Nov. 10, 1942.
L. V. LEWIS

2,301,297
RAILWAY traffic controlling apparatus
Filed Jan. 25, $1939 \quad 10$ Sheets-Sheet I

Nov. 10, 1942.
L. V. LEWIS

2,301,297
RAILWAY TRAFFIC CONTROLLING APPARATUS
Filed Jan. 25, 193910 Sheets-Sheet 2

Nov. 10, 1942.
L. V. LEWIS

2,301,297
RAILWAY TRAFFIC CONTROLLING APPARATUS
Filed Jan. 25, $1939 \quad 10$ Sheets-Sheet 3

Nov. 10, 1942.
RAILWAY TRAFFIC CONTROLLING APPARATUS
Filed Jan. 25, 1939
10 Sheets-Sheet 4

Fig. 1F.

Nov. 10, 1942.
RAILWAY TRAFFIC CONTROLLING APPARATUS
Filed Jan. 25, $1939 \quad 10$ Sheets-Sheet 6

Nov. 10, 1942.
L. V. LEWIS

2,301,297
RAILWAY TRAFFIC CONTROLLING APPARATUS
Filed Jan. 25, 193910 Sheets-Sheet 7

Fig. 1H.

Fig. 24.

Nov. 10, 1942.
L. V. LEWIS

2,301,297
RAILWAY TRAFFIC CONTROLLING APPARATUS
Filed Jan. 25, 193910 Sheets-Sheet 9

RAILWAY TRAFFIC CONTROLLING APPARATUS

Fig. $2 C$.

UNITED STATES PATENT OFFICE

2,301,297

RAILWAY TRAFFIC CONTROLLING APPARATUS

Lloyd V. Lewis, Pittsburgh, Pa., assignor to The Union Switch \& Signal Company, Swissvale, Pa., a corporation of Pennsylvania

Application January 25, 1939, Serial No. 252,803

56 Claims. (C1. 246-134)

My invention relates to railway traffic controlling apparatus for governing the movement of traffic through a track layout comprising a plurality of track sections interconnected by track switches which may be variously arranged to form different traffic routes. More particularly, my invention relates to an interlocking control system having an illuminated diagram of the track layout in the signal cabin or other point of control, provided with push buttons or the like at locations corresponding to signal locations on the diagram, for controlling the track switches and signals to permit train movements over the several routes.

One object of my invention is the provision of an improved arrangement of circuits for seelct-. ing each route in response to the successive operation of the control buttons for the two ends of the route, which arrangement is particularly adapted to the control of large and complicated track layouts.

Another object of my invention is the provision of improved means for operating the switches by individual levers when desired, together with means for indicating such operation by distinctively illuminating corresponding portions of the track diagram.

A further object of my invention is the provision of means for operating a "call-on" signal or the like in response to the operation of only the button at the entrance to the route which such signal governs and without the use of an auxiliary button as heretofore used. Other objects, purposes and features of my invention will be pointed out as the description proceeds.
My invention is an improvement upon those disclosed in the copending applications, Serial No. 14,868, for Interlocking control apparatus, filed April 5, 1935, by Earl M. Allen and Howard A. Thompson, Serial No. 118,609, for Railway traffic controlling apparatus, filed December 31, 1936, by John M. Pelikan, Serial No. 196,435, for Railway traffic controlling apparatus, filed March 17, 1938, by Ronald A. McCann, and Serial No. 224,165, for Railway traffic controlling apparatus, filed August 10, 1938, by Henry S. Young.
I shall describe two forms of apparatus embodying my invention and one modification thereof, and shall then point out the novel features thereof in claims.
Referring to the accompanying drawings, Figs. 1 A to 1 H , inclusive, taken together illustrate diagrammatically the circuits for a route interlocking system embodying the first form of my invention. A plan of the track layout which I have
chosen to illustrate my invention is shown in the upper portion of Fig . 1 F , and a suitable control panel containing a track diagram constituting a miniature representation of this track layout is 5 shown in the upper portion of Fig. 1G. Figs. 2A to 2 E , together with Figs. 1F, 1 G and 1 H , illustrate the circuits and apparatus for the second form of my invention.
Fig. 3 illustrates an auxiliary system of signal control which may be used with either form of my invention by superimposing these circuits upon those of Fig. 1D or Fig. 2D.

Considering the drawings for the first form of my invention in detail, Figs. 1A and 1B show the primary route selecting circuits and relays controlled directly by the push buttons P of the control panel of Fig. 1G. Figs. 1C and 1D show the circuits for switch control relays WR and signal control relays HR , respectively, which relays are governed by the relays of Figs. 1A and 1B.

Fig. 1E shows the circuits for a series of white lamps for at times illuminating the tracks of the operator's track diagram of Fig. 1G.
Fig. 1F shows the track relays TR for the various sections of the track layout, a switch indication relay WP with typical circuits for the repeating relays it controls, two types of circuits for the approach locking relays AS employed in the system of my invention, and the circuits for section locking relays ES and WS.
Fig. 1G contains the circuits for a series of red lamps for at times illuminating the tracks of the operator's track diagram shown therein, and also shows the circuits for red and green lamps for the signal indicators GK located in the push buttons P of the diagram. Fig. 1G also shows, in the lower portion of the operator's panel, a series of switch levers W by means of which the switches may be operated individually, or optional routes may be selected manually. The circuits controlled by the levers W are shown in Figs. 1A, 1B, 1C and 1E.

Fig. 1H shows a signal circuit network for energizing the mechanism G for the signals and 5 also shows the signal indication relays RGP.

Figs. 2A to 2E, inclusive, illustrate modifications of the corresponding views of Figs. 1A to 1 E , respectively, as employed in the second form of my invention, both forms employing the same 50 drawings Figs. 1F, $1 G$ and 1 H , as already mentioned.
Fig. 3 shows an auxiliary control system in which the buttons P may be used to control the signals individually, without operating the route selecting apparatus, when a route has been estab-
lished by the operation of the individual switch levers W.

Similar reference characters refer to similar parts in each of the several views.

In order to simplify the description, I shall first explain the functions of the several parts of the first form of my apparatus, and shall then describe its operation in detail, after which I shall point out the distinguishing features of the second form and shall describe the operation of the auxiliary apparatus of Fig. 3.

Referring first to Fig. 1F, it will be seen that the track plan as shown represents two parallel main tracks interconnected by crossovers $\mathbf{1 , 5}$ and 7 , the lower track being connected to a siding by a single switch 3. For simplicity each pair of track rails is represented by a single line in the plan. While a specific track layout is disclosed, it is to be understood that the apparatus is adapted to control any track layout encountered in practice, including layouts that may involve entirely different combinations of switches and signals, the present layout having been chosen to illustrate the principles of my invention in a simple manner. As indicated in the drawing, the tracks are divided into sections by insulated joints, the detector sections of the upper track which include the track switches being designated by the references 1 T and 5 T , while those of the lower track bear the references $4 \mathrm{~T}, 3 \mathrm{~T}$ and 7 T . It is to be understood that each track section is provided with the usual closed track circuit including a track battery B and a normally energized track relay, each track relay being identified by the reference TR with a numerical prefix identifying the track section to which it corresponds, as illustrated, for example, by the relay 1TR for section 1T. Each detector section track relay such as relay $7 T R$ controls a slow-pick-up, slow-release repeating relay, such as relay 1TP, having a circuit extending from one terminal B of a suitable local source of current over the front contact of the track relay, through the winding of the repeating relay to the other terminal C of the same source.

Each track switch of the layout is actuated by a power-operated switch machine SM, as illustrated for switches 7A and 7B, which may be understood to be of the type shown in the Zabel Patents Nos. 1,293,290 and 1,413,820. Each switch machine is provided with the usual motor having its operating circuits controlled by the contacts of a polarized switch control relay WR in the manner illustrated in the Willard Patent No. $1,380,452$, as indicated diagrammatically for relay 7WR by dotted line connections in the drawing, and it is to be understood that each switch or pair of switches will be operated to normal, as shown, or to reverse, when the control relay WR is energized and its polar contacts are closed to the left or right, respectively. Each relay WR is controlled in the manner illustrated in Fig. 2C, as hereinafter pointed out.

Each switch machine is provided with the usual switch circuit controller as disclosed in the Zabel patents hereinbefore referred to, for controlling a polarized switch indication relay such as the relay 7WP. For an understanding of the present invention it will suffice to point out that when both switch machines 1A-SM and 7B-SM of 7 the crossover 1 are locked normal or reverse, the corresponding relay 7WP will be energized and its polar contacts closed to the left or right, respectively. It is also to be understood that relays IWP, 5WP and 3WP, shown in Figure 1H, are 7
similarly controlled by the switch machines for the crossovers I and 5 and the single switch 3.

Each switch indication relay WP controls a pair of switch correspondence relays such as the relays 7NWC and TRWC, each of which is energized only when the polarized relay WP is energized in a position corresponding to that of the associated switch control relay WR.

Signals 4A and 10A are high speed signals governing main line train movements and each is provided with a distant signal 19 or 24 . Each of the signals 2, 4C, 6, 8, 10C and 12 is a slow speed signal, while signals 4C and 10C also serve as "call-on" signals to admit a train to an occu15 pied block, being controlled for this purpose by the manually governed call-on stick relays 4COS and $10 C O S$ shown in Figs. 1A and 13, respectively.

The signals may be of any desired type, but 0 as herein illustrated, it is to be understood that they are of the well-known searchlight type having a mechanism G of the form disclosed in the E. J. Blake Reissue Patent No. 14,940, of August 31, 1920, which mechanisms are controlled in the 5 manner shown in Fig. 1H. Each signal is provided with the usual back lock or signal indication relay RGP, as shown, which relay is energized only when the corresponding signal indicates stop. Each relay RGP controls an approach locking relay AS of corresponding number such as the relay 4AS or 2AS of Fig. 1F, and also controls the lamps of the associated signal indicator GKX of Fig. 1G.

Each slow speed signal is arranged to indicate 5 either clear or stop. A "distant" relay DR, controlled by the next signal in advance, controls the polarity of the current supplied to the mechanism G for each high speed signal 4A or 10A to provide a third, or caution indication. The cir0 cuits for relays D are omitted since they form no part of the present invention and suitable circuits are well known.

The manual control of the signal mechanisms G by the route buttons is effected by means of 45 the signal control relays HR shown in Fig. 1D. Each signal control relay HR and the back lock relay for the signal it controls governs the approach locking relay AS for that signal. For each slow speed signal the locking relay is controlled 50 like relay 2AS in Fig. 1F, which relay is released whenever the corresponding control relay $2 H R$ is energized to clear signal 2, and is picked up automatically when signal 2 is put to stop by 2 train entering a route governed by signal 2. Relay 2AS may be picked up by putting signal 2 to stop manually, in which case its energization is delayed for a measured time interval by means of a time element relay 2 TE in a well known manner. Relay 4AS and the similar relay IOAS, associated with the high speed signals, operate in a similar manner except that a longer time interval is provided by operating the time element relay 4 TE through a complete cycle by the use of an auxiliary stick relay ATES, and further, the time delay is nullified in case signal 4 or 10 is manually put to stop when an approach zone in the rear of the signal is unoccupied. As will be apparent from the drawing, this is accomplished in the case of signal 4 by means of an approach relay $A A R$ controlled by the track relays 21 TR and $19 T R$.

The approach locking relays AS control a group of section locking relays ES and WS, also shown in Fig. 1F, one relay ES or WS being provided for each direction for each detector section.

These relays function in such a manner that when a signal is cleared, a series of relays ESS or WS including one for each section of the route which the signal governs will be released, these relays becoming reenergized successively when the corresponding track sections are vacated. The section locking relays ES and WS and the detector section track relays $T R$ control the switch locking relays LS of Fig. 1C, which relays in turn govern the circuits for the switch control relays WR in such a manner that when a signal control relay HR becomes energized to clear the signal for a route, the circuit for the control relay WR for each switch of the route is opened to electrically lock the switch in the position it then occupies, as required for the route. As will be hereinafter explained in detail, the switch locking relays LS also control the circuits of the signal mechanisms G of Fig. 1H in such a manner that the clearing of a signal in response to the operation of its control relay $H R$ is made dependent upon the locking of each switch of the corresponding route, while the relays AS also control the signal circuits to provide time and approach locking for opposing signals.

One feature of my invention resides in an arrangement of the control apparatus whereby the relays are segregated in two groups in order to simplify and to reduce the cost of construction. One group comprises all of those relays so far described, which relays have to do with the safety of train operation and it is to be understood that these relays are of the standard type generally employed in the railway signaling art. The second group of relays includes those which are used only for communication purposes such as the relays of Figs. 1A and 1B which govern the selection of routes in response to push button operation, and the indication relays which control the lamps of the operator's control panel. These relays are preferably small quick acting relays of a type such as that shown in my Patent No. $1,815,947$, granted July 28, 1931, for Electrical relays, and are preferably mounted in a compact array in the control cabinet at the rear of the operator's panel.

Referring now to Fig. 1G, it will be seen that the track diagram is composed of a plurality of linear units or elements each comprising an indicator bearing the reference K with identifying prefix. Each of these indicators is preferably arranged as disclosed in the Pelikan application hereinbefore referred to, comprising a strip of translucent material arranged to be illuminated by one or the other of a pair of lamps mounted in an enclosure at the rear of the strip. Each pair of lamps includes a white lamp, the circuit for which as already mentioned is shown in Fig. 1 F , and a red lamp, as shown at the right in Fig. 1G. The approach indicators 4AK and 10AK employ red lamps only.

