mode operation (discussed below), which can render batch mode operation less
efficient than continuous mode when processing only a small amount of data. Once
the data processing application 200 is launched in batch mode 214, however, the data
processing application 200 can rapidly and efficiently process data.

For instance, when executed in batch mode 214, the data processing
application 200 starts up as a new process when the first item of a set of data is ready
for processing by the data processing application. The startup tasks include compiling
and loading the components of the data processing application and integrating the
compiled and loaded data processing application into the processing framework 10.
Once the startup tasks are completed, multiple processes associated with the data
processing application can be run concurrently on one or more computing devices,

enabling the batch mode data processing application to process large amounts of data

-12-

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

efficiently. When processing is complete, the operation of the data processing
application 200 is terminated. That is, to operate the data processing application 200
in batch mode 214, the data processing application is started up as a new process to
process a discrete set of data and is terminated once processing is complete.

Compilation is the process by which a computer program, such as the data
processing application 200, is prepared to be executed by a computer. Compilation
can result in the generation of machine code, instructions ready to be executed on a
computer, and/or intermediate code to be executed by a virtual machine executing on
a computer (e.g., Java byte code). The process of compiling a data processing
application 200 and preparing the data processing application 200 for execution
involves various stages. An uncompiled representation of the data processing
application 200 is retricved from a data storage (e.g., from the data storage system
116) along with any associated parameters that provide values to be used in the
compilation process. Example parameters include information such as, e.g., the name
of the computing device executing the data processing application 200, the directory
to which results of the data processing application 200 are to be output, the filename
of a file to which to write the results, and other parameters. During a static parameter
resolution phase, static parameters (whose values are designated for resolution before
run-time) are resolved and the resolved values are bound to the static parameters.
Some parameters may be designated as dynamic parameters that are left unresolved
during compilation, to be resolved later, e.g., just before run-time. In some examples,
unresolved parameters are read at run-time from a file by the batch mode data
processing application 200. During a compilation phase, data structures representing
the data processing application 200 are generated for use during execution of the data
processing application 200. Compilation can also include compiling embedded scripts
in scripting languages into bytecode or machine code. At run-time, any dynamic
parameters associated with the data processing application 200 are bound to resolved
values. The data structures of the compiled data processing application 200 are
launched by starting one or more processes, opening any needed files, and/or linking
dynamic libraries. A flow of data through the data processing application 200 can also
be set up, e.g., by allocating shared memory or opening a TCP/IP stream.

Once the batch mode data processing application 200 is compiled and loaded,
the set of data can be processed relatively quickly. However, if the set of data is small,

the time involved in compiling the data processing application 200, loading the data

-13-

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

processing application 200, and preparing the data processing application 200 for
execution (referred to collectively as the startup time) can dominate the execution
time of the data processing application 200. That is, if only a small amount of data is
processed by the batch mode data processing application 200, the startup time can be
comparable to or even exceed the processing time. For instance, if the startup time of
a batch mode data processing application 200 is about five seconds and the processing
time for a small set of data is about five seconds, then only half of the total elapsed
time is used for actual processing of the set of data. The relatively long startup time
thus makes executing the data processing application 200 in batch mode 214
relatively inefficient for processing small sets of data.

To avoid the inefficiency of a long startup time, small sets of data can be
processed by the data processing application 200 in continuous mode 216. By
continuous mode, we mean a data processing application that is compiled, loaded, and
initialized prior to receiving data for processing. We sometimes refer to a data
processing application that is compiled, loaded, and initialized prior to receiving data
for processing as a running process. A process can be considered a running process
even if the process is not actively processing data, for instance, if the process is in
standby because there is no input data for processing by the process. In some
examples, continuous mode processes can run serially when processing data. In
continuous mode 216, some of the tasks that are performed during startup of the batch
mode data processing application 200 are performed instead in an earlier compilation
phase that does not occur for every set of data. Rather, when executed in continuous
mode 216, the data processing application 200 is compiled, loaded, and initialized
prior to receiving data for processing. That is, for instance, in continuous mode 216,
the data processing application 200 is continuously active on the computing device
and can start processing data as soon as a request for processing is received. Thus, the
startup time associated with compiling, loading, and preparing the data processing
application does not apply to each individual set of data, allowing small sets of data to
be processed more efficiently. In order to ensure that the continuous mode data
processing application 200 processes a particular set of data according to parameters
that are appropriate for that set of data, the parameters are passed to the continuous
mode data processing application 200 along with the request to process the set of data.