A push button P for operating circuit controllers as shown in Figs. 1A and 1B and containing a centrally located signal indicator GK is located at the point corresponding to the location of each signal on the track diagram. These buttons are preferably of the type disclosed in a pending application, Serial No. 123,014, filed January 29, 1937, for Circuit controllers, by W. E. Smith, but for an understanding of the present invention it will suffice to point out that each button P is biased to a mid-stroke position and has one or more normally open contacts, such as are shown for buttons 2P and 4P' in Fig. 1A, 75
which contacts become closed when the button is pushed, and also a normally closed contact which opens when the button is pulled. The lens or bull's eye of the indicator GK in the center of the button is arranged like the track indicators to be illuminated by one or the other of a pair of lamps mounted in an enclosure at the rear.

In normal operation, all the track switches are controlled as required to establish the different routes and the signals for the established routes are cleared solely by the operations of the buttons P for the ends of the routes, the traffic direction which is established being dependent upon the relative order in which the buttons at the two ends of a route are operated. In systems of this character, however, it is desirable at times to operate the switches individually and for this purpose the control panel is provided with an auxiliary switch lever W for each switch or cross20 over, as shown. These levers are preferably of the type shown in my Patent No. 1,887,273, issued November 8, 1932, for Circuit controllers. Each lever W normally occupies a central position from which it may be moved to left or right to operate the corresponding switch control relay WR of Fig. 1C to its normal or reverse position, but the circuits are so arranged that such operation is effective only if the lever is moved when conditions are proper for operating the switch as manifested by the energization of the corresponding switch locking relay LS. Each lever W controls the white lamps of Fig. 1E, for the portions of the track diagram comprising the representation of the switch or crossover it controls, in such a manner as to indicate the actual position of the track switch whenever the lever is moved from its center position.

The indication relays for governing the lamps of the control panel include a switch indication relay for each position of each switch or crossover, such as the relays 7NWK and 7RWK of Fig. 1F, which relays, as will be clear from the drawing are repeaters of the correspondence relays 1NWC and 7RWC, respectively, and also include an indication relay. SP for each track section of the layout. The relay SP for each section is controlled by the section locking relays ES and WS for the same section, as shown in Fig. 1F. The route selecting apparatus controlled directly by the buttons P includes a set of route selector relays for each direction, each set including a relay for each switch section of a route. Each route selector relay has a directional designation E or W following a designation of 55 the number and position of the track switch with which it is associated. Thus, for example, there are three route selector relays IANW, IRW and IBNW associated with crossover I and two relays 3NW and 3RW associated with switch 3 for the on direction right to left. Each route selector relay at the entrance to a route serves also as an entrance stick relay and such relays may be identified by the suffix S following the route designa. tion. Thus associated with crossover I for the 5 direction from left to right, the route selector relay IANES is controlled by button 2P and relays IRES and IBNES are controlled by button 4 P . In addition, an exit stick relay XS is provided for each route exit.

In the first form of my apparatus the initial operation of any route button causes the energization of a preliminary route selector for each available route for which the operated button marks the entrance end, each preliminary route selector comprising a series of tandem-connect-
ed relays which includes the entrance stick relay for the entrance section and a relay for the corresponding direction for each remaining section of the route, such as the relays IBNES, 3 NE, 5BNE and TBNE for route 4-12, for example.
These relays are interlocked to prevent the energization of similar relays for conflicting routes having different entrance ends, and each is arranged so that it will not become energized when the corresponding switch is locked in a position which is not in accordance with the route with which the relay is identified. The energization of the last relay of each series lights the white lamp for the indicator for the exit end of the corresponding route to indicate the available exit points on the track diagram, and also marks the button for that end as an exit button, rendering the preliminary selectors it controls nonresponsive.

The subsequent operation of any button marking the exit end of a route causes the energization of a final route selector for that route only, each final selector comprising a series of tandemconnected relays which includes the exit stick relay controlled by the exit button and the route selector for the other direction for each remaining section, such as the relays 12 XS , 1BNW, 5 BNW , 3NW and IBNW for route 4-12, for example. The energization of the final selector for the selected route releases the energized preliminary selectors for the other routes having the same entrance end, the relays remaining energized comprising one for each direction for each section of the selected route. The pair of energized relays for each section such as the relays 3NE and 3NW for switch 3 control the corresponding switch or switches as required for the route by energizing the relays WR of Fig. 1C, and also control the lighting of the corresponding portion of the track diagram.

When a route is fully established by the operation of the track switches, a representation of the complete route is displayed as a continuous illuminated strip on the track diagram, the switches are locked electrically by the operation of a signal control relay HR, Fig. 1D, and the signal at the entrance end of the route then clears automatically.
I shall now describe the operation of the first form of my apparatus under different assumed conditions, tracing the circuits in detail. I shall first assume that the apparatus is in the normal condition as shown in the drawings, and that the operator desires to clear signal 4A to pass an approaching train over route 4-12. When the train enters section 2IT, Fig. 1F, the release of track relay $21 T R$ opens contact 9 and deenergizes the approach relay $4 A R$, which relay releases and closes back contact II, Fig. 1G, to close the circuit for the red lamp of the approach indicator CAK, this portion of the track diagram of Fig. 1G being thereby illuminated to inform the operator of the approach of the train.
Normally, all the track and signal indication lamps are dark, and each button P is free to be operated to establish the entrance to a route.
To set up route 42 , the operator will first press button 4 P momentarily. This causes the energization of the two route selector relays IRES and IBNES for the diverging routes 4-3 (or \&-1 (\$) and a-12. The circuit for relay $1 R E S$ may be traced in Fig. 1A from one terminal B of a suitable source of current, contact 13 of track relay 4 TR , contact 14 of button 4P, back contact 15 of relay IRW, relay IRES, back 75
contact 16 of relay 5 BNW , middle contact 17 of switch lever 1 W , back contacts 18, 20, 22 and 23 of relays IBNW, 2XS, IANES and IRWK, front contact 25 of relay ILS to the other terminal C of the same source. The circuit for relay IBNES extends from terminal B over contact 13 of relay 4 TR , contact 25 of button 4 P , back contact 21 of relay IBNW, relay IBNES, back contacts 29 and 29 of relays $I R W$ and $4 X S$, front contact 30 of relay INWK to terminal C. Relays IRES and IBNES upon becoming energized complete stick circuits over their contacts 31 and 32 extending to terminal B at contact 13 over the normally closed "pull" contact 33 of button 4P.

The operation of either of these relays lights the red lamp for indicator 4 GK to mark button 4 P as an operated entrance button by closing a circuit in Fig. 1G from terminal B, back contact 34 of relay 3 COS, front contact 35 of relay LPGGP, contact 36 of relay !RES or contact 37 of relay IBNES, through the red lamp of indicator 4GK to terminal C.
Relay IRES upon becoming energized completes a circuit from terminal B at its contact 38, Fig. 1B, over back contacts 39 and 40 of relays 8×5 and 5ANES through relay 5ANE, back contact 41 of relay $5 R W$, middle contact 62 of lever 5W, front contact 43 of relay 5 NWK to terminal C. Relay 5AN? picks up and completes a circuit from terminal B at back contact 44 of relay 5ANWS, contact 45 of relay 5ANE through relay IANE, contacts 46 and 41 of relay 1RWS, contact 48 of relay 12 Xs , contact 49 of lever 7W, contact 50 of relay 1 NWK to terminal C .

At the same time, the energization of relay IBNES completes a circuit from terminal B at its contact 51, Fig. 1A, for relay 3NE, which circuit extends over back contacts of the conflicting relays 6 XS and 3RES to terminal C at a front contact of relay 3 NWK . Relay 3NE picks up and closes its contacts 52 and 53, Fig. 1B, to connect terminal B to the circuits for relays 5 BNE and $5 R E$. The circuit for relay $5 B N E$ is completed to terminal C at front contact 43 of relay 5 NWK and relay 5 BNE picks up but relay 5 RE is prevented from picking up because its circuit is now open at back contact 54 of the conflicting relay 5ANE. Relay 5BNE upon picking up connects terminal B at contact 55 to the circuit for relay TBNE, which circuit is completed to terminal C at contact 50 of relay 7NWK so that relay 7BNE picks up and by opening contact 56 in the circuit for the conflicting relay 7RE prevents that relay from picking up in response to the energization of relay 5ANE.
It will be seen therefore that the operation of button $4 P$ causes the energization of the preliminary selector for route 4-10 comprising the relays IRES, 5ANE and 7ANE, and that for route $4-12$ comprising the relays IBNES, 3 NE , 5 BNE and 1BNE. The circuits for the conflicting relays 5RE and 7RE have been opened, as above described, and in addition, the circuit for relay IANES which conflicts with relay IRES has been opened at contact 51 of relay IRES, Fig. 1 A , and the circuit for relay 3 RES which conflicts with relay 3 NE has been opened at contact 58 of relay 3 NE .

The energized relays IRES, 7ANE and 1BNE, by closing contacts 59, 60 and 61, respectively, in Fig. 1E, cause the white lamps for the exit section indicators $1 \mathrm{~K}, 10 \mathrm{~K}$ and 12 K , respectively, of the track diagram, to be lighted to
thereby indicate the available exits for the routes governed by signal 4. This informs the operator that each of the buttons $8 \mathrm{P}, 10 \mathrm{P}$ and 12P has been marked as an exit button and now controls an exit relay instead of an entrance relay. Button 8 P normally controls an entrance stick relay EANES over its contact 62, Fig. 1B, but this circuit is now open at contact 63 of relay 5 ANE , and a circuit for the exit relay 6XR has been prepared from terminal B at contact 38 of relay IRES over contact 64 of button $8 P$, contact 65 of relay 8 XS , relay 8 XR , contact 66 of relay 5ANW to terminal C. The operation of contacts 81 and 68 of relays 7ANE and TBNE places the exit stick relays 10Xs and 12XS under the control of buttons 10 P and 12 P , respectively, in place of relays 7ANWS and 7BNWS. Relay 7RWS has been rendered nonresponsive to the operation of button 12 P by the opening of contact 55 of relay 7 BNE .

The operator now completes the selection of the desired route by momentarily operating the corresponding exit button. Since route 4-12 is to be selected, he will operate button 12P, completing the circuit for relay 12 XS from terminal B, contact 53 of relay $7 T R$, contact 70 of button 12 P , front contact 68 of relay 7BNE, back contacts 71 and 72 of relays 7RWS and 7BNWS, relay 12 XS to terminal C. Relay 12 Xs picks up and completes a stick circuit over its contact 73 and back contact 74 of relay $7 R E$, which extends to terminal B at contact 55 of relay 5 BNE.

Relay 12Xs upon becoming energized causes the successive energization of relays 5BNW, 3NW and IBNW, these relays together with relay 12XS comprising the final selector for route 4-12. The circuits for these relays are generally similar to the selector circuits previously traced, the circuit for relay 5BNW including front contacts 15 and 76 of relays 12×5 and TBNE, and the circuits for relays 3 NW and IBNW including front contacts 71 and 70 , Fig. 1A, of relays 5 BNW and 3NW, respectively. Relay 5BNW also closes contact 18 in the circuit for relay 3RW but that relay does not pick up because its circuit includes contact 58 of relay 3 NE which is now open.
Relay IBNW upon becoming energized opens contact 18 in the circuit for relay IRES and since contact 80 of relay IBNES bridging contact 18 is also open, relay IRES releases and consequently relays 5ANE and 7ANE release, extinguishing the white lamps for indicators IK and 10 K and reconditioning buttons $8 P$ and 10 P and also $2 P$ as entrance buttons, so that these buttons may now be operated to establish a parallel route 8-3 or 4-10. Button 6P, which controls a conflicting route, remains nonoperative. Relay IBNW by closing contact 8I, Fig. 1E, lights the white lamp for indicator 4 K to mark the completion of the route selection. The selector relays for route 4-12 are now electrically isolated from the relays for all conflicting routes.

Since it has been assumed that all switches are normal, no switch operation is required in the present case and the white lamps for each of the switch sections TBNK, 5BNK, 3NK and IBNK of Fig. 18 become lighted as soon as the selection of the corresponding route portion is completed, that is, upon the closing of contacts 82,84 , 86 and 88 , Fig. 1G, of relays 12 XS , 5BNW, 3NW and IBNW, respectively, since contacts 83, 85, 81 and 89 of relays TBNE, 5BNE, 3NE and IBNES are also closed.
Relay IBNW upon becoming energized also 75
completes a circuit in Fig. 1D to energize the signal control relay 4 HR , which circuit may be traced from terminal B over back contacts 90 and 91 of relays 7BNWS and 1RWS, front contacts 92, 93 and 94 of relays 7BNE, 7NWK and 5NWK, front contacts $95,96,97$ and 98 of relays 3NWK, INWK, IBNW and IBNES, relay 4HR to terminal C.

My apparatus is so arranged that the clearing of a signal in response to the operation of its control relay is made dependent upon the locking of each switch of the route which such signal governs, as described in the Allen and Thompson application hereinbefore referred to. The initial result of the operation of relay 4 HR is to open back contact 99, Fig. 1F, in the circuit for relay 4 AS , which relay therefore releases and opens its contact 100 to release the section locking relay 4ES. Relay 4ES in turn opens contact 101 to release relay 3ES. Relay 3ES upon releasing, opens contacts 102 and 103 in the circuits for relays 5 ES and 7 ES , releasing relay 7ES. Relay 5ES, which is associated with a section 5T not included in route 4-12, is not released because contact 102 is bridged by the closed contact 104 of relay 5 NCR . Relay 4 AS , by closing back contact 105 , Fig. 1H, prepares a circuit over contacts 106 and 101 of relay 4 HR , for the signal mechanism 4AG.
Relays 4ES, 3ES and 7ES, by closing their respective back contacts 108,109 and 110 , Fig. 1F, cause the energization of the corresponding indication relays $4 \mathrm{SP}, 3 \mathrm{SP}$ and 7 SP , and these relays close contacts in the circuits of Fig. 1E for 5 each of the white lamps for the tracks indicators for route 4-12. It foilows that indicators $\mathrm{BIK}, 3 \mathrm{~K}$ and 7 K now become lighted in response to the closing of contacts 111,112 and 113 of the SP relays, to complete the strip lighting for the route; that is, a substantially continuous white line corresponding to route $4-12$ is now displayed on the track diagram to indicate that the route is fully established.

At the same time, contacts 114 and 115, Fig. 1C, of relays $4 E S$ and TES open to release the switch locking relays ILS and 7LS, respectively, and relay 3ES opens its contacts 116 and 117 to release relays 3 LS and 5LS, thereby electrically locking the switches by opening the circuit for each of the polar stick relays WR. The closing of the back contacts of the LS relays completes the signal circuit, which may be traced in Fig. 1 from terminal B, contact 118 of relay 12 AS , contact 119 of relay 7 NCR , back contacts 120 and 121 of relays TLS and 5 LS , contact 122 of relay 5 NCR , back contact 123 of relay 3 LS , contact 124 of relay 3 NCR , back contact 125 of relay ILS, contact 126 of relay 1 NCR , back contact 105 of relay 4AS, contact 106 of relay 4 HR , normal polar contacts 121, 128, 129 and 130, relays IWP, $3 \mathrm{WP}, 5 \mathrm{WP}$ and 7WP, contacts 131, 132 and 133 of the track relays $7 \mathrm{TR}, 3 \mathrm{TR}$ and $9 T \mathrm{R}$, thence over the pole-changer contacts 134 and 135 of the line relay 4 DR through the winding of mechanism 4AG to terminal C at contact 101 of relay 4HR.

Signal 4A now clears and relay 4RGP releases in response to the opening of back contact 136 of mechanism 4AG, and at its contact 35, Fig. 1G, relay 4RGP controls the circuits for indicator 4GK to cause the indication displayed by the lens in button 4 P to change from red to green.

If now the approaching train enters the first detector section 4 T of the route, relay 4 TR will release and by opening contact 13, Fig. 1A, will
cause relay IENES and consequently all the route selector relays for route a-12 to release, and relay $4 B N E S$ will release relay $4 H R$. Mechanism AAG releases in response to the opening of contact 133 of relay $4 T R$ and its circuit is also opened at contacts 106 and 107 of relay 4HR. Relay 4RGP now picks up, and by opening its back contact 35 , causes indicator 4 GK to become dark. Relay 4RGP also completes a pick-up circuit for relay 4AS which may be traced in Fig. 1F from terminal B, back contact 137 of mechanism 18G for the distant signal 19, contacts 39 and 133 of relays $4 H R$ and 4 RGP , back contact 139 of the slow acting repeater 4TP of the track relay for section 4 T through relay AAS to terminal C. Relay 4AS therefore picks up and completes its stick circuit at contact 140. Relay as also closes contact 100, Fig. 1F, in the circuit for relay 4ES, which relay however, does not pick up until section $4 T$ is vacated to close contact 1 I 1 of relay $4 T R$. It follows therefore that relays 4SP, 3SP and 7SP are held energized by relay 4 TR as long as section 4 T is occupied. Relay 4 TP by opening its front contact 142, Fig. 1E, extinguishes the white lamps for the indicators $4 K$, $A B N K$ and BIK and by closing its back contact 143, Fig. 1G, lights the corresponding red lamps for these indicators as long as section 4 T remains occupied.

Since contacts such as $\mathbf{8 6}$ and 87 of relays 3NW and 3 NE in the circuits for the white lamps for the indicators for route $4-12$ are now bridged by contacts of the corresponding SP relays such as contact 144 of relay 3 SP , it is apparent that the white lamps for the unoccupied sections in advance of the train will be maintained lighted by the relays SP until these sections become occupied, the indicators for the sections becoming red successively in response to the release of relays 3 TP and 7 TP , and then becoming dark as these relays pick up when the train vacates the corresponding sections. Thus when section $4 T$ is vacated, relay $4 T R$ picks up closing contact 141 to energize relay 4ES, thereby releasing relay 4 SP, which is quick acting, and opening contacts such as 111 in the circuits for the white lamps for the indicators for section dT, before the slow acting relay 4TP controlled by relay $4 T R$ has closed its front contact 142 in these circuits. Relay 3ES does not pick up as long as contact 145 of relay 3 TR remains open and consequently relays 3SP and 1SP are held energized by relay $3 T R$ as long as section 3 T is occupied, and similarly, relay 7 SP is held energized by relay $7 T R$ as long as section $7 T$ is occupied.

One advantage of this arrangement is that it provides a distinctive "approach locked" indication of the track switches. Assume, for example, that route 4-12 is cancelled manually by "pulling" button $4 P$ to open contact 33 in the stick circuit for relay IBNES momentarily, before the train enters the route. This will release the route selector relays and cause indicator 4 GK to become dark, but if the approach zone is occupied, relay 4 AR will be in its released position and the reenergization of relay 4AS will be delayed until the time element measured by relays $4 T E$ and STES is completed. Consequentiy, the relays $S P$ will remain energized and the white lights for the locked route will not be extinguished until the time element is completed, this indication being distinctive because the indicators GK for both ends of the route are dark. It is also evident that if the 75 terminal B at contact 13 of relay $4 T R$, contact 26 of button 4P, front contact 27 of relay IBNW, back contacts 165 and 166 of relays IRES and. IBNES, relay 4XS to terminal C, and relay AXS picks up completing a stick circuit at its contact

163 extending to terminal B at contact 79 of relay 3NW.
Relay 4XS upon picking up, closes its contacts 167 and 168 and energizes the final selector for route 12-4. Contact 167, Fig. 1B, is in series with the open back contact 169 of relay IBNW and is therefore ineffective, but contact 168, Fig. 1A, which is in series with the front contact 170 of relay IBNW completes the circuit for relay 3 NE which picks up and closes contacts 52 and 53 . Contact 53 is not effective to pick up relay 5 RE because the circuit is now open at contact 156 of relay 5BNW, but relay 5BNE picks up in response to the closing of contact 52 and in turn closes its contact 55 to pick up relay 1BNE, and the latter relay by closing its contact 61 lights the entrance indicator 12 K , thereby completing the selection for route $12-4$.

When relay 3 NE picked up it released relay 3 RW by opening its back contact 58, and when relay TBNE picked up it opened the circuit for relay IRWS at contact 56, thereby releasing relays TRWS, 5ANW and IANW and extinguishing the white lights for sections 6 K and 2 K . The remaining operations are similar to those already described, except that relay 12HR will beccome energized in place of relay $4 H R$ and signal 12 will clear in place of signal 4A.
Returning now to a consideration of route 4-12, I shall assume that the operator desires to clear the call-on signal 4C to admit a second train to section $8 T$ while that section is occupied by a first train moving from left to right. A connection to terminal B for picking up relay IBNES becomes available at back contact 171 of relay 4 TP shortly after relay $4 T R$ releases, and it follows that the route may be set up again by operating buttons $4 P$ and 12 P as previously described. Relay 4 HR will pick up, but mechanism AAG will remain deenergized because its circuit is open at contact 133 of relay 4 TR and indicator 4GK will continue to display a red light after the exit button 12P is operated.
To clear signal GC for route 4-12, the operator will again press button 4 P after he has picked up relay 4 HR as above described, the operation of button 4P in this case completing a pick-up circuit for relay $4 C O S$ from terminal B, contact 171 of relay 4 TP , contact 26 of button 4 P , front contact 27 of relay IBNW, back contact 165 of relay IRES, front contact 165 of relay IBNES, contacts 172 and 173 of relays $4 R G P$ and $4 H R$, relay 4 COS to terminal C, and relay $4 C O S$ will pick up to complete a stick circuit over contact 173 and its own contact 174 which extends to terminal B over contact 13 of relay 4TR or contact 171 of relay 4 TP .

Relay 4COS completes a circuit in Fig. 1H for mechanism 4CG which is a branch of the circuit for mechanism 4AG already described extending from terminal B at contact 118 of relay 12 AS to contact 106 of relay 4 HR and thence over contact 175 of relay 4COS, contact 176 of mechanism 4 AG , the winding of mechanism 4 CG , contact 107 of relay 4 HR to terminal C .
Signal 4C now clears, relay 4RGP releasing due to the opening of contact 177 of mechanism 4CG. When relay 4COS picked up, it caused indicator 4GK to display a distinctive flashing red indication by closing its front contact 34, Fig. 1G, which is connected to terminal B over contact 178 of a continuously operating flasher relay CD. When signal 4C clears, indicator 4GK will display a continuous flashing green indication due to the closing of back contact 35 of relay $4 R G P$.

Since relay: IBNES is now energized over back contact 171 of relay 4 TP , it will not release if the second train enters section 4 T before the first train vacates that section. In this case, the operator will cancel the route manually by pulling the button 4P to open the stick circuit for relay IBNES.

I shall next assume that with the apparatus in the normal condition, as shown, that the operator presses buttons $8 P$ and $8 P$ in that order to establish route 4-3. The result of pressing button 4P under this condition has already been described. When button 8 P is operated, the pick-up circuit in Fig. 1B aiready traced for relay 8 KR will become closed at contact 64 , relay 8XR will pick up and will prepare a circuit for relay 8 XS extending from terminal B at contact 38 of relay IRES, contact 179 of relay 8 XR , through relays 8 XS and 3 KR , contact 06 of relay 5ANW to terminal C, but relay 3 XS does not pick up at this time because it is short circuited by a connection to terminal B at contact 33 over contacts 64 and 65. When button $6 P$ is released, however, relay 8XS picks up in series with relay $\delta \times R$ and maintains both relays energized.

Relay 8XS upon picking up closes contacts 180 and 181, Fig. 1A, in the circuits for relays IANW and IRW. The circuit for relay IANW is open at contact 57 of relay IRES and only relay IRV picks up, lighting the entrance indicator 9 K by closing its contact 182, Fig. 1E. By opening its back contact 28, Fig. 1A, relay IRW releases relays IBNES, 3NE, 5BNE and 7BNE, thereby reconditioning buttons 6 P and 12 P as entrance buttons and causing indicator 12K to become dark. Relay 8xs, by opening contact 39, releases relays $5 A N E$ and 7ANE, reconditioning buttons 8 P and 10 P as entrance buttons and causing indicator IOK to become dark.
In Fig. 1C, relay IRW completes a circuit from terminal B at contact 183 of relay ILS through the right-hand winding of relay IWR, contacts 184, 185 and 186 of relays ILS, IRW and IRES to terminal C. Relay IWR is a stick polar relay arranged to remain in its last operated position when deenergized and it now reverses, closing its right-hand contacts to operate switches IA and IB to reverse, at the same time releasing relays INWC and INWK. which are controlled in the same manner as the corresponding relays for crossover 1 shown in Fig. 1F. Relay INWK by closing contact 187, Fig. 1G, completes a circuit over back contact 188 of relay $\mathbb{R W W K}$ for the red lamp for the diagonal indicator IRK. Since the white lamps for indicators 1 K and 4 K are now lighted due to the closing of contacts 59 and 182 of relays IRES and IRW, respectively, a distinctive indication is provided on the track diagram indicating that switches IA and IB are unlocked or in transit.

It will also be seen that since the circuit for the red lamp IRIK over back contacts 187 and 188 is independent of the route control, a distinctive indication will be displayed in the event a track switch becomes displaced at any time from its proper normal or reverse position, so that the operator may promptly take the proper action to correct the defect.

When switches I complete their movement and become locked reverse, relay IWP becomes energized in the reverse direction and relays IRWC and IRWP pick up. Relay IRWK opens the circuit for the red lamp for indicator IRK and at ; contact 189, Fig. 1E, completes a circuit over con-
tacts 190 and 191 of relays $1 R W$ and $8 \times \mathrm{XS}$ for the white lamp of indicator IRK. The white lamps for indicators $4 \mathrm{~K}, \mathrm{I}$ RK and 1 K are now lighted, indicating that route $4-8$ is fully established.
Relay 9 HR now becomes energized over a circuit in Fig. 1D from terminal B, contacts 192, 193, 194 and 195 of relays 8XS, IRWK, IRW and IRES, relay $4 H R$ to terminal C. Relay $4 H R$ picks up, releasing relay 4AS by opening contact 99 , and relay GAS releases relay 4 ES by opening contact 100, but relay 3ES does not release as previously described, contact 101 of relay 4 ES in its circuit being now bridged by the closed contact 196 of relay IRCR. Relay ILS is released by the opening of contact 1!4 of relay 4ES but it is the only switch locking relay released and upon the closing of the back contact 202 of this relay a circuit is completed for mechanism 4CG which may be traced in Fig. 1H from terminal B at contact 198 of relay IWS, over contact 199 of relay 4 HR , back contacts 200,201 and 202 of relays INCR, 2 HR and ILS, contact 203 of relay 1 RCR, back contact 105 of relay 4AS, contact 106 of relay 4 HiR , reverse contact 121 of relay IWP, contact 176 of mechanism 4AG, the winding of mechanism 4 CG , contact 107 of relay 4 HR to terminal C. Signal $4 C$ will therefore clear and indicator 4 GK will change from red to green as in the case previously described.