In some examples, to execute in continuous mode 216, the data processing

application 200 can be implemented as one or more “micrographs” that can be

- 14-

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

dynamically loaded into (and unloaded from) the processing framework 10. A
micrograph is a precompiled dataflow graph stored, in compiled form, in a data
storage system (e.g., the data storage system 116). The compiled micrograph includes
the data structures that represent the components of the micrograph and the links that
enable the micrograph to be integrated into the processing framework 10. A compiled
micrograph can be retrieved dynamically and embedded directly into the processing
framework 10 in real time, e.g., when the command 208 instructs the data processing
application 200 to execute in continuous mode 216. Micrographs are described in
more detail in U.S. Application Serial No. 13/161,010, filed June 15, 2011, the
contents of which are incorporated herein by reference in their entirety.

For instance, to achieve rapid loading of a micrograph, the micrograph can be
serialized prior to being stored in the data storage system 116. Serialization is a
process by which a compiled data processing application 200 is translated into a
binary stream of zeroes and ones such that the data processing application 200 is in a
form that can be easily stored in persistent memory or in a memory buffer. A
serialized micrograph can be easily retrieved and its data structures de-serialized and
loaded dynamically at run-time, thus enabling rapid loading of the micrograph.

In some examples, when a command 208 is received to execute the data
processing application 200 in continuous mode 216 to process a set of data, the
precompiled micrograph is loaded and integrated into the processing framework 10.
In some cases, the micrograph can be detached and unloaded from the processing
framework 10 once processing of the set of data is complete. In some cases, the
micrograph can be detached from the processing framework 10 but can remain loaded
in memory (e.g., using a caching mechanism), such that the detached micrograph can
be quickly reintegrated into the processing framework 10 at a later time without
reloading the micrograph (e.g., when a command is received to process a subsequent
set of data).

The decision block 212 itself can be implemented in a continuous mode, ¢.g.,
as a micrograph, to avoid delays in selecting the appropriate mode of operation for the
data processing application 200.

In some examples, a data processing application can implement multiple
copies of a single micrograph, for instance, to allow a measure of control over data
flow through the data processing application. For instance, a set of data to be

processed by a data processing application 200 can be partitioned among a set of two

_15-

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

or more micrographs according to a load balancing algorithm, such as a round robin
approach, a selection of the least utilized micrograph, or another algorithm.

In some examples, a data processing application 200 can be executed in a
serial batch mode in which a large set of data is divided into multiple groups to be
processed in series by the data processing application 200. For instance, when
executed in serial batch mode, the data processing application 200 can be compiled a
single time and executed in series to process the multiple groups of data. In some
examples, a data processing application 200 can be executed in parallel batch mode,
in which a large set of data is divided into multiple groups to be processed
simultaneously by multiple identical data processing applications running in parallel.

Referring to FIG. 4, in a general approach, a request is received to process a
set of data using a data processing application (400). In some examples, the request
can include the set of data, such as a file to be processed by the data processing
application (an inbound feed). For example, the request 208 can include the file 202.
In some examples, the request can identify the data that is to be retrieved by the data
processing application from a database (an outbound feed).

The size of the set of data is determined or estimated (402). For an inbound
feed (e.g., a file), the size of the set of data is the size of the file and can be
determined, e.g., by accessing properties associated with the file. For instance, if the
inbound feed is a payment file containing credit card transaction records to be added
to a database, the size of the set of data is the size of the payment file. For an
outbound feed (e.g., data retrieved from a database), the size of the set of data is the
size of the records to be retrieved from the database in response to a query. In some
examples, the size of an outbound feed can be determined by pre-querying the
database, e.g., by requesting the first 100 records that satisfy the query. If the database
quickly returns the first 100 records, a small size can be estimated for the outbound
feed. If the database returns the first 100 records slowly or not at all, a large size can
be estimated for the outbound feed. In some examples, the size of an outbound feed
can be determined by querying the database for the number of records that satisfy the
query.

A threshold size for the set of data is identified (404), for instance, by
accessing a lookup table that tabulates the threshold size for various data formats
and/or for various clients for the data processing application. The threshold size can

be based on characteristics of the set of data, such as the size of the set of data (e.g.,

-16-

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

the volume of the set of data, the number of records in the set of data, the complexity
of the set of data, etc.), the format of the set of data (e.g., the file format of the file 202
or the record format of records in the database 204), the complexity of the set of data
(e.g., the vectors or subvectors associated with the set of data), and/or other
characteristics of the set of data. The threshold size can also be based on
requirements associated with processing the set of data, such as a client-specific
agreement (e.g., an SLA) specifying an allowed time for processing the set of data.
The threshold size can also be based on an operational characteristic associated with
the computing system executing the data processing application, such as a time of day
or day of the week, the capacity of the system, or another operational characteristic.

The size of the set of data to be processed is compared to the threshold size
(406) and a mode of operation for the data processing application is selected based on
the comparison. For instance, if the size of the set of data is larger than the threshold
size, batch mode processing is selected (408). If the size of the set of data to be
processed is equal to or smaller than the threshold size, continuous mode processing is
selected (410).

The data processing application is executed according to the selected mode of
operation to process the set of data (412). For instance, for batch mode processing, the
batch mode implementation of the data processing application is compiled, loaded,
and integrated into its processing framework prior to processing the set of data. For
continuous mode processing, a precompiled data processing application (e.g., a
precompiled micrograph) is loaded dynamically and used to process the set of data.
The results of the processing are output from the data processing application (414) to
a downstream location, such as a queue, a file, a database, and/or a display to a
downstream user.

Referring to FIG. 5, in a screenshot of an example graphical representation of
a processing framework 10, a request to process a set of data is received and read at
an interface component 500. The request can include information about the type of
job that is to be executed for the set of data (e.g., an identifier of a data processing
application to be used to process the set of data) and information about the source of
the set of data (e.g., an identifier of a file or database). In some examples, the requests
are queued in a queue 502 prior to being received by the interface component 500. In
some examples, the interface component 500 carries out the functions described

above for the interface block 206.

-17-

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

The request is processed by setup components 504 and arrives at the decision
component 506. The decision component 506 evaluates the request to determine
whether the set of data to be processed is to be considered large or small. Based on the
evaluation, the decision component 506 sends a command to either a continuous
component 509, e.g., a micrograph component or a batch component 508. In some
examples, the decision component 506 carries out the functions described above for
the decision block 212.

FIGS. 6A-6C show an example of a dataflow graph 600 that is configured to
execute in either batch mode or continuous mode. A “read job file” component 602
integrates the dataflow graph 600 into the processing framework 10 (FI1G. 5). For
instance, the “read job file” component 602 can be implemented by a subgraph 610
that executes differently depending on whether the dataflow graph 600 is executed in
batch mode or continuous mode. If the dataflow graph 600 is executed in batch mode,
the graph starts by reading a job file 612 that passes run-time parameters to the batch
mode dataflow graph 600. In continuous mode, job information, such as run-time
parameters, arrives at the compiled, loaded, and initialized continuous mode dataflow
graph 600 via a “job_info” component 614.