It will be noted that the circuit just traced is connected to terminal B over contact 198 of relay 5 WS . This relay is controlled by relay l3AS as shown in Fig. 1F and contact 198 therefore functions like contact 118 of relay 12AS in the circuit for mechanism AAG to provide time locking of opposing signals.

By referring to Figs. 1E and $1 G$ it will be seen that when the train enters route 4-8, the white lamps for indicators 4 K and !RK will be extinguished and the red lamps lighted by the operation of contacts 182 and 204 or relay 4 TP , indicator 1 K also becoming red due to the closing of contact 205 of relay ITP when the train enters section IT. Indicator $4 \mathbb{K}$ becomes dark when the train vacates section 4 T but the red lamp for indicator IRK is maintained lighted over contact 206 of relay ITP until the locking of switches 1 is released as the train vacates section IT. This arrangement has the advantage that it warns the operator that route 4-12, for example, although unoccupied, cannot be set up because switch 1B is locked reverse by a train occupying section IT.

I shall next assume that after having set up route 4-8 as above described, the operator pushes buttons 8 P and 10 P to set up route 8-10.

Button 8P serves as an entrance button as long as relay 5 ANE is deenergized, that is, not only when no button such as $4 P$ in the rear has been operated, but also following the release of relay 5ANE after button $8 P$ has been operated as an exit button. In the present case, button $8 P$ is operated again aiter route 4-8 has been set up as above described, and the closing of its contact 52 completes the circuit for relay 5ANES, which relay upon picking up closes contact 40 to pick up relay 5ANE, and the latter relay closes contacts 45 and 207 to pick up relays 7ANE and 1RE. The white lamps for the exit indicators $10 K$ and 12 K become lighted due to the closing of contacts 60 and 288 of relays TANE and 7RE, marking buttons 18 P and 13 P as exit buttons.

Button $10 P$ is now operated, completing a circuit from terminal B at contact 209 of relay 5 TR , contact 210 of button 10P, front contact 67 of relay TANE, back contact 211 of relay 7ANWS,
relay 10Xs to terminal C. Relay 10xs picks up, closing contact 212 to complete its stick circuit extending to terminal B over contacts 44 and 45 of relays 5ANWS and EANE. Relay 10XS at contact 213 connects terminal B to a circuit, one branch of which extends over front contacts 214 and 154 of relays 7 ANE and 5ANE through relay 5 ANWS to terminal C at contact 43 of relay 5NWK. Another branch of this circuit extends over front contact 215 of relay fANE through relay 5 RW , but this branch is open at contact 54 of relay 5ANE. Relay 5ANWS picks up and at contact $2 / 6$ closes its stick circuit extending to terminal B over contacts 214 and 213. Reiay 10XS opens its back contact 217, thereby releasing relay $7 R E$ and extinguishing the white lamp for indicator 12 K . This completes the route selection, and since the remaining operations involved in the clearing of signal 8 are similar to those previously described, a detailed explanation is believed to be unnecessary.
It has already been explained that when the entrance button 4 P is operated, both buttons 8P and 10 P become exit buttons. A feature of my invention is the provision of "through routing" past intermediate signals, the apparatus being so arranged that if buttons 4 P and 16 P are operated in that order, the two routes 4-8 and 8-10 will become established without operating button 8 P , precisely as if button 8P were operated twice in succession prior to the operation of button 10 P as above described.
Assuming that with the apparatus in its normal condition as shown, that button aP is operated. The preliminary selector comprising relays IRES, 5ANE and 7ANE will become energized and if button 10 P is operated while relay TANE is energized, relays 10 XS and 5ANWS will become energized as already described. Button 408 P not having been operated, relay 5ANWS upon becoming energized completes a pick-up circuit for relay 8XR which may be traced from terminal B, contact 38 of relay IRESS, contacts 218 and 219 of relays 5ANES and 5ANWS, contact 55 of relay 8 XS , relay 8 XR , contact 65 of relay 5 ANW to terminal C. Relay 8XR picks up and completes a pick-up circuit for relay 5ANES from terminal B at contact 209 of relay 5TR, contacts 220 and 221 of relays 5ANWS and $8 \times R$, through relay 5ANES to terminal C at contact 43 of relay 5NWK. Relay 5ANES picks up, closing its stick circuit at contact 222 , and by opening contact 218 causes relay 8xs to pick up in series with relay $8 \times R$, and relay 8 XS closes contact 181 to pick up relay IRW, thereby completing the selection of the through route 4- $\mathbf{1 0}$.

It will be seen that when a train passes signal 4C to enter route $4-10$, relays $\operatorname{IRES}, 8 \mathrm{XR}, 8 \mathrm{ES}$ and IRW will be released by the opening of contact 13 of relay $4 T R$ without effect upon the relays 5ANES, etc. for route 8-10, the latter relays being released when the train passes signal 8 , by the opening of contact 209 of relay 5 TR .

I shall next assume that the apparatus is in the normal condition as shown and that buttons l0P and 4P are operated in that order to set up route $10-4$. The operation of button 13P picks up relay 7ANWS over back contact 67 of relay TANE and relay 1ANWS closes contacts 223 and 224 in the circuits for relays 5ANW and 5RW. Relays 5ANW and 5RW pick up, relay 5ANW opening contacts 66 and 164 to render relays 8XR, 8XS, 5ANES and 5ANWS nonresponsive, and closing contacts 158 and 159, Fig. 1A, in the circuits for relays IANW and IRW. Relays

IANW and IRW pick up and light the white lamps for the exit indicators 2 K and 4 K . Relay 5 RW closes contacts 225 and 226 in the circuits for relays 3 NW and 3RW. Relays 3 NW and $3 R W$ pick up, relay $3 N W$ closing contact 79 in the circuit for IBNW but this relay does not pick up because its circuit is open at contact 23 of relay IRW. Relay 3RW closes contact 227 lighting the white lamp for the exit indicator 6 K .

Assuming that the exit button $4 P$ is now op erated, relay $4 \times S$ is picked up over front contact 15 of relay IRW, closing contact 167 to pick up relay 5 ANE , and relay 5 ANE closes contact 53 to pick up relay lane. When relay AXS picks up, the opening of its back contact 23 releases relay IANW, since contact 228 of relay IRW is now open. When relay 5ANE picks up, the opening of its back contact 5 f releases relays 5RW and consequentiy relays 3 NW and $3 R W$ release. This completes the selection for route 10-4. It will be noted that relay 5ANWS is operated only when a route for traffic moving from leit to right is being set up, and that relay fanw is operated only when a route from right to left is being set up. These relays are interlocked, the circuit for each relay including a back contact of the other and serve as directional stick relays to properly govern the apparatus associated with the intermediate bution 昭 when the traffic direction is determined by the relative order of operation of buttons at other locations.
An important feature of my invention is the provision of means for insuring proper operation when the track layout provides a plurality of alternative routes between the same route ends, there being a number of such situations in the layout chosen, as is obvious from the drawings. Considering the two routes 4-10 for exampie, route 4 - io over I reverse is chosen as the preferred route over the one including 5 reversed because it frees a parallel route 0-12. This choice is effected in a very simple manner by merely omitting one of the cross checks for the route selector relays which are ordinarily provided when no alternatives exist. For example, in the case of routes 4-12 and 6-12, it will be seen that the corresponding relays 3NE and 3RES are fully cross checked, the circuit for each relay including a back contact of the other. In the case of the alternative routes 4-10 over 5 normal and 5 reversed, the circuit for relay $5 R E$ includes back contact 54 of relay 5 ANE , but there is nothing to prevent the energization of relay EANE if terminal B is connected to both relays at the same time, the back contact 157 of relay bRE in the circuit for relay 5ANE being bridged by back contact 41 of relay 5RW, consequently only the route 4-10 over 5 normal becomes established when both are available. If for any reason relay 5ANE is prevented from picking up, as would be the case for example, if switches I were locked normal by a train occupying section st, relays IBNES, 3NS, 5RE and 7 ANS would pick up in response to the operation of the entrance button $4 P$, but relay IREIS would be prevented from picking up because its circuit would be open at contact 25 of relay ILS, this relay occupying its released position whea section IT is occupied. The operation of the exit button top would then pick up relays 10Xs, 3RW, $3 N W$ and $18 N W$ to complete the selection for the secondary route 4-10 over 5 reversed. When relays 5RE and 5RW are both energized, the circuits for relays 5BNE, EBNW, 5ANE, 5 ANES, 5ANW and 5ANWS are open at contacts

41 and 157 of relays $5 R E$ and $5 R W$ so that the secondary route when established is isolated and is not interfered with if the preferred route subsequently becomes available. For the opposite direction similar provisions are included in the circuits for relays IRW and IBNW, route 18-4 over I reversed being chosen as the preferred route and route $10-4$ over 1 normal as the secondary route. Similar provisions permit the automatic selection at times of the "runaround" routes 4-12 and 12-4 over 1 and 7 reversed, as will be apparent from the drawings.

My apparatus is also arranged so that any secondary route may be selected at will by the operator by the operation of one or more of the individual switch levers W which define such route. This is accomplished by including contacts of the levers W at the proper points in the route selector relay circuits. For example, assume that switch 1 remains reversed and does not respond to the operation of buttons 8 P and 12 P to establish route 4-12 over 1 normal. The operator after cancelling the set up by pulling button $4 P$ momentarily will reverse lever $7 W$ to agree with the position of the crossover 7 and will then reoperate the entrance button $4 P$. In this case, relays IRES, 5ANE and TRE will become energized, and also relays BNES and $3 N E$, but the circuit for relay 7BNE is open at contact 49 of lever 1W, Fig. 1B, which contact now occupies its right-hand position. The operation of the exit button 12P will then cause relays 12 XS , 5RW and IRW to pick up, relay IRW releasing relays IBNES and 3 NE , thereby completing the selection of the "run-around" route ——12 over 1 and 1 reversed. Similarly, the secondary "run-around" route 4-12 over 5 and 7 reversed may be selected by reversing both levers 5 W and 7 W , and the secondary route 4-10 or $10-4$ over 5 reversed may be selected by reversing lever 5 W or 1 W , respectively. In no case however, can a route set up be interfered with by an inadvertent movement of a switch lever after the route is established. In the case described involving lever 7W, for example, it will be apparent that since contact 229 of relay 7 RE is open, the circuits for the conflicting route selectors TBNE, etc. are held open at back contact 47 or 45 of relay 7RWS or 12XS, if lever 7W is moved to close contact 49 aifter the route is established. On the other hand, when a route including crossover 7 in its normal position is set up, relay 7ANE or 7BNE will be energized to close contact 230 or 231 , and in this case the opening of contact 89 as the result of an inadvertent movement of lever TW to reverse is without effect. Furthermore, relay 7WR is nonresponsive to the operation of lever TW after a route is established because relay 7LS is then released.
The arrangements for cperating the track switches individually will be readily apparent from a consideration of Fig. 1C. For example, if lever $1 W$ is moved to the left or right while relay ILS is energized, a circuit is completed from terminal B, contact 183 of relay ILS, through the left-hand or right-hand winding of relay IWR, contact 232 or 184 of relay 1 LS over the left-hand or right-hand contact 233 of lever IW to terminal C , to operate the contacts of relay IWR to a position to correspond with that of the lever contact. In systems employing individual switch levers it is desirable to arrange the levers so they are ineffective unless operated while the switch locking is released. This
is accomplished in a novel manner in the present system by providing each lever W with a center contact which must be closed in order to effect the energization of the associated locking relay LS. Thus relay ILS has a pick-up circuit which extends from terminal B at contact 114 of relay $4 E S$ over front contacts of the locking and track relays for sections 1 T and 4 , through the winding of relay (LS, contact 233 to terminal C, the lever contact 233 being bridged by a front contact of relay dLS when that relay becomes energized.