The dataflow graph 600 processes the data in batch mode or continuous mode
at one or more processing components 604. For instance, in batch mode, the
processing components 604 can include multiple processes that can be executed
concurrently to provide rapid, efficient data processing. In continuous mode, the
processing components 604 can include multiple processes to be executed serially.
When processing is complete, a “send response” component 606 integrates the output
of the dataflow graph 600 back into the processing framework 10, e.g., by formatting
the output of the dataflow graph 600 as appropriate and sending the output to the
processing framework 10. For instance, the “send response” component 606 can be
implemented by a subgraph 620 that executes differently depending on whether the
dataflow graph 600 is executed in batch mode or continuous mode. Output data is
processed by a replicate component 621 that prepares the data for a queue 622 or a
response component 624, depending on the mode of operation of the dataflow graph
600. If the dataflow graph is executed in batch mode, responses (e.g., output data) are
returned to the processing framework 10 via the queue 622. In continuous mode,

responses are returned via the response component 624.

- 18-

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

The approach to dynamically determining a mode of operation of a data
processing application can be implemented using a computing system executing
suitable software. For example, the software may include procedures in one or more
computer programs that execute on one or more programmed or programmable
computing system (which may be of various architectures such as distributed,
client/server, or grid) each including at least one processor, at least one data storage
system (including volatile and/or non-volatile memory and/or storage elements), at
least one user interface (for receiving input using at least one input device or port, and
for providing output using at least one output device or port). The software may
include one or more modules of a larger program, for example, that provides services
related to the design, configuration, and execution of dataflow graphs. The modules of
the program (e.g., elements of a dataflow graph) can be implemented as data
structures or other organized data conforming to a data model stored in a data
repository.

The software may be provided on a tangible, non-transitory medium, such as a
CD-ROM or other computer-readable medium (e.g., readable by a general or special
purpose computing system or device), or delivered (e.g., encoded in a propagated
signal) over a communication medium of a network to a tangible, non-transitory
medium of a computing system where it is executed. Some or all of the processing
may be performed on a special purpose computer, or using special-purpose hardware,
such as coprocessors or field-programmable gate arrays (FPGAs) or dedicated,
application-specific integrated circuits (ASICs). The processing may be implemented
in a distributed manner in which different parts of the computation specified by the
software are performed by different computing elements. Each such computer
program is preferably stored on or downloaded to a computer-readable storage
medium (e.g., solid state memory or media, or magnetic or optical media) of a storage
device accessible by a general or special purpose programmable computer, for
configuring and operating the computer when the storage device medium is read by
the computer to perform the processing described herein. The inventive system may
also be considered to be implemented as a tangible, non-transitory medium,
configured with a computer program, where the medium so configured causes a
computer to operate in a specific and predefined manner to perform one or more of

the processing steps described herein.

-19-

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

A number of embodiments have been described. Nevertheless, it is to be
understood that the foregoing description is intended to illustrate and not to limit the
scope of the invention, which is defined by the scope of the following claims.
Accordingly, other embodiments are also within the scope of the following claims.
For example, various modifications may be made without departing from the scope of
the invention. Additionally, some of the steps described above may be order
independent, and thus can be performed in an order different from that described.

For instance, in addition to or as an alternative to the features described above,
the following embodiments are described:

Embodiment 1 is directed to a method including receiving a request to process
a sct of data using a data processing application; based on a feature associated with
the set of data, selecting between (i) a first mode in which one or more running
processes of the data processing application are used to process the set of data and (2)
a second mode in which one or more new processes of the data processing application
are started up; and causing the data processing application to be executed according to
the selected mode to process the set of data.

Embodiment 2 is directed to embodiment 1, wherein the one or more running
processes are compiled and loaded into a memory prior to receiving the request to
process the set of data.

Embodiment 3 is directed to any of the preceding embodiments, wherein the
one or more running processes are in a standby mode prior to receiving the request to
process the set of data.

Embodiment 4 is directed to any of the preceding embodiments, including,
when the second mode is selected, compiling the data processing application and
loading the compiled data processing application into a memory.

Embodiment 5 is directed to any of the preceding embodiments, wherein the
one or more new processes include a process that is not compiled or loaded into
memory prior to receiving the request to process the set of data.

Embodiment 6 is directed to any of the preceding embodiments, wherein the
feature associated with the set of data includes one or more of a size of the set of data,
a format of the set of data, or a complexity of the set of data.

Embodiment 7 is directed to any of the preceding embodiments, wherein

selecting between the first mode and the second mode includes selecting the first

-20-

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

mode when the size of the set of data is equal to or less than a threshold size; and
selecting the second mode when the size of the set of data exceeds the threshold size.

Embodiment 8 is directed to embodiment 7, wherein the threshold size is
based on a format of the set of data, and at least two different formats are each
associated with a different threshold size.

Embodiment 9 is directed to embodiment 7 or 8, wherein the threshold size is
based on a processing requirement associated with the set of data, and at least two
different processing requirements are each associated with a different threshold size.

Embodiment 10 is directed to any of embodiments 7 to 9, wherein the
threshold size is based on historical data indicative of the operation of the data
processing application.

Embodiment 11 is directed to any of embodiments 7 to 10, including
determining the threshold size during execution of the data processing application.

Embodiment 12 is directed to embodiment 11, wherein determining the
threshold size during execution of the data processing application includes decreasing
the threshold size if the data processing application executed according to the first
mode executes more slowly than a reference rate; and increasing the threshold size if
the data processing application executed according to the second mode executes more
slowly than a reference rate.

Embodiment 13 is directed to any of the preceding embodiments, including
determining a size of the set of data.

Embodiment 14 is directed to embodiment 13, wherein the set of data includes
a file, and wherein determining the size of the set of data includes determining the
size of the file.

Embodiment 15 is directed to embodiment 13 or 14, wherein the set of data
includes data stored in a database, and wherein determining the size of the set of data
includes querying the database.

Embodiment 16 is directed to any of the preceding embodiments, wherein the
feature associated with the set of data includes a processing requirement associated
with the set of data.

Embodiment 17 is directed to embodiment 16, wherein the processing
requirement includes an allowed time for processing the set of data.

Embodiment 18 is directed to any of the preceding embodiments, wherein in

the first mode, a component of the data processing application is compiled to machine

-21-

10

15

20

25

30

WO 2015/089390

code prior to receiving the request, and in the second mode, the component is
compiled to machine code after receiving the request.

Embodiment 19 is directed to any of the preceding embodiments, wherein in
the first mode, the one or more running processes are executed serially, and in the
second mode, at least some of the one or more new processes are executed
concurrently.

Embodiment 20 is directed to software stored on a computer-readable
medium, the software including instructions for causing a computing system to
receive a request to process a set of data using a data processing application; based on
a feature associated with the set of data, select between (i) a first mode in which one
or more running processes of the data processing application are used to process the
set of data and (2) a second mode in which one or more new processes of the data
processing application are started up; and cause the data processing application to be
executed according to the selected mode to process the set of data.

Embodiment 21 is directed to a computing system including at least one
processor configured to receive a request to process a set of data using a data
processing application; based on a feature associated with the set of data, select
between (i) a first mode in which one or more running processes of the data
processing application are used to process the set of data and (2) a second mode in
which one or more new processes of the a data processing application are started up;
and cause the data processing application to be executed according to the selected
mode to process the set of data.

Embodiment 22 is directed to a computing system including means for
receiving a request to process a set of data using a data processing application; means
for, based on a feature associated with the set of data, selecting between (i) a first
mode in which one or more running processes of the data processing application are
used to process the set of data and (2) a second mode in which one or more new
processes of the data processing application are started up; and means for causing the
data processing application to be executed according to the selected mode to process
the set of data.

Embodiment 23 is directed to a method including receiving a request to
process a set of data using a data processing application; identifying a particular mode

of operation from multiple modes of operation of the data processing application

_00.

PCT/US2014/070002

10

15

20

25

30

WO 2015/089390 PCT/US2014/070002

based on a size of the set of data; and executing the data processing application
according to the particular mode of operation to process the set of data.

Embodiment 24 is directed to embodiment 23, in which identifying the
particular mode of operation includes selecting either a batch processing mode or a
continuous processing mode. Embodiment 25 is directed to embodiment 23 or 24, in
which identifying the particular mode of operation includes selecting the batch
processing mode when the size of the set of data exceeds a threshold size; and
selecting the continuous processing mode when the size of the set of data is less than
the threshold size.