Since switches I will remain locked unless IW is restored to its center position and the operator may fail to note an inadvertent displacement of a switch lever from that position, it is desirable to indicate such displacement on the track diagram and to also distinctively indicate the operation of the track switch when it is operated individually by the corresponding lever W. This is accomplished in a novel manner by providing normal and reverse contacts of each lever, such as contacts 224, 225 and 226 of lever IW, in the circuits for the white lamps for each of the indicating sections for the corresponding switch, as shown for sections IANK, IRE and IBNK in Fig. 1E, for example. It will be apparent that whenever lever IW is moved to left or right, the white lamps IANK and IBNK will become lighted over circuits including contacts 224 and 228 of lever IW and contacts 227 and 223 of relay INWK, respectively, or lamp !RI will become lighted over contact 225 of lever IW and contact 189 of relay IRWK, depending upon the actual position of the track switch, irrespective of whether lever IW cccupies its left-hand or righthand position. If the switch responds to the lever operation, the lamp which became lighted as a result of the lever movement, becomes dark, but then the red lamp for indicator IRK becomes lighted over the circuit of Fig. 1G including back contacts 181 and 188 of the switch indication relays to display the transit indication, and the white lamp for the position to which the switch is operated becomes lighted when the switch completes its operation. On the other hand, if the switch fails to respond to the lever movement because it is locked or because it already occupies the required position, the lamp which became lighted as the result of lever movement remains lighted. It follows that the normal dark condition of the indicators is obtained only when lever IW is in its center position, and that the arrangement indicates individual switch lever operation in a distinctive manner and also gives the operator full information as to how the switch responds to such operation.
The second form of my invention as disclosed in Figs. 2A to 2E, inclusive, differs principally from the first form in the employment of a different arrangement of route selector circuits. In the second form a pair of route relays NR and RR is provided for each single switch and three route relays $A N R, R R$ and $B N R$ for each crossover. The exit relays XS are not required, except for the intermediate signal 8 , and the routs selector relays are employed in only one direction at a time.
To explain the second form of the apparatus, I shall first assume that the apparatus is in the normal condition as shown and that the operator desires to clear signal 4A.
To set up route 4-12, the operator will operate buttons 4 P and 12 P as previously described. The operation of button 4 P of Fig. 2A completes 75
circuits over contacts 13,14 and 26 to pick up relays IRES and IBNES, energizing the preliminary selectors for routes a-10 and 4-12 and lighting the exit lamps precisely as described in cennec5 tion with the first form of the apparatus.

Likewise, relays 3 NE , 5ANE and 7BNE at contacts 58,54 and 56 open the circuits for the conflicting relays 3RES, 5RE and 7RE in Figs. 2A and 2B.
0 When the exit button I2P is operated, a circuit is closed from terminal B at contact 69 of relay TTR over its contact 70 and front contact 69 of relay TBNE to energize the route relay TBNR, which relay picks up and closes a stick circuit over its contact 229 extending to terminal B over contact 230 of relay TBNE, and also closes contact 231, Fig. 2A, to pick up the route relay 3NR over a circuit including contact 232 of relay 3NE. Relay 3NR upon becoming energized, closes contact 233 to pick up the route relay IBNR over a circuit including contact 234 of relay IBNES. Relays 7BNR, 5BNR, 3NR and IBNR open their respective back contacts 235, 236, 231 and 238 in the circuits for the corresponding $R E$ and $R W$ 25 relays, thereby isolating the route circuits for route 4-12. The cpening of contact 233 of relay $[$ BNR releases relay IRES and the remaining energized route selector relays associated with the diverging routes 4-1 3 and 4-10.

Assuming the switches to be already in the position required for route 4-12, as shown, the operation of the route relays completes a circuit for relay $G H R$ which may be traced in Fig. 2D from terminal B at back contact 90 of relay TBINES and front contacts of the route relay NR and the corresponding indication relay NWE for each switch of the route, thence over front contact 98 of relay IBNES through relay 4 HR to terminal C. Relay 4 HR becomes energized and affects the clearing of signal 4A as explained in connection with Figs. $1 F$ and 1 H in the description of the first form of the apparatus.

In Figs. 2C and 2E only a portion of the circuits are shown, these being generally similar to .j the circuits of Figs. 1C and 1E already described, differing therefrom only in that each pair of route selector relay contacts which is closed in Fig. 1C to complete the selection of a route portion, such as contacts 185 and 186 of relays IRW 50 and IRES, is replaced in Fig. 2C by a single route relay contact, such as contact 239 of relay IRR, having the corresponding function. Similarly, each pair of contacts such as contacts 88 and 89 of relays IBNW and IBNES for completing the circuit for the white lamp of indicator IBNK in Fig. 1E is replaced in Fig. 2E by a single contact such as contact 240 of relay (BNR. The operation of relays WR by the circuits of Fig. 2C and the lighting of the track diagram lamps is effected in the same manner in the second form of the apparatus as already described.

I shall next assume that with the apparatus of the second form of my invention in the normal condition as shown that buttons 12P and 4P are operated in that order to set up route 12-4. Button 12P when operated completes the circuits for relays TBNWS and TRWS at contacts 70 and 165 to energize the preliminary selectors for 0 routes 12-2, 12-4 and 12-5 and to light the exit indicators $2 \mathrm{~K}, 4 \mathrm{~K}$ and 6 K , as explained in the description of the first form of the apparatus.
When the exit button $4 P$ is operated, a circuit is completed at contact 25 over front contact 27 of relay IBNW to energize relay IBNR, which
relay picks up and closes its stick circuit at its contact 201 extending to terminal B at contact 242 of relay IBNW. Pelay IBNR opens its back contact 208 in the circuits for relays IRES and IRW and closes contact 243 to complete a circuit over contact 2 ds of relay 3 NW to energize relay 3NR. Relay 3NR picks up, opening back contact 231 in the circuits for relays $3 \mathrm{RES}, 3 \mathrm{RW}$ and $3 R R$, thereby releasing relay $3 R W$ and closing contact 205, Fig. 2B, to complete a circuit over contact 246 of relay 5BNW for relay 5 GNR Relay $5 B N R$ picks up, opening its back contact 236 in the circuits for relays $5 R E, 5 R W$ and $5 R R$ and closing its contact 297 to complete a circuit over contact 258 of relay TBNWS for relay TBNR. Relay $7 B N R$ picks up, opening its back contact 235 in the circuit for relay IRW to release the preliminary selector relays for route 12-2. This isolates the circuits for route 12-4 and completes the selection.
I shall next assume that route 4 - 12 has been set up as above described in connection with the second form of the apparatus, but that signal 4-A fails to clear due to the route being occupied by a train, and that the operator desires to operate the call-on signal s-C to permit a second train to enter route 4-12. The call-on signal - C may be cleared by operating button 4 P as in the first form of the apparatus. It will be clear from Fig. 2A that since the energization of relay IBNR completes the selection of route 4-12, its front contact 249, Fig. 2A, closes at the proper time to place relay ${ }^{6}$ COS under the control of button $4 P$ for the purpose stated

I shall next assume that the operator desires to establish routes $0-8$ and $8-10$. The operation of button 4 P picks up relay IRES, closing contact 38, Fig. 2B, to prepare circuits for relays $8 \times R$ and 8×5 and to pick up relay 5ANE, the latter relay opening contact 63 to prevent the energization of relay 5ANES when button 8 P is operated. Relay $0 \times R$ picks up over the circuit including contacts 68 and 65 when button 8P is pressed and relay 8 XS becomes energized in series with relay $8 X \mathrm{~F}$ when bution $8 P$ is released, as previously described, relay 8 XS closing contact 250, Fig. 2A, to pick up relay $1 R R$ to complete the selection of route 4-8, relay 5ANE releasing due to the opening of contact 39 of relay 8 xS , restoring the circuits for route $8-10$ to normal.
Assuming that button 8 P is now operated as an entrance button, the closing of contact 62 completes a circuit for relay gANE which picks up again and by closing contact as reenergizes relay 7 ANE . The exit button 1 BP is now operated, a circuit being completed at its contact 210 over front contact 67 of relay TANE to energize relay TANR. Relay 7 ANR picks up, closing its stick circuit at contact 25 and at contact 252 completing a circuit over front contacts 253 and 268 of relays FANE and WANES to pick up relay GANR, this completing the selection of route 8-10.
Through routing is also provided in this form of the apparatus. If buttons $4 F$ and 10 P are operated in order, bution $8 P$ not being operated, relay 5aNe will be energized over contact 38 of relay $1 R E S$ and back contacts 39 and 60 of relays 8XS and EANES and will pick up relay TANE, and consequently relay 7ANR will become energized over front contact 67 when button 16P is operated as previously described. In this case, when relay 7 ANP picks up, the closing of its contact 252 completes a circuit over contact 253 of relay 5 ANE and back contact 254 of relay 7 connecting the relays HR to the route network circuits of Fig. 1D or 2D as indicated by the similarly designations of corresponding wires in those views. It will be seen, therefore, that when Fig. 3 is used, relay 4 FIR has connections to
the normally open contacts 265 and 207 as shown in Fig. 3, in addition to the connections to the normally open contacts 195 and 93 of Fig. 1D, and that each remaining relay HR is similarly arranged.

To explain the modification shown in Fig. 3, I shall assume that with the track switches normal, as shown, the operator moves lever IW to the right or reverse control position and levers $5 W$ and $7 W$ to the left or normal control position to establish route $4-10$ or $10-4$. The white lamps for indicators FANK, 5BNK, TANE and 7BNK of Fig. $1 G$ will become lighted due to the closing of the lever contacts 257, 258, 259 and 260, Fig. 1F, because switches 5 and 7 already occupy the positions required for the route and contacts 261 and 262 of relay $5 N W K$ and contacts 283 and 264 of relay 7 NWK are closed. The movement of lever IW by closing right-hand contact 233 causes relay IWR to reverse, releasing relays INWC and INWK, relay INWK by closing its back contact 187, Fig. 1G, lighting the red lamp for indicator IRK, this indication changing to white as soon as switches I complete their movement to reverse due to the opening of back contact 188 and the closing of contact 189 , Fig. 1G. Route 4-10 may then be traced on the diagram by observing the indicators IRK, 5ANK and 7ANK. Although indicators 5BNK and 7BNK are also lighted, they do not indicate a complete route because indicators 3 NE and 3 RK remain dark.

I shall now assume that the operator pulls the entrance button 4 P momentarily. This completes a circuit in Fig. 3 which may be traced from terminal B at right-hand contact 265 of lever $1 W$, the lower contact 266 of button 4 P , relay 4 HR to terminal C. Relay 4 HR picks up and upon the release of the button the stick circuit for relay 4HR is completed from terminal B at contact 265 over the upper contact 265 of button 4 P , contact 261 and winding of relay 4 HR to terminal C. As previously described, the energization of relay 4 FIR causes the release of relays 4AS, AES and ILS. Relay 4ES upon releasing energizes relays $4 S P$ and $1 S P$ to complete the strip lighting for route $4-8$ by lighting the white lamps for indicators $4 K$ and $I K$ but the red lamp in button 4P is not lighted. A circuit for mechanism 4CG is completed in Fig. 1H as previously clescribed to clear signal 4C and relay $4 R G P$ releases to light the green lamp for indicator 4GK.

When the train enters route $4-8$, the operator will restore lever $I W$ to the center position which it normally occupies, thereby releasing relay $4 H R$ and closing the center contact 233 , Fig. 1C, of lever IW to permit the release of the switch locking.

In order to establish the portion 8-18 of the route and to clear signal 8, the operator will pull button $8 P$ momentarily to pick up relay $8 H R$ over the circuit of Fig. 3 extending from terminal B at back contact 268 of relay IDHR, the upper contact 269 of button 10 P , left-hand contacts 270 and 271 of levers $7 W$ and $5 W$, the lower contact 272 of button $8 P$, relay $8 H P$ to terminal C. Relay \&HR picks up and upon the release of button $8 P$ completes its stick circuit at contact 273, clearing signal 8 and completing the strip lighting for route $8-10$. Fuelay 8 HR is released*subsequently upon the restoration of levers 5 W and 7 W to their center positions.

Similarly, the operator may clear signal 1 de to permit a train movement over route 10 - by
pulling button IOP momentarily instead of buttons $4 P$ and $8 P$. In this case a circuit is completed from terminal B at contact 265 of lever IW, the upper contact 263 of button 4 P , back contact 267 of relay GHE, right-hand contacts 274 and 275 of lever 1 W , back contact 273 of relay 8 HR , the upper contact 212 of button 8 P , left-hand contacts 271 and 270 of levers 5W and 1W, the lower contact 269 of button 10P, relay 10 HR to terminal C, and relay $10 H R$ picks up to complete its stick circuit at its front contact 268.
It will be apparent from the foregoing that each button P may be used for four or five different purposes without confusion. If a button is pushed when the associated indicators are dark, it serves as an entrance button, the response of the apparatus to such operation being indicated by the steady lighting of the red lamp in the button and by the lighting of the exit indicator for each available route for which the location of the operated button is an entrance point. When the exit indicator adjacent to the button has been lighted by the operation of a button for the opposite end of a route, the button is marked as the exit button for such route and the response to its operation under this condition is indicated by the lighting of the remaining track indicators for the route as the route becomes established and also by the extinguishing of the exit indicators for other routes having the same entrance point at the opposite end of the track diagram. Each button for the entrance to a route having a callon signal is marized as a call-on button after the corresponding route has been set up, provided the red indicstion of the button indicator persists and its operation as a coll-on button is indicated by the display of a flashing indication by the button indicator. If the button is pulled momentarily after it has been operated as an entrance button, the corresponding entrance stick relay will be released to cancel the route set up, causing the indicator to become dark. Finally, in accordance with the modification shown in Fig. 3 , if the button is pulled momentarily after a route has been established by individual lever operation, it serves as an emergency lever by means of which the signal for the route may be cleared without operating the route selecting relays. Furthermore, the single lens in the button provides four distinctive light indications in addition to its normal dark condition.

It is obvious that the control and indicating apparatus of the control panel as herein disclosed is extremely compact, a feature which is highly desirable in apparatus of this character in order to enable large and complicated track layouts to be more conveniently controlled by a single operator.