Embodiment 26 is directed to any of embodiments 23 to 25, and includes
determining the size of the set of data.

Embodiment 27 is directed to embodiment 26, in which the set of data
includes a file, and wherein determining the size of the set of data includes
determining the size of the file.

Embodiment 28 is directed to embodiment 26 or 27, in which the set of data
includes data stored in a database, and wherein determining the size of the set of data
includes querying the database.

Embodiment 29 is directed to any of embodiments 23 to 28, and in which
identifying a particular mode of operation includes determining whether the size of
the set of data exceeds a threshold size.

Embodiment 30 is directed to embodiment 29, in which the threshold size is
based on a format of the set of data or a processing requirement associated with the
set of data.

Embodiment 31 is directed to embodiment 30, in which the processing
requirement includes an allowed time for processing the set of data.

Embodiment 32 is directed to any of embodiments 29 to 31, and includes
determining the threshold size.

Embodiment 33 is directed to any of embodiments 29 to 32, and includes
determining the threshold size based on historical data indicative of the operation of
the data processing application.

Embodiment 34 is directed to any of embodiments 29 to 33, and includes
dynamically determining the threshold size.

Embodiment 35 is directed to any of embodiments 23 to 34, in which the data

processing application includes at least one computation graph.

-23.

WO 2015/089390 PCT/US2014/070002

Embodiment 36 is directed to embodiment 35, in which the computation graph

can be executed in a batch processing mode or a continuous processing mode.

-04.

10 Jan 2020

2014362192

CLAIMS:

1. A method including:
receiving a request to process a set of data using a data processing application;
responsive to the received request, and based on at least a size associated with the set
of data, selecting either (i) a first mode in which one or more running
processes of the data processing application are used to process the set of data
or (2) a second mode in which one or more new processes of the data
processing application are started up; and
causing the data processing application to be executed according to the selected mode
to process the set of data, including:
when the first mode is selected, processing the data using the one or more
running processes, code corresponding to the one or more running
processes having been compiled prior to receiving the request to
process the set of data, and
when the second mode is selected, compiling code corresponding to the one or
more new processes and processing the data using the one or more new

Processcs.

2. The method of claim 1, wherein the one or more running processes are loaded into a

memory prior to receiving the request to process the set of data.

3. The method of any one of the preceding claims, wherein the one or more running

processes are in a standby mode prior to receiving the request to process the set of data.

4. The method of any one of the preceding claims, including, when the second mode is

selected, loading the compiled new processes into a memory.

5. The method of any one of the preceding claims, including selecting either the first
mode or the second mode based further one; a format of the set of data, or a complexity of the

set of data, or both.

6. The method of any one of the preceding claims, wherein selecting between the first

mode and the second mode includes:

_25-

10 Jan 2020

2014362192

selecting the first mode when the size of the set of data is equal to or less than the
threshold size; and

selecting the second mode when the size of the set of data exceeds the threshold size.

7. The method of claim 6, wherein the threshold size is based on a format of the set of

data, and at least two different formats are each associated with a different threshold size.

8. The method of claim 6 or 7, wherein the threshold size is based on a processing
requirement associated with the set of data, and at least two different processing requirements

are each associated with a different threshold size.

9. The method of any one of claims 6 to 8, wherein the threshold size is based on

historical data indicative of the operation of the data processing application.

10. The method of any one of claims 6 to 9, including determining the threshold size

during execution of the data processing application.

11. The method of claim 10, wherein determining the threshold size during execution of
the data processing application includes:
decreasing the threshold size if the data processing application executed according to
the first mode executes more slowly than a reference rate; and
increasing the threshold size if the data processing application executed according to

the second mode executes more slowly than a reference rate.

12. The method of any one of the preceding claims, including determining a size of the
set of data.
13, The method of claim 12, wherein the set of data includes a file, and wherein

determining the size of the set of data includes determining the size of the file.

14, The method of claim 12 or 13, wherein the set of data includes data stored in a

database, and wherein determining the size of the set of data includes querying the database.

15. The method of any one of the preceding claims, wherein the feature associated with

- 26 -

10 Jan 2020

2014362192

the set of data includes a processing requirement associated with the set of data.

16. The method of claim 15, wherein the processing requirement includes an allowed

time for processing the set of data.

17. The method of any one of the preceding claims, wherein in the first mode, the one or
more running processes are executed serially, and in the second mode, at least some of the

one or more new Processes arc executed concurrently.

18. Software stored on a computer-readable medium, the software including instructions
for causing a computing system to:
receive a request to process a set of data using a data processing application;
responsive to a received request, and based on at least a size associated with the set of
data, select either (i) a first mode in which one or more running processes of
the data processing application is used to process the set of data or (2) a
second mode in which one or more new processes of the data processing
application are started up; and
cause the data processing application to be executed according to the selected mode to
process the set of data including:
when the first mode is selected, processing the data using the one or more
running processes, code corresponding to the one or more running
processes having been compiled prior to receiving the request to
process the set of data, and
when the second mode is selected, compiling code corresponding to the one or
more new processes and processing the data using the one or more new

Processcs.

19. A computing system including:
at least one processor configured to:
receive a request to process a set of data using a data processing application;
responsive to a received request, and based on at least a size associated with
the set of data, select either (i) a first mode in which one or more
running processes of the data processing application is used to process

the set of data or (2) a second mode in which one or more new

_27 -

10 Jan 2020

2014362192

processes of the data processing application are started up; and

cause the data processing application to be executed according to the selected
mode to process the set of data, including

when the first mode is selected, processing the data using the one or more
running processes, code corresponding to the one or more running
processes having been compiled prior to receiving the request to
process the set of data, and

when the second mode is selected, compiling code corresponding to the one or
more new processes and processing the data using the one or more new

Processcs.

20. A computing system including:
means for receiving a request to process a set of data using a data processing
application;
means for, based on a feature associated with the set of data, selecting between (i) a
first mode in which one or more running processes of the data processing
application is used to process the set of data and (2) a second mode in which
one or more new processes of the data processing application are started up;
and
means for causing the data processing application to be executed according to the
selected mode to process the set of data, including
when the first mode is selected, processing the data using the one or more
running processes, code corresponding to the one or more running
processes having been compiled prior to receiving the request to
process the set of data, and
when the second mode is selected, compiling code corresponding to the one or
more new processes and processing the data using the one or more new

Processcs.

21. The computing system of claim 20, wherein the one or more running processes are

loaded into a memory prior to receiving the request to process the set of data.

22. The computing system of claim 20 or 21, wherein the one or more running processes

are in a standby mode prior to receiving the request to process the set of data.

-28 -

10 Jan 2020

2014362192

23. The computing system of any one of claims 20 to 22, wherein the processor is
configured to, when the second mode is selected, loading the compiled new processes into a

memory.

24. The computing system of any one of claims 20 to 23, including selecting either the
first mode or the second mode based further on a format of the set of data, or a complexity of

the set of data, or both.

25. The computing system of any one of claims 20 to 24, wherein selecting between the
first mode and the second mode includes:
selecting the first mode when the size of the set of data is equal to or less than the
threshold size; and

selecting the second mode when the size of the set of data exceeds the threshold size.

26. The computing system of claim 25, wherein the threshold size is based on a format of
the set of data, and at least two different formats are each associated with a different

threshold size.

27. The computing system of claim 25 or 26, wherein the threshold size is based on a
processing requirement associated with the set of data, and at least two different processing

requirements are each associated with a different threshold size.

28. The computing system of any one of claims 25 to 27, wherein the threshold size is

based on historical data indicative of the operation of the data processing application.

29. The computing system of any one of claims 25 to 28, wherein the processor is
configured to determine the threshold size during execution of the data processing

application.

30. The computing system of claim 29, wherein determining the threshold size during
execution of the data processing application includes:
decreasing the threshold size if the data processing application executed according to

the first mode executes more slowly than a reference rate; and

-29.