In the foregoing I have explained but a few of the many possible operations of the apparatus of my invention, but it is believed that since the remaining operations are carried out in a manner generally similar to those described, that they will be readily understood without further explanation.

Although I have herein shown and described but two forms of apparatus embodying my invention and one modification thereof, it is understood that various changes and modifications may be made therein within the scope of the appended claims without departing from the spirit and sccpe of my invention.

Having thus described my invention, what I claim is:

1. In an interlocking control system, a track
layout including parallel tracks interconnected by track switches adapted to form different traffic routes, entrance and exit buttons for the ends of the routes, preliminary and final route selecting circuits for each route, switch indication and locking relays controlled by traffic conditions in said track layout and having contacts for controlling said circuits in accordance with the position and locked condition of the track switches in the corresponding routes, a contact controlled by each entrance button for energizing the preliminary circuits for each route having its entrance end marked by such button, provided each switch of such route is in the required position or is free to be operated thereto as manifested by said switch indication and locking relay contacts, a contact controlled by each button marking the exit end of a route having its preliminary selecting circuits fully energized for energizing the final selecting circuits for such route, selecting relays governed by said energized preliminary circuits and rendered effective as said circuits become energized to open contacts controlling the preliminary selecting circuits for conflicting routes having different entrance ends, route relays governed by the energized final selecting circuits and rendered effective as said circuits become energized to open contacts controlling the preliminary selecting circuits for conflicting routes having different exit ends, and means comprising the route relays controlled by said energized final circuits for operating the track switches as required to establish the corresponding route.
2. In an interlocking control system, a track layout including parallel tracks interconnected by track switches adapted to form different traffic routes, a single route button for each route end, a preliminary and a final electroresponsive route selector for each route, contacts controlled by said selectors in circuits for controlling the selectors for conficting routes, contacts controlled by each route button normally effective upon operation of the button to energize the preliminary selector for each available route having its entrance end marked by such button, means controlled by each energized preliminary selector for rendering the contacts controlled by the route button for the exit end of the corresponding route effective to control the final selector for such route and at the same time rendering such button ineffective to control the preliminary selectors for any route having its entrance end marked by such button, means controlled by the energized preliminary and final selectors for any route for opening said contacts in circuits controlling the selectors for conflicting routes whereby but one preliminary selector and but one final selector remain energized in response to the operation of the buttons for the opposite ends of any route, and means controlled by said energized final selector for operating the track switches as required to establish the corresponding route.
3. In an interlocking control system, a track layout including parallel tracks interconnected by track switches adapted to form different traffic routes, a single route button for each route end, a preliminary and a final electroresponsive route selector for each route, contacts controlled by said selectors in circuits for controlling the selectors for conflicting routes, means controlled by each route button normally effective upon operation of the button to energize the preliminary selec-
tor for each available route having its entrance end marked by such button, means controlled by the second of any two route buttons to be operated to mark the opposite ends of a desired route and rendered effective upon energization of the preliminary selector controlled by the first operated route button to energize only the final selector for such route in response to the operation of such second bution, means controlled by each energized preliminary selector for opening said contacts in circuits controlling the selectors for all conflicting routes not having the same entrance end, means controlled by said energized final selector for opening said contacts in circuits controlling the selectors for the remaining confiicting routes, and means controlled by said energized final selector for operating the track switches as required to establish said desired route.
4. In an interlocking control system, a track layout including parallel tracks interconnected by track switches adapted to form different traffic routes, a single route button for each route end, a preliminary and a final electroresponsive route selector for each route, a particular selector relay included in each preliminary selector which becomes energized only when each track switch of the corresponding route occupies the position required for the route or is free to be operated to such position, contacts controlled by said selectors in circuits for controlling the selectors for conflicting routes, means effective when the button for one end only of a route is operated to energize the preliminary selector for each available route having one end marked by such button, means effective when the button for the opposite end of a route is operated following this operation of the button for one end of such route to energize the final selector for such route, provided said particular selector relay in the preliminary selector for such route is energized, means controlled by the energized selectors for opening said contacts in circuits for selectors for conflicting routes, and means controlled by said energized final selector for operating the track switches as required to establish the corresponding route.
5. In an interlocking control system, a track layout including parallel tracks interconnected by track switches or crossovers adapted to form different traffic routes, entrance and exit buttons for the ends of the routes, a preliminary and a final selector for each route each comprising a series of tandem-connected relays including one for each switch or crossover of the route, the relays of each series becoming successively energized when current is supplied to the first relay of such series, a circuit for each such relay including back contacts of relays included in the selectors for conflicting routes, means controlled by each entrance button for supplying current to the first relay of the preliminary selector for each available route having its entrance end marked by said button to energize one or more series of relays to thereby open said contacts in the circuits for the selectors for conflicting routes having different entrance ends, means controlled by the energized preliminary selector relay for the switch or crossover nearest the exit end of each such route to condition the button marking that end of the route to function as an exit button, means responsive to the operation of any route button so conditioned for energizing the final selector relays for such route thereby opening the back contacts of such relays to re-
lease the energized preliminary selector relays for routes having different exit ends, and means controlled by each energized final selector relay for operating the associated track switch or crossover as required to establish the corrasponding route.
6. In an interlocking control system, a track layout inclucing parallel tracks interconnected by track switches and crossovers adapted to form different traffic routes, entrance and exit buttons for the ends of the routes, a preliminary and a final selector for each route each comprising a series of tandem-connected relays including one for each switch or crossover of the route, the relays of each series becoming successively energized when current is supplied to the first relay of such series, a circuit for each such relay including back contacts of relays included in the selectors fer conflicting routes, means controlled by each entrance button for supplying current to the first relay of the preliminary selector for each available route having its entrance end marked by said button to energize cne or more series of relays to thereky open said contacts in the circuits for the selectors for conflicting routes having different entrance ends, means controlled by the energized preliminary selector relay for the switch or crossover nearest the exit end of each such route to condition the button marking that end of the route to function as an exit button, means responsive to the operation of any button so conditioned for energizing the final selector relays for such route thereky orening the back contacts of such relays to release the energized preliminary selector relays for routes having different exit ends, and a switch control circuit for each switch or crossover controlled jointly by the energized innal selector relay and by the preliminary selector relay for the same or crossover for operating that switch or crossover to normal or reverse as required to establish the corresponding route.
7. In an interlocking control system, a track layout including parallel tracks interconnected by track switches and crossovers adapted to form difierent traffic routes, locking relays for the switches and crossovers which when ceenergized prevent their operation, indication relays controlled by the switches and crossovers to indicate their positions, entrance and exit buttons for the ends of the routes, a preliminary and a final route sclector for each route each comprising a series of tandem-connected route relays including one for each switch or crossover in the corresponding route, a circuit for each route relay including back contacts of route relays of selectors for conflicting routes in series with contacts of indication relays closed only when the corresponding switch or crossover is in the position required for the route said indication relay contacts being bridged by contacts of the switch locking relay for the same switch or crossover closed only when such locking relay is energized, means normally responsive to the operation of the button for the entrance end of any desired route for successively energizing the preliminary selector relays for such route, provided the route is available as manifested by the condition of said indication and locking relay contacts, means controlled by said preliminary selector relays when all are energized and responsive to the operation of the button for the exit end of the same route for energizing the final selector relays for each switch or crossover of such route, and means controlled by each energized final selector relay
for operating the corresponding track switch or crossover as required to establish the desired route.
8. In an interlocking control system, a plurality of trafic routes through a track layout including movable track switches and/or crossovers, route buttons for the ends of the routes, a preliminary and a final selector for each route each including a relay for each switch or crossover of the route, means responsive to the momentary operation of the button marking one end of a particular route for energizing the preliminaxy selector relays for each route having the same one end, the energization of each such relay being dependent upon the position and locked condition of the associated track switch or crossover means responsive to the subsequent operation of the button for the other end of said particular route for energizing the final selector relays for said particular route only, but only if such route is available as manifested by the energization of the preliminary selector relays for such route, and means controlled by the energized final selector relays for establishing said particular route and for releasing the energized relays for routes conflicting therewith.
9. In an interlocking control system, a plurality of traffic routes through a track layout including movable track switches, route buttons marking the ends of the routes, a selector relay for the exit end of each route, means normally responsive to the operation of any route button for energizing the selector relay for the exit end of each of the available routes which has its opposite end marked by the operated button, and means responsive to the subsequent operation of a button marking the exit end of a selected route having its selector relay energized for releasing all such relays except the one for the selected route and for operating the track switches as required to establish such route.
10. In an interlocking control system, a plurality of traffic routes through a track layout including movable track switches, route buttons for the ends of the routes, there being only one route button for each route end in said track layout, a selector for each direction for each route, means normaily responsive to the cperation of any route button ficr energizing the selector for one direction for each route having one end marked by such button, means responsive to the subsequent operation of the route button for the other end of a selected one of said routes for releasing all said selectors except the one for the selected route and for operating the track switches as required to establish such route, and means dependent only upon the relative order in which the buttons for the two ends of a route are operated for determining the direction of traffic movements over that route when established.
11. In combination, a track layout comprising a plurality of track sections interconnected by track switches to form different traffic routes, route buttons for the ends of the routes, there being only one route hutton for each route end in said track layout, a selector for each route, means normally responsive to the momentary operation of any route button for energizing the selector for each route having its entrance end marked by such route button, means responsive to the subsequent momentary cperation of the butfon for the other end of a selected one of said routes for releasing all said selectors except the one for the selected route and for operating the track switches as required to establish that route, and
means for automatically releasing said one selector when a train enters the first track section of the route.
12. In an interlocking control system, a track layout comprising a plurality of track sections interconnected by track switches to form different routes, route buttons for the ends of the routes, a preliminary selector for each route including a selector relay for the exit end of such route, a final selector for each route, means responsive to the momentary operation of the button marking the entrance end of diverging routes for energizing the preliminary selector for each such route to thereby pick up the selector relay for each available exit, means controlled loy the track relay for the track section at said entrance end for maintaining said preliminary selectors energized, means responsive to the subsequent momentary operation of the button for the exit end of a selected one of said routes having its selector relay picked up for energizing the final selector for the selected route, means controlled by said final selector for releasing all said preliminary selectors except the one for the selected route, means controlled by the preliminary selector for the selected route for maintaining said final selector energized, and means controiled by said final selector for operating the track switches as required to establish the selected route.
13. In an interlocking control system, a railway track switch operable to normal and reverse positions for establishing different traffic routes over the switch, route buttons for the ends of the routes, two normal and two reverse control relays for controlling the switch, means responsive to the operation of the button for one end of a route over the switch for energizing one normal or reverse control relay, means responsive to the subsequent operation of the button for the other end of said route for energizing the other normal or reverse control relay, and means effective when both normal or both reverse control relays are energized for operating the switch to a corresponding position.
14. In an interlocking control system, a track layout including parallel tracks interconnected by track switches and crossovers adapted to form different traffic routes, control relays for said switches, a route button for each route end for each end of said layout, means responsive to the successive operation of the buttons for the opposite ends of a route to successively energize two series of said relays one series in response to the operation of each button each such series including a relay for each switch or crossover of such route, means effective when the relays of both series are energized for operating the track switches and crossovers as required to establish the route, and means dependent only upon the relative order in which said buttons are operated for determining the direction of trafic movements over said route when established.
15. In an interlocking control system, a track layout including parallel tracks interconnected by track switches and crossovers to form different traffic routes, control relays for said switches, a manually operable contact for each route end in said layout, a first chain of relays for each route each such chain including one relay for each switch or crossover of the route, means for successively energizing the chain of relays for a route in response to the momentary closing of the contact for one end of the route, means controlled by the energized relays of said 75
16. In an interlocking control system, a track layout including a plurality of track switches adapted to be arranged to form different traffic routes including two alternative routes between
the same route ends, a route button for each route end, an electroresponsive route selector for each route, means responsive to the operation of each button for energizing the selector for each route having one end marked by such button, said means being normally effective when a button at the end of said alternative routes is operated to permit the energization of the selector for but one of said alternative routes at a time, means responsive to the subsequent operation of the button for the other end of a selected route for releasing all of said selectors except the one for the selected route and for operating the track switches as required for the route, and selecting means for at times preventing the energization of said selector for one alternative route to thereby permit the energization of the selector for the other in response to the operation of the button at one end of said routes.
17. In an interlocking control system, a track layout including a plurality of track switches adapted to be arranged to form different traffic routes including two alternative routes between the same route ends, a route button for each route end, an electroresponsive route selector for each route, means responsive to the operation of each button for energizing the selector for each route having one end marked by such button, said means being normally effective when a button at the end of said alternative routes is operated to permit the energization of the selector for but one of said alternative routes at a time, means responsive to the subsequent operation of the button for the other end of a selected route for releasing all of said selectors except the one for the selected route and for operating the track switches as required for the route, and selecting means automatically effective in the event a portion of said one alternative route is occupied by a train when the other is available to prevent the energization of the selector for said one alternative route to thereby permit the energization of the selector for the other in response to the operation of the button at one end of said routes.