10 Jan 2020

2014362192

increasing the threshold size if the data processing application executed according to

the second mode executes more slowly than a reference rate.

31 The computing system of any one of claims 20 to 30, including determining a size of

the set of data.

32. The computing system of claim 31, wherein the set of data includes a file, and

wherein determining the size of the set of data includes determining the size of the file.

33. The computing system of claim 31 or 32, wherein the set of data includes data stored
in a database, and wherein determining the size of the set of data includes querying the

database.

34, The computing system of any one of claims 22 to 33, wherein the feature associated

with the set of data includes a processing requirement associated with the set of data.

35. The computing system of claim 34, wherein the processing requirement includes an

allowed time for processing the set of data.
36. The computing system of any one of claims 20 to 35, wherein in the first mode, the

one or more running processes are executed serially, and in the second mode, at least some of

the one or more new processes are executed concurrently.

-30 -

PCT/US2014/070002

WO 2015/089390

=TT 90r e
-] JTNAON S o:k
R ONISSIO0Nd —
-3dd 30T
-
© ¥0l 201
=
I oI
FOVHOLS VIVa [© | LNIWNOMIANT A.VW
. ININdOTIAIA .
0zl

4

.

00l

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/070002

WO 2015/089390

2/8

¢ Old

0¢ce
>
00Z uonedyjdde
Buisssooid ejeq 81¢ 2019
, A . ploysaJy
r 1
_ le
_ 9l¢ I
| 9POW snonuiuo) | — — =
_ _ _ ZlgAd0q 90¢ »20[q
b e e e — I uoisioeg o8|
AT T

| 71z opow yreg |
.IIII>IIII

0l YJomawel

/ 202

¥0Z

ejed

"

60¢

SUBSTITUTE SHEET (RULE 26)

WO 2015/089390 PCT/US2014/070002

3/8

o
™
r o| N| o] ©
AN| M~ N <
b v b v
1%
<
-
)
ol ol o ©
o'C)@C)ﬂ'
b v b v
O
= N
©0l| D ™
Y| Q L
O /
(]
=
|_
ol ol o] o
Ol ©O| O <
b v b v
o
| -
O
O
O
(a1]
< ™
N n
N o
S 2 9
Hlwn| 2| = L
<|a|»| 2
[X Ol ®m
q-Y
™

SUBSTITUTE SHEET (RULE 26)

WO 2015/089390

Select batch
processing

408

YES

Y

4/8

Receive request to

process set of data

with data processing
application

400

v

Determine size of
set of data

402

v

|dentify threshold
size

404

Size
of set of data >
threshold?

406

Execute data
processing
application

A

PCT/US2014/070002

Select
continuous
processing

410

according to
selected mode

412

Y

Output processing
results

414

FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/070002

WO 2015/089390

5/8

809
Jusuodwod

yojed

609
Jusuodwod

SNONURUOY

90G
Jusuodwod

uoIsIoa(]

G Old

¥0G

sjusuodwos
dnjeg

009

205 9nanp

Jusuodwod
o0

Lo

SUBSTITUTE SHEET (RULE 26)

WO 2015/089390 PCT/US2014/070002

6/8
6002
S Processing Send
Read job file F——— components [g response
\-602 \ 604 \- 606

FIG. 6A

SUBSTITUTE SHEET (RULE 26)

WO 2015/089390

7/8

6102

PCT/US2014/070002

(Read Job File (Linked)

Parameters

Job
File 612
................. : ->t<1
Reformat u*
0 out1 0
0
job_info
614
k Y,

FIG. 6B

SUBSTITUTE SHEET (RULE 26)

WO 2015/089390 PCT/US2014/070002
8/8
620‘<
r N
Send Response (Linked)
Multipublish
Responses 5_ 622
: O
Cbino0* 2
™ Replicate response 624
x 1
------ { "
2
621 2
- y,

FIG. 6C

SUBSTITUTE SHEET (RULE 26)