18. In an interlocking control system, a track layout including a plurality of track switches adapted to be arranged to form different traffic routes including two alternative routes between the same route ends, a route button for each route end, an electroresponsive route selector for each route, means responsive to the operation of each button for energizing the selector for each route having one end marked by such button, said means being normally effective when a button at the end of said alternative routes is operated to permit the energization of the selector for but one of said alternative routes at a time, means responsive to the subsequent operation of the button for the other end of a selected route for releasing all of said selectors except the one for the selected route and for operating the track switches as required for the route, and manually controllable selecting means effective when operated to prevent the energization of the selector for said one alternative route to thereby permit the energization of the selector for the other in response to the operation of the button at one end of said routes.
19. In an interlocking control system, a plurality of routes through a track layout each including a plurality of track switches, a route button for each route end in said layout, two normal and two reverse control relays for each of said 7
switches which is operated singly or for each pair of switches operated as a crossover, means responsive to the operation of each button for one end of a route through said layout for energizing at least one normal or reverse control relay for each switch or crossover of such route, means responsive to a subsequent operation of the button at the opposite end of said route for energizing the other normal or reverse control relay for each switch or crossover of such route, and means effective when the two normal relays or the two reverse control relays for a switch or crossover are both energized for operating that switch or crossover to a corresponding normal or reverse position.
20. In an interlocking control system, a plurality of routes through a track layout each including a plurality of track switches, a control panel comprising a representation of said layout having a route button for each route end, means responsive to the operation of the button for one end of a plurality of diverging routes for visually indicating the other end of each of such routes on the track diagram, and means responsive to the subsequent operation of the button for the other end of a selected one of said routes for operating the track switches as required to establish said route and to cancel said indications for routes other than the selected route.
21. In an interlocking control system, a plurality of routes through a track layout each including a plurality of track switches, a control panel comprising a representation of said layout having a route button for each route end, an indication lamp for the end of each route, means responsive to the operation of each button for lighting the lamp for the opposite end of each available route having its one end marked by such button, and means responsive to the operation of the button for the opposite end of a selected one of said routes for operating the track switches as required to establish such routes and for extinguishing the lamps for the ends of the other routes.
22. In an interlocking control system, a plurality of routes through a track layout each including a plurality of track switches, a control panel comprising a representation of said layout having a route button for each route end, a preliminary and a final selector for each route, an indication lamp for the end of each route, means responsive to the operation of each button for energizing the preliminary selector for each route having one end marked by said button, means controlled by each preliminary selector for lighting the lamp for the opposite end of the corresponding route, means responsive to the operation of the button for the opposite end of a selected route having its indication lamp lighted for energizing the final selector for that route having its two ends marked by the operated buttons, and means controlled by said final selector for releasing each of said preliminary selectors except the one for the selected route.
23. In combination, a detector section of railway track including a track switch, a track relay for said section, a track diagram representing said detector section formed of a plurality of linear portions, switch control means for operating said track switch to its normal and reverse positions, a route selector for operating said switch control means, means responsive to the operation of said route selector and effective when the track relay is energized for illuminating certain of said portions including one indicating
the position of the switch to indicate when a route is available, means effective when the track relay is deenergized for illuminating said portions by light of a different color to indicate when said route is occupied by a train, and means independent of said track relay for illuminating one switch indicating portion only by said light of different color to indicate when the switch is displaced from its normal or reverse position or is not in correspondence with its control means.
24. In combination, a detector section of railway track including a track switch, a track relay for said section, a track diagram representing said detector section and provided with two linear portions arranged to be illuminated to indicate the position of the switch, switch control means for operating said switch, means independent of said track relay for illuminating one of said portions when the switch is displaced from its normal or reverse position, and means effective if the control means is operated and said track relay is energized for differently illuminating one of said portions or the other in accordance with the position of the switch when said switch assumes a position corresponding to that of its control means.
25. In an interlocking control system, a track layout comprising a plurality of track sections interconnected by track switches to form different traffic routes, a track relay for each section, a miniature track diagram of said track layout having linear portions representing the track sections, route control means for each route effective when energized to operate the track switches as required to establish such route, a directional stick relay for each direction for each track section, means effective when a route is fully established for releasing selected ones of said relays for one direction including one relay for each section of such route, an indication relay for each section controlled by back contacts of the two directional relays for such section, means effective when the track relay and the indication relay for a section are both energized for iliuminating the corresponding section of the representation of the established route in the track diagram, and means responsive to the movement of a train over such route to reenergize the stick relays for the route.
26. In an interlocking control system, a track layout comprising a plurality of track sections interconnected by track switches to form different traffic routes, a track relay for each section, a miniature track diagram of said track layout having linear portions representing the track sections, route control means for each route effective when energized to operate the track switches as required to establish such route, a directional stick relay for each direction for each track section, means effective when a route is fully established for releasing selected ones of said relays for one direction including one relay for each section cf such route, means controlled by a front contact of each track relay and by back contacts of the directional relays for the same section for illuminating a portion of the representation of the established route on the track diagram, means controlled by a back contact of each track relay for differently illuminating such portion to indicate the presence of a train in the corresponding section, and means responsive to the movement of a train over such route to reenergize the stick relays for the route to successively cancel the illumination of the sections as such sections are vacated.
27. In an interlocking control system, a track layout comprising a plurality of track sections interconnected by track switches to form different traffic routes, a track relay for each section, 5 a miniature track diagram comprising linear portions representing the track switches in their normal and reverse positions such portions being interconnected by intervening portions to represent the track layout, route control means for the track switches as required for such route, a plurality of directional stick relays one for each direction for each track section, means effective when each switch assumes the position required 15 for a route in response to the operation of said route control means to illuminate the corresponding portion of the diagram to indicate the position of the switch, means effective when a route is fully established for releasing selected 20 stick relays for one direction including one relay for each track section of such route, means controlled by the directional relays for a route when released for illuminating said intervening portions to complete the representation of such route in the track diagram, means releasing the control means for route when a train enters the first section of such route, and means reenergizing each directional relay in response to the movement of said train through the corresponding track section.
28. In an interlocking control system, a track layout comprising a plurality of track sections containing track switches adapted to be interconnected to form different traffic routes, a track relay for each section, a miniature track diagram of said track layout having linear portions representing the track sections, route control means for each route effective when energized to operate the track switches as required to establish such route, a section locking relay for each direction for each track section each effective when deenergized to prevent the operation of any track switch in such section, means effective when a route is established for releasing selected ones of said relays for one direction including one for each section of said route, means effective as long as the track relay for a section is energized and one section locking relay or the other for such section is deenergized for illuminating the corresponding portion of the representation of the established route on the track diagram, and means responsive to the movement of a train over each section of a route to reenergize the locking relay for such section.
29. In combination, a detector section of railway track including a track switch, a track relay for said section, a locking relay which when deenergized prevents operation of the switch, a track diagram representing said detector section including portions for indicating the position of the track switch, lamps for illuminating said portions, a normal and a reverse control relay for operating the switch, a normal and a reverse indication relay for the switch, a circuit including a front contact of said track relay and front contacts of corresponding control and indication relays for selectively lighting the lamp for one of said switch indicating portions to indicate the position of the switch, means for releasing the 0 switch control relay when a train enters a route including the switch but before the train occupies said detector section, and means including a back contact of said locking relay for maintaining such lamp lighted until the train enters 75 said detector section.
30. In an interlocking control system, a plurality of routes through a track layout each including a track switch, a control panel comprising a representation of said layout having a route button for each route end, a route selector controlled by the buttons at opposite ends of the routes for operating the track switch, two normally dark switch indication lamps, means effective when said selector is operated and the switch assumes its normal or reverse position as required for a route including said switch to light the corresponding normal or reverse indication lamp, a normally inactive switch lever having a normal and a reverse control position for operating the track switch without operating said selector, and means effective when said lever is moved to either control position to light the indication lamp corresponding to the position the switch then occupies.
31. In an interlocking control system, a plurality of routes through a track layout each including a track switch, a control panel comprising a representation of said layout having a route button for each route end, a route selector controlled by the buttons at opposite ends of the routes for operating the track switch, a normally inactive switch lever having a normal and a reverse control position for individually operating the track switch, a normal and a reverse indication lamp for indicating the position of the switch, a circuit for each lamp each including a contact closed when the switch is operated by said selector to the corresponding normal or reverse position, each said contact being bridged by a contact closed when said lever is moved to either control position, and switch indication means for completing the circuit for the normal or reverse indication lamp when the switch occupies the corresponding position.
32. In combination with a railway track switch, a locking relay which when deenergized prevents operation of the switch, a control lever having an inactive position and a normal and a reverse control position, a pick-up circuit for said locking relay controlled by traffic conditions and including a contact closed by said lever in its inactive position, a stick circuit for said locking relay independent of said lever contact, two normally dark indication lamps, circuits for lighting one said lamp or the other at times in accordance with the position of the switch, means for operating the track switch to normal or reverse when the lever is moved to its corresponding control position provided said locking relay is energized, and means comprising contacts closed when the lever occupies either control position for completing the circuit for lighting one indication lamp or the other so as to indicate the actual position of the switch only when said lever occupies either control position.
33. In combination with a railway track switch, a locking relay which when deenergized prevents operation of the switch, a control lever having an inactive poistion and a normal and a reverse control position, a pick-up circuit for said locking relay controlled by traffic conditions and including a contact closed by said lever in its inactive position, a stick circuit for said locking relay independent of said lever contact, means for operating the track switch to normal or reverse effective when the lever is moved to the corresponding control position provided said locking relay is energized, and normally inactive indication means controlled in accordance with the condition of the track switch rendered effec-
tive to indicate the actual position of the switch upon the movement of said lever from its inactive position.
34. In an interlocking control system, a track layout including parallel tracks interconnected by track switches adapted to form different traffic routes, signals for governing traffic movements over said routes in opposite direction, a route button for each signal, a selector relay for each end of each route, means controlled by each button actuated when no button for a conflicting or opposing signal has been actuated for energizing the selector relays for the ends of each route governed by the corresponding signal, means controlled by each button for a signal at the opposite end of one of said routes actuated after the selector relays for such route are energized for operating the track switches as required for the route and for releasing the energized selector relays for conflicting routes, and means controlled by the selector relays which remain energized for clearing the signal for the corresponding route when that route becomes established.
35. In an interlocking control system, a track layout including parallel tracks interconnected by track switches adapted to form different traffic routes, signals for governing traffic movements over said routes including a main signal and a call-on signal at the entrance to a particular route, a route button for each route end, a preliminary and a final selector for each route, means responsive to the operation of each button for the entrance end of a route to energize the preliminary selector for such route, means responsive to the operation of each button at the exit end of a route having its preliminary selector energized to energize the final selector for such route, means controlled by each final selector for operating the track switches as required to establish the corresponding route and for releasing the energized preliminary selectors for conflicting routes, means controlled by the preliminary selector which remains energized for clearing the signal for one direction for the corresponding route when such route is fully established, means controlled by traffic conditions for at times preventing the clearing of said main signal when said particular route is established, and means responsive to an operation of the button for the entrance to said particular route provided said main signal remains at stop after said particular route has been established for clearing said call-on signal.
36. In an interlocking control system, a track layout including parallel tracks interconnected by track switches adapted to form different traffic routes, signals for governing traffic movements over said routes including a main signal and a call-on signal at the entrance to a particular route, a route button for each route end, a preliminary and a final selector for each route, means responsive to the operation of each button for the entrance end of a route to energizs the preliminary selector for such route, means responsive to the operation of each button at the exit end of a route having its preliminary selector energized to energize the final selector for such route, means controlled by each final selector for operating the track switches as required to establish the corresponding route and for releasing the energized preliminary selectors for conflicting routes, means controlled by the preliminary selector which remains energized for clearing the signal for one direction for the cor-
responding route when such route is fully established, the preliminary selector for said particular route being normally effective to clear said main signal only, and means responsive to a subsequent operation of the button for the entrance to said particular route in the event said main signal fails to clear for clearing said callon signal.
37. In an interlocking control system, a traffic route through a track layout, signals at the ends of said route for governing the movement of traffic over said route in either direction including a main signal and a call-on signal at one end, a route button for each route end, means effective when both buttons are operated for establishing said route, means dependent only upon the relative order of operation of said buttons for selectively clearing said main signal or the signal at the opposite end of the route, and means responsive to a second operation of the button for one end following the operation of the button for the opposite end of the route in the event said main signal fails to clear for clearing said call-on signal.
38. In an interlocking control system, a plurality of traffic routes through a track layout including movable track switches, a single route button for each route end in said layout, a selector relay for the exit end of each route, means normally responsive to the operation of any route button for energizing the selector relay for the exit end of each available route having its entrance end marked by such button, an exit relay for each button, means responsive to the subsequent operation of a button for the exit end of any route having the associated selector relay already energized for energizing the corresponding exit relay, and means controlled by said energized exit relay for releasing the energized selector relays for routes conflicting with the one having its ends marked by the operated buttons and for operating the track switches as required to establish such route.
39. In an interlocking control system, a first signal at one end of a track layout for governing the movement of traffic over a first portion of a traffic route through said layout, a second signal at an intermediate point in said route for governing the movement of traffic in the same direction over a second portion of said route, a route button for each end of said route and for said intermediate point, a stick relay normally responsive to the operation of the button for said intermediate point, means responsive to the operation of the button for the exit end of said route when said stick relay is energized for clearing said second signal, a selector relay responsive to the operation of the button for the entrance end of said route for rendering the button for said intermediate point ineffective to control said stick relay, an exit relary responsive to the operation of the button for said intermediate point when said selector relay is energized for clearing said first signal, and means controlled by said exit relay for releasing said selector relay to render said stick relay respon.. sive to a subsequent operation of said intermediate button.
40. In an interlocking control system, a first signal at one end of a track layout for governing the movement of traffic over a first portion of a traffic route through said layout, a second signal at an intermediate point in said route for governing the movement of traffic in the same direction over a second portion of said route, a route
button for each end of said route and for said intermediate point, a stick relay normally responsive to the operation of the button for said intermediate point, means responsive to the operation of the button for the exit end of said route when said stick relay is energized for clearing said second signal, a selector relay responsive to the operation of the button for the entrance end of said route for rendering the button for said intermediate point ineffective to control said stick relay, an exit relay responsive to the operation of the button for said intermediate point when said selector relay is energized for clearing said first signal, means controlled by said exit relay for releasing said selector relay to render said stick relay responsive to a subsequent operation of said intermediate button, and means responsive to the operation of the button for the exit end of said route following operation of the button for the entrance end of the route for energizing said exit relay and said stick relay for clearing said first signal and said second signal.
41. In an interlocking control system, a track layout comprising a plurality of branched track sections each including a track switch, indication means for each switch for indicating its position, a track relay for each section, a miniature diagram of the track layout having linear portions representing the track sections, means controlled only by the track relay for each section for illuminating the representation of such section to indicate when the section is occupied by a train, and means controlled by the indication means for each switch for preventing the illumination of the representation of that branch of the corresponding section which a train in said section does not occupy due to the position of said switch.
42. In an interlocking control system, a track layout comprising a plurality of branched track sections each including a track switch, indication means for each switch for indicating its position, a track relay for each section, a route indicator comprising a miniature diagram of the track layout having linear portions representing the track sections, means for establishing different traffic routes over said switches in different positions, means for indicating the movement of a train over an established route through said layout comprising means controlled only by the track relay for each section for illuminating the portion of the representation of the section extending in the facing direction from the track switch in such section, and means controlled only by the track relay for each section and by the indication means for the switch in such section for selectively illuminating one branch or the other of the representation of that section extending in the trailing direction from the switch in such section.
43. In an interlocking control system, a track layout including parallel tracks interconnected by track swicches adapted to form different traffic routes, signals for governing the movement of traffic over said routes, route buttons for the ends of said routes, route selecting means responsive to the operation of the buttons for the two ends of a route for establishing that route and for clearing the corresponding signal, auxiliary switch control means for each switch for operating the switches individually without operating said route selecting means, and auxiliary means for clearing each signal rendered effective in response to the operation of the button at one end only of the route which such signal governs.
when the auxiliary switch control means for each switch of the route has been operated to the position required to establish such route.
44. In an interlocking control system, a track layout inciuding parallel tracks interconnected by track switches adapted to form different traffic routes, signals for governing the movement of traffic over said routes, route buttons for the ends of said routes, route selecting means responsive to the operation of the buttons for the two ends of a route for establishing that route and for clearing the corresponding signal, a three-position switch control lever for each switch having an inactive position, and two control positions for cperating the switch to normal or reverse without operating said route selecting means, a route circuit network comprising wires corresponding to said tracks and contacts of said levers closed in their normal or reverse control positions including a route circuit for each traffic route through the layout, auxiliary means for clearing each signal comprising the route circuit for the route which such signal governs and a normally open contact controlled by the button for one end of a route, and means effective when a signal for a route has been cleared requiring the lever for each switch of that route to occupy its inactive position before such switch can again be operated.
45. In an interlocking control system, a track layout including parallel tracks interconnected by track switches adapted to form different traffic routes, signals for governing the movement of traffic over said routes, route buttons for the ends of said routes, route selecting means responsive to the operation of the buttons for the two ends of a route for establishing that route and for clearing the corresponding signal, a three-position switch control lever for each switch having an inactive position and two control positions for operating said switch without operating said route selecting means, auxiliary means for clearing the signal for a route without operating said route selecting means rendered effective when each switch of the route has been operated to the required position by its control lever, and means effective when a signal for a route has been cleared requiring the lever for each switch of that route to occupy its inactive position before such switch can again be operated.
46. In a switch control system of the entranceexit type for governing the power operation of track switches at the opposite ends of the crossovers of a track layout to set up different routes for train movement between signal locations at opposite ends of the track layout constituting entrance and/or exit ends of routes, said track layout affording at least two alternative routes between the same entrance and exit signal locations by reason of two crossovers interconnecting two tracks, a control panel having thereon a miniature track diagram, route buttons located on said diagram at points corresponding to said signal locations and operable at any time to their actuated positions to close entrance or exit contacts to identify their corresponding locations as entrance or exit ends of routes, a normal and a reverse control relay for each of said track switches for respectively controlling its normal and reverse operation, one conditioning circuit network having a feed point for each signal location governing train movement from right to left and effective upon the application of an energizing potential to a given feed point to cause energization of a normal or a reverse switch
control relay for each of those track switches which would be trailed in a corresponding normal or reverse position by a train moving to the left over each available route from that signal location, another conditioning circuit network having a feed point for each signal location governing train movement from left to right and effective upon the application of an energizing potential to a given feed point to cause energization of a normal or a reverse switch control relay for each of those switches which would be trailed in a corresponding normal or reverse position by a train moving to the right over each available route from that signal location, contacts of said normal and reverse switch control relays included in said one and said another conditioning circuit networks to interlock said relays for allowing the reverse switch control relays for the opposite ends of a crossover to be energized only if both of the normal relays for the opposite ends of that crossover are deenergized and for preventing energization of the normal switch control relay each end of such crossover only if the reverse switch control relays for both ends of that crossover are energized, circuit means effective upon the closure of an entrance contact for a particular signal location to supply energy to that conditioning network having a feed point for that signal location, and circuit means rendered effective upon the closure of an exit contact to supply energy to that conditioning circuit network having a feed point for such signal location, whereby the closure of an entrance contact for a signal location at the entrance to said alternative routes and the closure of an exit contact for the signal location at the exit end of such routes causes both of said conditioning networks to be energized and pick up the proper switch control relays to establish a predetermined route only between such signal locations.
47. In a switch control system of the type described for setting up different routes between signal locations at opposite ends of a track layout by the power operation of track switches and crossovers in response to the designation of the entrance and exit endis of such routes, a group of switch control relays associated with each of said track switches and crossovers for controlling the normal and reverse operation of such switch or crossover, one conditioning circuit network having a feed point for each signal location governing train movement from right to left and effective upon the application of an energizing potential to a given feed point to cause the energization of a switch control relay for each of those track switches which would be trailed in a normal or a reverse position by a train moving to the left over each available route from that signal location, another conditioning circuit network having a feed point for each signal location governing train movement from left to right and effective upon the application of an energizing potential to a given feed point to cause the energization of a switch control relay for each of those switches which would be trailed in a normal or a reverse position by a train moving to the right over each available route from that signal location, circuit means associated with each switch or crossover and responsive to the energization by one conditioning network of a switch control relay for a particular position of that switch or crossover included in any particular route for also causing another switch control relay of the group of relays for
that switch or crossover to be energized over the other of said conditioning circuit networks, circuit means responsive to the manual designation of a particular signal location as the entrance end of a desired route for applying energy to that conditioning circuit network having a feed point for that signal location, and responsive to the manual designation of a signal location as the exit end of such desired route for applying energy to the other conditioning network having a feed point for that signal location, whereby there are two relays energized for each switch or crossover included in any given route having its entrance and exit ends manually designated, and switch control circuit means for each switch or crossover effective to cause its power operation when and only when two switch control relays of its group of switch control relays are energized.
48. In an interlocking control system of the entrance-exit type for setting up different traffic routes through a railway track layout which includes a track switch operable to reverse or normal to extend one or another of two alternative routes to a common exit, manually operable contacts designating the common entrance and exit to said alternative routes, a normal and a reverse selecting relay for governing the operation of said track switch to normal or reverse, a third relay associated with said track switch, an energizing circuit for said reverse relay closed in response to the operation of said entrance contact provided said normal relay is deenergized and said one alternative route is available, an energizing circuit for said normal relay closed in response to the operation of said entrance contact provided said reverse relay or said third relay is deenergized and said other alternative route is available, and an energizing circuit for said third relay closed in response to the operation of said exit contact only when said reverse relay is energized. for rendering said other alternative route unavailable when said one route is set up.
49. In an interlocking control system, a track layout including a plurality of track switches adapted to form different traffic routes, entrance and exit buttons for the ends of said routes, a group of at least three selecting relays for each single switch or crossover in said layout, each group including a normal and a reverse relay, a route circuit network controlled by the buttons for the route ends at one end of the track layout including a circuit for one selecting relay of each group; another route circuit network controlled by the buttons for the route ends at the other end of the track layout including a circuit for another selecting relay of each group, said circuits being arranged to effect the energization of a pair of selecting relays for each single switch or crossover in any route which has been designated by the operation of the entrance and exit buttons for its two ends, one relay of each said pair being in each network and each pair including at least one normal or reverse relay for selecting the required switch position, and a switch control relay for each single switch or crossover controlled jointly by the two relays of the corresponding pair for operating the associated switch or switches to the selected position.
50. In an interlocking control system of the entrance-exit type for setting up different traffic routes through a railway track layout which includes a track switch operable to reverse or normal to extend one route or another to a com-
mon exit, manually operable contacts designating the entrances and exits to said routes, a normal and a reverse selecting relay and a third relay associated with said track switch, an energizing circuit for said reverse relay closed in response to the operation of the contact for the entrance to said one route, an energizing circuit for said normal relay closed in response to the operation of the contact for the entrance to said other route, an energizing circuit for said third relay closed in response to the operation of the contact for the common exit to said routes provided either said normal or said reverse relay is energized, and control circuits for operating said track switch to normal and reverse including front contacts of said normal relay and reverse relay, respectively, each said circuit also including a contact of said third relay.
51. A switch and signal control system of the entrance-exit type for track layouts including parallel tracks connected by one or more crossovers and affording a plurality of routes between entrance and exit signal locations, manually operable buttons for designating signal locations to constitute the entrance and exit ends of desired routes, four switch control relays associated with each crossover comprising two relays relating to the normal position and two relating to the reverse position, means for operating each crossover to the normal position when both of the relays relating to the normal position are energized and to the reverse position when both of the relays relating to the reverse position are energized, initiating circuits responsive to the operation of a button to designate any given entrance signal location for energizing one of the normal or the reverse relays for each end of a crossover that would be trailed in the corresponding normal or reverse position by train movement over any one of the available routes originating at said entrance signal location, and circuit means responsive to the subsequent actuation of a button to designate the exit end of a particular one of said available routes for energizing the other normal or reverse relay as the case may be for each of the crossovers included in said particular route and thereby cause operation of said crossover to the normal or the reverse position as required to provide said route.
52. In a switch and signal control system of the entrance-exit type for track layouts including parallel tracks connected by one or more crossovers, manually operable buttons for designating the signal locations of said track layout to constitute the entrance and exit ends of routes, four relays associated with each cross over and adapted when energized in different combinations of two relays each to govern operation of said crossovers to the normal and the reverse position, conditioning circuits responsive to the actuation of a button to designate any given entrance signal location for conditioning one of said relays associated with each trailed end of a crossover included in any one of the available routes originating at said entrance signal location and thereby preselect the position of said crossovers to conform with said routes, and circuit means responsive to the actuation of a button to designate the exit end of a particular one of said routes and controlled by the relays conditioned by said initiating circuits for energizing another one of the relays associated with each of those crossovers included in said particular route and deenergizing those relays conditioned by energization of said initiating circuits and relating
to all other routes originating at the same entrance signal location.
53. In an interlocking control system, a plurality of traffic routes through a track layout including movable track switches, route buttons for the ends of the routes, a selector for each direction for each route for rendering buttons effective to perform exit functions for the ends of that route, means responsive to the operation of each button for applying energy to the selector for one direction for each route having one end marked by such button, route completion means responsive to the subsequent operation of the button for the other end of a selected one of said routes for rendering ineffective all said selectors except the one for the selected route and for operating the track switches in turn as required to establish such route, and means dependent only upon the relative order in which the buttons for the two ends of a route are operated for determining the direction of traffic movements over that route when established.
54. In an interlocking control system, a plu-
rality of traffic routes through a track layout including movable track switches, a single route button for each route end in said layout, an entrance relay for each button, an exit relay for
5 the exit end of each route, means responsive to the operation of each button for energizing its associated entrance relay and for preparing for operation the exit relay for the exit end of each available route having its entrance end marked 10 by such button, means responsive to the subsequent operation of the button for the exit end of an available route for energizing the corresponding exit relay instead of the corresponding entrance relay, and route establishing means con15 trolled by the energized entrance and exit relays for any given route for initiating the operation of each switch in turn required to establish that given route beginning at said exit end and at the same time cancelling the preparation of the 20 exit relays for all routes conflicting with said given route.

LLOYD V. LEWIS.

LLOYD V. LEWIS.
It is hereby certified that error appears in the printed specification of the above numbered patent requiring correction as follows : page 14 , first column, line 39 , claim 6, after "same" insert--switch--; and second column, line 7, claim 11, after "such" strike out "route" and insert the same before "button" in line 7I, same claim; page 18 , first column, line 64 , claim 35, for "poistion" read-position-- ; and that the said Letters Patent should be read with this correction therein that the same may conform to the record of the case in the Patent office.
signed and sealed this 5 th day of January, A. D. 1943.

Henry Van Arsdale,
(Seal)
Acting Commissioner of Patents.

